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Abstract

In this articlewe study the induced geodesic distance of fractional order Sobolev
metrics on the groups of (volume preserving) diffeomorphisms and symplectomor-
phisms. The interest in these geometries is fueled by the observation that they allow
for a geometric interpretation for prominent partial differential equations in the field
of fluid dynamics. These include in particular the modified Constantin–Lax–Majda
and surface quasi-geostrophic equations. The main result of this article shows that
both of these equations stem from a Riemannian metric with vanishing geodesic
distance.
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1. Introduction

It has been recently shown [57] that the surface quasi-geostrophic (SQG) equa-
tion

θt + 〈u,∇θ〉 = 0, θ = ∇ × (−�)−1/2u

admits a geometric interpretation as the Euler–Arnold equation for geodesics of
a right-invariant H−1/2 metric on the group of diffeomorphisms which preserve
the volume form of a two-manifold. Recall that geodesics are critical points of
the path length functional, and that the geodesic distance is the infimal length
of paths between two given points. In the article [57] Washabaugh conjectured
that the geodesic distance of the right-invariant H−1/2 metric on the group of
volume preserving diffeomorphisms is degenerate, that is, there are distinct volume
preserving diffeomorphisms whose geodesic distance is zero. The main result of
this article gives an affirmative answer to this conjecture.

Main Theorem. Let M be a two-dimensional orientable manifold with Rieman-
nian metric g and volume form μ = vol(g), and let Diffμ(M) denote the group
of all diffeomorphisms ϕ satisfying ϕ∗μ = μ. Then the geodesic distance of the
right-invariant H−1/2 metric on Diffμ(M) is degenerate.

This result is proven in Corollary 1 using the more general Theorem 3. We next
discuss the relevance of this result in the broader context of the study of partial
differential equations by geometric methods.

1.1. A Geometric View on Partial Differential Equations

Washabaugh’s work stands in the tradition of studying partial differential equa-
tions (PDEs) from a geometric perspective by representing them as related to
geodesic equations under suitable metrics. Generally on a Lie group G with right-
invariant metric, the geodesic equation splits into the decoupled pair of equations

∂t g(t) = dRg(t)u(t) , ∂t u(t) + ad�
u(t) u(t) = 0 , g(t) ∈ G , u(t) ∈ TeG ;
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here the first equation is the flow equation, while the second is called the Euler–
Arnold equation. This program for PDEs was started by Arnold [1], who rep-
resented Euler’s equation of hydrodynamics as the Euler–Arnold equation of the
right-invariant L2 metric on the group of volume preserving diffeomorphisms. Sub-
sequently, similar representations were found for many other important PDEs in
hydrodynamics and physics, including the modified Constantin–Lax–Majda equa-
tion [8,14,21,59], the Camassa–Holm equation [10,32,43], the Korteweg–de Vries
equation [30], and the Hunter–Saxton equation [24,29,37,39] (see [28,31,56] for
surveys and further examples). These representations allow one to study properties
of the PDE in relation to properties of the underlying Riemannian manifold. For
example, local well-posedness of the PDE, including continuous dependence on
initial conditions, is closely related to smoothness of the geodesic spray [15]; see
[44] for further results on smoothness for other Euler–Arnold equations. Further
geometric properties which have been studied in this context are the sign of the
sectional curvature [28], Fredholmness of the exponential map [44] and, as in this
article, degeneracy of the geodesic distance functional [42].

1.2. Degeneracy of the Geodesic Distance on Diffeomorphism Groups

Oneof the best-known instances of this phenomenonwas discovered byEliash-
berg and Polterovich [18], who showed the degeneracy of the geodesic distance
of thebi-invariant W−1,pmetricwith p < ∞on the groupof symplectomorphisms.
This is in contrast to Hofer’s W−1,∞ metric, which has non-degenerate geodesic
distance [23]. More than 10years later,Michor andMumford [42] proved that the
geodesic distance of the right-invariant L2 metric on the group of diffeomorphisms
vanishes identically. Here the corresponding Euler–Arnold equation is the inviscid
Burgers’ equation ut + 3uux = 0. Subsequently, Bauer et al. [3–5] extended this
result to fractional order Sobolev metrics of order s < 1/2 on general diffeomor-
phism groups and for s = 1

2 on the diffeomorphism group of the circle, and to
the L2 metric on the Virasoro–Bott group, whose Euler–Arnold equation is the
Korteweg–de Vries equation. While the reasons for this degeneracy are still mys-
terious, it has been conjectured by Michor and Mumford [42] that there exists a
relation to locally unbounded curvature of the corresponding Riemannian metric.

In many cases the (non-)degeneracy of the geodesic distance goes hand in hand
with Fredholmness of the exponential map and well-posedness properties of the
geodesic equation and Euler–Arnold equation. Sobolev metrics on diffeomorphism
groups depend on a smoothness parameter s, the number of derivatives of the vector
field that appear in the metric at the identity, and the higher this parameter is,
the better-behaved geodesics are. For right-invariant Sobolev metrics of fractional
order on the diffeomorphism group of a one-dimensional manifold, we summarize
the known geometric properties in Table 1 below: smoothness of the exponential
map u0 �→ g(1), Fredholmness of this map, global existence of geodesics, and
nonvanishing geodesic distance.

Clearly the case s = 1
2 is the transition for most of these properties, which

suggests that there are some connections between them. Global existence is known
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Table 1. Geometric properties of Hs metrics on Diff(S1) and Diff(R). For the case Diff(R)
the bold statement is a new contribution of this article

s 0 � s < 1
2 s = 1

2
1
2 < s < 3

2 s > 3
2

smoothness False [13] True [13,21] True [19] True [19]
Fredholmness False False [8] Truea [44] Truea [44]
global exist. False for s = 0 False [8,11,46] False for s = 1 [10,12,40] True [19,46]
nonvanishing False [4] False [4] True [4] True [4]
a The arguments in [44] for Fredholmness can be extended to fractional orders, assuming
that smoothness of the metric and spray holds true.

