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Abstract

We derive a new formulation of the 3D compressible Euler equations exhibiting
remarkable null structures and regularity properties. Our results hold for an arbi-
trary equation of state (which yields the pressure in terms of the density and the
entropy) in non-vacuum regionswhere the speed of sound is positive. Ourwork here
is an extension of our prior joint work with J.Luk, in which we derived a similar
new formulation in the special case of a barotropic fluid, that is, when the equation
of state depends only on the density. The new formulation comprises covariant
wave equations for the Cartesian components of the velocity and the logarithmic
density coupled to a transport equation for the specific vorticity (defined to be vor-
ticity divided by density), transport equations for the entropy and its gradient, and
some additional transport–divergence–curl-type equations involving special com-
binations of the derivatives of the solution variables. The good geometric structures
in the equations allow one to use the full power of the vectorfield method in treating
the “wave part” of the system. In a forthcoming application, we will use the new
formulation to give a sharp, constructive proof of finite-time shock formation, tied
to the intersection of acoustic “wave characteristics,” for solutions with nontrivial
vorticity and entropy at the singularity. In the present article, we derive the new
formulation and provide an overview of the central role that it plays in the proof of
shock formation. Although the equations are significantly more complicated than
they are in the barotropic case, they enjoy many of same remarkable features, in-
cluding: (i) all derivative-quadratic inhomogeneous terms are null forms relative
to the acoustical metric, which is the Lorentzian metric driving the propagation
of sound waves and (ii) the transport–divergence–curl-type equations allow one to
show that the entropy is one degree more differentiable than the velocity and that
the vorticity is exactly as differentiable as the velocity, assuming that the initial data
enjoy the same gain in regularity. This represents a gain of one derivative compared
to standard estimates. This gain of a derivative, which seems to be new for the
entropy, is essential for closing the energy estimates in our forthcoming proof of
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shock formation, since the second derivatives of the entropy and the first derivatives
of the vorticity appear as inhomogeneous terms in the wave equations.

1. Introduction and Summary of Main Results

Our main result in this article is Theorem 1, in which we provide a new formu-
lation of the compressible Euler equations with vorticity and dynamic entropy that
exhibits astoundingly good null structures and regularity properties. We consider
only the physically relevant case of three spatial dimensions, though similar results
hold in any number of spatial dimensions. Our results hold for an arbitrary equation
of state in non-vacuum regions where the speed of sound is positive. By “equation
of state,” we mean the function yielding the pressure in terms of the density and the
entropy. Our results are an extension of our previous joint work with J.Luk [21], in
which we derived a similar new formulation of the equations in the special case of
a barotropic fluid, that is, when the equation of state depends only on the density.
Our work [21] was in turn inspired by Christodoulou’s remarkable proofs [6,9] of
shock formation for small-data solutions to the compressible Euler equations in
irrotational (that is, vorticity-free) and isentropic (that is, with constant entropy)
regions as well as our prior work [28] on shock formation for general classes of
wave equations; we describe these works in more detail below.

A principal application of the new formulation is that it serves as the starting
point for our forthcomingwork, in whichwe plan to give a sharp proof of finite-time
shock formation for an open set of initial conditions without making any symme-
try assumptions, irrotationality assumption, isentropic assumption, or barotropic
equation of state assumption. The forthcoming work will be an extension of our
recent work with J.Luk [22], in which we proved a similar shock formation result
for barotropic fluids in the case of two spatial dimensions.

Our new formulation of the compressible Euler equations comprises covariant
wave equations, transport equations, and transport–divergence–curl-type equations
involving special combinations of solution variables [see Def. 3]. As wementioned
earlier, the inhomogeneous terms exhibit good null structures, which we character-
ize in our secondmain result, Theorem 2. Its proof is quite simple given Theorem 1.
As we mentioned above, in [21], we derived a similar new formulation of the equa-
tions under the assumption that the fluid is barotropic. The barotropic assumption,
though often made in astrophysics, cosmology, and meteorology, is generally un-
justified because it entails neglecting thermal dynamics and their effect on the fluid.
Compressible fluid models that are more physically realistic feature equations of
state that depend on the density and a second thermodynamic state-space variable,
such as the temperature, which satisfies an evolution equation that is coupled to
the other fluid equations. In the present article, we allow for an arbitrary physical
equation of state in which, for mathematical convenience, we have chosen the sec-
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ond thermodynamic variable to be the entropy per unit mass (which we refer to as
simply the “entropy” from now on).1

1.1. Paper Outline

In the remainder of Section 1, we summarize some of our notation, provide
some standard backgroundmaterial on the compressible Euler equations, define the
solution variables that we use in formulating our main results, roughly summarize
our main results, and provide some preliminary context. In Section 2, we define
some geometric objects that we use in formulating our main results and provide
some basic background on Lorentzian geometry and null forms. In Section 3, we
give precise statements of our main results, namely Theorems 1 and 2, and give the
simple proof of the latter. In Section 4, we provide an overview of our forthcoming
proof of shock formation, highlighting the roles that Theorems 1 and 2 will play.
In Section 5, we prove Theorem 1 via a series of calculations in which we observe
many important cancellations.

1.2. Notation

Throughout {xα}α=0,1,2,3 denotes a standard Cartesian coordinate system on
R
1+3 � R×R

3.2 More precisely, x0 ∈ R is the time coordinate and (x1, x2, x3) ∈
R
3 are spatial coordinates. We use the notation ∂α := ∂

∂xα
to denote the cor-

responding Cartesian coordinate partial derivative vectorfields. We often use the
alternate notation x0 = t and ∂0 = ∂t . Greek “spacetime” indices such as α vary
over 0, 1, 2, 3, while Latin “spatial” indices such as a vary over 1, 2, 3. We use
Einstein’s summation convention in that repeated indices are summed over their
respective ranges.Σt denotes the usual flat hypersurface of constant Cartesian time
t . If V is a vectorfield and f is a function, then V f := V α∂α f denotes the derivative
of f in the direction V .

1.3. Background on the Compressible Euler Equations

In this subsection, we provide some basic background on the compressible
Euler equations and provide definitions that we will use throughout the article.

1 For sufficiently regular solutions, there are many equivalently formulations of the com-
pressible Euler equations, depending on the state-space variables that one chooses as un-
knowns in the system.
2 In our forthcoming proof of shock formation, we will, for convenience, consider space-

times with topology R × Σ , where Σ := R × T
2 is the space manifold; see Section 4 for

an overview. In that context, {xα}α=0,1,2,3 denotes the usual Cartesian coordinate system
on R × Σ , where x0 ∈ R is the time coordinate, x1 is a standard spatial coordinate on R,
and x2 and x3 are standard (locally defined) coordinates on T

2. Note that the vectorfields{
∂a := ∂

∂xa

}
a=2,3

on T2 can be extended so as to be globally defined and smooth.
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1.3.1. Equations of State Westudy the compressibleEuler equations for a perfect
fluid in three spatial dimensions under any equation of state with positive sound
speed [see definition (1.3.9)]. The equation of state is the function (whichwe assume
to be given) that determines the pressure p in terms of the density � ≥ 0 and the
entropy s ∈ R:

p = p(�, s). (1.3.1)

Given the equation of state, the compressible Euler equations can be formulated
as evolution equations for the velocity v : R1+3 → R

3, the density � : R1+3 →
[0,∞), and the entropy s : R1+3 → (−∞,∞).

1.3.2. Some Definitions We use the following notation for the Euclidean diver-
gence and curl of a Σt−tangent vectorfield V with Cartesian components
{V a}a=1,2,3:3

divV := ∂aV
a, (curlV )i := εiab∂aV

b. (1.3.2)

In (1.3.2) and throughout, εi jk denotes the fully antisymmetric symbol normalized
by

ε123 = 1. (1.3.3)

The vorticity ω : R
1+3 → R

3 is the vectorfield with the following Cartesian
components, (i = 1, 2, 3):

ωi := (curlv)i . (1.3.4)

Rather than formulating the equations in terms of the density and the vorticity,
we find it convenient to use the logarithmic density ρ and the specific vorticity Ω;
some of the equations that we study take a simpler form when expressed in terms
of these variables.

To define these quantities, we first fix a constant “background density” �̄ such
that

�̄ > 0. (1.3.5)

In applications, one may choose any convenient value of �̄.4

Definition 1. (Logarithmic density and specific vorticity) We define the logarith-
mic density ρ, which is a scalar function, and the specific vorticity Ω , which is a
Σt−tangent vectorfield, as follows:

ρ := ln

(
�

�̄

)
, Ω := ω

(�/�̄)
= ω

exp ρ
. (1.3.6)

3 See Section 1.2 regarding our conventions for indices and implied summation.
4 For example, when studying solutions that are perturbations of non-vacuum constant

states, one can choose �̄ so that in terms of the variable ρ from (1.3.6), the constant state
corresponds to ρ ≡ 0.
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We assume throughout that5

� > 0. (1.3.7)

In particular, the variable ρ is finite assuming (1.3.7).
In the study of shock formation, to obtain sufficient top-order regularity for the

entropy, it is important to work with the Σt -tangent vectorfield S provided by the
next definition; see Remark 1 for further discussion.

Definition 2. (Entropy gradient vectorfield) We define the Cartesian components
of the Σt -tangent entropy gradient vectorfield S as follows, (i = 1, 2, 3):

Si := δia∂as = ∂i s. (1.3.8)

Remark 1. (The need for S and transport-div-curl estimates in controlling s) In
our forthcoming proof of shock formation, we will control the top-order deriva-
tives of s by combining estimates for transport equations with div-curl-type elliptic
estimates for S and its higher derivatives. At first glance, it might seem like the
div-curl elliptic estimates could be replaced with simpler elliptic estimates based
on controlling Δs, in view of the simple identity Δs = divS. Although this is
true for Δs itself, in our proof of shock formation, the Euclidean Laplacian Δ is
not compatible with the differential operators that we must use to commute the
equations when obtaining estimates for the solution’s higher derivatives. Specifi-
cally, like all prior works on shock formation in more than one spatial dimension,
our forthcoming proof is based on commuting the equations with geometric vec-
torfields (see Section 4.3 for an overview) that are adapted to the acoustic wave
characteristics of the compressible Euler equations.6 The acoustic characteristics
have essentially no relation to the operatorΔ. For this reason, the geometric vector-
fields exhibit very poor commutation properties withΔ and in fact, would generate
uncontrollable error terms if commuted with it. In contrast, in carrying out our
transport–divergence–curl-type estimates, we only have to commute the geometric
vectorfields through first-order operators, including a transport operator, div, and
curl; it turns out that commuting the geometric vectorfields through first-order op-
erators, as long as they are weighted with an appropriate geometric weight, leads to
controllable error terms, compatible with following the solution all the way to the
singularity.7 We explain this issue in more detail in Steps 1 and 2 of Section 4.3.

Notation 11. (Differentiation with respect to state-space variables via semicolons)
If f = f (ρ, s) is a scalar function, then we use the following notation to denote

5 We avoid discussing fluid dynamics in regions with vanishing density. The reason is that
the compressible Euler equations become degenerate along fluid-vacuum boundaries, and
the study of compressible fluid flow becomes much more difficult; see, for example, [12] for
more information.
6 We define these “wave characteristics,” denoted by Pu , in Section 4.2.
7 Specifically, the weight is the inverse foliation density μ of the acoustic characteristics;

see Def. 10.
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partial differentiation with respect to ρ and s: f;ρ := ∂ f

∂ρ
and f;s := ∂ f

∂s
. More-

over, f;ρ;s := ∂2 f

∂s∂ρ
, and we use similar notation for other higher-order partial

derivatives of f with respect to ρ and s.

1.3.3. Speed of Sound and anAssumption on the Equation of State The scalar
function c ≥ 0 defined by

c :=
√

∂p

∂�
| s =

√
1

�̄
exp(−ρ)p;ρ (1.3.9)

is a fundamental quantity known as the speed of sound.8 To obtain the last equality

in (1.3.9), we used the chain rule identity
∂

∂�
| s = 1

�̄
exp(−ρ)

∂

∂ρ
| s . From now on,

we view c as a function of the logarithmic density and the entropy:

c = c(ρ, s). (1.3.10)

Assumption on the equation of state
We make the following physical assumption, which ensures the hyperbolicity of
the system when � > 0:

We assume that c > 0 when � > 0. Equivalently, we assume that c > 0
whenever ρ ∈ (−∞,∞).

1.3.4. A Standard First-order Formulation of the Compressible Euler Equa-
tions We now state a standard first-order formulation of the compressible Euler
equations; these equations form the starting point of our new formulation. Specif-
ically, relative to Cartesian coordinates, the compressible Euler equations can be
expressed as follows, where we again stress that ρ denotes the logarithmic density:9

Bρ = −divv, (1.3.11a)

Bvi = −c2δia∂aρ − exp(−ρ)
p;s
�̄

δia∂as, (1.3.11b)

Bs = 0. (1.3.11c)

Above and throughout, δab denotes the standard Kronecker delta, and

B := ∂t + va∂a (1.3.12)

denotes thematerial derivative vectorfield. We stress already that B plays a critical
role in the ensuing discussion. Readers can consult, for example, [9] for discussion
behind the physics of the equations and for a first-order formulation of them in
terms of �, {vi }i=1,2,3, and s, which can easily seen to be equivalent to (1.3.11a)–
(1.3.11c).

8 On RHS (1.3.9),
∂p

∂�
| s denotes the derivative of the equation of state with respect to the

(non-logarithmic) density � at fixed s.
9 Here we recall our notation from Section 1.2: if V is a vectorfield and f is a function,

then V f := V α∂α f denotes the derivative of f in the direction V .



A New Formulation of the 3D Compressible Euler Equations 1229

1.3.5. ModifiedFluidVariables Although it is not obvious, the quantities thatwe
provide in the following definition satisfy transport equations with a good structure;
see (3.1.3b) and (3.1.4a). When combined with elliptic estimates, the transport
equations allow one to prove that the specific vorticity and entropy are one degree
more differentiable than naive estimates would yield, assuming that these quantities
initially have the extra differentiability. This gain of regularity is essential in our
forthcoming proof of shock formation since it is needed to control some of the
source terms in thewave equations for the velocity, density, and entropy, specifically,
the first products on RHSs (3.1.1a)–(3.1.1c). In addition, the source terms in the
transport equations have a good null structure, which is also essential in the study
of shock formation. We discuss these issues in more detail in Section 4.

Definition 3. (Modified fluid variables) We define the Cartesian components of the
Σt -tangent vectorfield C and the scalar function D as follows, (i = 1, 2, 3):

Ci := exp(−ρ)(curlΩ)i + exp(−3ρ)c−2 p;s
�̄

Sa∂av
i − exp(−3ρ)c−2 p;s

�̄
(∂av

a)Si ,

(1.3.13a)

D := exp(−2ρ)divS − exp(−2ρ)Sa∂aρ. (1.3.13b)

1.4. A Brief Summary of Our Main Results

For the reader’s convenience, we now provide a brief, informal version of our
main results.

Summaryof themainresults.ThecompressibleEuler equations (1.3.11a)–
(1.3.11c) canbe reformulated as a systemof covariantwave equations for the
Cartesian components {vi }i=1,2,3 of the velocity and the logarithmic den-
sity ρ coupled to a transport equation for the entropy s, transport equations
for the Cartesian components {Si }i=1,2,3 of the entropy gradient, transport
equations for the Cartesian components {Ω i }i=1,2,3 of the specific vorticity,
transport equations for the modified fluid variables of Def. 3, and identities
for divΩ and (curlS)i ; see Theorem 1 for the equations.10 Moreover, the
inhomogeneous terms exhibit remarkable structures, including good null
form structures tied to the acoustical metric g (which is the Lorentzian
metric corresponding to the propagation of sound waves, see Def. 4); see
Theorem 2 for the precise statement.

10 The entropy also solves the covariant wave equation (3.1.1c). However, in practice, one
might be interested in equation (3.1.1c) more for computational purposes than for analytical
purposes; one can derive estimates for the entropy using the transport equations (3.1.2b)–
(3.1.2c) and the transport–divergence–curl system (3.1.4a)–(3.1.4b).
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1.5. Some Preliminary Context for the Main Results

In this subsection, we provide some preliminary context for our main results,
with a focus on the special null structures exhibited by the inhomogeneous terms
in our new formulation of the compressible Euler equations and their relevance
for the study of shock formation. The presence of special null structures in the
equations might seem surprising since they are often associated with equations
that admit global solutions; see, for example, Klainerman’s work [18] on small-
data global existence for wave equations satisfying his “classic” null condition.
However, as we explain below, the good null structures are in fact key to proving
that the shock forms. Several works have contributed to our understanding of the
important role that the null structures play in the proof of shock formation, including
[6,14,21,22,28]. Below we will review these works and some related ones and, for
the results in more than one spatial dimension, we will highlight the role that the
presence of good geo-analytic structures and null structures played in the proofs.

The famous work of Riemann [26], in which he invented the Riemann in-
variants, yielded the first general proof of shock formation for solutions to the
compressible Euler equations in one spatial dimension. More precisely, for such
solutions, the velocity and density remain bounded, even though their first-order
Cartesian coordinate partial derivatives blow up in finite time. This type of sin-
gularity formation is also known as wave breaking in the literature. The standard
proof of this phenomenon is elementary and is essentially based on identifying a
Riccati-type blowup-mechanism for the solution’s first derivatives; see Section 4.1
for a review of these ideas in the context of simple plane wave solutions.

In all prior proofs of shock formation in more than one spatial dimension,
there also was a Riccati-type mechanism that drove the blowup of the solution’s
derivatives. However, in the analysis, the authors encountered many new kinds of
error terms that aremuchmore complicated than the ones encountered by Riemann.
A key aspect of the proofs was showing that the additional error terms do not
interfere with the Riccati-type blowup-mechanism. This is where the special null
structurementioned above enters into play: terms that enjoy the special null structure
are weak compared to the Riccati-type terms that drive the singularity, at least near
the shock. In order to explain this in more detail, we now review some prior works
on shock formation in more than one spatial dimension.

Alinhac was the first [1–4] to prove shock formation results for quasilinear
hyperbolic PDEs in more than one spatial dimension.11 Specifically, in two and
three spatial dimensions, he proved shock formation results for scalar quasilinear
wave equations of the form

(g−1)αβ(∂Φ)∂α∂βΦ = 0 (1.5.1)

whenever the nonlinearities fail to satisfy Klainerman’s “classic” null condition
and the data are small, smooth, compactly supported, and verify a non-degeneracy

11 Alinhac’s equations were perturbations of the linear wave equation in the sense that
gαβ(∂Φ = 0) = mαβ , where m is the Minkowski metric, e.g. mαβ = diag(−1, 1, 1, 1) in
three spatial dimensions.
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condition.12 We clarify that the classic null condition refers to structures adapted to
theMinkowskimetric and thus is distinct from the good null structures appearing in
our new formulation of the compressible Euler equations; we refer to the good null
structures appearing in the new formulation as the “strong null condition” (relative
to the acoustical metric g) in Theorem 2.

