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Abstract

Wepresent a formal derivationof the inviscid three dimensional quasi-geostrophic
system (QG) from primitive equations on a bounded, cylindrical domain. A key
point in the derivation is the treatment of the lateral boundary and the resulting
boundary conditions it imposes on solutions. To our knowledge, these boundary
conditions are new and differentiate our model from closely related models which
have been the object of recent study. These boundary conditions are natural for a
variational problem in a particular Hilbert space. We construct solutions and prove
an elliptic regularity theorem corresponding to the variational problem, allowing
us to show the existence of global weak solutions to QG.

1. Introduction

In this paper we study the inviscid three-dimensional quasi-geostrophic system.
The QGmodel describes stratified flows on a large time scale for which the effect of
the rotation of the Earth is significant. The model consists of two coupled transport
equations as follows:

⎧
⎪⎨

⎪⎩

(
∂t + ∇⊥

� · ∇
)

(L(�) + β0y) = aL � × [0, h] × [0, T ]
(
∂t + ∇⊥

� · ∇
)

(∂ν�) = aν � × {0, h} × [0, T ]. (QG)

Classically, the model is posed for � = R
2 or � = T

2. We use the notation

∇ = (∂x , ∂y, 0), ∇⊥ = (−∂y, ∂x , 0).

The functions aL and aν are forcing terms, and β0 is a parameter coming from the
usual β-plane approximation. The normal derivative of � on �×{0, h} is denoted
by ∂ν�. The operator L is defined by

L := ∂xx + ∂yy + ∂z (λ∂z) ,
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where λ > 0 is a smooth function depending only on z and is related to the density
of the fluid. To ensure ellipticity of L we require that

1

�
� λ(z) � �

for some � ∈ (0,∞). Throughout the remainder of the paper, the system shall be
posed on a fixed cylindrical domain

� × [0, h],
where � ⊂ R

2 is a smooth, bounded set, and the height h is fixed and finite. The

values of L(�) and ∂ν� are advected by the fluid velocity field ∇⊥
�. In order to

reconstruct� at each time, it is necessary to supplement the systemwith a boundary
condition on the lateral boundary ∂� × [0, h].

1.1. Boundary Conditions

The purpose of this paper is to formally derive an appropriate model from the
primitive equations while assuming that the lateral boundary is impermeable; that

is, we assume only that the fluid velocity ∇⊥
� is tangent to ∂� × [0, h]. We then

prove that weak solutions exist globally in time for the resulting system. In fact, we
show in Section 2.3 that the impermeability produces two constraints on a possible
solution. First, we must have that

�(t, x, y, z)|∂�×[0,h] = c(t, z) (1)

for some unknown function c(t, z). However, this is not enough to define a unique
solution to an elliptic problemon�×[0, h]. Crucially, the impermeability condition
provides another natural constraint. After defining νs to be the normal derivative to
∂� × {z} and dω the Hausdorff measure on ∂�, the second constraint is that, for
all z ∈ [0, h],

∂

∂t

∫

∂�×{z}
∇� · νs dω = 0. (2)

In other words, building a weak solution to (QG) requires choosing a datum j0(z) :
[0, h] → R such that for all time,

∫

∂�×{z}
∇�(t) · νs dω = j0(z).

These two conditions differentiate the model we derive from closely related mod-
els which have been studied recently by Constantin and Nguyen [11,12], Con-
stantin and Ignatova [8,9], and Constantin, Ignatova, andNguyen [10].While
we shall explain this distinction in detail in Section 1.3, we first describe a rough
sketch of our existence proof, and then state our main results.

In [22] and [18], the authors used the observation that the transport equations
for L(�) and ∂ν� in (QG) formally preserve the norms of the data for an elliptic
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problem with Neumann boundary condition. Therefore, a sequence of approxi-
mate solutions �n for which L(�n) and ∂ν�n converge weakly in (respectively)
L∞
t (L2(� × [0, h])) and L∞

t (L2(� × {0, h})) will have strong convergence for
∇�n in L∞

t (L2(�×[0, h])). A key property of the (QG) system is a reformulation
of the system in terms of ∇�. This reformulation, first utilized extensively by Puel
and the second author in [22], can be seen at the level of the primitive equations and
draws an analogy to the parallel formulations of the three dimensional Euler equa-
tions in terms of the velocity and the vorticity. Unlike Euler, however, the strong
convergence then allows one to pass to the limit at the level of ∇�n to construct a
weak solution. In the setting of the bounded domain �×[0, h], it is not immediate
that imposing (1) and (2) on the lateral boundary will allow for compactness at
the level of ∇�n in L∞

t (L2(� × [0, h])). Indeed, it might seem possible that be-
cause (2) only controls the average of ∇� · νs on the sides, ∇� · νs could oscillate
quite badly on ∂� × [0, h]. To address this, we must formulate (2) weakly (see
Definition 3.1 in Section 3). However, we also prove an elliptic regularity theorem
(Theorem 3.2) which implies that in fact∇� ·νs ∈ L2(∂�×[0, h]) is well-defined
pointwise, and ∇�n converges strongly to ∇� in L∞

t (L2(� × [0, h])). To the au-
thors’ knowledge, this type of boundary condition and the corresponding elliptic
regularity theorem are novel.

1.2. Main Result

Before stating the existence theorem, we must provide several definitions. The
first is a natural compatibility condition between the elliptic operator and boundary
conditions.

Definition 1.1. Any triple ( f, g, j) of functions with f (x, y, z) ∈ L2(� × [0, h]),
g(x, y, z) ∈ L2(� × {0, h}), j (z) ∈ L2(0, h) is compatible if

∫

�×[0,h]
f (x, y, z) dx dy dz =

∫ h

0
j (z) dz +

∫

�×{0,h}
λ(z)g(x, y, z) dx dy.

A pair (aL , aν) of forcing terms is compatible if aL ∈ L1
([0, T ]; L2(� × [0, h])),

and aν ∈ L1
([0, T ]; L2(� × {0, h})) for all T > 0 with

∫

�×[0,h]
aL(x, y, z) dx dy dz =

∫

�×{0,h}
λ(z)aν(x, y, z) dx dy.

Next, we define the notion of weak solutions to the transport equations in (QG).

Definition 1.2. Let T > 0 be given and �(t, x, y, z) : [0, T ] × � × [0, h] → R

be such that ∇�,L(�) ∈ L∞([0, T ]; L2(� × [0, h])), ∂ν� ∈ L∞ ([0, T ]; L2(�

×{0, h})). Then � is a weak solution to the transport equations in (QG) on [0, T ]
with initial data f0 and g0 and forcing aL , aν if for all �̃ compactly contained in
� and smooth test functions φ(t, x, y, z) compactly supported in [−1, T ) × �̃ ×
[−1, h + 1]
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−
∫ T

0

∫

�̃×[0,h]

((
∂tφ + ∇⊥

� · ∇φ
)

(L(�) + β0y) + φaL
)
dx dy dz dt

=
∫

�̃×[0,h]
φ|t=0 f dx dy dz

and
∫ T

0

∫

�̃×{0,h}

((
∂tφ + ∇⊥

� · ∇φ
)

∂ν� + φaν

)
dx dy dt

= −
∫

�̃×{0,h}
φ|t=0g dx dy.

We can now state our existence result.

Theorem 1.1. Let ( f0, g0, j0) and (aL , aν) satisfy Definition 1.1. Then there exists
a global weak solution � to (QG) such that

(1) L(�)|t=0 = f0, ∂ν�|t=0 = g0 and � satisfies Definition 1.2 for any T > 0;
(2) There exists c(t, z) such that for almost every time t > 0, �(t)|∂�×[0,h] =

c(t, z);
(3) For all t > 0, ∇�(t) · νs ∈ L2(∂� × [0, h]). If j0 ∈ H

1
2 (0, h), then

∫

∂�×{z}
∇�(t) · νs dω = j0(z),

with the equality holding pointwise in z;
(4) For all time t,

(L(�)(t), ∂ν�(t),∇� · νs(t)
)
satisfies the compatibility condi-

tion in Definition 1.1;
(5) For all T > 0 and t ∈ [0, T ], � satisfies the bound

‖L(�)(t)‖L2(�×[0,h]) + ‖∂ν�(t)‖L2(�×{0,h}) + ‖∇�(t)‖
H

1
2 (�×[0,h])

� C(�, h, λ)
(
‖ f ‖L2 + ‖g‖L2 + ‖ j‖L2 + ‖aL‖L1([0,T ];L2)

+‖aν‖L1([0,T ];L2)

)
.

1.3. Inviscid Geostrophic Flows

Mathematical inquiry into (QG) is by now quite extensive. Beale and Bour-
geois [3] and Desjardins and Grenier [13] provided derivations of the three
dimensional system from primitive equations. As we are concerned with the in-
viscid model, our derivation follows that of Beale and Bourgeois. Puel and the
second author [22] proved global existence results for initial data �0 such that
L(�0),∇�0 ∈ L2(R3+), ∂ν�0 ∈ L2(R2). The first author [18] extended this result
to initial data belonging to non-Hilbert Lebesgue spaces and identified the critical
regularity at which the system conserves energy. Conversely, the first author showed
non-uniqueness of dissipative weak solutions for the model posed on the torus T

3
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[19], albeit in a regularity regime which leaves open the appropriate Onsager-type
conjecture.

Study of the closely related surface quasi-geostrophic equation was initiated by
Constantin et al. [6]. To obtain SQG from (QG), one simplifies the model by
assuming that λ(z) ≡ 1, β0 = 0, aL ≡ aν ≡ 0, and

��|t=0 = 0.

As a result, ��(t) ≡ 0 uniformly in time, and the entire dynamic is encoded in

the equation for θ = −∂z�|z=0 = (−�)
1
2 �:

∂tθ + R⊥θ · ∇θ = 0. (3)

Resnick proved global existence of weak solutions for initial data in L2(T2) [23].
Marchand extended Resnick’s result to initial data belonging to L p(R2) or L p(T2)

for p > 4
3 [17]. Both the proofs of Resnick and Marchand are based on a reformu-

lation of the nonlinear term using a Cálderon commutator.
To study (3), it is common to add a dissipative term (−�)αθ . The case α = 1

2 is
physical and comes from considering viscous effects which produce Ekman layers
at the boundary. In the critical case α = 1

2 , global regularity is known by different
methods. Proofs are given by Kiselev et al. [16], Caffarelli and the second au-
thor [5], Constantin and Vicol [7], and Kiselev and Nazarov [15]. Using the
De Giorgi technique from [5] in combination with a bootstrapping argument and
an appropriate Beale–Kato–Majda type criterion, the authors established global
regularity for the full three dimensional system with critical dissipation in [21].
Buckmaster, Shkoller, and Vicol used the method of convex integration to show
that one may prescribe any positive smooth profile for the Hamiltonians of both
inviscid and dissipative SQG [4].

