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Abstract

The present paper investigates the global stability of large solutions to the
compressible Navier—Stokes equations in the whole space. Our main results and
innovations can be stated as follows:

e Under the assumption that the density p(#, x) verifies p(0,x) > ¢ > 0 and
sup;~q lp(®)|lce < M with o arbitrarily small, we establish a new approach
for the convergence of the solutions to its associated equilibrium with an explicit
decay rate which is the same as that for the heat equation. The main idea of the
proof relies on the basic energy identity, techniques from blow-up criterion and
a new estimate for the low frequency part of the solutions.

e We prove the global-in-time stability for the equations, i.e, any perturbed solu-
tions will remain close to the reference solutions if initially they are close to
one another. This implies that the set of the smooth and bounded solutions is
open.

e Inspired by Paicu and ZHANG (J Funct Anal 262(8):3556-3584, 2012), we
construct global large solutions to the equations with a class of initial data
which are in L? type critical spaces and far away from equilibrium. Here,
“large solutions” means that the vertical component of the incompressible part
of the velocity could be arbitrarily large.

1. Introduction

In this paper, we are concerned with the global stability of large solutions to
3-D barotropic compressible Navier—Stokes equations:
9 p +div(pu) = 0,
o (pu) + div(pu @ u) — div (2,u(,o)D(u) + A(p)divu Id) + VP =0,
lim p =1,

|x]—o00

(CNS)
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where p = p(t,x) € RT stands for the density, u = !, u?, (@, x) =
", u?) e R? is the velocity field and the pressure P is given by a C2 func-
tion P = P(p) with P’ > 0. For simplicity, here we take P(p) = p? withy = 1.
The bulk and shear viscosities are given by A = A(p) and i = u(p), which satisfy
uw > 0and A + 2 > 0. We assume that p and A are two constants. Finally, D (u)
stands for the deformation tensor; that is, (D(u));; := %(aiuj + 9; u).

1.1. Short Review of the System (CNS)

There is a lot of literature on the barotropic compressible Navier—Stokes equa-
tions. Here we only review some results which are related to our stability result.

1.1.1. Well-Posedness Results in Sobolev Spaces The local well-posedness for
the system (CNS) was proved by NasH [31] for the smooth initial data which is away
from vacuum. For the global smooth solutions, it was first proved by MATSUMURA
and NisHIDA [29,30] if the initial data is close to equilibrium in H 3 x H3. For
the small energy, ZHANG [40], and HUANG et al. [23] proved the global existence
and uniqueness of (CNS). For the general initial data, if i = const, A(p) = bp”,
the authors in [24,37] established the global existence and uniqueness of classical
solutions for large initial data in dimension two.

1.1.2. Well-Posedness Results in Critical Spaces To catch the scaling invariance
property of the system (CNS), Danchin first introduced in his series papers [10—
13] the “Critical Spaces” which were inspired by the results for the incompressible
Navier—Stokes. More pre01sely, he proved the local well-posedness of (CNS) in the

critical Besov spaces B ; 1 X B‘ with 2 < p < 6, and global well-posedness of
.13 L1
(CNS) for the initial data close to a stable equilibrium in spaces (B, By ) X By |

In [7], Chen, Miao and Zhang introduced a new method (time-weighted Besov
space) to establish the local well-posedness for (CNS) in critical spaces. We remark
3

.31
that when p > 3, the Besov space B [f’] contains the data which allows to have
high oscillation. A typical example is

uo(x) = ¢ (x) sin(e " 'x - w)n,

where @ and n stand for any unit vector in R3 and ¢ for any smooth compactly

3
supported function. It is easy to check that |jug|| R 81_5, but ||u0||H% ~
B
p.1l
€7 can be arbitrarily large. The authors of [5,8] constructed global solutions of
(CNS) with such kind of the highly oscillating initial data. Later, HaspoT [20]
gave an alternative proof to the similar result by using the viscous effective flux.

Very recently, the authors of [14] generalized the previous results to allow for the
3

-1
incompressible part of the velocity to belong to B[’: | » with p € [2,4]. In this
case, by taking the low mach number limit, the solutions for (CNS) will converge
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to the solutions for the incompressible Navier—Stokes equations constructed by
CANNONE et al. [3,4].

For the ill-posedness results, the authors of [9] proved (CNS) is ill-posed in
the critical Besov spaces with p > 6. Finally, we mention some works on global
solutions with large initial data to (CNS). For (p) = pand A(p) = 0, HaspoT [21]
constructed solutions which velocity has large rotational part. With assuming that
the bulk viscosity is sufficiently large, Danchin and Mucha proved the existence
of a global solution with any initial velocity and almost constantly density in [15].
In [19], the authors constructed the large solutions based on the dispersion property
of acoustic waves.

1.1.3. Previous Results and the Main Motivation on Global Dynamics and
the Stability of (CNS) To the best of our knowledge, all results on the global
dynamics and the stability are restricted to the regime that the solutions are close to
the equilibrium. These results heavily rely on the analysis of the linearization of the
system and the standard perturbation framework. We refer readers to [17,25-30,33]
and reference therein for details. More precisely, if we assume that the initial data
(00, uo) is a small perturbation of equilibrium (pso, 0) in L?(R?) x H3(R?) with
p € [1, 2], then by the previous results, we get that

10 = poor )@l 2 £ CA+1) 167D (1.1)

This discloses that under the close-to-equilibrium setting, the rate of the conver-
gence of the solution is the same as that for the heat equations. In this sense, the
decay rate in (1.1) is the optimal decay rate for system (CNS). Recently, DANCHIN
and Xu [16] generalized this estimate in the critical L” framework based on the
existence result established in [14].

Our main motivation in the present work is to investigate the global dynamics
when the initial data is far away from the equilibrium in the whole space and then
apply it to prove the global-in-time stability. There are few results in this direction,
but in bounded domains, there are two results describing the longtime behavior of
the solution. The first one is due to Villani. By using the hypo-coercivity, in [38],
he proved that if the solution remains smooth and bounded in the torus, then it will
converge to its associated equilibrium with algebraic rate. The second result is due
to FANG, ZHANG and Z1. In [18], they showed that the weak solutions constructed
by P-L. Lions and improved by E. Feireisl decayed exponentially to equilibrium
in L? space, if the density is bounded. The key idea of the proof is in using the
Poincare inequality, the energy identity and the Bogovskii operator B to get the
integrability of p.

Unfortunately, the methods used in [18,38] cannot be employed to get the
global-in-time stability in the whole space. We first note that to get the longtime
behavior of the solution, both methods rely more or less on the fact that domain
is bounded. For instance, the Poincare inequality and the L” bound of Bogovskii
operator ‘B are used which do not hold in the whole space. Secondly the propagation
of the regularity is not considered in both papers which is essential to prove the
global-in-time stability. This shows that we need some new idea to prove the desired
result.
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1.2. Main Idea and Strategy

The present work investigates the global-in-time stability of the large solutions
to (CNS). The main difficulties lie in two areas: the propagation of the regularity
and the mechanism for the convergence to the equilibrium.

Our strategy is carried out in three steps: getting uniform-in-time bounds for
the propagation of the regularity, deriving a dissipation inequality, and using time-
frequency splitting method to obtain a new approach for the convergence to the
equilibrium with quantitative estimates.

To obtain uniform-in-time bounds for the solution, we borrow some techniques
from the blow-up criterion of the system used in [23,24,35,36,39]. There the
authors proved that the upper bound of the density will control the propagation
of the regularity, but they did not get uniform-in-time bounds. Under the assump-
tion that the density is bounded uniformly in time in C* with « arbitrarily small,
which is a little stronger than the assumption in [23,24,35,36,39], we succeed
in proving the uniform-in-time bounds for the propagation of the regularity. We
remark that here the key idea is making full use of the basic energy identity and the
coupling effect of the system.

When the uniform-in-time bounds for the regularity of the solution are
improved, the dissipation inequality can also be improved correspondingly. Thanks
to this observation, eventually we obtain that

d

where, roughly speaking, E(p, u) ~ ||p — 1||*> + |lu]|? and D(p, u) ~ |[Vp|* +
| Vu||?. Now the time-frequency splitting method is evoked if we can get the control
for the low frequency part of (p — 1, u). However it is difficult to derive the estimate
unless the solution is near the equilibrium. To overcome this obstruction, our key
idea is to resort to (o — 1, pu) instead of (o — 1, u) to obtain the estimate for the
low frequency part thanks to the new observation of cancellation and the coupling
effect for (CNS). One may check Lemma 2.3 for details. As a result, we obtain
the optimal decay estimate. We comment that the method used here is comparable
to the one due to SCHONBEK [34] for the incompressible Navier—Stokes equations.
Moreover, the method is robust, considering that we only request that the density
is bounded from above uniformly in time.

Once the global dynamics of the equations is clear, we can prove the global-in-
time stability for the system (CNS). The strategy falls into three steps:

(1) By the local well-posedness for the system (CNS), we can show that the
perturbed solution will remain close to the reference solution for a long time
if initially they are close.

(2) The method for the convergence implies that the reference solution is close
to the equilibrium after a long time.

(3) Combining these two facts, we can find a large time o such that at this moment
the solution is close to the equilibrium. Then it is not difficult to prove the
global existence in the perturbation framework.
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To show that our result on the global-in-time stability has wide application,
we construct large solutions to the system (CNS) with the initial data in some L”
critical spaces. Our main idea is inspired by [32]. The main observation lies in two
aspects. The first one is that the equation for (Pu)?3, the vertical component of the
incompressible part of the velocity u, is actually a linear equation. The second one is
that there is no quadratic term for (Pu)? in the nonlinear terms. Motivated by these
two facts, we construct a global solution for compressible Navier—Stokes equations
with the initial data such that (Pug)* could be arbitrarily large. Obviously such a
type of solution, initially, is far away from the equilibrium.

1.3. Function Spaces and Main Results

Before we state our results, let us introduce the notations and function spaces
which are used throughout the paper. We denote the multi-index o = (o1, a2, @3)

with |o| = a1 + a2 + a3. We use the notation a ~ b whenever a < C1b and
b < Cpa where C| and C, are universal constants. We denote C (A1, A2, - -+, Ay)
by a constant depending on parameters Ay, Ao, -+ , A, fu = (ul, u?, u3), then

we set uo" def (', u?).

We recall that a homogeneous Littlewood—Paley decomposition (A j)jez is
a dyadic decomposition in the Fourier space for R3. One may, for instance, set
Aj = (p(Z‘f D) with (&) := x(&/2) — x (&), and x anon-increasing nonnegative
smooth function supported in B(0, 4/3), and with value 1 on B(0, 3/4) (see [1,
Chap. 2] for more details). We then define, for I < p,r < oo and s € R, the
semi-norms

”Z”B’S” = “21s||AjZ”LP(Rd)| L (Z)"

As in [1], we adopt the following definition of homogeneous Besov spaces, which
turns out to be well adapted to the study of nonlinear PDEs:

B, = {z e S'®?: zllz,, < o0 and
Tim (18521 =0} with §; := x 27/ D).
j——00

As we shall work with time-dependent functions valued in Besov spaces, we intro-
duce the norm

flu ||L‘;(B;,,,) = |llut, ) ||B;,V, [ L9(0,T)"

As pointed out in [6], when using parabolic estimates in Besov spaces, it is some-
how natural to take the time-Lebesgue norm before performing the summation for
computing the Besov norm. This motivates us to introduce the following quantities:

~ . N JSIA .
iz iy 5 = Q1A jull g 1) | 1 -

The index T will be omitted if 7 = +o0 and we shall denote by CNI,(B;,J) the subset
of functions of ZOO(B‘;,J) which are also continuous from R to B;)r.
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Let us emphasize that, owing to Minkowski inequality, we have, if r < ¢,

. < - .
”Z”L(;(B‘;z,r) = ”Z”L;(Bf,,,)

with equality if and only if ¢ = r. Of course, the opposite inequality occurs if
rzgq.

An important example where those nonclassical norms are suitable is the heat
equation

0z —puAz=f,  zli=0 = 20, (1.2)
for which the following family of inequalities holds true:

~ . < . ~ -
Izl :}1(3;?;2/'") = C(”ZOHB;” + ”f”LlT(B;',V,)) (1.3)

forany T > 0,1 <m,p,r Socoands € R.
Now we are in a position to state our main results on the system (CNS). Our
first result is concerned with the global dynamics of the equation.

Theorem 1.1. Let 1 > %)», and (p, u) be a global and smooth solution of (CNS)
with initial data (pg, uo) where pg = ¢ > 0. Suppose that the following admissible
condition holds:

1 1
Urli=0 = —uo - Vg + —Lug — —Vp},, (1.4)
£0 £0
where operator L is defined by Lu = —div (uVu) — V((A + w)divu). Assume

d
that a =ef p — 1, and sup,5q | p(0) | c < M for some 0 < a < 1. Then, if
ao, ug € LPO(R3) N H2(R3) with py € [1, 2], we have

(1) (Lower bound of the density) There exists a positive constant p = p(c, M)
such that for allt > 0, p(t) > p-
(2) (Uniform-in-time bounds for the regularity of the solution)

oo
lalFoe g2 + lll7 0 2 + fo (IValz;
+IVull})de < Clp, M, llaoll 2, lluoll 72).- (1.5)
(3) (Decay estimate for the solution)

lu@ g1 + la® g < Clp. M. Naoll ot lluoll Lrong2) (1 + 1 7FP0),
(1.6)

where B(po) = %(% — 1.
(4) (Decay estimates in Critical spaces and the control of ||Vul| ;1 oo x))
For py < 2,

IIM(I)IIB% + IIH(I)IIB% < Cp, M, Nlaoll Lropss luoll Lrop2) (1 4+ 1) 7FP0,
2,1 2,1

(1.7)
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_1
< C(p, M. llaoll prop 2. uoll ropg2) (1 + ) 2P0, (1.8)

laIl
B 1

3
2
2,
o
f IVullpedt < C(B(po), ps M, llaollpronp2, 1ol Lronm2)- (1.9)
0

Several remarks are in order.