Table 2. Geometric properties of Hs metrics on Diff(M) for a manifold M of dimension
d � 2

s 0 � s < 1
2 s = 1

2
1
2 < s < 1 s � 1

smoothness False Truea [7] True [7] True [7]
Fredholmness False False True [44] True [44]
global exist. False for s = 0 False False for s = 1 True for s > d

2 + 1 [7,9,44]
nonvanishing False [4] False [26] False [26] True [42]
aFor fractional order metrics smoothness and global existence results have only been shown
for the case M = R

d .

only for orders s ∈ {0, 1
2 , 1}, where it fails, and for orders s > 3

2 , where global exis-
tence holds almost trivially because theRiemannian distance generates themanifold
topology, and standard results of Riemannian geometry on Hilbert manifolds apply
[35].

For diffeomorphismgroups on higher dimensionalmanifolds the critical indices
for Fredholmness and smoothness of the exponential map do not change, whereas
the critical indices for vanishing geodesic distance and global existence depend on
the dimension. Vanishing geodesic distance for 1

2 � s < 1 is an extremely recent
result by Jerrard and Maor [26], who disproved an earlier conjecture by Bauer
et al. [4]. We again summarize the known geometric properties in Table 2:

For the volume-preserving diffeomorphism group of a simply-connected com-
pact two-dimensional surfaceM , the critical exponents change again, as can be seen
fromTable 3 below. The geodesic distancewas previously known to be nondegener-
ate for s = 0 (corresponding to ordinary two dimensional Euler) and degenerate for
s = −1. This paper completes the picture for s ≤ − 1

2 . For the interval− 1
2 < s < 0,

the answer is still unknown.
In higher dimensions the critical exponents changes again. In dimension 3 it

becomes s = 0 for both Fredholmess and vanishing, corresponding to the usual
three dimensional Euler equation. Here the exponential map is smooth [15] but
not Fredholm [16], while global existence is notoriously unknown. The geodesic
distance is positive, but not due to an intrinsic property of the metric: rather due
to the fact that the right-invariant metric happens to be the restriction of the non-
invariant metric, for which the geodesics are known explicitly and given by point-
wise geodesics in the basemanifoldM [15]. The completion of the smooth volume-
preserving diffeomorphisms in the Riemannian distance is the space of all measure-
preserving maps, a result in dimension 3 and higher due to Shnirelman [51].
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Table 3. Geometric properties of Hs metrics on Diffμ(M), where M is a closed surface.
The bold statements are new contributions of this article

s s = −1 −1 < s < − 1
2 s = − 1

2 − 1
2 < s

smoothness False False True [57] True [44]
Fredholmness False False False [57] True [16,44]
global exist. Truea unknown unknown True for s = 0 [58] and s = 1 [49]
nonvanishing False [18] False False True for s ≥ 0 [42]
a Global existence for s = −1 holds for an entirely different reason (bi-invariance of the
metric, which implies that the Riemannian exponential coincideswith the group exponential)
than for metrics of order s � 0 (PDE methods, which imply in addition the smoothness of
the exponential map).

Intuitively we may think of the volume-preserving constraint as doing very little to
enforce smoothness in dimension 3 or higher; on the other hand in two dimensions
the completion is smaller (though it is not known exactly what it is). The fact that
there are smooth volume-preserving diffeomorphisms in a three dimensional cube
which cannot be joined by a minimizing geodesic, and that the diameter of this
group is finite [50] is further evidence that for three dimensional fluids, the distance
is “nearly” degenerate. From the tables above, we may suspect that these geometric
properties are related to each other and to the global existence question, though as
yet no direct implication is known.

1.3. Relation to Degeneracy of the Displacement Energy

This article simplifies and unifies the methods which were used by Michor
et al. [3–5,42] to prove degeneracy of the geodesic distance on diffeomorphism
groups. One key insight is the observation that an argument of Eliashberg and
Polterovich [18], which links degeneracy of the geodesic distance to degeneracy
of the displacement energy, generalizes from bi-invariant to right-invariant metrics;
see Theorem 1. This significantly widens the applicability of [18], as it allows
us to study the large class of right-invariant Sobolev metrics on diffeomorphism
groups. In the context of W−1,p-norms on the contactomorphism group this has
been observed by Shelukhin [48, Remark 7]. We present a formal proof of this
result in the context of general groups of transformations.

These results circumvent the main difficulty in the proofs of vanishing geodesic
distance of [3–5,26,42], namely, to construct short paths of diffeomorphisms with
fixed end points. In contrast, there is no end point constraint in the definition of the
displacement energy, other than that some fixed set of points has to be mapped to
some disjoint location. This is much easier to handle.

1.4. Application to Sobolev Metrics on Diffeomorphism Groups

We show that the geodesic distance of the H1/2 metric on diffeomorphism
groups vanishes identically; see Theorem 2. The corresponding Euler–Arnold
equation is the Wunsch (modified Constantin–Lax–Majda) equation [8,14,21,59].
Moreover, we show that the geodesic distance of the H−1/2 metric on groups of
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exact diffeomorphisms vanishes identically; see Theorem3. This implies the degen-
eracy of the geodesic distance on groups of volume preserving diffeomorphisms on
two-manifolds; see Corollary 1. The corresponding Euler–Arnold equation is the
SQG equation. We conjecture that these results are sharp, referring to Section 5 for
precise statements.

1.5. Structure of the Article

Section 2 contains the characterization of the degeneracy of the geodesic dis-
tance in terms of the displacement energy. Sections 3 and 4 contain applications
of this theorem to groups of diffeomorphisms and volume preserving diffeomor-
phisms, respectively.

