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Abstract

The Cauchy problem for a scalar conservation law admits a unique entropy
solution when the datum u0 is a bounded measurable function (Kružhkov). The
semi-group (St )t�0 is contracting in the L1-distance. For the multi-dimensional
Burgers equation, we show that (St )t�0 extends uniquely as a continuous semi-
group over L p(Rn) whenever 1 � p < ∞. We answer affirmatively a question
raised by M. Crandall, by showing that u(t) := Stu0 is not only an abstract
solution, but is actually an entropy solution to the Cauchy problem. When p �
q � ∞ and t > 0, we prove that St maps L p(Rn) into Lq(Rn). These results
are based upon new dispersive estimates. The ingredients are on the one hand
Compensated Integrability, and on the other hand a De Giorgi-type iteration.

Notations. When 1 � p � ∞, the natural norm in L p(Rn) is denoted ‖ · ‖p, and
the conjugate exponent of p is p′. The total space-time dimension is d = 1 + n
and the coordinates are x = (t, y). In the space of test functions, D+(R1+n) is
the cone of functions which take non-negative values. The partial derivative with
respect to the coordinate y j is ∂ j , while the time derivative is ∂t . The various
finite positive constants that depend only the dimension, but not upon the solutions
of our PDE, are denoted cd , cd,p, cd,p,q ; they usually differ from one inequality
to another. We denote with C0(0,+∞), the space of continuous functions over
(0,+∞), which tend to zero at infinity. Mind that C(R+) is the space of bounded
continuous functions over [0,+∞).
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1. Introduction

Let us consider a scalar conservation law in 1 + n dimensions:

∂t u +
n∑

i=1

∂i fi (u) = 0, t > 0, y ∈ R
n . (1)

We complement this equation with an initial datum

u(0, y) = u0(y), y ∈ R
n .

The flux f (s) = ( f1(s), . . . , fn(s)) is a smooth vector-valued function of s ∈ R.
We recall the terminology that an entropy–entropy flux pair is a couple (η, q)where
s �→ η(s) is a numerical function, s �→ q(s) a vector-valued function, such that
q ′(s) ≡ η′(s) f ′(s). Kružhkov’s entropies and their fluxes form a one-parameter
family:

ηa(s) = |s − a|, qa(s) = sgn(u − a) ( f (u) − f (a)).

Together with the affine functions, the ηa’s span the cone of convex functions.
We recall that an entropy solution is a measurable function u ∈ L1

loc([0,+∞)×
R
n) such that f (u) ∈ L1

loc([0,+∞) ×R
n), which satisfies the Cauchy problem in

the distributional sense that
∫ ∞

0
dt

∫

Rn
(u∂tφ+ f (u)·∇yφ) dy+

∫

Rn
u0(y)φ(0, y) dy = 0, ∀φ ∈ D(R1+n),

(2)
together with the entropy inequalities

∫ ∞

0
dt

∫

Rn
(ηa(u)∂tφ + qa(u) · ∇yφ) dy

+
∫

Rn
ηa(u0(y))φ(0, y) dy � 0, ∀φ ∈ D+(R1+n), ∀ a ∈ R. (3)

The theory of this Cauchy problem dates back to 1970, when S.Kružhkov [10]
proved that if u0 ∈ L∞(Rn), then there exists one and only one entropy solution
in the class

L∞(R+ × R
n) ∩ C(R+; L1

loc(R
n)).

The parametrized family of operators St : u0 �→ u(t, ·), which map L∞(Rn) into
itself, forma semi-group.Wewarn the reader that St : L∞ → L∞ is not continuous,
because of the onset of shock waves. Likewise, t �→ u(t) is not continuous from
R+ into L∞(Rn).

This semi-group nevertheless enjoys nice properties. On the one hand, a com-
parison principle says that if u0 � v0, then Stu0 � Stv0. For instance, the solution
u associated with the datum u0 is majorized by the solution ū associated with the
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datum (u0)+, the positive part of u0. On the other hand, if v0 − u0 is integrable
over Rn , then Stv0 − Stu0 is integrable too, and we have

∫

Rn
|Stv0 − Stu0|(y) dy �

∫

Rn
|v0 − u0|(y) dy (4)

∫

Rn
(Stv0 − Stu0)(y) dy =

∫

Rn
(v0 − u0)(y) dy. (5)

Finally, St maps L p ∩ L∞(Rn) into itself, and the function t �→ ‖Stu0‖p is non-
increasing.

Because of (4) and the density of L1 ∩ L∞(Rn) in L1(Rn), the family (St )t�0

extends in a unique way as a continuous semi-group of contractions over L1(Rn),
still denoted (St )t�0. When u0 ∈ L1(Rn) is unbounded, we are thus tempted to
declare that u(t, y) := (Stu0)(y) is the abstract solution of the Cauchy problem for
(1) with initial datum u0. At this stage, it is unclear whether (St )t�0 can be defined
as a semi-group over some L p-space for p ∈ (1,∞), because the contraction
property (4) occurs only in the L1-distance, but in no other L p-distance.

An alternate construction of (St )t�0 over L
1(Rn), based upon the Generation

Theorem for nonlinear semigroups, was done by M. Crandall [2], who pointed
out that it is unclear whether the abstract solution u is an entropy solution, because
the local integrability of the flux f (u) is not guaranted.1 The following problem is
therefore an important one:

Identify the widest class of integrable initial data for which the abstract
solution of (1) is actually an entropy solution.

