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Abstract

In the paper, assuming that the motion of rarefied gases in a bounded domain is
governed by the angular cutoff Boltzmann equation with diffuse reflection bound-
ary, we study the effects of both soft intermolecular interaction and non-isothermal
wall temperature upon the long-time dynamics of solutions to the corresponding
initial boundary value problem. Specifically, we are devoted to proving the existence
and dynamical stability of stationary solutions whenever the boundary temperature
has suitably small variations around a positive constant. For the proof of existence,
we introduce a new mild formulation of solutions to the steady boundary-value
problem along the speeded backward bicharacteristic, and develop the uniform
estimates on approximate solutions in both L? and L. Such mild formulation
proves to be useful for treating the steady problem with soft potentials even over
unbounded domains. In showing the dynamical stability, a new point is that we
can obtain the sub-exponential time-decay rate in L°° without losing any velocity
weight, which is actually quite different from the classical results, such as those
in CAFLISCH (Commun Math Phys 74:97-109, 1980) and STRAIN and Guo (Arch
Ration Mech Anal 187:287-339, 2008), for the torus domain and essentially due
to the diffuse reflection boundary and the boundedness of the domain.
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1. Introduction

1.1. Boltzmann Equation

Let a rarefied gas be contained in a bounded domain €2 in R3, and let F =
F(t, x, v) denote the density distribution function of gas particles with position
x € Q and velocity v € R? at time r > 0. We assume that F is governed by the
Boltzmann equation

&F +v-VyF = Q(F, F). (1.1)

The Boltzmann collision term on the right-hand takes the non-symmetric bilinear
form of

Q(F1, Fy) = /R3 /sz B(lv — ul, o)[Fi () F,(v') = Fi(w) F2(v)] dwdu, (1.2)

where the velocity pair (v, u’) is defined by the velocity pair (v, u) as well as the
parameter o € S? in terms of the relation

V=v—[(v—u) oo, u=u+[v-u- oo,
according to conservation laws of momentum and energy
Vi =vtu WP P =+l

due to the elastic collision of two particles. To the end, the Boltzmann collision
kernel B(|v — u|, w), depending only on the relative velocity |v — u| and cos ¢ =
w - (v—u)/lv—ul,is assumed to satisfy

B(lv —ul, ) = [v—ul"b(¢), (1.3)
with
-3 <k <0, 05b(¢p) SC|coso| (1.4)

for a generic constant C > 0, namely, we consider in this paper the full range of
soft potentials under the Grad’s angular cutoff assumption.

1.2. Diffuse Reflection Boundary Condition

We assume that Q@ = {£(x) < 0} is connected and bounded with &(x) being
a smooth function in R3. At each boundary point with £(x) = 0, we assume
that V&(x) # 0. The outward unit normal vector is therefore given by n(x) =
VE(x)/IVE(x)|. We define that S is strictly convex if there is cg > 0 such that
> 3£’ n) = cgn|* for all x € Q and all n € R3.

We denote the phase boundary of the phase space Q x R3 as y = 9Q x R?,
and split y into three disjoint parts, outgoing boundary y., the incoming boundary
y_, and the singular boundary yy for grazing velocities:

ve ={(x,v) €92 xR : n(x) - v > 0},
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v ={(x,v) € I x R*>: n(x) - v < 0},
vo={(x,v) € 32 x R?: n(x) - v = 0}.

We supplement the Boltzmann equation (1.1) with the diffuse reflection boundary
condition

F(t,x,0)|, = po(v) F(t,x,0V){v -nx)}dv, (1.5)
v -n(x)>0

where g (v) is a local Maxwellian with a non-isothermal wall temperature 6 =
0(x) > 0:

_ 2
2000 |

V) = ————e
o (V) 370200)
Throughout this paper, we assume that 6 (x) has a small variation around a fixed
postive temperature 6y > 0. Without loss of generality, we assume 6y = 1, and for
brevity we denote the global Maxwellian

_b?
2

1
m=pn) = ug ) = -—e

o (1.6)
1.3. Main Results
Note that
fv~n(x)>0 po(){v - n(x)jdv =1 (1.7)

for any x € 92, and hence 1y (v) satisfies the boundary condition (1.5). However,
it is straightforward to see that the stationary local Maxwellian ug(v) does not
satisfy the Boltzmann equation (1.1) because of spatial variation unless 6(x) is
constant on 2. One may expect that the long-time behavior of solutions to (1.1)
and (1.5) could be determined by the time-independent steady equation with the
same boundary condition. Thus the study of this paper includes two parts. In the first
part we investigate the steady problem in order to obtain the existence of stationary
solutions, and in the second part we are devoted to showing the dynamical stability
of the obtained stationary solutions under small perturbations and further under a
class of large perturbations in velocity weighted L spaces.

In what follows we present the main results of this paper. The first one is to clarify
the well-posedness of the boundary-value problem on the Boltzmann equation with
diffuse reflection boundary condition

v-ViF =Q(F,F), (x,v)eQxR,

o , (1.8)
F(x,v)|,_ = no(v) F(x, v){v' -n(x)}dv'.

v -n(x)>0

We define a velocity weight function

w = w) = (1 + [v]2) T, (1.9)
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where 8 > 0 and 0 < ¢ < 2 are given constants, and (@, ¢) belongs to
1
{;:2,0<w<§}u{0<§<2,w>0}. (1.10)

Here and in the sequel, for brevity we have omitted the explicit dependence of w
on all parameters B8, @ and ¢.

Theorem 1.1. Let -3 < k < 0, B > 3 + |k|, and (w, ¢) belong to (1.10). For
given M > 0, there exist §o > 0 and C > 0 such that if

8 :=10 — bolropa) = . (1.11)

then there exists a unique nonnegative solution F(x, v) = M u(v) +u% ) fie(x,v)
2 0 to the steady problem (1.8), satisfying the mass conservation

// f*(X,v)u%(v)dvdxzo,
Q Jrs

and the estimate
lwfllLe + [wfilre) = C8. (1.12)

Moreover, if Q2 is strictly convex and 0 (x) is continuous on 02, then F, is continuous
on (x,v) € Q x R3\p.

For simplicity, through the paper we would take M = 1 in Theorem 1.1 without
loss of generality, namely, the stationary solution Fi (x, v) has the same total mass as
w(v) in Q. Note that when there is no spatial variation on the boundary temperature,
that is, § = 0, the stationary solution is reduced to the global Maxwellian.

The second result is concerned with the dynamical stability of F,(x, v) under
small perturbations in L°>°. We assume that (1.1) is also supplemented with initial
data

F(t, x,v)|i=0 = Fo(x, v). (1.13)

The goal is to show the large-time convergence of solutions of the initial-boundary
value problem (1.1), (1.5) and (1.13) to the stationary solution F(x, v), whenever
they are sufficiently close to each other in some sense at initial time.

Theorem 1.2. Let —3 <« <0, B > 3 + |«| and (w, ¢) belong to (1.10). Assume
(1.11) with 8o > O chosen to be further small enough. There exist constants gy > 0,

Co > 0and Lo > 0 such that if Fy(x, v) = Fy(x, v) +u%(v)f0(x, v) 2 0 satisfies
the mass conservation

// fole, v)u? (v) dvdx = 0, (1.14)
Q JR3

and

lwfollL= = eo, (1.15)
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then the initial-boundary value problem (1.1), (1.5) and (1.13) on the Boltzmann
equation admits a unique solution F(t,x,v) = Fy(x,v) + ,u%(v)f(t, x,v) =20
satisfying

/Q/R} £, x, v)u? (v) dudx =0, (1.16)

and

lwf @l + [wf @)1= < Coe ™ lwfoll =, (1.17)
Sorallt = 0, where a € (0, 1) is given by

. ¢
o= :
¢+ k|

(1.18)
Moreover, if Q is strictly convex, Fo(x, v) is continuous except on yo and satisfying

Fo(x, )|, = pe(v) Fo(x, v){v" - n()}dv’, (1.19)

v -n(x)>0
and 0 (x) is continuous on 0S2, then F (t, x, v) is continuous in [0, 00) X {S_Z XR3\)/0}.

We remark that the value of « in (1.18), which is optimal in terms of the expo-
nential velocity weighted function space, can be formally determined as in [11]; we
will come back to this point later. By (1.17), we have obtained the global existence
and large-time behavior of solutions simultaneously in the velocity-weighted L*°
space which is the same as that initial data belong to.

One may notice from (1.15) in Theorem 1.2 above that the initial perturbation
Sfo(x, v) is required to generally have a small amplitude in the velocity-weighted
L space. The goal of the third result is to relax such restriction by allowing
Fo(x, v) to have large oscillations around the stationary solution F,(x, v) with the
price that the initial perturbation fp(x, v) is small enough in some L? norm for
1 <p<oo.

Theorem 1.3. Assume that all conditions in Theorem 1.2 are satisfied, and addi-
tionally, let

3 3
nax {5, m} <p<oo, B>maxi3+ Il 4). (1.20)

Assume (1.11) with §g > 0 chosen to be further small enough and initial data
Fo(x,v) = Fe(x,v) + M%(v)fo(x, v) 2 0 satisfies the mass conservation (1.14).
There exist constants €1 > 0, C1 > 1 and C> > 1 such that if fo(x, v) satisfies

Mo := llwfollz~ < Ci|logél, (121)
and

I follLr < e1, (1.22)
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then the initial-boundary value problem (1.1), (1.5) and (1.13) on the Boltzmann
equation admits a unique solution F(t,x,v) = Fy(x,v) + ,u% ) f(t,x,v) =20
satisfying (1.16) and

lwf ()L + [wf ()] 1oy < C2eC2Moe™0 |l fy | oe, (1.23)

forall t 2 0, where « is the same as in (1.18) and Lo is the same as in (1.17).
Moreover, if Q is strictly convex, Fo(x, v) is continuous except on y satisfying
(1.19), and 6 (x) is continuous over %2, then F(t, x, v) is continuous in [0, 00) X
(2 x R\ po).

Remark 1.4. We give a few remarks in order on the above theorem.

(a) Note that C; is independent of 8. Then, from (1.21), My = |lwfol|lL~ can
be arbitrarily large, provided that both § and || fyl|Lr are sufficiently small.
Particularly, if one takes § = 0 corresponding to the isothermal boundary
temperature, there is no restriction on the upper bound of My. However, it is
unclear how to remove the condition (1.21) whenever § > 0.

(b) From (1.20), p has to be large enough as « gets close to —3. The condition
(1.22) for the smallness of fp in L” is different from that in [18,19] where
L' norm and L? norm were used respectively. Note that (1.22) can be also
guaranteed by the smallness of L' or L2 norm of fy and the velocity-weighted
L bound with the help of the interpolation.

(c) As already mentioned for Theorem 1.2, by (1.23) we have obtained the global
existence and large-time behavior of solutions simultaneously in the velocity-
weighted L® space which is the same as that initial data belong to. Estimate
(1.23) also implies that the solution may grow with an exponential rate of M
within a short time.

1.4. Comments and Literature

The focus of this paper is on the effects of both the soft intermolecular interaction
and the non-isothermal wall temperature on the large-time behaviour of solutions
to the initial-boundary value problem on the Boltzmann equation. In what follows
we review some known results related to our results and also give comments on
how such effects occur.

(a) Effect of soft potentials. First of all, we discuss the effect of soft potentials on
the global well-posedness of the Boltzmann equation in perturbation framework.
Compared to the hard potentials, the main difficulty is the lack of the spectral gap
of the linearized Boltzmann operator L, for instance, the multiplication operator
v(v) ~ (v)* has no strictly positive lower bound over large velocities |v| forx < O.

In the spatially periodic domain T?, Caflish [10, 11] first constructed the global-
in-time solution for —1 < k < 0 and also studied the large-time behavior of
solutions, where the proof is based on the time-decay property of the linearised
equation together with the bootstrap argument on the nonlinear equation. One im-
portant observation by Caflish is that the function exp{— (v)*t — c|v|?}, obtained as
the solution to the spatially homogeneous equation d; f +(v)* f = 0 with initial data
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£(0, v) = exp{—c|v|?}, decays in time with a rate exp{—At#} with B = 2/(2+ |k |)
by taking the infimum of (v)“f 4 c|v|? in v € R3. We remark that such sub-
exponential time-decay is ensured essentially by adding more exponential velocity
weight at initial time; see [11, equations (3.1) and (3.2) of Theorem 3.1 on page 76].

Independently, Ukai—Asano [44] developed the semigroup theory in the case
of soft potentials —1 < x < 0, and also obtained the global solution as well as the
large-time behavior of solutions for the problem in the whole space R3. As pointed
out by [44, Theorem 9.1 and Remark 9.1 on page 96], no solutions have been found
in the large in time if initial data and solutions belong to the function space with
the same velocity weights. We remark that it is the same situation if one adopts the
approach of [44] to treat the case of T3, for instance, one can obtain the arbitrarily
large algebraic time-decay rate by postulating more polynomial velocity weights
on initial data.

By the pure energy method in high-order Sobolev spaces, Guo [28] constructed
the global solutions over T? for the full range of soft potentials —3 < «x < 0, but
the large-time behavior of solutions was left. This problem was later completely
solved by Strain—Guo in [42,43] in terms of the same spirit as in [11,44] by putting
additional polynomial or exponential velocity weights on initial data. Such approach
was also applied by Strain [40] to study the asymptotic stability of the relativistic
Boltzmann equation for the soft potentials in T°.

In the case of R?, we also mention Duan—Yang—Zhao [20] and Strain [41] to
treat the optimal large-time behavior of solutions for —3 < k < 0. Particularly, [20]
found a velocity weight function containing an exponential factor exp{c|v|?/(1 +
1)7}. We remark that this kind of weight could be useful for simultaneously dealing
with the global existence and large-time behavior of solutions for the problem in the
torus domain or even in the general bounded domain (for instance, [36]), since the
typical function exp{— (v)? t —c|v|?/(1+1)9} induces a time-decay rate exp{—)»tﬂ/}
with 8/ = (2 — qlk1)/(2 + |«|). Therefore, the large-time behavior of solutions
is gained by making the velocity weight in the solution space become lower and
lower as time goes on. Indeed, this is also in the same spirit as in [41] on the basis
of the velocity-time splitting technique.

By comparison with those results mentioned above, Theorems 1.2 or 1.3 implies
that the large-time behavior of solutions to the initial-boundary value problem under
consideration of this paper is established in the situation where solutions and initial
data enjoy the same exponential velocity weight. In other words, to obtain the
sub-exponential time-decay for soft potentials, it is no need to put any additional
velocity weight on initial data. Roughly speaking, the main reason to realize this
point is due to not only the boundedness of the domain but also the diffuse reflection
boundary condition, which will be explained in more detail later on. We remark
that the results are nontrivial to obtain even if the wall temperature is reduced to a
constant implying that the stationary solution F(x, v) is a global Maxwellian.
(b) Effect of non-isothermal boundary. The non-isothermal wall temperature pro-
vides an inhomogeneous source to force the Boltzmann solution to tend in large
time to nontrivial stationary profiles. We review related works in the following two
aspects which also involve the case of isothermal boundary. We mainly focus on
general bounded domains. There exist also a number of papers in the setting of
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one-dimensional bounded intervals with different types of boundary conditions, cf.
[37,39]. Among them, we point out that Arkeryd, together with his collaborators,
made great contributions in this direction, see for instance, [3,4,7] and references
therein, where solutions are constructed mainly for large boundary data. The ex-
istence and dynamical stability of the stationary solution in a slab with diffuse
reflection boundary was considered by Yu [46] in terms of a new probabilistic ap-
proach. Hydrodynamic limit to the compressible Navier-Stokes equations for the
stationary Boltzmann equation in a slab was studied by Esposito-Lebowitz—Marra
[23,24]. For other related works on the effects of non-isothermal boundary, we also
mention [14,34,35].

o Time-dependent IBVP in general bounded domains. A first investigation of the
IBVP was made by Hamdache [32] for a large-data existence theory in the sense
of DiPerna-Lions [17]. Extensions of such result have been made in [2,5,12,38]
in several directions including the case of general diffuse reflection with variable
wall temperature. The large-time behavior of weak solutions was studied in [6,
15,16]. In the perturbation framework, via the idea of [45], Guo [29] developed a
new approach to treat the global existence, uniqueness and continuity of bounded
solutions with different types of boundary conditions. Further progress on high-
order Sobolev regularity of solutions was recently made in [30]; see also references
therein. For other related works on the study of the IBVP on the nonlinear Boltzmann
equation, we would mention [9] for the general Maxwell boundary condition, [31]
for the global existence of solutions with weakly inhomogeneous data in the case
of specular reflection, [33] for the specular boundary condition in convex domains
with C3 smoothness, and [36] for a direct extension of [29] from hard potentials to
soft potentials.

e Steady problem in general bounded domains. There are much less known results
on the mathematical analysis of the stationary Boltzmann equation in a general 3D
bounded domain. First of all, it seems still open to establish a large-data DiPerna-
Lions existence theory in the steady case; (see [8]), however, for an L! existence
theorem with inflow data when the collision operator is truncated for small veloc-
ities. In Guiraud [26,27], existence of stationary solutions was proved in convex
bounded domains, but the positivity of obtained solutions remained unclear. Via
the approach in [29], Esposito et al. [21] constructed the small-amplitude non-
Maxwellian stationary solution for diffuse reflection when the space-dependent
wall temperature has a small variation around a positive constant for hard poten-
tials, and further obtained the positivity of stationary solutions as a consequence of
the dynamical stability for the time-evolutionary Boltzmann equation. Indeed, [21]
motivates us to study the steady Boltzmann equation for soft potentials, and we
will explain the new mild formulation of solutions as well as new a priori estimates
in more detail later on.