Although Alinhac’s work significantly advanced our understanding of singu-
larity formation in solutions to quasilinear wave equations, the most robust and
precise framework for proving shock formation in solutions to quasilinear wave
equations was developed by Christodoulou in his groundbreaking work [6]. More
precisely, Christodoulou [6] proved a small-data shock formation result for irro-
tational and isentropic solutions to the equations of compressible relativistic fluid
mechanics. In the irrotational and isentropic case, the equations are equivalent to
an Euler–Lagrange equation for a potential function Φ, which can be expressed
in the form (1.5.1). It turns out that for all fluid equations of state except for one,
the quasilinear wave equation for the potential function fails to satisfy the classic
null condition, leading to the presence of nonlinear terms that can drive finite-
time shock formation; the exceptional equation of state was identified in [6] in the
case of the relativistic Euler equations and in [9] in the case of the non-relativistic
compressible Euler equations. Christodoulou’s sharp geometric framework relied
on a reformulation of the wave equation (1.5.1) that exhibits good geo-analytic
structures [see equation (1.5.2)], and his approach yielded information that is not
accessible via Alinhac’s approach. In particular, Christodoulou’s framework is able
to reveal information about the structure of the maximal classical development of
the initial data, all the way up to the boundary, information that is essential for prop-
erly setting up the shock development problem in compressible fluid mechanics.13

Roughly, the shock development problem is the problem of weakly continuing the
solution past the singularity under suitable jump conditions.We note that even if the
data are irrotational, vorticity can be generated to the future of the first singularity.
Thus, in the study of the shock development problem, one must consider the full
compressible Euler equations with vorticity and entropy. The shock development
problem remains open in full generality and is expected to be very difficult. How-
ever, Christodoulou–Lisibach recently made important progress: in [8], they solved
the problem in spherical symmetry in the relativistic case.

Christodoulou’s shock formation results for the irrotational and isentropic rel-
ativistic compressible Euler equations were extended to the non-relativistic irro-
tational and isentropic compressible Euler equations by Christodoulou–Miao in
[9], to general classes of wave equations [28] by the author, and to other solu-

12 Klainerman formulated the “classic” null condition in three spatial dimensions [18],
while Alinhac formulated it in two spatial dimensions [3]. For equations of type (1.5.1),
the difference is that in three spatial dimensions, the definition of the classic null condition
involves only the structure of the quadratic part ∂Φ · ∂2Φ of the nonlinearities (obtained by
Taylor expansion), while in two spatial dimensions, it also involves the cubic part ∂Φ · ∂Φ ·
∂2Φ.
13 Roughly, the maximal classical development is the largest possible classical solution
that is uniquely determined by the data; see, for example, [27,30] for further discussion.
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tion regimes in [24,25,29]. In all cases, the formation of the shock singularity was
driven by the presence of Riccati-type interactions, similar in spirit to the ones
found in Riemann’s aforementioned work [26] in the case of one spatial dimension
and in the famous class of genuinely nonlinear hyperbolic systems. Readers can
consult the survey article [14] for an extended overview of some of these works.
We remark that a similar Riccati-type blowup-mechanism was also present in our
aforementioned proof of shock formation [22] for the compressible Euler equations
with vorticity under a barotropic equation of state, and that a similar mechanism
drives the blowup in our forthcoming proof of shock formation for general equa-
tions of state. Of the above works, the ones [6,9] are most relevant for the present
article. In those works, the authors proved small-data shock formation results for
the compressible Euler equations in irrotational and isentropic regions by studying
the wave equation for the potential function Φ. The wave equation can be written
in the (non-Euler–Lagrange) form (1.5.1) relative to Cartesian coordinates, where
the Cartesian components gαβ = gαβ(∂Φ) are determined by the fluid equation
of state.14 In the context of fluid mechanics, the Lorentzian metric g in (1.5.1) is
known as the acoustical metric because it drives the propagation of sound waves.
We note that the acoustical metric also plays a fundamental role in the main results
of this article (see Def. 4), even when the vorticity and entropy are non-zero.

A simple – but essential – step in Christodoulou’s proof [6] of shock formation
was to differentiate the wave equation (1.5.1) with the Cartesian coordinate partial
derivative vectorfields ∂ν , which led to the following system of covariant wave
equations, (ν = 0, 1, 2, 3):

�g̃( �Ψ )Ψν = 0. (1.5.2)

In (1.5.2), �Ψ := (Ψ0, Ψ1, Ψ2, Ψ3) is the array of scalar functions Ψν := ∂νΦ (with
∂ν denoting a Cartesian coordinate partial derivative), g̃ is a Lorentzian metric
conformal to g, �g̃( �Ψ ) is the covariant wave operator of g̃ (see Def. 9), and Ψν is

treated as a scalar function under covariant differentiation in (1.5.2).15 A key feature
of the system (1.5.2) is that all of the terms that drive the shock formation are on the
left-hand side, hidden in the lower-order terms generated by the operator �g̃( �Ψ ).
That is, if one expands �g̃( �Ψ )Ψν relative to the standard Cartesian coordinates, one

encounters Riccati-type terms of the schematic form ∂ �Ψ ·∂ �Ψ that fail to satisfy the
classic null condition and thus are able to drive the blowup of a certain tensorial
component of ∂ �Ψ , while �Ψ itself remains uniformly bounded up to the singularity;
roughly, this is what it means for solutions to (1.5.2) to form a shock.16 Readers can
consult Section 4.1 for a more detailed description of how the Riccati-type terms

14 In discussing [6], it would be better for us to call them “rectangular coordinates” since
the equations there are introduced in the context of special relativity, and the Minkowski
metric takes the “rectangular” form diag(−1, 1, 1, 1) relative to these coordinates.
15 That is, g̃ is a scalar function multiple of g.
16 In reality, what blows up is a specific tensorial component of ∂ �Ψ ; the tensorial structure
in the problem is rather intricate.
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lead to blowup for simple isentropic plane wave solutions to the compressible Euler
equations.

The presence of a covariant wave operator on LHS (1.5.2) was crucial for
Christodoulou’s analysis. The reason is that he was able to construct, with the
help of an eikonal function (see Section 4.2), a collection of geometric, solution-
dependent vectorfields that enjoy good commutation propertieswith�g̃( �Ψ ). He then
used the vectorfields to differentiate the wave equations and to obtain estimates for
the solution’s higher derivatives, much like in his celebrated proof [7], joint with
Klainerman, of the global nonlinear (dynamic) stability of Minkowski spacetime
as a solution to the Einstein-vacuum equations. Indeed, in more than one spatial
dimension, the main technical challenge in the proof of shock formation is to derive
sufficient energy estimates for the geometric vectorfield derivatives of the solution
that hold all the way up to the singularity. In the context of shock formation, this
step is exceptionally technical, and we discuss it in more detail in Section 4. It
is important to note that the standard Cartesian coordinate partial derivatives ∂ν

generate uncontrollable error terms when commuted through �g̃( �Ψ ) and thus the
geometric vectorfields and their good commutation properties with the operator
�g̃( �Ψ ) are essential ingredients in the proof.

In [28], we showed that if one considers a general wave equation of type (1.5.1),
not necessarily of the Euler–Lagrange type considered byChristodoulou [6] and
Christodoulou–Miao [9], then upon differentiating it with ∂ν , one does not generate
a system of type (1.5.2), but rather an inhomogeneous system of the form

�g( �Ψ )Ψν = f( �Ψ )Q(∂ �Ψ , ∂Ψν), (1.5.3)

where f is smooth and Q is a standard null form relative to the acoustical metric
g; see Def. 8. We then showed that the null forms relative to g have precisely the
right structure such that they do not interfere with or prevent the shock formation
processes, at least for suitable data. The Q are canonical examples of terms that
enjoy the good null structure that we mentioned at the beginning of this subsection.
In particular, the termQonRHS (1.5.3) is not strong enough to overcomederivative-
quadratic terms on LHS (1.5.3), which become visible upon expanding �g( �Ψ )Ψν

relative to the Cartesian coordinates and which, exceptional cases aside, do not
enjoy the same good null structure featured on RHS (1.5.3). More generally,
we refer to the good null structure on RHS (1.5.3) as the strong null condition; see
Def. 7 and Prop. 1.We stress that the full nonlinear structure of the null formsQ is
critically important. This is quite different fromKlainerman’s classic null condition
(see Footnote 12), which he formulated in his study of wave equations in three
spatial dimensions that enjoy small-data global existence [18]; in Klainerman’s
classic null condition, the structure of cubic and higher order terms is not even taken
into consideration since, in the small-data regime that he studied, wave dispersion
causes the cubic terms to decay fast enough that their precise structure is typically
not important. The reason that the full nonlinear structure of the null forms Q is
of critical importance in the study of shock formation is that they are adapted to
the acoustical metric g and enjoy the following key property: each Q is linear in
the tensorial component of ∂ �Ψ that blows up. Therefore, near the singularity,Q is
small relative to the quadratic terms ∂ �Ψ · ∂ �Ψ that drive the singularity formation
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(whichwe again stress are hidden in the definition of�g( �Ψ )Ψν). Roughly, this linear
dependence on the singular terms is the crux of the strong null condition. In contrast,
a typical quadratic inhomogeneous term ∂ �Ψ ·∂ �Ψ , if present on RHS (1.5.3), would
distort the dynamics near the singularity and could in principle prevent it from
forming or change its nature. Moreover, in the context of shock formation, cubic
or higher-order terms such as ∂ �Ψ · ∂ �Ψ · ∂ �Ψ are expected to become dominant
in regions where ∂ �Ψ is large and it is therefore critically important that there are
no such terms on RHS (1.5.3). These observations suggest that proofs of shock
formation are less stable under perturbations of the equations compared to more
familiar perturbative proofs of global existence.

The equations in our new formulation of the compressible Euler equations (see
Theorem1) are drasticallymore complicated than the homogeneouswave equations
(1.5.2) that Christodoulou encountered in his study of irrotational and isentropic
compressible fluid mechanics and the inhomogeneous equations (1.5.3) that we
encountered in [28]. The equations of Theorem 1 are even considerably more com-
plicated than the equations we derived in [21] in our study of the barotropic fluids
with vorticity. However, the equations of Theorem 1 exhibit many of the same good
structures enjoyed by the equations of [21], as well as some remarkable new ones.
Specifically, in the present article, we derive geometric equations whose inhomo-
geneous terms are either null forms relative to the acoustical metric g, similar to the
ones on RHS (1.5.3), or less dangerous terms that are at most linear in the solution’s
derivatives. We find the presence of this null structure to be somewhat miraculous
in view of the sensitivity of proofs of shock formation under perturbations of the
equations, as we described in the previous paragraph. Moreover, in Theorem 1,
we also exhibit special combinations of the solution variables that solve equations
with good source terms, allowing, with the help of elliptic estimates, for a proof
that the vorticity is one degree more differentiable than one might expect, assuming
that the gain in differentiability is present in the initial data; see Def. 3 for the
special combinations, which we refer to as “modified fluid variables.”17 The gain
in differentiability for the vorticity has long been known relative to Lagrangian
coordinates, in particular because it has played an important role in proofs of lo-
cal well-posedness [10–12,15,16] for the compressible Euler equations for data
featuring a physical vacuum-fluid boundary. However, the gain in differentiability
for the vorticity with respect to arbitrary vectorfield differential operators (with
coefficients of sufficient regularity relative to the solution) seems to originate in
[21]. The freedom to gain the derivative relative to general vectorfield differen-
tial operators is important because Lagrangian coordinates are not adapted to the
wave characteristics, whose intersection corresponds to the formation of a shock.
Therefore, Lagrangian coordinates are not suitable for following the solution all
the way to the shock; instead, as we describe in Sections 4.2 and 4.3 , one needs a
system of geometric coordinates constructed with the help of an eikonal function,

17 To show the gain in regularity, one must use a combination of energy estimates and
elliptic estimates along hypersurfaces of constant time. In the present article, we do not
actually derive energy estimates and elliptic estimates, but rather only PDEs that one can
use to derive them.
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as well as the aforementioned geometric vectorfields, which are closely related to
the geometric coordinates. We remark that in the barotropic case [21], the “special
combinations” of solution variableswere simpler than they are in the present article.
Specifically, in the barotropic case, the specific vorticity and its curl satisfied good
transport equations; compare this with the more complicated expression (1.3.13a).
Similarly, we can prove that the entropy is one degree more differentiable than one
might expect by studying a rescaled version of its Laplacian; see (1.3.13b).18 To
the best of our knowledge, the gain in regularity for the entropy is a new result.

As we mentioned above, we exhibit the special null structure of the inhomo-
geneous terms in Theorem 2. Given Theorem 1, the proof of Theorem 2 is simple
and is essentially by observation. However, it is difficult to overstate its profound
importance in the study of shock formation since, as we described above, the good
null structures are essential for showing that the inhomogeneous terms are not
strong enough to interfere with the shock formation processes (at least for suitable
open sets of initial data). The gain of differentiability mentioned in the previous
paragraph is also essential for our forthcoming work on shock formation since we
need it to control some of the source terms in the wave equations.

2. Geometric Background and the Strong Null Condition

In this section, we define some geometric objects and concepts that we need in
order to precisely state our main results.

2.1. Geometric Tensorfields Associated to the Flow

Roughly, there are two kinds of motion associated to compressible Euler flow:
the transporting of vorticity and entropy and the propagation of sound waves. We
now discuss the tensorfields associated to these phenomena.

We start by recalling that the material derivative vectorfield B, defined in
(1.3.12), is associated to the transporting of vorticity and entropy; the equations
of Theorem 1 justify this remark.

We now define the Lorentzian metric g corresponding to the propagation of
sound waves; again, the equations of Theorem 1 justify this remark.

Definition 4. (Theacousticalmetric and its inverse)Wedefine theacousticalmetric
g and the inverse acoustical metric g−1 relative to the Cartesian coordinates as
follows:19

g := −dt ⊗ dt + c−2
3∑

a=1

(dxa − vadt) ⊗ (dxa − vadt), (2.1.1a)

18 Actually, with our future study of shock formation in mind, we formulate a transport-
div-curl-type system for the gradient of the entropy; see equations (3.1.4a)–(3.1.4b) and
Remark 1.
19 Other authors have defined the acoustical metric to be c2g. We prefer our definition
because it implies that (g−1)00 = −1, which simplifies the presentation of many formulas.
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g−1 := −B ⊗ B + c2
3∑

a=1

∂a ⊗ ∂a . (2.1.1b)

Remark 2. One can easily check that g−1 is the matrix inverse of g, that is, we
have (g−1)μαgαν = δ

μ
ν , where δ

μ
ν is the standard Kronecker delta.

Thevectorfield B enjoys some simple but important geometric properties,which
we provide in the next lemma.We repeat the simple proof from [21] for the reader’s
convenience.

Lemma 1. (Basic geometric properties of B) B is g-timelike,20 future-directed,21

g−orthogonal to Σt , and g-unit-length22:

g(B, B) = −1. (2.1.2)

Proof. Clearly B is future-directed. The identity (2.1.2) (which also implies that
B is g-timelike) follows from a simple calculation based on (1.3.12) and (2.1.1a).
Similarly, we compute that g(B, ∂i ) := gαi B

α = 0 for i = 1, 2, 3, from which it
follows that B is g−orthogonal to Σt . 
�

2.2. Decompositions Relative to Null Frames

The special null structures found in our new formulation of the compressible
Euler equations, whichwe briefly described in Section 1.5, are intimately connected
to the notion of a null frame.

Definition 5. (Standard g-Null frame) Let g be a Lorentzian23 metric on R
1+3.24

A standard g-null frame (“null frame” for short, when the metric is clear) at a point
q is a set of vectors

N := {L , L, e1, e2} (2.2.1)

belonging to the tangent space of R1+3 at q such that

g(L , L) = g(L, L) = 0, (2.2.2a)

g(L , L) = −2, (2.2.2b)

g(L , eA) = g(L, eA) = 0, (A = 1, 2), (2.2.2c)

g(eA, eB) = δAB, (A, B = 1, 2), (2.2.2d)

where δAB is the standard Kronecker delta.

20 g-timelike vectorfields V are such that g(V, V ) < 0.
21 A vectorfield V is future-directed if V 0 > 0, where V 0 is the 0 Cartesian component.
22 Throughout we use the notation g(V,W ) := gαβV

αWβ .
23 By “Lorentzian,” we mean that the quadratic form corresponding to the 4× 4 matrix of
components gαβ has signature (−,+, +, +).
24 The topology of the spacetime manifold is not relevant for our discussion here.
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The following lemma is a straightforward consequence of Def. 5; we omit the
simple proof:

Lemma 2. (Decomposition of g−1 relative to a standard g-null frame) Relative to
an arbitrary standard g−null frame, we have

g−1 = −1

2
L ⊗ L − 1

2
L ⊗ L +

2∑
A=1

eA ⊗ eA. (2.2.3)

Definition 6. (Decomposition of a derivative-quadratic nonlinear term relative to
a null frame) Let

�V := (ρ, v1, v2, v3, s,Ω1,Ω2,Ω3, S1, S2, S3) (2.2.4)

be the array of unknowns in the below system (3.1.1a)–(3.1.4b) (see Footnote 30).
We label the components of �V as follows:

V 0 := ρ, V i := vi , V 4 := s, V i+4 := Ω i , and V i+7 := Si , for i = 1, 2, 3.
(2.2.5)

Let N ( �V , ∂ �V ) be a smooth nonlinear term that is quadratically nonlinear in ∂ �V .
That is, we assume that N ( �V , ∂ �V ) = f( �V )

αβ
ΘΓ (∂αVΘ)∂βV Γ , where f( �V )

αβ
ΘΓ is

symmetric in Θ and Γ and is a smooth function of �V (not necessarily vanishing at
0) for α, β = 0, 1, 2, 3 and Θ,Γ = 0, 1, . . . , 10.25 Given a standard g-null frame
N as defined in Def. 5, we denote

N := {e1, e2, e3 := L, e4 := L}.
Moreover, we let MA

α denote the scalar functions corresponding to expanding the
Cartesian coordinate partial derivative vectorfield ∂α at q relative to the null frame,
that is,

∂α = MA
α eA :=

4∑
A=1

MA
α eA.

Then

NN := f( �V )
αβ
ΘΓ MA

α MB
β (eAV

Θ)eBV
Γ (2.2.6)

denotes the nonlinear term obtained by expressingN ( �V , ∂ �V ) in terms of the deriva-
tives of �V with respect to the elements of N , that is, by expanding ∂ �V as a linear
combination of the derivatives of �V with respect to the elements ofN and substi-
tuting the expression for the factor ∂ �V in N ( �V , ∂ �V ).

25 Here and below,we use Einstein’s summation convention,where uppercase Latin indices
such as A and B vary over 1, 2, 3, 4, lowercase Latin “spatial” indices such as a and b vary
over 1, 2, 3, uppercase Greek indices such asΘ and Γ vary over 0, 1, . . . , 10, and lowercase
Greek “spacetime” such as α and β indices vary over 0, 1, 2, 3.
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2.3. Strong Null Condition and Standard Null Forms

In Section 1.5, we roughly described the special null structure enjoyed by the
inhomogeneous terms in our new formulation of the compressible Euler equations.
We precisely define the special null structure in the next definition, which we recall
from [21].