Remark 1.1. We fail to quantify the dependence of p on ¢ and M. The reason
results from the fact that lim,_, o || 0¥ () — 1|6 = 0 is used in the proof, which
shows that the lower bound of p depends on evolution of the solution. Once the
constants p and M are fixed, our theorem shows that the global dynamics of the
solution of (CNS) depends only on the initial data.

Remark 1.2. Our decay estimate (1.6) is optimal compared to the heat equation.
The control of [[Vullp1((0,00): 200y Yields the uniform-in-time propagation of the
higher regularity(see Corollary 1.1).

Remark 1.3. The condition p > %)L is to used to get the positivity of the left hand
side of (2.3) (see Lemma 2.2 below). Of course, we can relax this condition, for
instance if we follow the argument in [36,39]. However we do not want to pursue
that because our starting point is to describe the global dynamics of the equations
when the initial data is far away from the equilibrium.

Remark 1.4. We mention that the C* assumption for p can be relaxed by

sup [|p(¢)||Le < oo and lim sup Z ||Aj(,oy — Dlpe =0. (1.10)
>0 N—o00 tzoij

To see this, the reader may check Remark 2.3 for details. Since the second assump-
tion of (1.10) is not so easy to verify, we prefer to use the C* assumption instead
of (1.10).

As a direct consequence of Theorem 1.1, we prove the uniform-in-time propa-
gation of the regularity under the assumption that the Lipschitz norm of the velocity
is integrable in time. That is, we have

Corollary 1.1. Suppose that the initial data (po, uo) satisfies that 0 < ¢ <
po < M < oo and pg — l,ug € H™ withm € Nand m = 3 . If the
solution (p,u) of (CNS) verifies that |[Vul|lp1 010y < 00, then we have
inf;>0 p(1) = C(c, VUl £1(0,00: L)) and

Sug(llp — Ul + llull ) < Ce, M, po = Ul luoll m, V1]l 10,00: 100))-
[

Next we want to state our global-in-time stability result for the system (CNS).
To prove the result in the largest function space, we solve the problem in critical
spaces. From now on, we agree that for z € S’ (Rd),

=) Ajz oand = )" Ajz (1.11)

2 <Ry 2i>Ry
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for some large enough nonnegative integer Ry depending only on p, d. The corre-
sponding “truncated” semi-norms are defined as follows:

L L H H
zl7, = llz7lpe and ||zl =1z || po -
” || Z,r ” ”ng H “Bg,r ” ”35,;-

To simplify the notation, we introduce the notation

def L H
g el -+

Our second result can be stated as follows:

Theorem 1.2. Let (p, u) be a global and smooth solution for the (CNS) with the
initial data (po, ug) verifying that

1oy 3, SC, (1.12)

oy 7 oo g3 7!
7 (By,m ) L®(By

1 _ __ _
I=. o, Vol v il )
P LBy ") L
where2 < p < 4. Assume that (po— 1, iig) € LPO(R>) N H?(R?) with pg € [1, 2).
There exists a &g = &o(C) depending only on C such that for any 0 < & < g, if

lteo = pO)D 1.3 + 1P wo — o)l 5y + Qo —uo)D)l 13, S,
BZ,/J] Bzil B2,pl

(1.13)

then (CNS) admits a unique and global solution (p, u) with the initial data (pg, uo).
Moreover, for any t > 0,

o =PI 13 +IPu—0)ON 5, +1Qu—w)®)] 15,
BZ,pp Blfl Bzvﬂp

< min{(1 48| Ine) PPO2 (1 4 1)7PPO/2 4 g,

where § is a constant independent of €, B(po) is defined in Theorem 1.1, P =
I+ V(=A)"Ydiv and Q@ = —V(—=A)"ldiv.

Remark 1.5. Solutions constructed in [5,8, 10, 14,20] verify that || V|| ;.1 ((0,00): L)
< 00. Then by Corollary 1.1, (1.12) is satisfied if initially solutions are in H>.

Finally we want to construct some solutions to the system (CNS) which initially
are far away from the equilibrium. Motivated by [22,32], we consider the case that
the incompressible part of the initial velocity Pug has arbitrarily large vertical
component while the other parts of the velocity are sufficiently small. The reason
we can deal with this case is that the equation of (Pu)? becomes linear due to the
divergence free condition. So we will deal with the initial data (ag, ug) verifying
that

13

1 13

3 .
aoEBzz’p QuoeB;

R
P
o Pug € Bp,l . (1.14)

P
p b
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Theorem 1.3. Let 2 < p < 4. If (ag, uo) satisfies that

<||<ao, Quo)ll”y + ||Quo||f’%_1 - ||ao||’?%

BZ,I p.1 Bp,l

+I1(Puo)™ | ) exp (CA+1(Puol’ll ) Se. (L1S)

Bp.l p.1

where C is a universal constant, then the system (CNS) with initial data (ag, ug)
admits a unique and global solution (a, u) satisfying that for all t > 0,

la®l 13 +1QuI 15, + 1P O] 5,

2,p BZ,p Bp,l

oo
h
+/0 <||a||32g,;+||QM||B;,;,+1+||(7’”) ”nB;H)dr (116)
P

2,p p.1

< C<1 + | (Puo)’| ,31)&
BP

p.l

and

o0
||(7>u)3(t)||,;,1+/ IPu)?|| 3., dt S2(Puo)®l 5, +e. (1.17)
BP 0 BP BP

p.1l p.l p.1
Remark 1.6. Estimates (1.16) and (1.17) show that the Lipschitz norm of the
13

velocity u is integrable in time. By Corollary 1.1, if additional Vagy € B; ;:; and
L3 ) '

Urli=0 € B22’ pp then the solution satisfies sup,. |l ollce < M and the condition

(1.12).

1.4. Organization of the Paper

We first give a rigorous proof to Theorem 1.1, the global dynamics of (CNS) in
Section 2. Then we will prove the global-in-time stability for (CNS), in Section 3.
In the next section, Section 4, we will construct global large solutions with a class of
initial data in L7 critical spaces. Last, we list some basic knowledge on Littlewood-
Paley decomposition in the “Appendix”.

2. Global Dynamics of the Compressible Navier-Stokes Equations

In this section, we give prove Theorem 1.1. To do this, we separate the proof
into two steps: getting uniform-in-time bounds and the dissipation inequality first
and then applying the time-frequency splitting method to obtain the convergence
to the equilibrium with quantitative estimates. We emphasize that throughout this
section p denotes the upper bound of the density p.
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2.1. Uniform-in-Time Bounds and the Dissipation Inequality

In what follows, we set a def p—1landa def oY — 1. Observe that a =
(fo v(6p + (1 —6))Y~'d0)a. Thus if p < 7,

la] ~ lal. 2.1
We begin with two lemmas. We first recall the basic energy identity for (CNS).

Lemma 2.1. Let (p, u) be a global and smooth solution of (CNS). Then the fol-
lowing equality holds:

( H (,0|1) dx ! P“zdx /L” ;u”% +(/“ M)”di"u”% =0
dt 2 g g ’

where

1
ﬁ(ﬂy —1l—y(p—=1), when y>1,

H(pll) =
plnp—p+1, when y = 1.
Remark 2.1. By Taylor expansion, it is not difficult to check that H(p|l) =
Cp)(p—1*ifp <p.
<

Lemma 2.2. Let 4 > %A, and (p, u) be a global solution of (CNS) with0 < p
0. Then the following inequality holds:

d
E/pu“dw/ WP IVuP dx < CIVala(lale + IValZs),  (23)

where C is a positive constant depending on . and A.

Proof. Multiplying 4|u|?u to the second equation of (CNS), and then integrating
on R3, we obtain that

d
a/pu4dx+/[4|u|2(u|Vu|2
+ O+ (dive)® + 2M|V|u||2> 400+ W (V) - udiv u] dx
=4 [[aivuPuwads < € [ alulVuldx < Clalelall 1 Vul

2 2 4
= CllallzslVull; 2 + IVull;.

Using the inequality |V|u|| < |Vu|, we have
4|u|2(u|Vu|2 + (A + ) (divu)? + 2M|V|u||2> + 40+ ) (V]ul?) - udivu
> 4P [l Val + 0+ 0 @ivi? + 201 V1l [* = 200+ )| 1uldiv |

2
_ 4|u|2[u|Vu|2 O+ u)(divu _ |V|u||) ] + 4ulP (g — )|V iul

> Clul?|Vul?,
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where in the last step we use p© > %)L. Combining these two estimates, we arrive
at(2.3). O

2.1.1. The First Attempt for Uniform Bounds and the Dissipation Inequality
First, we prove

Proposition 2.1. Let 1 > %A and (p, u) be a global smooth solution of (CNS)
with0 < p < p. Then u € L®((0, +00); L* N HY) N L2((0, +00); H! N H?),
a € L®(0, +00); HY N L2((0, +00); LY, and u - Vu € L2((0, +00); L?).
Furthermore, the following inequality holds:

d 1 . .
E[Alupwn‘; + Az(unwniz + O+ wlldivul 7, — (a, divu)

+ f f(p)dx) + Asllals
+ Ag (f H(p|1)dx + ||ﬁu||§2)]
+ A5(|||u||Vu|||iz +IVull7, + II/pud3
+ |APull?, + lldivu — ﬁall%l
+ llal2 + [ VulZ) <0, (2.4)

where A;j(i = 1, ...,5) are positive constants depending on i, A, and p, and f (p)
is defined in (2.6) verifying | f (p)| < H(p|1).

Remark 2.2. Thanks to the energy identity and the fact that [ f(p)dx < [|p —
1> dx, choose A4 large enough and then we can derive that

Arllptullls + Az(unwniz + (+ wldivul;, — (a, divu)
+ / f(P)dx) + Asllals
+ Ay ([ H(pl1)dx + ||ﬁu||iz) ~ llotul?,
+IVull?, + / H(pl1) dx + I /pul, + llallZs.
Proof. To derive the desired results, we split the proof into several steps.

Step 1: Estimate of Vu. First, multiplying the second equation of (CNS) with
u; and taking the inner product, we get that

d /1 1 .
a (§M||VM”22 + E(A + l/«)”leM“%z) + (pur, up) = =(Vp¥' uz) — (pu - Vu, up).
(2.5)
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Estimate of — (Vp?, u;). Observe that

d . d
—(Vo”, u) = _E(pr’ u) + (3 (p"), —divu) = —E(V,Oy, u)
+ (ypVdivu +u - Vp?, divu)
d
< =5, (Va,0) + Cllpl Va7,
4+ (u - Va,divu).

Let us focus on the last term (u - Va, div «). In fact, one can check that

1
A+2u(ua’ Va) =8t/f(p)dx,
where
1 y? > y—-1 , ylr=1
A+ 2u [2(2)/ —p b7 (2(2;/ “” Taay - n”
flp) = —fgjzlj)H(pu)}, wheny > 1, (2.6)

1

1
— (=D =(plnp—p+1)], h —1.
A+2M[2(p ) = (plnp—p+ )] when y

Thanks to Remark 2.1 and p < p, we get that | f(p)| < H(p|1).
Going back to the estimate of —(Vp?, u;), we have

1
(u-Va,divu) = — (adivu, divu) — (au, V(divu — 7a)> — (ua, Va)
A+2u

1
A+2n
- 3 3 , 1
=Cllallpoelldivul72+llallfoolall 2 IVull 21V (leM—ma> ||L2_3t/f(p) dx,

which yields

d .
~(Va,up) £ = (Va,u) = & f F(p)dx + Cllpl} o IVul2, + Cllall oo div ]2,

. 1
+ClIVull 2 IV(divu — g a2

2u
Estimate of (pu - Vu, u;). We have

1 1
[(pu - Vu,u)| = p2lleeellu - Vullp2lp2urll 2.
Plugging these two estimates into (2.5), we obtain that
I SHIVulz2 + 5@+ wldivuly, — (a.divu) = [ f(p)dx
1
+llpzusl7, 2.7)

. 1
< CVull, + ColV(divu — ma)niz + Cllu - Vul7,.
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where 7 is a small constant, and the constant C depends on the initial data and p.
Step 2: Improving estimate by the elliptic system. The second equation of (CNS)
can be rewritten as

—uAu — A+ pw)Vdivu +Va = —pu; +u - Vu).
Set b = Pu = (I + V(—=A)"'div)u, d = A~'divu, where A is a Fourier
multiplier, which satisfies A> = —A. Then the above equation turns to be
— nAb =P(p(u; +u - Vu)),
[ — (A +21)Ad — Aa = A~ div (p(uy +u - Vu)).