Our most complete results are about a special case: the so-called multi-
dimensional Burgers equation

∂t u + ∂1
u2

2
+ · · · + ∂n

un+1

n + 1
= 0. (6)

This equation was already considered by G. Crippa et al. [3], and more recently by
L. Silvestre [18]. The particular flux in (6) is a prototype for genuinely nonlinear
conservation laws, those which satisfy the assumption

det( f ′′, . . . , f (n+1)) �= 0. (7)

The latter condition is a variant of the non-degeneracy condition at work in the
kinetic formulation of the equation (1) ; see [12] or [13].

Our first result deals with dispersive estimates.

Theorem 1.1. Let 1 � p � q � ∞ be two exponents. Define two parameters α, β

depending on p and q by

α(p, q) = h(q)

h(p)
, h(p) := 2 + dn

p
(8)

1 Except of course in the case where f is globally Lipschitz.
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and
β(p, q) = h(q)(δ(p) − δ(q)), δ(p) := n

2p + dn
. (9)

Then there exists a finite constant cd,p,q such that for every initial datum u0 ∈
L1 ∩ L∞(Rn), the entropy solution u(t) of the scalar conservation law (6) satisfies

‖u(t)‖q � cd,p,q t
−β(p,q)‖u0‖α(p,q)

p , ∀ t > 0. (10)

Remarks

• The consistency of estimates (10) with the Hölder inequality is guaranted by
the property that whenever θ ∈ (0, 1),

(
1

q
= 1 − θ

p
+ θ

r

)

⇒

⎧
⎨

⎩

α(p, q) = 1 − θ + θα(p, r),

β(p, q) = θβ(p, r).
(11)

• The consistency under composition (p, q) ∧ (q, r) �→ (p, r) is ensured by the
rules

α(p, r) = α(p, q)α(q, r) and β(p, r) = β(q, r) + β(p, q)α(q, r)
(12)

• In one space dimension, (10) gives back well-know results, such as Theorem
11.5.2 in [6].2

Theorem 1.1 has several important consequences. An obvious one is that the
extension of (St )t�0 as a semi-group over L1(Rn) satisfies the above estimates with
p = 1.

Corollary 1.1. If u0 ∈ L1(Rn) and t > 0, then Stu0 ∈ ⋂
1�q�∞ Lq(Rn) and we

have

‖Stu0‖q � cd,q t
−κ/q ′ ‖u0‖1−ν/q ′

1 , ∀q ∈ [1,∞],
where the exponents are given in terms of

κ = 2
d − 1

d2 − d + 2
and ν = d(d − 1)

d2 − d + 2
.

The next one is that the Cauchy problem is solvable for data taken in L p(Rn)

for arbitrary exponent p ∈ [1,∞]. In particular, it solves Crandall’s concern.
Theorem 1.2. Let p ∈ [1,∞) be given. For every t � 0, the operator St : L1 ∩
L∞(Rn) → L1 ∩ L∞(Rn) admits a unique continuous extension St : L p(Rn) →
L p(Rn).

The family (St )t�0 is a continuous semi-group over L p(Rn). If u0 ∈ L p(Rn),
the function u(t, y) defined by u(t) = Stu0 is actually an entropy solution of the
Cauchy problem for (6) with initial datum u0.

Finally, St (L p(Rn)) is contained in
⋂

p�q�∞ Lq(Rn) and the estimates (10)
are valid for every data u0 in L p(Rn).

2 Mind that this statement contains a typo, as the choice r = 1 − 1
p in Theorem 11.5.1

yields the exponent − 1
p+1 instead of − p

p+1 .
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The proof of Theorem 1.1 will be done in two steps. The first one consists in
establishing the estimate (10) when q = p∗ is given by the formula

p∗ = d
(
1 + p

n

)
.

To this end, we apply Compensated Integrability to a suitable symmetric tensor,
whose row-wise divergence is a bounded measure with controlled mass. This ar-
gument involves the theory recently developped by the first author in [14,15]. The
second step is an iteration inDe Giorgi’s style, based on the preliminary work [18]
by the second author; see also the original paper by E. De Giorgi [7] or the review
paper by A. Vasseur [21]. This technique allows us to establish an L∞-estimate,
which extends the dispersive estimate to q = +∞. Then using the Hölder inequal-
ity, we may interpolate between this result and the decay of t �→ ‖u(t)‖p, and treat
every exponent q > p.

We notice that the symmetric tensor mentionned above extends to a multi-
dimensional context the one already used when n = 1 by L. Tartar [20] to prove
the compactness of the semi-group, and by F. Golse [8] (see also [9]) to prove
some kind of regularity.

Previous dispersive estimates (n = 1). In one space dimension, (6) reduces to the
original Burgers equation. Its Kružhkov solution satisfies the Oleinik inequality
∂yu � 1

t , which does not involve the initial datum at all. Ph. Bénilan & M.
Crandall [1] proved

T V

(
u(t)2

2

)
� 2‖u0‖1

t
(13)

by exploiting the homogeneity of the flux f (s) = s2
2 . Inequality (13) implies an

estimate

‖u(t)‖∞ � 2

√
2‖u0‖1

t
, (14)

which is a particular case of Corollary 1.1.
C. Dafermos [5] proved a general form of (13) in situations where the flux f

may have one inflexion point and the datum u0 has bounded variation, by a clever
use of the generalized backward characteristics. His argument involves the order
structure of the real line. Backward characteristics are not unique in general. Given
a base point in the upper half-plane, one has to define and analyse the minimal and
the maximal ones. The description of backward characteristics seems to be much
more complicated in higher space dimensions, and Dafermos’ strategy has not
been applied successfully beyond the 1-D case.

