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Abstract

We consider problems of static equilibrium in which the primary unknown
is the stress field and the solutions maximize a complementary energy subject to
equilibrium constraints. A necessary and sufficient condition for the sequential
lower-semicontinuity of such functionals is symmetric div-quasiconvexity; a spe-
cial case of Fonseca and Müller’s A-quasiconvexity with A = div acting on R

n×n
sym .

We specifically consider the example of the static problem of plastic limit analy-
sis and seek to characterize its relaxation in the non-standard case of a non-convex
elastic domain. We show that the symmetric div-quasiconvex envelope of the elastic
domain can be characterized explicitly for isotropic materials whose elastic domain
depends on pressure p and Mises effective shear stress q. The envelope then fol-
lows from a rank-2 hull construction in the (p, q)-plane. Remarkably, owing to the
equilibrium constraint, the relaxed elastic domain can still be strongly non-convex,
which shows that convexity of the elastic domain is not a requirement for existence
in plasticity.
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1. Introduction

We consider problems of static equilibrium in which the primary unknown
is the stress field and the solutions minimize a complementary energy subject to
equilibrium constraints. Such problems arise, for example, in the limit analysis of
solids at collapse, which is characterized by continuing deformations, or yielding,
at constant applied loads [10]. In a geometrically linear framework, the elastic
strains and the stress remain constant during collapse. Therefore, the plastic strain
rate coincides with the total strain rate and is compatible. In addition, the stress is
constrained to be in equilibrium and take values in the elastic domain K , which,
for ideal plasticity and in the absence of hardening, is a fixed subset of Rn×n

sym . Static
theory then aims to minimize over all possible velocities v : � → R

n compatible
with the boundary data g : ∂� → R

n , and maximize over all possible stress fields
σ : � → K in equilibrium, the plastic dissipationˆ

�

σ · Dv dx . (1.1)

Natural spaces of functions are σ ∈ L∞(�;Rn×n
sym ) with σ ∈ K almost everywhere

andv ∈ W 1,p(�;Rn)withv = gD on ∂� in the sense of traces. If the elastic domain
K is convex, then the mathematical analysis of the problem is straightforward. Thus,
the supremum of (1.1) with respect to σ can be taken locally, and the resulting
dissipation functional ˆ

�

ψ(Dv) dx (1.2)

can then be minimized over all admissible v. In (1.2), ψ(ξ) := supσ∈K σ · ξ is
the dissipation potential. Thus, for convex K the classical kinematic problem of
limit analysis is recovered. The functional (1.2) is itself convex and, for compact
K , coercive, whence existence of minimizers follows by the direct method of the
calculus of variations.

However, the elastic domain K of some notable materials is not convex. An
illustrative example is silica glass. Indeed, Meade and Jeanloz [11] made mea-
surements of the shear strength of amorphous silica at pressures up to 81 GPa at
room temperature and showed that the strength initially decreases sharply as the ma-
terial is compressed to denser structures of higher coordination and then rises again
(Fig. 1a) resulting in a strongly non-convex elastic domain in the pressure-shear
stress plane. Several authors [13,17] have performed molecular dynamics calcu-
lations of amorphous solids deforming in pressure-shear and have found that the
resulting deformation field forms distinctive patterns to accommodate permanent
macroscopic deformations; see Fig. 1b. Remarkably, whereas convex limit analysis
is standard [10], the case of non-convex elastic domains does not appear to have
been studied.

More generally, we may consider static problems where the material response
is expressed as

ε = ∂χ

∂σ
(x, σ ), (1.3)
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in terms of a complementary energy function χ . The functional of interest is then
the complementary energy

σ �→
ˆ

	D

σ(x)ν(x) · gD(x) dHd−1 −
ˆ

�

χ(x, σ (x)) dx, (1.4)

to be minimized subject to the equilibrium constraints

divσ(x) + b(x) = 0, in �, (1.5a)

σ(x)ν(x) = h(x), on 	N , (1.5b)

where σ : � → R
n×n is a local stress field, b : � → R

n are body forces and
h : 	N → R

n applied tractions over the Neumann boundary 	N ⊆ ∂�. If χ

is non-convex, the question of relaxation again becomes non-standard and it may
be expected to result in the development of microstructure in the form of rapidly
oscillatory stress fields.

A powerful mathematical tool for elucidating such questions is furnished by A-
quasiconvexity, introduced by Fonseca and Müller [5] as a necessary and sufficient
condition for the sequential lower-semicontinuity of functionals of the form

(u, v) �→
ˆ

�

f (x, u(x), v(x)) dx, (1.6)

where f : � × R
m × R

d → [0,+∞) is a normal integrand, � ⊆ R
n open and

bounded, and v must satisfy the differential constraint

A v = 0. (1.7)

Here,

A v :=
n∑

i=1

A(i) ∂v

∂xi
, (1.8)

and A(i) ∈ Lin(Rl;Rd) is a constant rank partial differential operator. Specifically,
f (x, u, ·) is A-quasiconvex if

f (x, u, v) ≤
ˆ
Q

f (x, u, v + w(y)) dy (1.9)

for all v ∈ R
d and all w ∈ C∞(Q;Rd) such thatAw = 0 and w is Q-periodic, with

Q = (0, 1)n . In particular, with A = curl, A-quasiconvexity reduces to Morrey’s
notion of quasiconvexity. In the context of the static problem (1.4) and (1.5), we
may identify the state field v with σ and the operative differential operator A
with div. The pertinent notion of quasiconvexity is, therefore, div-quasiconvexity,
acting on fields of symmetric n × n matrices. Whereas for kinematic problems of
the energy-minimization type there is a well-developed theory of relaxation relating
to curl-quasiconvexity, the relaxation of static problems of the form (1.4) and (1.5),
relating instead to div-quasiconvexity, has been less extensively studied.
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In this paper, we develop a theory of symmetric div-quasiconvex relaxation for
static problems. For definiteness, we confine attention to the static problem of limit
analysis [10]

sup{F(σ ) : σ ∈ L∞(�; K )}. (1.10)

Here, K ⊆ R
n×n
sym is the elastic domain, which we assume to be compact, and

F(σ ) := inf
v

{ˆ
�

σ · Dv dx : v ∈ W 1,1(�;Rn), v = gD on ∂�
}
, (1.11)

where gD ∈ L1(∂�;Rn) gives the boundary data. The domain � is assumed to be
a bounded Lipschitz domain. The stress field σ is a divergence-free field, which
takes values in symmetric matrices. This symmetry sets the present setting apart
from previous applications of div -quasiconvexity, also denoted S-quasiconvexity
or soleinoidal–quasiconvexity, which have focused on the characterization of the
div -quasiconvex hull of a 3-point set in relation with the three-well problem in
linear elasticity [7,15,16] and on the Born-Infeld equations [12]. We call the present
setting symmetric div -quasiconvexity.

In Section 2, we show how the concept of symmetric div-quasiconvexity fits
within the framework of A-quasiconvexity and discuss the relevant properties of
symmetric div-quasiconvex functions, which mainly follow directly from [5]. We
also present in Lemma 2.7 an important example of a nonconvex symmetric div-
quasiconvex function. Section 3 deals with div-quasiconvexity for sets and their
hulls, in the context of relaxation theory. An important result, announced in [17,
Th. 1 and Th. 2], is Theorem 3.3, which shows that the variational problem (1.10)
has a solution if K is symmetric div-quasiconvex. We then discuss, in particular,
the definition of the symmetric div-quasiconvex hull of a set K , which in principle
depends on the growth of the class of test functions employed. However, we show
that all p ∈ (1,∞) give equivalent definitions, Theorem 3.6. Finally, Section 4
deals with the important case of sets K that can be characterized in terms of the first
two stress invariants alone and show how their symmetric div-quasiconvex hulls
can be explicitly characterized. We recall that this elastic domain representation
is the basis for a broad range of pressure-dependent plasticity models, including
the Mohr–Coulomb model of sands ([10] and references therein), the Cam-Clay
model of soils ( [19] and references therein), the Drucker-Prager model of pressure-
dependent metal plasticity ([10] and references therein) and Gurson’s model of
porous metal plasticity [8].

2. Symmetric div-quasiconvex Functions

We start by giving the basic definitions and recalling the main results from [5],
specializing them to the case of interest here.

Definition 2.1. A Borel-measurable, locally bounded function f : Rn×n
sym → R is

symmetric div -quasiconvex if, for all ϕ ∈ C∞
per((0, 1)n;Rn×n

sym ) which obey div ϕ =
0 everywhere,
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f

(ˆ
(0,1)n

ϕ dx

)
�
ˆ

(0,1)n
f (ϕ)dx . (2.1)

For ξ ∈ R
n×n
sym , the symmetric div-quasiconvex envelope of f : R

n×n
sym → R is

defined as

Qsdqc f (ξ) := inf

{ˆ
(0,1)n

f (ϕ)dx : ϕ ∈ C∞
per((0, 1)n;Rn×n

sym ),

div ϕ = 0,

ˆ
(0,1)n

ϕ dx = ξ

}
.

(2.2)

We recall that C∞
per((0, 1)n) is the set of ϕ ∈ C∞(Rn) such that ϕ(x + ei ) = ϕ(x)

for i = 1, . . . , n.

Remark 2.2. From the definition it follows that, if f, g are symmetric div-quasiconvex,
then so are max{ f, g} and f + λg, for any λ ∈ [0,∞). Furthermore, all convex
functions are symmetric div-quasiconvex.

For a generic first-order differential operator of the form given in (1.8) and a
wavevector w ∈ R

n \ {0}, the linear operator A(w) ∈ Lin(Rm;Rn) is defined as

A(w) :=
n∑

i=1

A(i)wi . (2.3)

The general theory of A-quasiconvexity requires that A be constant rank, in the
sense that rank A does not depend on w (as long as w �= 0). We first show that
this condition holds in the present case and compute the characteristic cone. We
recall that the characteristic cone is the union of the sets where A(w) vanishes, for
w �= 0, and that symmetric div-quasiconvex functions are convex in the directions
of the characteristic cone.

Lemma 2.3. The condition of being divergence-free is constant rank on symmetric
n × n matrices. The characteristic cone consists of all non-invertible matrices and
spans Rn×n

sym .

Proof. Let J : Rn(n+1)/2 → R
n×n
sym be a linear bijection which maps {e1 . . . en(n+1)/2}

to {ei 	 e j }1�i� j�n . We recall that (a 	 b)i j := 1
2 (aib j + a jbi ). We define the

differential operator As−div on C∞(�;Rn(n+1)/2) as As−div ϕ := div (Jϕ). The
corresponding linear operator As−div (w) ∈ Lin(Rn(n+1)/2;Rn), for w ∈ R

n , is
defined by its action on a vector ξ ∈ R

n(n+1)/2,

(As−div (w)ξ)i =
n∑

j=1

(Jξ)i jw j , (2.4)

which can be written as As−div (w)ξ = (Jξ)w.
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For example, for n = 2,

J

⎛

⎝
ξ1
ξ2
ξ3

⎞

⎠ =
(

ξ1
1
2ξ3

1
2ξ3 ξ2

)
(2.5)

and

As−div

⎛

⎝
ϕ1
ϕ2
ϕ3

⎞

⎠ =
(

∂1ϕ1 + 1
2∂2ϕ3

∂2ϕ2 + 1
2∂1ϕ3

)
,

A
s−div

(
w1
w2

) ⎛

⎝
ξ1
ξ2
ξ3

⎞

⎠ =
(

w1ξ1 + 1
2w2ξ3

w2ξ2 + 1
2w1ξ3

)
.