2. Right-Invariant Riemannian Metrics on Lie Groups

In this section we establish a necessary and sufficient condition for the (non-
)degeneracy of the geodesic distance on infinite-dimensional groups with right-
invariant weak Riemannian metrics. This setting is natural for the study of dif-
feomorphism groups and other infinite-dimensional topological groups; see the
applications in Sections 3 and 4.

2.1. Geodesic Distance

Let G be a (possibly infinite dimensional) manifold and topological group with
neutral element e, Lie algebra g = TeG, and left and right translations L and R
given by

g1g2 = Lg1(g2) = Rg2(g1), ∀g1, g2 ∈ G .

Assume for each g ∈ G that Rg : G → G is smooth, and let 〈〈·, ·〉〉 be an inner prod-
uct on the Lie algebra g. This gives rise to the following right-invariant Riemannian
metric on G:

〈〈h1, h2〉〉g = 〈〈T Rg−1h1, T Rg−1h2〉〉, ∀g ∈ G, ∀h1, h2 ∈ TgG .

The corresponding geodesic distance function is defined as

d(g1, g1) = inf
∫ 1

0
〈〈∂t g(t), ∂t g(t)〉〉g(t) dt , ∀g1, g2 ∈ G ,

where the infimum is taken over all smooth paths in G with g(0) = g0 and g(1) =
g1. The geodesic distance function is called degenerate if d(g1, g2) = 0 for some
g1 = g2 ∈ G, and it is called vanishing if d(g1, g2) = 0 for all g1, g2 ∈ G.
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2.2. Displacement Energy

Assume the setting of Section 2.1, and let G act effectively and continuously
from the left on a set M . Then the displacement energy [18] of a subset A ⊆ M is
defined as

E(A) = inf {d(e, g) : g ∈ G, g(A) ∩ A = ∅} ,

the support of a transformation g ∈ G is defined as

supp(g) = {x ∈ M : g(x) = x} ,

and the group of transformations with support in A ⊆ M is denoted by [18]

GA = {g ∈ G : supp(g) ⊂ A} .

A subset A ⊆ M is called essential if the corresponding group GA is non-Abelian,
and a transformation g ∈ G is called non-trivial if g = e.

2.3. Relation Between Geodesic Distance and Displacement Energy

On finite-dimensional manifolds and, more generally, manifolds with strong
Riemannianmetrics, the geodesic distance is always non-degenerate [34]. For weak
Riemannian metrics this is no longer true: there exist Riemannian metrics that
induce vanishing geodesic distance [18,42]. In this section we will describe an
equivalence between this degeneracy of the geodesic distance and degeneracy of
the displacement energy. This result is a generalization of a result by Eliashberg
and Polterovich [18] for the group of symplectomorphisms with bi-invariant
weak Riemannian metric.

The scarcity of bi-invariant metrics in the context of infinite dimensional Lie-
groups limits the applicability of their result. Theorem 1 shows that left-invariance
is not needed and can be replaced by condition (1), which holds automatically for all
bi-invariant metrics (in this case, the constant |Lg| is equal to one). In the context of
the contactomorphism group this result has been already observed by Shelukhin
in [48]. In what follows we will formulate the result for a general group of trans-
formations acting on a set M . The proof follows the sketch of Shelukhin, which is
based on an adaption of the original argument by Eliashberg and Polterovich,
see [18,48].

Theorem 1. Assume the setting of Sections 2.1 and 2.2, and assume for each g ∈ G
that left translation by g is Lipschitz continuous:

|Lg| := inf
{
C ∈ R+ : d(gg0, gg1) � Cd(g0, g1),∀g0, g1 ∈ G

}
< ∞ . (1)

Furthermore assume that every non-empty, open subset A ⊂ M is essential.
Then the following three statements are equivalent:

(a) There exists a non-trivial transformation G � g = e with d(e, g) = 0.
(b) There exists a normal subgroup of transformations g ∈ G with d(e, g) = 0

which contains at least one non-trivial transformation g = e.
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(c) There exists an open set A ⊆ M with displacement energy E(A) = 0.

If G is a simple group then any of the above statements imply

(d) The geodesic distance function vanishes identically, that is, d(g1, g2) = 0 for
all g1, g2 ∈ G.

Proof. For brevity, we write ‖h‖g = √〈〈h, h〉〉g for all g ∈ G and h ∈ TgG. One
easily verifies that the geodesic distance is symmetric and satisfies the triangle
inequality, that is,

d(g2, g1) = d(g1, g2) � d(g1, g) + d(g, g2), ∀g, g1, g2 ∈ G.

Moreover, the invariance properties of the metric imply that

d(g1g, g2g) = d(g1, g2), d(gg1, gg2) � |Lg|d(g1, g2), ∀g, g1, g2 ∈ G.

(a) �⇒ (b): Let G0 be the set of all transformations g ∈ G with d(e, g) = 0.
Then G0 is a subgroup of G because it holds for each g1, g2 ∈ G0 that

d(e, g1g
−1
2 ) � d(e, g−1

2 ) + d(g−1
2 , g1g

−1
2 ) = d(g2, e) + d(e, g1) = 0.

Moreover, G0 is a normal subgroup of G because it holds for all g0 ∈ G0 and
g ∈ G that

d(e, gg0g
−1) = d(g, gg0) � |Lg|d(e, g0) = 0.