The techniques used to produce weak solutions by Resnick andMarchand were
adapted to bounded domains in a series of papers. In these works, the Riesz trans-
form on a bounded domain � is defined spectrally using eigenfunctions of the
homogenous Dirichlet laplacian. First, Constantin and Ignatova [8,9] proved
nonlinear bounds and commutator estimates for the fractional laplacian and showed
the existence of global weak solutions as well as derived interior regularity esti-
mates for (3) with added critical dissipation in bounded domains. Constantin
and Nguyen [11,12] then showed the existence of global weak solutions of (3) in
bounded domains as well as local and global strong solutions for supercritical and
critical/subcritical versions of (3), respectively. In the paper [10], Constantin, Igna-
tova, and Nguyen treat the inviscid limit. The weak solutions we construct cannot
coincide in general with solutions to (3) constructed using the spectral Riesz trans-
form. The difference lies in the boundary conditions (1) and (2). We emphasize that
the discrepancies between models are not related to the relatively low regularity of
weak solutions, as we built classical solutions on a short time interval to our model
in the recent paper [20]. At each time t , we reconstruct � by solving the elliptic
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problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L(�) = f � × [0, h]
∂ν� = g � × {0, h}
�(x, y, z) = c(z) ∂� × {z > 0}
∫

∂�×{z} ∇� · νs = j0(z) [0, h].
In particular, we do not require that the stream function � vanishes uniformly on
the lateral boundary. While we consider the case of finite height h, the boundary
conditions we impose would apply in the case of infinite height as well, which is
the most common setting for SQG.

Conversely, let {en} be the orthonormal basis of eigenfunctions with corre-
sponding eigenvalues {λn} for the homogenous Dirichlet laplacian−�� on�, and
let

θ =
∑

n

an(t)en(x, y)

be a solution to (3) posed on the bounded domain �. Then the stream function
�|z=0 is given by

�|z=0 = (−��

)− 1
2 θ =

∑

n

an(t)λ
− 1

2
n en(x, y),

and the harmonic extension for z ∈ [0,∞) is given by

�(t, x, y, z) =
∑

n

an(t)e
−z

√
λnλ

− 1
2

n en(x, y).

With this definition,� vanishes uniformly on ∂�×[0,∞). In addition, if one were
to impose (2) on a solution to (3), then integrating by parts in (x, y) and passing
the integral inside the sum gives

∑

n

a′
n(t)e

−z
√

λnλ
1
2
n

(∫

�

en(x, y) dx dy

)

= 0

for all z > 0. One can see that this is only satisfied if

a′
n(t)

(∫

�

en(x, y) dx dy

)

= 0

for all n and t > 0, which cannot hold for any bounded domain � and initial data.
The outline of this paper is as follows: in Section 2, we recall the derivation of
the system from primitive equations while accounting for the impermeability. In
Section 3, we produce a solution to the stationary elliptic problem associated to
the operator L and prove an elliptic regularity theorem for the solution. Finally, in
Section 4, we construct global weak solutions to (QG).
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2. Derivation from Primitive Equations

2.1. Primitive Equations and Re-Scalings

We begin from the so-called primitive equations following the derivation of
Bourgeois and Beale [3]. These equations represent the geostrophic balance,
which is the balance of the pressure gradientwith theCoriolis force. TheBoussinesq
approximation has been made; that is, changes in density are ignored except when
amplified by the effect of gravity. After a re-scaling of the equations, a parameter
which varies inversely with the speed of the rotation of the earth called the Rossby
number shall appear. Then performing a perturbation expansion in the Rossby
number ε will yield the stratified system and boundary conditions (1) and (2).
Given a smooth, bounded set � ⊂ R

2 and a fixed height h, the following equations
(after rescaling) will be posed on the cylindrical domain

� × [0, h].
We use the notation D

Dt = ∂t + �u · ∇ for the material derivative, and the Coriolis
force C = 2� sin(θ), where � is the angular velocity of the Earth and θ is the
latitude. Here (u, v, w) is the fluid velocity, p is the pressure and ρ is the variation
in density from a known background density profile �̄(z). That is, the density �

satisfies

� = �̄(z) + ρ(x, y, z, t).

We further assume that the density is decreasing in z and that −ρz is bounded
above and below away from zero. Throughout, we assume throughout that the fluid
velocity is tangent to the boundary.

The primitive equations then are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Du
Dt − Cv = −px
Dv
Dt + Cu = −py
Dw
Dt + ρg = −pz

∇ · u = 0
D�
Dt = 0.

We rescale the equations in such a way so as to remove solutions which vary on a
fast time scale. Therefore, we set

t = L

U
t ′, u = Uu′, (x, y, z) = L(x ′, y′, z′).

Letting θ0 be a central latitude,we estimateC using the linearβ-plane approximation
by

C = 2� sin(θ0) + 2� cos(θ0)(θ − θ0) := C0 + 2� cos(θ0)(θ − θ0).
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The Rossby number ε is equal to U
C0L . Set β0 = cot(θ0)

ε
L
r0
. We then have that

C = 2� sin(θ0) + 2� cos(θ0)(θ − θ0)

= C0(1 + εβ0y
′).

We assume that L
r0

is O(ε), allowing us to keep the factor of ε in front of β0 even
as ε → 0. We scale the density variation by

ρ = C0U
g

ρ′ = U 2

εLg
ρ′

and the reference density by

�̄ = U 2

ε2Lg
�̄′ .

This allows us to write the density non-dimensionally as

� = U 2

ε2Lg
(�̄′(z) + ερ′).

Finally, we scale the pressure by p = C0ULp′. Applying the scalings to the prim-
itive equations, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Du′
Dt ′ − 1

ε
(1 + εβ0y′)v′ = − 1

ε
p′
x ′

Dv′
Dt ′ + 1

ε
(1 + εβ0y′)u′ = − 1

ε
p′
y′

Dw′
Dt ′ + 1

ε
ρ′ = − 1

ε
p′
z′

∇ · u′ = 0

Dρ′
Dt ′ + 1

ε
w′�̄′

z′ = 0.

Let us abuse notation and drop the primes on our scaled equations. Assume that
the expansions

�u = �u(ε) = �u(0) + ε�u(1) + O(ε2)

and

ρ = ρ(ε) = ρ(0) + ερ(1) + O(ε2)

hold. Plugging this ansatz in, we obtain the zero-order equations

v(0) = p(0)
x , u(0) = −p(0)

y , ρ(0) = −p(0)
z , w(0) = 0.

The last equation follows from the first two equations, the incompressibility (which
gives that w

(0)
z = 0), and the assumption that w(0) ≡ 0 on the top and bottom of

the domain.



The Inviscid Three Dimensional Quasi-Geostrophic System 981

We move now to the first order equations. Let us introduce the notation

dg = ∂t − p(0)
y

∂

∂x
+ p(0)

x
∂

∂y

for the zero order geostrophic material derivative. The first order equations are then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dg(−p(0)
y ) − v(1) − β0yp

(0)
x = −p(1)

x

dg(p
(0)
x ) + u(1) − β0yp

(0)
y = −p(1)

y

ρ(1) = −p(1)
z

∇ · u(1) = 0

dg(−p(0)
z ) + w(1)�z = 0.

Let us divide the last equation by − 1
�z
. We introduce the notation

∇̃ =
(

∂x , ∂y,− 1

�z
∂z

)

.

Then we can consolidate the first order equations as

dg(∇̃ p(0)) + β0(p
(0), 0, 0)t = (−p(1)

y , p(1)
x , 0)t − (u(1), v(1), w(1))t

− β0y(−p(0)
y , p(0)

x , 0)t + β0(p
(0), 0, 0)t . (4)

Note that the right-hand side is divergence free and has no vertical component on
the top and bottom boundaries of the domain.

2.2. Transporting L(�) and ∂ν�

We now take the divergence of (4) in order to arrive at (QG). As noted, the
divergence of the right hand side is zero. The divergence of β0(p(0), 0, 0)t is β0 p

(0)
x .

Examining the transport term dg(∇̃ p(0)) and calculating ∂z of the third component,
we obtain

dg(∂z(e3 · ∇̃ p(0))) + ∂zu
(0)∂x (e3 · ∇̃ p(0)) + ∂zv

(0)∂y(e3 · ∇̃ p(0)).

Using the fact that u(0) = −p(0)
y and v(0) = p(0)

x , the second two terms cancel each
other out. The horizontal divergence (∂x , ∂y, 0) of dg(∇̃ p(0)) is easy to calculate
from the stratification and the divergence free nature of the zero-order flow. We
arrive at the equation

(
∂t − p(0)

y ∂x + p(0)
x ∂y

) (
p(0)
xx + p(0)

yy + (λp(0)
z )z + β0y

)
= 0

after absorbing the β-plane term into the material derivative and defining λ = − 1
�z
.

Note that by the assumptions on the density, there exists � such that 1
�

� λ � �.
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We shall use the notation � for the stream function p(0), allowing us to rewrite the
system in the familiar form

(
∂t + ∇⊥

� · ∇
)

(L(�) + β0y) = 0. (5)

Consider now the top and bottom�×{0} and�×{h}. Let ν denote the unit normal
vector on the top and bottom. Considering the equation

dg(−p(0)
z ) + w(1)�z = 0,

using that w(1) ≡ 0 on the top and bottom, and substituting the notation � for the
stream function, we obtain

(
∂t + ∇⊥

� · ∇
)

(∂ν�) = 0. (6)

2.3. The Lateral Boundary

Now consider the sides ∂� × [0, h] equipped with a horizontal normal vector

νs . First, the impermeability requires that ∇⊥
p(0) · νs = 0, implying that p(0) is

constant on ∂� × {z}. Recalling that the stream function � = p(0), we have that

�(t, y, x, z)|{∂�×[0,h]} = c(t, z) (7)

for some unknown function c(t, z).
Let us next take the dot product of (4) with νs . Due to the impermeability of

the boundary,

(u(1), v(1), w(1))t · νs = 0.

In addition,

(−p(1)
y , p(1)

x , 0)t · νs = −(p(1)
x , p(1)

y , 0)t · τ,

where τ is the positively oriented tangent vector perpendicular to νs . Then we
integrate around the boundary ∂� × {z} ⊂ ∂� × [0, h] at a fixed height z. Since
(p(1)

x , p(1)
y , 0)t is a conservative vector field,

∫

∂�×{z}
(p(1)

x , p(1)
y , 0)t · τ dω = 0.