(2.6)

We now show that the operator As−div (w) is surjective for every w ∈ Sn−1.
Indeed, fix any vector v ∈ R

n and let Fv,w ∈ R
n×n
sym be such that Fv,ww = v (for

example, let Fv,w = v⊗w+w⊗v−(v ·w)w⊗w). Then, choose ξ := J−1(Fv,w)

to obtain A
s−div (w)J−1(Fv,w) = Fv,ww = v. Therefore, As−div (w) has rank n

for all w �= 0, and the constant-rank condition holds.
The characteristic cone, first introduced by Murat and Tartar [14,21], is defined

as

 :=
⋃

w∈Sn−1

ker As−div (w) ⊆ R
n(n+1)/2. (2.7)

In the present context, the cone  may be identified (via the mapping J ) with the
set of non-invertible matrices,

J =
⋃

w∈Sn−1

{σ ∈ R
n×n
sym : σw = 0} = {σ ∈ R

n×n
sym : det σ = 0}. (2.8)

��
The next three results are essentially special cases of more general assertions

that hold within the framework of A-quasiconvexity in [5]. For convenience, we
restate here the statements that are needed in the following:

Lemma 2.4. Let f be symmetric div-quasiconvex. Then, it is convex along all non-
invertible directions, in the sense that f (λA+ (1 −λ)B) � λ f (A)+ (1 −λ) f (B)

whenever λ ∈ [0, 1], A, B ∈ R
n×n
sym , det(A − B) = 0. Furthermore, all such f are

locally Lipschitz continuous.

Proof. If f is upper semicontinuous, then the assertion follows directly from [5,
Prop. 3.4] using Lemma 2.3. Here, we give a direct proof without assuming upper
semicontinuity.

We first assume that there is a vector ν ∈ Q
n \ {0} such that (A − B)ν =

0. We let h : R → {0, 1} be one-periodic, with h(t) = 0 for t ∈ (0, λ) and
h(t) = 1 for t ∈ (λ, 1). We choose M ∈ N such that Mν ∈ Z

n and define
u(x) := A + (B − A)h(Mx · ν). From Mei · ν = Mνi ∈ Z, we deduce that
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u(x + ei ) = u(x) for all i . Furthermore, div u = 0 in the sense of distributions,
|{u = A} ∩ (0, 1)n| = λ, and |{u = B} ∩ (0, 1)n| = 1 − λ, which implies´
(0,1)n

u dx = λA + (1 − λ)B.
Let θε ∈ C∞

c (Bε) be a mollifier. Then, u ∗ θε ∈ C∞
per((0, 1)n;Rn×n

sym ) and,
therefore, by (2.1), we obtain

f (λA + (1 − λ)B) �
ˆ

(0,1)n
f (u ∗ θε)dx . (2.9)

Since f is locally bounded, u is bounded and |{u ∗ θε �= u} ∩ (0, 1)n | → 0. Taking
the limit ε → 0, we deduce that

f (λA + (1 − λ)B) �
ˆ

(0,1)n
f (u) dx = λ f (A) + (1 − λ) f (B) (2.10)

whenever A and B are such that (A − B)ν = 0 for some ν ∈ Q
n . In particular, f

is separately convex and finite-valued, hence locally Lipschitz continuous.
Consider now any two matrices A, B and a vector w ∈ Sn−1 such that (A −

B)w = 0. We choose ν j ∈ Q
n such that ν j → w, which implies (A − B)ν j →

0. Let now Bj := B + (A − B)ν j ⊗ ν j/|ν j |2. Then, (A − Bj )ν j = 0, hence
f (λA + (1 − λ)Bj ) � λ f (A) + (1 − λ) f (Bj ). Taking j → ∞, by continuity of
f we conclude the proof. ��

Lemma 2.5. (i) Let f be symmetric div-quasiconvex, u j
∗
⇀ u weakly in L∞(�;

R
n×n
sym ), div u j = 0 in the sense of distributions. Then,

ˆ
�

f (u(x))dx � lim inf
j→∞

ˆ
�

f (u j (x))dx . (2.11)

(ii) Let f be symmetric div-quasiconvex, f (ξ) � c(|ξ |p +1) for some p ∈ [1,∞),
u j⇀u weakly in L p(�;Rn×n

sym ), div u j = 0 in the sense of distributions. Then,
ˆ

�

f (u(x))dx � lim inf
j→∞

ˆ
�

f (u j (x))dx . (2.12)

Proof. Lemma 2.4 shows that f is continuous. The result follows then immediately
from [5, Th. 3.7] using Lemma 2.3. ��
Lemma 2.6. Let f ∈ C0(Rn×n

sym ; [0,∞)). Then,Qsdqc f is symmetricdiv-quasiconvex.

Proof. Follows from [5, Prop. 3.4]. ��
We now recall an important example of a nontrivial symmetric div-quasiconvex

function, due to Luc Tartar.

Lemma 2.7. (From [23]) The function fT : Rn×n
sym → R, fT(σ ) := (n − 1)|σ |2 −

(Tr σ)2, is symmetric div -quasiconvex.

For completeness, we provide a short proof of this result, which plays an important
role in the explicit examples discussed in Section 4.
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Proof. We first observe that, for any matrix A ∈ C
n×n , we have

(rank A)|A|2 � | Tr A|2. (2.13)

To verify this inequality, it suffices to write A in a basis in which only the first
rank A diagonal entries are nonzero and to use then on this set the basic inquality
| ∑i Aii |2 � (rank A)

∑
i |Aii |2. We now show that for anyϕ ∈ C1

per((0, 1)n;Rn×n)

with div ϕ = 0 the functional I (ϕ) := ´
(0,1)n

fT(ϕ(x))dx is nonnegative. Indeed,
letting ϕ̂λ be the Fourier coefficients of ϕ, by Plancharel’s theorem we have

ˆ
(0,1)n

fT(ϕ) dx =
∑

λ∈2πZn

[
(n − 1)|ϕ̂λ|2 − | Tr ϕ̂λ|2

]
� 0, (2.14)

where we have used (2.13) and the fact that div ϕ = 0 implies ϕ̂λλ = 0 and
therefore rank ϕ̂λ � n− 1. Let now ϕ be as in the definition of div -quasiconvexity,
ξ := ´

(0,1)n
ϕ dx . Since fT is quadratic and ϕ − ξ has average zero, expanding, we

obtain ˆ
(0,1)n

fT(ϕ)dx = fT(ξ) +
ˆ

(0,1)n
fT(ϕ − ξ)dx � fT(ξ). (2.15)

��
We close this section with a brief discussion of the relation to div -quasiconvexity.

In particular, we show that symmetric div -quasiconvexity is not equivalent to div -
quasiconvexity composed with projection to symmetric matrices. We recall that a
Borel-measurable, locally bounded function f : Rm×n → R is div -quasiconvex
if, for every ϕ ∈ C∞

per((0, 1)n;Rm×n) such that div ϕ = 0 everywhere,

f

(ˆ
(0,1)n

ϕ dx

)
�
ˆ

(0,1)n
f (ϕ)dx . (2.16)

Lemma 2.8. For a given function f : Rn×n
sym → R, we define S f : Rn×n → R

as S f (ξ) := f ((ξ + ξ T )/2). If S f is div -quasiconvex, then f is symmetric div -
quasiconvex. However, there are symmetric div -quasiconvex functions f such that
the corresponding S f is not div -quasiconvex.

Proof. In order to prove that f is symmetric div -quasiconvex, we pick ϕ ∈ C∞
per

((0, 1)n;Rn×n
sym ) with div ϕ = 0 and observe that

f

(ˆ
(0,1)n

ϕ dx

)
= S f

(ˆ
(0,1)n

ϕ dx

)

�
ˆ

(0,1)n
S f (ϕ)dx =

ˆ
(0,1)n

f (ϕ)dx . (2.17)

For the converse implication, we consider n = 2 and f (F) = det(F), so that

S f (F) = det
F + FT

2
= det F − 1

4
(F12 − F21)

2. (2.18)
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We first check that f is symmetric div -quasiconvex. Let ξ ∈ R
2×2
sym ,ϕ ∈ C∞

per([0, 1]2;
R

2×2
sym ) with div ϕ = 0 and

´
(0,1)n

ϕdx = 0. Then, there is v ∈ C∞(R2;R2)

with Dv = ⊥ϕ⊥, where by this compact notation we mean Dv = RϕR, with
R = e1 ⊗ e2 − e2 ⊗ e1. Since ϕ has average 0 and is periodic, we can choose
v ∈ C∞

per([0, 1]2;R2). In particular,
ˆ

[0,1]2
f (ξ + ϕ)dx = det ξ +

ˆ
[0,1]2

det Dvdx = det ξ = f (ξ). (2.19)

At the same time, the function ϕ(x) := e1 ⊗ e2 sin(2πx1) is [0, 1]2-periodic,
divergence-free, has average 0, and givesˆ

[0,1]2
S f (ϕ)dx = −1

4

ˆ
[0,1]2

sin2(2πx1)dx = −1

8
< 0 = S f (0). (2.20)

��

3. Symmetric div-quasiconvex Sets and Hulls

3.1. Symmetric div-quasiconvex Sets

In this section, we discuss symmetric div -quasiconvexity of sets and their hulls.
As in the case of quasiconvexity, there are different possible definitions of the hulls,
depending on the growth that is assumed. For quasiconvexity, it has been shown that
the p-quasiconvex hull of a compact set does not depend on the assumed growth p.
The key technical ingredient is Zhang’s truncation Lemma, see [26]. In the present
setting, we can only prove the corresponding result for 1 < p < ∞, since the
bounds on the potentials of the oscillatory fields are based on singular-integral
estimates which only hold in that range, see Lemma 3.13 below. For clarity we give
separate definitions for p ∈ [1,∞].
Definition 3.1. A compact set K ⊆ R

n×n
sym is symmetric div-quasiconvex if, for any

ξ ∈ R
n×n
sym \K , there is a symmetric div-quasiconvex function g ∈ C0(Rn×n

sym ; [0,∞))

such that g(ξ) > max g(K ).
A compact set K ⊆ R

n×n
sym is p-symmetric div-quasiconvex, with p ∈ [1,∞), if

the function g can be chosen to have p-growth, in the sense that g(σ ) � c(|σ |p+1)

for some c ∈ R and all σ ∈ R
n×n
sym .

We remark that the function g can be chosen so that it vanishes on K by replacing
it with ĝ := max{g − max g(K ), 0)}.

It is clear that if K is p-symmetric div-quasiconvex for some p then it is
symmetric div-quasiconvex. As in the case of quasiconvexity, the definition for
non compact sets depends crucially on growth and many variants are possible. We
do not discuss this case here.

Lemma 3.2. Let K ⊆ R
n×n
sym be compact and symmetric div -quasiconvex, E :=

{σ ∈ L∞(�; K ) : div σ = 0}. Then, E is closed with respect to weak-∗ conver-
gence in L∞(�;Rn×n

sym ).
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Proof. Let σ j ∈ E be such that σ j
∗
⇀ σ in L∞(�;Rn×n

sym ).
For any ξ ∈ R

n×n
sym \ K , there is a symmetric div-quasiconvex function gξ ∈

C0(Rn×n
sym ; [0,∞)) which vanishes on K and with gξ (ξ) > 0. By continuity, gξ > 0

on Brξ (ξ), for some rξ > 0. The set Rn×n
sym \ K can be covered by countably

many such balls Bi . Let gi be the corresponding functions. It suffices to show that
{x : σ(x) ∈ Bi } is a null set for any i .

By Lemma 2.5(i), recalling that σ j ∈ K almost everywhere for all j , we obtain´
�
gi (σ )dx � lim inf j→∞

´
�
gi (σ j )dx = 0. This implies that gi (σ (x)) = 0

almost everywhere. Since gi > 0 on Bi we obtain that {x : σ(x) ∈ Bi } is a null
set, which concludes the proof. ��

We are now ready to prove our first main result, namely, an existence statement
for static problems with symmetric div-quasiconvex yield sets. We refer to the
introduction for the formulation and the main definitions and recall in particular
that gD ∈ L1(∂�;Rn) denotes the boundary data.