Enhanced decay. Because of a scaling property which will be described in the next
section, the dispersion (10) is optimal, as long as we involve only the L p-norms,
and we exclude any extra information about the initial datum. It is however easy to
obtain a better decay as time t goes to infinity. Let us give one example, by taking
an initial datum u0 such that

0 � u0(y) � v0(y1), v0 ∈ L1(R).
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By the maximum principle, we have u(t, y) � v(t, y1), where v is the solution of
the 1-dimensional Burgers equation associated with the initial datum v0. We have,
therefore, that

‖u(t)‖∞ � 2

√
2‖v0‖1

t
,

where the decay rate t− 1
2 is independent of the space dimension. In particular this

decay is faster than that given by Corollary 1.1 when n � 3.
The way this faster decay is compatible with the optimality of (10) is well ex-

plained by a study of the growth of the support of the solution. In the most favorable
case where the datum u0 is bounded with compact support, the argument above
yields ‖u(t)‖∞ = O((1 + t)−1/2). It is easy to infer that the width of Supp(u(t))
in the y1-direction expands as O(

√
t ) (one might have used the comparison with

the solution v above). Likewise, the width in the y2-direction is an O(log t) and
that in the other yk-directions remains bounded because

∫ ∞

0
(1 + t)−

k
2 dt < ∞.

On the contrary, if u0 ∈ L1(Rn) has compact support but is not bounded by an
integrable fonction v0(y1) as above, Corollary 1.1 gives only ‖u(t)‖∞ = O(t−κ).
It turns out that nκ � 1 when n � 2, and therefore

∫

0
t−nκ dt = +∞.

This suggests that thewidth of the support in the yn-direction is immediately infinite;
the support of u(t) is unbounded for every t > 0. The solution has a tail in the last
direction, and this tail is responsible for a slow L∞-decay, at rate t−κ instead of

t− 1
2 .
This analysis suggests in particular that the fundamental solution Um , if it

exists, should have an unbounded support in the space variable when n � 2. The
terminology denotes an entropy solution of (6), say a non-negative one, with the
property that

Um(t)
t→0+−→ m δy=0

in the vague sense of bounded measures. In particular,
∫

Rn
Um(t, y) dy ≡ m.

This behaviour is in strong constrast with the one-dimensional situation, where

Um(t, y) = y

t
1(0,

√
2mt )

is compactly supported at every time.
The existence of a fundamental solution is left as an open problem. It should

play an important role in the time-asymptotic analysis of entropy solutions of finite
mass. This asymptotics has been known in one-space dimension since the seminal
works by P. Lax [11] and C. Dafermos [4].
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Preliminary works. The authors posted, separately, recent preprints on this subject
in ArXiv database, see [16,19]. The present paper supersedes both of them.

Outline of the article. Since Compensated Integrability plays a important role in
this work and is a rather new tool, we end this introductory section with a short
presentation of the theory. In Section 2, we prove a special case of the dispersive
estimate (10), that for the pairs (p, p∗). We treat the case (p,∞) in Section 3. This
allows us to extend the equation (10) to every pair (p, q)with p � q. The construc-
tion of the semi-group over every L p-space is done in Section 4.We show in Section
5 how these ideas adapt to a scalar equation when the fluxes f j are monomials.
The last section describes how the first argument, which involves Compensated
Integrability, can be adapted to conservation laws with arbitrary flux.

1.1. Compensated Integrability for Symmetric Positive Tensors

We keep the notations d = 1 + n, n � 1 above. The cone of positive semi-
definite symmetric real matrices is Sym+

d . If � ⊂ R
d and x ∈ � → A(x) ∈ Symd

is a symmetric tensor, we denote Div A its row-wise divergence, understood in the
distributional sense that

(Div A)i =
n∑

j=0

∂ai j
∂x j

= ∂ai0
∂t

+
n∑

j=1

∂ai j
∂y j

.

If μ is a bounded measure over either � or ∂�, its total mass is denoted ‖μ‖M; in
practice, μ is often vector-valued and this norm is the total mass of |μ|

The following result is taken from Theorems 2.2 and 2.3 of [15]. We denote
Qτ = (0, τ ) × R

n a slab in time-space coordinates:

Theorem 1.3. Let A : Qτ → Sym+
d be integrable. Let us assume that Div A is

component-wise a bounded measure over Qτ , and that the normal traces A0• :=
Aet at initial and final times (t = 0 and t = τ ) are bounded measures over Rn.

Then the function (t, y) �→ (det A)
1
n is integrable over Qτ , and there holds and

inequality
∫ τ

0
dt

∫

Rn
(det A)

1
n dy � cd

(‖A0•(0, ·)‖M(Rn)

+‖A0•(τ, ·)‖M(Rn) + ‖DivA‖M(Qτ )

)1+ 1
n , (15)

where cd is a universal constant. In particular, cd does not depend on τ .

For the sake of completeness,wepoint out that Theorem1.3 is none ofTheorems
2.2 and2.3 of [15].On the one hand,Theorem2.2 is for a boundeddomain�, instead
of a slab. On the other hand, Theorem 2.3 deals with a divergence-free tensor, thus
ignores the contribution of Div A in the right-hand side of (15). However, the proof
of the theorem above goes exactly the same way as that of Theorem 2.3: multiply
A by a cut-off function φR(y) = φ(

y
R ) with 0 � φ � 1 and φ ≡ 1 in the unit ball,

apply Theorem 2.2 in (0, τ ) × B where the ball B contains the support of φR , then
pass to the limit as R → +∞ with the help of Fatou’s Lemma.
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Notice that the assumption that the normal trace be a (vector-valued) bounded
measure amounts to saying that the row-wise divergence of the extension of A by
0d away from Qτ is still a (vector-valued) boundedmeasure. Therefore the theorem
can be viewed as a statement about such tensors over the whole space Rd , whose
support is contained in Qτ .