Notice that

β0y(−p(0)
y , p(0)

x , 0)t − β0(p
(0), 0, 0)t

is also the two-dimensional curl ∇⊥
of the scalar field −β0yp(0). Then we have

that

∇⊥
(−β0yp

(0)) · νs = ∇(β0yp
(0)) · τ.
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As this is also a conservative vector field, the integral of this term around the
boundary vanishes as well. Thus we are left with

∫

∂�×{z}
(dg∇̃ p(0)) · νs dω = −

∫

∂�×{z}
(β0 p

(0), 0, 0) · νs dω. (8)

Using (7) shows that

−
∫

∂�×{z}
(β0 p

(0), 0, 0) · νs dω

is zero. Substituting in the stream function notation and applying the divergence
theorem to the nonlinear term on the left hand side of (8), we have that

∫

∂�×{z}

(
−p(0)

y ∂x∇ p(0) + p(0)
x ∂y∇ p(0)

)
· νs dω

=
∫

∂�×{z}
∇ ·

(
∇⊥

� · ∇∇�
)

· νs dω

=
∫

�×{z}
∇∇⊥

� : ∇∇� dx dy +
∫

�×{z}
∇⊥

� · ∇�� dx dy

=
∫

�×{z}
∇ ·

(
∇⊥

���
)
dx dy

=
∫

∂�×{z}
��

(
∇⊥

� · νs

)
dω

= 0.

Utilizing once again the notation � for the stream function, (8) therefore becomes

∂

∂t

∫

∂�×{z}
(∇�) · νs dω = 0. (9)

Collecting (5), (6), (7), and (9), we have formally derived the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
∂t + ∇⊥

� · ∇
)

(L(�) + β0y) = 0 � × [0, h]
(
∂t + ∇⊥

� · ∇
)

(∂ν�) = 0 � × {0, h}
∂
∂t

∫

∂�×{z}(∇�) · νs dω = 0 [0, h]
� = c(t, z) ∂� × [0, h].

3. The Elliptic Problem

3.1. Building a solution in L2

In order to show global existence of weak solutions to the time-dependent
problem, we first solve the stationary elliptic problem which is transported by the
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fluid velocity∇⊥
�. The elliptic operator is given byL. The boundary conditions for

the elliptic problem will be mixed in nature. We first impose a Neumann condition
on the top and bottom of � × [0, h] coming from the transport equation for ∂ν�.
The condition that

�(t, x, y, z)|∂�×[0,h] = c(t, z)

will be structured into the Hilbert space within which we solve the elliptic problem.
Finally, the equation

∂

∂t

∫

∂�×{z}
∇� · νs dω = 0

means that
∫

∂�×{z}
∇�(t) · νs dω =

∫

∂�×{z}
∇�(0) · νs dω =: j (z)

is determined from the initial data, and thus will be incorporated into the data of the
elliptic problem. We now provide a weak formulation of this condition for (QG).

Definition 3.1. Let T > 0 be given and �(t, x, y, z) : [0, T ] × � × [0, h] be such
that∇�,L(�) ∈ L∞([0, T ]; L2(�×[0, h])), and for each time,� hasmean value
zero. Then we say that� satisfies (2) weakly if there exists j0(z) : [0, h] → R such
that for each compactly supported smooth function φ(t, z) : (0, T )× (0, h) → R,

∫ T

0

∫

�×[0,h]
L(�)φ(t, z) − �∂z (λ∂zφ(t, z)) dx dy dz dt

=
∫ T

0

∫ h

0
φ(t, z) j0(z) dz dt.

An integration by parts shows that for smooth functions of time and space, (2) is
equivalent to Definition 3.1. Indeed,

∫ T

0

∫

�×[0,h]
L(�)φ(t, z) − �∂z (λ∂zφ(t, z)) dx dy dz dt

=
∫ T

0

∫

�×[0,h]
L(�)φ(t, z) − ∂z (λ∂z�) φ(t, z) dx dy dz dt

=
∫ T

0

∫

�×[0,h]
(
∂xx� + ∂yy�

)
φ(t, z) dx dy dz dt

=
∫ T

0

∫ h

0

∫

∂�

φ(t, z)∇� · νs dω dz dt.

Thus we consider the elliptic problem for the unknown function u with data
f : � × [0, h] → R, g : � × {0, h} → R, and j : [0, h] → R.

(E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L(u) = f � × [0, h] (E1)

∂νu = g � × {0, h} (E2)

u(x, y, z) = c(z) ∂� × [0, h] (E3)
∫

∂�×{z} ∇u · νs = j (z) [0, h] (E4).
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Let us remark that to formulate (E) variationally, it is not necessary for ( f, g, j)
to satisfy the compatibility condition Definition 1.1. Indeed our construction of
approximate solutions will introduce a small error in the condition of Definition 1.1
which will vanish in the limit. Thus when we say that u is a solution to (E), we
generally mean it in the variational sense of (V ) (see (12) below). If in addition,
( f, g, j) satisifes the compatibility condition so that (V ) is equivalent to (E), we
shall make note of this. To solve (V ) we require a specially constructed Hilbert
space.

Definition 3.2. Define H by

H := {∇α ∈ C∞ (
�̄ × [0, h]) :

∫

�×[0,h]
α dx dy dz = 0,

α|∂�×[0,h](x, y, z) = α(z)}.

Using the notation ∇̃ = (∂x , ∂y, λ(z)∂z), equip H with the inner product

〈∇α,∇γ 〉H :=
∫

�×[0,h]
∇̃α · ∇γ dx dy dz.

Define the Hilbert spaceH as the closure of H under the norm induced by this inner
product.

We remark that we have definedH as the vector space whose elements are gradients
of mean zero functions.When there is no risk of confusion, however, we shall freely
identify ∇u ∈ H with u or ∇̃u and write 〈u, v〉H or ‖u‖H instead of 〈∇u,∇v〉H
or ‖∇u‖H, respectively. The precision is only needed for an application of the
Aubin-Lions lemma in Lemmas 4.2 and 4.3.

By standard trace inequalities and Poincaré’s inequality, we have that for ∇̃γ ∈
H

‖γ ‖
H

1
2 (∂(�×[0,h])) � C(�, h)

(‖γ ‖L2(�×[0,h]) + ‖∇γ ‖L2(�×[0,h])
)

� C(�, h, λ)‖γ ‖H. (10)

We define a bilinear form B(α, γ ) : H × H → R and functional F(γ ) : H → R

by

B(α, γ ) =
∫

�×[0,h]
∇̃α · ∇γ dx dy dz

and

F(γ ) = −
∫

�×[0,h]
f γ dx dy dz +

∫

�×{0,h}
λgγ dx dy +

∫ h

0
j (z)γ |∂�×{z} dz.
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The coercivity and continuity of the bilinear form B is immediate from the assump-
tions on λ(z) and the definition of H. In addition, we have that

|F(γ )|�‖ f ‖L2(�×[0,h])‖γ ‖L2(�×[0,h])+‖λ‖L∞(0,h)‖g‖L2(�×{0,h})‖γ ‖L2(�×{0,h})
+ ‖ j‖(

H
1
2 (∂�×[0,h])

)∗‖γ ‖
H

1
2 (∂�×[0,h])

� C(�, h, λ)

⎛

⎝‖ f ‖L2 + ‖g‖L2 + ‖ j‖(

H
1
2

)∗

⎞

⎠ ‖γ ‖H, (11)

after applying Hölder’s inequality and (10). Applying the Lax-Milgram theorem,
we obtain a unique solution u ∈ H to the variational problem

B(u, γ ) = F(γ ) ∀γ ∈ H. (V ). (12)

Let us rigorously state the results of the above argument.

Lemma 3.1. For any data f ∈ L2(� × [0, h]), g ∈ L2(� × {0, h}), and j ∈(
H

1
2 ([0, h])

)∗
there exists a unique solution u ∈ H to the variational problem (V )

with

‖u‖H � C(�, h, λ)

⎛

⎝‖ f ‖L2 + ‖g‖L2 + ‖ j‖(

H
1
2

)∗

⎞

⎠ .

If in addition ( f, g, j) verifies the compatibility condition in Definition 1.1, then

(1) (E1) is satisfied in the weak sense;
(2) (E2) is satisfied in the weak sense;
(3) (E3) is satisfied pointwise;
(4) (E4) is satisfied weakly. That is, for φ ∈ C∞ depending only on z,

∫

�×[0,h]
L(u)φ(z) − u∂z (λ∂zφ(z)) dx dy dz = 〈 j, φ〉

where 〈·, ·〉 denotes duality between
(
H

1
2

)∗
and H

1
2 .

Proof. The first claim is simply the above construction of u as the solution to
the variational problem (V ). For (1)-(4), the compatibility condition implies that
constant functions γ can be used in the weak formulation, and therefore any C∞
test function such that γ (x, y, z)|∂�×[0,h] = c(z) is valid in the weak formulation.
Parts (1) and (2) then follow from considering test functions which vanish on the
lateral boundary ∂�×[0, h]. Part (3) is a consequence of constructing the solution
within H. Finally, (4) follows from noticing that when φ depends only on z and is
compactly supported,



The Inviscid Three Dimensional Quasi-Geostrophic System 987

B(u, φ) =
∫

�×(0,h)

λ∂zφ∂zu

= F(φ)

= −
∫

�×[0,h]
f φ +

∫

�×{0,h}
φλg + 〈 j, φ〉

= −
∫

�×[0,h]
Luφ + 〈 j, φ〉.

Integrating by parts to obtain

∫

�×(0,h)

λ∂zφ∂zu = −
∫

�×(0,h)

u∂z (λ∂zφ)

and rearranging finishes the proof. ��

3.2. Higher Regularity

In order to build weak solutions, the operator which sends a triple ( f, g, j)
to the solution of the variational problem (V ) must map compactly into H. This
will be achieved by proving an elliptic regularity theorem which asserts that the
solution has strictly more than one derivative in L2(� × [0, h]). The proof is split
up into four preliminary lemmas which correspond to isolating the effects of the
compatibility condition, g, f , and j on the regularity of the solution. Specifying a
triple of datawhich does not satisfyDefinition 1.1 produces a solution by projecting,
in an appropriate sense, the data onto the set of compatible data. Analysis of the
effect g is direct because solutions to the extension problem on bounded domains�

can be written down explicitly. Once the Neumann derivative has been removed, we
analyze the effects of f and j by reflecting the solution over the boundaries z = 0, h
and utilizing the standard difference quotient technique for elliptic regularity. Each
step is proved for the special case λ(z) ≡ 1, that is when L = �. The four lemmas
are combined in the proof of the following theorem, where we then provide a
description of how to adapt the techniques to general smooth λ.