Definition 7. (Strong null condition) Let NN := f( �V )
αβ
ΘΓ MA

α MB
β (eAVΘ)eBV Γ

be as in Def. 6. We say thatN ( �V , ∂ �V ) verifies the strong null condition relative to
g if the following condition holds: for every standard g-null frameN ,NN can be
expressed in a form that depends linearly (or not at all) on L �V and L �V . That is, for

A, B = 1, 2, 3, 4 and Θ,Γ = 0, 1, . . . , 10, there exist scalar functions f
AB
ΘΓ ( �V )

and f ABΘΓ ( �V ), depending on the null frame, such that the following hold:

f
33
ΘΓ ( �V ) = f

44
ΘΓ ( �V ) = 0, f33ΘΓ ( �V ) = f44ΘΓ ( �V ) = 0, Θ, Γ = 0, 1, . . . , 10,

(2.3.1)

and

f( �V )
αβ
ΘΓ M3

αM
3
β(e3V

Θ)e3V
Γ = f

AB
ΘΓ ( �V )(eAV

Θ)eBV
Γ ,

f( �V )
αβ
ΘΓ M4

αM
4
β(e4V

Θ)e4V
Γ = f ABΘΓ ( �V )(eAV

Θ)eBV
Γ .

(2.3.2)

Put differently, (2.3.1)–(2.3.2) state that NN can be re-expressed in such a way
that terms proportional to (LVΘ)LV Γ and (LVΘ)LV Γ are completely absent.

Remark 3. (Some comments on the strong null condition) Equation (2.3.2) allows
for the possibility that one uses external PDEs26 to algebraically substitute for
terms on LHS (2.3.2), thereby generating the good terms on RHS (2.3.2), which
verify the essential condition (2.3.1). As our proof of Prop. 1 below shows, this
kind of substitution is not needed for null forms relative to the acoustical metric g,
which can directly be shown to exhibit the desired structure, without the help of
external PDEs. That is, for null forms Q relative to g, one can directly show that
f( �V )

αβ
ΘΓ M3

αM
3
β = f( �V )

αβ
ΘΓ M4

αM
4
β = 0. In the present article, the formulation of

the equations that we provide (see Theorem 1) is such that all derivative-quadratic
terms are null forms relative to g. Readers might then wonder why our definition of
the strong null condition allows for themore complicated scenario inwhich one uses
external PDEs for algebraic substitution to detect the good null structure. The reason
is that in our work [21] on the barotropic case, we encountered the inhomogeneous

terms εiab

{
(∂aΩ

d)∂dv
b − (∂av

d)∂dΩ
b
}
, which are not null forms. To show that

these terms had the desired null structure, we used the compressible Euler equations
for substitution and therefore relied on the full scope of Def. 7. In the present article,
we encounter the same terms, but we treat them in a different way and show that in

fact, εiab
{
(∂aΩ

d)∂dv
b − (∂av

d)∂dΩ
b
}
is equal to a null form plus other terms that

are either harmless or that can be incorporated into our definition of the modified
fluid variables from Def. 3; see the identity (5.1.14) and the calculations below it.

26 By “external PDEs,” we simply mean PDEs satisfied by the elements of �V .
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A key feature of our new formulation of the compressible Euler equations is
that all derivative-quadratic inhomogeneous terms are linear combinations of the
standard null forms relative to the acoustical metric g, which verify the strong null
condition relative to g (see Prop. 1). We now recall their standard definition.

Definition 8. (Standard null forms) The standard null forms Q(g)(·, ·) (relative to
g) andQ(αβ)(·, ·), (0 ≤ α < β ≤ 3), act on pairs (φ, φ̃) of scalar-valued functions
as follows:

Q(g)(∂φ, ∂φ̃) := (g−1)αβ(∂αφ)∂βφ̃, (2.3.3a)

Q(αβ)(∂φ, ∂φ̃) := (∂αφ)∂βφ̃ − (∂αφ̃)∂βφ. (2.3.3b)

Proposition 1. (The standard null forms satisfy the strong null condition) LetQ be
a standard null form relative to g and let φ and φ̃ be any two entries of the array
�V from Def. 6. Let f = f( �V ) be a smooth scalar-valued function of the entries of
�V . Then f( �V )Q(∂φ, ∂φ̃) verifies the strong null condition relative to g, as defined
in Def. 7.

Proof. In the case of the null form Q(g), the proof is a direct consequence of the
identity (2.2.3).

In the case of the null form Q(αβ) defined in (2.3.3b), we consider any g-null
frame (2.2.1), and we label its elements as follows: N := {e1, e2, e3 := L, e4 :=
L}. Since N spans the tangent space at each point where it is defined, there exist
scalar functions MA

α such that the following identity holds for α = 0, 1, 2, 3:

∂α =
4∑

A=1

MA
α eA. (2.3.4)

From (2.3.3b) and (2.3.4), we deduce

Q(αβ)(∂φ, ∂φ̃) =
4∑

A,B=1

{
MA

α MB
β − MB

α MA
β

}
(eAφ)eB φ̃.

The key point is that the terms in braces are antisymmetric in A and B. It fol-
lows that the sum does not contain any diagonal terms, that is, terms proportional
to (eAφ)eAφ̃ (in the previous expression, we do not sum over A). In particular,
terms proportional to (Lφ)Lφ̃ and (Lφ)Lφ̃ are not present, which is the desired
result. 
�

3. Precise Statement of the Main Results

In this section, we precisely state our two main theorems and give the simple
proof of the second one.We start by recalling the standard definition of the covariant
wave operator �g .
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Definition 9. (Covariant wave operator) Let g be a Lorentzian metric. The covari-
ant wave operator �g acts on scalar-valued functions φ as follows:27

�gφ := 1√|detg|∂α

{√|detg|(g−1)αβ∂βφ
}

. (3.0.1)

3.1. The New Formulation of the Compressible Euler Equations with Vorticity
and Entropy

Our first main result is Theorem 1, which provides the new formulation of the
compressible Euler equations. We postpone its lengthy proof until Section 5.

Remark 4. (Explanation of the different kinds of inhomogeneous terms) In the
equations of Theorem 1, there are many inhomogeneous terms that are denoted
by decorated versions of “Q.” These terms are linear combinations of standard
null forms relative to g that, in our forthcoming proof of shock formation, can
be controlled in the energy estimates without elliptic estimates. Similarly, in the
equations of Theorem 1, decorated versions of the symbol “L” denote terms that
are at most linear in the derivatives of the solution and that can be controlled in
the energy estimates without elliptic estimates. In our forthcoming proof of shock
formation, theQ’s and L’s will be simple error terms. The equations of Theorem 1
also feature additional null form inhomogeneous terms depending on ∂Ω and ∂S,
whichwe explicitly display (i.e., we do not incorporate them into the “Q’s”) because
one needs elliptic estimates along Σt to control them in the energy estimates. For
this reason, in the proof of shock formation, these terms are substantially more
difficult to control compared to the Q’s and L’s. Similarly, terms that are linear in
∂Ω , ∂S, C, orD can be controlled only with the help of elliptic estimates along Σt .

Theorem 1. (The geometric wave-transport–divergence–curl formulation of the
compressible Euler equations) Let �̄ > 0 be any constant background density [see
(1.3.5)], and assume that (ρ, v1, v2, v3, s) is aC3 solution to the compressibleEuler
equations (1.3.11a)–(1.3.11c) in three spatial dimensions under an arbitrary equa-
tion of state (1.3.1)with positive sound speed c [see (1.3.9)].28 Let B be thematerial
derivative vectorfield defined in (1.3.12), let g be the acoustical metric from Def. 4,
and let C andD be the modified fluid variables from Def. 3. Then the scalar-valued
functions ρ and vi , Ω i , s, Si , divΩ , Ci , D, and (curlS)i , (i = 1, 2, 3), also solve
the following equations, where the Cartesian component functions vi are treated
as scalar-valued functions under covariant differentiation on LHS (3.1.1a):

27 The formula (3.0.1) holds relative to arbitrary coordinates, but in our proof of Theorem 1,
we will carry out computations using (3.0.1) in Cartesian coordinates, with g equal to the
acoustical metric from Def. 4; see Lemma 7.
28 We have made the C3 assumption only for convenience, i.e., so that all of the quantities
on the left- and right-hand sides of the equations of Theorem 1 are at least continuous. In
applications, one can make sense of the equations and solutions in a distributional sense
under weaker regularity assumptions (for example, in suitable Sobolev spaces).
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Covariant wave equations

�gv
i = −c2 exp(2ρ)Ci + Qi

(v) + Li
(v), (3.1.1a)

�gρ = − exp(ρ)
p;s
�̄

D + Q(ρ) + L(ρ), (3.1.1b)

�gs = c2 exp(2ρ)D + L(s). (3.1.1c)

Transport equations29

BΩ i = Li
(Ω), (3.1.2a)

Bs = 0, (3.1.2b)

BSi = Li
(S). (3.1.2c)

Transport–divergence–curl system for the specific vorticity

divΩ = L(divΩ), (3.1.3a)

BCi = −2δ jkεiab exp(−ρ)(∂av
j )∂bΩ

k + εajk exp(−ρ)(∂av
i )∂ jΩ

k (3.1.3b)

+ exp(−3ρ)c−2 p;s
�̄

{
(BSa)∂av

i − (Bvi )∂a S
a
}

+ exp(−3ρ)c−2 p;s
�̄

{
(Bva)∂a S

i − (BSi )∂av
a
}

+ Qi
(C) + Li

(C).

Transport–divergence–curl system for the entropy gradient

BD = 2 exp(−2ρ)
{
(∂av

a)∂bS
b − (∂a S

b)∂bv
a
}

+ exp(−ρ)δab(curlΩ)a Sb

+ Q(D), (3.1.4a)

(curlS)i = 0. (3.1.4b)

Above,Qi
(v),Q(ρ),Qi

(C)
, andQ(D) are the null forms relative to g defined by

Qi
(v) := −

{
1 + c−1c;ρ

}
(g−1)αβ(∂αρ)∂βvi , (3.1.5a)

Q(ρ) := −3c−1c;ρ(g−1)αβ(∂αρ)∂βρ +
{
(∂av

a)∂bv
b − (∂av

b)∂bv
a
}

, (3.1.5b)

Qi
(C) := exp(−3ρ)c−2 p;s

�̄
Si

{
(∂av

b)∂bv
a − (∂av

a)∂bv
b
}

(3.1.5c)

+ exp(−3ρ)c−2 p;s
�̄

Sb
{
(∂av

a)∂bv
i − (∂av

i )∂bv
a
}

+ 2 exp(−3ρ)c−2 p;s
�̄

Sa
{
(∂aρ)Bvi − (∂av

i )Bρ
}

29 See the end of Section 1.2 regarding our notation for the differentiation of scalar-valued
functions with vectorfields.
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+ 2 exp(−3ρ)c−3c;ρ
p;s
�̄

Sa
{
(∂aρ)Bvi − (∂av

i )Bρ
}

+ exp(−3ρ)c−2 p;s;ρ
�̄

Sa
{
(∂av

i )Bρ − (∂aρ)Bvi
}

+ exp(−3ρ)c−2 p;s;ρ
�̄

Si
{
(Bva)∂aρ − (Bρ)∂av

a}

+ 2 exp(−3ρ)c−2 p;s
�̄

Si
{
(Bρ)∂av

a − (Bva)∂aρ
}

+ 2 exp(−3ρ)c−3c;ρ
p;s
�̄

Si
{
(Bρ)∂av

a − (Bva)∂aρ
}
,

Q(D) := 2 exp(−2ρ)Sa
{
(∂av

b)∂bρ − (∂aρ)∂bv
b
}

. (3.1.5d)

In addition, the terms Li
(v), L(ρ), L(s), Li

(Ω), L
i
(S), L(divΩ), and Li

(C)
,

which are at most linear in the derivatives of the unknowns, are defined as follows:

Li
(v) := 2 exp(ρ)εiab(Bva)Ωb − p;s

�̄
εiabΩ

a Sb (3.1.6a)

− 1

2
exp(−ρ)

p;ρ;s
�̄

Sa∂av
i

− 2 exp(−ρ)c−1c;ρ
p;s
�̄

(Bρ)Si + exp(−ρ)
p;s;ρ
�̄

(Bρ)Si ,

L(ρ) := −5

2
exp(−ρ)

p;s;ρ
�̄

Sa∂aρ − exp(−ρ)
p;s;s
�̄

δabS
a Sb, (3.1.6b)

L(s) := c2Sa∂aρ − cc;ρSa∂aρ − cc;sδabSa Sb, (3.1.6c)

Li
(Ω) := Ωa∂av

i − exp(−2ρ)c−2 p;s
�̄

εiab(Bva)Sb, (3.1.6d)

Li
(S) := −Sa∂av

i + εiab exp(ρ)Ωa Sb, (3.1.6e)

L(divΩ) := −Ωa∂aρ, (3.1.6f)

Li
(C) := 2 exp(−3ρ)c−3c;s

p;s
�̄

(Bvi )δabS
a Sb (3.1.6g)

− 2 exp(−3ρ)c−3c;s
p;s
�̄

δabS
a(Bvb)Si

+ exp(−3ρ)c−2 p;s;s
�̄

δab(Bva)SbSi

− exp(−3ρ)c−2 p;s;s
�̄

(Bvi )δabS
a Sb.

Remark 5. (Comparison to the results of [21]) For barotropic fluids, we have
p;s ≡ 0, and consequently, the variables s and Si do not influence the dynamics
of the remaining solution variables. For such fluids, one can check that equations
(3.1.1a)–(3.1.1b), (3.1.2a), and (3.1.3a)–(3.1.3b) are equivalent to the equations that
we derived in [21]. However, one needs some observations described in Remark 3
in order to see the equivalence.
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Remark 6. (The data for the system (3.1.1a)–(3.1.4b)) The “fundamental” initial
data for the compressible Euler equations (1.3.11a)–(1.3.11c) are ρ|t=0,
{vi |t=0}i=1,2,3, and s|t=0. On the other hand, to solve the Cauchy problem for the
system (3.1.1a)–(3.1.4b), one also needs the data ∂tρ|t=0, {∂tvi |t=0}i=1,2,3, ∂t s|t=0,
{Ω i |t=0}i=1,2,3, and {Si |t=0}|i=1,2,3. These data can be obtained by differentiating
the fundamental initial data with respect to the Cartesian coordinate spatial par-
tial derivative vectorfields {∂i }i=1,2,3 and by using equations (1.3.11a)–(1.3.11c) to
algebraically solve for time derivatives.

3.2. The Structure of the Inhomogeneous Terms

The next theorem is our second main result. In the theorem, we characterize
the structure of the inhomogeneous terms in the equations Theorem 1. The most
important part of the theorem is the null structure of the Type iii terms.

Theorem 2. (The structure of the inhomogeneous terms) Let

�V := (ρ, v1, v2, v3, s,Ω1,Ω2,Ω3, S1, S2, S3)

denote the array of unknowns in the equations of Theorem 1.30 The inhomogeneous
terms on the right-hand sides of equations (3.1.1a)–(3.1.4b) consist of three types:

i. Terms of the form f( �V ), where f is smooth and vanishes when S = Ω ≡ 0.
ii. Terms of the form f( �V )·∂ �V where f is smooth, that is, terms that depend linearly

on the elements of ∂ �V .
iii. Terms of the form f( �V )Q(∂φ, ∂φ̃), where f is smooth, φ and φ̃ are elements

of �V , and Q is a standard null form relative to the acoustical metric g from
Def. 8. By Prop. 1, these terms satisfy the strong null condition relative to g.

Proof. It is easy to see thatQi
(v),Q(ρ),Qi

(C)
, andQ(D) are Type iii terms, and that

the same is true for the products on the first through third lines of RHS (3.1.3b) and
the terms in braces on the first line of RHS (3.1.4a). Similarly, it is easy to see that
Li

(v), L(ρ), L(s), Li
(Ω), L

i
(S), L(divΩ), and L

i
(C)

are sums of terms of type Type i and
Type ii, while the first product on RHS (3.1.1a), the first product on RHS (3.1.1b),
the first product on RHS (3.1.1c), and the second product on RHS (3.1.4a) are, in
view of Def. 3, Type ii. 
�

4. Overview of the Roles of Theorems 1 and 2 in Proving Shock Formation

As we mentioned in Section 1, in forthcoming work, we plan to use the results
of Theorems 1 and 2 as the starting point for a proof of finite-time shock formation
for an open set of solutions to the compressible Euler equations. In this section,
we provide an overview of the main ideas in the proof and highlight the role that

30 Here, we are not considering Ci andD to be “unknowns.” The reason is that, in view of
Def. 3, we can express Ci and D in terms of �V and ∂ �V .
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Theorems 1 and 2 play. We plan to study a convenient open set of initial condi-
tions in three spatial dimensions whose solutions typically have non-zero vorticity
and non-constant entropy: perturbations (without symmetry assumptions) of sim-
ple isentropic (that is, constant entropy31) plane waves.32 We note that in our joint
work [29] on scalar wave equations in two spatial dimensions, we proved shock
formation for solutions corresponding to a similar set of nearly plane symmetric
initial data. The advantage of studying perturbations of simple isentropic plane
waves is that it allows us to focus our attention on the singularity formation without
having to confront additional evolutionary phenomena that are often found in solu-
tions to wave-like systems. For example, nearly plane symmetric solutions do not
exhibit wave dispersion because their dynamics are dominated by 1D-type wave
behavior.33 In particular, our forthcoming analysis will not feature time weights or
radial weights.

4.1. Blowup for Simple Isentropic Plane Waves

Simple isentropic plane waves are a subclass of plane symmetric solutions. By
“plane symmetric solutions,” we mean solutions that depend only on t and x1 and
such that v2 ≡ v3 = 0. To further explain simple isentropic plane wave solutions,
we will present some standard material without providing proofs. Readers can
consult, for example, [5,13] for additional details.We start by defining the Riemann
invariants:

R± := v1 ± F(ρ). (4.1.1)

The function F in (4.1.1) solves the following initial value problem, where c is the
speed of sound (and we suppress the dependence of c on s since s is constant by
assumption):

d

dρ
F(ρ) = c(ρ), F(ρ = 0) = 0, (4.1.2)

where F(ρ = 0) = 0 is a convenient normalization condition. In one spatial
dimension, in terms of R±, the compressible Euler equations (1.3.11a)–(1.3.11c)
with constant entropy are equivalent to the system

LR− = 0, LR+ = 0, (4.1.3)

where

L := ∂t + (v1 + c)∂1, L := ∂t + (v1 − c)∂1 (4.1.4)

31 Note that the transport equation (1.3.11c) implies that the entropy is constant in the
maximal classical development of the data if it is constant along Σ0.
32 These simple plane waves have vanishing vorticity and constant entropy, though their
perturbations generally do not.
33 In one spatial dimension, wave equations are essentially transport equations and thus
their solutions do not experience dispersive decay.
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are null vectorfields relative to the acoustical metric of Def. 4. That is, one can
easily check that g(L , L) = g(L, L) = 0. The initial data are R±|t=0 (together
with the initial constant value of the entropy, which we suppress for the rest of
the discussion). A simple isentropic plane wave is a solution such that one of the
Riemann invariants, say R−, completely vanishes. Note that by the first equation
in (4.1.3), the condition R− = 0 is propagated by the flow of the equations if it is
verified at time 0.