Theorem 3.3. If K is nonempty and symmetric div-quasiconvex, then F is weakly
upper semicontinuous and the problem defined in (1.10) and (1.11) has a solution
σ∗ ∈ L∞(�; K ), which obeys div σ∗ = 0 in the sense of distributions.

Proof. We first prove that sup F ∈ R.
Let ξ0 ∈ K . Using the constant function σ = ξ0 gives

F(ξ0) = ξ0 ·
ˆ

�

Dv dx = ξ0

ˆ
∂�

gD ⊗ νdHn−1 ∈ R, (3.1)

hence sup F �= −∞.
By the trace theorem for W 1,1 (see for example [1, p. 168]), we can extend gD

to a function W 1,1(�;Rn), which we shall also denote gD . For any σ ∈ L∞(�; K )

we have

F(σ ) �
ˆ

�

σ · DgD dx � ‖gD‖W 1,1 max{|ξ | : ξ ∈ K }, (3.2)

hence sup F �= +∞.
Next, we show that only fields σ that are divergence-free need be considered.

If we assume additional regularity, then an integration by parts gives
ˆ

�

σ · Dv dx =
ˆ

∂�

σgD · νdHn−1 −
ˆ

�

v · div σ dx, (3.3)

which does not contain any derivative of v. In particular, the inf is −∞ unless
div σ = 0 almost everywhere.

Consider now a generic σ ∈ L∞(�;Rn×n
sym ). If div σ �= 0 in the sense of

distributions, then there is θ ∈ C∞
c (�;Rn) such that

´
�

σ · Dθ dx �= 0. We
consider the one-parameter family of test functions vt := gD + tθ and obtain

F(σ ) �
ˆ

�

σ · Dvt dx =
ˆ

�

σ · DgD dx + t
ˆ

�

σ · Dθ dx for all t ∈ R, (3.4)
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which shows that F(σ ) = −∞. Therefore, we can restrict attention to fields σ that
are divergence-free in the sense of distributions.

Let σk ∈ L∞(�; K ) be a maximizing sequence. By the preceding argument,
div σk = 0 in the sense of distributions. Since the sequence is bounded in L∞,
after extracting a subsequence it converges weak-∗ to some σ∗, by the properties
of distributions div σ∗ = 0. Lemma 3.2 implies that σ∗ ∈ K almost everywhere.
Hence, we only need to show that it is a maximizer. For any v ∈ W 1,1(�;Rn) with
v = gD on the boundary we have

ˆ
�

σ∗ · Dv dx = lim
k→∞

ˆ
�

σk · Dv dx � lim sup
k→∞

F(σk), (3.5)

hence,

F(σ∗) � lim sup
k→∞

F(σk) = sup F. (3.6)

��

3.2. Symmetric div -quasiconvex Hulls

We now deal with the case that K is not symmetric div-quasiconvex. Within
the framework of relaxation theory, we begin by defining the symmetric div-
quasiconvex hull.

Definition 3.4. Let K ⊆ R
n×n
sym be compact, p ∈ [1,∞), f p(ξ) := dist p(ξ, K ).

We define

K (p) := {ξ ∈ R
n×n
sym : Qsdqc f p(ξ) = 0} (3.7)

and

K (∞) := {ξ ∈ R
n×n
sym : g(ξ) � max g(K )

for all symmetric div-quasiconvex g ∈ C0(Rn×n
sym ; [0,∞))}. (3.8)

Lemma 3.5. K (∞) is the smallest symmetric div-quasiconvex compact set that con-
tains K . K (p) is the smallest p-symmetric div-quasiconvex compact set that con-
tains K .

As usual, the first assertion means that any symmetric div-quasiconvex compact set
that contains K also contains K (∞), and analogously for the second.

Proof. We start by K (p). By Lemma 2.6 the function Qsdqc f p is symmetric div-
quasiconvex. From Qsdqc f p � f p it follows that Qsdqc f p has p-growth and that
K ⊆ K (p). If ξ ∈ R

n×n
sym \ K (p), then Qsdqc f p(ξ) > 0 = maxQsdqc f p(K (p)).

Therefore, K (p) is p-symmetric div-quasiconvex.
To show minimality, we consider a p-symmetric div-quasiconvex compact set

K̃ with K ⊆ K̃ and show that K (p) ⊆ K̃ . To this end, we fix a ξ ∈ K (p) and
a symmetric div-quasiconvex function g with p growth and show that g(ξ) �
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max g(K ) � max g(K̃ ). If this holds for any such function g, then necessarily
ξ ∈ K̃ , which implies that K (p) ⊆ K̃ and concludes the proof.

It remains to show that g(ξ) � max g(K ). Let ε > 0. Since g is continuous and
f p > 0 outside K , there is δ > 0 such that g(σ ) � max g(K ) + ε for all σ with
f p(σ ) � δ. Using the fact that g has p-growth, we then obtain g � max g(K ) +
ε +Cε f p pointwise. By monotonicity of the symmetric div-quasiconvex envelope,
this gives g = Qsdqcg � max g(K ) + ε + CεQsdqc f p pointwise and, therefore,
g(ξ) � max g(K ) + ε. Since ε is arbitrary, this concludes the proof.

We now treat the p = ∞ case. The fact that K ⊆ K (∞) is obvious. To show
that K (∞) is symmetric div-quasiconvex, we pick ξ �∈ K (∞). By the definition of
K (∞), there is a symmetric div-quasiconvex function g with g(ξ) > max g(K ). At
the same time, for any σ ∈ K (∞) it follows that g(σ ) � max g(K ), which implies
max g(K (∞)) = max g(K ). We conclude that g(ξ) > max g(K (∞)), which shows
that K (∞) is symmetric div-quasiconvex.

To show minimality, we assume that K̃ is symmetric div-quasiconvex and K ⊆
K̃ . We wish to show that K (∞) ⊆ K̃ . To this end, we fix a ξ ∈ R

n×n
sym \ K̃ and choose

a symmetric div-quasiconvex function g with g(ξ) > max g(K̃ ). From K ⊆ K̃ ,
we obtain max g(K̃ ) � max g(K ). Therefore, ξ �∈ K (∞). This implies K (∞) ⊆ K̃
and concludes the proof. ��

We proceed to show that K (p) does not depend on p, as long as p �= ∞. One
inclusion can easily be obtained from the definition. The other will be discussed in
Section 3.3 below.

Theorem 3.6. Let K ⊆ R
n×n
sym be compact, 1 < p < q < ∞. Then, K (p) = K (q).

Proof. Follows from Lemmas 3.8 and 3.15 below. ��
Definition 3.7. Let K ⊆ R

n×n
sym be compact. For every p ∈ (1,∞), we set K sdqc =

K (p). This is admissible by Theorem 3.6.

Lemma 3.8. Let K ⊆ R
n×n
sym be compact. Then, K (q) ⊆ K (p) for any p, q with

1 � p < q � ∞.

Proof. Assume first that q < ∞. We write f p(ξ) := dist p(ξ, K ) and, analogously,
fq . For all δ > 0, we have

f p � δ p + 1

δq−p
fq , (3.9)

and, therefore,

Qsdqc f p � δ p + δ p−qQsdqc fq . (3.10)

Let now ξ ∈ K (q), so that Qsdqc fq(ξ) = 0. The above inequality implies that
Qsdqc f p(ξ) � δ p for any δ > 0. We conclude that Qsdqc f p(ξ) = 0 and K (q) ⊆
K (p).

If, instead, q = ∞, it suffices to observe that the function Qsdqc f p is symmetric
div-quasiconvex (Lemma 2.6). Therefore, it is one of the candidates in the definition
of K (∞). Since Qsdqc f p = 0 on K , we obtain that, necessarily, Qsdqc f p = 0 on
K (∞). Hence, K (∞) ⊆ K (p). ��
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Remark 3.9. By analogy with the case of quasiconvexity, one might expect that
K (p) = K (∞) for every p ∈ [1,∞) and every compact set K . This property holds
in dimension n = 2, since div -quasiconvexity is equivalent to quasiconvexity
composed with a 90-degree rotation. We do not know if the statement is true in
higher dimensions.

Lemma 3.10. Let K ⊆ R
n×n
sym be compact, A ∈ R

n×n invertible, B ∈ R
n×n
sym . Then,

(AK AT + B)sdqc = AK sdqcAT + B (3.11)

and

(AK AT + B)(∞) = AK (∞)AT + B. (3.12)

Proof. We shall prove below that

(AK AT + B)sdqc ⊆ AK sdqcAT + B. (3.13)

In order to derive the other inclusion, we then consider the set K̃ := AK AT + B,
so that K = A−1(K̃ − B)A−T . Application of (3.13) to K̃ gives

K sdqc = (A−1 K̃ A−T − A−1BA−T )sdqc ⊆ A−1 K̃ sdqcA−T − A−1BA−T .

(3.14)

Multiplying on the left by A and on the right by AT yields

AK sdqcAT ⊆ K̃ sdqc − B, (3.15)

which, recalling the definition of K̃ , is the desired second inclusion.
It remains to prove (3.13). We consider the set H := AK sdqcAT + B. It is obvi-

ous that AK AT + B ⊆ H . If we can prove that H is p-symmetric div-quasiconvex,
then Lemma 3.5 implies (AK AT + B)sdqc ⊆ H and concludes the proof.

In order to show that H is p-symmetric div-quasiconvex, we fix a symmetric
matrix σ̂ �∈ H and show that there is a symmetric div-quasiconvex function f with
p-growth such that f (σ̂ ) > max f (H). Theorem 3.6 shows that p ∈ (1,∞) can
be chosen arbitrarily. In the case of K (∞), the requirement of p-growth does not
apply.

We define σ := A−1(σ̂ − B)A−T , so that σ̂ = Aσ AT + B. The definitions
of H and σ̂ show that σ �∈ K sdqc. Since K sdqc is p-symmetric div-quasiconvex,
there is a symmetric div-quasiconvex function g with p-growth such that g(σ ) >

max g(K sdqc). We define f (ξ) := g(A−1(ξ −B)A−T ), so that f (σ̂ ) > max f (H).
Growth and continuity are automatically inherited from g.

To conclude the proof it remains to show that f is symmetric div-quasiconvex.
To this end, pick some ϕ ∈ C∞

per((0, 1)n;Rn×n
sym ) with div ϕ = 0 and let ξ :=´

(0,1)n
ϕ dx .

For some F ∈ R
n×n chosen below, we define ψ(x) := A−1(ϕ(Fx) − B)A−T

and compute

ψi j (x) =
∑

α,β

A−1
iα ϕαβ(Fx)A−1

jβ − A−1
iα Bαβ A

−1
jβ (3.16)
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and

∂kψi j (x) =
∑

α,β,γ

A−1
iα ∂γ ϕαβ(Fx)A−1

jβ Fγ k . (3.17)

Therefore,

(div ψ)i (x) =
∑

α,β,γ, j

A−1
iα ∂γ ϕαβ(Fx)A−1

jβ Fγ j . (3.18)

We choose F := A, so that
∑

j A
−1
jβ Fγ j = Idβγ and

(div ψ)i (x) =
∑

α,β

A−1
iα ∂βϕαβ(Fx) = 0. (3.19)

Recalling the definitions of f and ψ , we computeˆ
(0,1)n

f (ϕ(x))dx =
ˆ

(0,1)n
g(A−1(ϕ(x) − B)A−T )dx

=
ˆ

(0,1)n
g(ψ(A−1x))dx = det A

ˆ
A−1(0,1)n

g(ψ(y))dy.
(3.20)

The function ψ is A−1(0, 1)n-periodic and has average A−1(ξ − B)A−T . The
maps u j (x) := ψ( j x) are divergence-free and converge weakly in L∞(Rn;Rn×n

sym )

to their average, which is A−1(ξ − B)A−T . The functions x �→ g(u j (x)) =
g(ψ( j x)) are equally periodic and converge weakly to their average, which is the
last expression in the previous equation. Since g is symmetric div-quasiconvex,
recalling the lower semicontinuity (Lemma 2.5) we conclude

g(A−1(ξ − B)A−T ) � det A
ˆ
A−1(0,1)n

g(ψ(y))dy, (3.21)

and recalling the definition of g and the previous computation this gives

f (ξ) �
ˆ

(0,1)n
f (ϕ(x))dx . (3.22)

Therefore, f is symmetric div-quasiconvex. This concludes the proof. ��
Lemma 3.11. Let K ⊆ R

n×n
sym be compact. If A, B ∈ K sdqc and rank(A − B) < n

then λA+ (1 − λ)B ∈ K sdqc for all λ ∈ [0, 1]. The corresponding assertion holds
for K (∞).