The hydrodynamic limit of the stationary Boltzmann equation on bounded do-
mains in the incompressible setting was recently justified in [22]. Notice that such
research topic was also discussed in [1] where the authors have particularly shown
the non-existence of steady solutions for the Boltzmann equation with smooth
divergence-free external forces in bounded domains with specular reflection.
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1.5. Strategy of the Proof

In what follows, we briefly explain the key points in our proof of Theorems 1.1,
1.2 and 1.3 respectively.
(a) First, for the proof of Theorem 1.1, the key step is to establish a priori L*°-
estimates on the steady solutions. The major difficulty comes from the degeneracy
of collision frequency v(v) — 0 as |v| — oo. Our strategy of overcoming this
relies on introducing a new mild formulation of the steady Boltzmann equation
along a speeded backward bi-characteristics on which the particles with large ve-
locity move much faster than one along the classical characteristics. Precisely, we
need to consider the solvability of the linearized steady Boltzmann equation with
inhomogeneous source and boundary data

v-Vif+Lf =g,

fly. =P, f+r. (1.24)

See Lemma 3.8, particularly (3.72) for the L bound of f in terms of g and r.
Basing things on Lemma 3.8, Theorem 1.1 follows by showing the convergence of
the iterative approximate solution sequence.

To show Lemma 3.8, we turn to study in Lemma 3.5 the solvability of the
following approximate boundary-value problem:

Lyf=¢ef4+v-Vif+vQ)f—AKf =g,

1 (1.25)
flyo = (l - —) P, f+r.

n
Here, compared to the previous works [21,22], we input an extra parameter A €
[0, 1] in order to carry out a new strategy of the construction of solutions by making
the interplay of L2 and L> estimates. Specifically, we divide the proof by several
steps as follows:
Step 1. To show the well-posedness of L, !'for A = 0. The reason why we start from
the case of A = 0 is that there is no linear collision term K f. In this case, we are
able to directly construct the approximate solutions by solving the inflow problem,
so the L bound of approximate solutions is a consequence of L bounds of the
source term g as well as the corresponding boundary data. The uniform bound of
solutions can be obtained in the same way as in the next Step 2.
Step 2. To obtain the a priori estimates of solutions in both L? and L° uniform in
all parameters ¢, n and A. For the L? estimate, it is based on the fact that

v—AK = (1 —A)v+ AL

with 0 < A < 1 is still nonnegative. For the velocity-weighted L estimate on
h = wf, we formally multiply the equation of (1.25) by (1 + [v]|?)!*I/? 50 as to get

b Veh 4+ (14 )26 + v)h = A1+ [P Kb + (1 + o2 g,

and then write it as the mild form along the backward bi-characteristic [x — (¢t —
5), v], where o = (1+|v|?)!®!/2y is the transport velocity speeded up by comparison
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with the original velocity v. The advantage of such new mild formulation is that
the corresponding new collision frequency

D) = (1 + 2 [e + v(v)]

has a uniform-in-¢ strictly positive lower bound independent of v. This is crucial
for obtaining L°°-estimates for the steady problem. It should be pointed out that by
using such new mild formulation, the L°°-estimates are also valid for the case that
the domain is unbounded, so that our method in principle could be used to further
study other physically important problems, such as exterior problems and shock
wave theory.

Step 3. To prove the well-posedness of E;l for any A € [0, A,] with a constant
A« > 0 small enough. The main idea of showing the existence of solutions is based
on the fixed point argument for the solution operator

L =Ly \AKf +g).

Note that the contraction property is essentially the consequence of the fact that we
are restricted to A > 0 small enough. Once the existence of solutions is established,
we also have the uniform estimates in L> and L obtained in Step 2.

Step 4. To prove the well-posedness of £;*1 4y forany & € [0, A,] small enough.
Formally, we have

L, =L 0KS +g).

Therefore, we may make use of the same arguments as in Step 3 and also obtain the
corresponding uniform estimates. In the end, by repeating such procedure we can
establish the solvability of E;l in the case of A = 1, and complete the construction
of approximate solutions to the original boundary-value problem (1.24).
(b) Secondly, for the proof of Theorem 1.2, the key step is to study the time-
decay structure of linearized IBVP problem around the steady solution provided
by Theorem 1.1. In general, it is hard to obtain a satisfactory decay due to the
degeneracy of v(v) at large velocity. Unfortunately, our new mild formulation above
no longer works for the time-dependent problem. Some new thought should be
involved in. As mentioned before, so far there are basically two ways to get the decay
of the Boltzmann solution for soft potentials. The first one, which was developed
by Guo and Strain [43], is to first establish the global existence of the solution with
an extra sufficiently strong velocity weight and then obtain the decay of the solution
without weight by an interpolation technique. Following their idea, Liu and Yang
[36] extend their work into the IBVP problem. The other one, which is developed by
Duan et al. [20], is to introduce a velocity weight involving a time dependent factor
exp{c|v|®/(1 4+ t)9} in order to compensate the degeneracy of collision frequency.
One can see that there is an extra restriction in both theories that the initial datum
must involve additional velocity weight. One of main contributions in the present
work is to remove such a restriction.

More precisely, we are able to obtain simultaneously the global existence and
the sub-exponential decay of the solution, without loss of any weight. The key



Long-Time Dynamics of Rarefied Gas 935

observation used in our arguments is twofold. The first is to split the large velocity
part and small velocity part in the following type estimate:

t t
/ eV ds = / eIy gy + Lol>dgy ) ds,

max{t—,,0} max{t—1,,0}

so it holds that

t t ~
/ e—v(v)(tfs) ds g / 67U0(17S)1{|U|§d§z} + 1t7]§s§t1{|v|>d9} ds,
max{t—ty,0} max{r—1,,0}
(1.26)

which is essentially based on the elementary fact that the backward exit time

i (x. v) < W. (1.27)

One can see that even for the soft potential, (1.26) still involves an exponential
decay structure. The second is to notice that due to the diffusive reflection boundary
condition, the boundary terms naturally exponentially decay in velocity. So, we can
make use of the Caflish’s idea to obtain that

v

2
oY= =15 < cpmhia=)®

where A1 > 0 is obtained by taking the infimum of v(v)(r — ;) + |v|?/16 with
respect to velocity. This reveals the decay structure for boundary terms. However,
(1.26) and (1.27) only work when €2 is bounded and the solution satisfies the
diffuse reflection boundary condition. So far we don’t know how to deal with the
same problem for the specular reflection or even in the torus.

(c) Thirdly, the strategy of the proof of Theorem 1.3 is to use the linear decay theory
provided by the second part to find a large time Ty = To(Mo, €9), such that

lwf (To)llLe < 0. (1.28)

Then we can extend our solution into [7p, oo) by the previous small-amplitude
theory. Since the initial data is allowed to have large oscillation around F, more
efforts should be paid for treating the nonlinear term w(v)I'(f, f). The key point is
to bound it pointwisely by a product of L°°-norm and L”-norm with max{ %, ﬁ} <
p < oo and then apply a nonlinear iteration. To show (1.28), we have to require
that the following estimates holds:

3
C| sup Jlwf@®llre] -10 — =@ S <o
0<t<Tp

Hence the restriction (1.21) on the amplitude of initial data is naturally required.
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1.6. Plan of the Paper

In Section 2 we will provide some basic estimates on linear and nonlinear
collision terms. In Section 3, we study the steady problem and give the proof of
Theorem 1.1 for the existence of the stationary solution. In Section 4, we study
the large-time asymptotic stability of the obtained stationary solution under small
perturbations and give the proof of Theorem 1.2. In Section 5, we further extend
the result to the situation where initial perturbation can have large amplitude with
an extra restriction but be small in L? norm, and give the proof of Theorem 1.3. In
Appendix, we give the proof of a technical lemma which has been used before, and
also give the proof of the local-in-time existence of solutions for completeness.

1.7. Notations

Throughout this paper, C denotes a generic positive constant which may vary
from line to line. C,, Cp, ... denote the generic positive constants depending on
a, b, ..., respectively, which also may vary from line to line. A < B means that
there exists a constant C > 0 such that A < CB. || - ||;2 denotes the standard
L*(Q x R})-norm and || - || denotes the L>(Q x R})-norm. For the functions
depending only in velocity v, we denote || - || LP as the L? (R%)-norm and (-, -) as the
L?(Q2 x Rf’)) inner product or Lz(Rg) inner product. Moreover, we denote || - ||, :=
&/ - || .2. For the phase boundary integration, we define dy = |n(x) - v|dS(x)dx,
where d S(x) is the surface measure and define |f|€p = fy | f(x,v)|Pdy and the

corresponding space is denoted as L” (32 xR?) = L? (32 xR3; dy). Furthermore,
we denote | f|rry) = | [l lor and | flre@,) = | f1,. | . For simplicity, we
denote | flro) = | flrewy) + 1flLeqo)-

2. Preliminaries

2.1. Basic Properties of L

First of all, associated with the global Maxwellian © = u(v) in (1.6), we
introduce the linearized collision operator L around p and the nonlinear collision
operator I'(-, -) respectively as

1
Lf = —ﬁ{Q(u, VI + QWEF W}, .1

and

1 1
U(f, f) = ﬁQJF(«/ﬁf’ Jif) — ﬁQ_(\/ﬁfv Vi f)

=T"(f, H=T"(f ), (2.2)

where Q1 and O~ correspond to the gain part and loss partin Q in (1.2) respectively.
As in [25], under the Grad’s angular cutoff assumption (1.3) and (1.4), L can be
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decomposed as L = v — K, where v = v(v) is the velocity multiplication operator
given by

v(v) = f / B(lv — ul, )pu(u) dodu ~ (1 + [v])*, (2.3)
R3 Js2

and K = K| — K> is the integral operator in velocity given by
1 1
K1) = [ | [ 5o =al oyt @ @ @ dod 4

(K2f)(v) = f / B(jo = ul, )2 () |12 @) )+ 13 ) £ @) | deod,
R3 SZ
(2.5)

It is well-known that L is a self-adjoint nonnegative-definite operator in L% space
with the kernel

Ker L = span {¢o, . .., ¢4},

where ¢; = ¢;(v) (i = 0, 1,...,4) are the normal orthogonal basis of the null
space Ker L given by

$o = (2m) 73 2 (v),

¢ = Qm) Supd(v), i=1,23
@)
Ve

Foreach f = f(v) € L%, we denote the macroscopic part Pf as the projection of
f onto Ker L, that is,

¢4 (0> = 3)u? (v).

4

Pf =Y "(f.¢:) i, (2.6)

i=0

and further denote (I — P)f = f — Pf to be the microscopic part of f. It is
well-known (see [28] for instance) that there is a constant ¢y > 0 such that

(LS. f) = co /R I P fP . @7

Note that L has no spectral gap in case of soft potentials with —3 < « < 0,
particularly, the collision frequency v(v) tends to zero as |v| — oo due to (2.3).

2.2. Estimates on Collision Operators

Recall K = K| — K3 with K| and K> given in terms of (2.4) and (2.5). As in
[28], it holds that
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Kf(v) = / K(v, u) f () du, 2.8)
R3

where the integral kernel k (v, u) is real and symmetric.
Lemma 2.1. ([18]) The following estimate holds true:

R

e Sv—u? . (29)

_P o w? C _ lv—u?
k()] SClv—ule” T e & 4+ — ¢ %
[v—ul|2

Moreover, it holds that
/3 k(@ )](1+ [u)™F du < Ce(1 + o)™ 7
R

forany B = 0.

In order to deal with difficulties in the case of the soft potentials, as in [43] we
introduce a smooth cutoff function 0 < x,,(s) < 1fors = 0 withO < m < 1such
that

Xm(s) =1forO=s =m; xn(s)=0fors = 2m.
Then we define
(K" ) () =/ f B(Jv — ul. @) g (|0 — )t (u)
R3 JS2
(136 F @) + 1t ) )] deodu
B /Rz /Sz B(lv —ul, @) xm(Jv — UI),u%(v)u%(u)f(u) de du
= (K5 /() — (K} ) (),
and
K=K —-K™.

Similarly to (2.8), we denote

(K™ f)(v) = /R K w @ de, (K@) = fR K0 [ du. (210)

In the following lemma we recall some basic estimates on K™ and K¢, whose proof
can be found in [43] and further refined in a recent work [18]:

Lemma 2.2. Let —3 < « < 0. Then, for any 0 < m < 1, it holds that

W2
(K™ )] = Cm3“e*%||f||Lgo, 2.11)

where C > 0 is independent of m. The kernels k™ (v, u) and k°(v, u) in (2.10)
satisfy

m « I N e
K" (v, u)] = Ceylv—ul“ 4+ v —u|"2 te” 1o |
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and
C ma(K_l) 1 \v—u\z 7M
|kC(v’ M)l S o e 10 e 16\u7u|2
o — w0 (T ol o e
P2 lu|
+Clv—ul"[1 = (v —up]e” + e 4, (2.12)

where 0 < a < 1 is an arbitrary constant, and C, is a constant depending only on
k. It is worth to point out that C is independent of a and m. Moreover, by denoting

K (0, 1) = K, u)%,
it holds that
/RS kS (v, u)|e% du < Cm (1 + |v])< 2, (2.13)
and
/R} kS (v, u)|e% du <C+ )71, (2.14)

where C > 0 is independent of m.
Furthermore, we need the following two lemmas for the later use:

Lemma 2.3. ([43]) Assume (1.10), then for any n > 0, it holds that

‘(e%uf[(f, f>‘ < ”e%wf v (,7 He%uff G “1{|4|§Cn}f‘ Lz)' (2.15)
Lemma 2.4. ([36]) It holds that
Iv'wI(fi, )L = Cllwfille - lwfallse. (2.16)

In the end we conclude this subsection with the following L? (p > 1) estimate
on the nonlinear collision term, which will be used in Section 5.

Lemma 2.5. Let 1 < p < oo and wg := (1 + |v|2)g with Bp > 3. Then it holds
that

=P T(f. )l r £ Cmin {||wﬁf||Lg° APl llwpgllLse - ||V1/pf||Lg} :
(2.17)

where p' is the conjugate of p satisfying 1/p +1/p’ = 1.
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Proof. We first consider the loss part. By Holder inequality, we have
TGl € [ v i@
v R3

X </ / B(v —u,w)\/u(u)|g(u)|pdwdu)
R3 JS2

p—1
X <'/.3/ B(v — u, w)\/ u(u) dwdu)
R3 JS?
= C/ / f B(v —u, w)y/u()|g@)|”| f(v)|? dodudv.
R3 JR3 JS?

(2.18)

Without loss of generality, we assume that

1/p

lwg fllzse - v /Pl r = llwpgllzee - 1077 £l r.

Then from (2.18), it holds that
WP Iy < Cllugelfs - [ 1@ do
/ / B —u, )1 + u>)~# dowdu
R3 JS2
< Cllwgglife - VY717,

. P
< Cmin {llwg fllzg - I0"78lp. lwpgleg - 1077 1)
(2.19)

Similarly, for the gain term I'™ (£, g), by Holder inequality, we have
(R AT [ / v()~ "7V dv
LU R3
X (/ / B — u,w)\/u(u)lf(v’)l”lg(u’)l”dwdu)
R3 JS2

p—1
X (f f B — u, w)y/ ju(u) dwdu)
R3 JS2?
= C/ / / B(v —u, w)y/ ()| g)|”| f ()7 dwdudv.
R3 JR3 J§?
Making change of variable (v, u) — (v/, 1), it follows that
WY T I, < c/ / / B — u, )|g@)|”| f 0|7 deodudv.
Ly R3 JR3 JS2
By the same argument as in (2.19), one has

—1/p . p
=T 1, < Cmin {lwg £l - 078l g Twpglzs - 07 flp )

From this and (2.19), we prove (2.17). Therefore, the proof of Lemma 2.5 is
complete. O
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2.3. Pointwise Weighted Estimates on Nonlinear Term I' (f, f)

Recall (1.9), (1.10), and (2.2). We shall give the estimates on the upper bound
of lw()T'E(f, £)(v)| for pointwise v in terms of the product of the weighted L>°
norm and the L? norm for a suitable p > 1 which is finite. These estimates will
play an essential role in the proof of Theorem 1.3 treating the initial data of large
oscillations but with small L? perturbations.

Lemma 2.6. Let —3 < k < 0, max{3, 33-} < p < 00, (@, ¢) belong (1.10), and
B > 4. Then, for each v € R3, it holds that

1
lwl'™(f, H)| = Cv)|lwfllre - (/R} If(u)l”du)l , (2.20)

Wl (f, HO) S Cv@)wf e - (/R lwf @)|P (1 + |uf)~PF=H~4 du) "
(2.21)

where the generic constant C > 0 is independent of v.

Proof. First, we consider (2.20) regarding the estimate on the loss term. Indeed, it
follows from Holder inequality that

[wl™(f, H)| = wa(v)I/R3 /Sz B(jv — ul. 0)u? ()] f ()] duda

1
< Cllwf L - (/R3 If(u)lpdu>p .

e _p =
X / v —u|P~T 2?0 (1) du
R3

1
= Cv)llwf L - </RS If(u)lf’du)l ,

where we have used the fact that ppfl > —3duetop > % Then, (2.20) is
proved.
To prove (2.21) for the gain term, we denote

. 3
() =™,

which is the pure exponential factor of w(v), and also set g(v) = w(v)|f(v)|.
Since [ul?> + [v]*> = |u'|* + [v'|% we have either [u'|> = I (|ul®>+ [v]?) or
[v'[? = 1 (juf® + |v]?). Without loss of generality, we may assume that [v/|?> >
% (|u|2 + |v|2), and then we have

o

(Wl (f, HW)| = Ch)|lwf e

/ / B(lv — ul, )2 )|g)H@) @) dudw.  (2.22)
]R3 SZ
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Note that in virtue of 0 < ¢ < 2, it holds that

4
2

¢
~ ¢ 2 2 72 /12y3 e ne A N
w(v) = e” vl < e? (vl 2 e” (71015 < e? P+ — w(v/)w(u/).