By the standard elliptic estimate, we have

(2.8)

_ 1
IuAB|T, + I+ 2 Ad = all%y < (L+2)2(p2us 152 + llu - Vull7,).

2.9)
Combining (2.7) and (2.9), we get that
d .
—(wlIVul + G+ wdivul,
+ (Va,u) + f £(0) dx) 210
+ (o2l + 1 AbI2, + |+ 2m)Ad — al,)
tilz2 K 12 M gl
< C|[Vullz> + Cllu - Vul 3,
where C is a positive constant depending on p and the initial data.
Step 3: Estimate of a. The first equation of (CNS) can be rewritten as
L+ u vy + + adi Ad——! @.11)
—(a; +u-Va a+adivu = — — al. .
y ! A4+2u A+20

Then making the inner product to the above equation with |a|*a, we obtain that

1 .
‘T Lo ||L6+A+2 lalls + (y—g>/dwu|a|6dx

1
< Ad — 3
= yn( qua) lesllall s

which implies

1 1 6 1 5
- = dx < (Ad — ——
o 1%+ 52 /[H(y 6>a]a x < ||( A+2Ma)HL@na s

1
< (Ad - m“) Izsllally 6.

Dividing the above estimate by ||a||
that

and recalling y + (y — é)a = é, we get

Lo’

d 1
3 llallZs +llalze = CIv (Ad - - +2u°‘> I, (2.12)
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Step 4: Closing the energy estimates. Combining (2.2), (2.3), (2.10) and (2.12),
and choosing n small enough, we get that

d 1 g 2 . 2 .

Ao tuls + Ax (I VUl + G+ ) lldivul} — (@, div)
+/fme+Aﬁw;
%uoﬁwmm+wmmﬂ

- As (11l 1Vl + IVl + /P2,

+ 18512, + 1 Ad - all, + lall3)

A+2u

< As(llalfe + IVul7) I Vul ., (2.13)
where A;(i = 1,...,6) are positive constants depending on A, u and p, and
which ensure that the term A (a, div u) can be controlled by A, (A + w)||div u ||i2
and A4 [ H(p|1)dx. By Gronwall’s inequality, the above estimate implies that
u € L®((0, +00); L* N HY) N L2((0, 4+00); HY), u; € L*((0, 400); L?), a €
L%((0, 400); L?) N L%((0, 400); L%, and u - Vu € L*((0, +00); L?).

Using these estimates, we can improve the estimate (2.13). Notice that the term
in the righthand side of (2.13) can be bounded by C||Vu ”22' Then thanks to the
energy identity (2.2), the dissipation inequality in the proposition is followed by
the fact that fori > 1 and p =2, 6,

IViullLr < IVPullr + 1V QullLr < IV Pullpr + IV " divu| L

< IVIPulpr + V7! <divu

1 .
— vi~l , 2.14
A+2Ma> lLr + PR I allzr (2.14)

. . . 1
vi < |Vitlp V[ divu — a
IViullzs < |l ullpz + |l vu ton Il 2

+

vi—l ) 2.15
)\+2M” allze (2.15)

O

2.1.2. Improving Regularity Estimate for # In order to get the dissipation esti-
mate for a, we first improve the regularity estimate for u in this subsection. We
still assume that (p, u) is a global and smooth solution of (CNS). We set up some
notations first. For a function or a vector field(or even a 3 x 3 matrix) f (¢, x), the
material derivative f is defined by

f=fitu-Vf,
and div(f ® u) = Z?:l 0;(fuj). For two matrices A = (g;j)3x3 and B =

(bij)3x3, we use the notation A : B = Z?le a;jjb;j and AB is the usual multipli-
cation of matrix.
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Proposition 2.2. Let 1 > %)\. and (p, u) be a global and smooth solution of (CNS)
satisfying 0 < p < 0 and the admissible condition (1.4). Then there exist constants
Ai(i =1,...,6) such that

d L 2 . 2
Aot + A (w1 Val}s + 64w ldival
— (a,divu) + fR f(o)dx) + Asllals
+ A (f H(pl1) dx + wﬁuuiz)

+ Asll/pils | + Ao (Ml Vulls + 1Vl + /ol

. 1 .
+ 1APull?, + lldivu — P 2Manzl +llall7s + IVull7s + 1 Vill3
+ ||di L2
wvu — ——a
2+ A we
+ IVPulde) <0, (2.16)

where

1 . .
Atllpiul}s + Az(unwniz + L+ wldivul?, — (a, divu)
+ / FP)dx) + Azllals
RO
+ A (/ H(p|1)dx + ||ﬁu||iz> + Aslly/pil3

1 .
~ ||p4u||i4+||Vu||iz+/H<p|1>dx+||¢zu||iz+||a||36+||ﬁu||iz.

Proof. We rewrite the second equation of (CNS) as
pit+Va+ Lu =0.
Then it is not difficult to check that

piy + pu - Vi + Va; +div(Va ® u)

= u[Au; + div (Au @ u)| + (A + w)[Vdivu, + div (Vdivu) @ u)].
(2.17)

By the energy estimate, we derive that

d | R . .
I §p|u| dx +—n u~(Aut+d1v(Au®u))dx

dEf 7

— (A4 / i - ((Vdiv uy) + div (Vdivu) ® u))) dx

def



1182 LINGBING HE, JINGCHI HUANG & CHAO WANG

=/a[divzl+(zl~Vu)-Vadx. (2.18)

def, ;

Estimate of /. It is easy to check that
—/u (Aup 4+ div (Au @ u))dx = / [Vii: Vg +u ® Au: Vi) dx
= / [Vl = (Vi) + @ - V) Vu): Vi = V(- Vi: Vufax
= / [|W|2—(vuw):w+((u - V)ViR): Vu — (VuVi): Vi — ((u - V)W):Vu]dx

3
> / [Z'W|2 - C|Vu|4:| dx.

Estimate of /7. Observe that
div ((Vdiv u) ® u) = V(u-Vdivu) — div (divuV ® u) + V(div u)?,
divi =divu, +div(u - Vu) = divu; +u - Vdivu + Vu: (Vu)T,

where AT means the transpose of matrix A. Then we get
- / i - [Vdiv w, + div ((Vdivu) @ u)]dx
= / [div idiv ey + div i(u - Vdiv ) — div e (Vi)' : Vi + div i (div u)z]dx
= / [|div[¢|2 —divaVu: (V)T — divu(vi)": Vu + div i(div u)z]dx
| S S 4
> [—|d1vu| — ~ Vil = C|Vu| ]dx.
2 4
Estimate of /7. We have
/ a;divie + (u - Vi) - Vadx
= / —ypVdivudivie — (u - Va)diva + (u - Vi) - Vadx
= f —yo” div udiv it + a[div ((div i)ue) — div ((u - vu))]dx
_ f —yo” div udiv i + a[div udivii — (Vu)T - w]dx

= ClVull 2 IVidll 2.
Substituting these estimates into (2.18) yields
d
a/p|a|2dx+uf|v1,z|2olx+(A+u)/|divzz|2dx
(2.19)
< c/ |Vul*dx + C|[[Vull3,.
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To conclude the estimate by Gronwall’s inequality, we will use ||/pit| 2 to
control ||Vu| ;4. By Proposition 2.1 and (2.8), we have

“vu”LOO(O,oo;LZ) + ”a”LOO(O,oo;LG) é Cv
IVbllps + [[Ad — s = llpill2 = Cliv/pitll 2,

A+2u
from which together with (2.15) imply that

4 3 2
IVullds < 1Vull 21 Vull}s < ClIVull sl Vull

< CIVull36(IIVbll s + Vd — Izs + llall o)

A+2u
< OVl (14 170l 2 ) < CIVule (1 + 1pil3 ).

Substituting this estimate into (2.19) and noting that || Vu(¢) ||i6 e L0, 0)
by Proposition 2.1, we get by Gronwall’s inequality that

o0
fp|ﬂ|2dx+/ flVL't|2dxdt <c, (2.20)
0

with C depending only on p and pg, ug. By using (2.20), (2.19) can be improved
as

d
E/pmﬁdxw/|vu|2dx+(x+m/|divu|2dx < C(IVulZ + 1VulRa),

from which together with (2.4), (2.8) and Sobolev embedding theorem will imply
(2.16). O

2.1.3. Estimate for the Propagation of Va In this subsection, we want to give
the proof of the upper bound of ||Vl 120, 4o0): ooy Which is used to estimate the
propagation of Va. More precisely, we want to prove

Proposition 2.3. Let 0 <o < 1, u > %A and (p, u) be a global and smooth solu-
tion of (CNS) with initial data (po, ug) verifying that po > ¢ > 0, the admissible
condition (1.4) and

sup [o(t, )llce = M. (2.21)

teR+

Then

||a||L°o((0,+OO);W]'(’)QLZ((O,+OO);W1‘6) + ”VMHLZ((O,+OO);L°O) é C, (222)

where C depends on the initial data (po, ug) and M. As a consequence, there exists
a constant p = Q(c, M) > 0 such that forallt > 0, p(t, x) > p- Moreover,

FIVall7, + IVall7, £ CAVll7, + luVulls + I|/pudly> + llalle).

(2.23)

400+ 20
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Proof. Since that xV is a convex function when y > 1, (2.21) implies that

sup [|p¥ (¢, )llce = M.
teR*

Next, we have the interpolation inequality

N s . . N
IVA™ allze < 2% flallgs + ) 27771 A jallzx) <27 falls
JZN

+27Nallce < C()llallzs + 1, (2.24)

where 7 is a sufficiently small constant depending on N. This implies that

IVul = < C <||v7>u||Loo +vA~! (divu - a) Lo + ||VA—1a||Loc)

- 2+ A
<C <||V79u||W|.6 =+ || (divu - o +Aa) lwie + Cllallze + n) .
(2.25)
On the other hand, it is not difficult to derive that
l(a Va+ (- V)Va) + —>—Va
y A+2u
1
+ —VuVa+divuVa= —p'V [divu — al. 2.26
Y P < A+2p ) (2:20)

Multiplying (2.26) by |Va|?~?Va and integrating the resulting equation on R?, we
can derive that for p > 2,

1 4
—3|Val?, + / Y|Va|P dx
» HIVally, "t ou p"|Va|

IIN

1 1 -1
— | divu|Va|? dx + C||Vul|z~||Val?, + C|V | divu — va|?,
p/ ivu|Val? dx + C||Vu| L=|Vally, + Cll <1vu /\+2Ma) e IVally,

1 1
< - aVa”dx—l—C(divu— allze + | Vu oo) vall?,
S p(k+2u)/ [Val [ i Iz [Vulle | IVally,

. 1
+C|V <d1vu “ o ) [F% ||Va||Lp ;
which means that

1
;&IIVallfp /[(VP — Dp? + 1|Va|? dx

()\+2 )P

sC (IIdivu - afze + IIVullLoo) IVall7,

A+2u

+C|v (divu— a) e Va2,

A+2u
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Noting that y = 1 and p = 2, we can obtain that

Lo 1vap? Va2
) Al a”LP+ I a”Lp

A +2wp
=C (IIVulleIIVallip + || divu —

2
allze[Vallzp

2+ A
1
Vidivu — a [[Va , 2.27
+1 (lvu s )nu I ||Lp> 227)
which implies that
%Vali, + ————IVal;
IVallz, + ()»+2/L)p” Iz
. 1

< CUVuliz=IValiy +Idive = 2=l Val,  (2.28)

1
V(divu — ———a 17,
+ | (Wu )\.—|—2/,La>”Lp)

By taking p = 6 in (2.28), and using (2.25) and (2.16), we obtain from Gronwall’s
inequality that [|al oo (0. +00): W1:6)NL2((0,+00): w16y = C. From which together with
(2.25), we obtain that

Vil < CUVPullyrs + | (divu - ﬁa) s + llallywrs)-

This implies that [[Vull 20, 4+00): L) < C. It completes the proof to (2.22).

Now we go back to (2.28) with p = 2. By Gronwall’s inequality, we obtain that
Va € L®((0, +00); L?) N L%((0, +00); L?). Thanks to uniform-in-time bounds
obtained in the above, (2.28) with p = 2 will yield that

% IVall?, + IVall7.

40 +2u)

S C(|IV (divu -
A

1
2 : 2
a) 72+ lldivu — ———allj, 16

1
+ 21 2+ A

+IVPull3,6) + Cpllal7e,

from which together with the elliptic estimate for (2.8), we obtain (2.23).
Now using the equation of density and the estimate (2.22), we have

1
p(t,x) = po(x) exp Jo ldivulioodr > po=Cr2,

On the other hand, thanks to (2.1) and (2.12), we derive that lim;_, « [la(?)||;6 =
lim;— o [la(®) |l = O, from which together with the upper bound for p in C%,
we derive that lim;_,  [|a(?)||L= = 0. These two facts imply that there exists a
constant p = p(c, M) > 0 such that for all t > 0, p(t, x) > p. We complete the
proof to the proposition. 0O -
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Remark 2.3. Now we show that the result of Proposition 2.3 is still valid when
(2.21) is replaced by (1.10). The proof is almost the same as the original one. We
only point out the modification. Firstly by using the second assumption in (1.10)
and the fact that ||VA_1Ajf||Loc < ||Ajf||Loo for all j € Z, we can recover the
estimate (2.24) by

_ . N .
IVA™ allze S 1A allze S27 lallzs + Y 1A allze S Copllallze +n,
JEZ j=N

where 7 is a sufficiently small constant depending on N. Then by the same argument
used in the above, we can derive (2.22) and (2.23). To get the lower bound of the
density, we notice that

N .
la@) e S22 llallgs + Y 1A a] L,
j=N

from which together with the fact lim;—. |[a(¢)[|;6 = O and (1.10), we obtain
that lim;—, o ||a(?)||L~ = 0. This implies the lower bound of the density p which
completes the proof.