Theorem 3.2. Let f ∈ L2(� × [0, h]), g ∈ L2(� × {0, h}), and j ∈ L2([0, h]).
Let u ∈ H be the unique variational solution to (V ) guaranteed by Lemma 3.1.
Then

‖∇u‖
H

1
2 (�×[0,h]) �C(�, h, λ)

(‖ f ‖L2(�×[0,h])+‖g‖L2(�×{0,h}) + ‖ j‖L2([0,h])
)
.

Before beginning the analysis, we set several notations. Let {en}∞n=1 and {λn}∞n=1
be the sequence of eigenfunctions and corresponding eigenvalues for the operator
−� on � with homogenous Dirichlet boundary conditions; that is,

{−�en = λnen (x, y) ∈ �

en = 0 (x, y) ∈ ∂�.
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For s � 0, define

H̄ s(�) =
{

g =
∑

n

gnen ∈ L2(�) :
∑

n

(√
λn

)s
gnen ∈ L2(�)

}

.

By duality, we have that

(
H̄ s(�)

)∗ ∼=
{

{gn}∞n=1 ⊂ R :
∑

n

1
(√

λn
)2s g

2
n < ∞

}

.

Real interpolationofHilbert spaces H1, H2 is defined in the classicalway (following
the book of Bergh and Lofstrom for example [2]). Since the spaces H̄ s(�) are

isomorphic to L2(N, ω) where N is equipped with the measure ω(n) = λ
s
2
n , the

Stein-Weiss interpolation theorem (see for example Theorem 5.4.1 from the book
of Bergh and Lofstrom [2]) gives that

[H̄ s1(�), H̄ s2(�)]θ = H̄ s

for s = θs1 + (1 − θ)s2 where s1, s2 ∈ Z. When s = 0, H̄ s(�) coincides with
L2(�). In general, H̄ s(�) ⊂ Hs(�) if s � 0, and Hs(�) is defined classically
(see for example Constantin and Nguyen [12]).

For s ∈ (0, 1), the fractional Sobolev spaces Hs(� × [0, h]) are defined by

Hs(� × [0, h])

:=
{

h ∈ L2(� × [0, h]) : |h(x1)−h(x2)|
|x1−x2| 32+s

∈ L2 ((�×[0, h])×(�×[0, h]))
}

.

For s ∈ N ∪ {0}+ (0, 1), Hs(�×[0, h]) is the subset of L2(�×[0, h]) for which
|∇�s�(h(x1) − h(x2))|

|x1 − x2| 32+s−�s� ∈ L2 ((� × [0, h]) × (� × [0, h])) .

Classical interpolation results (see for example the work of Triebel [24,25]) gives
that

[Hs1(� × [0, h]), Hs2(� × [0, h])]θ = Hs(� × [0, h])
for s = θs1 + (1 − θ)s2, s1, s2 � 0.

Lemma 3.3. (Effect of the Compatibility Condition) Let a triple ( f, g, j) with
f ∈ L2(� × [0, h]), g ∈ L2(� × {0, h}), j ∈ L2(0, h) be given. Let u be the
solution to the variational problem with data ( f, g, j). Then there exists a constant
c depending only on

∫

�×[0,h]
f,

∫

�×{0,h}
g,

∫ h

0
j

such that �u = f + c and

|c| � ‖ f ‖L2 + ‖g‖L2 + ‖ j‖L2 .
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Proof. Wedefine an operator A : L2(�×[0, h])×L2(�×{0, h})×L2(0, h) → R

which maps a triple ( f, g, j) to a constant c = A( f, g, j). Since H only con-
tains test functions with mean value zero, given (x1, y1, z1), (x2, y2, z2) ∈ � ×
[0, h], choose a sequence of test functions which is the difference between two se-
quences of approximate identities centered at (x1, y1, z1), (x2, y2, z2). Using this
sequence of test functions in the variational formulation gives that�u(x1, y1, z1)−
�u(x2, y2, z2) = f (x1, y1, z1) − f (x2, y2, z2). Therefore, �u is equal to f up to
a constant c, and thus A( f, g, j) = c is well-defined. By the linearity of the varia-
tional problem, A is linear. To show that A depends only on the integrals of f , g,
and j , let f̄ , ḡ, j̄ be given, each with mean value zero. Then A( f̄ , ḡ, j̄) satisfies the
compatibility condition, implying �ū = f̄ in a weak sense, and A( f̄ , ḡ, j̄) = 0.
Therefore A depends only on

∫

�×[0,h]
f,

∫

�×{0,h}
g,

∫ h

0
j.

Now A is a linear map from R
3 → R, and is therefore bounded. That is,

|A( f, g, j)|2 �
∣
∣
∣
∣

∫

�×[0,h]
f

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫

�×{0,h}
g

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫ h

0
j

∣
∣
∣
∣

2

.

Applying Hölder’s inequality finishes the proof. ��
Lemma 3.4. (Effect of g) Consider the equation

⎧
⎪⎪⎨

⎪⎪⎩

�u = 0 � × [0, h]
∂νu = g � × {0, h}
u = 0 ∂� × [0, h].

for g ∈ H̄ s(� × {0, h}), s � − 1
2 . Then there exists a solution u which satisfies

‖∇u‖
Hs+ 1

2 (�×[0,h]) � C(�, h)‖g‖H̄ s (�×{0,h}).

Proof. We begin by assuming that g is smooth so that all calculations with higher
derivatives are valid. For arbitrary g ∈ H̄ s , the claim follows fromdensity of smooth
functions. By assumption on g, there exist sequences of real numbers {tn}, {bn} such
that

g(0, x, y) =
∑

n

bnen(x, y), g(h, x, y) =
∑

n

tnen(x, y).

Define

u =
∑

n

{
tn√
λn

cosh(z
√

λn)

sinh(h
√

λn)
+ bn√

λn

cosh((z − h)
√

λn)

sinh(h
√

λn)

}

en(x, y).

Using that sinh(0) = 0 and (sinh)′′ = (cosh)′ = sinh, we have that

− ∂

∂z
u|z=0 = g|z=0
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and

∂

∂z
u|z=h = g|z=h .

In addition, it is immediate that

∂zzu = −�u,

and therefore �u ≡ 0. Since

cosh(z
√

λn) ≈ sinh(h
√

λn) ≈ ez
√

λn

as n → ∞, we have that

(−�)
1
2 u ≈ ∂zu ∈ L∞([0, h]; L2(�)) ⊂ L2(� × [0, h]).

Using the well-known fact that H̄1(�) = H1
0 (�), we have that

‖∇u‖L2(�×[0,h]) � C(�, h)‖g‖L2(�×{0,h}),

and thus u is a well-defined function in�×[0, h]which solves the desired equation.
To sharpen this bound and obtain higher regularity estimates, we split the sum

into four pieces corresponding to the four pieces of

cosh(z
√

λn)= ez
√

λn +e−z
√

λn

2
, cosh((z − h)

√
λn)= e(z−h)

√
λn +e−(z−h)

√
λn

2
.

Define

t̃n := tn
sinh(h

√
λn)

eh
√

λn , g̃ :=
∑

n

t̃nen

so that

‖g̃‖H̄ s (�) � C(�)‖g‖H̄ s (�×{0,h}).

Then

ũ :=
∑

n

e(z−h)
√

λn
t̃n√
λn

is the solution to
⎧
⎪⎪⎨

⎪⎪⎩

�ũ = 0 � × (−∞, h]
∂ν ũ = g̃ � × {h}
ũ(x, y, z) = 0 ∂� × (−∞, h].
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Now we can write that

‖∇ũ‖
H̄ s+ 1

2 (�×(−∞,h))
=

∫

�×[0,h]
∇

(
(−�)

1
2 (s+ 1

2 )ũ
)

· ∇
(
(−�)

1
2 (s+ 1

2 )ũ
)

=
∫

�×{h}
∂ν(−�)

1
2 (s+ 1

2 )ũ(−�)
1
2 (s+ 1

2 )ũ

= ‖∂ν ũ‖H̄ s (�)

� C(�, h)‖g‖H̄ s (�×{0,h}). (13)

Arguing in a similar fashion for the other parts of the infinite sum, we conclude
that

‖∇u‖
H̄ s+ 1

2 (�×[0,h]) � C(�, h)‖g‖H̄ s (�×{0,h}).

If s + 1
2 ∈ N, noticing that (∂z)s+

1
2 u ≈ (−�)

s+ 1
2

2 u, we have that

‖∇u‖
Hs+ 1

2 (�×[0,h]) � C(�, h)‖g‖H̄ s (�×{0,h}). (14)

As noted above, for non-integer s ∈ (− 1
2 ,∞), the Stein-Weiss interpolation

theorem gives that

[H̄ s1(�), H̄ s2(�)]θ = H̄ s(�)

for s = θs1 + (1 − θ)s2, and interpolation of Hilbert-Sobolev spaces on Lipschitz
domains gives that

[Hs1+ 1
2 (� × [0, h]), Hs2+ 1

2 (� × [0, h])]θ = Hs+ 1
2 (� × [0, h]).

Interpolation of (14) then concludes the proof of the lemma. ��
In the following two lemmas, we address the effects of f and j . While the

solutions we consider are only variational a priori, for the sake of clarity we write
each PDE using classical notation rather than the variational form.

Lemma 3.5. (Effect of f ) Let u ∈ H be a variational solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = f � × [0, h]
∂νu = 0 � × {0, h}
u(x, y, z) = c(z) ∂� × [0, h]
∫

∂�×{z} ∇u · νs = 0 [0, h]

for data f ∈ L2(� × [0, h]). Then
‖u‖H2(�×[0,h]) � C(�, h)‖ f ‖L2(�×[0,h]).
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Proof. Formally, the assumptions that

∂νu ≡ 0,
∫

∂�×{z}
∇u · νs ≡ 0

give
∫

�×[0,h]
∇(∂zu) · ∇(∂zu) = −

∫

�×[0,h]
∂zu�(∂zu) +

∫

�×{0,h}
∂zu∂z(∂νu)

+
∫ h

0
∂zu · ∂z

(∫

∂�

(∇u · νs)

)

= −
∫

�×[0,h]
∂zu�(∂zu)

=
∫

�×[0,h]
∂zzu f,

implying that

‖∂zzu‖L2(�×[0,h]) � C‖ f ‖L2(�×[0,h]). (15)

Regularity of �u would then follow from the equality

�u = f + A( f, 0, 0) − ∂zzu.

Then we can write that for fixed z,
{

�u = f + A( f, 0, 0) − ∂zzu � × {z}
u = c(z) ∂� × {z}.

Applying classical elliptic regularity theory z by z shows then that ∂xyu, ∂xxu, ∂yyu ∈
L2(� × [0, h]). Thus it remains to rigorously show (15).