Using this, (2.22) gives that

[wl™(f, HWI = Cllwfllzg -/R} /sz B(jv - ul, 0)u? ()| g(v))| dudo.
(2.23)

To further estimate the integral term on the right-hand side of (2.23), we denote
z=u—v,z] ={(u —v) - wjo,and z, =z — 7|, then the collision kernel can be
estimated as

Kk—1

B(lv — ul,w) < Clz| (Iz”|2+ |ZJ_|2)T. (2.24)

Plugging (2.24) back to (2.23) and making change of variable u — z, [wI' T (f, f)
(v)| can be further bounded by

1
C||wf||Lg°'/ / lzy] - 121 g 4+ z)p? (v + 2) dzdw.
]R3 SZ

By writing dzdw = #dz”dz 1, we derive that the above term is bounded by

k=1 1
C||wf||Lgo-/R3 |z”|—1g(v+z”)dzufl_[ (2 + 12T p2 (v +z0) dzy,
1
(2.25)

where IT; = {z, € R3:z,-z. = 0}andv, = ‘UUH%ZJ_ is the projection of v to
[T, . To estimate (2.25), we divide it by two cases.
Case 1: —1 < k < 0. In this case, thanks to —2 < k — 1 < —1, we have

k=l 1 1 1
/ (Izg)* +1z01?) = 2 (v +2z1)dzy g/ Iz [tz +z1)dzy £ C,
I my

for a finite constant C > 0. Then it holds that for p > %

Wit (NI C [ i+ dzy = ¢ [ lu— o~ du

-\ 7 ,
§C( M) (/ |g<u)|P(1+|u|>4P—4du)
R3 |u—v|p*1 R3
1
<C<1+|v|)—1<f |g<u)|"(1+|u|)4f’-4du)”. (2.26)
]R3

Case 2 : =3 < k < —1. To avoid the higher singularity on the right hand side of
(2.25), we choose 0 < & = &(p, k) < min{3 + pp_"l, %} and bound (2.25) in
terms of
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(p—1e

I DIE Cluflg - [ 1l o+ oz

—24 (p—De 1
|z ] Pop2(vy +z1)dzy
Iy

_(p=De
< Clufly - [ a7 swrapdn, Q2D

where in the second line we have used the fact that

_o4p=be 1
|z | Popu2(vy +z1)dzy < oo.
Iy

Making change of variable z; +v — u and using Holder’s inequality, it holds that

(=D B o (= De
lz)] rgv+zpdz) = lu — vl P g(u)du
R3 R3

p—1

1 —4 P
§ / ( +|u|)p\fc\ du
R v|8+pfl

3|M_

1
x [/ lg ()P (1 + |u|)4p4du}p . (2.28)
R3

Since 0 < ¢ + % < 3, the right hand side of (2.28) can be further bounded by

1
Cal+ 7" U 18P (1 + Jul)*P— du}p
]R3

which combining with (2.27) and (2.26), immediately yields (2.21). Hence the
proof of Lemma 2.6 is complete. O

3. Steady Problem

To construct the solution to the steady Boltzmann equation (1.8) and (1.5), we
first consider the approximate linearized steady problem

ef+v-Vif+Lf =g, 3.1)
f(x,v)|y7=PVf+r, ’
where P, f is defined as
Py f(x.v) = 1 (v) Fa O n@dv.  (3.2)

v-n(x)>0

As in [21], the penalization term ¢ f is used to guarantee the conservation of mass.
Recall the weight function w(v) defined by (1.9) with (1.10). We also define

h(x,v) :=wW)f(x,v),
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then (3.1) can be rewritten as

eh+v-Vih+vh = Kyh+ wg,

(33)
h(x,v)|, = 5o | - Oh()c, V)W) do' + wr(x, v),
where
w) = ;1 Kyh =wkK (ﬁ> .
w(v)pu2(v) w

3.1. A Priori L*® Estimate

For the approximate steady Boltzmann equation (3.3), the most difficult part is
to obtain the L°°-bound due to the degeneration of frequency v(v) as |[v| — oo.
To overcome this difficulty, the main idea is to introduce a new characteristic line.

Definition 3.1. Given (¢, x, v), let [)A( (s), V(s)] be the backward bi-characteristics
for the steady Boltzmann equation (1.8), which is determined by

dX(s) N 5
T =1V VE) = V),

ave) _ (3.4)
ds 7

[X (1), V()] = [x, v].

The solution is then given by

[X(s: 1, x,0), Viss fx, 0)] = [x — 0 — s), 0], D:= (14 D)% v, (3.5)
which is called the speeded backward bi-characteristic for the problem (1.8).

We note that compared to the usual characteristic line as used in the time-
evolutionary case, the particle along (3.4) or (3.5) with given (x, v) travels with the
velocity v which has the much faster speed than |v] itself for |v]| for large velocity.
This is the key idea to overcome the difficulty of soft potentials in treating the steady
problem on the Boltzmann equation.

In terms of the speeded backward bi-characteristic, we need to redefine the
corresponding backward exit time etc.. Indeed, for each (x, v) with x € € and
v # 0, we define the backward exit time f,(x,v) = 0 to be the last moment at
which the back-time straight line [)2(—1:; 0, x,v), V(—7; 0, x, v)] remains in Q:

fh(x,v) =sup{s 20:x — 0t € Qfor0 < ¢ <5},
We therefore have x — f,0 € 9Q and &(x — f,0) = 0. We also define
Rp(x,v) = x — i € 9.

Note that the fact that v - n(xp) = v - n(Xp(x, v)) < 0 always holds true.
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Letx € Q, (x,v) ¢ yo U y— and (%o, xo, vo) = (¢, x, v). For vpy1 € f/k+1 =
{vk41 - n(Xx1) > 0}, the back-time cycle is defined as

Xa(sit,x,0) =Y Aoy (O & — i — ),
k

(3.6)
Ver(ss t,x,0) = Y 1oy (9)vk
k

with
(Tk15 X1, Vkg1) = (tx — o (Xk, Vi), Xb(Fk, Vi), Vkt1)-

We also define the iterated integral

/ ikl ds; ;:[ {/ d&k—l}"'d&l’
k-1 J
Hj:lv.f Wi Vi1

d&j :=M(vj){n()?j)-vj}, j=1,...,k—1

where

are probability measures.
Lemma 3.2. Let (1, {) belong to
{t=20=n<1/2U{0=¢ <2,7 20}
For Ty > 0 suﬁﬁcientl); large, there exist constants Ci and €, independent of Ty

such that for k = CA‘lTOZ and (1, x,v) € [0, To] x Q x R3, it holds that

5
ézTOZ
ke s < (1

Proof. We take ¢ > 0 small enough, and define the non-grazing sets

. . . 1 .
v;?:{u,-ev,» : vj.n(xj)>sand|vj|<g}, jz L

Then a direct calculation shows that

RTI
f R eMjl do; = Ce,
Vi\Ve

where the constant C > 0 is independent of j. By similar arguments as in [29,
Lemma 2], one can prove

tAj — fj+l 2 |Uj .n(xj)l x|
Colv;[P(1+|v;[») =
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with a positive constant Ca depending only on the domain. If v; € )A}j, then we

, Vg—1) > 0, there can

have £ ; j

be at most [CQ 0] + 1 number of v; € Vg for 1 < j <k — 1. Hence we have
k—1 TSN
/nk_l Lo Mjzie™/! dd;
Jj=1

1 /{There are n number v,-ef)j for some 1< <k—1})

[,
< ) sup/A e”'”fl{d&j . sup/A . e”'”fl{d@
n=1 njyg Jvs J IVY;

(iCQTOi + 1) (k= Dl ey 2B (3:8)

g3+lk|

m<>

_ TSN
=l el g,

-
S

n k—1—n

g

Onecantakek — 1 =N ([S}jﬂ] + 1) with [
that (3.8) can be bounded as

] >land N > 2(3 + |«]), so
CaTy | [sCﬁiT’?'i-i_l
Sl | T

(Ce)? Y+ #5])

&
Ce
{ [CQTO](C )N}ifﬁﬁ"]”
{

k=1 _nlvi|¢
Lk IV 1{1k>0} H e J dU <

j=1%J

3+|«|

=

CaTy
Con-To- e 3 K}LWK]H

We choose

JR S
. 1 N3l
2Cq.n - To

such that Cq y - T - 87’3 Ikl = = 1/2. Note that for large Tp, it holds that ¢ > 0 is
small, and

3+k|

|:CQT() H_%—a—m

83+|K|]+1NCQ NT,

5
Finally, we take N = 6(3 + |«|), so that [fﬁﬁi] +1=CT, and

CqoTy 5
k=6(3+|/<|){[ 3+|K|}+1}+1=CT04.

Therefore, (3.7) follows. This completes the proof of Lemma 3.2. O
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Along the back-time cycle (3.6), we can represent the solution of (3.3) in a mild
formulation which enables us to get the L bound of solutions in the steady case.
Indeed, for later use, we consider the following iterative linear problems involving
a parameter A € [0, 1]:

ehi ! + v Vihi T 1 v)RiT = AK™h! + LK + wg,

. 1 . )
R (x, ), = — R (x, V)W) do’ + w()r(x, v), (3:9)
w(v) v n(x)>0
fori =0,1,2,..., where h° = ho(x, v) is given. For the mild formulation of (3.9),

we have the following lemma whose proof is omitted for brevity as it is similar to
that in [29].

Lemma 3.3. Let 0 = A = 1. Denote b(v) := (1 + |v|2)§[s + v(v)]. For each
t € [0, To] and for each (x,v) € Q x R3 \ (Yo U y-), we have

A CRNED N A Y I (3.10)
n=1 n=>5
with
Ji =T <o 0T e = o),
t
B Js Ty = / PO (] 4 2y
max{f,0}

[AKﬁhi + kK{Lhi + wg](x —0(t — s),v)ds,

Js = e POy () r (%4, v)

e Y- i)
Jo = L, ~opw)r (B, v a3
o w(v) /Hk -1y 121: {fi+1>0} (r i1, v) A2 (@41),

e—PW)—=in) k1

J=— 1 hl —1 _ l, dE 0

e PW—i1)
Jg+Jo + Jip =
R TN /nk 1D, = 1/ i S0<h)

x 1+ uP)'® [AK,’;’h”l +AKERT 4 wg]
& — 0y — 5), v) 3 (s),

—b()(t—i1) kzi
Jll+112+~]13:~7/ . / L. <o<iy
b Jop, & Sy, 0

K| . .
x (14 luP)'? [AK,’j}hl_l +AKSH! 4+ wg]
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Gr — D@ — 5), v) dS(s),

e—D)—1)

Jy=—7—— 1 hi+1_k)€,v_ df)_f,
14 70 /Hﬁj\}/ (=0} Xk, vk—1) dZg—1 (%)

where we have denoted
dﬁ:l(s) _ {Hl;;ll+1d&j} . {w(vl)e—ﬁ(vl)(f/—s)d&l} . {Hlj;lle_ﬁ(vj)(f‘j_;'”')d&j}«

Lemma 3.4. Let § > 3. Leth',i =0,1,2, ..., bethe solutions to (3.9), satisfying

1Al zoe 4 R | ooy < o0
A 3
Then there exists Ty > 0 large enough such that for i 2 k := C1Ty', it holds that

. : 1 i —
I B+ ey < 2 sup (1A )+ C{Iv ™ wgllos + fwrlisg |

0Zi<k
hi—l
+ C sup {Hﬁ } 3.11)
0<i<k w L2

Moreover, ifhi =hfori=1,2,..., thatis, h is a solution, then (3.11) is reduced
to the following estimate

Nes

el < v wglles + wrlis. (3.12)

L2

Here it is emphasized that the positive constant C > 0 does not depend on ). € [0, 1]
and ¢ > 0.

Proof. By the definition of D(v), we first note that
() = (1+ v T v(w) = By > 0, (3.13)

where Dy is a positive constant independent of £ and v € R3. For Ji, it follows from
(3.13) that

PR 1P (3.14)

For J,, it follows from (2.11) that

|| £ Cm3t* /

max{f,0}

t 2
. | _ o] :
e NI (1 P) T e 0 ||Af|| ds
3+x _l i
S Cm” ™ e 37 | h' | e (3.15)
For those terms involving the source g, we notice that

| o2 .
< Cwe T <ce ¥, (3.16)
w(v)
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which immediately yields that

/H [l + PEEs n’;;}d&j <C<oo, for 1S1<k—1,
j=1%i

- } (3.17)
- Kl k1 4
/ll'lkflfj 2 i o<y B@DI + w17 1152165 < Ck.
=1

J =1

Then it follows from (3.16) and (3.17) that

|Jal + 110l + [713] < Cklv " wgll o, (3.18)
[Js| + [Js| = Cklwr|p(,._), (3.19)
and
- . k—1
5] < Cem 1 e*”""*“)/ Ny o dSO) - sup (R )
H'};ivj ; {t1+1=0<1;} 1<I<k-1
< Cke ™3P . sup (A oo ). (3.20)
1<I<k—1

For the term J14, it follows from (3.16) and Lemma 3.2 that

5

CA"QTZ
_12 1 0 o
|J1a] £ Ce sl (5) AR oy, (3.21)

~ 5
where we have taken k = Cy TO4 and Ty is a large constant to be chosen later. From

the boundary condition given in the second equation of (3.9), it further holds that
B K ooy S I H ooy + lwr g

For Jg, using (2.11), (3.13), (3.16) and (3.17), one obtains that

_ L2 P
|Jg| < Cm* e s sup (|77 o)
1<1<k—1

k—1 4 2

~ [y

R . —o(t—s) -1~ — = 17k—1 44 .

x/HHVE 1{t1+1§0<,,}/0 e ds v(u) (e 5 A} d;
j=1"7J [=1

1 2 .
Scom?t e s sup (IR Lo}

1<I<k-1
k—1
-1~ k—1 14
/HA D i <o<ipv ) DT d6;
R
1 .
< Ckm?**e~ 5" . sup {||h"l||Loo}. (3.22)

1<1<k—1
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12 . . .

Here we remark that the factor e 8/!" on the right-hand side of (3.22) is very

crucial for the later use of the Vidav’s iteration. For Jo, it holds that

k-1 i
L . . b0
[Jo| < Ce~sll Z/l . da,,ln-dal/ e =9 g
-y 0
=1

j=1YJ

X/ /3l{fH]SO<?1}V(UI)71U~)(UI)|leU(UIsU/)hiil(/‘?l — (5 — 5), V)| dv'déy
VYV JR -
1 2k_] U
= CeTsE Y / &g -6y / T ds f () dv'dsy
= /Y, 0 Vin{lu|ZN} JR3

k—1 B
+CehP Z/ _déy—y---day / e_voa_s)dsf (-++)dv'ddy
= /v 0 vin{u|<N} JR3

j=1%J

k-1
(3.23)

=Y (Jou + Jox).
=1
We shall estimate the right-hand terms of (3.23) as follows. By using (2.14), we

1 R
~dé_y---déy / e 0= g
l_IV' 0

k—1 ke
21911 < Ce sl Z/
=1 1=1 Yo

—d4y? i—l
X e Sy - sup [ pe)
Vin{lvi| 2N} 1<1<k—1

i—1
sup  {[|A" || e},
1<1<k—1

have

< Cke 5o 16V (3.24)

and, for each term Jgy;, we also have

i .
déi_y .-Ad&I/ e ot=s) ds/ (---)dv'dg
fi—4 Vin{lu|EN} JR?

n—x

1 2
Joyy < Ce 51V /, -
0, V;

2 1
1—~
1,12 R N N s _ L2
+ Ce s / X dol_l--~d(71/ e Pl S)ds/ e~ slil™ gy,
n'Z 0 Vin(lu|SN)

j:lvj
¢ ’ ly—v'i2 P i—l
X [k (v, v)le 68 dve o - sup {||A" [z}
v'|Z2N 1<I1<k—1

1

—Lp A N (1—s)
+ Ce™ 3 _doy_y---doy e 0 ds
'y v; 0 Vin{lu| SN} J ' |S2N
_ L2 i—1 A A
x Ly <o<ipe” T IRG (o, vHR G = D1 = ), V)| dv'doy

,l| ‘2 N ~ ﬁ_% —Dp(1—s)
< Ce 8l _déy—y---d6y e U =S) g
nl 0 ViN(wl SN} I I<2N

x 1 3PS (o, IR (g = By — ), )] dv'doy

—

i141=20<)
C .
e s e, (3.25)
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To estimate the first term on the right-hand side of (3.25), it follows from (2.12)
that

L <oeipe” 3P Ik (o, v G = D1 — ), ') dv/dyy
‘/;Iﬁ(\vllgN}[u/‘gzN {fir120<i}

1

2
<Cn / / e‘%‘"l‘2|k§u(vl, v/)lzdv’dvl
Vin{lu| SN} J|v'|S2N

SR G = O — 5), V) 2 , 2
x Lijip1 o<y ; dv'dy;
Vin{lul <Ny Jvisen w(')

1
i ~ 2 3
- YR & — O (f — 5), V) 2

= Cym*! / / L, <0<y ; dv'dy

vin(ulsny Jpigan S w(')
(3.26)

A

Lety, =% — 0(fy —s) € Qfors € [0, f; — %]. A direct computation shows that

L U+ E !
vy -

1
3 AL+ (1 + kDIv?Y 2 i G20

=i —sl|-

.