The simple isentropic plane wave solutions described in the previous paragraph
typically form a shock in finite time via the samemechanism that leads to singularity
formation in solutions to Burgers’ equation. For illustration, we now quickly sketch
the argument. We assume the simple isentropic plane wave condition R− ≡ 0,
which implies that the system (4.1.3) reduces to {∂t + f (R+)∂1}R+ = 0, where
f is a smooth function determined by F . It can be shown that f is not a constant-
valued function of R+, except in the case of the equation of state of a Chaplygin

gas, which is p = p(�) = C0 − C1

�
, where C0 ∈ R and C1 > 0. We now take

a ∂1 derivative of the evolution equation for R+ to deduce the equation {∂t +
f (R+)∂1}∂1R+ = − f ′(R+)(∂1R+)2. Since R+ is constant along the integral
curves of ∂t + f (R+)∂1 (which are also known as “characteristics” in the present
context), the above equation can be viewed as a Riccati-type ODE for ∂1R+ along
the characteristics, specifically the ODE

d

dt
∂1R+ = k(∂1R+)2, (4.1.5)

where the constant k is equal to− f ′(R+) evaluated at the point on the x1-axis from
which the characteristic emanates. Thus, we can easily deduce that for initial data
such that ∂1R+ and k have the same (non-zero) sign at some point along the x1 axis,
the solution ∂1R+ to (4.1.5) will blow up in finite time along the corresponding
characteristic, even though R+ remains bounded; this is essentially the crudest
picture of the formation of a shock singularity. Note that there is no blowup in the
case of the Chaplygin gas since f ′ ≡ 0 in that case; see Footnote 43 for related
remarks.

4.2. Fundamental Ingredients in the Proof of Shock Formation in More than One
Spatial Dimension

We can view the simple isentropic plane waves described in Section 4.1 as
solutions in three spatial dimension that have symmetry. In our forthcoming work
on shock formation in three spatial dimensions, we will study perturbations (with-
out symmetry assumptions) of simple isentropic plane waves, and we will prove
that the shock formation illustrated in Section 4.1 is stable. For technical conve-
nience, instead of considering data onR3, wewill consider initial data on the spatial
manifold

Σ := R × T
2,
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where the factor of T2 (equal to the two-dimensional torus) corresponds to pertur-
bations away from plane symmetry. This allows us to circumvent some technical
difficulties, such as the fact that non-trivial planewave solutions have infinite energy
when viewed as solutions with symmetry on the spacetime R1+3.

Although the method of Riemann invariants allows for an easy proof of shock
formation for simple isentropic plane waves, the method is not available in more
than one spatial dimension. Another key feature of the study of shock formation in
more than one spatial dimension is that all known proofs rely on sharp estimates
that provide much more information compared to the proof of blowup for simple
plane waves from Section 4.1. Therefore, in our forthcoming proof of shock forma-
tion for perturbations of simple isentropic plane waves, we will use the geometric
formulation of the equations provided by Theorem 1.34 We will show that these
equations have the right structure such that they can be incorporated into an ex-
tended version of the paradigm for proving shock formation initiated by Alinhac
[1–4] and significantly advanced by Christodoulou [6].

Themost fundamental ingredient in the approaches ofAlinhac andChristodoulou
is a system of geometric coordinates

(t, u, ϑ1, ϑ2) (4.2.1)

that are dynamically adapted to the solution. We denote the corresponding partial
derivative vectorfields as follows:{

∂

∂t
,

∂

∂u
,

∂

∂ϑ1 ,
∂

∂ϑ2

}
. (4.2.2)

Here, t is the standard Cartesian time function, while u is an eikonal function
adapted to the acoustical metric. That is, u solves the following fully nonlinear
hyperbolic PDE, known as the eikonal equation:

(g−1)αβ(∂αu)∂βu = 0, ∂t u > 0, (4.2.3a)

u|t=0 = 1 − x1. (4.2.3b)

Above and throughout the rest of the article, g is the acoustical metric from Def. 4.
We construct the geometric torus coordinates ϑ A by solving the transport equations

(g−1)αβ(∂αu)∂βϑ A = 0, (4.2.4a)

ϑ1|t=0 = x2, ϑ2|t=0 = x3, (4.2.4b)

where x2 and x3 are standard (locally defined) Cartesian coordinates on T
2; see

Footnote 2 regarding the Cartesian coordinates in the present context. For various
reasons, when differentiating the equations to obtain estimates for the solution’s
derivatives, one needs to use geometric vectorfields, described below, rather than the

34 In applications, it is sometimes preferable to work with unknowns that are equal to
nonlinear functions of ρ and v, for example unknowns in the spirit of the Riemann invariants
that have proven to be useful in the 1D case. We will ignore this issue throughout the rest
of Section 4.
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partial derivative vectorfields in (4.2.2). For this reason, the coordinates (ϑ1, ϑ2)

play only a minor role in the analysis, and we will downplay their significance for
most of the remaining discussion.

Note that theCartesian components gαβ depend on the fluid variables ρ, vi , and s
[see (2.1.1a)]. Therefore, the regularity properties of the eikonal function are tied to
that of the fluid solution; below we will further discuss this crucial issue. The initial
conditions (4.2.3b) are adapted to the approximate plane symmetry of the solutions
that we plan to study.35 The level sets of u are known as the “characteristics,” the
“wave characteristics,” or the “acoustic characteristics,” and we denote them by
Pu . The Pu are null hypersurfaces relative to the acoustical metric g. As we further
explain below, the intersection of the level sets of the function u (viewed as an
R-valued function of the Cartesian coordinates) corresponds to the formation of
a shock singularity and the blowup of the first-order Cartesian coordinate partial
derivatives of the density and velocity. As wewill explain below, u can be viewed as
a “sharp coordinate” that is dynamically adapted to the fluid flow, that can be used to
reveal special structures in the equations, and that can be used to construct geometric
objects adapted to the characteristics. The price that one pays for the precision is
that the top-order regularity theory for u is very complicated and tensorial in nature.
As we later explain, the regularity theory is especially difficult near the shock and
leads to degenerate high-order energy estimates for the fluid.

The first use of an eikonal function in proving a global result for a nonlinear hy-
perbolic systemoccurred in the celebrated proof [7] of the stability of theMinkowski
spacetime as a solution to the Einstein-vacuum equations.36 Eikonal functions have
also played a central role in proofs of low-regularity well-posedness for quasilin-
ear hyperbolic equations, most notably the recent Klainerman–Rodnianski–Szeftel
proof of the bounded L2 curvature conjecture [20].

The paradigm for proving shock formation originating in the works [1–4,6] can
be summarized as follows:

To the extent possible, prove “long-time-existence-type” estimates for the
solution relative to the geometric coordinates and then recover the for-
mation of the shock singularity as a degeneration between the geometric
coordinates and the Cartesian ones. In particular, prove that the solution re-
mains many times differentiable relative to the geometric coordinates, even
though the first-order Cartesian coordinate partial derivatives of the density
and velocity blow up.

Themost important quantity in connection with the above paradigm for proving
shock formation is the inverse foliation density.

Definition 10. (Inverse foliation density of the Pu) We define the inverse foliation
density μ > 0 of the characteristics Pu as follows:

μ := −1

(g−1)αβ(∂αt)∂βu
. (4.2.5)

35 For other applications, it might be necessary to choose different initial conditions for u.
36 Roughly, [7] is a small-data global existence result for the Einstein-vacuum equations.
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Fig. 1. The vectorfield frame Z at two distinct points in Pu and the integral curves of B
(along which Ω , s, and S are transported), with one spatial dimension suppressed

1

μ
is a measure of the density of the characteristics Pu relative to the constant-time

hypersurfacesΣt .Whenμvanishes, the density becomes infinite, the characteristics
intersect, and, as it turns out, the first-order Cartesian coordinate partial derivatives
of the density and velocity blow up in finite time. See Fig. 1 for a depiction of a
solution for which the characteristics have almost intersected. Note that by (2.1.1b),
(4.2.3a), and (4.2.3b),we haveμ|t=0 ≈ 1.37 Christodoulouwas the first to introduce
μ in the context of proving shock formation in more than one spatial dimension
[6]. However, before Christodoulou’s work, quantities in the spirit of μ had been
used in one spatial dimension, for example, by John in his proof [17] of blowup
for solutions to a large class of quasilinear hyperbolic systems. In short, to prove
a shock formation result under Christodoulou’s approach, one must control the
solution all the way up until the time of first vanishing of μ.

4.3. Summary of the Proof of Shock Formation

Having introduced the geometric coordinates and the inverse foliation density,
we are now ready to summarize the main ideas in the proof of shock formation
for perturbations of simple isentropic plane wave solutions to the compressible
Euler equations in three spatial dimensions with spatial topology Σ = R × T

2.
For convenience, we will study solutions with very small initial data given along
a portion of the characteristic P0 and “interesting” data (whose derivatives can be

37 μ|t=0 depends on the data for the fluid variables.
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large in directions transversal to the characteristics) along a portion ofΣ0 � R×T
2;

see Fig. 1 for a schematic depiction of the setup.
Given the structures revealed by Theorems 1 and 2, much of the proof is based

on frameworks developed in prior works, as we now quickly summarize. The bulk
of the framework originated in Christodoulou’s groundbreaking work [6] in the
irrotational case, with some key contributions (especially the idea to rely on an
eikonal function) coming from Alinhac’s earlier work [1–4] on scalar wave equa-
tions. The relevance of the strong null condition in the context of proving shock
formation was first recognized in [14,28]. The crucial new ideas needed to handle
the transport equations and the elliptic operators/estimates originated in [21,22].
Three key contributions of the present work are showing (i) that one can gain a
derivative for the entropy s, which is needed to ensure that all terms in our new
formulation of the compressible Euler equations have a consistent amount of reg-
ularity (see Step 8 below for further discussion); (ii) the inhomogeneous terms
generated by including s in our new formulation all have a good null structure; and
(iii) that in the context of shock formation, one needs to rely on transport-div-curl
estimates for the entropy gradient S in order to avoid uncontrollable error terms;
see Remark 1 and Step 2 below for further discussion on this last point.

We now summarize the main ideas behind our forthcoming proof of shock
formation. Most of the discussion will be at a rough, schematic level.

1. (Commutation vectorfields adapted to the characteristics).With the help of
the eikonal function u (see Section 4.2), construct a set of geometric vectorfields

Z := {L , X̆ ,Y1,Y2} (4.3.1)

that are adapted to the characteristics Pu ; see Fig. 1. Readers can consult [14,
21,22] for details on how to use u to construct Z . Here, we only note some
basic properties of these vectorfields. The subset

P := {L ,Y1,Y2} (4.3.2)

spans the tangent spaces of Pu , while the vectorfield X̆ is transversal to Pu .
L is a g-null (that is, g(L , L) = 0) generator of Pu normalized by Lt = 1,

while X̆ = ∂

∂u
+ Error, where Error is a small vectorfield tangent to the co-

dimension-two tori Pu ∩ Σt . The vectorfields {Y1,Y2} span the tangent spaces
of Pu ∩ Σt .
The elements of Z are designed to have good commutation properties with
each other and also, as we describe below, with μ�g . In particular, one can
show that we have the following schematic relations:38

[Z ,Z ] ∼ P. (4.3.3)

In the rest of the discussion, Z denotes a generic element of Z and P denotes
a generic element ofP or, more generally, a Pu-tangent differential operator.

38 A more precise statement would indicate that the coefficients on RHS (4.3.3) depend on
the second derivatives of the eikonal function, but we suppress this issue here.
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It is straightforward to derive the following relationships, which are key to
understanding the shock formation, where ∂ schematically denotes linear com-
binations of the Cartesian coordinate partial derivative vectorfields:39

P ∼ ∂, X̆ ∼ μ∂. (4.3.4)

We also note the complementary schematic relation

μ∂ ∼ X̆ + μP, (4.3.5)

which we will refer to in Step 2. At the end of Step 5, we will clarify the role
of the second relation in (4.3.4) in tying the vanishing of the inverse foliation
density μ (see Def. 10) to the blowup of the solution’s first-order Cartesian
coordinate partial derivatives. In the proof of shock formation, one uses the
elements of Z to differentiate the equations and to obtain estimates for the
solution’s derivatives. The goal is to show that up to a sufficiently high order,
the Z -derivatives of the solution remain uniformly bounded, all the way up
to the time of first vanishing of μ. Note that by (4.3.4), we have |P| = O(1),
while |X̆ | = O(μ). The relation |X̆ | = O(μ) implies that deriving uniform
bounds for the solution’s X̆ -derivatives is tantamount to having only very weak
estimates in regions where μ is small (i.e., near the shock); one might think of
the boundedness of the solution’s X̆ -derivatives as “degenerate estimates” for
the solution’s Pu-transversal derivatives, consistent with an order-unity-length

transversal derivative of the solution blowing up like
1

μ
as μ → 0. In contrast,

the relation |P| = O(1) implies that uniform bounds for the derivatives of the
solution with respect to the elements of P yield non-degenerate estimates for
thePu-tangential derivatives of the solution. We will revisit these crucial issues

in Step 3. We now note that one can derive the relations L = ∂

∂t
, X̆ = ∂

∂u
+

Error,YA = ∂

∂ϑ A
+Error, A = 1, 2,where Error denotes small vectorfields that

are tangent to the toriPu∩Σt .Hence, deriving estimates for theZ -derivatives of
the solution is equivalent to deriving estimates for the derivatives of the solution
relative to the geometric coordinates. The elements of (4.3.1) are replacements
for the geometric coordinate partial derivative vectorfields (4.2.2) that, as it turns
out, enjoy better regularity properties. Specifically, an important point, which

is not at all obvious, is that the elements of

{
∂

∂u
,

∂

∂ϑ1 ,
∂

∂ϑ2

}
, when commuted

through the covariant wave operator �g from LHSs (3.1.1a)–(3.1.1c), generate
error terms that lose a derivative and thus are uncontrollable at the top-order. In
contrast, the elements Z ∈ Z are adapted to the acoustical metric g in such a
way that the commutator operator [μ�g, Z ] generates controllable error terms.
We note that one includes the factor of μ in the previous commutator because it
leads to essential cancellations. Although achieving control of the commutator

39 Throughout, we use the notation a ∼ b to imprecisely indicate that a is well-
approximated by b.
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error terms at the top-order derivative level is possible, it is quite difficult and
in fact constitutes the main step in the proof. The difficulty is that the Cartesian
components of Z ∈ Z depend on the Cartesian coordinate partial derivatives
of u, which we can schematically depict as follows: Zα ∼ ∂u. Therefore, the
regularity of the vectorfields Z themselves depends on the regularity of the
fluid solution through the dependence of the eikonal equation (4.2.3a) on the
fluid variables. In fact, some of the commutator terms generated by [μ�g, Z ]
appear, at first glance, to suffer from the loss of a derivative. Fortunately, the
derivative loss can be overcome using ideas originating in [7,19] and, in the
context of shock formation, in [6]. However, as we explain in Step 7, one pays
a steep price in overcoming the loss of a derivative: the only known procedure
for gaining back the derivative leads to degenerate estimates in which the high-
order energies are allowed to blow up asμ → 0. On the other hand, to close the
proof and show that the shock forms, onemust prove that the low-order energies
remain bounded all the way up to the singularity. Establishing this hierarchy of
energy estimates is the main technical step in the proof.

2. (Multiple speeds andcommutinggeometric vectorfields throughfirst-order
operators). The compressible Euler equations with vorticity and entropy fea-
ture two kinds of characteristics: the acoustic characteristics Pu and the in-
tegral curves of the material derivative vectorfield B; see Fig. 1. That is, the
system features multiple characteristic speeds, which creates new difficulties
compared to the case of the scalar wave equations treated in the works [1–
4,6,9,21,22,25,29]. Another new difficulty compared to the scalar wave equa-
tion case is the presence of the operators div and curl in the equations of The-
orem 1. The first proof of shock formation for a quasilinear hyperbolic system
in more than one spatial dimension featuring multiple speeds and the operators
div and curl was our prior work [21,22] on the compressible Euler equations
in the barotropic case. We now review the main difficulties corresponding to
the presence multiple speeds and the operators div and curl. We will then ex-
plain how to overcome them; it turns out that essentially the same strategy can
be used to handle all of these first-order operators. Since the formation of a
shock is tied to the intersection of the wave characteristic Pu (as we clarify
in Step 5), our construction of the geometric vectorfields Z ∈ Z from Step
1 was, by necessity, adapted to g; indeed, this seems to be the only way to
ensure that the commutator terms [μ�g, Z ] are controllable up to the shock.
This begs the question of what kind of commutation error terms are generated
upon commuting the Z through first-order operators such as B, div, and curl.
The resolution was provided by the following key insight from [21,22]: the
elements of Z have just enough structure such that their commutator with an
appropriately weighted, but otherwise arbitrary, first-order differential opera-
tor produces controllable error terms, consistent with the solution remaining
bounded relative to the geometric coordinates at the lower derivative levels.40

40 Here, by a “first-order differential operator,” we mean a differential operator equal to a
regular function times a Cartesian coordinate partial derivative.
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Specifically, one can show that we have the schematic commutation relation

[μ∂α,Z ] ∼ X̆ + P, (4.3.6)

which is suggested by the schematic relations (4.3.3) and (4.3.5). The important

point is that RHS (4.3.6) does not feature any singular factor of
1

μ
.

The above discussion suggests the following strategy for treating the first-order
equations of Theorem 1: weight themwith a factor ofμ so that the principal part
is of the schematic form μ∂ . Then by (4.3.6), upon commuting the weighted
equation with elements of Z , we generate only commutator terms that do not

feature any damaging factor of
1

μ
. We stress that the property (4.3.6) does not

generalize to typical second-order operators. That is, we have the schematic

relation [μ∂α∂β,Z ] ∼ 1

μ
ZZ + · · · , which features uncontrollable factors

of
1

μ
. This is the reason that in deriving elliptic estimates for the entropy s,

we work the divergence and curl of the entropy gradient vectorfield Si = ∂i s
instead of Δs (see also Remark 1); the div-curl formulation allows us to avoid
commuting the elements ofZ through the (second-order) flat Laplacian Δ and
therefore to avoid uncontrollable error terms.