Compensated Integrability is a far-reaching generalization of Gagliardo’s In-
equality: Given d functions f j (x̂ j ), where the j-th one does not depend upon the
j-th coordinate, the product

f (x) =
n∏

j=0

f j (x̂ j )

obeys the estimate

‖ f ‖L1(Rd ) �
n∏

j=0

‖ f j‖Ln(Rn).

SinceGagliardo’s Inequality is at stake in the proof of the embeddingW 1,1 ⊂ L
d

d−1 ,
it is not surprising that (15), applied to the tensor A(x) = u(x)In gives

‖u‖
L

d
d−1 (Rd )

� cd‖∇u‖L1(Rd ),

at least for compactly supported non-negative functions.
Compensated Integrability is also related to several topics in geometry, for

instance the Isoperimetric inequality [14,15] and Minkowski’s problem [15].
One important application of Compensated Integrability concerns gas dynam-

ics, where it yields Strichartz-like estimates in inviscid models (Euler equations
for a compressible flow) and kinetic models (Boltzmann equations), see [14]. Re-
cently, it was used to estimate the number and the strength of collisions in particle
dynamics, see [17]. It is therefore a versatile tool, which applies to micro-, meso-
and macroscopic descriptions of gases.

2. Dispersive Estimate; The Case (p, p∗)

To begin with, we recall that the Burgers equation enjoys an exceptional one-
parameter transformation group, a fact already noted in [18] : Let u be an entropy
solution of the Cauchy problem for (6) and λ be a positive constant. Then the
function

v(t, y) = 1

λ
u(t, λy1, . . . , λ

n yn)

is an entropy solution associated with the initial datum

v0(y) = 1

λ
u0(λy1, . . . , λ

n yn).
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The following identities will be used below:
∫ τ

0
dt

∫

Rn
v(t, y)qdy = λ−q− d(d−1)

2

∫ τ

0
dt

∫

Rn
u(t, y)qdy, (16)

∫

Rn
v0(y)

qdy = λ−q− d(d−1)
2

∫

Rn
u0(y)

qdy. (17)

Let u±
0 be the positive and negative parts of the initial datum: u−

0 � u0 �
u+
0 with u0(x) ∈ {u−

0 (x), u+
0 (x)} everywhere. Denote u± the entropy solutions

associated with the data u±
0 . By the maximum principle, we have u− � u � u+

everywhere. Because of ‖u(t)‖q � ‖u−(t)‖q + ‖u+(t)‖q and ‖u0‖p = (‖u−
0 ‖p

p +
‖u+

0 ‖p
p)

1/p, it suffices to proves the estimate for u±, that is for initial data that
are signed. Moreover since v(t, y) = −u(t,−y1, y2, . . . , (−1)n yn) is the entropy
solution associated with v0(y) = −u0(−y1, y2, . . . , (−1)n yn), it suffices to treat
the case of a non-negative initial data.

We therefore suppose from now on that u0 ∈ L1 ∩ L∞(Rn) and u0 � 0, so
that u � 0 over R+ × R

n . We wish to estimate ‖u(t)‖q in terms of ‖u0‖p when
q = p∗ = d(1 + p

n ). We point out that p∗ > p.

2.1. A Strichartz-Like Inequality

If a ∈ R, we define a symmetric matrix

M(a) =
(

ai+ j+p

i + j + p

)

0�i, j,�n
.

Remarking that

M(a) =
∫ a

0
V (s) ⊗ V (s) s p−1 ds, V (s) =

⎛

⎜⎝
1
...

sn

⎞

⎟⎠ ,

we obtain that M(a) is positive definite whenever a > 0. Obviously,

det M(a) = Hd,p a
d(p+d−1) = Hd,p a

np∗
,

where the constant

Hd,p =
∥∥∥∥

1

i + j + p

∥∥∥∥
0�i, j,�n

> 0

is a Hilbert-like determinant.
Let us form the symmetric tensor

T (t, y) = M(u(t, y)),

with positive semi-definite values. Its row of index i is given by (ηi+p(u), qi+p(u)),

an entropy–flux pair where ηr (s) = |s|r
r is convex. In the special case where p = 1
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and i = 0, it is divergence-free because of (6) itself. Otherwise, it is not divergence-
free in general, although it is so whenever u is a classical solution. However the
entropy inequality tells us that the opposite of its divergence is a non-negative,
hence bounded, measure

μr = −divt,y(ηr (u), qr (u)) � 0.

The total mass of μr over a slab (0, τ ) × R
n is given by

‖μr‖ =
∫

Rn
ηr (u0(y)) dy −

∫

Rn
ηr (u(τ, y)) dy �

∫

Rn

u0(y)r

r
dy.