Thus, by making change of variable 9; — y; and using (3.27), one obtains that

1 <o :

[/];WHUIIEN} ‘/U/|§2N {f11120<1;}

<CN //
[v'|S2N

1
VYR E — 0y — 5), ) | 2
/
dv'dy;

w)

2 i1
hl
dv’dyz} < Cy P

V@R (v |

3

w(v') w2
which, together with (3.26) and (3.25), yields that
C . hifl
Jo < S WP sup () + Cyme e b | PR 55
N 1S15k=1 w L2
Thus it follows from (3.28), (3.24) and (3.23) that
. hi—l
ol < SEemtP L qup (i) + ok Te P L up {H " }
N 1S1Sk—-1 1<1<k—1 L?
(3.29)
By similar arguments as to those in (3.22)—(3.29), one can obtain
102 1 i
[l + 112 £ Che 87 3m? ™ =4 sup (1A 1)
NI <<k
hi—l
4 Cykm* e8P . sup H i } . (3.30)
1<1Sk—1 w L2
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Now substituting (3.30), (3.29), (3.22), (3.21), (3.20), (3.19), (3.18), (3.15) and
(3.14) into (3.10), we get, for ¢ € [0, Tp], that

t . « .
I (e, )] < f e=00=9) (1 4 ) E / kS, (v, V)R (x — D(t — 5), V') dv'ds
max({71,0} R3
+ A;i(t,v), (3.31)

where we have denoted

L2 N 1\
Ai(t,v) = Cke 321 33 H 4 o700l 4 (= —
i(t,v) e m " fe + 3 + N

sup  {Ilh | oI T poo )
0<1<k-1

+ e A o+ Ch{ v gl + wrleg

ﬁ/’li_l }
w L2 '

We denote x’ = x — 0(t — s) € Q and f{ = f1(s, x',v") for s € (min{z{, 0}, ).
Using the Vidav’s iteration in (3.31), then we obtain that

—glP?
+CNkme B - sup
1<1<k—1

. ro Ikl .
R (e, v)] < A, v)+/ e—”0<’—5>(1+|v|2)7/l; kS (v, v')|Aj—1 (s, v') dv'ds
0 &

t s
+/ ds/ e Pot=1) dr/ / kS, (v, v)ES (', 0]
0 0 R3 JR3

i1 R
max{fl,0}<s<t}1{max{f|’,0}<r<s}|hl (x/ - v/(s — 1), UN)| dv”dv’

= A;(t,v) + B; + B». (3.32)

X 1{
For the term By, using (2.13) and (2.14), one has

i
Cr T,
B < Ck 3+k Kk—1 7%130! 1 0 i hi*l hi*l
1 < mt 4+ m e +13 Ty sup A " e + 10" Loy}

0<I<k
hi—l
+ Ck,m{||V_1Wg”L°° + Iwrle(y,)} + CNk,m  SUP {H /o } . (3.33)
0<I<k w L2
For the term B;, we split the estimate by several cases.
Case 1. For |v| 2 N, we have from (2.13) that
=1y 7i—1 T
By = Cm™ VA e (L4 )7 = ——— A" loe. (3.34)

N
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Case 2. For |[v| £ N, |v/| 2 2N or |v/| £ 2N, |v”| 2 3N. In this case, we note

from (2.13) that
v—v/|?
kS (v, v/)e‘ o ‘dv/ <Cm* 7'+ <2,

/|v<N,|v’|>2N
) ‘Uliv//|2 B B
RO P ‘dv”§ Cm* =1 (1 + /<2

/|v’§2N,v"g3N

This yields that

' s
/ ds/ e~ 0= g / +/ (- )ydv"dv
0 0 PISNVIZ2N  JII<2N, v 23N

v—y/|2 )
kS (v, v)e 3| kS (0 vy () e ) ! du"dy’

N2
<e B [
SN, 22N
)12

IS (v, 1) K, (0, v 3 o) o) do”dy’

N2
e T A f
[ISN,Jv|Z2N
(3.35)

N2
S Cm* Ve WY oo

Case 3. For |[v| < N, [v/| £ 2N, and [v”| < 3N, we first note that

t s
/ ds / e =D gr / G- dv"dv
0 0 ' |L2N, 0" |S3N

1
C . ! S=N
fm2(K_l)||hl_l||Loo+/ ds/ e—%(’—f)dz/ /(~-~)dv”dv’
0 0 R3 JR3
C =)y i-1
- h’ 00
N I o
1
}2

Coph
+CN.k/ ds/ e 0= gr f k€ (v, VYK (v, v")|? dv”dv’
-~ Jo 0 [v/|<2N,|v"| <3N

A

A

1

X / 1 7 1 7 CRLCED zdv”dv/ 2
| S2N, 0| <3N {max{t;,0}<s <t} H{max{r},0} <7 <s} w(v//)
1
C : ! SUN .
< G s e [ 05 [ 00
N 0 0
1
X / 1 ; 1 7 ORI zdv”dv/ 2
| S2N, 0| <3N {max{t;,0}<s <t} H{max{r],0} <t <s} lU(U//) s
(3.36)

where we have denoted y/ = x' — 0/(s — ) € Q for s € (max{f, 0}, s) and
T € (max{7], 0}, s). Similar to (3.27), we make change of variable v’ — y’, so that

the second term on the right-hand side of (3.36) is bounded as

ﬁhi71

w

L2

t s—% 2 5
/ ds / e 0= gr / (-H)dv"dv'y <CN:2
0 0 W |Z2N, v |S3N
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which together with (3.36) yield that

' 5
/ ds / e 0= g / (---)ydv"dv’
0 0 W |S2N, | S3N

C : vhi—1
< —m* VIR e + Cnem ' (3.37)
N w L2
Combining (3.34), (3.35) and (3.37), we have
C . hi*l
By = —m*“ VYo + Cykm 0 :
N w L2

Hence, the above estimate together with (3.33) and (3.32) yields that for any ¢ €
[0, Tol,

5
o

. R 1\ 21 2(k—1)
[ (e, v)] S Ch P4 e300 (E) L

xsup {|h || oo W ! | oo )
015k

+ e A o+ Con {1V wglie + gy |
==
L? .

w
A3 pord ~ 35

Now we take k = C1t4 = C1T,)’ and choose m = T, """ . We first fix t = Tp

large enough, and then choose N large enough, so that one has et < % and

+ CN,k,m sup
0<I<k

5
Gty 2k—1)
1s 1 0 m
Ck { m3t* 4+ m<le—2%0! 4 <§> + <

1
N 16°

Therefore (3.11) follows. This completes the proof of Lemma 3.4. 0O

3.2. Approximate Sequence

Now we are in a position to construct solutions to (3.1) or equivalently (3.3).
First of all, we consider the following approximate problem

ef +v- Vo f" ) " - Kf" =g,
1
[l = (1 > Py f"+r,

n

(3.38)
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A 3
where ¢ € (0, 1] is arbitrary and n > 1 is an integer. Recall k = C; TO4 with Ty
large enough. To the end, we choose ng > 1 large enough such that

for any n 2 ny.

Lemma 3.5. Let ¢ > 0, n = ng, and B > 3. Assume ||[v"'wg| 1o + |wr|p(, ) <
0o. Then there exists a unique solution f" to (3.38) satisfying

Jof ™l + [wf ey S Con (w0l + 1™ wgllze),

where the positive constant Ce , > 0 depends only on & and n. Moreover, if Q is a
strictly convex domain, g is continuous in Q@ x R3 and r is continuous in y—, then
f" is continuous away from grazing set y.

Proof. We consider the solvability of the following boundary value problem:

{ﬁ)\f =ef +v-Vif +v)f —AKf =g, (3.39)

favh ==Y P, f+r@x v,

for A € [0, 1]. For brevity we denote [,;1 to be the solution operator associated
with the problem, meaning that f := E;lg is a solution to the BVP (3.39). Our
idea is to prove the existence of L !, and then extend to obtain the existence of
El_l in a continuous argument on A. Since the proof is very long, we split it into
several steps.

Step 1. In this step, we prove the existence of L . We consider the following
approximate sequence

£0fi+1 — 8fi+1 +u- vxfi+1 4 \J(U)fi+1 =g, (3 40)
S = (1= 1) Py fl+r, '
fori =0, 1,2,..., where we have set fO = 0. We will construct L solutions to

(3.40) fori =0, 1, 2, .. ., and establish uniform L>°-estimates.

Firstly, we will solve inductively the linear equation (3.40) by the method of
characteristics. Let A1 (x, v) = w(v) £+ (x, v). For almost every (x, v) € Q x
R3\ (yo U y_), one can write

. 1 .
ht+1(x7 v) = e*(EJrv(v))tbw(U) |:(1 _ ;> nyl + rj| (xp (x, V), V)
t
+/ e~ ETVOI=) oy (x — v(t — 5), v) ds, (3.41)
t—tp

and for (x, v) € y_, we write

Rt (x, v) = w(v) [(1 — %) P+ r] (x, ). (3.42)
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Noting the definition of P, f, we have
lwPy flre = Clf Loy, (3.43)

We consider (3.41) withi = 0. Noting 2% = 0, then it is straightforward to see that
1 < c
1l = lwrleq) + —llwglLe < oo.

Therefore we have obtained the solution to (3.40) with i = 0. Assume that we have
already solved (3.40) for i < [ and obtained

||hl+l||Loo + |hl+1|L°C(y) § Cs,n,l-i—] (lwrlLoo(V_) —+ ”ngLoc) < OQ. (344)

We now consider (3.40) for i =1 + 1. Noting (3.44), then we can solve (3.40) by
using (3.41) and (3.42) with i =/ + 1. We still need to prove h'*? e L. Indeed,
it follows from (3.41), (3.42) and (3.43) that

C
B2 oo + 12| ooy £ Clwrl ey + 1h T 1o ) + ~ lwgllz

< Cepasa(Jwrlise) + gl ) < oo.

Therefore, inductively we have solved (3.40) fori = 0, 1, 2, ... and obtained
1 e + ALy € Coi (lwrlimey + lwgle) <00 (345)

fori =0,1,2,.... The positive constant C; , ; may increase to infinity as i — oo.
Here, we emphasize that we first need to know the sequence {/’ 1720 is in L*°-space,
otherwise one can not use Lemma 3.4 to get uniform L estimates.

If Qis aconvex domain, let (x, v) € Q2 XR3\)/0, thenitholds v-n(xp(x, v)) <0
which yields that 7, (x, v) and xp(x, v) are smooth by Lemma 2 in [29]. Therefore
if g and r are continuous, we have that f’(x, v) is continuous away from grazing
set.

Secondly, in order to take the limit i — o0, one has to get some uniform
estimates. Multiplying (3.40) by fi*! and integrating the resultant equality over
Q x R3, one obtains that
+ I

. 1 .
i+12 i+12
el + 1

1 2 3 . C e .
< _ = = i2 2 ~ 2 o pit+l1g2
= 2 (1 n + 2n2> |f |L2(V+) +C"|r|L2(y_) + s ||g||L2 + 4||f ||L2’
(3.46)

where we have used | Py f*| 12,y = | Py f'112(p4) < | f'112(,)- Then, from (3.46),
we have

3 : . )

eI + L gy, +20F 70

2 3 i 2 2 2
< (1 -4 m) 1 Bay + Con{irBag, ) + 11212 .
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Now we take the difference fi*! — f? in (3.40), then by similar energy estimate
as above, we obtain

3 . . . . . .
SIS = T+ 17 = g, + 20 = G

3 i 12
2n2) I g,

AN
: —_
I
|
+
<

A

2 3N e

3\
=T 2_,12) : <|W|L°°(y4 + ||wg||L°°> < 0.

Noting 1 — % + % < 1, thus {fi}?io is a Cauchy sequence in L2, that is,
L = I+ 1 = 1, + I = FIE = 0, asi, j— oo
We also have, fori =0, 1, 2, ..., that
1+ 1 Ry + 112 S Cen{irag,  + 1812 ), (347)

where C; , > 0 is a positive constant which depends only on ¢ and n.

Next we consider the uniform L° estimate. Here we point out that Lemma 3.4
still holds by replacing 1 with 1 — rll in the boundary condition, and the constants
in Lemma 3.4 do not depend on n = 1. Thus we apply Lemma 3.4 to obtain that

. 1 i— -
“hl-‘rl”Loo § g sup {”hl Ille}+C{|wr|LOO(y_)+”v lwg“Loo}
0<i<k

+C sup {IF71}
0<IZk

1 i _
< 5 sup (Ih o) + Conflwrlieg + v wglle .
0<15k

where we have used (3.47) in the second inequality. Now we apply Lemma 6.1 to
obtain that fori > k + 1,

; 1
Il < g max {18 o B2 0L, 102 1
0=<1<k
8+k -
7 Ca,n[lwrle(y,) =+ v 1w8||L°°}
< Con{lwrlimgo + v wgl |, (3.48)

where we have used (3.45) in the second inequality. Hence it follows from (3.48)
and (3.45) that

R oo < cg,n,k{|wr|my_) + ||U_lwg||Loo}, fori > 1. (3.49)
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Taking the difference 2't! — A’ and then applying Lemma 3.4 to h'*t! — il we
have that fori = k,

||hi+2 _ hi+1

[l oo
1 . . . .
< < max {1 = h 0 osup {1 - L
8 0=k 0<I<k
< hi+171 _ hi*l C. - -1 ik
S < max o Lot + Ce - Jlwrlpoey + v wgllpee - 1,
8 0<i<k
1 ) ) .
S _ hl+1—l _ hl—l oc} C { 00 -1 oo} . l-‘-k-‘rl7
<goma i e} + Cor{wrlimge + v wgllzs
(3.50)
where we have denoted 5, = (1 — % + 231—2)1/ 2 < 1. Here we choose n large

n
enough so that %n;k’l < %, then it follows from (3.50) and Lemma 6.1 that

||hi+2 _ hi+1 ||Loo < <1> [m}

1 2 2k+1
max {8 oo, 102, IR o)
8 <12k

012
+ Cenflwrlizgy + v wglls} -

i 1\ L] ,~
< e {lwrlsgy + v gl - 4 ()7 + i

fori > k + 1. Then (3.51) implies immediately that {A 172, is a Cauchy sequence

in L™, that is, there exists a limit function # € L™ so that ||k’ — h| ;e — O as
i — 00. Thus we obtained a function f := % solves

Lof =ef+v-Vaf +r)f =g,
1
f(xav)|y_=<1_;)ny+r,

with n 2 ng large enough. Moreover, from (3.49), there exists a constant Cg &
such that

Vel + 1kl € Compflwrliogey + v wellzs .

Step 2. A priori estimates. For any given A € [0, 1], let /" be the solution of (3.39),
that is,

Loft =ef"+v-Vif" +v() " —AKf" =g,

3.52
el = (1= P 4 rx,v). (3.52)
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Moreover we also assume that |wf" ||z + |wf"|1x() < oo. Firstly, we shall
consider a priori L*-estimates. Multiplying (3.52) by f”, one has that

1 1 1
2 2 2 2
el f" g2+ 51/ 2 = 5 (1 - ;) Py f" +rltae, I
e C
SRS ) I e + ;ngniz. (3.53)

We note that (Lf", ) = 0, which implies that
MES", " = M M- (3.54)

On the other hand, a direct computation shows that
1

l—— )P f"+r
n

Substituting (3.54) and (3.55) into (3.53), one has that

2

23 ,
L2(y-) = (1 n + W) 200 + Calrliag, -
y_

(3.55)

1E5 " 812 + 167 80,y = 132 41" 2oy, ) S CenIra,  + 1812 ]
(3.56)

Let A" := wf™. Then, by using (3.12) and (3.56), we obtain
IwE; gl = 1" < Conflwrlimgo + v wglix}. (357

On the other hand, Let v"'wg; € L>® andv~'wgy € L*. Let = E;lgl and
= L',;] g be the solutions to (3.52) with g replaced by g and g», respectively.

Then we have that
e(f — I +v-Velfs = fH+v) () — [ —AK(fy — 1) = g — g1,
(3 = S vl = (1= 3) (5 = 1.

By similar arguments as to those in (3.52)—(3.57), we obtain
1£5 g2 = L3 g1lTo + 1L 82 = £5'81175,,) S Cemllg2 — 811172, (3.58)
and

lw(L; g2 — L7 gDl < Cenlv ™ wigr — g)llzoe. (3.59)

The uniqueness of solution to (3.52) also follows from (3.58). We point out that
the constant C; ,, in (3.56), (3.57), (3.58) and (3.59) does not depend on A € [0, 1].
This property is crucial for us to extend L "o Efl by a bootstrap argument.
Step 3. In this step, we shall prove the existence of solution f” to (3.39) for suffi-
ciently small 0 < A < 1, that is, to prove the existence of operator E;l. Firstly,
we define the Banach space
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Xi={f=r v wf e LY@xR), wf € L%(y), and [(x, v)],.

_ (1—%>ny+r].

Now we define
T f = .cgl(/\Kf +g).
For any fi, f> € X, by using (3.59), we have that
I (T fi = T f)lw = |wleg' GKfi+ ) - £5" 0K L+ )|

S Cenllv ' w{(AK fi + 8) — GKfa+ &)}l

S AT wK fi = K )

= ACkenllw(fi — )L,
where we have used (2.11) and (2.13) with m = 1 in the last inequality. We take
s > O sufficiently small such that ,Cg ¢, < 1/2,then 7 : X — Xis a

contraction mapping for A € [0, A, ]. Thus T; has a fixed point, that is, 3 f)‘ eX
such that

fr=Tf = L5 (WK + ),
which immediately yields that
Liffr =ef* +v-Vof* +vf* —aKfr =g

Hence, for any A € [0, A,], we have solved (3.39) with f’\ = E;lg € X. Therefore
we have obtained the existence of E;l for A € [0, L.]. Moreover the operator E;l
has the properties (3.56), (3.57), (3.58) and (3.59).

Next we define

Thinf =L (AKf—i—g).