Proof. The proof follows immediately from the definition and Lemma 2.4. Indeed,
the assumption gives Qsdqc f p(A) = Qsdqc f p(B) = 0. Since Qsdqc f p is symmetric
div-quasiconvex, it is convex in the direction of B − A, and Qsdqc f p(λA + (1 −
λ)B) = 0.

In the case of K (∞), we consider any symmetric div-quasiconvex function
f ∈ C0(Rn×n

sym ; [0,∞)), and deduce as above f (λA+ (1 − λ)B) � λ f (A) + (1 −
λ) f (B) � max f (K (∞)). By the definition of K (∞), we obtain max f (K (∞)) =
max f (K ) and, therefore, f (λA + (1 − λ)B) � max f (K ). ��
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In closing this section, we present an explicit example in which K consists of
two matrices.

Lemma 3.12. Let K := {A, B} ⊆ R
n×n
sym . If rank(A − B) = n, then K sdqc =

K (∞) = K. Otherwise, K sdqc = K (∞) = [A, B], where [A, B] is the segment
with endpoints A and B.

Proof. The function f (ξ) := dist(ξ, [A, B]) is convex, hence symmetric div-
quasiconvex, therefore K sdqc ⊆ [A, B].

If rank(B − A) < n, Lemma 3.11 shows that [A, B] ⊆ K (∞) ⊆ K sdqc and
concludes the proof.

Assume now that rank(B − A) = n. By Lemma 3.10, it suffices to consider
the case A = Id, B = − Id and we need only show that no matrix of the form t Id,
t ∈ (−1, 1), belongs to K sdqc. Let f (ξ) := ((n−1)|ξ |2−(Tr ξ)2+n)+. Lemma 2.7
implies that f is symmetric div-quasiconvex, and we verify that f (Id) = f (− Id) =
0. However, f (t Id) = n(1 − t2) > 0 for all t ∈ (−1, 1), hence t Id �∈ K sdqc. ��

3.3. Truncation of Symmetric Divergence-Free Fields

In the remainder of this Section, we prove that K (p) does not depend on p,
for p ∈ (1,∞). This proof requires truncation and approximation of vector fields
that satisfy differential constraints, which is made much easier by working with the
corresponding potentials. Following [2], we introduce a stress potential �, which
is related to the field σ by σ = div div �, in a sense we now make precise. Let Rn4

∗
be the set of ζ ∈ R

n×n×n×n such that

ζi jhk = ζ j ikh = −ζih jk for all i, j, k, h ∈ {1, 2, . . . , n}. (3.23)

For � ∈ L1
loc(R

n;Rn4

∗ ) we define the distribution

(div div �)i j =
∑

h,k

∂h∂k�i jhk . (3.24)

We observe that, by (3.23), div (div div �) = 0 and div div � = (div div �)T .
Therefore, every potential generates a divergence-free symmetric matrix field.

In order to construct potentials, we start from a fixed matrix M ∈ R
n×n
sym and

define �M : Rn → R
n4

∗ as

�M (x)i jhk = 1

n(n − 1)

(
Mi j xhxk + Mhkxi x j − Mihx j xk − Mkj xhxi

)
. (3.25)

A straightforward computation shows that div div �M = M , with |�M |(x) �
2|x |2|M |, |D�M |(x) � 4|x | |M |, |D2�M |(x) � 4|M | for all x ∈ R

n , n � 2.
Working in Fourier space, this procedure can be generalized to any divergence-free
symmetric matrix field.

Lemma 3.13. (i) Let w ∈ C∞
per((0, 1)n;Rn×n

sym ) with div w = 0 and
´
(0,1)n

w dx =
0. Then, there is � ∈ C∞

per((0, 1)n;Rn4

∗ ) such that div div � = w. The map
w �→ � is linear.
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(ii) Let w ∈ L p((0, 1)n;Rn×n
sym ) for some p ∈ (1,∞), div w = 0,

´
(0,1)n

w dx =
0. Then, there is � ∈ W 2,p

per ((0, 1)n;Rn4

∗ ), with ‖D2�‖p � c‖w‖p and
div div � = w. The map w �→ � is linear and extends the map in (i).

(iii) Let w = wp + wq , with wp ∈ L p((0, 1)n;Rn×n
sym ), wq ∈ Lq((0, 1)n;Rn×n

sym )

for some p, q ∈ (1,∞), div w = 0,
´
T wp dx = ´

T wq dx = 0. Then,

there are �p ∈ W 2,p
per ((0, 1)n;Rn4

∗ ), with ‖D2�p‖p � c‖wp‖p, and �q ∈
W 2,q

per ((0, 1)n;Rn4

∗ ), with‖D2�q‖q � c‖wq‖q , such thatdiv div (�p+�q) =
w.

We stress that (iii) does not assert div div �p = wp.

Proof. (i): Let ŵ : 2πZn → R
n×n
sym be the Fourier coefficients of w, so that

w(x) =
∑

λ∈2πZn

ŵ(λ)eiλ·x . (3.26)

The assumptions on w imply ŵ(0) = 0, ŵi j = ŵ j i and
∑

j ŵi jλ j = 0. We define,

in analogy to (3.25), �̂(0) = 0 and, for λ ∈ 2πZn \ {0},

�̂(λ)i jhk = 1

|λ|4
(
ŵi jλhλk + ŵhkλiλ j − ŵihλ jλk − ŵ jkλiλh

)
. (3.27)

We easily verify that �̂(λ) ∈ R
n4

∗ and
∑

hk λhλk�̂i jhk(λ) = ŵi j (λ) for all λ. Since
the decay of the coefficients �̂ is faster than the decay of the coefficients ŵ, the
Fourier series

�(x) =
∑

λ∈2πZn

�̂(λ)eiλ·x (3.28)

defines a smooth periodic function � ∈ C∞
per(T ;Rn4

∗ ) such that div div � = w.

(ii): Let T : C∞
per(T ;Rn×n

sym ) → C∞
per(T ;Rn4

∗ ), w �→ Tw := �w, be the lin-

ear operator defined above. We consider the operator D2T : C∞
per(T ;Rn×n

sym ) →
C∞

per(T ;Rn6
), defined by w �→ D2Tw := D2�w. Its Fourier symbol is smooth on

Sn−1 and homogeneous of degree zero. By [5, Proposition 2.13] (which is based
on [18, Ex. (iii), page 94] and [20, Cor. 3.16, p. 263]) the operator D2T can be
extended to a continuous operator from L p to L p for any p ∈ (1,∞). By Poincaré,
and using the fact that Tw and DTw have average zero, the estimate in W 2,p

follows.
(iii): We define �p := Twp, �q := Twq . The estimates on the norm follow

as for (ii). By linearity of the operator T , the differential condition holds as well.
We remark that the L p extension and the Lq extension of the operator defined on
smooth functions coincide on L p ∩ Lq . Therefore, we can use the symbol T for
the operator defined on L p ∪ Lq . ��

A crucial element in subsequent steps is the following truncation result, which
is a minor variant of those given in Section 6.6.2 of [3] and Prop. A.1 of [4] and is
based on Zhang’s Lemma [26].
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Lemma 3.14. Let u ∈ W 2,p
per ((0, 1)n; V ), M > 0, V a finite-dimensional vector

space. Then, there is v ∈ W 2,∞
per ((0, 1)n; V ) such that

(i) ‖D2v‖2,∞ � cM;

(ii) |{v �= u}| � c

M p

ˆ
|u|+|Du|+|D2u|>M

|u|p + |Du|p + |D2u|pdx.

The constant depends only on n and V .

The above estimates immediately imply

‖D2u − D2v‖p
p � c

ˆ
|u|+|Du|+|D2u|>M

|u|p + |Du|p + |D2u|pdx . (3.29)

Proof. After choosing a basis and working componentwise, we can assumeV = R.
We define h := (u, Du, D2u) and

EM := {x ∈ (0, 1)n : ∃r ∈ (0,
√
n) :

 
Br (x)

|h(y)|dy � 2M}. (3.30)

Here and subsequently,
ffl
�

f dx := |�|−1
´
�

f dx . If EM is a null set, then it
suffices to take v = u and the proof is concluded. Otherwise, using the Vitali or
the Besicovitch covering theorem it follows that the volume of EM obeys (ii). We
can further enlarge EM by a null set and assume that all points of (0, 1)n \ EM are
Lebesgue points of h.

For x ∈ (0, 1)n \ EM and r ∈ (0,
√
n), we define

ηr (x) :=
 
B(x,r)

|D2u(y) − D2u(x)|dy . (3.31)

From the definition of EM we obtain 0 � ηr � 4M for all r and x and ηr → 0
pointwise on (0, 1)n \ EM . Therefore, there is a set ẼM with |ẼM | � |EM | such
that ηr → 0 uniformly in (0, 1)n \ EM \ ẼM . We define SM := (0, 1)n \ EM \ ẼM .

We have shown that there is ω : (0,∞) → (0, 4M] nondecreasing with ωr → 0
such that

 
B(x,r)

|D2u(y) − D2u(x)|dy � ωr for all x ∈ SM , r ∈ (0,
√
n) . (3.32)

Fix now x ∈ SM . By Poincaré’s inequality, for any r ∈ (0,
√
n) there is Ar =

Ar (x) ∈ R
n such that

 
B(x,r)

|Du(y) − Ar − D2u(x)(y − x)|dy � crωr for all r ∈ (0,
√
n).

(3.33)

With x being a Lebesgue point of Du, we have limr→0 Ar = Du(x). Comparing the
above equation on the balls B(x, r) and B(x, r/2) we obtain |Ar − Ar/2| � crωr ,



Symmetric Div-Quasiconvexity 859

which (summing the geometric series A2−kr−A2k+1r ) implies |Ar−Du(x)| � crωr

and 
B(x,r)

|Du(y) − Du(x) − D2u(x)(y − x)|dy � crωr for all r ∈ (0,
√
n).

(3.34)

A second application of Poincaré’s inequality yields 
B(x,r)

|u(y) − br − Du(x)(y − x)

−1

2
D2u(x)(y − x)(y − x)|dy � cr2ωr for all r ∈ (0,

√
n) (3.35)

for some br = br (x) ∈ R, and the same argument as above leads to 
B(x,r)

|u(y) − Px (y)|dy � cr2ωr for all r ∈ (0,
√
n) , (3.36)

where Px is the second-order Taylor polynomial of u centered at x .
For x, x ′ ∈ SM and r = |x − x ′|, we have 

B(x,r)∩B(x ′,r)
|Px − Px ′ |dy � cr2ωr . (3.37)

Since the space of polynomials of degree two is finite dimensional, this is an estimate
on the difference of the coefficients and also a uniform estimate on the difference
of the two polynomials. The conclusion then follows from Whitney’s extension
theorem. We remark that the standard construction in Whitney’s extension theorem,
if given periodic inputs, produces periodic outputs, and that, if EM is not a null set,
this procedure actually produces a C2 function. ��

We are finally in a position to prove the other inequality in Theorem 3.6. Specif-
ically, we show the following:

Lemma 3.15. Let K ⊆ R
n×n
sym be compact. Then, K (p) ⊆ K (q) for any p, q with

1 < p � q < ∞.