Since the latter bound does not depend upon τ , μr is actually a bounded measure
over R+ × R

n .
We conclude that the row-wise divergence of T is a (vector-valued) bounded

measure, whose total mass is estimated by

‖Div T ‖M(Qτ ) �
n∑

j=0

∫

Rn

u0(y) j+p

j + p
dy. (18)

We may therefore apply Compensated Integrability to the tensor T . Theorem 1.3

tells us that (det T )
1

d−1 is integrable over Qτ . Because of

‖T0•(t, ·)‖1 =
n∑

j=0

∫

Rn

u(t, y) j+p

j + p
dy �

n∑

j=0

∫

Rn

u0(y) j+p

j + p
dy,

together with (18), Inequality (15) gives

∫ τ

0
dt

∫

Rn
u p∗

dy � cd,p

⎛

⎝
n∑

j=0

∫

Rn
u0(y)

j+p dy

⎞

⎠

d
d−1

. (19)

Again, the right-hand side does not depend upon τ , thus the inequality above is true
also for τ = +∞.

The only flaw in the estimate (19) is its lack of homogeneity. To recover a well-
balanced inequality, we use the scaling, in particular the formulæ (16) and (17).
Applying (19) to the pair (v, v0) instead, we get a parametrized inequality

(∫ ∞

0
dt

∫

Rn
u p∗

dy

) d−1
d

� cdλ
d−1
2

n∑

j=0

λ− j
∫

Rn
u0(y)

j+p dy,

where λ > 0 is up to our choice. In order to minimize the right-hand side, we select
the value

λ =
(∫

Rn
u0(y)

n+pdy/
∫

Rn
u0(y)

pdy

) 1
n

.



Multi-dimensional Burgers Equation with Unbounded Initial Data 1401

The extreme terms, for j = 0 or n, contribute on an equal footing with

(∫

Rn
u0(y)

n+pdy

) 1
2
(∫

Rn
u0(y)

pdy

) 1
2

.

The other ones, which are

(∫

Rn
u0(y)

n+pdy/
∫

Rn
u0(y)

pdy

) 1
2− j

d−1
∫

Rn
u j+p
0 dy,

are bounded by the same quantity, because of Hölder inequality. We end therefore
with the fundamental estimate of Strichartz style:

(∫ ∞

0

∫

Rn
u p∗

dy dt

) d−1
d

� cd

(∫

Rn
u0(y)

p+ndy

) 1
2
(∫

Rn
u0(y)

pdy

) 1
2

. (20)

2.2. Proof of estimate (10)

We shall contemplate (20) as a differential inequality. To this end, we define

X (t) :=
∫

Rn
u p∗

dy = ‖u(t)‖p∗
p∗ .

Noticing that p + n is less than p∗, and using Hölder inequality, we get
∫

Rn
|w|p+ndy �

(∫

Rn
|w|pdy

)a (∫

Rn
|w|p∗

dy

)b

for

a = p + n

p + dn
, b = n2

p + dn
.

The inequality (20) therefore implies that

(∫ ∞

0
X (t) dt

) 2n
d

� cd‖u0‖p(1+a)
p X (0)b.

Considering the solution w(t, y) = u(t + τ, y), whose initial datum is u(τ, ·),
we also have

(∫ ∞

τ

X (t) dt

) 2n
db

� cd‖u(τ )‖p 1+a
b

p X (τ ) � cd‖u0‖p 1+a
b

p X (τ ). (21)

Let us denote

Y (τ ) :=
∫ ∞

τ

X (t) dt.

We recast (21) as

Y ρ + cd‖u0‖μ
pY

′ � 0, ρ := 2n

db
μ := p

1 + a

b
.
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Remark that ρ = 2 p+dn
dn > 2. Multiplying by Y−ρ and integrating, we infer that

t + cd‖u0‖μ
pY (0)1−ρ � cd‖u0‖μ

pY (t)1−ρ.

This provides a first decay estimate

Y (t) � cd‖u0‖
μ

ρ−1
p t−

1
ρ−1 .

Remarking that t �→ X (t) is a non-increasing function, so that

τ

2
X (τ ) � Y

(τ

2

)
,

we deduce the ultimate decay result

X (t) � cd‖u0‖
μ

ρ−1
p t−

ρ
ρ−1 .

Restated in terms of a Lebesgue norm of u(t), this says that

‖u(t)‖p∗ � cd‖u0‖α(p,p∗)
p t−β(p,p∗), (22)

where α(p, q) and β(p, q) are given in (8) and (9). This is precisely the special
case of (10) under consideration here.

3. General Pairs (p, q) Where p < q � ∞
Because of (11) and of the Hölder inequality, it will be enough to prove (10)

when q = +∞. Once again, it is sufficient to treat the case of non-negative
data / solutions.

3.1. An Estimate for (u − �)+

Let � > 0 be a givennumber.Wedenotew� the entropy solution of (6) associated
with the initial datum (u0 − �)+ + � = max{u0, �}. The function z� := w� − � is
an entropy solution of a modified conservation law

∂t z� +
n∑

k=1

∂k
(z� + �)k+1

k + 1
= 0.

This is not exactly the Burgers equation for z�. However the (n + 2)-uplet
(
1, X + �, . . . , . . . ,

(X + �)n+1

n + 1

)

is a basis of Rn+1[X ]. We pass from this basis to (1, X, . . . , Xn+1

n+1 ) by a triangular
matrix with unit diagonal. There exists therefore a change of coordinates

(
t

y′

)
= P

(
t

y

)
=

(
1 0
... Q

)(
t

y

)
,
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where Q is a unitriangular matrix, such that z� obeys the Burgers equation in the
new coordinates:

∂z�
∂t

+
n∑

k=1

∂

∂y′
k

zk+1
�

k + 1
= 0.

We may therefore apply (22) to z� :

(∫

Rn
z�(t, y

′)p∗
dy′

) 1
p∗

� cd

(∫

Rn
z�(0, y

′)p dy′
) α(p,p∗)

p

t−β(p,p∗).