Thus, G0 is a normal subgroup of G, which contains a non-trivial transformation
by (a), and we have shown (b).
(b) �⇒ (c): Let g be an non-trivial transformation in G0. As g is non-trivial,
there exists an open set A ⊆ M such that g(A) ∩ A = ∅ (recall that we assumed
the action of G to be continuous). Together with g ∈ G0 this implies E(A) = 0,
which proves (c).
(c) �⇒ (a): This generalizes the proof for bi-invariant metrics in [18] and is
similar to the proof described in [48]. The main ingredient is the following estimate
for the distance of the commutator [g0, g1] := g−1

0 g−1
1 g0g1 of g0, g1 ∈ G to the

neutral element:

d(e, [g0, g1]) � min
(
(1 + |Lg−1

0
|)d(e, g1), (1 + |Lg−1

1
|)d(e, g0)

)
. (2)

Note that (2) is trivially satisfied for bi-invariant metrics [18]. To prove (2) we
calculate

d(e, [g0, g1]) = d(e, g−1
0 g−1

1 g0g1) = d(g−1
1 g−1

0 , g−1
0 g−1

1 )

� d(g−1
1 g−1

0 , g−1
0 ) + d(g−1

0 , g−1
0 g−1

1 )

� d(g−1
1 , e) + |Lg−1

0
|d(e, g−1

1 ) = (1 + |Lg−1
0

|)d(e, g1),

and

d(e, [g0, g1]) = d(e, g−1
0 g−1

1 g0g1) = d(g−1
1 g−1

0 , g−1
0 g−1

1 )

� d(g−1
1 g−1

0 , g−1
1 ) + d(g−1

1 , g−1
0 g−1

1 )

� |Lg−1
1

|d(e, g−1
0 ) + d(g−1

0 , e) = (1 + |Lg−1
1

|)d(e, g0).
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Inequality (2) allows us to reuse the proof of [18] to show the degeneracy of the
metric. Therefore let A be a non-empty, open set with zero displacement energy.
As GA is non-Abelian, we can choose g0, g1 ∈ GA with [g0, g1] = e. For any
g2 ∈ G with g2(A) ∩ A = ∅ we let g3 = g0g

−1
2 g−1

0 g2 = [g−1
0 , g2]. Then it holds

for all x ∈ M that
g−1
0 g1g0x = g−1

3 g1g3x . (3)

For x ∈ A this is obvious because g3 = g0 on A. For x /∈ A and g2(x) /∈ A
we have g3(x) = x = g0(x) and thus it is true as well. It remains to check the
case x /∈ A and g2(x) ∈ A. Then g3(x) = g−1

2 g−1
0 g2(x) /∈ A. Here we used that

g−1
2 (A) ∩ A = ∅ and that g0(x) = x on M\A. Thus, g1g3(x) = g−1

2 g−1
0 g2(x) =

g3(x) and g−1
0 g1g0(x) = g−1

3 g1g3(x) = x , which proves (3) for all x ∈ M . As G
acts effectively on M , it follows that g−1

0 g1g0 = g−1
3 g1g3. Therefore,

d(e, [g1, g0]) = d(e, g−1
1 g−1

0 g1g0) = d(e, g−1
1 g−1

3 g1g3)

= d(e, [g1, g3]) � (1 + |Lg−1
1

|)d(e, g3)

= (1 + |Lg−1
1

|)d(e, [g−1
0 , g2]) � (1 + |Lg−1

1
|)(1 + |Lg0 |)d(e, g2).

Taking the infimum over all g2 with g2(A) ∩ A = ∅ yields

d(e, [g1, g0]) � (1 + |Lg−1
1

|)(1 + |Lg0 |)E(A) = 0.

Thus,wehave shown that [g1, g0] is a non-trivial transformationwithd(e, [g1, g0]) =
0, which proves (a). This completes the proof of the equivalence of (a), (b), and (c).

(b) �⇒ (d): Note that G0 = G because the only non-trivial normal subgroup
of a simple group is the group itself. Now the statement follows by the triangle
inequality

d(g0, g1) � d(g0, e) + d(e, g1) = 0.

3. Diffeomorphism Groups and the Modified Constantin–Lax–Majda
Equation

3.1. Sobolev Metrics on Diffeomorphism Groups

Let (M, 〈·, ·〉) be a connected Riemannian manifold of bounded geometry.1 For
fixed s ∈ R, let 〈〈·, ·〉〉 be a Sobolev inner product of order s on the vector space
X(M) of compactly supported vector fields, and let ‖·‖ be the corresponding norm.
We omit the exact description here and refer the interested reader to the article [4]
or the more extensive references [17,53,54]. For our purposes it suffices to say that
a Sobolev Hs-norm on real-valued functions f on R

n is given by

‖ f ‖2Hs (Rn) = ‖F−1aF f ‖2L2(Rn)
,

1 That is, the injectivity radius of (M, 〈·, ·〉) is positive and each iterated covariant deriva-
tive of the curvature is uniformly bounded in the metric; see [22,45] for more details. This
is automatically the case if M is compact or Euclidean.
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0 1−1

0

1

Fig. 1. A sequence (ξn)n∈N of bump functions with small H1/2 norm constructed as in the
proof of Lemma 1

where F is the Fourier transform and a ∈ C∞(Rn) is a Fourier multiplier, which
satisfies for some constants C1,C2 > 0 that

C1(1 + |ξ |2) s
2 � a(ξ) � C2(1 + |ξ |2) s

2 , ∀ξ ∈ R
n .

This definition extends to vector fields on generalmanifolds via charts and partitions
of unity.

Let Diff(M) be the connected component of the identity in the group of all
smooth compactly supported diffeomorphisms ofM . Then Diff(M) is a convenient
Lie group with Lie algebra X(M) [33]. The right-invariant Hs metric on Diff(M)

is defined as

〈〈h, k〉〉ϕ = 〈〈h ◦ ϕ−1, k ◦ ϕ−1〉〉 , ∀ϕ ∈ Diff(M),∀h, k ∈ TϕDiff(M) ,

and the corresponding geodesic distance is defined as in Section 2.1.