Noting the estimates for E;*l are independent of A,. By similar arguments, we
can prove Tj, 45 : X — X is a contraction mapping for A € [0, A,]. Then we
obtain the exitence of operator 5;*1 13> and (3.56), (3.57), (3.58) and (3.59). Step

by step, we can finally obtain the existence of operator L‘fl, and L‘fl satisfies the
estimates in (3.56), (3.57), (3.58) and (3.59). The continuity is easy to obtain since
the convergence of sequence under consideration is always in L°°. Therefore we
complete the proof of Lemma 3.5. 0O

Lemma 3.6. Let ¢ > 0 and > 3, and assume ||[v~"'wg| r + |wr|peo,_ ) < 00.
Then there exists a unique solution f° to solve the approximate linearized steady
Boltzmann equation (3.1). Moreover, it satisfies

lwf e + fwf*limg) < Coflwrlimgo + v wells . (3.60)

where the positive constant Ce > 0 depends only on . Moreover, if Q is a strictly
convex domain, g is continuous in Q x R and r is continuous in y_, then f¢ is
continuous away from the grazing set yy.
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Proof. Let /" be the solution of (3.38) constructed in Lemma 3.5 for n > ng with
no large enough. Multiplying (3.38) by f” and using the coercivity estimate (2.7),
one obtains that

1 2
el 122 + 11" g,y + 200l = PYFUI2 £ Cellgl2, + ’(1 - ;)ny" gy

(3.61)

Here the projection P is defined by (2.6). A direct calculation shows that

2
< n2 n ) P
Lz(y,) = |ny |L2(y*) + 2|ny |L2(V—) |r|L2()/—) + |r|L2(y,)

S APy G20y + 1Py T2, + Calrl Do, s

(-2

which, together with (3.61), yields that
elf 5> + 1 = PS5, +2c0lld = P)FIE S nlPy f"175,.
+ Ce(lgl7a +Irl7ag, )- (3.62)

where 1 > 0 is a small constant to be chosen later.
We still need to bound the first term on the right-hand side of (3.62). Firstly, a
direct calculation shows that

l n2 2
—| P. <|P f”[ , 3.63
2| )/f |[2()/ )_—l V4 y \)/S|[2()/ )’ ( . )

provided that 0 < ¢’ < 1. We note that
frx,v) = = Py) f'(x,v) + Py f(x,v), V(x,v) € y4,
which yields that
n 2 _ n 12 _ n 12
Py f Iy+\yi/|L2<y) =2lf IV+\yi |L2(V) +2U =Py f Iy+\yi |L2(y)' (3.64)

On the other hand, it follows from (3.38) that

lv.v (|fn|2)_ _8|fn|2_fann+ n
7V Vx = gf”

which yields that
o Ve Pl £ I + 10 = P+ gl ) (3.69)
It follows from (3.65) and (3.62) that

n 2 _ n\2 ,
I/ IV+\Vi,|L2(V) =17 Iy+\)/i L)

< oI + 1o Ve Pl )



962 RENJUN DUAN, FEIMIN HUANG, YONG WANG & ZHU ZHANG

< Col I 12 + 10 = P IR + g2 )
< CorenlPy " 32, + Coren{ 812 + 122, ).

where in the second line we have used (4.7) which will be given in Lemma 4.1 later
on. The above estimate together with (3.63) and (3.64) yield that

1Py I Rayy S Coenl Py f'Beng,y + Conen gl + 172, .
Taking n small so that Cyr yn < % one obtains that

1Py f" Bayy S Cocfllglla +1rag, . (3.66)
Combining (3.66) and (3.62), one has
1172+ 12, + 20l = PY IS S Cor (gl + Irl72, ). (3.67)
We apply (3.12) and use (3.67) to obtain
lwf ™ les+wf gy < ClIv wgllis + lwrlzsg + 11,2
< Core{ v gl + lwrlieg .

Taking the difference f"! — f"2 with ny, np = ng, we know that

ECf™ — f7) v Vi(f™ — 1)+ L(f™ — ) =0,
" = 0wl = (= Sy = )+ (L = L) Py g,
(3.68)

Multiplying (3.68) by f™ — f"2, and integrating it over Q x R3, by similar argu-
ments as in (3.61)—(3.67), we can obtain

1™ = F5 + 1™ = f™) s, + 200l = PY(™ = £

2l -, 50 [ (B v

= ge no n V4 Lz(y_) = eg'e ni ny LZ(er)
172 112

< Coe(gl2a+1r2s, ) {(Z) + (5) l=o. (3.69)

as ny, np — oo, where we have used the uniform estimate (3.67) in the last
inequality. Applying (3.12) to f*! — f"2 and using (3.69), then one has

lw(f™ = )+ w(f™ = ™))
1 1 n n n
< Cluw(=——)p, JHCIF =
1

ny ni
1
< Core - (lwgllzoe + |wrlzg.)) - [Z * Z] -0

L>®(y—



Long-Time Dynamics of Rarefied Gas 963

asny, ny — 00, which yields that wf” is a Cauchy sequence in L°°. We denote
f¢ =lim,_,  f", thenitis direct to check that f* is a solution to (3.1), and (3.60)
holds. The continuity of f* is easy to obtain since the convergence of sequences is
always in L° and f" is continuous away from the grazing set. Therefore we have
completed the proof of Lemma 3.6. O

Now we assume that
// ¢(x, V) (v) dudx = f r(x, v)p? (v) dy = 0. (3.70)
QxR3 y—

Lemma 3.7. Let f be a solution
v-Vf+Lf =g, fV7=PVf+r

in the weak sense of
f wf{v~n(x)}dvde—/ v- Vi f dvdx
y QxR3

= —/;2 . Y Lf dvdx +/ Ygdvdx,
X

QxR3

where r € HYQ x R?). Assume fQXR3 f/idvdx = 0 and (3.70), then it holds
that

1PFIZ2 <l = PYFIZ + 08l + 1 = P [, )+ I, .

Proof. The proof is almost the same to Lemma 3.3 in [21], the details are omitted
here for simplicity of presentation. O

Lemma 3.8. Assume (3.70). Let 8 > 3+« |, and assume ||[v" wg|| 1o +wr|peo.)
< 00. Then there exists a unique solution f = f(x,v) to the linearized steady
Boltzmann equation

v-Vof+Lf=g [0, =P, f+r 3.71)

such that [q g3 f/dvdx =0 and

lwflles + [wfliegy < C{lwrlmg + v wgl=|. (372)

Moreover; if Q is a strictly convex domain, g is continuous in Q x R3 and r is
continuous in y_, then f is continuous away from the grazing set yj.

Proof. Let f° be the solution of (3.1) constructed in Lemma 3.6 for ¢ > 0. Multi-
plying the first equation of (3.1) by /i, taking integration over £ x IR3, and noting
(3.70), it is straightforward to see that

/ fs(X,v)ll«%(v) dvdx =0
QxR3
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for any ¢ > 0. Multiplying the first equation of (3.1) by f* and integrating the
resultant equation over Q x R3, it follows from Cauchy inequality that

1
elflze + 51U = P 1, +colld = PYFI
2 2 -4 2 2
é n[llfgnv + |ny8|L2(y+)] + CV)[”U Zg”LZ + |r|L2(y,)]' (373)

Applying Lemma 3.7 to f¢, we obtain

1PFI%: < I = PYFIR + el 51 + 1 = PSRy + gl + 172, )
which, together with (3.73), implies that
elf g + IS+ 10 = P fe1s,
_1
S Ol fEIS + 1Py 1 7ag, 1+ Colllv 2815 + Irl3a, 1, (B74)

where 1 > 0 is a small positive constant to be determined later.
To control the term | P, f 8|%2 () 0 the right-hand side of (3.74), we should

be careful since we do not have the uniform bound on || f¢||;2. Denote
& (x) = / £2 @ 0@ - (o)) dv,
v -n(x)>0
then one has P, f* = zf, (x) ,u% (v). A direct calculation shows that

f v()p@)|v - n(x)|dv = ¢y > 0, (3.75)
vn(x)2e', &' S

provided that 0 < &’ < 1, where ¢; > 0 is a positive constant independent of ¢’.
By using (3.75), we have that

P L e = [ izopas, - V@)Y - n(x)ldy

n(x)2ze', SIS L
> g2
= Cl|ny |L2(y+)’
which yields that

&2 < 3 12

|P)/f |L2(y+) = C|\/;P]/f I)/+\)/i |L2
< 3 12 _ e 12 }
< Vs, o B+ WV = POSEL ol
< £ , 2 12 &2
= C|\/;f I}’+\Vi |L2 + CT)[”f ”v + |PVf |L2(]/+)]

1
+CyllIv 28l + Irl72,, ) (3.76)

It follows from (3.1) that

1
i VeI 1)) = —ev| fE12 — vfELfE +vffy,
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which implies that

o VeI £ < CUFENZ + gl (3.77)
It follows from (3.77) and (4.7) that

ey _ £\2 ,
_l\/—f ve\vs L2(V+) |v(f ) Iy+\yi L)
< c[uv S+ - el Pl
< CULIS + gl
which, together with (3.76), and by taking n > 0 suitably small, yields that
1Py 222, S CIFEIR + CLIv 22 + s, ). (3.78)
Combining (3.78) and (3.74), then taking n > 0 small, one has that
1P+ 1752, < CUVT gl + 12, - (3.79)
Applying (3.12) to f* and using (3.79), then we obtain
1
lwfellLoe+wfé L) < Clv 2wgllzoe + [wrlrep. )] (3.80)

Next we consider the convergence of f¢ as ¢ — 0+. For any 1, &2 > 0, we
consider the difference f%2 — f°! satisfying

v Ve(f = S+ L = f7) = —ea fP2 e f,
(f2 = Dly- = Py (f2 = f).

Multiplying (3.81) by f%2 — f*! integrating the resultant equation and by similar
arguments as in (3.73)—(3.79), one gets

& pery2 & _ rer)2
”f f ”v+|f f |L2(V+)

_1
S Clv 2 (a2 f2 — e fE72 < Clef + eDlwfe 17 + wfo2 7]
S Cel+ed) - v wgllee + lwripeg )12, (3.82)

(3.81)

as €1, &2 — 04, where we have used (3.80) in the last inequality. Finally, applying
(3.12) to f*2 — f*!, then we obtain

Ivw( £ — FEY | peetlvw (£ — £ 1oy
< C{Ilw(szfgz —e1 f )|l + |1 f52 — £ ||V}
< Cler + ) - [Iv " wgll e + [wrl e )], (3.83)

as €1, &g — 04, where we have used (3.82) and (3.80) above. Here we have to
demand 8 > 3+ |« | so that we can apply (3.12). We also point out here that we can
only obtain the convergence in a weak norm L7 but not L. The main reason is
that for soft potentials, in order to get the uniform L;? estimate, one has to demand
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g to has the more velocity weight. With (3.83), we know that there exists a function
f so that |vw(f® — f)|lLe — 0as e — 0+4. And it is direct to see that f solves
(3.71). Also, (3.72) follows immediately from (3.80). If €2 is convex, the continuity
of f directly follows from the L°°-convergence. Therefore the proof of Lemma 3.8
is complete. 0O

3.3. Proof of Theorem 1.1.

We consider the following iterative sequence

ve Vi fITNH LEITE =T (f9, £,
FI Ny = Py fIH 4 B B [ om0 P V)Y - n(x)} Y,
(3.84)

for j =0,1,2--- with fO= 0. A direct computation shows that

/ L7, fu? () dudx =0, f [1o (v) — n()]{v - n(x)}dv =0,
QxR3 v-n(x)<0

(3.85)
which yields that
/ {Me —K Mo M £ )/ @)’ - n(x)}dv’} i) dy =0.
L Ve ViE Jvn@>o
We note that
W= wE G, )l < Clluf/ e, (380
and
'w {y,g S £ e, V)V )’ - n(x)}dv/}
«/ﬁ \/ﬁ v -n(x)>0 L)
< C8+ C81 |y o5

Noting (3.85)—(3.87), and using Lemma 3.8, we can solve (3.84) inductively for
j=0,1,2,.... Moreover, it follows from (3.72), (3.86) and (3.87) that

lwf T e + Twf ey < C18 4+ C1d1 £ 11y + Cillwf 7. (3.88)
By induction, we shall prove that
lwf/ L= + |wfj|Loo(,,) <2C18, forj=1,2,.... (3.89)
Indeed, for j = 0, it follows from fo = (0 and (3.88) that

lwf iz + lwf! o) < Ci8.
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Now we assume that (3.89) holds for j = 1,2--- , [, then we consider the case for
Jj =1+ 1. Indeed it follows from (3.88) that

lwf " e + fwf ™ im)  C18 4+ Cr8l f i) + Crllwf! 17
3
S Ci8(1 +2Cy6 +4C128) < §C18,

where we have used (3.89) with j = [, and chosen § > 0 small enough such that
2C16 + 4C]28 < 1/2. Therefore we have proved (3.89) by induction. 4

_ Finally we consider the convergence of sequence f. For the difference f/ +_
f7, we have

Ve = D LT =T = 7L D T = T,

7 = Dl = Py (f7 = ) (3.90)

ot L7 = 710, V)Y@ - nx))dv'.
\//7 v -n(x)>0

Applying (3.72) to (3.90), we have that

Il 7 = F e + il 7 = e

< cfivTtwr(rd = p7 e Tl =
Ho — W

Vv Jva=o
< ClB+ fwf/ ll + wf = el {lwr7 = P70l + (7 = 1Dl

< ca[ lw(f7 = 7Dl + [w(f/ - f“)lmm}

+Clwl L7 = 776 V)V R@) - no)dv'|

L>(y-)

A

1 . ) ) .
{7 = F70 + w( = D . (391)

where we have used (3.89) and taken § > 0 small such that C§ < 1/2. Hence
f7 is a Cauchy sequence in L, then we obtain the solution by taking the limit
fe=limj_ o f J. The uniqueness can also be obtained by using the inequality as
(3.91).

If @ is convex, the continuity of f is a direct consequence of L*°-convergence.
The positivity of Fy := u + /i fi will be proved in Section 4. Therefore we
complete the proof of Theorem 1.1. O

4. Dynamical Stability Under Small Perturbations

In this section, we are concerned with the large-time asymptotic stability of the
steady solution F), obtained in Theorem 1.1. For this purpose, we introduce the
perturbation
F(t5-x7 U) - F*('x’ v)

N

ft, x,v) =
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Then the initial-boundary value problem on f(¢, x, v) reads as
O f +v-Vof +Lf =L s f +T(f ),

_ _ FO,x,v) = Fi(x, v)
f(tt X, V)|i=0 = f()(x, V) = M%(v) , @

J @ x,u)y/ p@)|n(x) - ul du.

o — it
\/ﬁ n(x)u>0

Here P, f is defined in (3.2), the linearized collision operator L is defined in (2.1),
the nonlinear term I'( f, f) is defined in (2.2) and

1
Lyas S = 7 (O furs I S) + QWIS VI f)] -

S, x, v, =P, f+

Recall (1.9). Let
h(t,x,v) :=w)f(t, x,v). 4.2)

Then one can reformulate (4.1) as

dh +v - Vih +vh — Kyh = —wL gz, f +wl(f, f),

hli=0 = wfo = ho, 4.3)
R (u) do (x) + w(w) X R () do (x),

hly,. = ——
v w(v) n(x)-u>0 \//7 n(x)-u>0

where w and K,/ are the same as ones defined before, and for each x € €2, do (x)
denotes the probability measure

do(x) ={n(x) -u}du

in the velocity space V(x) := {u € R3 : n(x) - u > 0}. For simplicity, to the end
we denote

o — 14

rlh](t, x,v) == NG ( .
n(x)u>

h(t, x, v)w(u)do(x). 4.4)

4.1. Characteristics for Time-Dependent Problem

Given (t, x, v), let [X (s), V (s5)] be the backward bi-characteristics associated
with the initial-boundary value problem (4.1) on the Boltzmann equation, which is
determined by
dX(s) — V(). dV(s) _

ds ds
[X(0), V(O] =[x, v].

0,

The solution is then given by

(X)), V()] =[X(s;t,x,v), V(s;t,x,v)] =[x — (@ —s)v, v].
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Similarly as to the steady case, for each (x, v) with x € Q and v # 0, we define
its backward exit time f,(x, v) = 0 to be the last moment at which the back-time
straight line [X (—7; 0, x, v), V(—1; 0, x, v)] remains in 2:

th(x,v) =sup{s 20:x —tv e Qfor0 <7 <)
We also define
xp(x,v) =x(tp) =x — tpv € 992.