Define

uE (x, y, z) =
{
u(x, y, z) z ∈ [0, h]
u(x, y,−z) z ∈ [−h, 0]

and define fE similarly. Let η(z) be a smooth cutoff function depending only on z
such that η ≡ 1 for all z ∈ [− 2h

3 , 2h
3 ] and η is compactly supported in [− 3h

4 , 3h
4 ].

Define the difference quotient operator

Tεφ = φ(x, y, z + ε) − φ(x, y, z)

ε
.

Then we can write

−
∫

�×[−h,h]
∇uE · ∇

(
T−ε(η

2TεuE )
)

=
∫

�×[−h,h]
∇(TεuE ) · ∇(η2TεuE )

=
∫

�×[−h,h]
∇(TεuE ) · ∇(TεuE )η2

+
∫

�×[−h,h]
∇(TεuE ) · ∇η(2ηTεuE ).
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Rearranging, we have that
∫

�×[−h,h]
η2|∇(TεuE )|2

� −
∫

�×[−h,h]
∇(TεuE ) · ∇η(2ηTεuE )

−
∫

�×[−h,h]
∇uE · ∇

(
T−ε(η

2TεuE )
)

:= I + I I.

Examining I, we have that

I � 1

4

∫

�×[−h,h]
η2|∇(TεuE )|2 + C(η)‖ fE‖2L2(�×[−h,h]). (16)

Moving to II and replacing one of the T−ε with ∂z , we have that

I I =
∫

�×[−h,h]
T−ε(η

2(TεuE )) fE

�
∥
∥
∥∂z(η

2(TεuE ))

∥
∥
∥
L2(�×[−h,h]) ‖ fE‖L2(�×[−h,h])

� 1

4

∫

�×[−h,h]
η2|∇(TεuE )|2 + C(η) ‖ fE‖2L2(�×[−h,h]) . (17)

Combining (16) and (17), it follows that
∫

�×[−h,h]
η2|∇(TεuE )|2 � C(η)‖ fE‖L2(�×[−h,h]).

The uniformity of this inequality in ε allows us to pass to a weak limit as ε → 0 to
conclude that

‖η∇(∂zuE )‖L2(�×[−h,h]) � C(�, η)‖ fE‖L2(�×[−h,h]).

Repeating the argument but with a reflection over z = h and then restricting to
z ∈ [0, h], we obtain that

‖∇(∂zu)‖L2(�×[0,h]) � C(�, η)‖ f ‖L2(�×[0,h]).

Regularity of ∂xxu, ∂xyu, and ∂yyu follows as described before, finishing the proof
of the lemma. ��
Lemma 3.6. (Effect of j) Let u ∈ H be a variational solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = 0 � × [0, h]
∂νu = 0 � × {0, h}
u(x, y, z) = c(z) ∂� × {z > 0}
∫

∂�×{z} ∇u · νs = j (z) [0, h].
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Then the following inequalites hold for j ∈ L2(0, h) or H
1
2 (0, h):

‖u‖
H

3
2 (�×(0,h))

� C(�, h)‖ j‖L2(0,h)

and

‖u‖H2(�×(0,h)) � C(�, h)‖ j‖
H

1
2 (0,h)

.

Proof. The proof consists of two steps. In the first step, we consider the elliptic
problem posed on � × [h1, h2] but for j which has compact support in (h1, h2).
The second step shows that the general situation on � × [0, h] can be reduced to
the compactly supported setting of the first step using reflections in z over z = 0, h
and a partition of unity.

Step 1: We consider an elliptic problem identical to that of the statement of
Lemma 3.6 but for the spatial domain � × [h1, h2] and data α which

is compactly supported in (h1, h2). Define H
− 1

2
0 (h1, h2) to be the set

of all α ∈ D′(h1, h2) such that there exists ζ ∈ H− 1
2 (R) such that

ζ |(−h1,h2) = α, with ‖α‖
H− 1

2 (h1,h2)
defined as the infimum of ‖ζ‖

H− 1
2 (R)

over such ζ . Define H
1
2
0 (h1, h2) analogously but with the extra assumption

that the support of ζ is contained in [h1, h2]. Per Theorem 3.5, Definition
3.3, and Definition 2.3 from [25], these two spaces are reflexive and dual

to one another. Let α ∈ H
− 1

2
0 (h1, h2) and γ ∈ D(h1, h2). Consider the

elliptic problem defined by

B(u, v) =
∫

�×(h1,h2)
∇u · ∇v

= F(v)

=
H

− 1
2

0 (h1,h2)
〈α, γ v〉

H
1
2
0 (h1,h2)

.

Then F(v) is well-defined and satisfies

|F(v)| � C(γ )‖α‖
H

− 1
2

0 (h1,h2)
‖v‖

H
1
2 (h1,h2)

.

By Lemma 3.1, there exists a unique variational solution u ∈ H to the
variational problem with f = g = 0, j = γα satisfying

‖u‖H � C(�, h, γ )‖α‖
H

− 1
2

0 (h1,h2)
.

Now suppose that α ∈ H
1
2
0 (h1, h2), so that

F(v) =
∫ h2

h1
α(z)γ (z)v|∂�×(h1,h2)(z) dz.
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Define uE and αE on (2h1−h2, h2) by reflection over h1 as in Lemma 3.5,
and define Tε similarly as well. Define

1

2

(

h2 + max
z′∈supp γ

z′
)

=: z0.

Choose η : (2h1 − h2, h2) → R such that η is symmetric about z = h1,
and η = 1 for all z such that h1 � z ≤ z0, which ensures that η = 1 in
the support of γ . In addition, let φn(z) be a one dimensional, smooth, even
mollifier supported on a ball of radius 1

n around 0. Thus we choose our test
function to be

φn ∗ T−ε

(
η2Tε(uE ∗ φn)

)
.

Then we can write

−
∫

�×[2h1−h2,h2]
∇uE · ∇

(
φn ∗ T−ε(η

2Tε(uE ∗ φn))
)

=
∫

�×[2h1−h2,h2]
∇(Tε(uE ∗ φn)) · ∇(η2Tε(uE ∗ φn))

=
∫

�×[2h1−h2,h2]
∇(Tε(uE ∗ φn)) · ∇(Tε(uE ∗ φn))η

2

+
∫

�×[2h1−h2,h2]
∇(Tε(uE ∗ φn)) · ∇η(2ηTε(uE ∗ φn)).

Rearranging, we have that
∫

�×[2h1−h2,h2]
η2|∇(Tε(uE ∗ φn))|2

� −
∫

�×[2h1−h2,h2]
∇(Tε(uE ∗ φn)) · ∇η(2ηTε(uE ∗ φn))

−
∫

�×[2h1−h2,h2]
∇(uE ∗ φn) · ∇

(
T−ε(η

2Tε(uE ∗ φn))
)

:= I + I I.

Examining I, we have that

I � 1

4

∫

�×[2h1−h2,h2]
η2|∇(TεuE ∗ φn)|2 + C(η)‖αE‖2

H
1
2
0 (2h1−h2,h2)

.

(18)

Before examining II, notice that due to the compact support of γ , we can
assume without loss of generality that in expressions where cE ∗ φn is
integrated against γ , cE ∗ φn is a smooth, compactly supported function
on [2h1 − z0, z0] and therefore can be expanded in Fourier series with
coefficients ĉE (k)φ̂n(k). Note also that since Tε ignores constants, we can
assume without loss of generality that ĉE (0) = γ̂ αE (0) = 0, ensuring
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that fractional laplacians (as Fourier multipliers) of cE and γαE are well-
defined. Finally, we shall freely switch between H̄ s norms and Hs or Hs

0
norms due to the fact that everything is compactly supported in (2h1 −
z0, z0). Now we can write that (we recall that η = 1 in the support of γ )

−
∫

�×[2h1−h2,h2]
∇(uE ∗ φn) · ∇

(
T−ε(η

2Tε(uE ∗ φn))
)

=
∫ z0

2h1−z0
(φn ∗ Tε (γ αE ) (z)) (Tε(cE ∗ φn)(z)) dz

=
∑

k �=0

̂(φn ∗ Tε (γ αE ))(k)

|k| 12
· ̂Tε (cE ∗ φn)(k)|k| 12

� ‖φn ∗ Tε (γ αE )‖
H̄− 1

2 (2h1−z0,z0)
‖Tε (cE ∗ φn)‖

H̄
1
2 (2h1−z0,z0)

� C(η, γ ) ‖φn ∗ αE‖
H

1
2
0 (2h1−z0,z0)

‖∂z(cE ∗ φn)‖
H

1
2 (2h1−z0,z0)

� C(η, γ )‖αE‖
H

1
2
0 (2h1−z0,z0)

× (‖∂z(uE ∗ φn)‖H1(�×(2h1−z0,z0)) + ‖uE ∗ φn‖H1(�×(2h1−z0,z0))

)
.

Combining this bound with (18), it follows that
∫

�×[2h1−h2,h2]
η2|∇(TεuE ∗ φn)|2 � C(η, γ,�)‖αE‖2

H
1
2
0 (2h1−z0,z0)

+ 1

4
‖∂z(uE ∗ φn)‖2H1(�×(2h1−z0,z0))

.

The uniformity of this inequality in ε and n and the fact that η = 1 for
z ∈ [2h1 − z0, z0] allows us to pass to a weak limit as ε → 0 and n → ∞
to conclude that

‖η∇(∂zuE )‖2L2(�×[2h1−h2,h2]) � C(�, η, γ )‖αE‖2
H

1
2
0 ([−h,h])

.

Another reflection over z = h2 and a combination of the estimates shows
that

‖∇(∂zu)‖2L2(�×[h1,h2]) � C(�, η, γ )‖α‖2
H

1
2
0 (h1,h2)

.

Regularity of ∂xxu, ∂xyu, and ∂yyu follows as for Lemma 3.5.
Thus for s = − 1

2 ,
1
2 wehave constructed abounded linearmapT : Hs

0 (0, h) →
Hs+ 3

2 (� × (0, h)) with operator norm satisfying

‖T ‖op � C(�, γ )‖α‖Hs
0 (0,h).

Applying Theorem 3.5 from [24] to interpolate between Hs
0 (0, h) for s = − 1

2
and s = 1

2 and using the well-known fact that H2 and H1 can be interpolated
to give Hs for s ∈ (1, 2), we obtain that T is bounded from L2(0, h) to

H
3
2 (� × (0, h)).
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Step 2: Let j ∈ Hs(0, h) for s = 0, 1
2 . Let φi : [0, h] → R for i = 1, 2, 3 be bump

functions such that φ2 is compactly supported in (0, h) and
∑

i φ
2
i (z) = 1

for all z ∈ [0, h]. Define ji = φ2
i j , and let ui be the solution to the elliptic

problem on � × [0, h] with data ji . By linearity, we have that u = ∑
i ui .