3.2. Bump Functions with Small H
1
2 Norm

An essential ingredient in the proof of the degeneracy of the geodesic distance of

the H
1
2 metric on Diff(M) (see Theorem 2) is the existence of bump functions with

small H
1
2 norm. In the following we will prove a slight refinement of [4, Lemma

3.3], which is used several times in the remainder of the article. The construction
is illustrated in Fig. 1, and further details can be found in [55, Theorem 13.2].

Lemma 1. There exists a sequence (ξn)n∈N in C∞(R, [0, 1]) such that

(a) ξn(x) = 1 for all x ∈ [−2−n, 2−n] and n ∈ N,
(b) ξn(x) = 0 for all x /∈ [−1, 1] and n ∈ N, and
(c) supn∈N n‖ξn‖2H1/2(R)

< ∞.

Proof. Let f : R → [0, 1] be a smooth function with support in [−1, 1] such that
f (x) = 1 for all x ∈ [− 1

2 ,
1
2 ]. For each n ∈ N let ξn : R → [0, 1] be given by

ξn(x) = 1

n

n−1∑
j=0

f (2 j x) , ∀x ∈ R.

Then ξn obviously satisfies (a) and (b). By [4, Lemma 3.3] it follows that (ξn)n∈N
satisfies (c).
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A

A′

0 1 2−1

0

1

2

−1

Fig. 2. Illustration of the proof of Theorem 2: a sequence of diffeomorphisms with small
H1/2 distance to the identity; each diffeomorphismmaps the set A = (0, 1) to some disjoint
set A′ above the line {y = 1}

3.3. Vanishing Geodesic Distance on Diffeomorphism Groups

Previous work by some of the authors [4,5] shows that the geodesic distance
vanishes for s < 1

2 on Diff(M) and for s � 1
2 on Diff(S1). In these articles it was

conjectured that the result extends to s = 1
2 and general manifolds M . In the recent

article [26] the vanishing geodesic distance result has been extended to metrics of
order 1

2 < s < 1 for dim(M) > 1. Thus only the case M = R and s = 1
2 remained

open for a complete characterization of vanishing (non-vanishing resp.) geodesic
distance for Sobolevmetrics on the group of diffeomorphisms of a general manifold
M . This gap is closed by the following theorem. The construction is illustrated in
Fig. 2.

Theorem 2. Assume the setting of Section 3.1. Then the right-invariant Hs metric
on Diff(M) has vanishing geodesic distance if and only if s � dim(M)

2 and s < 1,
that is, in dimension 1 if and only if s � 1

2 , and in dimension � 2 if and only if
s < 1.

Remark 1. Different choices of Fourier multipliers, charts, and partitions of unity
yield different but equivalent inner products and do not affect the degeneracy or
non-degeneracy of the geodesic distance.

Proof of Theorem 2. It suffices to show the theorem for s = 1
2 and M = R. All

other cases follow from [4,5,26]. The proof is divided in three steps. For brevity,
we write ‖h‖ϕ = √〈〈h, h〉〉ϕ for all ϕ ∈ Diff(M) and h ∈ TϕDiff(M).
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Step 1We claim that the manifold M = R contains a non-empty open set A which
has vanishing displacement energy with respect to the action of Diff(M). We will
prove this claim for the set A = (0, 1). We start from the observation that the
constant vector field u = 1 has right translations Flut (x) = x + t as flow, and that
the set A does not intersect its right-translation Flut (A) at time t = 1. To make
the energy of the time dependent vector field arbitrarily small we choose a family
(ξn)n∈N of bump functions with properties (a)–(c) of Lemma 1 and define for each
n ∈ N the compactly supported time-dependent vector field

un(t, x) = u(t, x).ξn
(
x − Flut (0)

) = ξn(x − t).

The idea behind this definition is to localize the vector field u without affecting the
trajectory of the point zero; see Fig. 1. Indeed, the trajectory of zero is given by
Flut (0) = Flunt (0) because ξn(0) = 1. Note that the localization also corrects for the
fact that right translations are not compactly supported. Let ϕn = Flun1 ∈ Diff(R).
As ϕn preserves monotonicity, one has

∀x, y ∈ A : x < 1 = ϕn(0) < ϕn(y),

which proves thatϕn(A)∩A = ∅.Moreover, the H1/2-distance between the identity
and ϕn tends to zero as n tends to infinity:

d(id, ϕn) �
∫ 1

0
‖ξn(x − t)‖H1/2(R) dt = ‖ξn‖H1/2(R) −→

n→∞ 0 .

Thus, A is an open set with vanishing displacement energy as claimed.
Step 2 Left multiplication Lϕ : Diff(R) → Diff(R) is smooth for each ϕ ∈
Diff(R). Moreover, there is Cϕ > 0 such that for each vector field X ∈ X(M),

‖T LϕX‖ϕ = ‖T LϕX ◦ ϕ−1‖id = ‖dϕ ◦ ϕ−1.X ◦ ϕ−1‖id � Cϕ‖X‖id
by the continuity of reparametrizations H1/2(R) � X �→ Rϕ−1X ∈ H1/2(R) [25,
Lemma B.3] and the continuity of pointwise multiplications H1/2(R) � X �→
dϕ.X ∈ H1/2(R) [54, Corollary in Section 4.2.2]. If ψ : [0, 1] → Diff(R) is a
smooth path and X (t) = ∂tψ(t) ◦ ψ(t)−1, this implies

∫ 1

0
‖∂t (ϕ ◦ ψ)‖ϕ◦ψ dt =

∫ 1

0
‖T Lϕ∂tψ‖ϕ◦ψ dt

=
∫ 1

0
‖T LϕX‖ϕ dt

� Cϕ

∫ 1

0
‖X‖Hs dt = Cϕ

∫ 1

0
‖∂tψ‖ψ dt .