Let x € Q, (x,v) ¢ yo U y_ and (%9, x0, v9) = (¢, x,v). For vk11 € Viy1 =
{vr+1 - n(xx41) > 0}, the back-time cycle is defined as

Xor(s:it,6,0) = ) Mgy ) — vt — ),
k

4.5)
VCZ(S; I, x, v) = Z 1[tk+],tk)(s)vkv
k

with
Bht15 Xk15 Vir1) = (G — o (Xk, Vi), Xp(Xk, Uk)s Vit1)-

For k = 2, the iterated integral means that

/k ) Hé‘;llddl :=/ {/ dakl} ---doj.
02V Vi Vi-1

doj := p(v){n(x;) - v;}dv;.

where

Note that all v; (I = 1,2, ...) are independent variables, and #, x; depend on #;,
x;, v for I < k — 1, and the velocity space V; implicitly depends on (¢, x, v, vy,

V2, ..., V—1).
Define the near-grazing set of y; and y_ as

1
yi = {(x,v) Eyr : Jv-nx) <eorjv|Zceor|v| = —}. (4.6)
&

Then we have

Lemma 4.1. ([13,29]) Let ¢ > 0 be a small positive constant, then it holds that

Myiliigy < Co{ Il + v Vil . @.7)

and

t
/(; Lf (D121 dT

= Cs,Q{”f(O)”L' +/O

t

(17 @l + 10 +v- Yl F @l | ds}, (4.8)

where the positive constant C, > 0 depends only on e.
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4.2. Linear Problem

In this part, we study the following linear inhomogeneous problem:
Of+v-Vif +Lf =g,

o — [
f|y7 = ny +
\/ﬁ n(x)u>0

f(t7x7 v)|l=0 = fO(x, U),

f/rln(x) - uldu, (4.9)

where g is a given function. Recall that i (¢, x, v) defined in (4.2). Then the equation
of h as well as the boundary condition reads

oh+v-Vih+v(h — Kyh = wg,
1 N no — | - (4.10)
My =50 n(x)woh(u)w(u)do(x) + w(v)(’7 n(x)woh(u)w(u) do (x):

Recall the stochastic cycle defined in (4.5). For any 0 < s < ¢, we define
I(t,s) := e_f; v(Ver(m)) dt

The following Lemma is to establish the mild formulation for (4.10). (Since its
proof is almost the same as for [29, Lemma 24], we omit details for brevity):

Lemma 4.2. Letk 2 1 be an integer and h(t, x, v) € L satisfy (4.10). For any
t > 0, for almost every (x,v) € Q x R3\ yo U y_ and for any 0 < s < 1, it holds
that

4 14
h(t,x,0) =Y T+ Y liy=9Tn, (4.11)
n=lI n=5

where

I = l{tés}l(t, SHYh(s,x — (t — s)v, v)
t

I +I3+14 = / I, DK h+ Koh + gl(t, x — (t — T)v, v)dt

max{t,s}

k—1
1)
7, = / ,ﬁmgl{wésqﬁh(am—(zz—s)vl,vl)dms)

k—1
I(t, 1) 4
I6 + I7 + Ig = — 1 <.
w(v) f;} v; Js ; {tir1Ss<n}

x [Kjh + Ko h +wgl(t, x; — (4 — t)vg, vp) dX(v) dt

1t 1) (RS
Zo+Tio+1In = o) Sy, Y L=
j=1Vi

41—

x [Kyh + Ky h +wgl(t, x; — (i — ©)vg, v) dXy(r) dr
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Tip = 1(t, t)wr (1, x1, v)

I(t 1)
/Hk 1 Zl{z,+.>s}wr(t1+1,m+1 vr) dX;(t41)

b(v) 1Vii=1
1, 11)
Tig= —— Lo syh(te, xp, ve—1) dXg—1 (%),
w) Jrkzty

=1Vj
where the measure dX; (1) is defined by

k—1 -1

dzi(r) == { [] doj ¢ (b)I@. vy dor} { [ 1. 1j41) do;
j=I+1 Jj=1

The same as for Lemma 3.2, we have
Lemma 4.3. Let (1, ¢) belong to
{c=2,05n<1/2}U{0<¢ <2,n=0}.
For Ty suﬁictently large, there exist constants C3 and Cy4 independent of Ty such
that for k = C3T4 and (t, x,v) € [s,s + To] x Q x R3, it holds that

1\ G,
/k i Na=s) H’};lle”'”f'{doj = <§> . (4.12)
mnm_,V;

j=17J

Mu.

The following proposition is to clarify the solvability of the linear problem
(4.9):

Proposition4.4. Let —3 <y <0, B > 3+ |k|, and (w, ¢) satisfy (1.10). Assume

that
// fo(x,v)u%(v)dxdvsz g(t. x, v)p? (v) dxdv = 0,
Q JR3 Q JR3

and also assume that

ros® 1y, —1
lwfoll Lo + sup e™* v wg(s)llLe < oo,
520

where Ao > 0 is a small constant to be chosen in the proof. Then the linear IBVP
problem (4.9) admits a unique solution f(t, x, v) satisfying

sup 0 {wf ()L + [wf($)Len} £ Cllwfollze +C sup e v~ wg(s) |1

0Ss<t 0Ss<t
(4.13)
for any t = 0. Moreover; if Q is convex, fo(x,v) is continuous except on yy, g is
continuous in (0, 00) X X R3,
—u

J_ (n(x)-v'>0}
and 0(x) is continuous on 0%, then f(t, x,v) is continuous over [0, 0c0) X {f_Z X
R\ yo}.

Joly_ = Py jo + B fo/mlIn(x) - V' dv’,
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The proof of Proposition 4.4 will be given after we prepare two lemmas.

Lemma 4.5. Let h(t, x, v) be the L*°-solution of the linear problem (4.10). Then
forany s = 0, forany s =t = s + To with To > 0 is sufficiently large, and for
almost everywhere (x,v) € Q x R3\ yo, it holds that

h(t, x, v)| £ CTy e =" n(s) |

L 1 .
+ CTPe M I 45427 4 — b sup T {[Ih (@)L + 1A% )

sStst
_j.a T 5/2 _5 1 T«
+ Cnpme ™ sup 147 F(@)ll2 + CTy e ™™ sup v e wg(v) e,
S§I§t s§r§t
(4.14)

where . > 0 is a generic constant given in (4.21), and 0 < ) < Ay is an arbitrary
constant to be chosen later. Here m > 0 can be chosen arbitrarily small and N can
be chosen arbitrarily large.

Proof. We take 7y sufficiently large and k = C3 TO5 /* such that (4.12) holds for
n= %. We first estimate Z7. On one hand, if s < ¢ < s + 1, it obviously holds that

Z1) S 1Al < e*e ™ h(s) | L. (4.15)
for any % > 0. On the other hand, if t > s + 1, we note that
do

0=tp(x,v) = —
[v]

where dg := sup, ,cq [x — y|is the diameter of the bounded domain €2. Then for
|v| > dg, it holds that

tH—s=t—ty(x,v) —s > 0.

In other words, Z7 appears only when the particle velocity |v| is not greater than
dg, so that we have

17| £ Ce WL i)l £ Cae I |h(s) e, (4.16)
where

Vo := inf v(v) >0
[v|=dg

depends only on dg. Collecting the estimates (4.15) and (4.16) on these two cases,
we have

1711 < Cae 09| h(s)| oo (4.17)

For 74, we split the velocity to estimate it as

t
74| < / e VDY) Ly <ag) + Lvisday} - 1V wg (@)l L~ dr.
max{ty,s} -
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For |v| > dgq, we have max{ti, s} = 1 =t — tp(x, v) = t — 1, which implies, for
any A > 0. that

t
/ e Oy @) gy [V wg () Lo

max{t,s}

t
<c / Ly <<y v wg (@)=

max{t,s}

A

~ t ~
o f eI, <oy v wg(ll e dr

max{t,s}

||65»‘L'a

S Cyae” - sup v wg (o)l

s<t<t

For |v| £ dg, we have

t
/ ey @)1y gy IV wg ()20 de

max{ty,s}

t -
< ¢q / 0D ) g (7)o dr

max{t,s}
< CQ’X’ae_Ma < sup 1T v g (o) || .
s<t<t
Conbining these two estimates, we have
T4l < Ce™™ - sup [ v wg (). (4.18)
s<t<t
Similarly, by using (2.11), it holds that
7 U\z T
1Zo| < Cm e e 06 sup || h(T)| L. (4.19)
s<t<t
For 75, we borrow an idea from [36]. Take |v;,| = max{|vi], [v2], ..., |v|}. By a

direct computation, we have, for some positive constant ¢ > 0, that

e~ W) tj—tjy1) e—C(vz)’((ll—S)w(vl)

e Clum)* (0 —S)e%. (4.20)
w(v)

Here we have denoted (v) := (1+|v|?)!/2. We note the fact from Young’s inequality

that

vl

c(u) (11 — ) + T6 = Z m(n — ), (4.21)
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for a generic constant A; > 0 depending only on ¢. Then the right-hand side of
(4.20) is further bounded as

e~ (’*f‘)e‘% ‘ o lS Sloml? 1ol a Sl
Cc - e ) =)=~ o716~ < Ce™ 16 ¢ M) e 6
v =

ﬁ)(v)e_%

Here we have used the elementary fact that x* + y* = (x + y)* for x, y = 0 and
0 < o < 1. Therefore, it holds that

k—1

[
IZ5| < ZZ TR (s)| oo
I=1 m=1

|

<Ck%e i gm0 I72:(5) | Lo - sup
J

Slum >
1 e X 1 e Tl | | do;
; i1 Ss<uh o, l=max [ o], val... 1] } i

j=1Vj
5l 12
/ e 6~ do;
V.

J

=

2 o
< CK2e 6 e M1 |1 (s) || 1. (4.22)

Similarly, we have

T3l + |711| < CkPe B h g 1€ v wg (7)]| o (4.23)
p
s<t<¢

Recall r defined in (4.4). Similar for obtaining (4.22), we have

|Z12| + 1T13] < CSk *We MU sup 1M R(T) | Lo () - (4.24)
s<t<yt

By (2.11), it holds that

1 To| + | To| < Ck2m3+« o5 o hie sup [T h(z)| oo (4.25)
s<t<t

For 714, we have, from (4.12), that

ihj\

_ﬁ o PR
|Z14] SCe” T6 e M sup |€)“T h(t)|Loo) / 1> H le 16~ do;
I

s<t<r P Vj
s
Mz T T 1 C4T04
<Ce 6™ . sup | h() 1oy - | = ) (4.26)
(y-) )
s<t<t
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Now we consider the terms involving K¢ . Similar as in (4.22), we have

k=1 1
_W2
|Z7] = Ce ‘GE E /H doj_1---doy
Hj:le

=1 m=1

f Slom 2
—A(t—1)* L c /
X e 1, <. e 16 |k (v, v")
141 >5<1 w ’
/V, /R3 /s tir1 =5 <h)

h(t,x; — v (t; — 1), V)| dr dv'do;.
Then, by splitting the integral domain, we further have

k—11-1

vl Slom 2 ”
77| < Ce™ 16 / e 10 dal_1~~~drrl/ / [ Adrdv'doy
;Z i Vin{lul2Ny JR3 Js
G DI NS UREREY S N RS
e 16 e 16 doj_j---doy tdv'doy
iz, Vin(lu| SN} IR Jy—

I=1 m=1
e Sloml? =7 ,
+ Ce WZZ/ e 1o d01_1~~-d01/ [ [ Adrdv'doy
oYY Vintlul SN} J{v 122N} Js
k—11-1 _ 1
b Slom 12 h=w ,
+Ce™ 16 ZZ/ e 16 d01_1~-~d01/ / / Adt dv'doy
PR A Vin{lu | SN} (w1208 s
5 k=1
Ll
=Ce 16 Y {171/ + Iy + I73 + 1'741}, (4.27)

=1

where we have denoted that
—A(t—1)“ M c / /
A=e 1{t1+1§s<t1}e 16 |ky, (v, V) h(T, x; — vy (ty — ), V).

For Z71;, we use (2.14) to obtain, for any 0 < X < A1, that

sy 12
e 16 do;
V.

J

_ s T
Ty < Chke ™ - sup [|e*" h(z)|lL~ - sup
s<r<e j=0,....I—1

CIyl?
e~ 16 dy;
lu|2N

2 3o P
< Cke e . sup [ h() || 1. (4.28)
s<t<t

For 779y, it is straightforward to see that

Ck 5. Yo
T £ e M sup lle*™ h()|l o0 (4.29)
s>TSt

For Z73;, since |[v" — v;| = N, then by (2.14), it holds that

2 T P}
Tz < Cke™ e . sup "™ (1) Lo~ (4.30)
sSt<sr
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For Z74;, by Holder’s inequality, it holds that

tl—%
/ / / Adrt dv'doy
Vin{y|EN} J{v|S2N} Js

”7% « 1 2 172
< C/ e M=) dr{/ / e~ sl |k;,(vl,v’)|2dv/dv,}
s Vin{lu | SN} J|v|S2N

12
2 /
X 1, < ht,x; — vy —1),v)|" dv dvl}
{ /Vm{mgzv} /|v’|§21v o< |

L[ o
< Cym*~ / e MU= g
N

, = T d /]
: ) S f( 7'xl Ul(tl - )7 v/) v I} .
{./V](]{ I|SN} /IU,|< N {tl+] S<t[} \ |

Here we have used (2.12) for « = 1 in the last inequality. Note that y; := x; —
v(ip—1)eQfors St <1 — % Making change of variable v; — y;, we obtain
that

"= g iz
/ / / Adtr dv'do; £ Cym* e ™" - sup &' || f ()| 2.
Vin{lu| SN} JR3 Js s<t<r

Combing this with (4.27), (4.28), (4.29), (4.30), we have

Ck v]? e

P \U|2 T
1Z7| S——e¢ T e - sup [|¥T h(T)| Lo + Cym* e 15 e
N sSt<t
sup "7 f (D)l 2. (4.31)
s<tt
Similarly,
Ck 12 5 el el _P2 5
|IIO| g —e loe - sup lle /’l(‘[)”Loo + Cym e 16 ¢
N s<r<t
sup &£ (D)l 2 (4.32)
s<t<t

Substituting (4.17), (4.18),(4.19), (4.22), (4.24), (4.23), (4.25), (4.26), (4.31),(4.32)
into (4.11), we have

t
|h(t, x,v)| < / / 1(t,7) [k (v, wh(t, x — (t — T)v, u)| dudt + A(r, v),
max{ty,s} JR3
(4.33)
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where we have denoted

A(t, v) == CKPe M 1 (s) || 1o
i

3o v 1
+ Clle ™ e 16 {m3+K +8+27T0 4 ﬁ}

sup e {[|A(T) [l Lo + [h(T) 1oy}
s<t<r

T P2 e
+ Cn,p,me” 16 e - sup le* f (D)2
s<t<r

+Ck e sup vl wg ()|l 1o
s<t<t

Denote x’ := x — (r — t)v and 7] := r1(z, x’, u). Now we use (4.33) for h(r, x —
(t — T)v, u) to evaluate

t
|h(t, x,v)| < A, v)+/ / 1(t, 7) [k (v, u)A(z, )| dudt
R3

max{t,s}

t T
1 1 r <
+/S -/; /R3 /R3 {max{r;,s} St <r}H{max({r],s} ST/ St}

x 1(t,t) |k (v, kS (u, u)h(t', x" = (v — T)u, u')| dudu'dr’dr
:= A(t,v) + B| + B,. (4.34)

Similar for obtaining (4.18), we have

t
|Bi| g/ { }A;} {1[.1@9; +1{|u‘>dg}}1(r, )k (v, W) A(z, )| dude
max{zy,s -~

t - -
§ Cq / / {@7UO([71)1{t_1§f§[} + €7V0(t7‘[)1{|v|§dﬂ}} |kw(U, M)A(‘L’, u)l dudz
max{t,s} JR3 - - -
S CR e (s)

T oo 1 7o
+ Ck?e™ {m3+" +5427T 4 N} < sup TR Lo + (D) o)}
sS<t<t

F Cnpme ™ - sup € F(Dll2 + Ck2e ™ sup vl e wg ()| o
s<t<t s<t<t
(4.35)
Finally, we estimate éz. If |v| > N, we have, from (2.14), that
1Bo] < C(1+ o)) 2e™ sup [|e" h(r)]|
s<t<t
C — T
s e sup le*" h(z)llLe. (4.36)
N s<r<t
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If [u] £ N, we denote the integrand of B, as U(t/, v, v”; 7, v), and split the
integral domain with respect to dz’ dv”dv’ into the following four parts:
UL 0; :={|v/| = 2N}
U {|v'| £2N, V| > 3N}

[IA

1
U{|v’| < 2N, V| §3N,r—ﬁ <7 r}

1
U{|v’|<2N,|v”|<3N,s<t’<r—N}.

Over O and O,, we have either [v —v'| = N or [v' —v”| = N, so that one of the
following is valid:

\v—v/\Z

N2
kg, (v, 0] S e 3e 32 |k, (v, V)],
W =2

N
ko, (", V)| S e 3Te 3 kg, (v, V)]

By (2.14), one has

t 2 ~ ~
_NZ T o
/ / U, v, v, v)dvde’ dv/de < Cem 2 e™ sup [|€*F (1) .
s JOIUO, s<t<t

4.37)

Over O3, it is direct to obtain

! C T 7 a
/ / U, v, vt o)dvde’ dv'dt £ —e ™ sup ||’ h(T)] 1.
s JO3 N s<t<t

(4.38)

For Oy, it holds from Holder’s inequality that

/ UG, v, 0", v)dv’de’dv’
Oy
i i ) 1/2
< Cye 000 (f e T (v, u)kE, (u, u’)|2dr/dudu’>
Oy
) ) 1/2
« (/ e Vot )l{y’GQ}“'l(T/, y/, u/)|2 d‘c/dudu/>
Oy

) i ) 1/2

< Cym*® Dm0 (/O e_VO(’_’)I{y/EQ}If(I’,y’,u’)|2dt’dudu’> ,
4

(4.39)

where we have denoted y’ := x” — (t — 7/)u. Making change of variable u — y’

) .
and noting that the Jacobian ‘%‘ > L s0fors<t <7— %, the right-hand

N3
side of (4.39) is bounded by

_ T _PU=1) Ao
Cym* Ve =73 . sup | F@llg2,
sStst
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which implies that

' 3 3
/ / Ut v, 0" o) dv”de dv'de < Cym?“ Ve . sup [|¥7 £(1)] 2.
s JOq s<t<t

Combining this with (4.36), (4.37), (4.38) yields that

A C _ya 3o _ 3 P
|Bo] £ e ™ sup [T h(@)L + Caum™ TV sup (et £ (D)2
s<t<t s<t<t

(4.40)

Substituting (4.35) and (4.40) into (4.34), one has (4.14). The proof of Lemma 4.5
is complete. 0O

The following lemma gives the L?-decay of the solution:

Lemma 4.6. If

// fo(x,v)u%(v)dxdvzf/ g(t,x,v)u%(v)dxdsz, 4.41)
Q JR3 Q JR3

and |0 — 1|1=q) is sufficiently small, then there exists a constant A, > 0 such
that for any t 2 0,

t
I £ @)l 2 < Ce ™2 wholl e + f e g (s) e ds. (4.42)
0

Proof. We first consider the case g = 0. Multiplying both sides of (4.9) by f, we
have

1 ) 1 t ) 1
PO+ 5[50 a5+ [(Lre). ronas
1 5 1 [ )
=§”f0”L2+§ 0 |P}/f+r|L2(y7)dsv (443)
where r is defined in (4.4). By the coercivity estimate (2.7), it holds that
! Ry 2
/0 (LF(s). F5))ds = e /0 W= Py @I s, (444)
Notice that P,r = 0. Therefore, it follows that
1 [ 2 1 [ 2 1 ! 2
5\/0 |ny+r|L2(y7)dS=§‘/(‘) |ny(s)|L2(]/+)ds+§/0 |r(S)|L2(y7)dS

1 ! 2 ! 2
§ E 0 |P]/f(s)|L2(y+) ds +Cé 0 |f(s)|L2(y+) ds.
(4.45)
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To estimate | Py f;2(,, ), recall the cutoff function ll/i with respect to the near
grazing set y{ defined in (4.6). Then we have

Py f)12, =f H@)In(x) - vl dy
y_

(r+)
2
X </ FOLye + 1,0 1 /uln(x) - v'| dz/)
n(x)-v'>0

i
S Cel f ()72, T Cle™ 1 fOL \yelTa,,)  (446)

Notice that
1 R, w?
5(3t+v-Vx)€ S fT=e ¥ fLf,
which implies that
’ W C e o2
10 +v-Vi)e 5 f2(s)lpds = C [ e 1 f(s)ll72 ds.
0 0
Therefore, by the trace estimate (4.8), we have
/ |€ 16 f(s)1y+\y+|L2(y ) f |€ f (s)1y+\y |L1(y+)ds
_lZ i
< Celle™ 0 foniz +cg/ le™ 16 f(5)]17, ds
0

t
< Gl ol + C, /0 W2 £ (5)]12, ds.