Remarking that the time variable is unchanged, and the Jacobian of the change of
variable y �→ y′ at fixed time equals one, we actually have

‖z�(t)‖p∗ � cd‖z�(0)‖α(p,p∗)
p t−β(p,p∗).

Finally, the maximum principle tells us that u � w�. The inequality above is
therefore an estimate of the positive part of u − � :

‖(u − �)+(t)‖p∗ � cd‖(u0 − �)+‖α(p,p∗)
p t−β(p,p∗). (23)

3.2. An iteration à la De Giorgi

We now prove the L p–L∞ estimate, in the special case where ‖u0‖p = 1. We
recall that u0 is non-negative.

For the moment, we fix an arbitrary constant B > 0, which we will choose
large enough in the end of the proof. Then we define the following sequences for
k ∈ N :

tk = 1 − 2−k, �k = Btk, wk = (u − �k)+, ak = ‖wk(tk)‖p.

Remark that the sequences �k and wk are increasing and decreasing, respectively.
Since t0 = 0, we have a0 = ‖u0‖p = 1.

For each value of k, we apply (23) in order to estimate ‖wk+1(tk+1)‖p∗ in terms
of ‖wk+1(tk)‖p. For the sake of simplicity, wewriteα, β forα(p, p∗) andβ(p, p∗).
We get

‖wk+1(tk+1)‖p∗ � cd,p‖wk+1(tk)‖α
p (tk+1 − tk)

−β

= cd,p2
β(k+1)‖wk+1(tk)‖α

p � cd,p2
β(k+1)aα

k .

With Hölder inequality, we also have that

ak+1 = ‖wk+1(tk+1)‖p � ‖wk+1(tk+1)
∥∥p∗‖1{y :wk+1(tk+1,y)>0}

∥∥
r

where

1

p
= 1

p∗ + 1

r
.



1404 Denis Serre & Luis Silvestre

Remark that r > 1. Combining both inequalities, we obtain

ak+1 � cd,p2
β(k+1)aα

k |{y : wk+1(tk+1, y) > 0}| 1r .

Observing that wk+1 > 0 implies wk > B2−k−1, we infer

ak+1 � cd,p2
β(k+1)aα

k

∣∣∣{y : wk(tk+1, y) > B2−k−1}
∣∣∣
1
r
.

We now use the Chebychev Inequality

∣∣∣{y : wk(tk+1, y) > B2−k−1}
∣∣∣
1
p � B−12k+1‖wk(tk+1)‖p � B−12k+1‖wk(tk)‖p

to deduce that

ak+1 � cd,p B
− p

r 2(β+ p
r )(k+1)a

α+ p
r

k = C2Cka1+δ
k B−γ .

We have set δ = α − p
p∗ and γ = p

r .
By a direct computation, we verify that δ is positive:

α − p

p∗ = p∗h(p∗) − ph(p)

p∗h(p)
= 2

p∗ − p

p∗h(p)
> 0.

The sequence bk := B− γ
δ ak , which starts with b0 = B− γ

δ , therefore satisfies a
recurrence relation

bk+1 � C2Ckb1+δ
k .

It is known that if b0 is small enough, that is if B is large enough, then bk → 0+
as k → +∞. Equivalently, ak → 0+.

We have therefore found a constant B > 0 such that

‖(u − �k)+(1)‖p � ‖(u − �k)+(tk)‖p = ak → 0 + .

Since �k → B, this means exactly that ‖u(1)‖∞ � B.

3.3. End of the proof of dispersive estimates

Let u0 ∈ L1 ∩ L∞(Rn) be non-negative. For two positive parameters λ,μ, the
entropy solution associated with the datum

v0(y) = 1

λ
u0(μλy1, . . . , μλn yn)

is the function

v(t, y) = 1

λ
u(μt, μλy1, . . . , μλn yn).

If

λp+ n(n+1)
2 μn =

∫

Rn
u0(y)

p dy, (24)
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then ‖v0‖p = 1 and wemay apply the previous section to conclude: ‖v(1)‖∞ � B.
In terms of u, this writes

‖u(μ)‖∞ � Bλ.

Calculating λ from (24) gives

‖u(μ)‖∞ � B
(
μ−n‖u0‖p

p
) 2
n2+n+2p ,

which is nothing but the dispersive estimate (10) for q = +∞.
There remains to pass from q = +∞ to every q ∈ [p,+∞]. We do that by

applying the Hölder inequality. Writing

1

q
= 1 − θ

p
+ θ

∞ ,

we have

‖u(t)‖q � ‖u(t)‖1−θ
p ‖u(t)‖θ∞ � ‖u0‖1−θ

p

(
Bt−β(p,∞)‖u0‖α(p,∞)

p

)θ

.

We conclude by using the relations (11).

4. The L p-Semi-group for Finite Exponents

We now prove Theorem 1.2. We start with a remark about L p-spaces.

Lemma 4.1. Let a ∈ L p(Rn) be given. There exists a sequence (bm)m�0 in (L p ∩
L∞)(Rn), converging towards a in L p(Rn), such that bm − a ∈ L1(Rn) and

lim
m→+∞ ‖bm − a‖1 = 0.

Proof. Recall that

L p(Rn) = (L1 ∩ L p)(Rn) + (L p ∩ L∞)(Rn).