Taking the infimum over all paths ψ with fixed end points shows (1). Finally we
note that for each non-empty set the group Diff(A) is non-Abelian, c.f. [18]. Thus,
the conditions of Theorem 1 are satisfied for the group Diff(R) with the right-
invariant Hs metric 〈〈·, ·〉〉. Moreover, Diff(R) is simple by [2, Theorem 2.1.1].
Thus, Theorem 1 together with the result of Step 2 show that the geodesic distance
vanishes identically on Diff(R).
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4. Groups of Volume Preserving Diffeomorphisms and the SQG Equation

Recall that the SQG equation is the Euler–Arnold equation of the right invariant
H−1/2 metric on the group of diffeomorphisms which preserve the volume (or
equivalently symplectic) form of a two-manifold [57]. We prove in this section that
the geodesic distance associated to this metric vanishes. More generally, we show
that this result extends to groups of exact diffeomorphisms on higher-dimensional
manifolds.

4.1. Sobolev Metrics on Groups of Exact Diffeomorphisms

LetM be a be a connected finite-dimensionalmanifold endowedwith aRieman-
nian metric 〈·, ·〉 of bounded geometry and a symplectic form ω. The symplectic
gradient of a function f ∈ C∞(M) is denoted by ∇ω f = ω̌−1d f ∈ X(M), where
ω̌ : T M → T ∗M is the symplectic isomorphism. A vector field is called exact if it
is the symplectic gradient of a compactly supported function, and a diffeomorphism
is called exact if it is generated by a time-dependent symplectic vector field, that
is,

Xex(M) = {∇ω f : f ∈ C∞
c (M)},

Diffex(M) = {
ϕ(1) : ϕ ∈ C∞([0, 1],Diff(M)),

∀t ∈ [0, 1] : ϕ′(t) ◦ ϕ(t)−1 ∈ Xex(M)
}

.

Alternative common names are globally Hamiltonian vector fields andHamiltonian
diffeomorphisms.Assume thatDiffex(M) is a convenientLie groupwithLie algebra
Xex(M). This assumption is satisfied if M is compact [47] or, more generally, if
M is connected and separable and the vector space of exact compactly supported
1-forms is a direct summand in the space of all closed compactly supported 1-
forms [33, Sect. 43.13]. Then the Hs metric on Diffex(M) is defined as the unique
right-invariant Riemannian metric 〈〈·, ·〉〉 which satisfies

〈〈∇ω f ◦ ϕ,∇ω f ◦ ϕ〉〉ϕ = 〈〈∇ω f,∇ω f 〉〉id = ‖ f ‖2
Ḣ s+1(M)

,

∀ϕ ∈ Diffex(M),∀ f ∈ C∞
c (M).

Here ‖ · ‖Ḣ s+1(M) denotes the homogeneous Sobolev (pseudo) norm of order s+1.
For s = −1 this yields the bi-invariant metric as studied by Eliashberg and
Polterovich [18]. The corresponding geodesic distance is defined as in Sec-
tion 2.1. Note that Diffex(M) is a subgroup of the group Diffω(M) := {ϕ ∈
Diff(M) : ϕ∗ω = ω} of symplectic diffeomorphisms.

4.2. Vanishing Geodesic Distance on Exact Diffeomorphisms

The geodesic distance of the Hs metric on Diffex(M) is known to be non-
degenerate for s � 0 by [42] and degenerate for s = −1 by [18]. The following
theorem shows degeneracy for s � − 1

2 .
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Theorem 3. Assume the setting of Section 4.1 with s � −1/2. Then the geodesic
distance of the right-invariant Hs metric vanishes identically on the commutator
sub-group [Diffex(M),Diffex(M)] and, if M is compact, on Diffex(M).

Proof. Step 1We claim that the manifold M = R
2 with the canonical symplectic

formω = dx∧dy contains a non-empty open subset Awith vanishing displacement
energy. To prove this claim we consider a bump function ψ ∈ C∞(R, [0, 1])
satisfying for each x ∈ R that

ψ(x) =
{
1, x ∈ (−1, 1)

0, x /∈ (−2, 2) ,

and define the Hamiltonian function

f : R2 → R, f (x, y) = −xψ(x) .

Then the symplectic gradient and gradient flow of f are given by

u(x, y) := ∇ω f (x, y) = (∂y f (x, y),−∂x f (x, y)) = (0, ψ(x) + xψ ′(x)) ,

Flut (x, y) = (x, y + t (ψ(x) + xψ ′(x)) .

Note that Flu1 is an exact diffeomorphism which maps the set A = (−1, 1) × (0, 1)
to the disjoint set Flu1(A) = (−1, 1) × (1, 2); c.f. Fig. 3.

We will now shorten the H1/2 length of the flow of u by modifying u suitably.
Let (ξn)n∈N be a sequence of smooth bump functions with properties (a)–(c) of
Lemma 1, and let g(t, x) describe the vertical position of the point (x, 0) under the
flow of u at time t , that is,

g(t, x) = pr2Fl
u
t (x, 0) = t

(
ψ(x) + xψ ′(x)

)
.

Then we define for each n ∈ N a time-dependent Hamiltonian function fn and
vector field un by

fn(t, x, y) = f (x)ξn
(
y − g(t, x)

)
, un(t, x, y) = ∇ω fn(t, x, y) ,

where ∇ω = (∂y,−∂x ) acts only in the spatial dimensions. As un coincides with u
along y = g(t, x), the corresponding flow satisfies

Flunt (x, 0) = Flut (x, 0) = (x, g(t, x)) .