Combining this with (4.46), we have
! 2
JRECTA
t t
= [ 18 1O a5+ [ 10 = S0
<C/ |(1_P )f(s)|L2(y )dS+C8/ |f(s)|L2(y )
+ Cell foll32 + Ce /0 W2 £ ()17 2 ds

t t
< C/O (I = P fO)a,,,,ds + Cllfoll 7> + c/o W2 £ ()II7 2 ds.
(4.47)

Here we have taken ¢ > 0 suitably small in the last inequality. For the macroscopic
part Pf, we multiply /i to both sides of the first equation in (4.9) and use (4.41)
to get

// f(t,x,v);ﬁ(v)dxdv:// fo(x,v)u%(v)dxdvzo.
Q JR3 Q JR3
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Then is a fashion similar to [21, Lemma 6.1], there exists a functional e ¢ (¢) with
ler (D] S £ @12, such that

/Ot W'2Pf@s)7.ds < (efu) - ef(0)> + /0 W2 = P) f(9)7ds
[ O s [ 10 = PO, 0
S <ef(f) - ef(0)> + /0 W21 = P)f(s)l172ds
+s [ POy s + / = PO, 05

Suitably combining the estimate above with (4.43), (4.44), (4.45) and (4.47) and
taking § > O suitably small, we have

t t
I3 + /O W2 £ ()72 ds + /O 1f®)Fa,,,ds S Cllfoll7o.  (448)

Next we need to obtain the weighted L? estimate in order to obtain L> decay of f.

WU[
Multiplying e 5 / to both sides of the first equation in (4.9), we have
1 ﬂ 2 1 ! ﬂ 2 ! 1/2 UHI 2
§||e 1 f(t)||l‘2+§/0 le 4 f(s)le(y+)ds+A [v!/2e ™% S)72ds

e e e s [k e o
—zlle folle+5/0 le f(S)ILz(y_)vL/O( f(s),e 27 f(s))ds.
(4.49)

A direct computation shows that

Al

bowll g t
./0 e F )2y, S C /0 %5 Py f(9)2a,, ds + Cfo e r ()2 ds
t
< C/O |f(s)|%2(y+) ds. (4.50)

As for the last term on the right-hand side of (4.49), we use (2.15) to obtain
t
J

Therefore, suitably combining (4.48), (4.49), (4.50) and (4.51) and taking n > 0
suitably small, we have

) t ol t
<Kf(s),e#f(S)>’ds§n/0 ||v‘/2e'T‘§f<s>||izds+cn/0 W2 £(5)]12, ds.
4.51)

ol Loomlf towlE ol
lle™ f(z)||iz+f le™ v”zf(s>||izds+f le " f()l72,,,ds < Clle™ 5 foll7a-
0 0
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Now we are ready for obtaining L? decay of f in terms of the idea in [43]. Let
f = IH0% £ with A’ > 0 is a suitably small constant to be determined later.
Then applying the same energy estimate for obtaining (4.48), we have

t t
T +/0 W2 F )12, ds < ClLfoll%, + cx’/o (s + D1 )12, ds.
(4.52)

To estimate the last term, we split the v-integration domain into

1

R?) ={l+p 2= +t):+lm}U {14+ v] < (1 41)5FK} = M(@) UM (@1).

One one hand, we have
t - t , ¢ 2

! ol
§c/ 2675 £ )12, ds
0

a5
<Cle foll3a.

by taking A’ > 0 suitably small. On the other hand, in M¢(s), we have
(1451 < A+ @D EHDY e £ Cv)Tpgegs)-

Therefore, we have

¢ t
/0 (s + DM F e ()11 2 ds < € /0 IV F©)lI72 ds.

Combining these estimates with (4.52) and taking A" > 0 suitably small, we have
~ ! ~ @5 ! ~
IF N7, + / W2 F()72ds < Clle & foll7, + cx/ 2 F ()1l 2 ds
0 0

@l
<Cle  foll3. (4.53)

Then (4.42) for g = 0 naturally follows. We denote G (¢) as the solution operator
to the linear homogeneous problem (4.9) with g = 0. Then for non-trivial g, from
Duhamel’s formula, it holds that

t
IfOll2 = 1G@) foll 2 +/0 1G (2 —s5)g(s)lL2ds

g, wlE L sy TEE
SCe e i folla+C | e lle * g(s)ll2ds
0
t
< Ce ™ wfollr + / e wg(s) | peds. (4.54)
0

Here we have used (4.53) in the second inequality. Then (4.42) follows from (4.54)
by taking A, = A". The proof of Lemma 4.6 is complete. O
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Proof of Proposition 4.4. The local existence and uniqueness of solutions to the
linear inhomogeneous problem (4.10) can be obtained in a similar way as in Propo-
sition 6.2. We omit the details for brevity. In what follows we will show the decay
estimate (4.13). Recall the finite-time estimate (4.14). We define Ao = min{ T 4 21,
and

_ (1)ﬁ T
2C 0

with n > 0 suitably small to be determined later. Then we choose Ty suitably large
and § > 0 suitably small, and also take N suitably large, such that

1 Yore
CT5/2 {m3+K +6+2—T() + N} g 77’ CTOS/Ze_TlT(J é 1

Then it holds from (4.14) with the choice of A = XA that for any s = 0 and any
t €ls, s+ Tol,

_)J —¢)¥ _ o
1) oo + [h() ooy < e 2 T h(s) | + e D(t, 5),  (4.55)
where we have defined

D(t,s) =1 sup €7 {|h(x)|lL> + (D) L))

s<t<t
+C sup [l fF(O)ll 2+ C sup v e wg(n) . (4.56)
sStst sStse

For any ¢ > 0, there exists a positive integer n = 1, such thatnTy <t < (n+ 1) To.
Then applying (4.55) to [0, To], [Ty, 2T0]l, - - - , [(n — 1)Toy, nTp] inductively, we
have

Ihn Tl < e 210 [|h(n — DTpllze + e " DTy, [n — 11Tp)

< M | h(n — 2)Tollz + e 0" DTy, [n — 11Tp)

)\ o
e 0T Iy 117y, [ — 2]T0)
< eI h(n — DTyl oo + e~ HOTO {1 e }D("To [n — 21Tp)
§ .
/lnT roT)® My = 1)/\1T
Se lhollpee + e 00O L] ™77 ... 4e DTy, 0)
(nT) «
< Ce ™M ol + Ce T DTy, 0), (4.57)

where in the third inequality we have used 0 < A9 < %. Here we also have used
the elementary fact that x% + y* 2> (x + y)¥ forx, y 2 0and 0 < « < 1. Finally
applying (4.55) in [nTp, (n + 1)Tp] and using (4.57), we have
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1R@) oo + (A ()] Loo(y)

A =nT)®

Se 2 h@nTp)lle + e M D(t, nTp)

a 1 (t—nTp)* 2 (nTp)¥ &
<MD nTy) b T {Ce‘ S ko | oo + Ce 0 T) D(nTo,O)}

< Ce 5 |lholl L + Ce D, 0). (4.58)

Recall (4.56). Let n > 0 be suitably small, then (4.13) follows from (4.58) and
(4.42). Therefore, the proof of Proposition 4.4 is complete. O

4.3. Proof of Theorem 1.2.

The local existence and uniqueness of the solution to nonlinear problem (4.1)
is provided in Proposition 6.2. In what follows we will show (1.17). Notice that for
any ¢ > 0, it holds that

/wa VIL iy, fdxdv = /Q/W VT (f, f)dxdv = 0.

Then applying the linear theory Proposition 4.4 to f, we have

sup e ([lwf (5)llzoe + [wf ()] 1o}

0Ss<t
= Cllwfolle +C sup v WL g FO) e + T Wl ) ze)
0<s<t
< Cllwfolle + C{8+ sup [wf ()i} sup ™ [[wf ()] e, (4.59)
0Ss<t 0Ss<t

where we have used the nonlinear estimate (2.16). Now we make the a priori
assumption that

)\‘ o
sup €™ lwf ()l = 2Cwfollree.
0<s<t

Then from (4.59), we have

sup €0 ([lwf ()l Lo 4 [Wf (s)|2o) )
0<s<t

3C
< Cllwfollze +2C [wfollze - {8 + 2C lwfoll =} < - lwfoll.

provided that both 6 > 0 and ||wfp| L~ are suitably small. This justifies that the
a priori assumption can be closed. Then from a standard continuity argument, the
global existence together with the estimate (1.17) follow. Therefore, the proof of
Theorem 1.2 is complete. Note that since the obtained time-independent solution
F(t, x, v) is nonnegative for all # = 0 and converges to the stationary solution
F.(x, v) in large time, one then has the non-negativity of F,(x,v). O
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5. Dynamical Stability Under a Class of Large Perturbations

The section is devoted to proving Theorem 1.3.Recall 4 (z, x, v) := wf (¢, x, v).
In what follows, we make the following a priori assumption:

sup [|A(s)llze + sup [h(s)|Lop) S M, (S.D
0Ss<T 0<s<T

where T > 0 is an arbitrary constant and M is a positive constant depending only

on My as given in (1.21). We emphasize here that My is not necessarily small and
will be determined at the end of the proof.

5.1 Lﬁ,v Estimates

First of all, we have
Lemma 5.1. ([30]) Let 1 < p < oo. Assume that f, 9;+v-Vy f € LP([0, T]; L?)

and f1,_ € LP([0, T]; L?(y)). Then f € CO([O, Tl; LP)and f1,, € LP([0, T];
LP(y)) and for almost every t € [0, T]:

t
IFOI7, + /0 LF ST = IfollLs

t t
[, +p [ [ [ s oy 62
0 0 JQJR3

Moreover, we prove that the L? bound of solutions grows in time exponentially
related to M. Note that M is to be chosen depending only on My, so that within a
finite time interval, the solution can be uniformly small in L7 if it is so initially.
Lemma 5.2. Let 1 < p < oo. Under the assumption (5.1), it holds that

IFOllzr < eSM ) foll e, (5.3)

foranyt € [0, T]. Here C3 > 1 is a generic constant depending only on k and p.

Proof. By Green’s identity (5.2), one has

t 13
LF@OI7, + f £y yds + p f W7 £ ()17 pds
0 0
t t
= llfoll}, + /0 |f O, )+ P /0 (£ &IP2f(5), Kf(5))ds
t
+p /0 (fOIP2F($), =L yp, £ () +T(f, f)(s))ds. (5.4)

It is straightforward to see from (2.9) that K is bounded from L? to L?. Therefore,
one has
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t t
‘/O (f@IP2f (), Kf(s))ds| = C/O A7 - 1K (s)]lrds

t
= Cfo £ ()17 ds. (5.5)

As for the last term on the right-hand side of (5.4), it holds from (2.17) that

W12 =L g f + T O D) S WP P ™7 <L g f 4T | o

< Cllwfillee + sup Jlwf)lz=}- W2 117,
0<s<t

S+ DL, (5.6)

To treat the boundary term | f|1r(,_), the same as before, we introduce the cutoff
function 1, near the grazing set v defined in (4.6). Then by a direct computation,
we have

|f|€p(y7) < C|ny|€p(y7) + C|V|£p(y7) < C|ny|€p(y7) + C5p|f|£p(y+)
P
< / wP2)n(x) - v|dy (/v( )\//J/(M){flyi + [y Hn(x) - ul du)
' X

V4 P
+CfLr

S Cle? +C87) - |f|€p(y+) + lelyJF\yil]p‘p(er)- (5.7

From the trace estimate (4.8), it holds that
t t
/0 Ly O, ds = /0

t t
ECS,Q{IIfoIIZer/O ||f<s)||ipds+/0 ||[a,+v~vx]|f(s)|P||L1ds}.
(5.8)

1 Ly vy (S)‘Ll(}ur) ds

Notice that

[0 +v -Vl fI? = plfIP2f{d f +v-Vef)
= PP {—f + KF 4T N = Lyag £}

Then from (5.5) and (5.6), it holds that

t _ t
/0 ||[a,+v~vx]|f(s>|P||Llds§C<M+1>/0 1 £ )1, ds.

Combining this with (5.7) and (5.8), we obtain that
t t
fo |F O], ds £ Cle? + 67} fo [FOI],, ds

_ t
+ Cell foll}, + Ce(M + 1)/0 £ ()Y ,ds. (5.9)
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Substituting (5.5), (5.6) and (5.9) into (5.4), and then taking both ¢ > 0 as well as
& > 0 suitably small, we have

t t
IIf(t)Ilfp+/0 If(S)prdS+/o WP £ )17, ds

_ t
S Clfollf, +C(M + 1)/0 1 ()17, ds.

Then (5.3) follows from Gronwall’s inequality. Therefore, the proof of Lemma 5.2
is complete. O

5.2. LE,-Estimate
Lemma 5.3. Under thg a priori assumption (5.1), for t € [0, min{T, Ty}] and for
almost every (x, v) € Q x R3\ y, it holds that:

t

|h(t, x, v)| =S() —i—/ I(t,s)|lwL(f, f)(s,x —(t —s)v,v)| ds, (5.10)

max{t,0}
where
A 5/2( 3+ _, T 1 _ — s
S(6) = Ce™" Mo+ CT3 > ™ 46 +27C1" 4 — 4 o2} (1 + %)

+CN,T0,m{ sup [|f(s)llr + sup IIf(S)IIip}-
0Ss<t 0<Ss<t

Here the positive constants Ty and N can be taken arbitrarily large and m can be
taken arbitrarily small.

Proof. We denote G (r) as the solution operator of (4.10) provided by Proposi-
tion 4.4. Then the solution 4 of (4.3) is given in terms of Duhamel’s formula as

h(t, x, v) = (G(z)ho) (t, x, v)
t ~
+/0 (Gt = 9=wL s, ) +wI'(. f)(s)]ds) . x, ).
5.11)
Using (4.13) and (2.16), we have
IG(O)hollLe < Ce™ " ||| o, (5.12)

and

t t
‘ / Gt —s)wL sy, f(s)ds| < Cllwfillpe - / e MR (s) || Lo ds
0 0

S CS§ sup ||h(s)||pee. (5.13)
0<s<t
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To estimate the last term on the right-hand side of (5.11), denoting

Z(t,x,v) = <G(t —s)wl'(f, f)(s))(t,x, v)

and then applying the mild formulation (4.11) to Z(¢, x, v), we obtain that

3 11
(Gt =l (£ ) (txov) = Y Hi+ 1y Y Hi (5.14)

where

H, = 1(,] 1@, HwL(f, (s, x — (t —s)v,v)

t
H) + Hz = / I(t, D)[Ky + K 1Z(t,x — (t —t)v,v)dr, Hy=I(t, t)wr[Z](t, x1,v)

max{zy,s}

s = L1 1 Wl (f, )5, x1 — (1 — $)vr, v) dSi(s)
5= w(v) - 1v” 1 {1 Ss<) 1 l 1, Ul !