Proof. As usual, we define f p(σ ) := dist p(σ, K ) and, analogously, fq . For brevity,
we write T = (0, 1)n . Pick ξ ∈ K (p). SinceQsdqc f p(ξ) = 0, by the definition (2.2)
there is a sequence of functions wk ∈ C∞

per(T ;Rn×n
sym ) with div wk = 0,

´
T wk dx =

ξ and
´
T f p(wk(x), K ) dx → 0. We choose M > 0 such that K ⊆ BM−1 and

|ξ | � M − 1 and define

wM
k := wkχ|wk |<M and wL

k := wk − wM
k = wkχ|wk |�M , (3.38)

where χ|wk |<M (x) = 1 if |wk |(x) < M and 0 otherwise. Then, ‖wM
k ‖L2q �

‖wM
k ‖L∞ � M . Since |σ | � M implies dist(σ, K ) � 1, we obtain

|wL
k | = |wk |χ|wk |�M � dist(wk, K ) + (M − 1)χ|wk |�M ,

� M dist(wk, K )
(3.39)
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and, therefore, ‖wL
k ‖L p → 0. Let �M

k ∈ W 2,2q
per (T ;Rn4

∗ ) and �L
k ∈ W 2,p

per (T ;Rn4

∗ )

be corresponding potentials obtained from wM
k − ´

T wM
k dx ∈ L2q and wL

k −´
T wL

k dx ∈ L p using Lemma 3.13(iii) with the exponents 2q and p. In particular,
this implies that wk = ξ + div div (�M

k + �L
k ), with

‖�M
k ‖2,2q � cM and ‖�L

k ‖2,p → 0 as k → ∞. (3.40)

Let �T
k ∈ C2(T ;Rn4

∗ ) be the truncation of �L
k obtained from Lemma 3.14,

‖�T
k ‖2,∞ � cM . The above estimates show that ‖�T

k ‖2,p → 0 and, there-
fore, ‖�T

k ‖2,2q → 0. We define w∗
k := ξ + div div (�M

k + �T
k ) ∈ L2q . Then,

wk − w∗
k = div div (�L

k − �T
k ) → 0 in L p.

We now proceed to prove that
´
T fq(w∗

k )dx → 0 as k → ∞. For every N > M ,
we write

fq(w
∗
k ) � (2N )q−p f p(w

∗
k )χ|w∗

k |<N + (2|w∗
k |)qχ|w∗

k |�N (3.41)

and treat the two terms separately. The second can be estimated as

lim sup
k→∞

ˆ
|w∗

k |�N
|w∗

k |qdx � lim sup
k→∞

1

Nq

ˆ
T

|w∗
k |2qdx � cM2q

Nq
. (3.42)

It remains to estimate the first term. For fixed N , the function f p is uniformly
continuous on BN , so there is δN > 0 such that |σ | < N , |σ − η| < δN imply
f p(σ ) � f p(η) + 1/Nq . Therefore, for all σ, η ∈ R

n×n
sym , we have

f p(σ )χ|σ |<N � f p(η) + 1

Nq
+ (2N )p

|σ − η|p
δ
p
N

. (3.43)

Setting σ = w∗
k (x), η = wk(x), integrating, and recalling that wk − w∗

k → 0 in
L p yields

lim sup
k→∞

ˆ
|w∗

k |<N
f p(w

∗
k )dx � lim sup

k→∞

ˆ
T
f p(wk)dx + 1

Nq

+ (2N )p

δ
p
N

lim sup
k→∞

‖wk − w∗
k‖p

p = 1

Nq
.

(3.44)

From (3.41) to (3.44), we conclude that

lim sup
k→∞

ˆ
T
fq(w

∗
k )dx � 1

N p
+ cM2q

Nq
(3.45)

for all N > M and, therefore,
´

fq(w∗
k )dx → 0. Finally, by continuity and density

we can replace w∗
k by a sequence of smooth functions with the same properties (us-

ing mollification preserves the differential constraint, periodicity and the average),
and therefore Qsdqc fq(ξ) = 0. ��
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4. Explicit Relaxation for Yield Surfaces Depending on the First Two
Invariants

4.1. General Setting and Main Results

In this section, we focus on the case of rotationally symmetric sets of strains in
three dimensions. Lemma 3.10 implies that if K ⊆ R

3×3
sym is rotationally invariant,

in the sense that QT K Q = K for any Q ∈ SO(3), then also its symmetric div-
quasiconvex hull is rotationally invariant, in the sense that QT K sdqcQ = K sdqc for
any Q ∈ SO(3), and the same for K (∞). We consider here the situation where K is
described by only two invariants, one corresponding to the pressure (the isotropic
stress) and another to the deviatoric stress (a measure of the distance to diagonal
matrices). We leave the case of generic rotationally invariant elastic domains for
future work.

For σ ∈ R
3×3
sym , we define the two variables

p(σ ) := 1

3
Tr σ and q(σ ) := |σ − p Id |√

2
, (4.1)

and denote � : R3×3
sym → R × [0,∞) at the mapping � := (p, q), so that

�(σ) =
(

1

3
Tr σ,

|σ − p Id |√
2

)
. (4.2)

We remark that 2q2(σ ) = |σD|2 where σD := σ − p Id is the deviatoric part of σ .
For example, for any (p∗, q∗) ∈ R × [0,∞), the matrices

ξ0 :=
⎛

⎝
p∗ + q∗ 0 0

0 p∗ − q∗ 0
0 0 p∗

⎞

⎠ and ξ1 :=
⎛

⎝
p∗ q∗ 0
q∗ p∗ 0
0 0 p∗

⎞

⎠ (4.3)

obey �(ξ0) = �(ξ1) = (p∗, q∗).
Here, we consider sets K that can be characterized by the values of these two

invariants, in the sense that

K = {σ ∈ R
3×3
sym : (p(σ ), q(σ )) ∈ H} for some H ⊆ R × [0,∞). (4.4)

We seek a characterization of K sdqc in the (p, q) plane, that is, we aim at charac-
terizing the set

�(K sdqc)={(p∗, q∗) : ∃σ ∈ K sdqc with (p(σ ), q(σ )) = (p∗, q∗)}, (4.5)

and the same for K (∞). An explicit expression is given in Theorem 4.1 below.
In some cases, we shall additionally show that K sdqc is fully characterized by

the values of p and q, in the sense that σ ∈ K sdqc if and only if (p(σ ), q(σ )) ∈ H̃
for some H̃ ∈ R × [0,∞), see Theorem 4.2 below. This is however not always
true; see Lemma 4.12 for an example of where this representation fails.

Our results are restricted to the case in which the relevant set H̃ is connected.
Connectedness of hulls is, in general, a very subtle issue related to the locality of
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the various convexity conditions. In the case of quasiconvexity, it relates to the
compactness of sequences taking values in sets without rank-one connections, a
question known as Tartar’s conjecture [22]. We recall that nonlocality of quasicon-
vexity was proven, in dimension 3 and above, by Kristensen [9] based on Šverák’s
counterexample to the equivalence of rank-one convexity and quasiconvexity [24].
However, in dimension two the situation is different and positive results have been
obtained by Šverák [25] and Faraco and Székelyhidi [6].

We begin by explaining the construction qualitatively and then present a proof
of its correctness. In order to get started, we fix p0 ∈ R and consider the rank-two
line

t �→ ξt :=
⎛

⎝
p0 + t 0 0

0 p0 − t 0
0 0 p0

⎞

⎠ . (4.6)

Clearly, p(ξt ) = p0 and q(ξt ) = |t |. In particular, if (p0, q0) ∈ H then both ξq0 and
ξ−q0 belong to K and, with Lemma 3.11, we obtain ξt ∈ K for all t ∈ [−q0, q0].
Based on this argument, we define the set

Ĥ := {(p, q) ∈ R × [0,∞) : (p, q + a) ∈ H for some a � 0}. (4.7)

The set �(K sdqc) mentioned in (4.5) will then be characterized in Theorem
4.1 as a set H rel that we now show how to construct explicitly. Specifically, H rel

is obtained from Ĥ by first taking the convex hull and then eliminating all points
that can be separated from H rel by means of a translation of Tartar’s function,
f (σ ) := 4q2(σ ) − 3p2(σ ), which is symmetric div -quasiconvex; see Lemma 4.3
below. We say that a point y∗ = (p∗, q∗) can be separated from Ĥ if there is y0 =
(p0, q0) ∈ R×[0,∞) such that the function fy0(p, q) := 4(q2 −q2

0 )−3(p− p0)
2

obeys max fy0(H) < fy0(y∗). Then, the set H rel is

H rel := {y∗ ∈ Ĥ conv : y∗ cannot be separated from Ĥ}. (4.8)

We refer to Fig. 2 for an illustration.
Our main result is the following:

Theorem 4.1. Let H ⊆ R × [0,∞) be a compact set, K := {σ ∈ R
3×3
sym :

(p(σ ), q(σ )) ∈ H}. If the set H rel defined in (4.7–4.8) is connected, then�(K sdqc) =
�(K (∞)) = H rel.

Proof. The result follows from Lemmas 4.4 and 4.10 below, using the inclusion
K (∞) ⊆ K sdqc that was proven in Lemma 3.8. ��

With an additional condition on the tangent to the boundary of H rel, we obtain
a full characterization of the hull. The necessity of the condition on the tangent is
proven in Lemma 4.12 below.

Theorem 4.2. Under the assumptions of Theorem 4.1, if additionally the tangent

to ∂H rel belongs to {e ∈ S1 : |e2| �
√

3
4 |e1|} for any y∗ ∈ ∂H rel \ Ĥ , then

K sdqc = K (∞) = {σ : �(σ) ∈ H rel}.
Proof. The result follows from Lemma 4.4 and 4.11 below, using the inclusion
K (∞) ⊆ K sdqc that is proven in Lemma 3.8. ��
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Hrel ĤĤ

HH

p

q

Fig. 2. Sketch of the construction of H rel in the case that H consists of two points. The set
Ĥ consists of two segments, which join the points in H with their projections on the {q = 0}
axis. The set H rel consists of the part of the rectangle between these two lines that cannot
be separated by the function fy0 for any y0. Graphically, this corresponds to delimiting the
set by the graph of fy0 . In this case, it suffices to consider a single function of the family
(dotted)

4.2. Outer Bound

The next two Lemmas contain the proof of the outer bound, i. e., the inclusion
�(K sdqc) ⊆ H rel.

Lemma 4.3. Let g : R
3×3
sym → R be defined by g(ξ) := fy0(p(ξ), q(ξ)), where

fy0(p, q) := 4(q2 − q2
0 ) − 3(p − p0)

2 and y0 = (p0, q0) ∈ R × [0,∞). Then, g
is symmetric div -quasiconvex.

Proof. By Lemma 2.7, we know that for the function fT : R3×3
sym → R,

fT(ξ) := 2|ξ |2 − (Tr ξ)2 (4.9)

is symmetric div -quasiconvex. From

|ξ |2 = |ξ − p(ξ) Id |2 + |p(ξ) Id |2 = 2q(ξ)2 + 3p(ξ)2, (4.10)

we obtain

fT(ξ) = 4q(ξ)2 − 3p(ξ)2. (4.11)

Therefore, g(ξ) = fT(ξ − p0 Id) − 4q2
0 is symmetric div -quasiconvex. ��

Lemma 4.4. Under the assumptions of Theorem 4.1, �(K sdqc) ⊆ H rel.

Proof. We pick a σ ∈ K sdqc and define y := (p(σ ), q(σ )). We need to show that
y ∈ H rel.

If y �∈ Ĥ conv, then there is an affine function a : R2 → R of the form (p, q) �→
a(p, q) = bp + cq + d such that a(y) > 0 and a � 0 on Ĥ .