2.1.4. Deriving the Dissipation Inequality We want to prove

Proposition 2.4. Let0 <o < 1, u > %)», and (p, u) be a global and smooth solu-
tion of (CNS) with initial data (po, uo) verifying that py > ¢ > 0, the admissible
condition (1.4) and sup,cp+ ||l p(t, )|lce < M. Then there exist positive constants
Ai(i =1,---,7) which are depending on v, . and M such that

de 1 . .
x % Ay lp3ull}s + As (unwniz + (4 wlldivul) 7, — (o, diva) + f f(p)dx)

+AsllallT + Ag (/ H(p|1)dx + ||¢7m||§2) + AsllV/pill7 2 + AslVall7,
~ Nl + llallz + il 2

which verifies
d .
X0 + A7 (IVul}, + 1Vul}, + [ Val, + I Vill},) S0, (229)

Proof. Thanks to Proposition 2.3, we may assume that p=p= M. From (2.23)
and (2.16), we get that there exist positive constants A; (i = 1, --- , 7) such that

d 1 . .
E[Alnpwn‘; + Ag (V72 + O+ lldivul7, — (a, divu)
+ / f(p)dx) + Asllal7s

+ Ay (/ H(p|l)dx + ||ﬁu||iz> + Asll/pil7, + Aﬁnwniz]

+ A7 (IV2ul, + IVul2: + [ Val, + Vil 2;) < 0.
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Thanks to the energy identity (2.2), the constant A4 can be chosen large enough to

ensure that X () > 0. Due to the condition p < p < M,onehas [[Vall;2 ~ [[Val .2
and f H(p|l)dx ~ |lp — 1||%2, from which together with (2.1) and pu + Va =
wAu + (L + pn)Vdiv u, we deduce that X (r) ~ ||14||§1z + ||a||i,1 + ||zl||iz. It ends
the proof of the proposition. O

2.2. Convergence to the Equilibrium

The aim of this subsection is to show the convergence of the solution to the
equilibrium. Thanks to Proposition 2.3, now we may assume that p = p.
We begin with a crucial lemma about the low frequency part of the solution.

Lemma 23. LetO <o < 1, u > %)L, and (p, u) be a global and smooth solution of
(CNS) with initial data (pg, uo) verifying that po > ¢ > 0, the admissible condition
(1.4)and sup,cp+ |p(t, )lce < M. Letay, poup € LPO(R3) with po € [1, 2]. Then
if p(t, x) < M, we have

/S " (vlaE, o1* + lpuE, %) d& <CM)(llaoll3 s + lpotoll pe ) (1 + 1) ~2PP0)
t

t
+C(M><1+r>*%/o (Il 2 + llall;.) ds,
(2.30)
where (1) = (£ € R 1 |€] £ C(1+1)"2}. and B(po) = 3(Z — D).

Proof. Note that o, = a,; we take the Fouriir transform of (CNS), and then
multiply ya to the first equation, and multiply pu to the second equation to obtain
that

1 d A2 . A;
~—vlal"+iy§ - pua =0,

2 dt
rd __, T —~ =
§a|pu| + (d1v (pu @u) — nAu — (A + ,u)levu) - pu

+i&((y — DH(p|1) + ya) - pu =0,
which implies that

1d -
55(V|5’|2 + |pul*) = Re [—div (pu @ u)
— def

+ uRu+ G ) Vdivu +i(y = DEA(ID| - 7 € F e 0.
Integrating the above equation with respect to the time ¢, we get that

t
vlaE, 0>+ 1puE, nl* = yla, 01> + |pu(s, 0)* +2/0 F(&, s)ds.

Let S(¢) def 1€ SC+ t)’% }, then we can split the phase space R3 into two
time-dependent regions, S(¢) and S(7)¢. Integrating the above equation over S(z),

and noting that pu = & + au, and

- .
Aui = —|E7)a)?, Vdivud = —|& - %,
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we can obtain that

t
/ (y|&(s,r>|2+|ﬁﬁ(s,z)|2)ds+/f (WIEP1A + O+ )l - @l?) deds
S(t) 0 JS(@)

t — P
=/ (y|&(s,0>|2+|/3ﬁ(s,0)|2)ds+Re// [~ avipuew -7
S(t) 0 JS()

+ <MEA F Ot M)v/dﬂ) T +ily — DEHQPID -ﬁ] déds

def /SU) (v1a(E, 0)2 + [Fu(€, 0)/%) & + By + By + Bs. 23D

From Lemma 2.1, we have that a, u and pu all belong to L>°((0, +00); L?), which
mean that pu ® u and au belong to L*°((0, +00); L*°). Thanks to these facts, we
can give estimates to terms B; (i = 1, 2, 3). We first have that

! _— —_— [—
IBllé(f f div (pu ® u) - (it 4+ au) d&ds
0 JS(@)

t t
§n// u|s|2|ﬁ|2dsds+cn/f | &l deds
0 JS@) 0 Js@

t
+// 1€ 1| pu @ ul@ul dsds
0 Js@

t t
§n// ms|2|ﬁ|2dsds+cn/ ||pu®u||ioo/ deds (2.32)
0 JS@) 0 S(1)

t
+ c<1+z>—%f ||pu®u||mo||@||m/ déds
0 S(t)

t . 3 t
§n// WIERIA1 deds + Cy (1 +1) / el ds
0 Jso 0

t
+Ca +r>*2/ 32 llall 2 ds.
0

Similarly, one has

t t
|Bz|§n// u|s|2|ﬁ|2dsds+cn/f & 2[au” dgds
0 Js@ 0 JS@)

t . 5 t
én// &7 (0] dgds + Cy(1 + 1) / lull?llall?, ds,
0 Jsu) 0

(2.33)

and

t t
N —2
|B3|§n// u|§|2|u|2d§ds+cn// |&|%|@u|” d&ds
0 S(t) 0 S(1)
t —_—
+C/f |H (p|1)|* déds
0 JS(r)

t . s t
§n/f WIE 1A deds + Cy (1 + 1) f el a2, ds
0 S(t) 0
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t
_3
+1 410 /0 IH (p1)]17 ds
! 2,412 s (! 2 2
gn// g P1al dsds+cn(1+trf/ lul72llal7 > ds
0 JSsu 0
_3 ! 4
+ (14072 | lal},ds.
0

Note that ag and poug belong to L7 (R3) for 1 < pgy < % Then for %—i—# =1,
0
one has
1—2
)

[ (a€ 0P + e 0F) d < (112, + Il ) (/ ds)
S(t) L70 L"0 S(t)

< C(llaoll7p + llpouollg n ) (1 + 1) 2P0,
(2.34)

Plugging (2.32), (2.33) and (2.34) into (2.31), and choosing 1 small enough, we
arrive at

t
/ (|a<s,r>|2+|/3ﬁ(s,r>|2)ds+c// (WIERIAP + O+ W& - 42) deds
S(t) 0 JS@)

3 t
< C(llaoll? o +||pouo||’ipo)(1+z>—2f’<P°>+c<1+r>—ff0 (lull}, + llally») ds.

This ends the proof to the lemma. O
Now we are in a position to prove

Proposition 2.5. Let 0 < o < 1, u > %A, and (p, u) be a global and smooth
solution of (CNS) with initial data (pg, uo) verifying that po > ¢ > 0, the
admissible condition (1.4) and sup,cp+ ||p(t, )lce < M. Suppose that ag €
LPOR3) N H'(R?) and ug € LPORY) N H>*(R3) with py € [1,2]. Then we
have

lu@ gt + la@®lg < CA+ 1)~ FP0, (2.35)

where B(po) = %(% — 1), and the constant C depends only on Py My Ay M,
laoll Lronmt and |luoll Lronp2-

Proof. We separate the proof into several steps.
Step 1: The first sight of the convergence. Thanks to (2.30) and the fact that a
and u belong to L*°((0, +00); L?), we have

/ (lag, 01> + 1pu(E, 1)?) dé
S(@t)

1
< C(llaollZ ro + llp0uolIZ ro ) (1 +072PP + C([ullf oo 2) + Nl 2)) (1 + 072
SCA40""m, (2.36)
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where r,, = min{28(po), %}. Due to the fact u = pu — au, we have

/ |ﬁ(s,r>|2ds§/ |5ﬁ(§,t)|2ds+/ |au(, )| dg
S(t) S(t) S(t)

3~
SCU+0)""+CA+0)72auE, 13
<C(+1)""m.

Next, because of pu = puAu + (A + w)Vdivu — Va, following the same
argument, we can obtain

f \pi(e, 1)|* d& é/ |nAu + (h + @) Vdivu
S(t) NI

(v - 1)Vﬁ(7|1) + y@)(g, NI2de < C(1 4 1)~

which implies that [, [, D2de S C(1+1)~1m,
We recall the dissipation inequality (2.29). Then by frequency splitting method,
it is not difficult to derive that

Yxo+ x| (a@oP+@E 0P + @ nP) de
dr 1+1¢ T 14t S(t) ’ ’ ’
< C(l+n 1,
which implies
X)) < C+0)"m. (2.37)

In particular, we have
lull 2 4 lall 2 £ 2CQA +1)~m/2, (2.38)
Step 2: Improving the decay estimate (I). We want to improve the decay estimate

if B(po) > %. By definition, r,, = % Thanks to (2.30) and (2.38), we improve the
estimate for the low frequency part as follows:

/ (14 O + |puE, 017 de < C + 1700 4 (1 +1)72 log(1 +1).
S(1)

Now, following an argument similar to that used in the previous step, we conclude
that

/S( ) (la, 0 +[aE, 0P + e, 0)%) dg
t
< CUA+1)2P0) L c1+1)73 log(l +1).

which implies that

;—txa) + IL_HX(I) SCA+0"HA+072PP0 (14 H~2 log(1 + 0).



Stability of (CNS) 1191

‘We obtain that
X(1) < Cmin{(1+ 08P (14 1)~ log(1 + 1)} (2.39)

In particular, [[u]|;2 + |lal|;2 < min{(1 + )P0 (1 + H~3log2 (1 + 1))
Step 3: Improving the decay estimate (II). Finally we deal with the case that
B(po) > % By (2.39), we have |lu|| 2+ |lall;2 £ C( +t)_% . Now we may repeat

the same process in the above to get that
N ~ -~ _ _3
/ (laE, O + [@E D + [aE, 01*) ds < CA+n"2Pr0 4 ca+1n72,
S(t)

which implies that

d K

— X))+ —XO S A+~ +1)7 2800,

5 ()+1+t OH=ECA+n""(A+1)

It is enough to derive (2.35). We ends the proof to the proposition. O

2.3. Proof of Theorem 1.1

Before giving the proof to Theorem 1.1, we first show the propagation of the
regularity for V2a.

Proposition 2.6. Let (a, u) be a solution of (CNS) with initial data (ag, ug). Then
under the assumptions of Proposition 2.5, there hold a € L*°((0, +00); H2),
Va € L2((0, +00); HY) and Vu € L%((0, 00); H?).

Proof. Due to Proposition2.4, wehavea € L*((0, +00); H)NL2((0, +00); H').
Thanks to the lower and upper bounds for the density p, it is not difficult to check
that |la|| g2 ~ |la]l 2. Then the desired result is reduced to the proof of the propa-
gation of V2a.

We first notice that by Proposition 2.3, Va € L% ((0, co); L?) with p € [2, 6],
which will be used frequently in what follows. Recall that

1
— -V divu —
7/(a;+u a)+a<1vu M+2ka)
1

1 5 1
divu — = 0. 2.40
u+2)»a —i—(lvu M+2Aa>+u+2)»a (2.40)

Then it is not difficult to derive that

+

1
~—V?al7, +

1
1922, < |(V2(@ivu -
"w

V)|
T Ve

n+ 24
‘(VaVa, V2a>)

* W4 2A

1
V2[a(divu —
+ ‘( [a(divu o

a)l, V2a>‘ + }(vz(u . Va), V2a>‘

def
§D1+D2+D3+D4.
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By Cauchy—Schwartz inequality and Proposition 2.3, we can estimate D; (i = 1, 2)
easily by

. 2 . 2 2 112
Dy = ||divu — all g2 [V7allz2 = Cylldivu — allf +nllVaally.,

w+2x w2

1 3
Dy < C|[Vall%, I Val 26 [IV2all 2 < 0l Vall7, + Gyl Vall7s.

For D3, we have

> ||a)fLee (|A1V U a H V-a I
3 w21 : ?