We shall prove the desired bounds for ui and then sum over i to complete
the proof of the lemma.
We begin with u2. It is clear that φ2 j ∈ Hs

0 (0, h) with

‖φ2 j‖Hs
0 (0,h) � C(φ2)‖ j‖Hs (0,h).

Then we can apply Step 1 with h1 = 0, h2 = h, α = φ2 j , and γ = φ2 to
deduce that

‖u2‖Hs (�×(0,h)) � C(�, h, φ2)‖ j‖Hs (0,h).

Moving tou1, let us reflectφ1 j over z = 0 toproduce (φ1 j)E ∈ Hs
0 (−h, h).

We have then that

‖(φ1 j)E‖Hs
0 (−h,h) � C(φ1)‖ j‖Hs (0,h).

Wepause briefly to emphasize an important property of the elliptic problem
(E) posed on � × [h1, h2]. If the data f , g, and j possess a reflection
symmetry about z = h1+h2

2 , then the solution u will possess the same
symmetry. Then setting u1,E to be the solution to the elliptic problem
posed on [−h, h] with datum (φ2

1 j)E , we have that u1,E |z∈[0,h] = u1.
Now applying Step 1 with h1 = −h, h2 = h, α = (φ1 j)E , and γ = φ1,E ,
we obtain

‖u1‖
Hs+ 3

2 (�×(0,h))
� ‖u1,E‖

Hs+ 3
2 (�×(−h,h))

� C(φ1,�, h)‖ j‖Hs (0,h).

Repeating the argument for u3 and summing the estimates finishes the
proof. ��

We can now prove Theorem 3.2.

Proof of Theorem 3.2. We begin with λ ≡ 1, in which case (V ) is given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u = f � × [0, h]
∂νu = g � × {0, h}
u(x, y, z) = c(z) ∂� × [0, h]
∫

∂�×{z} ∇u · νs = j (z) [0, h].

(V )

First, apply Lemma 3.4 to build a solution u1 to
⎧
⎪⎪⎨

⎪⎪⎩

�u1 = 0 � × [0, h]
∂νu1 = g � × {0, h}
u1(x, y, z) = 0 ∂� × [0, h],
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which satisfies

‖∇u1‖
H

1
2 (�×[0,h]) � C(�, h)‖g‖L2(�×{0,h}).

Now choose c1 such that ũ1 = u1 + c1 has mean value zero on � × [0, h]; then
‖∇ũ1‖

H
1
2 (�×[0,h]) = ‖∇u1‖

H
1
2 (�×[0,h]) � C(�, h)‖g‖L2(�×{0,h}). (19)

By the trace estimate (10),

j1(z) :=
∫

∂�×{z}
∇ũ1 · νs

is well-defined in L2([0, h]) and satisfies

‖ j1‖L2([0,h]) � C(�, h)‖∇ũ1‖
H

1
2 (�×[0,h]) � C(�, h)‖g‖L2(�×{0,h}).

Therefore, ũ1 is the unique variational solution to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�ũ1 = 0 � × [0, h]
∂ν ũ1 = g � × {0, h}
ũ1(x, y, z) = c1 ∂� × [0, h]
∫

∂�×{z} ∇ũ1 · νs = j1(z) [0, h].
Now define u2 := u − ũ1; u2 is then the unique variational solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u2 = f � × [0, h]
∂νu2 = 0 � × {0, h}
u2(x, y, z) = c2(z) ∂� × [0, h]
∫

∂�×{z} ∇u2 · νs = j (z) − j1(z) [0, h].
Define u3 to as the unique variational solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u3 = f � × [0, h]
∂νu3 = 0 � × {0, h}
u3(x, y, z) = c3(z) ∂� × [0, h]
∫

∂�×{z} ∇u3 · νs = 0 [0, h]
and u4 as the unique variational solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u4 = 0 � × [0, h]
∂νu4 = 0 � × {0, h}
u4(x, y, z) = c4(z) ∂� × [0, h]
∫

∂�×{z} ∇u4 · νs = j (z) − j1(z) [0, h]
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so that u2 = u3+u4. Applying Lemma 3.5 to u3 and Lemma 3.6 to u4, we conclude
that

‖∇u2‖
H

1
2 (�×[0,h]) � C(�, h)

(‖ f ‖L2(�×[0,h]) + ‖ j − j1‖L2([0,h])
)
. (20)

Combining (19) and (20), we conclude that

‖∇u‖
H

1
2 (�×[0,h]) = ‖∇(ũ1 + u2)‖

H
1
2 (�×[0,h])

� C(�, h)
(‖ f ‖L2 + ‖g‖L2 + ‖ j‖L2

)
.

We now sketch a proof of how to adapt the argument for arbitrary smooth λ

satisfying 1
�

< λ < �. Let φ1, φ2, φ3 be smooth functions of z such that

φ1 + φ2 + φ3 ≡ 1 ∀z ∈ [0, h]
and

φ1 ∈ C∞
c (−δ, 2δ), φ2 ∈ C∞

c (δ, h − δ), φ3 ∈ C∞
c (h − 2δ, h + δ)

for δ to be chosen later. Because the proofs of Lemma 3.5 and Lemma 3.6 rely
only on the variational structure, the difference quotient technique applies as well
to general elliptic operators in divergence form (see for example sections 6.3 or 8.3

of Evans [14]). Since ∂ν(φ2u) ≡ 0, it follows that φ2u ∈ H
3
2 (� × [δ, h − δ]).

We focus now on φ1u; the argument for φ3u is similar. The goal is to perform
a change of variables in z such that the elliptic operator after changing variables is
given by the standard Laplacian plus lower order terms depending on the change
of variables. By writing

∂z(λ∂zu) = λ∂zzu + ∂zλ∂zu,

notice that we can absorb the first order term ∂zλ∂zu into the right hand side, which
we rename f̃ . Then consider the ordinary differential equation

{
θ ′(z′) =√

λ(θ(z′)) z ∈ [0, δ′]
θ(0) = 0.

By the Cauchy-Lipschitz theorem, for δ′ small enough there exists a unique smooth
solution θ which, by the positivity of λ, is a bijection between [0, δ′] and [0, θ(δ′)].
Choose δ <

θ(δ′)
2 . Then

∂z′z′(u(x, y, θ(z′))) = u33(x, y, θ(z′))(θ ′(z))2 + u3(x, y, θ(z′))θ ′′(z′)
= u33(x, y, θ(z′))λ(θ(z′)) + u3(x, y, θ(z′))θ ′′(z′).

Absorbing the second term u3(x, y, θ(z′))θ ′′(z′) into the right hand side, (up to the
effect of the localization φ1) the elliptic equation becomes

�(u ◦ θ) + ∂z′z′(u ◦ θ) = f̃ ◦ θ − (u3 ◦ θ)θ ′′,

and we can repeat the original argument to show that φ1u ∈ H
3
2 (� × [0, 2δ]).

Repeating the argument for φ3u and summing finishes the proof. ��
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4. Proof of Theorem 1.1

4.1. Approximate solutions

First, we adjust the initial data and forcing terms. Let ηε be a standard R
3

mollifier supported in a ball of radius ε. Define the extension of f to R
3 by

fE (x, y, z) =
{
f0(x, y, z) (x, y, z) ∈ � × [0, h]
0 otherwise,

and mollify by setting fε := fE ∗ ηε. After similarly extending aL(t) to R
3 and

g, aν(t) to R
2 ×{0, h} by zero and mollifying (time by time for the forcing terms),

we obtain spatially smooth (for example aL ,ε ∈ L1([0, T ];Ck(R3)) for any k)
sequences of functions such that the following convergences hold:

fε → f0 in L2(� × [0, h])
gε → g0 in L2(� × {0, h})
aL ,ε → aL in L1

([0, T ]; L2(� × [0, h]))
aν,ε → aν in L1

([0, T ]; L2(� × {0, h})) .

We define the approximate (QG) solution operators Sε : C ([0, T ]; H) →
C ([0, T ]; H) for ε > 0 in several steps. These operators shall provide solutions to
linear transport equations with mollified velocity fields.

Step 1: Let P ∈ C ([0, T ]; H), and let c(z) be the lateral boundary values of P
as usual. We extend P(t) to R

3 for each time in a way which allows for a

simple construction of a smooth, stratified velocity field from ∇⊥
P which

is supported in a small neighborhood of � × [0, h].

Pe(x, y, z) =
{
P(x, y, z) (x, y, z) ∈ � × [0, h]
c(z) (x, y, z) ∈ �C × [0, h]

and

PE (x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

Pe(x, y, z) (x, y, z) ∈ R
2 × [0, h]

Pe(x, y, 0) (x, y, z) ∈ R
2 × [−∞, 0]

Pe(x, y, h) (x, y, z) ∈ R
2 × [h,∞].

Mollify PE by setting Pε := PE ∗ ηε.
Step 2: Consider the transport equations for Fε and Gε given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
∂t + ∇⊥

Pε · ∇
)

(Fε + β0y) = aL ,ε R
2 × [0, h] × [0,∞)

(
∂t + ∇⊥

Pε · ∇
)
Gε = aν,ε R

2 × {0, h} × [0,∞)

Fε = fε t = 0

Gε = gε t = 0.
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Since the initial data, forcing terms, and velocity fields are all smooth,
we can produce global in time solutions Fε and Gε by the method of
characteristics. Notice that Fε and Gε are defined for (x, y) ∈ R

2 but
supported in a neighborhood of order ε around �.

Step 3: At each time t � 0, apply Lemma 3.1 to define Qε(t) as the solution to

B(Qε(t), v) :=
∫

�×[0,h]
∇̃Qε(t) · ∇v

= −
∫

�×[0,h]
−Fε(t)v +

∫

�×{0,h}
λGε(t)v +

∫ h

0
v|∂�×[0,h] j0.

=: F(v)

Define Sε(P) := Qε. We remark that because Fε and Gε are defined as
solutions to transport equations for (x, y) ∈ R

2 rather than �, the com-
patibility condition is lost. However, Lemma 3.1 still produces a solution
to the abstract variational problem, and we will recover the compatibility
condition in the limit.

In search of fixed points, we will show that the operators {Sε}ε>0 are compact,
continuous operators from C ([0, T ]; H) to itself with bounded range. Continuity
of the operators results from examining the characteristics of the mollified transport
equations, while the proof of compactness will require Theorem 3.2 and the Aubin-
Lions lemma. We split the argument into three lemmas.