3. (L∞ bootstrap assumptions). Formulate appropriate uniform L∞ bootstrap
assumptions for the Z -derivatives of the solution, up to order approximately
10, on a region on which the solution exists classically. In particular, these
Z -derivatives of the solution will not blow up, even as the shock forms. We
now describe some crucial implications of these uniform bounds. We start by
recalling the following facts, which we alluded to just below (4.3.5): the Carte-
sian components of the element X̆ in Z are of size O(μ), while the elements
L ,Y1,Y2 of the Pu-tangent subsetP ofZ have Cartesian components of size
O(1). This leads to the following point, which is central for all aspects of the
proof of shock formation:

Uniform L∞ bounds for the solution’s P-derivatives imply that the
derivatives of the solution with respect to any order-unity-length vector-
field that is tangent to the acoustic characteristics Pu remain uniformly
bounded all the way up to the shock.41 In contrast, a uniform L∞ bound
for the solution’s X̆ -derivative allows for the possibility that order-unity-
length derivatives of the solution in directions transversal toPu canblow
up like O(1/μ) as μ → 0. This is in direct analogy to the behavior ex-
hibited by solutions to Burgers’ equation, in which the derivatives of
the solution in directions tangent to the characteristics remain bounded,
while the solution’s transversal derivatives can blow up.42

Just below equation (4.3.11g), we explain why the proof requires so many
derivatives. The bootstrap assumptions are tensorial in nature and involve sev-

41 Here, by the “length” of a vectorfield, we mean the size of its Cartesian components.
42 For Burgers’ equation solutions, the tangential derivatives in fact completely vanish.
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eral parameters measuring the size of various directional derivatives of the
solution. We will not discuss the bootstrap assumptions in detail here. Instead,
we simply note that they reflect our expectation that the solution remains a small
perturbation of a simple isentropic plane wave at the lowerZ -derivative levels;
readers can consult [21,22] for more details on the bootstrap assumptions in the
barotropic case and keep in mind that in our forthcoming work, we will make
similar bootstrap assumptions, the new feature being smallness assumptions on
the derivatives of s.

4. (The role of Theorem 2). We now clarify the importance of the good null
structures revealed by Theorem 2, thereby fleshing out the discussion from
Section 1.5. Let �V denote the solution array (2.2.4).
As we alluded to above, before commuting the equations of Theorem 1 with
elements of Z , we first multiply the equations by a factor of μ. The main
point is that by Theorem 2, all derivative-quadratic inhomogeneous terms (more
precisely, the Type iii terms in theorem) inμ-weighted versions of the equations
of Theorem 1 can be decomposed in the following schematic form, where we
ignore the order-unity coefficients:

μ∂ �V · ∂ �V = X̆ �V · P �V + μP �V · P �V , (4.3.7)

where P is as in Step 1. The decomposition (4.3.7) is precisely what is afforded
by the strong null condition, which is available in view of Prop. 1. The reader
might have noticed that Def. 7 of the strong null condition is based on decom-
positions relative to standard g-null frames, while the terms on RHS (4.3.7)
are decomposed relative to the elements of Z . That is, one needs some minor
observations in order to translate the strong null condition into the statement
(4.3.7). Themain idea is to consider the strong null condition under a null frame
(2.2.1) in which L is the vectorfield from (4.3.1) and the vectorfields {e1, e2}
have the same span as {Y1,Y2}, in which case both of the sets {L , e1, e2} and
{L ,Y1,Y2} span the tangent spaces of Pu . From these considerations, it is easy
to see that given any derivative-quadratic term verifying the strong null condi-
tion, we can decompose it into factors such that each factor contains at least one
Pu-tangent differentiation, which is precisely what is indicated on RHS (4.3.7).
In particular, on RHS (4.3.7), there are no terms proportional to X̆ �V · X̆ �V ,
which, by signature considerations, would have to be multiplied by an uncon-

trollable factor of
1

μ
that would blow up at the shock. Such a term, had it have

been present, would have completely obstructed the goal of obtaining regular
estimates for the solution’s low-levelZ -derivatives that hold all the way up to
the shock.
We have therefore explained the good structure of Type iii terms from Theo-
rem 2. The only other kind of inhomogeneous terms that one encounters in the
μ-weighted equations of Theorem1 are atmost linear in ∂ �V , that is,μ-weighted
versions of the Type i and Type ii terms from Theorem 2. The linear termsμ∂ �V
can be decomposed (schematically) as

μ∂ �V = X̆ �V + μP �V , (4.3.8)
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the key point being that RHS (4.3.8) does not feature any singular factor of
1

μ
.

For this reason, all linear terms μ∂ �V remain uniformly bounded all the way
up to the shock and are admissible within the scope of our approach. Similar
remarks of course apply to terms that depend on �V but not ∂ �V .

5. (Tying the singularity formation to the vanishing of μ).Derive the following
evolution equation for μ, written in schematic form:43

∂

∂t
μ ∼ ∂

∂u
v1 + Error. (4.3.9)

Then, using the L∞ bootstrap assumptions from Step 3, show that for data near

that of a simple plane wave,
∂

∂u
v1 is negative and approximately constant in

time (relative to the geometric coordinates) and that Error is small in L∞, all the
way up to the shock. Thus, from (4.3.9), we deduce that μ will vanish in finite

time. Moreover, since X̆v1 and
∂

∂u
v1 agree up to small error terms and since

∂

∂u
v1 is strictly non-zero at any point where μ vanishes, it follows from the

second relation in (4.3.4) that
∣∣∣∂v1

∣∣∣ ∼ 1

μ
in a past neighborhood of any point

where μ vanishes. In particular, some first-order Cartesian coordinate partial

derivative of v1 must blow up like
1

μ
at points where μ vanishes.

6. (Pointwise estimates and sharp estimates for μ). Commute all of the equa-
tions of Theorem 1 up to top-order (i.e., up to approximately 20 times) with
the elements of Z , and similarly for the transport equations verified by μ and
the Cartesian components Li , (i = 1, 2, 3).44 For brevity, we do not provide
these transport equations in detail here [we schematically displayed the one
for μ in (4.3.9)]. Instead, we only note that the inhomogeneous terms in the
transport equations exhibit structures similar to the ones enjoyed by the simple
Type i and type Type ii terms from Theorem 2. The reason that we must esti-
mate the derivatives of μ and Li is that they appear as source terms when we
commute the equations of Theorem 1 with the elements Z ∈ Z [see (4.3.1)].

43 It turns out that the coefficient of the “main term” on RHS (4.3.9), which we have

schematically depicted as “
∂

∂u
v1,” vanishes precisely in the case of the Chaplygin gas

equation of state, which is p = p(�) = C0 − C1

�
, where C0 ∈ R and C1 > 0. Since the

“main term” is precisely the one that drives the vanishing of μ, our proof of shock formation
does not apply for the Chaplygin gas. This is connected to the following well-known fact:
in one spatial dimension under the Chaplygin gas equation of state, the compressible Euler
equations form a totally linearly degenerate PDE system, which is not expected to admit
shock-forming solutions; see [23] for additional discussion on totally linearly degenerate
PDEs.
44 Deriving estimates for μ and the Li is essentially equivalent to deriving estimates for
the first derivatives of the eikonal function, that is, for the first derivatives of solutions to the
eikonal equation (4.2.3a). For μ, this is apparent from equation (4.2.5).
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After commuting the equations, one uses the L∞ bootstrap assumptions from
Step 3 to derive suitable pointwise estimates for all of the error terms and inho-
mogeneous terms in the equations up to top-order. A key point is that all good
null structures, such as the structure displayed in (4.3.7), are preserved under
differentiations of the equations with the elements of Z . Moreover, since the
elements Z ∈ Z are adapted to μ�g , the commutator terms corresponding to
the operator [μ�g, Z ] also exhibit a similar good null structure.
Another key step in the proof is to derive very sharp pointwise estimates for
μ, capturing exactly how it vanishes. More precisely, through a detailed study

of equation (4.3.9), one can show that for the solutions under study,
∂

∂t
μ is

quantitatively negative in regions where μ is near 0, which implies that μ

vanishes linearly. It turns out that these facts are crucial for closing the energy
estimates.

7. (Energy estimates). Using the pointwise estimates and the sharp estimates for
μ fromStep 6, derive energy estimates up to top-order. This is themain technical
step in the proof. Null structures such as (4.3.7) are again critically important
for the energy estimates, since our energies (described below) are designed to
control error integrals that are generated by special products of the form of
RHS (4.3.7) and their higher-order analogs. To control some of the terms in the
energy estimates, we also need elliptic estimates along Σt , which we describe
in Step 8. As a preliminary step, we now briefly describe, from the point of
view of regularity, why our proof fundamentally relies on the transport-div-
curl-type equations (3.1.3a)–(3.1.4b) and elliptic estimates. In reality, we need
elliptic estimates only to control the solution’s top-order derivatives, that is,
after commuting the equations many times with the elements of Z . However,
for convenience, here we ignore the need to commute the equations and instead
focus our discussion on how to derive a consistent amount of Sobolev regularity
for solutions to the non-commuted equations. In proving shock formation, we
are primarily interested in deriving estimates for solutions to thewave equations
(3.1.1a)–(3.1.1b); given suitable estimates for their solutions, the rest of the
proof of the formation of the shock is relatively easy. To proceed, we first note
that the inhomogeneous terms C and D (see Def. 3) on the right-hand sides of
the wave equations (3.1.1a)–(3.1.1b) are, from the point of view of regularity,
at the level of ∂Ω and ∂S, plus easier terms that can be treated using energy
estimates for wave equations (and that we will therefore ignore in the present
discussion). On the other hand, the transport equations (3.1.2a) and (3.1.2c)
for Ω and S have source terms that depend on ∂v and ∂ρ. Since solutions
to transport equations are typically only as regular as their source terms, this
falsely suggests that Ω and S have the same Sobolev regularity as ∂v and ∂ρ

(and therefore that ∂Ω and ∂S have the same Sobolev regularity as ∂2v and
∂2ρ) which, from the point of view of regularity, would be inconsistent with
the presence of the inhomogeneous terms ∂Ω and ∂S on the right-hand side
of the wave equations; the inconsistency would come from the fact that energy
estimates for the wave equations yield L2-control only over ∂v and ∂ρ and thus
∂v and ∂ρ cannot have more L2 regularity than the wave equation source terms
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∂Ω and ∂S. To circumvent this difficulty, one needs to rely on the transport-
div-curl-type equations (3.1.3a)–(3.1.4b) and elliptic estimates to control ∂Ω

and ∂S in L2(Σt ), using only that ∂vi and ∂ρ are in L2(Σt ). We further explain
this in Step 8. A key reason behind the viability of this approach is that even
though equations (3.1.3a)–(3.1.4b) are obtained by differentiating the transport
equations (3.1.2a) and (3.1.2c) (which feature inhomogeneous terms of the
schematic form ∂v), the inhomogeneous terms on RHSs (3.1.3a)–(3.1.4b) do
not feature the terms ∂2v or ∂2ρ; this is a surprising structural feature of the
equations that is based on the observation of cancellations and that should not
be taken for granted.
Themain technical difficulty that one encounters in the proof of shock formation
is that the best energy estimates that we know how to derive allow for the
possibility that the high-order energies might blow up as the shock forms.
This makes it difficult to justify the uniform (non-degenerate) L∞ bootstrap
assumptions from Step 3, which play a crucial role in showing that the shock
forms and in deriving the pointwise estimates from Step 6. It turns out that the
maximum possible energy blowup-rates can be expressed in terms of negative
powers of45

μ�(t) := min
Σt

{1,μ}. (4.3.10)

Note that the formation of the shock corresponds to μ� → 0. Just below, we
will roughly describe the hierarchy of energy estimates. The energy estimates
involve energiesE(Wave) for the “wave variables” {ρ, v1, v2, v3} aswell as ener-
gies E(Transport) for the “transport variables” {s,Ω1,Ω2,Ω3, S1, S2, S3, C1,
C2, C3,D}. We use the notation E(Wave);Top to denote a wave energy that con-
trols the top-orderZ -derivatives46 of the wave variables (here we are not spe-
cific about how many derivatives correspond to top-order), E(Wave);Top−1 de-
note a just-below-top-order wave energy,E(Wave);Mid denote a mid-order wave
energy (we also are not specific about howmany derivatives correspond to mid-
order), E(Wave);1 correspond to the energy after a single commutation,47 and
similarly for the transport equation energies. The hierarchy of energy estimates
that one can derive roughly has the following structure, where K ≈ 20 is a
universal constant (independent of the specific structure of the compressible
Euler equations) and ε̊ is a small parameter representing the size of a seminorm
that, roughly speaking, measures how far the initial data are from the data of a
simple isentropic plane wave:48

E(Wave);Top(t), E(Transport);Top(t) � ε̊2μ−K
� (t), (4.3.11a)

45 In practice, one needs to rely on a slightly different definition ofμ�, one that is localized
along portions of Σt and that is allowed to depend on u; we will ignore this issue here.
46 Actually, in practice, one can close the proof by deriving energy estimates only for the
P-commuted equations, whereP is defined in (4.3.2). We will ignore this technical detail
for the rest of the discussion.
47 It turns out that we can avoid relying on energies corresponding to zero commutations.
48 In practice, the blowup-rate forE(Transport);Top(t)might not coincidewith the blowup-
rate for E(Wave);Top(t), but we have ignored this issue in (4.3.11a).
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E(Wave);Top−1(t), E(Transport);Top−1(t) � ε̊2μ2−K
� (t), (4.3.11b)

E(Wave);Top−2(t), E(Transport);Top−2(t) � ε̊2μ4−K
� (t), (4.3.11c)

· · · , (4.3.11d)

E(Wave);Mid(t), E(Transport);Mid(t) � ε̊2, (4.3.11e)

· · · , (4.3.11f)

E(Transport);1(t) � ε̊2. (4.3.11g)

The difficult parts of the proof are controlling the maximum possible top-order
blowup-rate μ−K

� (t) as well as establishing the “descent scheme” showing
that the below-top-order energies become successively less degenerate until
one reaches the level (4.3.11e), below which the energies do not blow up.49

Descent schemes of this type originated in the works [1–4,6] of Alinhac and
Christodoulou and have played a key role in all prior works on shock formation
in more than one spatial dimension. From the non-degenerate energy estimates
(4.3.11e)–(4.3.11g), Sobolev embedding, and a smallness assumption on the
data-size parameter ε̊, one can justify (that is, improve) the non-degenerate L∞
bootstrap assumptions from Step 3. To close the proof, we need the energies to
remain uniformly bounded (up to the singularity) starting at a level representing,
roughly, slightly more than half of the top-order number of derivatives. Conse-
quently, the proof requires a lot of regularity, and “top-order” corresponds to
commuting the equations roughly 20 times with the elements of Z (see Foot-
note 46). The precise numerology behind the hierarchy (4.3.11a)–(4.3.11g) is
complicated, but the following two features seem fundamental: (i) The top-
order blowup-rate μ−K

� (t), since, as we explain below, the blowup-exponent K
is tied to universal structural constants in the equations that are independent of
the number of times that we commute them. (ii) An improvement of precisely
μ2

�(t) at each step in the descent, which is tied to the fact that μ�(t) vanishes
linearly (as we mentioned at the end of Step 6).
To construct energies that result in controllable error terms, wemust weight var-
ious energy integrand terms with factors of μ, a difficulty that lies at the heart
of the analysis. For example, the energies E(Wave) for the “wave variables”
Ψ ∈ {ρ, v1, v2, v3} are constructed50 so that, at the level of the undifferenti-
ated equations, we have, relative to the geometric coordinates (4.2.1) and the
vectorfields in (4.3.1), the following schematic relation:51

E(Wave)[Ψ ](t)∼
∫

Σt

{
(X̆Ψ )2 + μ

(
(LΨ )2 + (Y1Ψ )2 + (Y2Ψ )2

)}
dϑ1dϑ2du.

(4.3.12)

49 Recall that μ� → 0 corresponds to the formation of the shock.
50 The energies for solutions to the wave equations of Theorem 1 can be constructed with
the help of the vectorfield multiplier method, based on the energy-momentum tensor for
wave equations and the multiplier vectorfield (1 + 2μ)L + 2X̆ ; see [21,22,29].
51 In reality, one must work with energies E(Wave)[Ψ ] = E(Wave)[Ψ ](t, u) that are local-
ized along portions of Σt that depend on the eikonal function u. We will suppress this issue
in our summary of the main ideas of the proof.
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The energy E(Wave);Top(t) on LHS (4.3.11a) schematically represents one of
the quantities E(Wave)[Z NtopΨ ](t), where Ntop ≈ 20 is the maximum number
of times that we need to commute the equations in order to close the estimates.
The factor ofμ in (4.3.12) is chosen so that only controllable error terms are gen-
erated in the energy identities (it is true, though not obvious, that RHS (4.3.12)
has the right strength). Note that some components of the energies become very
weak near the shock (that is, in regions where μ is small), namely the prod-
ucts on RHS (4.3.12) that are explicitly μ-weighted. This makes it difficult to
control the dangerous non-μ-weighted error terms that one encounters in the
energy identities. To control such “strong” error terms, one uses, in addition
to the energies (4.3.12), energies along Pu (known as “null fluxes” or “charac-
teristic fluxes”) as well as a coercive friction-type spacetime integral, which is

available because
∂

∂t
μ is quantitatively negative in the difficult region where

μ is small (as we described in Step 6). These aspects of the proof, though of
fundamental importance, are quite technical and have been well-understood
since Christodoulou’s work [6]. These issues are described in more detail in
[21,22,29], and we will not further discuss them here.
We must also derive energy estimates for the transport equations in Theorem 1.
Specifically, to control the transport variablesΦ ∈ {s,Ω1,Ω2,Ω3, S1, S2, S3,
C1, C2, C3,D}, we rely on energies with the following strength:52

E(Transport)[Φ](t) ∼
∫

Σt

μΦ2 dϑ1dϑ2du. (4.3.13)

As in the case of the wave variable energies, the factor ofμ in (4.3.13) is chosen
so that only controllable error terms are generated in the energy identities.
We now sketch some of the most important steps in the proof of the degenerate
top-order energy estimate (4.3.11a). We will focus only on the wave equation
energy estimates since the transport equation energy estimates are much easier
to derive.53 The basic difficulty is that, on the basis of energy identities, the
following integral inequality is the best that we are able to obtain:

E(Wave);Top(t) ≤ C ε̊2 + A
∫ t

s=0

{
sup
Σs

∣∣∣∣∣
∂
∂sμ

μ

∣∣∣∣∣
}
E(Wave);Top(s) ds + · · · ,

(4.3.14)

where A is a universal positive constant that is independent of the equation
of state and the number of times that the equations are commuted, and

52 More precisely, the energy (4.3.13) is useful below the top derivative level, but it is
not adequate for controlling the top-order derivatives of the transport variables; at the top
derivative level, one must rely on the elliptic estimates that we describe in Step 8.
53 It turns out, however, that the g-timelike nature of the transport operator B (as shown
by Lemma 1) is important for the transport equation energy estimates; see [21] for further
discussion on this point.
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· · · denotes similar or less degenerate error terms. Below, we explain the ori-

gin of the degenerate factor

∣∣∣∣∣
∂
∂sμ

μ

∣∣∣∣∣ on RHS (4.3.14) (which blows up as the

shock forms), whose presence is tied to an issue that we highlighted earlier: the
required top-order regularity properties of the eikonal function are difficult to
derive. To apply Gronwall’s inequality to the inequality (4.3.14), we need the
following crucial estimate:

∫ t

s=0
sup
Σs

∣∣∣∣∣
∂
∂sμ

μ

∣∣∣∣∣ ds ∼
∣∣∣lnμ−1

�

∣∣∣ , (4.3.15)

where μ� is defined in (4.3.10). The estimate (4.3.15) can be derived with the
help the estimates

μ�(t) ∼ 1 − δ̊∗t, (4.3.16)∥∥∥∥ ∂

∂t
μ

∥∥∥∥
L∞(Σt )

∼ δ̊∗, (4.3.17)

stop where δ̊∗ > 0 is a data-dependent parameter that, roughly speaking, mea-

sures the L∞ size of the term
∂

∂u
v1 on RHS (4.3.9). We note that to close

the proof, one needs to consider initial data such that ε̊ is small relative to δ̊∗
(though δ̊∗ might be small in an absolute sense). We also note that the estimates
(4.3.16)–(4.3.17) fall under the scope of the sharp estimates for μ from Step 6.
Moreover, we point out that the aforementioned fact that μ� vanishes linearly
is important for deriving (4.3.15). Finally, we note that (4.3.15) is just a quasi-

linear version of the estimate
∫ 1

s=t

1

s
ds ≤ ln(t−1), in which s = 0 represents

the time of first vanishing of μ� and s = 1 represents the “initial” data time.
After we have derived (4.3.14) and (4.3.15), we can applyGronwall’s inequality
[ignoring the terms · · · on RHS (4.3.14)] to obtain the following bound:

E(Wave);Top(t) ≤ C ε̊2μ−A
� (t). (4.3.18)

The bound (4.3.18) is essentially the top-order energy estimate (4.3.11a). How-
ever, in reality, the blowup-exponent K on RHS (4.3.11a) is larger than the
blowup-exponent A on RHS (4.3.18) because the correct estimate (4.3.11a) is
influenced by additional difficult error terms that we have ignored in deriving
(4.3.18).
We now briefly explain the origin of the difficult error integral on RHS (4.3.14).
Let �Ψ := {ρ, v1, v2, v3} denote the array of “wave variables,” and let Ψ denote
any element of �Ψ . The difficulty arises from the worst commutator error terms
that are generated when one commutes the elements ofZ [see (4.3.1)] through
the wave operator μ�g in the wave equation satisfied by Ψ . To explain the
main ideas, we consider only the wave equation verified by Y NΨ , where Y N



1260 Jared Speck

schematically denotes an order N differential operator corresponding to re-
peated differentiation with respect to elements of the set {Y1,Y2}; similar dif-
ficulties arise upon commuting μ�g with other strings of vectorfields from
Z . Specifically, one can show that upon commuting any of the μ-weighted
wave equations (3.1.1a)–(3.1.1b) with Y N , we obtain an inhomogeneous wave
equation of the schematic form

μ�gY
NΨ = (X̆ �Ψ )Y N trg/χ + · · · . (4.3.19)

The term χ on RHS (4.3.19) is the null second fundamental form of the co-
dimension-two tori Pu ∩ Σt , that is, the symmetric type

(0
2

)
tensorfield on

Pu ∩ Σt whose components are χ ∂

∂ϑ A
∂

∂ϑB
= g(D ∂

∂ϑ A
L ,

∂

∂ϑ B
), where D is

the Levi–Civita connection of g. Moreover, trg/χ is the trace of χ with respect
to the Riemannian metric g/ induced on Pu ∩ Σt by g. Geometrically, trg/χ is
the null mean curvature of Pu . Analytically, Y N trg/χ is a difficult commutator
term in which the maximum possible number of derivatives falls on the eikonal
function (recall that L ∼ ∂u and thus χ ∼ ∂2u). As we mentioned earlier, the
main difficulty is that a naive treatment of terms involving themaximumnumber
of derivatives of the eikonal function would lead to the loss of a derivative and
obstruct the closure of the top-order energy estimates. This difficulty is visible
directly from the evolution equation satisfied by Y N trg/χ, which can be derived
from geometric considerations54 and which takes the following schematic form
[recall that P schematically denotes elements of the Pu-tangent setP defined
in (4.3.2)]:

∂

∂t
Y N trg/χ = Δ/ Y N �Ψ + ∂

∂t
PY N �Ψ + l.o.t, (4.3.20)

where Δ/ is the covariant Laplacian induced on Pu ∩ Σt by g/ and l.o.t. denotes
terms with an allowable amount of regularity, involving, for example, ≤ N + 1
derivative of �Ψ .55 The difficulty with equation (4.3.20) is that the two explic-
itly displayed terms on RHS (4.3.20) depend on N + 2 derivatives of �Ψ , which
is one more than we can control by energy estimates for the wave equation
(4.3.19). That is, the two terms on RHS (4.3.20) seem to lose a derivative. To

overcome this difficulty for the second term
∂

∂t
PY N �Ψ , we can simply bring it

over to the left so that equation (4.3.20) becomes
∂

∂t

{
Y N trg/χ − PY N �Ψ

}
=

Δ/ Y N �Ψ + l.o.t . To handle the term Δ/ Y N �Ψ , we can use a similar – but more
complicated – strategy, first employed in [19] in the context of low-regularity

54 The precise version of equation (4.3.20) that one needs in a detailed proof is essentially
Raychaudhuri’s equation for trg/χ, an evolution equationwhosemain source term is the “LL”
component of the Ricci curvature of the acoustical metric g.
55 The precise version of (4.3.20) involves, in addition to the wave variables �Ψ , the entropy
s, since the computations involve the wave equation (3.1.1c) verified by s; we will ignore
this issue here.
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local well-posedness and later by Christodoulou [6] in the context of shock
formation: by decomposing the principal parts of theY N -commutedwave equa-
tions (3.1.1a)–(3.1.1b), we can obtain the following algebraic relation, writ-

ten in schematic form: μΔ/ Y N �Ψ = ∂

∂t

{
X̆Y N �Ψ + μPY N �Ψ

}
+ l.o.t., where

P ∈ P . Bringing the perfect time derivative term ∂
∂t

{
X̆Y N �Ψ + μPY N �Ψ

}
over to LHS (4.3.20) as well, and accounting for the factor of μ, we obtain

∂

∂t

{
μY N trg/χ − X̆Y N �Ψ − μPY N �Ψ

}
= l.o.t. (4.3.21)

The key point is that all inhomogeneous terms on RHS (4.3.21) now feature
an allowable amount of regularity, which implies that we can gain back the
derivative by deriving estimates for a “modified” quantity with the following
schematic structure:56

μY N trg/χ − X̆Y N �Ψ − μPY N �Ψ . (4.3.22)

We have therefore explained how to avoid the derivative loss that was threatened
by the term Y N trg/χ onRHS (4.3.19). However, our approach comeswith a large
price: the inhomogeneous term on RHS (4.3.19) involves the factor Y N trg/χ,
while (4.3.21) yields an evolution equation only for the modified version of
μY N trg/χ stated in (4.3.22); the discrepancy factor of μ is what leads to the

dangerous factor of
1

μ
on RHS (4.3.14). Moreover, from a careful analysis that

takes into account the evolution equation forμ as well as the precise structure of
the factor X̆ �Ψ on RHS (4.3.19) and the terms on LHS (4.3.21), one can deduce

the presence of the factor
∂

∂s
μonRHS (4.3.14),whose precise form is important

for the proof of the estimate (4.3.15).Wehave therefore explained themain ideas
behind the origin of the main error integral displayed on RHS (4.3.14).
Having provided an overview of the derivation of the top-order energy estimate
(4.3.11a), we now describe why the below-top-order energies become succes-
sively less singular as one descends below top-order, that is, how to imple-
ment the energy estimate descent scheme resulting in the estimates (4.3.11b)–
(4.3.11g); recall that the non-degenerate energy estimates (4.3.11e)–(4.3.11g)
are needed to improve, by Sobolev embedding and a small-data assumption, the
L∞ bootstrap assumptions from Step 2, which are central to the whole process.

56 In reality, in three or more spatial dimensions, there remain some additional terms on
RHS (4.3.21) that depend on the top-order derivatives of the eikonal function. These terms are
schematically of the form of the top-order derivatives of the trace-free part ofχ, traditionally
denoted by χ̂ (note that χ̂ ≡ 0 in two spatial dimensions). From the prior discussion, one
might think that these terms result in the loss of a derivative and obstruct the closure of
the energy estimates. However, it turns out that one can avoid the derivative loss for χ̂ by
exploiting geometric Codazzi-type identities and elliptic estimates on the co-dimension-two
tori Pu ∩ Σt . Such elliptic estimates for χ̂ have been well-understood since [7] and, in the
context of shock formation, since [6]. For this reason, we do not further discuss this technical
issue here.
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A key ingredient in the energy estimate descent scheme is the following esti-
mate, valid for constants b > 0, which shows that integrating the singularity in
time reduces its strength:∫ t

s=0
μ−b

� (s) ds � μ1−b
� (t) + 1. (4.3.23)

The estimate (4.3.23) is easy to obtain thanks to the sharp information that
we have about the linear vanishing rate of μ� [see (4.3.16)]. We note that
(4.3.23) is just a quasilinear version of the estimate

∫ 1
s=t s

−b ds � t1−b for
0 < t < 1, where s = 0 represents the vanishing ofμ�. A second key ingredient
in implementing the descent scheme is to exploit that below top-order, we
can estimate the difficult term Y N trg/χ on RHS (4.3.19) in a different way;
recall that this term was the main driving force behind the degenerate top-
order energy estimates. Specifically, for N below top-order, we can directly
estimate Y N trg/χ by integrating the transport equation (4.3.20) in time, without
going through the procedure that led to equation (4.3.21) in the top-order case.
This approach results in a loss of one derivative (which is permissible below
top-order) caused by the two explicitly displayed terms on RHS (4.3.20) and
therefore couples the below-top-order energy estimates to the top-order ones.
However, the integration in time allows one to employ the estimate (4.3.23),
which implies that below top-order, Y N trg/χ is less singular than RHS (4.3.20);
this is the crux of the descent scheme. We also note that this procedure allows
one to avoid the difficult factor of μ, which in the top-order case appeared on
LHS (4.3.21) and which drove the blowup-rate of the top-order energies.
We have thus explained one step in the descent. One can continue the descent,
noting that at each stage, we can directly estimate the difficult term Y N trg/χ by
integrating the transport equation (4.3.20) in time and allowing the loss of one
derivative coming from the terms on RHS (4.3.20). This procedure couples the
energy estimates at a given derivative level to the estimates for the (already
controlled) next-highest-energy, but it nonetheless allows one to derive the
desired improvement in the energy blowup-rate by downward induction, thanks
to the integration in time and the estimate (4.3.23).

8. (Elliptic estimates along Σt ). We now confront an important issue that we
ignored in Step 7: to close the energy estimates, we are forced to control some
of the inhomogeneous terms in the equations using elliptic estimates along
Σt . This major difficulty is not present in works on shock formation for wave
equations; it was encountered for the first time in our earlier work on shock
formation [21] for barotropic fluids with vorticity. A key aspect of the difficulty
is that elliptic estimates alongΣt necessarily involve controlling the derivatives
of the solution in a direction transversal to the acoustic characteristicsPu , that is,
in the singular direction. We need elliptic estimates to control the source terms
on RHSs (3.1.3b) and (3.1.4a) that depend on ∂Ω and ∂S, where ∂ denotes the
gradient with respect to the Cartesian spatial coordinates. More precisely, we
need the elliptic estimates only at the top derivative level, but we will ignore
that issue and instead focus on the main issue: the degeneracy of the elliptic
estimates with respect to μ.
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The elliptic estimates can easily be derived relative to the Cartesian coordinates
and theEuclidean volume formdx1dx2dx3 onΣt . However, in order to compare
the strength of the elliptic estimates to that of the wave energies (4.3.12) and
the transport energies (4.3.13), we need to understand the relationship between
the Euclidean volume form and the volume form dudϑ1dϑ2 featured in the
energies. Specifically, by studying the Jacobian of the change of variables map
between the geometric and the Cartesian coordinates, one can show that there
is an O(μ) discrepancy factor between the two forms:

dx1dx2dx3 ∼ μ dudϑ1dϑ2. (4.3.24)

In the rest of this discussion, our notion of an L2(Σt ) norm is in terms of the
volume form dudϑ1dϑ2. That is, we set

‖ f ‖2L2(Σt )
:=

∫
f 2(t, u, ϑ1, ϑ2) dudϑ1dϑ2. (4.3.25)

We now further explain some aspects of the elliptic estimates. For convenience,
we focus on the estimates for ∂S, where as before, ∂ denotes the gradient
with respect to the Cartesian spatial coordinates. One also needs similar elliptic
estimates to obtain control over ∂Ω , but we omit those details; see [21] for an
overview of how to control ∂Ω in the barotropic case. Our elliptic estimates
are essentially standard div-curl estimates of the form57

∫
Σt

∣∣∂S∣∣2 dx1dx2dx3 �
∫

Σt

|divS|2 dx1dx2dx3 +
∫

Σt

|curlS|2 dx1dx2dx3.

(4.3.26)

With the help of (4.3.24) and (4.3.25), we can re-express (4.3.26) as follows:

‖√μ∂S‖L2(Σt )
� ‖√μdivS‖L2(Σt )

+ ‖√μcurlS‖L2(Σt )
. (4.3.27)

We now explain the role that (4.3.27) plays in closing the energy estimates. Our
main goal is to show how to derive the bound

‖√μ∂S‖2L2(Σt )
� ε̊2μ−σ̃

� (t) + · · · , (4.3.28)

where σ̃ > 0 is a small constant and · · · denotes error terms that can be con-
trolled without elliptic estimates (for example, via the wave equation energies).
We stress that (4.3.28) is meant to be interpreted as representing the kind of
estimate that one needs at the top derivative level, since below top-order, one
can avoid using elliptic estimates.58 We also stress that, since (4.3.11a) implies

57 We clarify that the elliptic estimate (4.3.26) holds for solutions that are compactly
supported in space (and thus there are no boundary terms).
58 In fact, one should avoid using elliptic estimates below the top-order and instead control
the below-top-order derivatives of S using the transport equation (3.1.2c); this is important
for implementing the descent scheme described above, in which, in particular, themid-order-
and-below derivatives of S with respect to the geometric vectorfields are shown to remain
bounded.
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that the top-order wave energies can be very degenerate, some of the terms
in · · · on RHS (4.3.28) can in fact blow up at a much worse rate than the
one μ−σ̃

� (t) that we have explicitly displayed. The point of writing the esti-
mate for ‖√μ∂S‖2

L2(Σt )
in the form (4.3.28) is that this form emphasizes the

following point: the self-interaction terms in the elliptic estimates are not the
ones driving the blowup-rate of the top-order derivatives of S; instead, the
blowup-rate of ‖√μ∂S‖2

L2(Σt )
is driven by the blowup-rate of the top-order

derivatives of the wave variables {ρ, v1, v2, v3}, which are hidden in the · · ·
terms on RHS (4.3.28). It turns out that, as a consequence, the blowup-rates for
the top-order wave energies are exactly the same as they are in the irrotational
and isentropic case. That is, our approach to energy estimates yields the same
blowup-exponent K in the energy hierarchy (4.3.11a)–(4.3.11g) compared to
the exponent that our approach would yield in the irrotational and isentropic
case.
To explain how to derive (4.3.28), we start by discussing energy estimates for
the transport equation (3.1.4a) forD. We again remind the reader that the ellip-
tic estimate approach to deriving (4.3.28) is needed mainly at the top-order, but
for convenience, we discuss here only the non-differentiated equations. Specifi-
cally, by deriving standard transport equation energy estimates for the weighted
transport equationμ× (3.1.4a), by using the L∞ bootstrap assumptions of Step
3 (which in particular can be used to derive the bound ‖μ∂av

b‖L∞(Σt ) � 1),
and taking into account definition (4.3.10), one can obtain the following integral
inequality:

‖√μD‖2L2(Σt )
≤ γ

∫ t

s=0

1

μ�(s)
‖√μ∂S‖2L2(Σs )

ds + · · · . (4.3.29)

In (4.3.29), · · · denotes simpler error terms that can be treated without elliptic
estimates and, by judicious use of Young’s inequality, it can be arranged that
γ is a small positive constant.59 Substituting the estimate (4.3.27) into (4.3.29)
and using equation (3.1.4b), we obtain

‖√μD‖2L2(Σt )
≤ γ

∫ t

s=0

1

μ�(s)
‖√μdivS‖2L2(Σs )

ds + · · · , (4.3.30)

where · · · is as above. From the L∞ bootstrap assumptions of Step 3, one
can show that exp(2ρ) � 1. Thus, in view of definition (1.3.13b), we deduce

59 γ can be chosen to be small by using Young’s inequality in the form ab � γa2 +
1

γ
b2 on the relevant error integrands. It turns out that the large-coefficient error integral,

which corresponds to the integrand
1

γ
b2 and which we have relegated to the terms · · ·

on RHS (4.3.29), is much less degenerate than the one we have explicitly displayed on
RHS (4.3.29) and in particular, it does not contribute to the blowup-rate of the top-order
energies. A full discussion of this issue would involve a lengthy interlude in which we
describe the need to rely, in addition to energies along Σt , energies along the acoustic
characteristics Pu . For this reason, we avoid further discussing this technical detail here.
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‖√μdivS‖2
L2(Σs )

� ‖√μD‖2
L2(Σs )

+ · · · , where · · · denotes terms that can be
controlled without elliptic estimates, that is, via energy estimates for the wave
equations (3.1.1a)–(3.1.1b) and the transport equations (3.1.2a)–(3.1.2c). From
these considerations and (4.3.30), we deduce

‖√μD‖2L2(Σt )
≤ γ

∫ t

s=0

1

μ�(s)
‖√μD‖2L2(Σs )

ds + · · · , (4.3.31)

where we again emphasize that γ > 0 can be chosen to be a small constant.
Then from (4.3.16), (4.3.31), Gronwall’s inequality, and an appropriate O(ε̊)-
size small-data assumption, we deduce that

‖√μD‖2L2(Σt )
� ε̊2μ

−γ̃
� (t) + · · · , (4.3.32)

where γ̃ > 0 is a small constant whose smallness is controlled by γ. Again
using (1.3.13b) and the bound exp(2ρ) � 1, we deduce from (4.3.32) that60

‖√μdivS‖2L2(Σt )
� ε̊2μ

−γ̃
� (t) + · · · . (4.3.33)

One can obtain similar – but much simpler – estimates for ‖√μcurlS‖2
L2(Σt )

directly from equation (3.1.4b).61 Then inserting these bounds into (4.3.27),
we finally obtain the desired bound (4.3.28). We have therefore presented the
main ideas behind the elliptic estimates. This completes our overview of our
forthcoming proof of shock formation.

5. Proof of Theorem 1

In this section, we prove Theorem 1. The theorem is a conglomeration of Lem-
mas 3, 4, 5, 6, 8, 9, and 10, in which we separately derive the equations stated
in the theorem. Actually, to obtain Theorem 1 from the lemmas, one must slightly
reorganize the terms in the equations and relabel some of the indices; we omit those
minor details.