1
+|IVall 3V <divu - ma) g1 1V2all L2

. 2 112
+lldivu — allz=IV=all;2

w2

. 1
< nlViali, +C (nau%w,(, + |\divu — manm) IV2al?,

. o
+C;7||d1VM — mﬂ”l_]z

For Dy, thanks to integration by parts, we obtain that
1
(u-VVia, VZa) = —5((div u)V2a, V2a),

which implies that
Dy S (IVall 21 Vull sVl 2 + [Vl o | V2all72 + Idivullz< V2l 7
< lV2all7, + CoIVall 7 lIV2ullls + [Vl 7ol Val72).
Combining all the estimates in the above, we obtain that

1d

3
— S v2a2 2 v2al2
a1Vl + g IV el
< ¢ (Idivu = ——=all%, + IV2uls + | Val) (2.41)
- w20 H L L
. 1
+ C(lldivu — man%w.s + llally s + IVulZe) I V2all?,.

Thanks to (2.8), we have

all g2 = llpitll g = C(IVaitll 2 + Vil 2)

+2x

< C(IValigslilis + 1Vitllz2) = CIVallgsllillzs + Vil L2) < ClIVidll 2,
(2.42)

. 1
IVPull g2 + divu — "

which, together with (2.15), implies that

o) ) 1
/0 (ndivu - ol + IV + IVal2,)dr < C.
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By Gronwall’s inequality, we have a € L ((0, +00); H2)NL%((0, +00); H?),
from which together with (2.42), we deduce that Vu € L2((0, 00); H?). This ends
the proof of the proposition. O

Finally, we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We first note that the first three results of the Theorem 1.1
are proved by Propositions 2.3-2.6.

Finally let us give the proof to the fourth result of the Theorem 1.1. For ¢ €
[2, 4], one has

A1 g = s ||f|| 1 SA0; 2||Vf||L2» ||f|| é LI

ql 1

SV znvzfan,

3
7
2 1

‘“ Q\w

from which, together with (2.35), we can easily get (1.7) and (1.8). On the other
hand, for pg < 2, these two estimates imply that there exists a time fy such that

<y

1

luto)ll .2 + llaGo)l s 3 + lla(zo)l .

B g1 By By,
where 7 is sufficiently small. Then by the global well-posedness for (CNS) in
[5,8], we obtain that Vu € L ((7y, 00); L>) which yields (1.9) by recalling that

Vu € L?((0, 00); L®). O

2.4. Proof of Corollary 1.1
In the end of this section, we give a proof of Corollary 1.1.

Proof. We firstclaim thatif | Vul| 1 o0: 100y < 00, then (1.5) holds. To see that, we
remark that (1.5) is a consequence of Proposition 2.1, Proposition 2.2, Proposition
2.3 and Proposition 2.6.

Thanks to the assumption ||Vl 110, 00): 150y < 00, itis easy to prove that there
exist two constants, ¢; and cp, such that, for r > 0,

c1 < p(t) < e, (2.43)

where ¢ and ¢, depend on [[Vu|[ 19 o0 1.0y < 00 and pp. This implies that Propo-
sition 2.1 and Proposition 2.2 are still valid. To get the result of Proposition 2.3, we
only need to modify the original proof. Thanks to (2.27), we get that

1
dIval?, + muwn%p

< C(IVullp=IVallZ, + lldiva —

2 2
a Vall7p
g o lnslVali,

+IV(divee -+ D7)

1
+2un
By taking p = 6, and using (2.16) and [[Vull11((0,00): o¢) < 00, We obtain from
Gronwall’s inequality that
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|| a||Loo((0’+oo);Wl.s)an((O’_‘_oo);Wl,e) é C. From which together with (225), we
obtain that

IVullLe = CUIVPullyis + lldivu — ﬁallwhﬁ + llallye).

This implies that | V|l 120, +00): L) < C, and completes the proof of (2.22) and
(2.23). In other words, now Proposition 2.3 is available. Recalling that Proposition
2.6 is derived through Proposition 2.1-2.3, we complete the proof of (1.5).

Next we turn to the proof of the corollary. Let o be a multi-index with || =
m > 3. Then it is easy to check that

1d
Ea||a“a||i2 + (8%(u - Va), 8%q)

+y (3% (adivu), %a) + y(3%divu, 0%a) = 0,
(0: (3% (pu)), 3%u) + (3%div (pu @ u), 3“u)

+ I V%ull?, + Al9%divul 7, + (3% Va, 3%u) = 0.

This implies that
1d a 12 o o o o o : o
55”8 ally2 + v (0:(3% (pu)), 8%u) + (3% (u - Va), 3%a) + y (3 (adivu), 9% a)
+y (3%div (pu @ u), 3%u) + y ulI Vo ull3, + yAlld*divu|?, = 0.

Estimate of (9,(0% (pu)), d%u). We first observe that

1d 1
(3 (pu), 0"u) = 5 IV/PO"ullgs + 5 (019w, 9%w)

+ > @ pd™u), 0%u).

a1Far=a, o |>1
By integration by parts, one has
[(or0%u, %w)| < llpullLoe|0%ull 2 [IVI*ull 2.
Since (9; (%! pd*2u), 0%u) = (0% p;0*%u, 9%u) 4+ (0% p3*2u;, 9%*u), thanks to the

fact that ||| > 1, we have

[(% prd%?u, 8%u)| = [(3%'div (pu)d*?u, 3%u)| = [(3*' (pu)Va*2u, 0%u)
+ % (pu)d*?u, Vou)|
S (lpullzee IVul g + IVullzoollpull ) 18%ull 2 + loul e IVull 1 18%ull g1

+ (loull Lo lull gm + llull Lo || oull gm + IIV(W)IIH% Nl )| VO%uell 2
and

10 pd™uy, 3%u)| < IValLslluell gm-19%ull 1+ 1Vall gm-tlucdl 1 10%ull -
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Finally we obtain that

1d _
—(3(3% (pu)), 3%u) < —mnﬁa“uniz + Cln M AIVul3,
+1ValZ, + I VullL=)
(lullFm + Nlalizm) + 0l VO%ull2,] + [ Vall g6 llull gm—t 18%ull s

+IVall gn-rlludl 1 0% ull g1

Estimate of (0% (u - Va), 0%a). Note that

(0%(u - Va), 3%) = (u - 3%Va, 0%) + > (0% u - Va2q, 3%a).

artar=a,lag|>1

Then we infer that

(0% (u - Va), 3%a)| < [Vullz<[0%all72 + (IVullzoe | Vall gut + llall oo | Vul g
HIVall 1 1Vull g [19%al 2.

Estimates of (3% (adivu), 0%a) and (0%div (pu ® u), 0%u). We have

(0% (adiv ), 0%a)| < (llallze [ Vullgm
+IVullzeellall g=)10%all 2,

(0% div (pu @ u), 3“u)| = (3% (pu @ u), Va*u)|
S Ulpullpoe llull g + Null oo lloull gm) IV ull 2.

Now, summing up all the above estimates, we finally arrive at

d 2 ) 2
e,y Y IR IR + yal Val,,

loe|=m
< (| Vu|? Va2 \Y 2 2 \Y R EE
S UVullgg +1IVallg + 1IVullpeo) Mullggm + llallgm) + 1Vall polluz | gm—1 |l uIIH%

+||Va||Hm—1||u;||H% 0% ull 1. (2.44)

Observe that p~! = ﬁ =1— F(a) with F(a) = ﬁ Then, by Lemma 5.6,
we have

I F(a)div gll gm-1 S NIVl gm-1 + gl F (@) ||
SIVElgn-1 + Clalize)liglzellal mm.

This yields that

1 ) .
el gm—t < llu - V|l 1 + ||m [—div (2uD(u) + Adivuld) + Va] || w1

=S llullyroollull g + IVull g 4+ 1Vall gm-t + (IVull Lo + llallLoo) llall g
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from which, together with (2.44), we get

d 2 2 2
3 [ 1al%m +v D0 IV ulZ, | + vl Vulg,

|a|=m
S AIVull?,) + 1Vall,) + 11Vl e
+Vall3s + IVulli~ + 1 Val o) Ul fm + llalFm

FllalFm) + 1Vull,,.
1
From the facts thata = (1 +a)” — l anda = (a + 1) — 1, we deduce from
Lemma 5.6 that ||a|| gm ~ ||a|| g», which implies that

d
3 el +v 30 IVP0"ulz) + vl Vully,

lot|=m

S IVull+H1Val, 4+ 1Valz0+ Vil oo [l Fm+Hlall Fpm) 1 Vil 3o

Thanks to (1.5), one has ||Vu|?, + [IVal3, (1 + [Vall3,) + [Vulrx €
L! ([0, oo]), which enables us to use the inductive method to prove the desired result.
Suppose that form > 3,a,u € L°°([0, oo]; H’"’l) and Vu € LZ([O, o0]; H’”’l).
The above inequality immediately implies that a,u € L°°([0, oo]; H™) and
Vu € L%([0, oo]; H™). This completes the proof for the corollary. O

3. Global-in-Time Stability for (CNS) System

In this section, we want to prove Theorem 1.2. The proof will fall into two steps:

(1) By the local well-posedness for the system (CNS), we can show that the
perturbed solutions will remain close to the reference solutions for a long
time if initially they are close.

(2) By the convergence result, we get that the reference solution is close to the
equilibrium after a long time. This means that we can find a large time 7y, and
at that moment the perturbed solutions are close to the equilibrium. Then it
is not difficult to prove the global existence in the perturbation framework.

3.1. Setup of the Problem

Let (p, u) be a global smooth solution for the (CNS) with the initial data
(00, o). And let (p, u) be the solution for the (CNS) associated the initial data
(po, ug), which satisfies (1.13). We denote h = p — p and v = u — u, which satisfy
the error equations as follows:

{ ah + div ((h + p)v) + div (hit) = 0,

dv+v-Vo— %(MAU + (A 4+ w)Vdivv) + yp? 2Vh = %
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where

—G = hii; 4+ hv - Vii + hii - Vv + hii - Vii + pv - Vii + pii - Vv + y(p¥ "1 = 57 " Hvp.

By a slight modification, we rewrite the above system as

dh + (i +v) - Vh = —(h + p)divv — hdiv i,
ERR
30 +v- Vo — udiv (%W) — O+ )V (%divv) def . (ERR)

where
1. _ _ _ _ _ _
H=——[hut+hv~Vu+hrov+hu'Vu+pv~Vu
0
vt —ytvoy . Vh Vh
+y(p" —p )V,O]-FMFVU-F(M-FK)FCHVU
- v V5
—y ("= TV =y A Vh + (— ~ 2wl u—") -V
P b P
__ v
+ (ﬂ— _—§>'VU
p p
Vo Vo Vp
+ (1 + 1) 2 div v () (—f—_—f) divo.
p 0 b

To catch the dissipation structure of the system, we apply operators Q and P
to the v-equation of (ERR) individually to obtain that

9; Qv + v - VQu — udiv (%ng) -+ nVv (%div Qv>
= pdiv <|:Q lVi|> v+ A+ )V [Q, ldivi| v+[Q,v-V]v+ OH,
p o

1 1
0;Pv+v - VPv—pudiv <—V’Pv> =udiv <|:73, —V]) v+ [P,v-V]v+ PH.
P o

(3.1)
Before proving the stability, we give the estimate to the term H. We have

Lemma 3.1. Let (p, i) be the smooth solution for (CNS) satisfying (1.12). There
exists a &g such that, for any 0 < ¢ < g, if

1
Al 13 =eZ,
L;O(Bz?p”)
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then it holds that

Il L SC TRl s HlIQul 13, + [Pl 3

13 13
LyBy," ) L® (322 Py L°°(322 Py L°°(Bp1 )

N\'—‘
<lw

x LAl s s
L;'(BZZ,pp)

5

+IPol sy QI 3
Ly(B) ) Ly (B ")
where C| is a positive constant depending only on 1, A, and C in (1.12).

Proof. We just establish the estimate to the term y (p” =2 — 5¥~2)Vh; all the other
terms can be estimated similarly as to Proposition 5.1.

Note that p¥ =2 — p¥ =2 = (y —2)h fol Op + (1 —0)p)Y 3 do; then we have

ly(p? =2 =¥ ")Vh| 1

—1

SCIRVAL s

1 .
Z 22NA VLY g2y S ClRIL 33 [IVAI]

1.3

2i<Ry L7 2p) T(BZZJ)F )
+ C||Vh|| %1, ||h|| 33 < Cln)”? 33
L3857 L3(B;y ") L2(B 7y

On the other hand, from Proposition 5.1 (a) witho = T = % — 1, it follows that

3
ik

3 1),
Iz (hV < \Y% <
> 2 UA Yy gy SCIRN 35 VA 35, S ClI

~ 33
27 >Ry T(B3,") L7(B; " ) L3.(8;,")

Thus, we deduce that

< Cllh)?
) 12

IRVAI

—1

'u\w

1
Bz

Noting the interpolation inequality

1 1
= |Ill® N ]

2 5 s 3
L38;,7) Ll (B2 ”) Ly B;,")

’

I\-)\L»

we have

IRVAI L SCIRE s s Il

1 1 3
2 2°p
LT(BZ,]) ) T BZp ) LOO(BZ )

S
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3.2. Long Time Existence of (ERR)

We want to prove that if the initial data of (ERR) is small, then its associated
solution will be still small during a long time interval. More precisely, we have the
following proposition:

Proposition 3.1. Let (p, i) associated with initial data (pg, io) be a global solu-
tion of (CNS) satisfying (1.12). Given an ¢ > 0, if the initial data of (ERR) are
determined by the following inequality:

(o, Quo)ll® | +||Qvo||’?%_, + kol ™5 TPl 5 Se (G2
B’ ;

P
B 8 By, Pl

then there exists a constant § independent of €, such that for any t € [0, §|In¢gl], it
holds that

IG, QYOI +1QunI™s | + ||h(t)||f’% PO 5 < e,

P
B}, B B

p.1 p.l A

Remark 3.1. The assumption (3.2) comes directly from (1.13).
Proof. We use the continuity argument to prove the desired result. Let 7 be the
maximum time such that for any ¢ € [0, 7], it holds that

1

162, QYOI +1QuI", | + IAOITs +1PoOI 5 <e2.
BP BP v

32,1 p.1 p.1 BPJ

The existence of 7 can be obtained by the local well-posedness for the system.
Then the proof of Proposition 3.1 is reduced to prove that 7 = §|In | where § > 0
is a constant independent of ¢.