Thus, as illustrated in Fig. 3, the line {(x, g(1, x)) : x ∈ R} lies above the set A
and below the set Flun1 (A). It follows that Flun1 (A) ∩ A = ∅. The H−1/2 length of
the flow of un can be estimated using fn(t, x, y) = ( f ⊗ ξn) ◦ Fl−u

t (x, y) as
∫ 1

0
‖un‖H−1/2(R2) dt =

∫ 1

0
‖ fn‖H1/2(R2) dt

�
∫ 1

0
‖ f ⊗ ξn‖H1/2(R2)‖RFl−u

t
‖L(H1/2(R2)) dt

= ‖ f ‖H1/2(R)‖ξn‖H1/2(R)

∫ 1

0
‖RFl−u

t
‖L(H1/2(R2)) dt,
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0 1 2−1−2

0

1

2

−1

−2

−3

A′

A

g(1, ·)

Fig. 3. Illustration of the proof of Theorem 2. The exact diffeomorphism Flu1 maps the set
A to A′ and the line {y = 0} to {y = g(1, x)}. The exact diffeomorphisms Flun1 also map the

set A to some set above the line {y = g(1, x)} and additionally have short H1/2 distance to
the identity

where the inequality follows from the continuity of compositions by diffeomor-
phisms [25, Lemma 2.7] and the last equality from the Hilbert tensor product rep-
resentation H1/2(R2) = H1/2(R)⊗̂H1/2(R) [52, Theorem 2.1]. Thus, the H−1/2

distance d(id,Flun1 ) tends to zero as n → ∞, which shows that the displacement
energy of A vanishes.
Step 2 We claim that every symplectic manifold M contains a non-empty open
subset with vanishing displacement energy. To prove the claim, note that any Dar-
boux coordinate system defines a symplectomorphism between an open subset U
of M and an open subset V of R2d , where R

2d carries the canonical symplec-
tic form

∑d
i=1 dx2i−1 ∧ dx2i . Without loss of generality V is a box (−2r, 2r)2d

for some r > 0. Let the bump function ψ and the Hamiltonian functions fn
be defined as in Step 1, choose ε > 0 such that the Hamiltonian functions
(x1, x2) �→ fn(t, x1/ε, x2/ε) are supported in (−r, r)2, and define the localized
Hamiltonian function

gn(t, x) = fn(t, x1/ε, x2/ε)
2d∏
i=3

ψ(xi/r) , t ∈ [0, 1], x = (x1, . . . , x2d) ∈ R
2d .

Note that gn is supported in V and equals fn(t, x1/ε, x2/ε) on V/2. If one sets

B = (−ε, ε) × (0, ε) × (−r, r)2d−2 ,
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then it follows from Step 1 that the flow of the symplectic gradient vn(t, x) =
∇ωgn(t, x) satisfies Flvn1 (B) ∩ B = ∅. Moreover, the H−1/2 length of the flow
of vn can be estimated as follows: by the Hilbert tensor product representation
H1/2(R2d) = H1/2(R)⊗̂ · · · ⊗̂H1/2(R) [52, Theorem 2.1],

∫ 1

0
‖vn‖H−1/2(R2d ) dt =

∫ 1

0
‖gn‖H1/2(R2d ) dt

= ‖x �→ ψ(x/r)‖2d−2
H1/2(R)∫ 1

0
‖(x1, x2) �→ fn(t, x1/ε, x2/ε)‖H1/2(R2) dt,

where the right-hand side tends to zero as n → ∞ by Step 1. Transferring this
result from V ⊆ R

2d back to U ⊆ M using the Darboux coordinates proves the
claim.
Step 3The assumptions of Theorem 1 are satisfied for the groupDiffex(M)with the
right-invariant Hs metric 〈〈·, ·〉〉. This can be verified as in the proof of Theorem 2.
As any non-empty open set is essential for the action ofDiffex(M) [2, Lemma2.1.12
and Theorem 2.3.1], the implication (c) ⇒ (a) of Theorem 1 shows the existence
of a non-trivial ϕ ∈ Diffex(M)with vanishing distance to the identity. The proof of
Theorem 1 actually reveals the stronger statement that ϕ belongs to the commutator
subgroup [Diffex(M),Diffex(M)]. For compact M the group Diffex(M) is simple
[2, Theorem 4.3.1 and Remark 4.2.3], and for non-compact M the commutator
subgroup [Diffex(M),Diffex(M)] is simple [2, Theorem 4.3.3]. Thus, the geodesic
distance vanishes identically on these respective groups by Theorem 1.(d).

4.3. Degenerate Geodesic Distance on Volume Preserving Diffeomorphisms

On two dimensional manifolds, volume forms coincide with symplectic forms.
This allows one to apply Theorem 2 to groups of volume preserving diffeomor-
phisms, which are of particular interest because several prominent PDEs are Euler–
Arnold (that is, geodesic) equations of Sobolev Hs metrics thereon: for s = 0 one
obtains Euler’s equation for the motion of an ideal fluid [1], and for s = − 1

2 one
obtains the SQG-equation [57]. The following corollary to Theorem 2 states that the
SQG equation corresponds to a degenerate Riemannian metric (note that this is in
stark contrast to Euler’s equation, which corresponds to a non-degenerate metric):

Corollary 1. Let (M, g) be a two-dimensional orientable Riemannian manifold,
and let μ = vol(g) be the Riemannian volume form. Then the geodesic distance
of the right-invariant H−1/2 metric on the group Diffμ(M) := {ϕ ∈ Diff(M) :
ϕ∗μ = μ} of volume preserving diffeomorphisms is degenerate.

Proof. As M is two-dimensional, the volume form μ is also a symplectic form.
Step 2 in the proof of Theorem3 shows thatM contains an open set Awith vanishing
displacement energy with respect to the action of Diffex(M). Note that the assump-
tion that Diffex(M) is a convenient Lie group is not needed here. The set A has
vanishing displacement energy also with respect to the action of Diffμ(M) because
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Diffex(M) is contained in Diffμ(M) and because ‖∇ω f ‖H−1/2(R2) = ‖ f ‖H1/2 for
each f ∈ C∞

c (M). Thus, the geodesic distance on Diffμ(M) is degenerate by the
implication (c) ⇒ (a) of Theorem 1 applied to G = Diffμ(M).