Decomposing our function as a = a1 + a∞ where

a1 ∈ (L1 ∩ L p)(Rn), a∞ ∈ (L p ∩ L∞)(Rn),

we may form the sequence of bounded functions bm := a∞ + πm ◦ a1, where πm

is the projection from R onto the interval [−m,m]. Because of
‖bm‖p � ‖a∞‖p + ‖πm ◦ a1‖p � ‖a∞‖p + ‖a1‖p,

this sequence is bounded in L p(Rn). In addition, bm − a = πm ◦ a1 − a1 ∈
L1 ∩ L p(Rn), and

‖bm − a‖1 = ‖πm ◦ a1 − a1‖1 m→+∞−→ 0,

‖bm − a‖p = ‖πm ◦ a1 − a1‖p
m→+∞−→ 0.

��
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Let u0 ∈ L p(Rn) be given. In order to define Stu0, we consider a sequence bm
that approximates u0 in the sense of Lemma 4.1. Remark that we do not care about
the construction of bm , as we only use the properties stated in the lemma.

To begin with, um(t) := Stbm is well-defined and belongs to L∞(Rn). Because
of (10), we have

‖um(t)‖q � cd,p,q‖bm‖α(p,q)
p t−β(p,q) � Cp,q(u0) t

−β(p,q). (25)

The sequence (um)m>0 is thus bounded inC0(τ,∞; Lq(Rn)) for every q ∈ [p,∞)

and every τ > 0.
The contraction property gives us

‖um(t) − u�(t)‖1 � ‖bm − b�‖1 m,�→+∞−→ 0.

Let r, q be exponents satisfying p � r < q < ∞. By Hölder inequality, we have

‖um(t) − u�(t)‖r � ‖um(t) − u�(t)‖θ
1(‖um(t)‖q + ‖u�(t)‖q)1−θ ,

where θ ∈ (0, 1]. With (25), we infer that

‖um(t) − u�(t)‖r m,�→+∞−→ 0,

uniformly over (τ,∞).
We have thus proved that (um)m>0 is a Cauchy sequence in C0(τ,∞; Lr (Rn)),

hence is convergent in this space. If b′
m is another approximating sequence for u0,

and u′
m the corresponding solution of the Cauchy problem, wemay form an approx-

imating sequence cm in the sense of Lemma 4.1, by alterning b1, b′
1, b2, b

′
2, . . .. The

sequence u1, u′
1, u2, u

′
2, . . . will be convergent in the sense above. This shows that

the limit of um does not depend upon the precise sequence (bm)m>0 chosen above.
Thus we may set

Stu0 := lim
m→+∞ um(t),

which defines a

u ∈ Cb(R+; L p(Rn))
⋂ ⋂

p<r<∞
C0(0,+∞; Lr (Rn)).

There remains to prove that u is an entropy solution of (6). For this, we use the
fact that um is itself an entropy solution, and the convergence stated above ensures
that every monomial (um) j in the flux f (um), converges towards u j in L1

loc.
The fact that u(0) = u0 follows from um(0) = bm , the L p-convergence bm →

u0, and the uniform convergence um(t) → u(t) in L p(Rn).
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5. Other “Monomial” Scalar Conservation Laws

We consider in this section conservation laws whose fluxes are monomial.
Denoting mk(s) = sk+1

k+1 , they bear the form

∂t u + ∂1mk1(u) + · · · + ∂nmkn (u) = 0, (26)

where 0 < k1 < · · · < kn are integers. The time derivative may be written as well
∂tmk0(u) with k0 = 0.

As before, we may restrict to non-negative initial datum u0 that belong to
L1 ∩ L∞(Rn). Given an exponent p � 1, our symmetric tensor is now T (t, y) =
M(u(t, y)), where

M(a) := (
mp+ki+k j−1(a)

)
0�i, j�n

.

Notice that M(a) is symmetric, and its upper-left entry is a p

p . Because of

M(a) =
∫ a

0
s p−1V (s) ⊗ V (s) ds, V (s) :=

⎛

⎜⎝
sk0
...

skn

⎞

⎟⎠ ,

is positive definite whenever a > 0. We have

det M(a) = �(p, k)aN , N = dp + 2K , K :=
n∑

0

ki .

As above, the lines of T are made of entropy–entropy flux pairs of the equa-
tion (26). Its row-wise divergence is therefore a vector-valued bounded measure.
Compensated integrability yields again an inequality

(∫ ∞

0
dt

∫

Rn
u(t, y)Qdy

) n
d

� cd,p,k

n∑

j=0

∫

Rn
u0(y)

p+k j dy, Q := N

n
.

The conservation law is invariant under the scaling

u �−→ v(t, y) := 1

λ
u(t, λk1 y1, . . . , λ

kn yn).

Applying the estimate above to v, we obtain a parametrized inequality :

(∫ ∞

0
dt

∫

Rn
u(t, y)Qdy

) n
d

� cd,p,kλ
K
d

n∑

j=0

λ−k j

∫

Rn
u0(y)

p+k j dy.

We now choose

λ =
(∫

Rn
u0(y)

p+kndy /

∫

Rn
u0(y)

pdy

) 1
kn
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and obtain a Strichartz-like estimate:
(∫ ∞

0
dt

∫

Rn
u(t, y)Qdy

) n
d

� cd,p,k

(∫

Rn
u0(y)

p+kndy

)θ (∫

Rn
u0(y)

pdy

)1−θ

,

where

θ := K

dkn
∈ (0, 1).

Applying this calculation to the interval (τ,+∞), and using the decay of the L p-
norm, we infer that
(∫ ∞

τ

dt
∫

Rn
u(t, y)Qdy

) n
d

� cd,p,k

(∫

Rn
u(τ, y)p+kndy

)θ (∫

Rn
u0(y)

pdy

)1−θ

.