We first show that we can assume c � 0. Indeed, if this were not the case, we
could consider the new affine function a′(p, q) := bp + d, which obeys a′(y) �
a(y) > 0. Let now (p′, q ′) ∈ Ĥ . By the definition of Ĥ we have (p′, 0) ∈ Ĥ . By
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the definition of a′ and the properties of a we obtain a′(p′, q ′) = a(p′, 0) � 0.
Therefore, we can assume c � 0, or, equivalently, that a is nondecreasing in its
second argument.

The function g : R
3×3
sym → R, g(ξ) := a(p(ξ), q(ξ)) is the composition of

convex functions, with p linear, and a nondecreasing in the second argument.
Therefore, g is convex, as can be easily verified:

g(λξ1 + (1 − λ)ξ2) = a(p(λξ1 + (1 − λ)ξ2), q(λξ1 + (1 − λ)ξ2))

� a(λp(ξ1) + (1 − λ)p(ξ2), λq(ξ1) + (1 − λ)q(ξ2))

= λg(ξ1) + (1 − λ)g(ξ2).

In particular, g � 0 on K , g(σ ) > 0 and g is convex. Hence, σ does not belong to
the convex hull of K and neither does it belong to the symmetric div -quasiconvex
hull.

Assume now that y ∈ Ĥ conv \ H rel. Then, it is separated from Ĥ in the sense
of (4.8). Let y0 = (p0, q0) be as in the definition of separation. By Lemma 4.3 the
function ξ �→ fy0(p(ξ), q(ξ)) = 4(q(ξ) − q0)

2 − 3(p(ξ) − p0)
2 is symmetric

div -quasiconvex and this implies σ �∈ K sdqc. Therefore, �(K sdqc) ⊆ H rel. ��

4.3. Inner Bound

We now prove the inner bound. Specifically, we first show that for any y∗ ∈ H rel

there is a matrix σ ∈ K (∞) with �(σ) = y∗ (Lemma 4.10) and then that, if an
additional condition on the slope of the boundary of H rel is fulfilled, any matrix σ

with �(σ) = y∗ belongs to K (∞) (Lemma 4.11).
Our key result is a characterization of a family of rank-two curves in the (p, q)

plane. We say that t �→ γ (t) is a rank-two curve if it is a reparametrization of
s �→ �(A + s(B − A)) for some A, B ∈ R

3×3
sym with rank(A − B) � 2. The

curves we construct are at the same time level sets of symmetric div-quasiconvex
functions, either of the type used to separate points in the definition of H rel or
(piecewise) affine. This allows us (see proof of Lemma 4.10) to show below that
any point in Ĥ conv that cannot be separated from Ĥ can be constructed. This strategy
is illustrated in Fig. 3.

Lemma 4.5. Let K , H and Ĥ beas above. Then, anyσ∗ ∈ R
3×3
sym with (p(σ∗), q(σ∗))

∈ Ĥ belongs to K (∞).

Proof. Let σ∗ ∈ R
3×3
sym be such that p∗ := p(σ∗), q∗ := q(σ∗) obey (p∗, q∗ + a) ∈

H for some a > 0. We consider the rank-two line

t �→ ξt := σ∗ +
⎛

⎝
t 0 0
0 −t 0
0 0 0

⎞

⎠ . (4.12)

This obeys ξ0 = σ∗ and p(ξt ) = p∗ for all t . The map t �→ q(ξt ) is continuous,
equals q∗ at t = 0 and diverges for t �→ ±∞. Hence, there are t− < 0 < t+
such that q(ξt±) = q∗ + a. In particular, ξt± ∈ K and, therefore, (Lemma 3.11)
σ∗ = ξ0 ∈ K (∞). ��
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p

q

H

Fig. 3. Strategy for the proof of the inner bound. From every point y, we construct a one-
parameter family of rank-two lines that start in all possible directions (left panel) and which
are at the same time level sets of symmetric div-quasiconvex functions. Then, we distinguish
two cases: if there is a direction such that the rank-two line intersects the set H on both sides
of y, then y belongs to the hull. If there is a direction such that the rank-two line does not
intersect H on any side of y, then we can separate y from H . By continuity of the family of
curves and compactness of H , one of the two must occur

Lemma 4.6. Let y = (p∗, q∗) ∈ R × (0,∞). Then, there is a continuous function
	y : S1 × R → R × [0,∞) such that for any e ∈ S1 the map t �→ 	y(e, t) is
a rank-two curve parametrized by arc-length, with 	y(e, 0) = y, ∂t	y(e, 0) = e,
and 	y(e, t) = 	y(−e,−t). The curves 	y(e, ·) are either of the form (4.14) or of
the form (4.19).

Proof. For reasons that will become clear subsequently, we treat separately the
two sets

S1+ :=
{
e ∈ S1 : |e2| �

√
3

2
|e1|

}
and S1− :=

{
e ∈ S1 : |e2| �

√
3

2
|e1|

}
.

(4.13)

We observe that both are closed, that their union is S1 and their intersection consists
of the four points (± 2√

7
,±

√
3√
7
).

We start from S1+. For p0, a ∈ R, we consider the rank-two line

t �→ ξt :=
⎛

⎝
p0 + (1 + a)t 0 0

0 p0 + (1 − a)t 0
0 0 p0

⎞

⎠ (4.14)

(see Fig. 4, left panel). We compute

p(ξt ) = p0 + 2

3
t and q2(ξt ) =

(
1

3
+ a2

)
t2. (4.15)

Solving for t the first equation and inserting into the second, we obtain that the
graph of t �→ (p(ξt ), q(ξt )) is the set

q2 = 3

4
(1 + 3a2)(p − p0)

2, (4.16)
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which we can be rewritten (recalling that q � 0) as

q =
√

3

2

√
1 + 3a2|p − p0|. (4.17)

Therefore, any line of the form {q = α|p − p0|} with |α| �
√

3/2 is a rank-two
line of the type given in (4.14). In turn, this means that we can define

	y(e, t) := �(y + et) for e ∈ S1+, (4.18)

where �(p, q) := (p, |q|) denotes reflection onto the upper half-plane.
We now turn to S1−. Let (p0, q0) ∈ R× [0,∞) and consider the rank-two line

t �→ ξt :=
⎛

⎝
p0 + q0 + t 0 0

0 p0 − q0 + t 0
0 0 p0

⎞

⎠ . (4.19)

As above, a simple computation shows that

p(ξt ) = p0 + 2

3
t and q2(ξt ) = q2

0 + 1

3
t2. (4.20)

We now consider the equation (p(ξt∗), q(ξt∗)) = (p∗, q∗). For every t∗ ∈ [−√
3q∗,√

3q∗] there is a unique solution (p0, q0) ∈ R × [0,∞), namely,

p0 = p∗ − 2

3
t∗ and q0 =

√
q2∗ − 1

3
t2∗ . (4.21)

We compute

d

dt

(
p(ξt )
q(ξt )

)∣∣∣∣
t=t∗

=
(

2/3
t∗/3q∗

)
= 1

3q∗

(
2q∗
t∗

)
. (4.22)

Since we can choose t∗ freely in [−√
3q∗,

√
3q∗], we conclude that for every e ∈ S1−

there is a unique triplet (p0, q0, t∗) such that the curve t �→ (p(ξt ), q(ξt )) passes
through y = (p∗, q∗) at t = t∗ with the tangent parallel to e. Indeed, this solution
can be explicitly written as

t∗ = 2q∗
e2

e1
, q0 =

√
q2∗ − 1

3
t2∗ , p0 = p∗ − 2

3
t∗. (4.23)

It is clear that this solution and, hence, ξt , depends continuously on e. We finally
define 	y(e, t) for e ∈ S1− as the arc-length reparametrization of t �→ ξt∗+t or
t �→ ξt∗−t depending on the sign of e1 (see Fig. 4, right panel).

It remains to check that this definition agrees with the previous one for the four
points in S1− ∩ S1+. For these points, the formulas above give q0 = 0 and a = 0, so
that the two definitions of ξt also coincide (with the same p0). This concludes the
proof. ��
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Lemma 4.7. Let y∗ = (p∗, q∗) with q∗ > 0, and assume that there are e ∈ S1

and t− < 0 < t+ such that 	y∗(e, t±) ∈ Ĥ , where 	y∗ is the map constructed in

Lemma 4.6. Then, y∗ ∈ �(K (∞)). If, additionally, |e2| �
√

3
4 e1 then any matrix

σ∗ ∈ R
3×3
sym with �(σ∗) = y∗ belongs to K (∞).

Proof. In order to prove the first assertion we observe that, by Lemma 4.6, there
is a rank-two line t �→ ξt such that �(ξ0) = y∗ and 	y∗(e,R) is the graph of
t �→ �(ξt ). In particular, there is s− < 0 such that (p, q)(ξs−) = 	y∗(e, t−) ∈ Ĥ ,
which by Lemma 4.5 implies that ξs− ∈ K (∞). Analogously for s+. By Lemma
3.11, we obtain ξ0 ∈ K (∞) and, therefore, y∗ = �(ξ0) ∈ �(K (∞)).

We now turn to the second assertion. By Lemma 4.8 below, there is a rank-two
line t �→ ξt with the same properties and, additionally, with ξ0 = σ∗. The same
argument then implies σ∗ ∈ K (∞). ��
Lemma 4.8. Let σ∗ ∈ R

3×3
sym . Let e ∈ S1 be such that |e2| �

√
3

4 |e1|. Then, there is
a rank-two line t �→ ξt through ξ0 = σ∗ such that the curve t �→ (p(ξt ), q(ξt )) is
an hyperbola of the type (4.20) which is parallel to e at t = 0.

Proof. Any rank-two line through σ∗ has the form t �→ ξt := σ∗ + t B, for some
B ∈ R

3×3
sym with det B = 0. Let a, b be the eigenvalues of B, and let e, f be a pair

of orthonormal vectors such that B = ae ⊗ e + b f ⊗ f . We let p∗ := p(σ∗),
q∗ := q(σ∗) and compute

p(ξt ) = p∗ + a + b

3
t (4.24)

and

2q2(ξt ) =|ξt |2 − 3p(ξt )
2

=2q2∗ + t2(a2 + b2 − 1

3
(a + b)2)

+ 2t (ae · σ∗e + b f · σ∗ f ) − 2tp∗(a + b).

(4.25)

From (4.24), we obtain t = 3(p(ξt ) − p∗)/(a + b). Inserting in the previous
expression leads to

2q2(ξt ) =2q2∗ + 6(p(ξt ) − p∗)2 (a + b)2 − 3ab

(a + b)2

+ 6
p(ξt ) − p∗
a + b

(ae · σ∗e + b f · σ∗ f ) − 6p∗(p(ξt ) − p∗)
(4.26)

(the case a + b = 0 is not relevant, since in this case t �→ p(ξt ) is constant). The
expression

(a + b)2 − 3ab

(a + b)2 = 1

4
+ 3

4

(a − b)2

(a + b)2 (4.27)

can take any value in [1/4,∞) and the value 1/4 is taken if and only if a = b.
Therefore, the coefficient of the quadratic term (p(ξt ) − p∗)2 can be the required
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value of 3/2 [see (4.20)] if and only if a = b. We can scale to a = b = 1 and
obtain

2q2(ξt ) =2q2∗ + 3

2
(p(ξt ) − p∗)2

+ 3(p(ξt ) − p∗)(e · σ∗e + f · σ∗ f ) − 6p∗(p(ξt ) − p∗).
(4.28)

We are left with the task of choosing e and f . Let g := e ∧ f , so that (e, f, g) is
an orthonormal basis of R3. Then,

e · σ∗e + f · σ∗ f + g · σ∗g = Tr σ∗ = 3p∗, (4.29)

so that, after some rearrangement, the linear term takes the form

3(p(ξt ) − p∗)(p∗ − g · σ∗g). (4.30)

We conclude that the graph of t �→ (p(ξt ), q(ξt )) is the graph of the curve defined
by

2q2 = 2q2∗ + 3

2
(p − p∗)2 + 3(p − p∗)(p∗ − g · σ∗g) (4.31)

and its derivative at p∗ is given by

dq

dp

∣∣∣∣
p=p∗

= 3

4q∗
(p∗ − g · σ∗g). (4.32)

It remains to show that we can choose B such that this quantity equals e2/e1, which is
a number in [−√

3/4,
√

3/4]. To this end, we first show that the ordered eigenvalues
λ1 � λ2 � λ3 of the matrix σD := σ∗ − p∗ Id obey λ1 � −q∗/

√
3, λ3 � q∗/

√
3.