5. Open Problems and Conjectures

5.1. Degeneracy of the Geodesic Distance on Diffeomorphism Groups

The present article and the recent article [26] by Jerrard and Maor give a com-
plete characterization of the geodesic distance of right invariant Hs metrics on
diffeomorphism groups (see Theorem 2). Jerrard and Maor consider not only met-
rics of type Hs = Ws,2, but also of type Ws,p for general p ∈ [1,∞). In [26]
they obtained a nearly complete characterization for this class of metrics; only the
behavior at the critical Sobolev index s = dim M

p remained open. One of the main
difficulties in their analysis was to control the end points of certain paths in Diff(M)

with arbitrarily short length. Such precise control of the end points is not needed
if Theorem 1 is invoked. This simplification was used in their follow-up article
[27] to complete the characterization of vanishing (non-vanishing, resp.) geodesic
distance.

For symplectomorphism groups much less is known. The results of this article
show that the geodesic distance of Hs metrics is degenerate for s � − 1

2 by Theo-
rem 3 and non-degenerate for s � 0 by [42, Theorem 5.7], but the case− 1

2 < s < 0
remains open. Sobolev metrics of type Ws,p have been studied only for s = −1,
and there the geodesic distance vanishes if and only if p < ∞. The case s = −1
and p = ∞ corresponds to the Hofer metric, which is known to have non-vanishing
geodesic distance [23]. An interesting question is whether or not the critical index
is independent of the dimension of M . This is certainly compatible with existing
results, andmight be due to the higher rigidity of the group of symplectomorphisms.
This would suggest that the geodesic distance of the right invariant Ws,p metric
with p ∈ [1,∞) is degenerate if and only if s � 1

p − 1.

5.2. Relation to Fredholmness of the Exponential Map

By the monotonicity of the Hs distance in s, there is a critical threshold s∗
dist

such that the Hs geodesic distance is degenerate below and non-degenerate above
the threshold:

s∗
dist = sup{s ∈ R : ds(g1, g2) = 0,∀g1, g2} .

Similarly, smoothness of geodesic spray depends monotonically on s [7,20]. Thus,
there is a again a critical index

s∗
smooth = inf{s ∈ R : exp is C1} ,

where exp denotes the Riemannian exponential map of the Hs-metric. Moreover,
the Fredholm property of the exponential map is monotonic in s, since Fredholm-
ness is generally obtained by compactness of the operator v �→ ad�

v u0 describing
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the Euler–Arnold equation on diffeomorphism groups. Compactness of any such
operator implies compactness of all operators of higher order [44]. Thus, there is
again a critical threshold s∗

Fred for Fredholmness,

s∗
Fred = inf{s ∈ R : v �→ ad�

v u0 is compact} .

We conjecture that these thresholds are connected to each other as follows:

Conjecture 1. On any group of diffeomorphisms the critical thresholds satisfy the
relation

s∗
smooth = s∗

Fred � s∗
dist.

This conjecture holds true in all known cases, including groups of diffeomor-
phisms, volume preserving diffeomorphisms and symplectomorphisms. It is, how-
ever, important to note that the behavior at the critical indexmay vary from property
to property. For example, for one dimensional diffeomorphisms at s = 1

2 , Fred-
holmness is false, whereas smoothness of the exponential map is true [8]. Similar
statements apply to three dimensional fluids at s = 0 [44].

If Conjecture 1 is true, then the Fredhomness results of [44] would imply the
following complete characterization for volume preserving diffeomorphisms on
manifolds of dimension � 3:

Conjecture 2. The geodesic distance of the right invariant Hs metric onDiffμ(M)

in dimension � 3 vanishes if and only if s < 0.

5.3. Relations to Longtime Existence of Solutions to the Geodesic Equation

Properties of the Riemannian distance seem associated to global existence phe-
nomena of the corresponding geodesic andEuler–Arnold equations. In finite dimen-
sions this is expected; the Hopf–Rinow theorem says that geodesics extend for all
time if and only if the Riemannian distance function gives a complete metric space.
In infinite dimensions this is much less well-understood, and so far there exist no
formal results in this direction. We see however several aspects of “borderline”
behavior depending on the smoothness parameter s: the transition between global
conservative (weak) solutions and nonunique shock solutions; between having a
nonsmooth exponential map and having a smooth one; and between vanishing
geodesic distance and positive geodesic distance. Many of these transitions seem
to happen at the same value of s, based on the limited information we still have
about the complete picture.

For example, in one space dimension, the Euler–Arnold equations include the
Hunter–Saxton and Camassa–Holm equations at s = 1, the Wunsch or modified
Constantin–Lax–Majda equation at s = 1

2 , and the inviscid Burgers’ equation at
s = 0 (see Table 1 for an overview and references). All of these have solutions
that blow up in finite time. In the case s = 1, solutions of the Hunter–Saxton
[6,38] and Camassa–Holm [36,41] equations may be continued using a geometric
transformation in the space of smooth maps. Moreover, the exponential map is
smooth, and the Riemannian distance is positive. On the other hand, in the case
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s = 0, solutions of the inviscid Burgers’ equation exhibit genuine shocks and their
flows must lose continuity (and in particular smoothness) as well as dissipating
energy; in addition the exponential map is non-smooth and the Riemannian distance
vanishes. In between lies the Wunsch equation at s = 1/2. Here the exponential
map is smooth, the Riemannian distance vanishes, and all geodesics end in finite
time. It is not known whether geodesics can be continued in a slightly larger space
of smooth or continuous nondecreasing functions, or whether they must leave the
space of continuous functions entirely.

In future work we aim for a better understanding of the blowup properties of the
borderline case aim to and connect that understanding to the results of this article.
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