Step 1: Estimates for the transport equation. Recalling the equation of &, we
have

h+ @+i) - Vh+v-Vp+hdivi + (h+ p)dive =0,
and with A j acting on both sides, and multiplying by |A ih |P=2A jh, we get
WNAn|T, — / div (v + @)|Ajh|P dx
< C/ A}, (v+i) - V- |AjR|1P7 dx
+ c/ |A;((h + p)divv + hdivir)| - |A;h1P~! dx,
which implies that

WA hlr < C(ldiviillLe + ldivollL)|AjhllLy + CI[A;, (v + i) - VIkl e
+ 1A ((h + p)div v + hdiv i) | 1r.
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Thus, by the definition the Besov space, for any ¢ € [0, 7] we have

H H
10 s < kol
LBl ) Bl

/ vl 1y dr+/ a FLERE
p 2
t

/ 3 27 A i -V]hIILpdt—i—C/ > 27 IlAj,v- Vik|Le de

2iZRy 2i2Ry

+ C/ ||(h~|—,o)d1vv—|—hd1vu||

(3.3)
B”

and

L L
IAllZ 1 = llholl”
L (BF) B}

t t
+/ ||divﬁ||Leo||h||Ll dr+/ Ials, vl s 5, de
0 B2, 0 B2, 37”’

+ C/ Z 22||[AJ, V]h||det+C/ Z 2z||[AJ,v V|2 dt

2/i<Ry 2/<Ry

+C ||(h—|—,5)divv+hdiv12||L. dr.
0

: (3.4)
B},

Let us give estimates to the terms on the righthand side of (3.3) and (3.4). By
Proposition 5.2, the commutators can be estimated as follows:

/ > 2p||[Aj,u V]h||Lpdr+/ > 2p||[AJ,u Vih| L dt

2J>R 2/>R
3.5)
/ (IIQMII s 3, HlIPull 3 +1Qull s 3., +IIPvll _;H)IIhII 13 dr,
Z.p Bpp,l BZZ,pP B]fl 322.1)13
and
/ > 22||[A], V]h||def+/ > 22||[AJ,U Vihl, 2 dt
2!<R 21<R
3.6)
= Cf (IIQMII s34 TPl 3, +1Qull s 3., + Pl ,;+.)|lhll L3dr
22 Pt Bpl1 22 Pt BP? 2'p

Pl B2~p
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Also, by product estimates (Proposition 5.1), we can get

/H(h—i—p)dlvv—l—hdlvull 1dr—|—/ ||(h+p)d1vv+hd1vu|| 3 dr

v
BZl Bpl

écf (IIQMII 3.3+ 1+”Pﬁ”3%+1 +|IQUIIB%%H+II7’UII ;+1>|Ihll,1% dr
2

p.1 2,p p 1 2,p

t
+ Cf <||h|| 1.3 +io—1 13 1)IIdiVUII 3 3 dr (3.7)
0 2 B27 B2

2.p

Plugging (3.5), (3.6) and (3.7) into (3.3) and (3.4), we obtain that

t
< |h 7]
Il ) S ol gz +ch (nQunB;,;H

t 2,p 2,p 2,p

FIPall 5. +1Qul 55, + 1PVl +1>|IhllBl 3 dr

p 1 2 P p 1 2.p

t
+C/ (llhll 13+l —=101 13 +1>||Qvll,sv3+1 dr  (3.8)
0 27/) B2 P

2 p 2,p

forany r € [0, T].

Step 2: Estimates of the momentum equation. First, we deal with the com-
pressible part of velocity, Qu. Applying the operator A j to the equation (3.1) and
multiplying |Aj Qv|p_2Aj Qu, we get that

1d . 1. . .
——||Aij||{p —M/div (;VAjQU) |A;QuIP72A; Qudx

()»—i—/t)/ ( divA; Qv> |A Qu|P~ 2A iQudx
:/A,-QH|A,-QU|P—2A,-Qde—/A,»Q(v-W).|A,»Qu|1’—2A,»Qudx
.1 .1 .
+C/ {udiv ([QA,, ;w) v+ VIQA ;, ;div]v} |A; QulP~ ! dx.
By Lemma A.5 and Lemma A.6 in [11], we have
d A 14 22j A 14
a”Aij”Lp +cp ||Aij||Ll’
< C/|AjQH|~|Ajv|p_ldx+C/|AjQ(v~Vv)| - JA;Qu|P~ ! dx

+C/’udiv <[QA,,1VD1;+(A+M)V [QAJ,%div]v‘-lAijV”] dx.
P
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Thus, by the definition of Besov space, for any ¢ € [0, 7], we obtain that

+1

IQull_ 1 - + [1Qv]|
Lye )

Ly 2,7

<clawl s sl vl pphdon HCIQHI gy
) z 2,p

l\l\_n
\Jw

L(B

2p L;(By,

+c/ Zzzu[AQ V:|v||der+C/ szwn[AQ V:|U||Lﬁdt

2/<Ry 2/ 2Ry

For the commutators, applying Proposition 5.2 and Lemma 5.5 yields that

/0t<22z||[AQ V}vlleJrZNII[AQ v}vnm)

2i<Ry 2i>Ry
t T 1
§Cf ( > 21 [A,-Q, <—_—1>V}Pv|le
0 Nai<r, P
h
+ ) 2z||[ - —_Vj|7)U|IL2>
2 Zho pp
t
+ Cf ( Zl(p 1)” I:Af <——1> V] PullLr
0 22 Ry
+ Y 27 [A Q — ]Panp) dr
2/>R0
t T 1
+ c/ ( Z 2% [A,-Q, (—_—I)V} Qull,2
0 Nai<r, P
+ Y 2% [A Q, — }Qvlle)dr
2/<R0
' 3 T 1
+ c/ ( > 26 [AjQ, (—_—1) v] QullLr
0 XN9i>Ry L
+ ) 27| [A Q9 — ]QUIILP> dr
2/>R0

t
< c/ <||/5— s s
0 B),NB),

+ Al s 3>(|IQUII 13, + Py ,31>df
2D 2°p P

2,p 2,p Bp,l

1
+ 82<||Qv|| 330 HIPUI s, )
L,l(Bpr ) L}(Bp’f1 )

(3.9

(3.10)
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Using Proposition 5.1, we can get that

t
lv-Voll 15, §C/ (1Pl 5,
LiB;," ) 0 v

p.1

2
2,p

+1Qull 13.,) (IIPUII 3 H QI s 3+.> dr. (3.11)
B2P P B2V
p.l 2,p
Plugging estimates (3.10), (3.11) and estimates of H (Lemma 3.1) into (3.9),
and noting that

’

1Al 55 = Clihl
B P

%i
270 %
2,p BZ.

P

we obtain that
Qull . 13, +1Qull 53, =ClQuoll
L5 ) LIBET )

1 3
22 P
1 2,p 2,

P
1
+ 82(”9”” g TP -2+1> (3.12)

LiB7P ) L{B) )

-1

=

t
+ C/ (||PU|| 3+ 1Qull 15+ Ikl 13>d1’
0 BY p2' P R2°P

p.1 BZ,p B2,p
forany r € [0, T].
- Next, we establish estimates of incompressible part, Pv. Applying the operator
A to both sides of (3.1) and multiplying IAijV’_ZAij, we get that
1. » (1. ; 24
—0: A Pull, —p [ div [ =VA;Pv ) |A;Pv|P"~A;Pvdx
p Lo
= / AJPH|Aj73v|p_2Aij dx — / AjP(v - Vo) - |Aj77v|p_2Aj77v dx
. 1 . .
+ /,udiv([’PAj, SV |A;PuIP2A;Podx,
which implies that
ol A PollL, +ep2 1A PollE,

< C</|AjPH||AjPU|p_1dx+/IA./P(U-VU)|~|Aij|p_1dx>
. 1 .
+M/ |div ([PA;, ;vm - |A;PulP dx.

Thus, by the definition of Besov space, for any ¢ € [0, 7], we derive that

B, LB, )
S CllPwll 3, +Cllv-Voll s, +CIPH| s,
B, LIB), ) LBl (3.13)

! i3 1
+ c/ sznn[A,-P, —V]vl|,2 dr.
0 ieN P
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By the same argument as in the proof of inequality (3.10), we have

/ (Zzpum P, V]vllu)dx<C(lleI| NN
0 B

jeN L( 2,pl )
+ [Pl 1 ,g_l) (3.14)
t ,§,|
<||Qv|| say HIPull o s, )
LiBy ") Li(B,, )

Plugging estimates (3.14) and (3.11) into (3.13) will imply that, for any ¢ € [0, 7],
it holds that

IPoll s 1Pl 5y,
LB, ) LB} )

t
< Cl[Puoll 3 _, +C/ <|IPUII 3 +H1Qull1s +|Ih||_1.3)dr
szfl 0 P 2P

p 1 BZ P BZ.p

1
82<”QUHL} 3.3 + [Pl L3 > (3.15)

2,p t\Pp1

Step 3: Closing the energy estimate. Combining estimates (3.8), (3.12) and
(3.15), and choosing a suitable §; such that §;C < 2, we obtain that

Sillhll__ 12 +1Qull

RIUENS Iy

+ Pl s §C<|Iholl 13 F1Qull g3+ IPwl )

3.3
P
By,

L (prl ) pl 2p Bpl
t
+ C/ (31|Ih|| 13 +1Qull 15 + ([Pl ,31)df
0 2P BIP P
2 2.p p.1

for any ¢ € [0, 7]. By the Gronwall’s inequality, we get that for any # € [0, 7], it
holds that

Sullell 1 +|IQU|I 13 HIPIl s

13 13
LB, ") LB, " ) LBl )

<C(||h0|| 13 +1Quoll 15y +IPvoll 3 1) "

pl 32]7 Bpl

According to the definition of 7, this implies that 7 = §|In¢| for a suitable §
independent of €. Then the proof is completed. O



Stability of (CNS) 1205

3.3. Proof of Theorem 1.2

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. First, thanks to Theorem 1.1, we can choose 1y = %(1 +
|6 In g|) such that

(o= Do)l 1.

33
32,2

+ llu(ro) |l . <A+ |8 Ing|)PP0)/2,

2,1

Recallthat p — 1 = h + (p — 1), u = v + u, then from Proposition 3.1, we derive
that

IGp =1, Q)" +1Quio)I™s_ +11Go = DI +IPwEI 5,

Bz,l p.1 Bp,l p.1

<er 4 (14 [5Ine)~PPO/2 < (1 4 |sIne)~PP0)/2,

This means that at time #(, the system (CNS) is in the close-to-equilibrium regime.
Then thanks to the results in [8,29,30], we obtain the global existence for (p — 1, u).
Moreover, due to the definition of 7 and (1.7-1.8), we conclude that
Sullpll, ps Al Qull . 13,
B3, LBy P
Pl sl Smin{(1+ [8Ine) PO, (14 TR0 4 gy,
OO(B P )

! Pl

This completes the proof to Theorem 1.2. O

4. Construction of a Global Solutions with a Class of Large Initial Data

iNSPIRED by [22,32], in this section, we construct a global solution for com-
pressible Navier—Stokes equations with the vertical component of the initial data
(Pug)? could be arbitrarily large.

4.1. Reduction of the Problem

1 3_ 1 3_ 3
L S L3 )
Given ag € Bzzp’ Quo € B2 ! and Pug € B;? . with Jlag| 130 being
. . 827
sufficiently small, it follows by a similar argument as that in [7,8] that there exists
a positive time T so that (CNS) has a unique solution (a, u) with

534

-1 .13 .3,
a€C(0,T]; 32 ’ ), Qu e L™, T];B,j,p" )NLYO, Ty B, ),

3_
Pu e L*((0.T1: B] | YA LY, T): B 1 N, “.1)
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Next we only need to give an a priori estimate to the solution. Observe that the
system (CNS) can be recast as

0ra +u-Va+divQu = —adivu,
0, Qu+u-VQOu — puAQu — (u+A)VdivQu + yVa = QWg,
3 (Pu)'" +u - V(Pu)hor — A(Pu)hor =[P, u - VIu"" + (PWp)hor,
3 (Pu)® + Pu - Vi) — A(Pu)® = (PWp)3,
(4.2)

where

W Vi Gu— Y4 v ((—— 1w
=——Vu— —— iv|(—— —1)Vu
LT T 0 ta)2 T+a  # 1+a

+(u+ MV <(ﬁ — Ddiv u) +[Q.u-Viu+y(p’ '~ 1)Va,

and

Va

Wp=—— 2
P =T 0 1a)2

1
\Y di —— — 1DVu .
u—l—,u1v<(1+a ) u)

Now, to establish uniform estimates for the solution, we first give estimates to QWg
and PWp.