Indeed, assume the former was not the case. If λ2 � 0, then λ3 < 2q∗/
√

3 and
λ2

1 + λ2
2 + λ2

3 < (1/3 + 1/3 + 4/3)q2∗ = 2q2∗ , which is a contradiction. If, instead,
λ2 � 0, then λ2, λ3 � q∗/

√
3, with the same conclusion. The argument for λ3 is

similar.
Therefore, the set {g · σDg : g ∈ S2} contains the interval [−q∗/

√
3, q∗/

√
3],

and we can choose g (and hence e, f ) such that p∗ − g · σ∗g = −g · σDg =
4q∗e2/(3e1) ∈ [−q∗/

√
3, q∗/

√
3]. ��

Lemma 4.9. Let pmin := min{p : ∃q, (p, q) ∈ H}, pmax := max{p : ∃q, (p, q) ∈
H} and

A := [pmin, pmax], (4.33)

B := {p : p Id ∈ K (∞)}, (4.34)

C := {p : (p, 0) ∈ H rel}. (4.35)

Assume H rel is connected. Then, A = B = C.

We remark that the definition of A immediately implies Ĥ conv ⊆ A × [0,∞).
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Proof. By convexity, we easily obtain B ⊆ A and C ⊆ A. By the construction
of Ĥ , we have pmin ∈ C , pmax ∈ C . From the construction of H rel, we see that
(p, q) ∈ H rel implies that the segment joining (p, q) with (p, 0) also belongs to
H rel. This proves that H rel is connected if and only if C is connected and that C
is the orthogonal projection of H rel onto the q = 0 axis. In particular, we have
A = C .

It remains to show that A ⊆ B. By Lemma 4.5, we have that pmin ∈ B and
pmax ∈ B. We define

D+ :=
⋃ {[

p, p + 2√
3
q

]
: (p, q) ∈ H

}
(4.36)

and

D− :=
⋃{[

p − 2√
3
q, p

]
: (p, q) ∈ H

}
. (4.37)

We first show that D+∩D− ⊆ B. Indeed, let p∗ ∈ D+∩D− and let σ∗ := p∗ Id.
By assumption, there are (p−, q−), (p+, q+) ∈ H such that p− � p∗ � p+, q− �
γ (p∗− p−), q+ � γ (p+− p∗), where γ :=

√
3

2 . In particular, (p−, γ (p∗− p−)) ∈
Ĥ and (p+, γ (p+ − p∗)) ∈ Ĥ . We consider the rank-two line

t �→ ξt :=
⎛

⎝
p∗ + t 0 0

0 p∗ + t 0
0 0 p∗

⎞

⎠ (4.38)

and observe that there are t− � 0 � t+ such that p(ξt±) = p±, q(ξt±) = γ |p± −
p∗|. Lemma 4.5 implies ξt± ∈ K (∞) and, with Lemma 3.11, one then deduces
σ∗ = ξ0 ∈ K (∞).

We next show that A ⊆ D+ ∪ D− Indeed, if p∗ �∈ D+ ∪ D− then q(σ ) <√
3

2 |p(σ )− p∗| for any σ ∈ K . Consider the function f (p, q) := 4q2 −3(p− p∗)2.

Then, f (p, q) < 0 = f (p∗, 0) for all (p, q) ∈ Ĥ , therefore (p∗, 0) is separated
from Ĥ and does not belong to H rel. This implies that p∗ �∈ C = A.

Up until now we have shown that

D+ ∩ D− ⊆ B ⊆ A ⊆ D+ ∪ D−. (4.39)

Assume that there is p∗ ∈ A\B. Without loss of generality, assume p∗ ∈ D+. Let
p̄ := min{p ∈ B : p > p∗}. Since pmax ∈ B, the set is nonempty. Since B is
closed, p∗ < p̄. The sets D+ and D− are compact, cover the interval [p∗, p̄] and
are disjoint in [p∗, p̄). Therefore, [p∗, p̄] ⊆ D+.

Let p′ ∈ (p∗, p̄) ⊆ D+. If there was q ′ � 0 such that (p′, q ′) ∈ H , then
we would have (p′, 0) ∈ Ĥ and p′ ∈ B. Therefore, [p∗, p̄) × [0,∞) ∩ H = ∅.
For any p′ ∈ (p∗, p̄), there is a point y = (p−, q−) ∈ H with p− < p∗, q− �
γ (p′ − p∗). Consider a sequence of such points, p′

j → p̄. By compactness of H ,

the corresponding points y j = (p−
j , q−

j ) converge (after extracting a subsequence)

to some y0 = (p0, q0) ∈ H . Since p−
j < p∗ for all j and H is closed, we have

p0 < p∗.
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We finally consider the rank-two line

t �→ ξt :=
⎛

⎝
p̄ + t 0 0

0 p̄ + t 0
0 0 p̄

⎞

⎠ . (4.40)

Let t0 be such that p̄+ 2
3 t0 = p0. The condition p̄ ∈ B corresponds to ξ0 = p̄ Id ∈

K (∞), the definition of y0 shows that �(ξt0) ∈ Ĥ and, with Lemma 4.5, we obtain
ξt0 ∈ K (∞). Therefore, ξt ∈ K (∞) for all t ∈ [t0, 0].

Let now t1 ∈ (t0, 0) be such that p̄ + 2
3 t1 = p∗. After swapping coordinates,

we see that the two matrices

ξA := ξt1 =
⎛

⎝
p̄ + t1 0 0

0 p̄ + t1 0
0 0 p̄

⎞

⎠ , ξB :=
⎛

⎝
p̄ + t1 0 0

0 p̄ 0
0 0 p̄ + t1

⎞

⎠

belong to K (∞). Since rank(ξA−ξB) = 2, so do all matrices in the segment joining
them and, in particular,

ξC :=
⎛

⎝
p̄ + t1 0 0

0 p̄ + 2
3 t1 0

0 0 p̄ + 1
3 t1

⎞

⎠ .

Again, swapping coordinates, the same is true for

ξD :=
⎛

⎝
p̄ + 1

3 t1 0 0
0 p̄ + 2

3 t1 0
0 0 p̄ + t1

⎞

⎠ .

Since rank(ξD − ξC ) = 2 and p∗ Id = 1
2ξD + 1

2ξC , we obtain p∗ Id ∈ K (∞). This
implies p∗ ∈ B, a contradiction. Therefore, we conclude that A ⊆ B. ��
Lemma 4.10. Under the assumptions of Theorem 4.1, H rel ⊆ �(K (∞)).

Proof. We fix y∗ = (p∗, q∗) ∈ H rel. If q∗ = 0, then, in the notation of Lemma
4.9, we have p∗ ∈ C = B and therefore p∗ Id ∈ K (∞). If y∗ ∈ Ĥ , then the result
follows from Lemma 4.5.

It remains to consider the case y∗ ∈ H rel \ Ĥ and q∗ > 0. We consider the
set of directions such that the rank-two line constructed in Lemma 4.6 intersects
ĤA := Ĥ ∪ A × {0}, where A is the set constructed in Lemma 4.9 and define

D(y∗) := {e ∈ S1 : 	y∗(e, [0,∞)) ∩ ĤA �= ∅} (4.41)

(this is illustrated in Fig. 3). By continuity of 	y∗ and compactness of ĤA, it follows
that D(y∗) is a closed subset of S1.

We now distinguish two cases. If there is e ∈ D(y∗) ∩ −D(y∗), then there are
t− < 0 < t+ such that 	y∗(e, t±) ∈ ĤA and Lemma 4.7 implies that y∗ ∈ �(K (∞)).

If instead there is no such e, then D(y∗) and −D(y∗) are disjoint. Since they
are both closed, and S1 is connected, they cannot cover S1. In particular, there is
e ∈ S1 such that e,−e �∈ D(y∗).
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In the notation of Lemma 4.6, if e ∈ S1+ then the curve 	y∗(e,R) is the graph
of q = b|p− p0| for some b �

√
3/2, p0 ∈ R such that q∗ = b|p∗ − p0|. Assume,

for definiteness, that p0 > p∗. The remaining case is identical up to a few signs.
This curve does not intersect ĤA and, by the form of ĤA, this implies that

q < b|p − p0| for all (p, q) ∈ ĤA. In particular, p0 �∈ A. Since A is an interval
and p∗ ∈ A, we have that A ⊆ (−∞, p0) and H conv ⊆ (−∞, p0) × [0,∞).
Hence, q < b(p− p0) for all (p, q) ∈ Ĥ and, by convexity, q < b(p− p0) for all
(p, q) ∈ Ĥ conv, but this contradicts the assumption (p∗, q∗) ∈ H rel.

The case e ∈ S1− is similar. The curve 	y∗(e,R) is of the type { fy1(·) = 0}, for
some y1. Then, fy1(y∗) = 0 but fy1 < 0 on Ĥ , so that y∗ is separated from Ĥ conv,
contradicting the assumption that y∗ ∈ H rel. ��
Lemma 4.11. Under the assumptions of Theorem 4.1, if additionally the tangent

to ∂H rel belongs to {e ∈ S1 : |e2| �
√

3
4 |e1|} for any y∗ ∈ ∂H rel \ Ĥ , then any σ

with �(σ) ∈ H rel belongs to K (∞).

In particular, the assumption implies that ∂H rel is differentiable (as a graph) at any
point not belonging to Ĥ , but does not require differentiability on Ĥ .

Proof. The argument is similar to the proof of the previous Lemma. By construction
of H rel, there is a map ψ : A → [0,∞) such that

H rel = {(p, q) : p ∈ A, 0 � q � ψ(p)}. (4.42)

We first show that any σ∗ such that (p∗, q∗) := �(σ∗) ∈ ∂H rel belongs to K (∞).
We distinguish several cases. If q∗ = 0, then p∗ ∈ A and the claim follows from
the equality A = B in Lemma 4.9. If (p∗, q∗) ∈ Ĥ , then the claim follows from
Lemma 4.5. It remains the case that (p∗, q∗) ∈ Ĥ conv \ Ĥ and cannot be separated
from Ĥ .

At this point, we repeat the argument in Lemma 4.10. In particular, since y∗ ∈
H rel we know that there is e ∈ S1 such that e ∈ D(y∗) ∩ −D(y∗). This means
that there are t− < 0 < t+ such that 	y∗(e, t±) ∈ Ĥ and that 	y∗(e, t) ∈ H rel for
all t ∈ [t−, t+]. This implies that 	y∗(e, ·) is tangential to ∂H rel at t = 0 and, in
particular, that e is tangential to ∂H rel. We remark that e cannot be (0,±1), since
in that case we would have y∗ ∈ Ĥ , a case we have already dealt with.

Therefore, |e2| �
√

3
4 |e1|, so that by Lemma 4.8 we obtain that �(ξs±) ∈ Ĥ ,

which by Lemma 4.5 implies ξs± ∈ K (∞). Therefore, σ∗ = ξ0 ∈ K (∞).
This shows that for any p ∈ A and matrix σ with �(σ) = (p, ψ(p)) belongs

to K (∞). The argument of Lemma 4.5 then concludes the proof. ��
We finally show that H rel = �(K (∞)) does not imply K (∞) = �−1(H rel). We

refer to Fig. 5 for an illustration.