Throughout Section 5, we freely use the following identity [see (1.3.6)]:

ωi = exp(ρ)Ω i . (5.0.1)

5.1. Deriving the Transport and Transport-div-curl Equations

In this subsection, we derive the transport and transport–divergence–curl equa-
tions in Theorem 1.

60 We again note that the smallness assumption guarantees, roughly, that the data are near
that of a simple isentropic plane wave solution.
61 The bound is completely trivial at the level of the undifferentiated equations since
curlS = 0. The needed bound is less trivial after one commutes equation (3.1.4b) with
the elements of Z since one must control the commutator terms.
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5.1.1. Deriving the Transport Equations for {Ω i }i=1,2,3 We now establish the
transport equations (3.1.2a) for the Cartesian components {Ω i }i=1,2,3.

Lemma 3. (Transport equations for Ω i ) For C2 solutions of the compressible
Euler equations (1.3.11a)–(1.3.11c), the Cartesian components {Ω i }i=1,2,3 of the
specific vorticity vectorfield from Def. 1 verify the following transport equations:

BΩ i = Ωa∂av
i − exp(−2ρ)c−2 p;s

�̄
εiab(Bva)Sb. (5.1.1)

Proof. We first note the following chain rule identity, which follows easily from

definitions (1.3.6) and (1.3.9):
1

�̄
exp(−ρ)∂i p = c2δia∂aρ + exp(−ρ)

p;s
�̄

δia∂as. It

follows that (RHS(1.3.11b))i = − 1

�̄
exp(−ρ)∂i p. Hence, applying exp(−ρ)curl

to (1.3.11b) and using definition (1.3.8), the antisymmetry of ε..., and the symmetry
property ∂a∂b p = ∂b∂a p, we deduce the following identity:

exp(−ρ) (curlRHS(1.3.11b))i = exp(−2ρ)
p;s
�̄

εiab(∂aρ)∂bs

= exp(−2ρ)
p;s
�̄

εiab(∂aρ)Sb. (5.1.2)

Next, in view of the definition (1.3.6) ofΩ , we commute equation (1.3.11b)with the
operator exp(−ρ)curl and use equations (1.3.11a) and (1.3.12), the antisymmetry
of ε..., the identity εiabεdeb = δidδae − δieδad , and the identity (5.1.2) to deduce

BΩ i = − exp(−ρ)εiab(∂av
d)∂dv

b − exp(−ρ)(Bρ)ωi + exp(−2ρ)
p;s
�̄

εiab(∂aρ)Sb

(5.1.3)

= − exp(−ρ)εiab(∂av
d)∂dv

b + (∂av
a)Ω i + exp(−2ρ)

p;s
�̄

εiab(∂aρ)Sb

= − exp(−ρ)εiab(∂av
d)(∂dv

b − ∂bv
d) + (∂av

a)Ω i

+ exp(−2ρ)
p;s
�̄

εiab(∂aρ)Sb

= −εiabεdbeΩ
e(∂av

d) + (∂av
a)Ω i + exp(−2ρ)

p;s
�̄

εiab(∂aρ)Sb

= εiabεdebΩ
e(∂av

d) + (∂av
a)Ω i + exp(−2ρ)

p;s
�̄

εiab(∂aρ)Sb

= (δidδae − δieδad)Ω
e∂av

d + (∂av
a)Ω i + exp(−2ρ)

p;s
�̄

εiab(∂aρ)Sb

= Ωa(∂av
i ) + exp(−2ρ)

p;s
�̄

εiab(∂aρ)Sb.

Next, we use equation (1.3.11b), the definition Si = ∂i s, and the antisymmetry
of ε... to derive the identity εiab(∂aρ)Sb = −c−2εiab(Bva)Sb. Substituting this
identity into the last product on RHS (5.1.3), we arrive at (5.1.1). 
�
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5.1.2. Deriving the Transport Equations for s and {Si }i=1,2,3 We now estab-
lish the transport equations (3.1.2b)–(3.1.2c) for s and the Cartesian components
{Si }i=1,2,3.

Lemma 4. (Transport equations for s and Si ) For C2 solutions of the compressible
Euler equations (1.3.11a)–(1.3.11c), the entropy s and the Cartesian components
{Si }i=1,2,3 of the entropy gradient vectorfield defined in (1.3.8) verify the following
transport equations:

Bs = 0, (5.1.4a)

BSi = −Sa∂av
i + exp(ρ)εiabΩ

a Sb. (5.1.4b)

Proof. Equation (5.1.4a) is just a restatement of (1.3.11c).
To derive (5.1.4b), we first commute equation (5.1.4a) with ∂i and use definition

(1.3.12), the definition Si = ∂i s, and the identity (5.0.1) to obtain

BSi = −δab(∂iv
a)Sb (5.1.5)

= −δab(∂av
i )Sb + δab(∂av

i − ∂iv
a)Sb

= −Sa∂av
i + εai jω

j Sa

= −Sa∂av
i + exp(ρ)εai jΩ

j Sa .

Equation (5.1.4b) now follows from (5.1.5) and the antisymmetry of ε.... 
�

5.1.3. Deriving the Transport–Divergence–Curl Equations for
D and {(curlS)i }i=1,2,3 We now establish the transport–divergence–curl equa-
tions (3.1.4a)–(3.1.4b) for D and the Cartesian components {(curlS)i }i=1,2,3.

Lemma 5. (Transport–divergence–curl equations for D and curlSi ) For C3 solu-
tions of the compressible Euler equations (1.3.11a)–(1.3.11c), the modified fluid
variable D defined in (1.3.13b) and the Cartesian components {(curlS)i }i=1,2,3 of
the curl of the entropy gradient vectorfield defined in (1.3.8) verify the following
transport–divergence–curl equations:

BD = 2 exp(−2ρ)
{
(∂av

a)∂bS
b − (∂av

b)∂bS
a
}

+ 2 exp(−2ρ)
{
Sa(∂av

b)∂bρ − (∂av
a)Sb∂bρ

}

+ exp(−ρ)δab(curlΩ)a Sb, (5.1.6a)

(curlS)i = 0. (5.1.6b)

Proof. Equation (5.1.6b) is a simple consequence of the fact that S is a (spatial)
gradient vectorfield.

To derive (5.1.6a), we first commute the already established equation (5.1.4b)
with ∂i and use definition (1.3.12) and to deduce

BdivS = −2(∂av
b)∂bS

a − Sa∂adivv + exp(ρ)εiab(∂iρ)Ωa Sb

+ exp(ρ)εiab(∂iΩ
a)Sb + exp(ρ)εiabΩ

a∂i S
b. (5.1.7)
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From equation (5.1.6b), we see that the last product on RHS (5.1.7) vanishes. Also
noting that εiab(∂iΩa) = (curlΩ)b, we deduce from (5.1.7) that

BdivS = −Sa∂adivv − 2(∂av
b)∂a S

b + exp(ρ)εiab(∂iρ)Ωa Sb

+ exp(ρ)δab(curlΩ)a Sb. (5.1.8)

Next, using equation (1.3.11a) to substitute for the term divv on RHS (5.1.8) and
using equation (1.3.12), we find that

BdivS = Sa∂a(Bρ) − 2(∂av
b)∂bS

a + exp(ρ)εiab(∂iρ)Ωa Sb

+ exp(ρ)δab(curlΩ)a Sb

= B(Sa∂aρ) + Sa(∂av
b)∂bρ − (BSa)∂aρ − 2(∂av

b)∂bS
a

+ exp(ρ)εiab(∂iρ)Ωa Sb + exp(ρ)δab(curlΩ)a Sb. (5.1.9)

Using equation (5.1.4b) to substitute for the factor BSa on RHS (5.1.9), we deduce

BdivS = B(Sa∂aρ) − 2(∂av
b)∂bS

a + 2Sa(∂av
b)∂bρ + exp(ρ)δab(curlΩ)a Sb.

(5.1.10)

Bringing the term B(Sa∂aρ) on RHS (5.1.10) over to the left and then commuting
the equation with exp(−2ρ), we obtain

B
{
exp(−2ρ)divS − exp(−2ρ)Sa∂aρ

}
= −2 exp(−2ρ)(∂av

b)∂bS
a − 2 exp(−2ρ)(Bρ)divS

+ 2 exp(−2ρ)Sa(∂av
b)∂bρ + 2 exp(−2ρ)(Bρ)Sa∂aρ

+ exp(−ρ)δab(curlΩ)a Sb. (5.1.11)

Finally, using equation (1.3.11a) to substitute for the two factors of Bρ on RHS
(5.1.11) and referring to definition (1.3.13b), we arrive at the desired equation
(5.1.6a). 
�

5.1.4. Deriving the Transport–Divergence–Curl Equations for divΩ and
{Ci }i=1,2,3 We now establish the transport–divergence–curl equations (3.1.3a)–
(3.1.3b) for divΩ and the Cartesian components {Ci }i=1,2,3.

Lemma 6. (Transport–divergence–curl equations for divΩ and Ci ) For C3 solu-
tions of the compressible Euler equations (1.3.11a)–(1.3.11c), the Cartesian com-
ponents {Ci }i=1,2,3 of the modified fluid variable defined in (1.3.13a) and the di-
vergence of the specific vorticity vectorfield defined in (1.3.6) verify the following
transport–divergence–curl equations:

divΩ = −Ωa∂aρ, (5.1.12a)

BCi = −2δ jkεiab exp(−ρ)(∂av
j )∂bΩ

k + εajk exp(−ρ)(∂av
i )∂ jΩ

k (5.1.12b)

+ exp(−3ρ)c−2 p;s
�̄

{
(BSa)∂av

i − (Bvi )∂a S
a
}
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+ exp(−3ρ)c−2 p;s
�̄

{
(Bva)∂a S

i − (∂av
a)BSi

}

+ exp(−3ρ)c−2 p;s
�̄

Si
{
(∂av

b)∂bv
a − (∂av

a)∂bv
b
}

+ exp(−3ρ)c−2 p;s
�̄

{
(∂av

a)Sb∂bv
i − Sa(∂av

b)∂bv
i
}

+ 2 exp(−3ρ)c−2 p;s
�̄

{
Sa(∂aρ)Bvi − (Bρ)Sa∂av

i
}

+ 2 exp(−3ρ)c−3c;ρ
p;s
�̄

{
Sa(∂aρ)Bvi − (Bρ)Sa∂av

i
}

+ exp(−3ρ)c−2 p;s;ρ
�̄

{
(Bρ)Sa∂av

i − Sa(∂aρ)Bvi
}

+ exp(−3ρ)c−2 p;s;ρ
�̄

Si
{
(Bva)∂aρ − (Bρ)∂av

a}

+ 2 exp(−3ρ)c−2 p;s
�̄

Si
{
(Bρ)∂av

a − (Bva)∂aρ
}

+ 2 exp(−3ρ)c−3c;ρ
p;s
�̄

Si
{
(Bρ)∂av

a − (Bva)∂aρ
}

+ 2 exp(−3ρ)c−3c;s
p;s
�̄

(Bvi )δabS
a Sb − 2 exp(−3ρ)c−3c;s

p;s
�̄

δabS
a(Bvb)Si

+ exp(−3ρ)c−2 p;s;s
�̄

δab(Bva)SbSi − exp(−3ρ)c−2 p;s;s
�̄

(Bvi )δabS
a Sb.

Proof. Equation (5.1.12a) follows easily fromapplying the operator div to equation
(5.0.1) and noting that since ω = curlv, we have divω = 0.

We now derive (5.1.12b). First, commuting the already established equation
(5.1.1) with the operator curl and using definitions (1.3.8) and (1.3.12) and equation
(5.0.1), we compute that

B(curlΩ)i = Ωa∂aω
i + εiab(∂aΩ

d)∂dv
b − εiab(∂av

d)∂dΩ
b

− εiabεbjk∂a

{
exp(−2ρ)c−2 p;s

�̄
(Bv j )Sk

}

= (exp ρ)Ωa∂aΩ
i + (exp ρ)Ω iΩa∂aρ

+ εiab(∂aΩ
d)∂dv

b − εiab(∂av
d)∂dΩ

b

+ 2εiabεbjk(∂aρ)

{
exp(−2ρ)c−2 p;s

�̄
(Bv j )Sk

}

+ 2εiabεbjk(∂aρ)

{
exp(−2ρ)c−3c;ρ

p;s
�̄

(Bv j )Sk
}

+ 2εiabεbjk S
a
{
exp(−2ρ)c−3c;s

p;s
�̄

(Bv j )Sk
}

− εiabεbjk(∂aρ)

{
exp(−2ρ)c−2 p;s;ρ

�̄
(Bv j )Sk

}

− εiabεbjk S
a
{
exp(−2ρ)c−2 p;s;s

�̄
(Bv j )Sk

}
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− εiabεbjk

{
exp(−2ρ)c−2 p;s

�̄
(∂av

d)(∂dv
j )Sk

}

− εiabεbjk

{
exp(−2ρ)c−2 p;s

�̄
(B∂av

j )Sk
}

− εiabεbjk

{
exp(−2ρ)c−2 p;s

�̄
(Bv j )∂a S

k
}

. (5.1.13)

Next, using the identity εiabε jdb = δi jδad − δidδaj and the antisymmetry of
ε···, we rewrite the third and fourth terms on RHS (5.1.13) as follows:

εiab(∂aΩ
d)∂dv

b − εiab(∂av
d)∂dΩ

b

= −2δ jkεiab(∂av
j )∂bΩ

k

+ εiab(∂aΩ
d)(∂dv

b − ∂bv
d) + εiab(∂av

d)(∂bΩ
d − ∂dΩ

b)

= −2δ jkεiab(∂av
j )∂bΩ

k + εiabε jdb(∂aΩ
d)ω j + εiabε jbd(∂av

d)(curlΩ) j

= −2δ jkεiab(∂av
j )∂bΩ

k + exp(ρ)(divΩ)Ω i − exp(ρ)Ωa∂aΩ
i

+ (curlΩ)a∂av
i − (∂av

a)(curlΩ)i . (5.1.14)

Substituting RHS (5.1.14) for the third and fourth terms on RHS (5.1.13),
using equation (5.1.12a) for substitution, and using the identities (curlΩ)a∂av

i =
εajk(∂av

i )∂ jΩ
k and εiabεbjk = δi jδak − δikδaj , we compute that

B(curlΩ)i

= −2δ jkεiab(∂av
j )∂bΩ

k − (∂av
a)(curlΩ)i + εajk(∂av

i )∂ jΩ
k

+ 2 exp(−2ρ)c−2 p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−2ρ)c−2 p;s
�̄

(Bva)(∂aρ)Si

+ 2 exp(−2ρ)c−3c;ρ
p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−2ρ)c−3c;ρ
p;s
�̄

(Bva)(∂aρ)Si

+ 2 exp(−2ρ)c−3c;s
p;s
�̄

(Bvi )δabS
a Sb − 2 exp(−2ρ)c−3c;s

p;s
�̄

δabS
a(Bvb)Si

+ exp(−2ρ)c−2 p;s;ρ
�̄

(Bva)(∂aρ)Si − exp(−2ρ)c−2 p;s;ρ
�̄

Sa(∂aρ)Bvi

+ exp(−2ρ)c−2 p;s;s
�̄

δab(Bva)SbSi − exp(−2ρ)c−2 p;s;s
�̄

(Bvi )δabS
a Sb

+ exp(−2ρ)c−2 p;s
�̄

(∂av
b)(∂bv

a)Si − exp(−2ρ)c−2 p;s
�̄

Sa(∂av
b)∂bv

i

+ exp(−2ρ)c−2 p;s
�̄

(B∂av
a)Si − exp(−2ρ)c−2 p;s

�̄
Sa B∂av

i

+ exp(−2ρ)c−2 p;s
�̄

(Bva)∂a S
i − exp(−2ρ)c−2 p;s

�̄
(Bvi )∂a S

a . (5.1.15)

We now bring the terms exp(−2ρ)c−2 p;s
�̄

(B∂av
a)Si − exp(−2ρ)c−2 p;s

�̄
Sa B∂av

i

from the next-to-last line ofRHS (5.1.15) over to the left under the transport operator
B, which generates some additional commutator terms on the RHS (note that by
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(1.3.11c), the additional terms that feature a factor of Bs completely vanish). In
total, we obtain

B

{
(curlΩ)i + exp(−2ρ)c−2 p;s

�̄
Sa∂av

i − exp(−2ρ)c−2 p;s
�̄

(∂av
a)Si

}

= −(∂av
a)(curlΩ)i

− 2δ jkεiab(∂av
j )∂bΩ

k + εajk(∂av
i )∂ jΩ

k

− 2 exp(−2ρ)c−2 p;s
�̄

(Bρ)Sa∂av
i − 2 exp(−2ρ)c−3c;ρ

p;s
�̄

(Bρ)Sa∂av
i

+ exp(−2ρ)c−2 p;s;ρ
�̄

(Bρ)Sa∂av
i

+ exp(−2ρ)c−2 p;s
�̄

(BSa)∂av
i

+ 2 exp(−2ρ)c−2 p;s
�̄

(Bρ)(∂av
a)Si + 2 exp(−2ρ)c−3c;ρ

p;s
�̄

(Bρ)(∂av
a)Si

− exp(−2ρ)c−2 p;s;ρ
�̄

(Bρ)(∂av
a)Si

− exp(−2ρ)c−2 p;s
�̄

(∂av
a)BSi

+ 2 exp(−2ρ)c−2 p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−2ρ)c−2 p;s
�̄

(Bva)(∂aρ)Si

+ 2 exp(−2ρ)c−3c;ρ
p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−2ρ)c−3c;ρ
p;s
�̄

(Bva)(∂aρ)Si

+ 2 exp(−2ρ)c−3c;s
p;s
�̄

(Bvi )δabS
a Sb − 2 exp(−2ρ)c−3c;s

p;s
�̄

δabS
a(Bvb)Si

+ exp(−2ρ)c−2 p;s;ρ
�̄

(Bva)(∂aρ)Si − exp(−2ρ)c−2 p;s;ρ
�̄

Sa(∂aρ)Bvi

+ exp(−2ρ)c−2 p;s;s
�̄

δab(Bva)SbSi − exp(−2ρ)c−2 p;s;s
�̄

(Bvi )δabS
a Sb

+ exp(−2ρ)c−2 p;s
�̄

(∂av
b)(∂bv

a)Si − exp(−2ρ)c−2 p;s
�̄

Sa(∂av
b)∂bv

i

+ exp(−2ρ)c−2 p;s
�̄

(Bva)∂a S
i − exp(−2ρ)c−2 p;s

�̄
(Bvi )∂a S

a . (5.1.16)

Next, we add − exp(−2ρ)c−2 p;s
�̄

(∂av
a)Sb∂bv

i + exp(−2ρ)c−2 p;s
�̄

(∂av
a)2Si

to the first line of RHS (5.1.16), subtract the same terms on a different line, use
equation (1.3.11a) to substitute ∂av

a with −Bρ for some factors, and rearrange the
terms to deduce

B

{
(curlΩ)i + exp(−2ρ)c−2 p;s

�̄
Sa∂av

i − exp(−2ρ)c−2 p;s
�̄

(∂av
a)Si

}

= (Bρ)

{
(curlΩ)i + exp(−2ρ)c−2 p;s

�̄
Sa∂av

i − exp(−2ρ)c−2 p;s
�̄

(∂av
a)Si

}

+ exp(−2ρ)c−2 p;s
�̄

(BSa)∂av
i − exp(−2ρ)c−2 p;s

�̄
(Bvi )∂a S

a
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+ exp(−2ρ)c−2 p;s
�̄

(Bva)∂a S
i − exp(−2ρ)c−2 p;s

�̄
(∂av

a)BSi

− 2δ jkεiab(∂av
j )∂bΩ

k + εajk(∂av
i )∂ jΩ

k

+ exp(−2ρ)c−2 p;s
�̄

(∂av
b)(∂bv

a)Si − exp(−2ρ)c−2 p;s
�̄

(∂av
a)2Si

+ exp(−2ρ)c−2 p;s
�̄

(∂av
a)Sb∂bv

i − exp(−2ρ)c−2 p;s
�̄

Sa(∂av
b)∂bv

i

+ 2 exp(−2ρ)c−2 p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−2ρ)c−2 p;s
�̄

(Bρ)Sa∂av
i

+ 2 exp(−2ρ)c−3c;ρ
p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−2ρ)c−3c;ρ
p;s
�̄

(Bρ)Sa∂av
i

+ exp(−2ρ)c−2 p;s;ρ
�̄

(Bρ)Sa∂av
i − exp(−2ρ)c−2 p;s;ρ

�̄
Sa(∂aρ)Bvi

+ exp(−2ρ)c−2 p;s;ρ
�̄

(Bva)(∂aρ)Si − exp(−2ρ)c−2 p;s;ρ
�̄

(Bρ)(∂av
a)Si

+ 2 exp(−2ρ)c−2 p;s
�̄

(Bρ)(∂av
a)Si − 2 exp(−2ρ)c−2 p;s

�̄
(Bva)(∂aρ)Si

+ 2 exp(−2ρ)c−3c;ρ
p;s
�̄

(Bρ)(∂av
a)Si − 2 exp(−2ρ)c−3c;ρ

p;s
�̄

(Bva)(∂aρ)Si

+ 2 exp(−2ρ)c−3c;s
p;s
�̄

(Bvi )δabS
a Sb − 2 exp(−2ρ)c−3c;s

p;s
�̄

δabS
a(Bvb)Si

+ exp(−2ρ)c−2 p;s;s
�̄

δab(Bva)SbSi − exp(−2ρ)c−2 p;s;s
�̄

(Bvi )δabS
a Sb.