(27)
We may now continue the analysis with a Gronwall argument, provided p + kn ∈
(p, Q]. We leave the interested reader to check the details. Our first dispersion
estimate is

‖u(t)‖Q � cd,pt
−β(p)‖u0‖α(p)

p , (28)

whenever p � nkn − 2K (remark that for the Burgers equation, this restriction is
harmless).

At this stage, it seems that we miss an argument in order to carry out the De
Giorgi technique, because the conservation law satisfied by u−�will be a different
one. Whether it can be done here and for general conservation laws is left for a
future work. What we can do at least is to combine the estimates (28) in order to
cover pairs (p, q) of finite exponents. For instance, starting from a pair (p, Q) as
above and chosing p1 = Q, we have a corresponding Q1 such that (28) applies
with (p1, Q1) instead of (p, Q). We infer

‖u(t)‖Q1 � cd,Q(t/2)−β(Q)‖u(t/2)‖α(Q)
Q � cd,pt

−β(Q)−α(Q)β(p)‖u0‖α(p)α(Q)
p .

Because the iteration p → Q defines a sequence which tends to +∞, and using
the Hölder inequality to fill the gaps, we deduce the dispersion inequalities for the
monomial conservation law as follows:

Theorem 5.1. For the scalar conservation law (26) with monomial fluxes, there
exist finite constants cd,p,q such that whenever p � nkn − 2K, q ∈ [p,∞) and
u0 ∈ L p ∩ L∞(Rn), we have

‖u(t)‖q � cd,p,q t
−β(p,q)‖u0‖α(p,q)

p .

The exponents are given by the formula

α(p, q) = h(q)

h(p)
, h(p) := 1 + K

p
and β(p, q) = n

(
α(p, q)

p
− 1

q

)
.

As in the case of the Burgers equation, we can use these estimates in order to
define the semi-group over L p-spaces.

Corollary 5.1. The semi-group (St )t�0 for equation (26) extends by continuity as
a continuous semi-group over L p(Rn) for every p ∈ [1,+∞) such that p �
nkn − 2K. It maps L p(Rn) into Lq(Rn) for every q ∈ [p,∞). If u0 ∈ L p(Rn),
then the function u(t, y) := (Stu0)(y) is an entropy solution with initial datum u0.
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6. Compensated Integrability for General Fluxes f

We consider now a multi-dimensional conservation law of the most general
form (1). Following the ideas developped in the Burgers and monomial cases, we
begin by considering a signed, bounded initial datum: u0 ∈ L1 ∩ L∞(Rn), u0 � 0.
If a ∈ R+, we define a symmetric matrix

Mg(a) =
∫ a

0
g(s)Z ′(s) ⊗ Z ′(s) ds,

where Z(s) = ( f0(s) = s, f1(s), . . . , fn(s)) and g is some positive function. This
matrix is positive definite under the non-degeneracy condition that Z([0, a]) is not
contained in an affine hyperplane. We denote

�g(a) := (det Mg(a))
1
n � 0.

Let us define T (t, y) := Mg(u(t, y)). Because of u ∈ L∞(R+; L1∩ L∞(Rn)),
the tensor T is integrable over (0, τ ) × R

n . Each row of T is made of entropy–
entropy flux pairs (Fi , Qi ). Since Fi might not be convex, we cannot estimate
the measure μi = −∂t Fi (u) − divy Qi (u) directly by the integral of Fi (u0). To
overcome this difficulty, we define a convex function φg over R+ by

φg(0) = φ′
g(0) = 0, φ′′

g (s) = |F ′′(s)|,
where F = (F0, . . . , Fn). Remark that |F ′| � φ′

g and |F | � φg . Let �g be the
entropy flux associated with the entropy φg . Then the measure νg := −∂tφg(u) −
divy�g(u) is non-negative and a bound of its total mass is as usual

‖νg‖ �
∫

Rn
φg(u0(y)) dy.

We now use the kinetic formulation of (1), a notion for which we refer to [13],
Theorem 3.2.1. Recall the definition of the kinetic function χ(ξ ; a), whose value
is sgn a if ξ lies between 0 and a, and is 0 otherwise. There exists a non-negative
bounded measure m(t, y, ξ) such that the function w(t, y, ξ) = χ(ξ ; u(t, y)) sat-
isfies

∂tw + f ′(ξ) · ∇yw = ∂

∂ξ
m, w(0, y; ξ) = χ(ξ ; u0(y)).

If (η, q) is an entropy–entropy flux pair, then the measure μ = −∂tη − divyq is
given by

μ =
∫

R

η′′(ξ)dm(ξ).

We deduce that the vector-valued measure μ = (μ0, . . . , μn) satisfies |μ| � νg .
This yields the estimate

‖μ‖ �
∫

Rn
φg(u0(y)) dy.
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We may therefore apply the compensated integrability, which gives here that
∫ τ

0
dt

∫

Rn
�g(u(t, y)) dy

� cd

(
‖F(u0)‖1 + ‖F(u(τ ))‖1 +

∫

Rn
φg(u0(y)) dy

)1+ 1
n

.

Because of |F | � φg and ‖φg(u(τ ))‖1 � ‖φg(u0)‖1, we end up with an analog of
(20): ∫ ∞

0
dt

∫

Rn
�g(u(t, y))dy � cd‖φg(u0)‖1+

1
n

1 . (29)

Whether (29) can be used to prove dispersive estimates depends on the amount
of nonlinearity of the equation (1). We leave discussion of this question for a future
work.
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