Lemma 4.1. (Continuity)Theoperator Sε is continuous fromC ([0, T ]; H) to itself,
with modulus of continuity dependent on ε.

Proof. Let

Pn → P in C ([0, T ]; H) .

Define Sε(Pn) := Qn,ε. Using the notation from the construction of the operators
Sε, let Fn,ε and Gn,ε be the solutions to the transport equations with mollified

velocity fields ∇⊥
Pn,ε. Applying Lemma 3.1, for fixed t ∈ [0, T ],

‖ (
Qn1,ε − Qn2,ε

)
(t)‖H

�
(

‖(Fn1,ε − Fn2,ε)(t)‖L2(�×[0,h]) + ‖(Gn1,ε − Gn2,ε)(t)‖L2(�×{0,h})
)

.

Therefore, it suffices to show that

sup
t∈[0,T ]

{‖(Fn1,ε − Fn2,ε)(t)‖L2(�×[0,h]) + ‖(Gn1,ε − Gn2,ε)(t)‖L2(�×{0,h})
} → 0

(21)

as n1, n2 → ∞.
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First, notice that due to the mollification, given k ∈ N, there exist constants
C(ε, k) depending on ε, k such that

‖∇⊥
(Pn1,ε − Pn2,ε)‖L∞([0,T ];Ck (�×[0,h])) � C(ε, k)‖Pn1 − Pn2‖C([0,T ];H).

(22)

Fix (t, x, y, z) ∈ [0, T ] × R
2 × [0, h], and let �ni for i = 1, 2 solve

⎧
⎨

⎩

�̇ni (s) = ∇⊥
Pni ,ε

(
s, �ni (s)

)
s ∈ [0, t]

�ni (t) = (x, y, z).

Then

Fni ,ε(t, x, y, z) = fε(�ni (t)) +
∫ t

0
aL ,ε(�ni (s)) ds,

and

Fn1(t, x, y, z) − Fn2(t, x, y, z) = fε(�n1(t)) − fε(�n2(t))

+
∫ t

0
aL ,ε(�n1(s)) − aL ,ε(�n2(s)) ds.

Applying (22) and using the smoothness of fε and aL ,ε shows that as n1, n2 → ∞,
Fn1(t, x, y, z)− Fn2(t, x, y, z) converges to 0 uniformly for (t, x, y, z) ∈ [0, T ]×
R
2 × [0, h]. Arguing similarly for Gn1,ε,Gn2,ε then shows (21). ��
Before continuing, we remind the reader that the precise definition of H is as a

vector space of gradients of mean-zero functions, and so for the sake of clarity we
will write ∇u for members of H or H

∗ throughout the next two lemmas.

Lemma 4.2. (Time Derivative Bounds) Let ∇P ∈ C ([0, T ]; H) with mollified

velocity field ∇⊥
Pε, and put Sε(∇P) := ∇Qε. Considering ∇Qε(t) as an element

of H
∗ acting by the rule

∇v → 〈∇Q(t),∇v〉H ∀∇v ∈ H,

we have that ∂t∇Qε is a bounded linear functional in L∞([0, T ]; (H ∩ H2(� ×
[0, h]))∗) and

‖∂t∇Qε‖L∞([0,T ];(H∩H2(�×[0,h]))∗)
� C

(
f0, g0, aL , aν, β0, h, ‖∇⊥

Pε‖L∞([0,T ]×[0,h];L2(�))

)
.

Proof. The distributional time derivative of ∇Qε(t) is defined by the equality

〈∂t∇Qε, φ〉 := −
∫ T

0
φ′(t)∇Qε(t) dt

for all φ ∈ C∞
c (0, T ). To show that ∂t∇Qε(t) ∈ L∞([0, T ]; (H ∩ H2(� ×

[0, h]))∗)), we test against functions ∇v ∈ H ∩ H2(� × [0, h]). First, recall the
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definitions of Fε and Gε as the solutions to the linear transport equations with

mollified velocity ∇⊥
Pε as in Step 2. Then we have

−
∫ T

0
φ′(t)〈∇Qε(t),∇v〉H dt

= −
∫ T

0

∫

�×[0,h]
∇̃Qε(t, x, y, z) · ∇v(x, y, z)φ′(t) dx dy dz dt

= −
∫ T

0
B(∇Qε(t), φ

′(t)∇v) dt

= −
∫ T

0
F(φ′(t)∇v) dt

= −
∫ T

0

(

−
∫

�×[0,h]
Fε(t, x, y, z)φ

′(t)v(x) dx dy dz

+
∫

�×{0,h}
λGε(t, x, y, z)φ

′(t)v(x, y, z) dx dy

+
∫ h

0
j0(z)v|∂�(z)φ′(t) dz

)

dt. (23)

Since Fε and Gε are classical solutions to transport equations, we have that
∫ T

0

∫

�×[0,h]

((
vφ′ + ∇⊥

Pε · ∇vφ
)

(Fε + β0y) + φvaL ,ε

)
= 0 (24)

and
∫ T

0

∫

�×{0,h}

((
vφ′ + ∇⊥

Pε · ∇vφ
)
Gε + φvaν,ε

)
= 0. (25)

Plugging (24) and (25) into (23) and noticing that
∫ T

0

∫ h

0
j0vφ′ = −

∫ T

0

∫ h

0
( j0v)′φ = 0

gives

−
∫ T

0
φ′(t)〈∇Qε(t),∇v〉H dt

= −
∫ T

0

∫

�×[0,h]

((
∇⊥

Pε · ∇vφ
)

(Fε + β0y) + φvaL ,ε

)

+
∫ T

0

∫

�×{0,h}
λ

((
∇⊥

Pε · ∇vφ
)
Gε + φvaν,ε

)

� ‖∇⊥
Pε‖L∞([0,T ]×[0,h];L2(�))‖∇v‖L∞(�×[0,h])‖φ‖L∞(0,T )

(
‖Fε‖L∞([0,T ];L2(�×[0,h])) + β0h

)

+ ‖φ‖L∞(0,T )‖v‖L∞(�×[0,h])‖aL ,ε‖L1([0,T ];L2(�×[0,h]))
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+ �‖∇⊥
Pε‖L∞([0,T ]×[0,h];L2(�))‖∇v‖L∞(�×{0,h})

× ‖φ‖L∞(0,T )‖Gε‖L∞([0,T ];L2(�×{0,h}))
+ ‖φ‖L∞(0,T )‖v‖L∞(�×{0,h})‖aν,ε‖L1([0,T ];L2(�×[0,h]))

� ‖∇v‖H2(�×[0,h])‖φ‖L∞(0,T )

(
1 + ‖∇⊥

Pε‖L∞([0,T ]×[0,h];L2(�))

)

× (
1 + ‖aL‖L1([0,T ];L2(�×[0,h])) + ‖aν‖L1([0,T ];L2(�×[0,h]))

)

× (
1 + ‖ f0‖L2(�×[0,h]) + β0h + �‖g0‖L2(�×{0,h})

)
.

��
Lemma 4.3. (Compactness) Let {εn}∞n=1 be a sequence of positive numbers, ∇Pn
be a sequence of functions in C([0, T ]; H), and Sεn (∇Pn) := ∇Qn. If there exists

M such that the mollified velocity fields ∇⊥
Pn,εn satisfy

sup
n

‖∇⊥
Pn,εn‖L∞([0,T ]×[0,h];L2(�)) < M,

then, up to a subsequence, there exists ∇Q ∈ C([0, T ]; H) such that ∇Qn con-
verges strongly in C([0, T ]; H) to ∇Q.

Proof. To set notation, ∇Qn is the solution to the variational problem

Bn(∇Qn,∇v) = Fn(∇v), ∇v ∈ H

described in Step 3. Define the Banach spaces

B1 = H
∗, B0 = H ∩ H

1
2 (� × [0, h]), B2 =

(
H ∩ H2(� × [0, h])

)∗
.

We set ∇u∗ ∈ H
∗ as the linear functional on H defined by ∇v → 〈∇u,∇v〉H. This

identification provides an isometric linear bijection between H and H
∗. Then by

the Rellich-Kondrachov theorem and the observed isomorphism, the embedding
of B0 into B1 is compact. The inclusion map from B1 to B2 is continuous as well.
Applying Lemma 3.1, invoking the isomorphism between H and H

∗, and using
the divergence free property of the mollified transport equations, we have that
∇Q∗

n ∈ C ([0, T ]; H
∗), and for t ∈ [0, T ],

‖∇Q∗
n(t)‖H∗ � C(�, h, λ, β0)

(
1 + ‖ f0‖L2 + ‖g0‖L2 + ‖ j0‖L2

+‖aL‖L1([0,T ];L2) + ‖aν‖L1([0,T ];L2)

)
. (26)

In addition, Theorem 3.2 provides the bound

‖∇Qn(t)‖
H

1
2 (�×[0,h]) �C(�, h, λ, M)

(‖ f0‖L2 + ‖g0‖L2 + ‖ j0‖L2

+‖aL‖L1([0,T ];L2) + ‖aν‖L1([0,T ];L2)

)
, (27)

showing that∇Qn ∈ L∞([0, T ];B0).Note that the constant in (26) does not depend
on M . By Lemma 4.2 and the existence of the constant M , ∂t (∇Q∗

n) is a sequence
of operators bounded in L∞([0, T ];B2), and the assumptions of the Aubins-Lions
lemma are satisfied. We have then that ∇Q∗

n is precompact in C ([0, T ]; H
∗), and

thus ∇Qn is precompact in C ([0, T ]; H). ��
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Corollary 4.4. (Fixed Points) Each operator Sε has a fixed point �ε.

Proof. Lemma 4.1 shows that Sε is continuous. By the mollification of the velocity
fields, there exists C(ε) such that for all P ∈ C([0, T ]; H),

‖∇⊥
Pε‖L∞([0,T ]×[0,h];L2(�)) � C(ε)‖P‖C([0,T ];H).

Then by Lemma 4.3 with εn = ε for all n, Sε is a compact operator. By (26), the
range of Sε is bounded. Therefore, we can apply the Leray-Schauder fixed point
theorem (see Evans [14]) to obtain a fixed point �ε. ��

4.2. Passing to the Limit

Consider the sequence of fixed points �ε to the operators Sε. By definition,
Sε(�ε) = �ε, and therefore �ε solves the variational problem

B�ε(�ε(t), v) =
∫

�×[0,h]
∇̃�ε(t) · ∇v

= −
∫

�×[0,h]
−Fε(t)v +

∫

�×{0,h}
λGε(t)v +

∫ h

0
v|∂�×[0,h] j0.