Lemma 4.1. There exists a universal constant C such that

IQWoll 13 S CUQuI 5 3., +IPul 3.,
B

2,p 2,p p.1

3) (IIaII 13+ 1Qull 1+ II(Pw) | ,31> )
p 32 P BZ P p

2.p 2,p Bp,l

and

IPWpIl s < Cllall 33 (1Qull g3, +IPull 3.0)
B B B B

Pl 2,p 2,p A

+Clall 52 (IIQuII 13 +||7’u||,31>.
P B? P BP

2,p 2.p p.1

Proof. For QWg and PWp, the most difficult term is [Q, u - V]u; the others can
be estimated by the Propositions 5.1-5.4 directly, so we just focus on the term
[Q,u-V]u.

Because u = Qu + Pu, we have,

[Q,u-V]u=[Q, (Qu + Pu) - VI(Qu + Pu)
=[Q, (Qu) - V]Qu+[Q, (Qu) - VIPu+[Q, (Pu) - VIQu+[Q, (Pu) - VIPu.
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Here, by Propositions 5.1-5.4, it is not difficult to get that

I1Q, (Qu) - VIQu + [Q, (Qu) - VIPu + [Q, (Pu) - V]Qu

+[Q, (Pu) - VI(Pu)"r ||,
By,

< hor
<c (IIQMIIB;;H + ”P“”B?“) (ngunB;_;l + 11(Pu) ||B;,1> .

2,p p.l 2,p p.1

For the remainder term [Q, (Pu) - V](Pu)3, by using div Pu = 0, we can obtain

[Q, (Pu) - VI(Pu)® = Q((Pu) - V(Pu)®)
= Q((Pw)"" - Vi, (Pu)® — (Pu)*div 4, (Pu)"")
= Q((Pw - vy, (Pu)*) — [Q, (Pu)*1div  (Pu)"".

Thus, by Proposition 5.1-5.4, we complete the proof of this lemma. O

4.2. Proof of Theorem 1.3

We finally give the proof to Theorem 1.3.

Proof of Theorem 1.3. The proof of the theorem falls into four steps.
Step 1: Estimates for the low frequency part of the solution. Applying A on
the both side of the first equation of (4.2) and multiplying A ja, we have

1d . . . .
;aHAjaHiz—/dinu|Aja|2dx+/Ajdinu-Ajadx
§C/|[Aj,u-V]a~Aja|dx+C/|Aj(adinu)-Aja|dx,

which implies that

1d . . .
Fa1Asalze +/AdeVQu-Ajadx

< Cldiv Qull = llAjall7, + C(ITA . u - Vial 2 + A j(adiv Qu) 12) 1A jall 2.
4.3)

Next, taking A~!div on the both sides of the second equation of (4.2) yields
that

dd+u-Vd— 2u+2)Ad —yAa=A"'divQWg — [A"div, u - V]Qu,
(4.4)

where d = A~!div Qu.
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Acting as the operator A ;j on the both sides of (4.4) and multiplying by A id,
we get that

1d . . . .
S 18I + Cu+WIVA I, —yfA,-a-A,-Addx

< Clldiv Qullz=llA ;dI%, + 1A dll 2 ITA j, u - V1d| 2 (4.5)
+ 1A;dl2(1A;QWoll 2 + 1A A div, u - VIQul,2).
Now, we introduce a new auxiliary function w e 2u 4+ X)Aa — d, which

satisfies that
oow+u-Vw+yAa
=—-Qu+M[A,u-Via— 2u+ r)A(adivu) (4.6)
— A 'divQWg + [A7div, u - V]Qu.

Applying A ;j on the both sides of (4.6) and multiplying by A jw, we obtain that

d . . . .
za||A,-w||§2+(zu+,\)y||AjAa||’i2 —y/Aja-AjAddx

< C(ndivuumo IA;wl?, + A, u- V]wannA,-wan) wn

+ C<||A.,'[A, u-Vial2 + 1A Aladivu)l| 2 + IIA.,'QWQ||L2>||Aju)||Lz
+ ClIA;IA™ div, u - VIQul| 21| A jwll 2.

Putting together estimates (4.3), (4.5) and (4.7), we arrive at

%(V”Aja”iz +(1=8)|A;dl3, +5||Ajw|\iz> +IVA;d|I7, +8IlAA a7,
< Cldiv Quli=llAjall?, + c(n[Aj, u-Vial ;2 + 1A j(adiv Qu)IIILz)IIA.,‘aIILz
+ C||A,-d||Lz(||div Qullze | Ajdll 2 + 1A, u - V]dlle)
+ c<||AjQWQ||L2 + 1A ;A div, u- V]Qulle>||Ajd||L2
+ cs(ndivunLoo 1A wiFs + 1A, u- V]w||Lz||Ajw||Lz>
+ ca<nA,~[A, w-Vialp2 + 1A Aadivi)| 2 + ||A,QWQ||L2)||A,~w||Lz
+ C8|A ;A div, u - VIQull 21 A jwll 2. (4.8)

When 2/ < Ry, it holds that [[AAall,2 < RollAjall;2. Thus, we could find a
§ > 0 (small enough) such that

. . . 1 . .
IAjall, + 1 = 8)IA;d|7, + 811 A w3, = 5(||Aja||iz +14A;d|175).
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Integrating (4.8) over [0, T'], we get that
. . 2 T . .
IAjallz2 + 1A;dll 2 +2 ’/0 (Ajdll2 +8llAjallL2) de
T .
= C/ div Qu|lL=[|Ajal 2 dt
0
T . .
+C/ (||[Aj, u-Viall;2 + ||Aj(adiv QM)HLz) dr
0
T .
+c/ Idiv Qull < 1A jdl 2 dr
0
T . .
+Cf <||[Aj, u-Vid|2 + IIAjQWQ||L2> dr
0
T . .
—i—C/ <||Aj[A,u -Vlal2 + IIAj[A_ldiv,u - V]
0

xQullp2 + A, u- V]Aa||Lz> dt,

where C depends on the u, A and Ry. By the definition of Besov space, we obtain

T
lall™, + 111", +/ (al*s +3sllal*s )de
B}, B}, 0 B}, By,
T
< C/ lIdiv Qul| e lla|l ™, dt
0 322,1
T j .
+c/ ( > 2z||[Aj,u-v1a||Lz+||adinu||€l)dt
0 2/<Ry 322,1

T
+c/ Idiv Qull o~ I, dr
0 322,1

T .
—i—C/ ( 3 2%A . u - VI 2 + [QWollt )dt
0

|
32
2/<Ry By,

T .
—i—C/ Z 27| A[A" div, u - V]Qu 2 dt
2/<Ry

T .
+c/ > 27| A[A, u- Via| 2 de
2/<Ry

T .
+c/ 3 2%||[Aj. u - V]Aal| 2 dr.
0 i<k,

Let us give estimates to terms in the righthand side one by one. Due to Propo-
sition 5.2 and Lemma 5.5, we deduce that
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> 2%[Aj u-Viall 2 £ Y 2%[A;, Pu - Via] 2

2i<Ry 2/ <Ry
+ > 2%[A;, Qu- Vial 2
2./<RO
S CUIQull 5 5., + IPull 3+1)|Ia|| 13- 4.9)
2p Pl 2,p

A similar argument yields that

J .
> 220w Vidlz S CAUQull s 5y +IPull 3 DIl 43,
2j§R0 BZp Bp,l 2,p

S 23 A (A div, u - VIQull 2 < C(IQul
2./'<R0

5 3, +1Pull 3+1)||d\| 13,
B2 PT

2 pl 2,p

E 22||A [A,u-Viallp2 £ C(l|Qull

D P B' Z’p
2/<R0

53,
B2 P
2 p.l 2,p

Finally, by Proposition 5.1, we have

ladiv Qu||*, < C||Qu] . s3pllall v
. pt p2P

2
BZ,I 2p 2,p

Now, putting all estimates together and applying Lemma 4.1, we have

T
lall™, + IdI*, +[ (ndan +||a||L5> dr < Jlaoll™, + 1Quoll™,
N2 N2 0 p2 p2 2

Bz.l Bz,l BZ,I BZ,l Bz.l 322.1
T

+Cf (nQun g +IPul
0

2/1 pl

_g.s)(llall 13+ lQull ys + 1P| s >dt~ (4.10)
BZ P p

P p 2p pl

+ lall

Step 2: Estimates for the high frequency part of the solution. Applylng A on the
both side of equation of d, (4.4), and taking the inner product with |A id |1’ 2A id
, we derive that

1d . ) .
——||A iy, — (2M+A)/AA.,~d-|A.,'d|P_2Ajddx

-y / A{;Aa . |A‘,~d|p72A./ddx

<C||deu||Loo||A idIP, + AP A, u - Vid| e
F11A;dI7, (1A QWall 2 + 1A TA div, u - VIQul|Lr).
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By using Lemma A.5 and A.6 in [11], we have that

1d . . .
;anA,-dnip + (cp2% = DIIA;AIY,

y (4.11)

< Cldiv Qullz I A;d T, + 1 A;d T, 1A, u-Vid L
. _l . . _ . .
+ AT, A QWollr + I1A;IA™ div, u - V1QullLe + 1A jwlLr),

where ¢, is a positive constant depending only on p.
By the same argument applied to (4.6), we get that

d . .
EHAJ-wnip + 1A wlf,
. . _1
S ClAdllr 1A jwlf,
. . . . _1
+ Cldivullz= | Ajwlf, + CI[A;, u-ViwlLe | Ajwlf,

+ C<||Aj[A,u -Viallzr + 1A Aadivu)| L

+ |1A; A" div QWQ”LP)”Ajw”i;I
+ CIIA; AT div, u - VIQul ol Ajw]f, . (4.12)
Thanks to (4.11) and (4.12), we have
1d A P A P 2j A P A P
;5<||A,-d||m +a||A,-w||Lp) + (cp2* =) Ajd|], +8llAjwl7,
<20\ Ajd|leollAjwly, "t + Cldiv Qull< | Ad]Y,
+ 1A A w - VId] e
- ||A,-d||§;l<||A,;QWQ||Lz +IA;IA div, u - V1Qu||Lp)
+ ClldivullL=llAjw]?,
- C(H[A,-,u Viwler + 1A A div, u- VJQunLP)nAJ-wni;l
+ C(IIAj[A, u-Via|rr + |1A;Aadivu)|| L
+ ||AjA—1dinWQ||Lp)||Ajw||{;‘. (4.13)
Observe that
A dllr A jwl?y" < 87214 w8, + CsllAdlY,,

where the constant § is chosen to satisfy the following inequality:

. . 1 . .
IAjdlLe +81A;wllLr = z(”Ajd”LP +8IAjAallLe).



1212 LINGBING HE, JINGCHI HUANG & CHAO WANG

Meanwhile, choosing a suitable Ry such that for any 2/ > Ryand2 < p < 4, we
have cp22/ —-2—-Cs 2 %22/. Thus, when 2/ = R, we get that

d . . - .
E(”Ajd”Ll’ +5||AjAa||Lﬁ> + 2% Ad|Lr + 1A AallLe

< Clldiv Qule< | Ajd e + 1A, u - Vid] Lo
+ |1A;QWollLr + CIlA; A~ div QWo|Lr
+ IA;IAT div, u - VIQullLr + Clidivull=||A;Aal e
+ CI[Aj,u-VIAal L
+ CIAIA, u-VialLr + CIlA;Aadivu)l| L. (4.14)

By the definition of Besov space, we deduce that

T
Id. Aall™s | + / s |+ lAaals  de
BP 0 BI’ BP

p.1 p.1 p.l

T
<f ||dinu||Loo||d,Aa||H%,ldr+||QWQ||H 3,
A .

= 1LpP
Bp,l LT(Bp,l )

T
+ ladival? +/ > 2/OPTO(I[A ), u - VId] Lo
Ly 70 5>k,

+ |AIA, u - ViallLr) dt

T

[0 30 I DA A i - VIQuls
0 2/ 2Ry

+ I[Aj, u - V]AallL») dt.