Lemma 4.12. Let H := {(0, 0), (1,
√

3/2)}, and define K as in (4.4). Then, H rel =
{(p, q) : 0 � p � 1, 0 � q �

√
3p/2}, the matrix σ∗ := diag(1, 1/4, 1/4) obeys

(p(σ∗), q(σ∗)) = (1/2,
√

3/4) ∈ H rel, but σ∗ �∈ K (∞) ⊆ K sdqc.
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Hrel

p

q

σ∗

H

H

1/2 1

3/2

3/4

Fig. 5. Sketch of the sets H and H rel in the proof of Lemma 4.12. The three points marked
correspond to σ∗ and to the points of H

Proof. The formula for H rel follows immediately from the definition in (4.7–4.8);
the fact that σ∗ ∈ H rel from the definition of p and q in (4.1). Lemma 3.8 shows
that K (∞) ⊆ K sdqc.

It remains to prove that σ �∈ K (∞). Since rank σ∗ = 3, Lemma 3.12 implies
{0, 2σ∗}(∞) = {0, 2σ∗}. Therefore, it suffices to show that σ∗ ∈ K (∞) would imply
σ∗ ∈ {0, 2σ∗}(∞).

We first define h : R3×3
sym → R, h(ξ) := 2p(ξ) − ξ11 and observe that h(0) =

h(σ∗) = h(2σ∗) = 0. We fix any ξ ∈ K \ {0}. Then, necessarily p(ξ) = 1 and
q(ξ) = √

3/2. Recalling that 2q2(ξ) = |ξ − p(ξ) Id |2 and ξ33 = 3p(ξ)−ξ11−ξ22,
we compute that

3

2
= 2q2(ξ) = |ξ − p(ξ) Id |2 = |ξ − Id |2

� (ξ11 − 1)2 + (ξ22 − 1)2 + (2 − ξ11 − ξ22)
2

� (ξ11 − 1)2 + 2

(
1

2
− ξ11

2

)2

= 3

2
(ξ11 − 1)2,

(4.43)

and we conclude that ξ11 � 2, so that h(ξ) � 0. Furthermore, if h(ξ) = 0 then
necessarily ξ11 = 2, so that equality holds throughout in (4.43). This, in turn,
implies that ξ = 2σ∗. We have therefore proven that h � 0 on K , with {h =
0} ∩ K = {0, 2σ∗}.

We now assume σ∗ ∈ K (∞), so that, for any g ∈ C0(R3×3
sym ; [0,∞)) which

is symmetric div-quasiconvex, g(σ∗) � max g(K ). In order to show that σ∗ ∈
{0, 2σ∗}(∞), we fix a function f ∈ C0(R3×3

sym ; [0,∞) which is symmetric div-
quasiconvex, and let α := max{ f (0), f (2σ∗)}. We need to show that f (σ∗) � α.

Fix ε > 0. By continuity there is δ > 0 such that f � α + ε on Bδ(2σ∗). Let
M := max f (K ) � α, m := min h(K \ {0} \ Bδ(2σ∗)) > 0. We define

g(ξ) := f (ξ) − (M − α)
h(ξ)

m
. (4.44)

Then, g(0) = f (0) � α, g � α+ε on K ∩ Bδ(2σ∗), g � M− (M−α) = α on the
rest of K , and g is continuous and symmetric div-quasiconvex. The function g+ =
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max{g, 0} ∈ C0(R3×3
sym ; [0,∞)) obeys max g+(K ) � α + ε. Since σ∗ ∈ K (∞), we

have f (σ∗) = g+(σ∗) � α + ε. However, ε was arbitrary, hence we conclude that
f (σ∗) � max f ({0, 2σ∗}). Therefore, σ∗ ∈ {0, 2σ∗}sdqc, as claimed, and the proof
is concluded. ��

4.4. Examples

We close by presenting two specific examples for which the symmetric div-
quasiconvex hull can be explicitly characterized.

Lemma 4.13. Let p1, q1 > 0, with 0 < p1 < 2q1/
√

3, and let H := {(−p1, q1),

(p1, q1)}. Then,

H rel =
{

(p, q) : −p1 � p � p1, 0 � q �
√
q2

1 + 3

4
(p2 − p2

1)

}
(4.45)

and �(K sdqc) = H rel. If, additionally, p1 � q1/
√

3, then

K sdqc = {σ : �(σ) ∈ H rel}
=

{
σ : p(σ ) ∈ [−p1, p1], q2(σ ) − 3

4
p2(σ ) � q2

1 − 3

4
p2

1

}
.

(4.46)

We refer to Fig. 2 for an illustration.

Proof. We observe that Ĥ = {−p1, p1}×[0, q1] and Ĥ conv = [−p1, p1]×[0, q1].
Let W := {(p, q) : −p1 � p � p1, q2 − 3

4 p
2 � q2

1 − 3
4 p

2
1, q � 0} be the set in

(4.45). We first show that H rel ⊆ W . We define q0 :=
√
q2

1 − 3
4 p

2
1 and consider the

corresponding function f(0,q0)(p, q) = 4(q2−q2
0 )−3p2 = 4(q2−q2

1 )−3(p2−p2
1).

Then, f(0,q0) � 0 on Ĥ , and f(0,q0) > 0 on Ĥ conv \ W . Recalling (4.8), we obtain
H rel ⊆ W .

To obtain the remaining inclusion, it suffices to show that we cannot separate
any point of W from Ĥ . We fix a point (p, q) ∈ W and consider a generic pair
y0 = (p0, q0) ∈ R × [0,∞). The function fy0 separates (p, q) from Ĥ if

max{4(q2
1 − q2

0 ) − 3(p1 ± p0)
2} < 4(q2 − q2

0 ) − 3(p − p0)
2, (4.47)

which, expanding all squares, is the same as

4q2
1 − 3p2

1 + 6|p1 p0| < 4q2 − 3p2 + 6pp0. (4.48)

From (p, q) ∈ W we obtain |p| � p1, which implies 6pp0 � 6|p1 p0|, and
4q2 − 3p2 � 4q2

1 − 3p2
1. Summing the two gives

4q2 − 3p2 + 6pp0 � 4q2
1 − 3p2

1 + 6|p1 p0|, (4.49)

which means that we cannot separate (p, q) from Ĥ . Therefore, W ⊆ H rel.
From the definition and the condition p1 < 2q1/

√
3, we see that H rel is con-

nected, so that the first assertion directly follows from Theorem 4.1.
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To prove the second assertion we need only control the slope of the boundary.
The vertical sides of H rel belong to Ĥ . The slope of the hyperbola is maximal at
the two extreme points, i. e., at (±p1, q1). Differentiating q2 − 3

4 p
2 = c, we obtain

q ′q = 3
4 p

′ p, which implies that |q ′|/|p′| = 3
4 p1/q1. If p1 � q1/

√
3, this implies

that the slope is not larger than
√

3
4 . The conclusion then follows from Lemma 4.2.

��
Next, we consider a second example in which H consists of a half-circle of

radius r centered in C := (pC , 0) and a single point D := (pD, qD):

H := {(pD, qD)} ∪ {(p, q) : (p − pC )2 + q2 � r2, q � 0}. (4.50)

There are several different cases, depending on the existence of one or two hyper-
bolas in the family considered above which contain the point D and are tangent
to the circle. The boundaries between the different phases are vertical lines (cor-
responding to the construction of Ĥ from H ) and lines with slope ±√

3/2 (cor-
responding to the maximal slope of the hyperbolas, which is also the boundary
between S1+ and S1−). The phase diagram is sketched in Fig. 6. The critical points

are X = (pC −
√

7√
3
r, 0), Y = (pC +

√
7√
3
r, 0) and Z = (pC ,

√
7√
4
r). For definiteness,

we focus on two representative regions.

Lemma 4.14. Let H be as in (4.50) with D in region I , defined as

pD < pC − r,

√
3

2
|pD − pX | < qD <

√
3

2
|pD − pY |. (4.51)

Then, there is a unique y0 = (p0, q0) ∈ R × [0,∞) such that the hyperbola
{q2 − q2

0 = 3
4 (p − p0)

2} contains D = (pD, qD) and is tangent to the circle with
radius r centered in C = (pC , 0) in a point T . Furthermore,

H rel = H ∪
{
(p, q) : pD � p � pT , q2 � q2

0 + 3

4
(p − p0)

2
}

.

If, instead, D is in region I I , defined by

qD − qZ �
√

3

2
|pD − pC |, (4.52)

then H rel = Ĥ conv.

Proof. The second case is straightforward. The boundary of Ĥ conv has slope at
least

√
3/2, hence there is no possibility to separate any point of it using the given

hyperbolas. A sketch is shown in Fig. 8.
The first case, corresponding to region I in Fig. 6, requires a more detailed

argument. We first have to show that there is a unique hyperbola of the typeq2−q2
0 =

3
4 (p − p0)

2 which contains D and is tangent to the half-circle. We refer to Fig. 7
for an illustration.
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Z

X YC p

q

II

I

Fig. 6. Different regions for the location of D with respect to the circle in the construction
of (4.50), see Lemma 4.14. The constructions in regions I and I I are shown in Figs. 7 and
8, respectively
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Fig. 7. Example with H consisting of a point and a half-circle, see Lemma 4.14, for D in
region I (see Fig. 6). The right panel shows some details of the construction, and in particular
the location of the two curves 	D((2/

√
7, ±√

3/
√

7),R) used in the proof

The condition that yD belongs to the hyperbola translates into

q2
0 = q2

D − 3

4
(pD − p0)

2. (4.53)

The condition of being tangential means that the system

q2 = q2
D − 3

4 (pD − p0)
2 + 3

4 (p − p0)
2

(p − pC )2 + q2 = r2 (4.54)

has a double solution. Note that these equations are both quadratic in p and linear in
q2, hence the system is overall of second order in these two variables. Substituting
q2 into the second equation leads to the condition that

(p − pC )2 + q2
D − 3

4
(pD − p0)

2 + 3

4
(p − p0)

2 = r2 (4.55)



Symmetric Div-Quasiconvexity 877

D

p

q

C
p

q

CD

F
ig
.8
.

Tw
o

ex
am

pl
es

w
ith

H
co

ns
is

tin
g

of
a

po
in

ta
nd

a
ha

lf
-c

ir
cl

e,
se

e
L

em
m

a
4.

14
,f

or
D

in
re

gi
on

II
(s

ee
Fi

g.
6)



878 S. Conti, S. Müller & M. Ortiz

has a double solution pT , which should satisfy pT ∈ [pC −r, pC +r ]. This solution
can be computed explicitly, but for proving the assertion existence suffices. To this
end, we consider the family of curves 	D(e,R) constructed in Lemma 4.6 for

|e2| �
√

3
2 e1. The assumption (4.51) implies that 	D((2/

√
7,−√

3/
√

7), [0,∞))

intersects BC (r), but 	D((2/
√

7,+√
3/

√
7), [0,∞)) does not (notice that both

these curves are piecewise affine). By continuity there is e∗ in the given interval
such that 	D(e∗,R) is tangent to BC (r). We denote by T the intersection of the
two, and define (q0, p0) so that 	D(e∗,R) is the set q2 − q2

0 = 3
4 (p − p0)

2 (see
Fig. 7).

To conclude the proof, it suffices to show that no point of the given set can
be separated by another hyperbola. To this end, it suffices to show that no other
hyperbola of the given family can have two points in common with the given one.
This follows from the fact that any solution to the system

{
q2 − q2

0 = 3
4 (p − p0)

2

q2 − q2
1 = 3

4 (p − p1)
2

(4.56)

obeys q2
0 − q2

1 = 3
4 (p2

1 − p2
0 − 2pp1 − 2pp0), which is a linear equation in p and,

therefore, has at most one solution. If p is unique, since q � 0, then obviously q is
also unique. This concludes the proof. ��
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