= F�ε(v)

Let us extract a subsequence which we index by n ∈ N such that Fεn converges
weakly to F in L∞ ([0, T ]; L2(� × [0, h])), and Gεn converges weakly to G in
L∞([0, T ]; L2(� × {0, h})).

Recall that in Step 1, �εn : � × [0, h] → R was extended to �εn ,E : R
3 → R

and then mollified at length scale εn to produce a smooth velocity field �εn ,E ∗ηεn .
The following technical lemma regarding both the convergence of �εn and the
mollified velocity fields �εn ,E ∗ ηεn shall be useful:

Lemma 4.5. (1) Up to a subsequence,�εn converges strongly to� in C([0, T ]; H)

(2) For any compact subdomain �̃ ⊂ �, ∇⊥
�εn ,E ∗ ηεn converges strongly up to

a subsequence to ∇⊥
� in C([0, T ]; L2(�̃ × [0, h])).

Proof. To show (1), we consider Lemma 4.3 with Pn = �εn = Qn . By (27)

sup
n

‖∇̃�εn‖L∞([0,T ];H 1
2 (�×[0,h])) � C(�, h, λ)

×
(
‖ f0‖L2 + ‖g0‖L2 + ‖ j0‖L2 + ‖aL‖L1([0,T ];L2) + ‖aν‖L1([0,T ];L2)

)
.

Taking the trace (of �εn as a function in H
3
2 (� × (0, h)) to �|z ∈ H1({z} × �)

for z ∈ [0, h]) then shows that

sup
n

‖∇⊥
�εn‖L∞([0,T ]×[0,h];L2(�)) � C(�, h, λ)×

(
‖ f0‖L2 + ‖g0‖L2 + ‖ j0‖L2 + ‖aL‖L1([0,T ];L2) + ‖aν‖L1([0,T ];L2)

)
. (28)
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By construction of the extension �εn ,E ,

∇⊥
�εn ,E (x, y, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇⊥
�εn (z) (x, y, z) ∈ �̃ × [0, h]

∇⊥
�εn (0) (x, y, z) ∈ �̃ × (−∞, 0]

∇⊥
�εn (h) (x, y, z) ∈ �̃ × [h,∞),

showing that ∇⊥
�εn ,E is uniformly bounded in n in L∞([0, T ] × [−εn, h +

εn]; L2(�)). Therefore,

sup
n

‖∇⊥
�εn ,E (t) ∗ ηεn‖L∞([0,T ]×[0,h];L2(�)) < ∞. (29)

Thus the assumptions of Lemma 4.3 are satisfied, and up to a subsequence, �εn

converges to � strongly in C([0, T ]; H).
Moving to (2), let �̃ be a fixed compact subdomain of �. We have that for

t ∈ [0, T ],

lim sup
n→∞

‖∇⊥
(�εn ,E ∗ ηεn (t) − �(t))‖L2(�̃×[0,h])

� lim sup
n→∞

‖∇⊥
(�εn ,E ∗ ηεn (t) − �εn (t))‖L2(�̃×[0,h])

+ lim sup
n→∞

‖∇⊥
(�εn (t) − �(t))‖L2(�̃×[0,h])

� sup
n

‖∇⊥
�εn ,E ∗ ηεn (t)‖L2(�̃×([0,δ)∪(h−δ,h]))

+ sup
n

‖∇⊥
�εn (t)‖L2(�̃×([0,δ)∪(h−δ,h]))

+ lim sup
n→∞

‖∇⊥
(�εn ,E ∗ ηεn (t) − �εn (t))‖L2(�̃×[δ,h−δ]).

By (28) and (29), the first two terms go to zero as δ → 0. Thus it suffices to show
that for fixed δ,

lim sup
n→∞

‖∇⊥
(�εn ,E ∗ ηεn (t) − �εn (t))‖L2(�̃×[δ,h−δ]) = 0.

For n large enough,

�εn ,E ∗ ηεn = �εn ∗ ηεn ∀(x, y, z) ∈ (�̃ × [δ, h − δ]).
By extending �εn from �̃ × [δ, h − δ] to R

3 using a standard Sobolev extension
operator, it suffices to prove the claim for functions defined on all of R

3. Using the

Fourier characterization of H
3
2 (R3), we can write

‖∇⊥
�εn ∗ ηεn (t) − ∇⊥

�εn (t)‖2L2(R3)

�
∫

R3
|ξ |2|�̂εn (t, ξ)|2|η̂εn (ξ) − 1|2 dξ
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�
∫

R3
|ξ |2(1 + |ξ |2) 1

2 |�̂εn (t, ξ)|2 |η̂(εnξ) − 1|2
(1 + |ξ |2) 1

2

dξ

� sup
n

‖�εn (t)‖2
H

3
2 (R3)

· sup
ξ

|η̂(εnξ) − 1|2
(1 + |ξ |2) 1

2

,

which goes to zero uniformly in t as n → ∞ since η̂ is smooth and η̂(0) = 1,
concluding the proof. ��

We now pass to the limit to show that� is the solution we seek. As first utilized
in [22] and then again in [18], the strong convergence at the level of ∇�εn and the
reformulation of the system in terms of ∇�εn give compactness in the nonlinear
term of the reformulation. Fix a test function φ as in Definition 1.2. Then

−
∫ T

0

∫

�̃×[0,h]

((
∂tφ+∇⊥

(�εn ∗ ηεn ) · ∇φ
)

(Fεn +β0y)+φaL ,εn

)
dx dy dz dt

=
∫

�̃×[0,h]
φ|t=0 fεn dx dy dz (30)

and
∫ T

0

∫

�̃×{0,h}

((
∂tφ + ∇⊥

(�εn ∗ ηεn ) · ∇φ
)
Gεn + φaν,εn

)
dx dy dt

= −
∫

�̃×{0,h}
φ|t=0gεn dx dy. (31)

For each time t > 0, let Aεn (t) ∈ H be the solution to

BA,n(Aεn (t), v) :=
∫

�×[0,h]
∇̃Aεn (t) · ∇v

= −
∫

�×[0,h]
−aL ,εn (t)v +

∫

�×{0,h}
aν,εn (t)v

= FA,n(v).

Using ∂tφ+∇⊥
(�εn∗ηεn )·∇φ andφ as test functions in the variational formulations

for �εn and Aεn , respectively, turns (30) and (31) into

−
∫ T

0

∫

�̃×[0,h]

((
∂t∇φ + ∇⊥

(�εn ∗ ηεn ) : ∇∇φ
)

· ∇̃�εn + ∇φ · ∇̃Aεn

)

dx dy dz dt

=
∫

�̃×[0,h]
∇φ|t=0 · ∇̃�εn |t=0 dx dy dz. (32)

Applying Lemma 4.5, we pass to the limit to obtain

−
∫ T

0

∫

�̃×[0,h]

((
∂t∇φ + ∇⊥

� : ∇∇φ
)

· ∇̃� + ∇φ · ∇̃A
)
dx dy dz dt

=
∫

�̃×[0,h]
∇φ|t=0 · ∇̃�|t=0 dx dy dz.



1008 Matthew D. Novack & Alexis F. Vasseur

Rearranging the variational formulation now for � gives

−
∫ T

0

∫

�̃×[0,h]

((
∂tφ + ∇⊥

� · ∇φ
)
F + φaL

)
dx dy dz dt

=
∫

�̃×[0,h]
φ|t=0 f dx dy dz

and
∫ T

0

∫

�̃×{0,h}

((
∂tφ+∇⊥

� · ∇φ
)
G+φaν

)
dx dy dt=−

∫

�̃×{0,h}
φ|t=0g dx dy.

The final part of the proof consists of showing that �(t) solves a variational
problem for all t ∈ [0, T ]which verifies the compatibility condition Definition 1.1.
By construction of the approximate solution operators,�εn (t) solves the variational
problem with data

(
Fεn (t)|�×[0,h],Gεn (t)|�×{0,h}, j0

)
.

In addition, Fεn (t) and Gεn (t) are supported in a neighborhood of order εn around
� for all time t ∈ [0, T ] and have uniformly bounded L2 norms. Therefore, for all
φ(t) smooth and compactly supported on (0, t),

∫ t

0
φ(τ) ·

∫

�×[0,h]
F(τ )

= lim
n→∞

∫ t

0
φ(τ) ·

∫

�×[0,h]
Fεn (τ )

= lim
n→∞

∫ t

0
φ(τ) ·

(∫

�εn×[0,h]
Fεn (τ ) −

∫

(�εn∩�c)×[0,h]
Fεn (τ )

)

= lim
n→∞

∫ t

0
φ(τ) ·

(∫

�εn×[0,h]
fεn + o(ε

1
2 )

)

=
∫ t

0
φ(τ)) ·

∫

�×[0,h]
f0.

A similar argument holds for G, and since φ was arbitrary, we deduce that for all t ,

∫

�×[0,h]
F(t) −

∫ h

0
j −

∫

�×{0,h}
λG(t) =

∫

�×[0,h]
f0 −

∫ h

0
j0 −

∫

�×{0,h}
λg0.

Using the assumption that ( f0, g0, j0) and (aL , aν) satisfy Definition 1.1 shows
that �(t) solves an elliptic problem with compatible data. Then by Lemma 3.1,
L(�) = F and ∂ν� = G in the traditional weak sense.

We have thus shown that � satisfies part (4) of Theorem 1.1, and therefore
Definition 1.2 and part (1) of Theorem 1.1. For part (2), the choice of � as a weak
limit of functions belonging to L∞ ([0, T ]; H) implies that �(t) ∈ H for almost
every t . Therefore,� must depend only on z on the lateral boundary, and there exists
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c(t, z) such that �|∂�×[0,h] = c(t, z) for almost every time. To show part (3), first

note that in light of the H
1
2 (� × [0, h]) bound on ∇�, ∇� · νs(t) is well-defined

in L2(∂� × [0, h]) for almost every time (using the trace of � ∈ H
3
2 (� × [0, h])

again). Assuming now that j0 ∈ H
1
2 (0, h), let αn(z) be a compactly supported

smooth function in ( 1n , h− 1
n ) such that αn(z) = 1 for all z ∈ ( 2n , h− 2

n ). Applying
Lemmas 3.4, 3.5, and 3.6 to αn�(t) (using the fact that αn�(t) solves an elliptic
problem) shows that αn�(t) ∈ H2(� × [0, h]), and therefore ��(t, z) ∈ L2(�)

for z ∈ ( 2n , h − 2
n ). Then

∫

�×{z}
�� =

∫

∂�×{z}
∇� · νs,

and therefore the calculation following Definition 3.1 can be justified, showing that
asserted pointwise equality holds. Finally, the bounds in part (5) follow from the
divergence free property of the flow and Theorem 3.2, completing the proof of the
theorem.
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