(5.1.17)

We now multiply both sides of (5.1.17) by exp(−ρ) and bring the factor of
exp(−ρ) under the operator B on the LHS. The commutator term (B exp(−ρ))×· · ·
completely cancels the first line of RHS (5.1.17), which therefore yields

B

{
exp(−ρ)(curlΩ)i + exp(−3ρ)c−2 p;s

�̄
Sa∂av

i − exp(−3ρ)c−2 p;s
�̄

(∂av
a)Si

}

= −2δ jkεiab exp(−ρ)(∂av
j )∂bΩ

k + εajk exp(−ρ)(∂av
i )∂ jΩ

k

+ exp(−3ρ)c−2 p;s
�̄

(BSa)∂av
i − exp(−3ρ)c−2 p;s

�̄
(Bvi )∂a S

a

+ exp(−3ρ)c−2 p;s
�̄

(Bva)∂a S
i − exp(−3ρ)c−2 p;s

�̄
(∂av

a)BSi

+ exp(−3ρ)c−2 p;s
�̄

(∂av
b)(∂bv

a)Si − exp(−3ρ)c−2 p;s
�̄

(∂av
a)2Si

+ exp(−3ρ)c−2 p;s
�̄

(∂av
a)Sb∂bv

i − exp(−3ρ)c−2 p;s
�̄

Sa(∂av
b)∂bv

i

+ 2 exp(−3ρ)c−2 p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−3ρ)c−2 p;s
�̄

(Bρ)Sa∂av
i

+ 2 exp(−3ρ)c−3c;ρ
p;s
�̄

Sa(∂aρ)Bvi − 2 exp(−3ρ)c−3c;ρ
p;s
�̄

(Bρ)Sa∂av
i

+ exp(−3ρ)c−2 p;s;ρ
�̄

(Bρ)Sa∂av
i − exp(−3ρ)c−2 p;s;ρ

�̄
Sa(∂aρ)Bvi
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+ exp(−3ρ)c−2 p;s;ρ
�̄

(Bva)(∂aρ)Si − exp(−3ρ)c−2 p;s;ρ
�̄

(Bρ)(∂av
a)Si

+ 2 exp(−3ρ)c−2 p;s
�̄

(Bρ)(∂av
a)Si − 2 exp(−3ρ)c−2 p;s

�̄
(Bva)(∂aρ)Si

+ 2 exp(−3ρ)c−3c;ρ
p;s
�̄

(Bρ)(∂av
a)Si − 2 exp(−3ρ)c−3c;ρ

p;s
�̄

(Bva)(∂aρ)Si

+ 2 exp(−3ρ)c−3c;s
p;s
�̄

(Bvi )δabS
a Sb − 2 exp(−3ρ)c−3c;s

p;s
�̄

δabS
a(Bvb)Si

+ exp(−3ρ)c−2 p;s;s
�̄

δab(Bva)SbSi − exp(−3ρ)c−2 p;s;s
�̄

(Bvi )δabS
a Sb.

(5.1.18)

From equation (5.1.18) and definition (1.3.13a), we conclude the desired equation
(5.1.12b). 
�

5.2. Deriving the Covariant Wave Equations

In this subsection, we derive the covariant wave equations in Theorem 1.

5.2.1. An Explicit Expression for the Covariant Wave Operator in Cartesian
Coordinates Recall that the covariant wave operator �g is defined in Def. 9. In
the next lemma, we provide an explicit expression for �gφ that holds relative to
the Cartesian coordinates.

Lemma 7. (�g relative to the Cartesian coordinates) Let g be the acoustical metric
from Def. 4. The covariant wave operator �g acts on scalar functions φ via the
following identity, where RHS (5.2.1) is expressed in Cartesian coordinates:

�gφ = −BBφ + c2δab∂a∂bφ (5.2.1)

+ 2c−1c;ρ(Bρ)Bφ − (∂av
a)Bφ − c−1c;ρ(g−1)αβ(∂αρ)∂βφ

− cc;s Sa∂aφ + 3c−1c;s(Bs)Bφ.

Proof. It is straightforward to compute using equations (2.1.1a)–(2.1.1b) that rel-
ative to Cartesian coordinates, we have

detg = −c−6 (5.2.2)

and hence

√|detg|g−1 = −c−3B ⊗ B + c−1
3∑

a=1

∂a ⊗ ∂a . (5.2.3)

Using definition (1.3.8) and equations (3.0.1), (5.2.2), and (5.2.3), we compute that

�gφ = −c3
(
Bα∂α(c−3)

)
Bβ∂βφ − (∂αB

α)Bβ∂βφ − (Bα∂αB
β)∂βφ (5.2.4)

− BαBβ∂α∂βφ + c2δab∂a∂bφ − cc;ρδab(∂aρ)∂bφ − cc;s Sa∂aφ.

Finally, from (5.2.4), the expression (1.3.12) for B, the expression (2.1.1b) for g−1,
and simple calculations, we arrive at (5.2.1). 
�
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5.2.2. Deriving the Covariant Wave Equation for ρ In the next lemma, we
derive the covariant wave equation (3.1.1b) for ρ.

Lemma 8. (Covariant wave equation for ρ) For C2 solutions of the compressible
Euler equations (1.3.11a)–(1.3.11c), the logarithmic density variable ρ from Def. 1
verifies the following covariant wave equation, where on RHS (5.2.5), D is the
modified fluid variable from Def. 3:

�gρ = − exp(ρ)
p;s
�̄

D − 3c−1c;ρ(g−1)αβ(∂αρ)∂βρ +
{
(∂av

a)∂bv
b − (∂av

b)∂bv
a
}

(5.2.5)

− 5

2
exp(−ρ)

p;s;ρ
�̄

Sa∂aρ − exp(−ρ)
p;s;s
�̄

δabS
a Sb.

Proof. First, using (5.2.1) with φ = ρ, equation (1.3.11a), and equation (1.3.11c)
(which implies that the last product on RHS (5.2.1) vanishes), we compute that

�gρ = −BBρ + c2δab∂a∂bρ + 2c−1c;ρ(Bρ)2 + (∂av
a)2 (5.2.6)

− c−1c;ρ(g−1)αβ(∂αρ)∂βρ − cc;s Sa∂aρ.

Next, we use definitions (1.3.8) and (1.3.12), equations (1.3.11a)–(1.3.11c), the

chain rule identity 2cc;s = (c2);s =
(
1

�̄
exp(−ρ)p;ρ

)
;s

= exp(−ρ)
p;ρ;s
�̄

, and the

identity p;ρ;s = p;s;ρ to compute that

BBρ = −∂a(Bva) + (∂av
b)∂bv

a

= c2δab∂a∂bρ + δab(∂ac
2)∂bρ + ∂a

{
exp(−ρ)

p;s
�̄

δab∂bs

}
+ (∂av

b)∂bv
a

= c2δab∂a∂bρ + exp(−ρ)
p;s
�̄

δab∂a∂bs + 2cc;ρδab(∂aρ)∂bρ

+ 2cc;sδab(∂aρ)∂bs − exp(−ρ)
p;s
�̄

δab(∂aρ)∂bs

+ exp(−ρ)
p;s;ρ
�̄

δab(∂aρ)∂bs + exp(−ρ)
p;s;s
�̄

δab(∂as)∂bs + (∂av
b)∂bv

a

= c2δab∂a∂bρ + exp(−ρ)
p;s
�̄

divS + 2cc;ρδab(∂aρ)∂bρ + (∂av
b)∂bv

a

+ 2 exp(−ρ)
p;s;ρ
�̄

Sa∂aρ − exp(−ρ)
p;s
�̄

Sa∂aρ + exp(−ρ)
p;s;s
�̄

δabS
a Sb.

(5.2.7)

Finally, using (5.2.7) to substitute for the term −BBρ on RHS (5.2.6), using the
identity (Bρ)Bρ− c2δab(∂aρ)∂bρ = −(g−1)αβ(∂αρ)∂βρ [see (2.1.1b)], using defi-
nition (1.3.13b) to algebraically substitute for the factor of divS onRHS (5.2.7), and
using the aforementioned chain rule identity to express the last term−cc;s Sa∂aρ on
RHS (5.2.6) as − 1

2 exp(−ρ)
p;ρ;s
�̄

Sa∂aρ, we arrive at the desired expression (5.2.5).

�
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5.2.3. Deriving theCovariantWaveEquations for {vi }i=1,2,3 In thenext lemma,
we derive the covariantwave equations (3.1.1a) verified by theCartesian component
functions {vi }i=1,2,3.

Lemma 9. (Covariant wave equations for {vi }i=1,2,3) For C2 solutions of the com-
pressible Euler equations (1.3.11a)–(1.3.11c), the scalar-valued Cartesian com-
ponent functions {vi }i=1,2,3 verify the following covariant wave equations, where
on RHS (5.2.8), {Ci }i=1,2,3 denotes the Cartesian components of the modified fluid
variable from Def. 3:

�gv
i = −c2 exp(2ρ)Ci −

{
1 + c−1c′} (g−1)αβ(∂αρ)∂βvi

+ 2 exp(ρ)εiab(Bva)Ωb − p;s
�̄

εiabΩ
a Sb

− 1

2
exp(−ρ)

p;ρ;s
�̄

Sa∂av
i

− 2 exp(−ρ)c−1c;ρ
p;s
�̄

(Bρ)Si + exp(−ρ)
p;s;ρ
�̄

(Bρ)Si . (5.2.8)

Proof. First, we use equation (5.2.1) with φ = vi , definition (1.3.8), equation
(1.3.11b), and equation (1.3.11c) (which implies that the last product onRHS (5.2.1)
vanishes), to compute

�gv
i = −BBvi + c2δab∂a∂bv

i − 2cc;ρ(Bρ)δia∂aρ − 2 exp(−ρ)c−1c;ρ
p;s
�̄

(Bρ)Si

(5.2.9)

− (∂av
a)Bvi − c−1c;ρ(g−1)αβ(∂αρ)∂βvi − cc;s Sa∂avi .

Next, we use definitions (1.3.8) and (1.3.12), equations (1.3.11a)–(1.3.11c), and
the already established equation (5.1.4b) to compute that

BBvi = −c2δia B∂aρ − 2cc;ρ(Bρ)δia∂aρ (5.2.10)

+ exp(−ρ)
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s;ρ
�̄

(Bρ)Si − exp(−ρ)
p;s
�̄

BSi

= −c2δia∂a(Bρ) + c2δia(∂av
b)∂bρ − 2cc;ρ(Bρ)δia∂aρ

+ exp(−ρ)
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s;ρ
�̄

(Bρ)Si

+ exp(−ρ)
p;s
�̄

Sa∂av
i − εiab

p;s
�̄

Ωa Sb

= c2δiaδbd∂a(∂bv
d) − δiaδbd(∂av

b)Bvd

− exp(−ρ)
p;s
�̄

δi jδab(∂ jv
a)Sb − 2cc;ρ(Bρ)δia∂aρ

+ exp(−ρ)
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s;ρ
�̄

(Bρ)Si

+ exp(−ρ)
p;s
�̄

Sa∂av
i − εiab

p;s
�̄

Ωa Sb
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= c2δab∂a∂bv
i + c2δia∂d(∂av

d − ∂dv
a)

− (Bva)∂av
i + (Bva)(∂av

i − ∂iv
a)

+ exp(−ρ)
p;s
�̄

Sa(∂av
i − ∂iv

a) − 2cc;ρ(Bρ)δia∂aρ

+ exp(−ρ)
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s;ρ
�̄

(Bρ)Si − p;s
�̄

εiabΩ
a Sb.

Next, we use definitions (1.3.4) and (1.3.8), the identity (5.0.1), equation (1.3.11b),
and the antisymmetry of ε··· to derive the identities

c2δia∂d(∂av
d − ∂dv

a) = c2εiab∂aω
b = c2curlωi

= c2 exp(ρ)curlΩ i + c2 exp(ρ)εiabΩ
b∂aρ

= c2 exp(ρ)curlΩ i − exp(ρ)εiab(Bva)Ωb

+ p;s
�̄

εiabΩ
a Sb, (5.2.11)

exp(−ρ)
p;s
�̄

Sa(∂av
i − ∂iv

a) = p;s
�̄

εbai S
aΩb = p;s

�̄
εiabΩ

a Sb, (5.2.12)

(Bva)(∂av
i − ∂iv

a) = exp(ρ)εbai (Bva)Ωb = − exp(ρ)εiab(Bva)Ωb.

(5.2.13)

Substituting the RHSs of (5.2.11)–(5.2.13) for the relevant terms on RHS (5.2.10),
we obtain

BBvi = c2δab∂a∂bv
i + c2 exp(ρ)curlΩ i − 2 exp(ρ)εiab(Bva)Ωb + p;s

�̄
εiabΩ

a Sb

− (Bva)∂av
i − 2cc;ρ(Bρ)δia∂aρ

+ exp(−ρ)
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s;ρ
�̄

(Bρ)Si . (5.2.14)

Next, substituting −RHS (5.2.14) for the term −BBvi on RHS (5.2.9), and using

the chain rule identity cc;s = 1

2
(c2);s = 1

2

(
1

�̄
exp(−ρ)p;ρ

)
;s

= 1

2
exp(−ρ)

p;ρ;s
�̄

,

we compute that

�gv
i = −c2 exp(ρ)(curlΩ)i + 2 exp(ρ)εiab(Bva)Ωb − p;s

�̄
εiabΩ

a Sb

+
{
(Bva)∂av

i − (∂av
a)Bvi

}
− c−1c;ρ(g−1)αβ(∂αρ)∂βvi

− 1

2
exp(−ρ)

p;ρ;s
�̄

Sa∂av
i

− 2 exp(−ρ)c−1c;ρ
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s
�̄

(Bρ)Si

+ exp(−ρ)
p;s;ρ
�̄

(Bρ)Si . (5.2.15)
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We now rewrite the terms in braces onRHS (5.2.15). Specifically, we use definitions
(1.3.8) and (2.1.1b) and equations (1.3.11a)–(1.3.11b) to obtain

(Bva)∂av
i − (∂av

a)Bvi = −c2δab(∂bρ)∂av
i − exp(−ρ)

p;s
�̄

Sa∂av
i + (Bρ)Bvi

(5.2.16)

= − exp(−ρ)
p;s
�̄

Sa∂av
i − (g−1)αβ(∂αρ)∂βvi .

Next, substituting (5.2.16) into (5.2.15), we deduce that

�gv
i = −c2 exp(ρ)(curlΩ)i −

{
1 + c−1c;ρ

}
(g−1)αβ(∂αρ)∂βvi

+ 2 exp(ρ)εiab(Bva)Ωb − p;s
�̄

εiabΩ
a Sb

− exp(−ρ)
p;s
�̄

Sa∂av
i − 1

2
exp(−ρ)

p;ρ;s
�̄

Sa∂av
i

− 2 exp(−ρ)c−1c;ρ
p;s
�̄

(Bρ)Si − exp(−ρ)
p;s
�̄

(Bρ)Si

+ exp(−ρ)
p;s;ρ
�̄

(Bρ)Si . (5.2.17)

Finally, we use equation (1.3.13a) to algebraically substitute for the term (curlΩ)i

onRHS(5.2.17) and equation (1.3.11a) to replace the term− exp(−3ρ)c−2 p;s
�̄

(∂av
a)

Si onRHS (1.3.13a)with exp(−3ρ)c−2 p;s
�̄

(Bρ)Si , which in total yields the desired

equation (5.2.8). 
�

5.2.4. Deriving the Covariant Wave Equation for s In the next lemma, we
derive the covariant wave equation (3.1.1c) for s, thereby completing the proof of
Theorem 1.

Lemma 10. (Covariant wave equation for s) For C2 solutions of the compressible
Euler equations (1.3.11a)–(1.3.11c), the entropy variable s verifies the following
covariant wave equation, where on RHS (5.2.18), D is the modified fluid variable
from Def. 3:

�gs = c2 exp(2ρ)D + c2Sa∂aρ − cc;ρSa∂aρ − cc;sδabSa Sb. (5.2.18)

Proof. First, we use equation (5.2.1) with φ = s, definition (1.3.8), the expression
(2.1.1b), and equation (1.3.11c) (which in particular implies that many products on
RHS (5.2.1) vanish) to compute

�gs = c2divS − cc;ρSa∂aρ − cc;sδabSa Sb. (5.2.19)

We then use equation (1.3.13b) to algebraically substitute for the factor of divS on
RHS (5.2.19), which immediately yields the desired equation (5.2.18). 
�
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