Thanks to Proposition 5.1-Proposition 5.4 as well as Lemma 4.1, the above inequal-
ity can be written as

T
Id, Aall™; +/ Idl”s 4+ laall™s | di < lldo, Aaoll”s
g Ber oD g

Bp,l 0 p.1 Bp,l Bp,l

T
s [ (1u g+ 1Py

2,p p.l

+ ”"”33*2)(”"” 1 Qe g
2,

2.p By p 2,p

+ [[(Puyter ”313)‘1) dr. (4.15)

p.1

Step 3: Estimates for the incompressible part of the velocity. To close the esti-
mates, we need to estimate Pu. For (Pu)"*". Applying Proposition 5.5 to the third
equation of (4.2), we obtain that
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IPwr ) 5 +1Pwhr s,
LE@), ) LhB))

T
S IPug)r . 5, +C / lIdiv ull oo | P || 5 dr
LP(B) 0 v

,1 ) Bp,l

T
+ f (PWR) | s dr
O P

Bp,l

T . .
+ C/ S GIA L w - VIPW o+ NP, - VI 1) di

jeN (4.16)
T
< NPugy I3y +C / lall 3 3 Q)" Il s/
L?’O(B[).l ) 0 BZ,[) 2p
h
+ 1P| 5 dr
Pl
! h h
+ c/ Q"I y 2y + 1P 2 )UQul 5.,
0 BZ,pp BZ‘,’p BZ,pp

+ Pull 3.,)dt,
B?

p.1

where we used Lemma 4.1 and

.3 .
S STV AA u - VIPW Lo+ IIPLu - V1" || o)
jeN

S CU@M I g5+ 1P | 5 DAQul 55+ IPull 5.,).
B P P BZ p Bl’

2.p Bp-l 2,p Pl

For (Pu)3, deducing from the divergence free condition div Pu = 0, we have

P - Vub)=P((Qu)"" +(Pu)"")dpu) =P W div j,(Pu)"”")+P (> 33(Qu)?).

Thus, applying Proposition 5.5 again to the last equation of (4.2), we obtain that

1P s, + 1P s,
LEB), ) Lp(Byy )
T
SHPup)®l . s, + f 1@ + P yopu || 5, dr
Z%O(B[ﬁl 1) 0 B,,pJ 1 “4.17)

T
+ / <||u3dth(7>u)””r|| s+ lWlasQwi s+ IPWR)Y ;,l)dz.
0 B? BP P

p.l p.l Bp,l
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Thanks to Proposition 5.1 and Lemma 5.4, we have

1(Qu)"” + Py’ 3, < C(H(Qu)’"”n
Pl 2.p
+ [(Pw)r|| _.>||<Pu> [E
pl pl

and
lidiv (P || 5+ [w?03(Qu) Il 3, + IPWp) Il 3,

BP Bl’ Bl’

p.1 p,1 p,1

<c (||<Qu>3|| 1 P ,31) (n(Pu)h”n 1t Q3 s m)
2'p BP B2P
2,p p.1 pl 2

+ Clall y 5 (nwm””n s 1P .;+1) :

B

2,p p.1 p.1

from which, together with Lemma 4.1 and (4.17), we derive that

I(Pu)? || s+ I(Pw)? |I 3.
LFB, ) By

< [[(Puo)’ |I ~ 3.

Bpl)

+ C/ (II(Qu)h”’IIB . + Il (Pwy" | ,_])II(PM) || 3 d

2,p pl pl
(4.18)
+ C/ (II(QM) Il ,%, + [1(Pu)? || )
x <||<7>u)’""|| Q) 7) di
i By,

T
+ C/ lall 15 (II(Pu)h‘”II N + 1 (Pu)’| 3+1) dz.
0 B2 P

2,p p 1 p 1
Step 4: Continuity argument. We first deduce from (4.10), (4.15) and (4.16)
that

+ ||(7>u>’""(t)|| 5

2p 2,p pl

la@ll 33 +1dOI 15
B B?

t
+/ (IIaII,;,z + lidl ,;+1+|I7’ull 3+1)dr
0 Bz,p”

2p pl

= C(Ilaoll 13+ lldoll v 5, + II(Puo)hO’II )
1

217 2p p
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t
+ / <I|a|| s 3 +|ldll s $3p T ||7’u|| )(IIaII 13
0 BLY A 1 27

2p P

Fldll g3+ 1IP0I )dr.
1

2P p
Lets% <) <« 1. We define T by

T sup T > Ocllall 13 +Idl % 3, A+ Pwyhor 3., Sa
L¥B; ") LEB; " ) LEaBr
(4.19)

According to the local existence and blow up criterion for the system, it is obvious
that 7 > 0. We shall prove T = oo under the assumption (1.15). Forany ¢ € [0, T'],

the above inequality can be recast by

la@N 35 +1dOI 13-, + I(Pw)"" @) -

2,p B2p Bp,l
+ _Cl)/ <|Ia|| 5.3t ldll 55, + 1P| 3“) T
2P 2p pl
= ||a()|| 1.3+ lldoll e + (Puo)*"|| X
Zp 2p pl
- c/ 1Pl +l(nan R LN (DI ) 2
pl 2 2p pl

which implies that

la@®l 13 + IId(t)IIB; s+ P O] s 43

2p 2,p p]

h
<c <|Ia0|| 13 ol 13+ 1CPuo) ‘"nB,,ll) 4.20)
P,

2.p 2,p

X exp </ 1(Puy? I| 34 df)

p l

for any ¢ € [0, T]. .
On the other hand, from (4.18) and (4.19) , we get that for any ¢ € [0, T'],

p.1 ) t p,1

t
< I(Puo)|l 5 /o <||a||352 Id|l s $3aF 1P| - >
2,p

2p pl

2
IPwd_ s, +31Pwd s,
LB 3 LIBP T

pl

x (nan 3 Hldl s 1P s ) T,
B2 P B!

2.p 2p pl



1216 LINGBING HE, JINGCHI HUANG & CHAO WANG

from which, together with (4.19), we obtain that for any ¢ € [0, 71,

t
f I(Pu)| 3,dr=C (IIaoll 13 +ldoll 13,
0 BP P 2P

-7
p.1 B2,p 2,p

I Pu)" 1l 3, + [(Puo)’ | ) (4.21)
BP BP
p.1 p.1
Plugging this estimate into (4.20) and using the condition (1.15), we obtain that
la@ll 3.
2.p

B
< C(Ilaoll 13+ ldoll 15,
B} P

1 3
p2'p
BZ,[) 2,p

+ ld@)]|
B

3 13
iz 52D
2.p

L IPwrr @) s
BP

p.l

(4.22)
+ ||<7>uo)h”’||3;_l> exp (Ce + 1(Pug)’ |l 5_))

p.l p.1

§C5SC—1

=5
for anyr € [0, T, which is in contradiction with the definition of 7. We conclude
that 7 = oo and (4.22) holds for all time, from which together with (4.21) will
imply (1.16) and (1.17). This ends the proof of Theorem 1.3. 0O
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5. Appendix

For the convenience of readers, in this appendix, we list some basic facts about
the Littlewood-Paley theory.

5.1. Littlewood-Paley Decomposition

Let us introduce the Littlewood-Paley decomposition. Choose a radial function
¢ € S(R?) supported in C = {£€ € R3, % <&l < %} such that

Z‘P(z_jé) =1 forall £ #0.

JEZ
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The frequency localization operators A ; and S; are defined by

Ajf=9Q7ID)f. S;f= Z Arf for jeZ.
k<j—1

With our choice of ¢, one can easily verify that

AjAf=0 if |j—kl =2 and A;(Si_ifAf) =0 if |j—k| >5.

(5.1)
Next we recall Bony’s decomposition from [2]:
uv = Tyv + Tyu + R(u, v), (5.2)
with
T,v = ZSj_luAjv, R(u,v) = ZAjquv, Zjv = Z Ajrv.

JEL JEZ [j'=jl=1

5.2. Product Estimates in Besov Spaces
We first recall the Bernstein lemma which will be frequently used (see [1]).

LemmaS5.1. Ler 1 < p < g < 4o00. Assume that f € LP(R3), then for any
y € (NU{0})3, there exist constants Cy, Cy independent of f, j such that
~ . ; 11
suppf C {I&] < Ag2/} = 9" flly < 12/ "G 7y,

suppf C {A12/ < |&] < A22/} = |1 fll, < C227 /) sup 19 £,
[B1=lyI

As a consequence, the estimates for the paraproduct and remainder operators
can be given by

Lemma 5.2. Let 1 < p, q, q1, g2 < 0o with CILI + qu = % Then we have
(a) if s» < %, we have

T, a3 SClfllza, p TS
” gf”Z BAI+J27F) = ”f”LTl (Bpl.l)||g||Ll§2(3,,2,1)’

q
T( p.1l

(b) if 51

IA

% — 1, we have

ITrell_, (Bx,ﬂz,z < C||f||zf;1 (B;{])Ilgllz;z(g;%l);

T\"p,1 F) B
(c) if s1 + 52 > 3max(0, % — 1), we have

RGO, g = CI I Ielzp

q
T( p.1
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We refer readers to [1] for detailed proof. Then we arrive at the following product
estimates:

Lemma 5.3. Let 51 < %— 1, sz < % s1 + so > 3max(0,%— 1), and 1 <

P.q,q1,q2 < oo with qll q_z = —. Then it holds that
||fg|| 3”“27%) = Cllflizn (3;1,1)||g||zl§2(3,s,2,1)‘
p.l
LemmaS4 Letsl,sz < %, s1+s2 > 3max(0, %—1), and1 < p,q,q1,q2 < 00
wzth ~|— — = =, Then it holds that
IIfgII 3 < Clfllga g Iglize g -
~y  sS]FS— Ly (B, ) L (B )
L%(Bp,l /’) T p.1 T p.1
Next, the commutator between the frequency localization operator and the func-
tion can be estimated by

Lemma 5.5. Let p € [1,00) and s € (=3 min(%, 5), %]. Then it holds that

127°1LA . F1V8lI Ly (1)

= C|fll 3 [lgll L st
L! ~o 25 LY (Bt
L;C(B;) T2 7p.1

127 10A. V&l Lt m o < CUAI_ 5 ||g||L LB )
Ly (B

p.1

We recall the following composite result:

Lemma 5.6. Lets > Oand 1 < p,q,r < oo. Assume that F € Wl[53+3’°°(R) with
F(0) = 0. Then it holds that

~ [s1+2 ~
IEHONE s,y = CAF N lrgewe)™ N lIze -

In the anisotropic spaces, the above results still hold true. We refer readers to
[5,8] for details. We begin with the product estimates.

Proposition 5.1. Let 5, 1,5, 1, 0,1 e R,2 < p <4, and 1 < r,r1, 2 < 00 with

1_ 1 1 . . )
=gt Then we have the following estimates:

!
@) Ifo,t < Eando~|—r > 0, then
3 2TTVNA ()l

2/ >Ry

< C(”f”"‘rl(Bn/Z n/p+a + ”f” (BO' ))(”g”"‘rz(Bn/Z n/p+r + ”g”LrZ(BI ))

(b) If s, §%ands—}—t>n—27”withs+t='§+7and9eR,then
> YDA ()l )
2/<Ry

)
L H L H
+ CUg g ) + 181 rroemn) UV g7+ 1150 i)

< CU S, H L i
< CULF Ny oy + 1V s-arvomn ) U ) 18155 rizsmiss)
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() If s, §§ands+t>%—%withs—i—t:}'—i—’f,then
L VCTRUA (SO Npan S CUSIn gy )+ W0y o N8N 21
JEL
+C(||g”%rTz(Bs + ||g||~,2(B> n/24n/p )IIfIILn(B:
Let {c(j)} be a sequence in 1" with the norm [|{c(j)} ;1 £ 1. Then the estimates
for the commutators can be stated as follows:

Proposition 5.2. Ler 2 < p < 4—%<s:%’+1,—%<a:%+land

1 = r,r,r S 0o with % = % + E . Then, for 2/ > Ry, it holds that

I, AV £l e < Ce(D@ I+ 25N f )k L+ A

L7 (B3 ) L7 (B, )
L H
X (||v||=r - =+ ||v||~ . N
(” ”LITI(B;,/12+1) ” ”L;-I(Bll,ﬁ”/p))

I, AV £l oy < Ce(H@ 7 +27G 75 ”)(IIfIIer(BS )

+||f||er(Bfr ))”v”Z’T‘ (B,I,ﬁ"/p)’
Moreover, if—% <s < % + 1, then

Itv, Aj1- VIl 2y = Ce(p2™ JYIIfIIer(BY )(”U”~r1(Bn/2+l +||U||~r] (Bl+,1/,,))

)
Proposition 5.3. Under the assumption of Proposition 5.2, if S € S1 o then, for
27 > Ry,

IS, Aj1- 9 fllgr oy € Ce(d@ 7 +27575 ”)(nfn%(w +IL1E ).

Lr2 (B(T‘Hﬂ)

and, for 27 < Ry, if—% <s < % + 1, then

i )

IS 809 Fligay S CelD2 SV ) + 1 U o
Finally the composite result can be proven.

Proposition 5.4. Let2 < p < 4,5,0 > 0,ands 2 o — % + %, r 2 1. Assume
that F € WY 0 W2 ith F(0) = 0. Then it holds that
L
I FCONF " (B3 ) + IIF(f)IILr B7)

SCAa+IfI% n/p)+||f||

max([sLloD+1 ¢y L . H
LOO(B n/p)) (”f” rT(B%l)—’_llfllL;‘(B;l))

2B
Forany s > 0 and p 2 1, it holds that

IFCOIzy 5, S CA+ g AT s -
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For Stokes equations, the maximum regularity estimate can be concluded as

Proposition 5.5. Let p € (1, 00), and s € R. Let ug € B;l (R3) be a divergence-
free field and g € ZIT(B;J)- If u solves

oiu — pAu + VII = g,
divu =0, (5.3)
uli=0 = uo,

then (5.3) has a unique solution u so that

el zse s ) iy geeey T IVIT LY e ) = Nuollgs  + CllglLy s -
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