I(t,t
He+ Hy = ;(v;)/ / Zl,,+]<y<,,,[1(m+1<€]za xi— (1 — D, v) A () dr
Sivids o

I(t, 1)
w(v) kfl

Hg + Ho = Zl =) K+ K1 Z(x 5 — (4 — vy, v) A (1) de

fi+1 =1

I(t,tl)/
Hy = 1 Z1(t, dX (¢
10 ) v, 121 >y WrlZ141, X1, v) A2 (G41)

I(t,11)
Hip = — 155 Z (t, Xis vi—1) dZp—1 (%),
w) Jrily,

and r is defined in (4.4). Here the same as before, k = CA'3T05 /* such that (4.12)
holds for n = 15—6. We first consider terms H», Hs and H7 involving K. On one
hand, similar for obtaining (4.19), we have

t
| H>| g/ 1, D) |K)Z(t,x — (t — T)v, v)| dt

max{ty,s}

1
< / 1(t, Dy <o) + Wiol=day} | Kl Z(T, x — (¢ — D)v, v)| dt

max{t,s}

1 - ~
< O / DG — HwT (S, ()L dr
max{t,s}

! = o
g Cm3+K||h(S)”%oo f e—V()(l—'L’)_)\.O(T—S) dr

max{ty,s}

< Cm* e M09 1 n(s) ]2 . (5.15)
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On the other hand, similar for obtaining (4.22), we have

k—1 1 I
Slom >
|Hg| < C{/ <o x 1 - e 16 do;
12121 MoV, L sany X Yo mma [jon b sl ]} ]1:[] J
x e—M“—”“nKz,lZ(r)nLoodr}
N
e ke, 2
< CkPmPtee 0= ||h(s)||%m-sup/ e 16" do;
i YV
< CIPm* e 2009 | h(s) |2 . (5.16)
Similarly, it holds that
|Hg| < CkPm3 e 200=9% 1 h(5) |2 . (5.17)

For the terms H4 and Hjg involving r, we see from (4.13) and (4.4) that
FLZ1() Ly S C8e 0 h(s) Foo, -
Therefore, similar for obtaining (5.16), we have
I

k—1
|Hiol = Z Z C{ /, 1{t1+1>s}

=1 m=1 j=1VYi

Slvm |
16

1
x 1 ) Hda.i}
Jj=1

e
{1umI=max [jua.jval...lor1] }

< Ck2gehoU=9)" |h(s)|%:x>(y+) - sup
J

Sl 2
/ e 6 do;
V;

J

S C8e U h(s) [T ooy, (5.18)
and
|Hal = Cly =) 1 (1, t){ 1y <ag) + Liwi=da)} wr[Z]1(21, x1, )]
< Cem U fwr[Z)(t1, x1, v)| £ C8e T h(9) [y, (519)

For H{y, we note that

< e R (s) |2 .

|Z (1, i, vi-1)] £ |G tx — )L (f, (s) o)

Then by (4.12), we have

5/4
0

o 1\ &7
|Hp| < Cem 00— ||h(s)||ioo-<§) : (5.20)
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For the terms H7 and Hg involving K¢, similar for obtaining (4.27), we have

k=1 1
|Hg| < CZZ/H[_W_dJI_l'”dm
j=1Yi

I=1 m=1
X ! eTMET 6% kg, (vr, v
v Jre Jy {r1=s<0} w i\l
Z(t,x; — vty — 1), V)| dr dv'doy,
and further split it as

k=1 1-1

Slom|? "
\Hs| < C / e 1 d01_1~~-d01/ / / Adtdv'do;
Z Z H/j;ll Vv, Vin{lul|ZN} JR3 Js

I=1 m=1
k=1 1—1 o 2 0o
+CZZ/I 1 e 16 doj_; ~--da]/ f / Adrdv'de;
=1 m=1YT1 Vi Vin{lu | SN} JR3 Jiy— 4
gl Slom 2 Ny _
+CZZ/1 et dal,l-..dolf / / Adtdv'do;
oy VinlulEN} Jiiv1228} s
el Slom 2 n=%
+CZ Z/l et doj_y -~~d01/ / / Adtdv'doy,
oy vin(lulNy Jiv<any s
where
-1 ET / /
A=e 1{,H1§S<,l}e 16 |ky, (v, v)Z(T, xp — v (ty — 1), V)|
Then it follows that
CkZE—Ao(t—s)“
|Hg| £ ————— sup [h(D)|]~
N s<t<t
k—11-1 ) n—t
Slum | N2 ’
+ CZ Z/z e 16 dal,l---dcrlf / f Adrdv'doy,
=1 m=1"T,21Vj VIn{lu| SN} J{[v/|S2N} s

(5.21)

By Holder inequality, it holds that

n=y _
/ / / Adtdv'do;
vin(ul <8y Jiv<any Js
N P o
c/ e MU= gg / / e 5 |KS (vg, v) [P dv'dyy
s viniul 8y Jv1£2n)

7
X 1 < |Z(T, X] — ([[ _ T)U[, U/)lpdv/dvl .
</Vzﬁ{v1|<1v}/{|v/<2m {141 Ss<n)

(5.22)

P

A
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Since 1 < p' = # < 3, then by (2.12) with a = 1, it holds that

|y, \2 i ’
f f e 5 [KS (v, V)P dv'dyy < CmP D).
Vinllul N} J(iv1<28)

Therefore, it holds that

1 o
Right-hand side of (5.22) < Cym*~! / V=0 gp
N

z
X 1 <
(/vmuvngzv} /{w'gzzv} e =s=nl

1

P P
dv'dy | .

Note that y; :==x; — (y — t)v; € Qfors St <1 — % Then making chang of
variable v; — y;, we obtain that

—(t, 0 — (1 — D, V)
w

h§ =y |z
/ / / Adrdv'do; £ CN,,,,/ e M=) Q) dr.
Vin{lu | SN} J{|v|S2N} Js s w Ly
Similarly, for obtaining (5.3), we have
H 20| IR DON < ol fsiu
w e w I -
< Cre TIND (S, e £ Crye 0T h(s) e - £ ()l
Ce to(t—9)" B o
< — 1A() 1700 + Cn e 0T £ ()17, (5.23)
which implies that
n—y _
/ / / Adtdv'do;
Vin{lu| SN} J{|v|S2N} Js
- Ce—ko(t—x)u “h(s)”z + C _Ao(t_s)a 2
= —N Lo© N,Ty,mé€ ||f(s)||Lp'
Substituting this into (5.21), we have
CkZe—Ao(t—s)a 3 e
|Hg| £ ———— sup [[h(s)[I7 + Cn.1pme 0™ sup [ £ ()7
N 0<s<t 0<s<r
(5.24)

Similarly, we have

CkPetol=" 2 —Ao(t—s) 2
|Hiol = N s 1A + Cn 1yme” " sup || f(s)IIgp-
0<s<t 0Ss<t

(5.25)
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For Hs, similar as (4.22), we have

t t k—1 1
|Hs|ds < C/ e M=%y / doy_; - - -doy
/ [ 3 5 I

=1 m=1

Slom[*
X/ /slmﬂﬁs«/}e 16~ [wl(f, £)(s,x — (1 = s)vy, v)| drdv'doy.
VYV JR -

Then it follows that

k—11-1

t t Umz
/ |H5|dS§C/ ) ||h(S)||L°0dS§:§:/, T
0 0 I v;
j=1Yij

=1 m=1
></ e
Vi

t
e f MU |I(s) | Lo ds
0

2 o 1/p
s 1{t1+1§s<f1]dvl {./1;3 |h(s,xl — (1 — $)vy, v’)}p (') 4—p(p—4) dv’}

k—11-1

Sl 2 . ) 1/p
« (szn;—yv,.e 5 da,_l...dal{f‘}l/IR} Advldv} ) (5.26)

=1 m=1

where we have used (2.20) and (2.21) in the first inequality, and also denoted that

~ \Ul\z

A = e_ 8 1{f]+1§5‘<t[} ‘h(sv xl - (tl - S)U[, U/)V? <v/>_4_[](ﬂ_4)’
Now, we consider the integral in (5.26) over either {|v;| = N} or {|v;] £ N, [v| =
Nyor{luyl = N, = N,ty =1/N = s = g}or{luyl = N,'| = N,0 =
s =t — 1/N}. Over {ly| 2 N}or{ly| = N, [v| 2 N}or{lu] =N, V] =
N,y —1/N < s < 1}, it is bounded by
1 1 _
2 b 2
Ck (N + Nﬁ—4>M .
Over {|vj] £ N, |V| £ N,0<s < — 1/N},itis bounded by
k=11-1 Sun?
vy / e LO] VA / e 16 doj_y -+ -doy
=1 m=1"0 v
) 1/p
X / / e_%l < 1 |f(s x; — (1 — s)y; v/)’pdvldv/
Vinliul <N J(vIEN) tarSs<n=y} 1775 ’
! o Ck? _
< Cyk? / e Rl - I f($)rds £ ——M* + Cyk> sup [ FS)II3.
0 N 0<s<r
where we have used the change of variable v; — y; := x; — (fy — s)v; above.

Therefore, for Hs, it holds that

/Z|H|d <Ck2<1+ ! )M2+C k> I £ ()12 (5.27)
sids = - N sup S . .
0 N NP 0<s<t .



Long-Time Dynamics of Rarefied Gas 993

Substituting (5.15), (5.16), (5.17), (5.18), (5.19), (5.20), (5.24) (5.25) and (5.27)
into (5.14), we have

‘
J
t
§/ 1 <o 1@ )wI(f, f)(s,x — (t —s)v,v)ds
0 <

' '
+/ds/ I(l,‘[)d‘[/
0 max{ry,s} R3
1

5/2 - e, 1
OISR ¥ 15 4 27GT S+ W} +Cn.1om sUp I f )35
0<s<r¢

(G(z —wl(f, f)(s)) t, x, v)‘ ds

kS (v, 1) (é(r —Huwl(f, f)(s)) (t,x — (1 — D)v, w)| du

= Hyp + Hiz + Hyg. (5.28)

To further estimate H;3, we denote x’ = x — (r — t)v and 7{ = #1(7, x’, u). Then
by Fubini Theorem and (5.28), it holds that

|Hi3| =

t T
/ / I(z,r)k;(u,u)dudr/ (G(r —swl'(f, f)(s)) (z, %', u)ds
max{t,0} JR3 0

< Hi3g + Hisp + Hizs, (5.29)

where

t T
His,1 =/ /O /W LACHDI) IFERVICE) [wl(f, £)(s,x" — (t — $)u, u)| dudsdz,

max{t,0}

t T T
Hyzp = / / / / 1(t, Tk (v, u)| dt’dudsdr
max{r;,0} JO JR3 Jmax{t],s}

X
R3

'
Hi33 = |Hi4l / A@ 1(t, T) kS, (v, u)| dudz.

max{r;,0}

kS (e, ) (é(r’ —Hwl(f, f)(s)) @, x = (=, )| dut',

Similarly to before, we have

t

|Hi3,3| < |Hi4l /

max{t,0}

1, Dy + Vo dT /R G (0, du

[ -
< C|Hy4| / e =D 4r < CHyy. (5.30)

max{t,0}
For Hi3,1, we have from (2.20) and (2.21) that

t T ~
Hi3i| £ C / dr /R 1K (0, )] du /0 1< 0 [(s) | ods

max{ty,0}
1

/p
x (/ |h(s, x' — (t = s)u,u)|” (u’>—4—l’<ﬁ—4>du’)
R3

Now we divide the estimates by the following cases:
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Case 1. |[v| = N. We have from (2.14) that

C
|Hi31l £ — sup [1A(s)]17 -
0Ss<t

Case 2. [v| £ N, |u| = 2N. In this case, we have |[v — u| =2 N, so that by (2.14),

2 v—u 2
/ |k;(v,u)|du§e7%/ kg, (v, u)e 2 |du<Ce 57
{lul£2N} {lul 2N}

It then follows that

_N2 2
|Hiz1| = Ce™ 52 sup [[A(s)] 70
0<Ss<t

Case 3. |[v| £ N, |u| £ 2N, |u'| > N.By B > 4, it holds that

C
[Hisal < <5 sup ()7

0<s<t

Case4. |v]| < N, |u|l £2N,|u'| £ N,t —1/N < s < t. Itis straightforward to
see that

C
|Hi31l £ — sup [1A(s)]13 -
0<s<t

Case 5. |[v]| £ N, |u|l £2N,|u’ £ N,0< s <7 — 1/N. By Hélder’s inequality,
we have

1/p'
t —% ,
Hiza| < Cy sup [h(s)p - f / 9 dsdr / K (v, )] du
0<s<r max{t;,0} JO {lu|<2N}

1/p
. / / 1{,; <s} |f(s, x' = (t —s)u, u/)}p dudu’
{lu|S2N} J{ju'|SN} -

C
S Cnm sup (AL - sup [If()ler = N qup Ih() |70 + Crom sup [ F )70

0Ss<t 0Ss<t 0Ss< 0Ss<t

Collecting the estimates for these cases, we have

1
|H131|<C< +

1
N TN 4> Sup 1R + Chom sup [ f©)7p. (5.31)

0<s O<s<

Similarly, for Hj3 2, we have

t T T _ ,
|H13,2|§/ / dsdr/ e =T g7’
max{t;,0} JO s
“J.. .
R3 JR3

C t T I—% _ ,
<= sup ||h(s)||§w+cN/ / dsdt/ e =) g7/
N0§s§t max{r;,0} JO s

kS, (v, wks, (u, u/)l(max([]rqslgrfgz]Z(r’, x' = (t = tHhu,u')| dudu’
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) 1/p
/ / |k;(v, wky, (u, u')|p dudu’
{{u|S2N} J{ju'| <3N}

4
g

» 1/p
/ / Vnaxr! sy <o/<) E(r’, x'— (@ =tHu,u)| dudud’
{lu|<2N) J{ju'|<3N) rETET w
C t T I—% _ , VA /
<= sup ()30 + Chom / dsdr/ e~ Nl=T) ‘ﬂ dr’
Nogsgt max{t1,0} JO s w Lp
c
S osup 1A ()17 + Cn 1y sup 1 £ ()70 (5.32)
0<s<t 0=s<t

Here we have used (5.23) in the last inequality. Substituting (5.30), (5.31) and
(5.32) into (5.29), we have

t
/
t
< / L, <o L@ )wI(f, f)(s,x — (t —s)v,v)ds
0 S

5/2 _erit 1 -
+CT Pt 5 4277 + 5t ypa 1M+ O sup 1O
0<s<t

(G(: — sywl(/, f)(s)) t, x, v)‘ ds

(5.33)

Then (5.10) naturally follows from (5.12), (5.13) and (5.33). Therefore, the proof
of Lemma 5.3 is complete. O

Lemma 5.4. Under the assumption (5.1), there exists a constant C > 0 independent

of t, such that, for any 0 < t < min{T, Ty}, it holds that

t
IR @)L + 1A (D)1 S CMoe " (1 +/0 () llLee df)

1
N

5/2

A 5/4 _ _
+CTO !m3+x+5+2_C4T(’ + +W}’{M+M3}

+CN,T0,m{ sup [ f(s)llLr + sup ||f(S)||ip}- (5.34)

0Ss<t 0<s<t

Here the positive constants Ty and N can be chosen arbitrarily large and m can
be chosen arbitrarily small.

Proof. We denote x" :=x — (t — s)v and #] := 11 (s, x’, u). It suffices to consider
the last term on the right-hand side of (5.10). By (2.20) and (2.21), it holds that

/ I(t,s) lwl(f, f)(s,x — (& —s)v,u)| duds

max{t,0}

' ) 1/p
/ e 0= | £ (5) || Loods (/ lh(s, x — (t —s)v, u)|? (u)_4_p(ﬁ_4))
R3

max{t,0}

IIN
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c

<
= Nﬂ74

sup [h(s)7 o
0<s<t

P ) 1/p
+C/ e |l f (5) || Loeds x / |h(s,x",w)|" @y=+rF=H)
max{t1,0} {lul SN}
Notice that x" := x — (t — s)v € Q. Then applying (5.10) to h(s, x’, u), we have

t
/ I1(t,s) |lwl(f, /H(s,x — (t —s)v,u)| dudt

max{t,0}

< <55 sup K@)z~ + R+ Re, (5.35)
0<s<t

where we have defined

t -
R = C/ eIl f (5)] oo S(s) ds,

max{t1,0}

and

t -
Ry = c/ e 0= Iy £ (5) || Loods x (/ (u) =4 PB=Hgy
{

max{r;.,0) lul <N}

s B , p\ 1/p
x {/ e =W (f, s, X' = (s —s/)u,u)ldt/} ) )

max({t},0}

A direct computation shows that

! g o
IRi| <C / eI w (s) | e g | Lo ds

max{t,0}
1 _ _
+CT sup (sl x {m¥ +6+27 T°+7+ — | M+ M)
0<s<s N
+Cnypm sup (Al -{ sup [F()llLr + sup [£S)7s}
0<s<¢ 0Ss<t 0Ss<t
t
écMoe—xo,a/ Ih(s)llLds + CT."? T N L — M+ %)
0 N NB—
+Cnymf sup IF®lLe + sup [ £)N7,)- (5.36)

0<s<t¢ 0<s<t¢

For R», using (2.20) and (2.21) again, we have

4 -
Rl SC sup )~ / R
0=s=t max{z1,0}

S, — (s 4—p(B—4 1/p
(/|M\<N /ma .0} /R3 Pols— )|h( X ( s ) )l]’ ( >< ) ( ))
x{t u,u

1 ! _
gc( + > sup ||h(s)|| w4+ Cn sup |h(s)]| ,o/ e~ =g
N Nﬂ ¢ - 0<s<t v max{r,0}
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s— % 1/p
x (/ e 60y’ / / Linaxr o)<y <51 £ (570 % = (s = s, u)\ﬂdudu)
0 u|EN Jw'|EN -

1 1
<c (— + —_) sup |h(s)l7 +Cy sup [ £ ()70 (5.37)

N = NP o< 0<s<1
Here we have used the change of variable u — y’ := x’ — (s — s")u. Then from

combining (5.10), (5.35), (5.36) and (5.37), (5.34) follows. Therefore, the proof of
Lemma 5.4 is complete. O

5.3. Proof of Theorem 1.3.

Let
t
E) =1 +/0 (1A ()| Lot (5) | Lo (y) ds.
Then it holds from (5.34) that
Ih(®) L + [h(@) L) = E'(1) < CMoe ™™ E(1) + D, (5.38)
where

N 1 1 73 | =T 73
D :=CT, { +8+N+Nﬂ4}M +2-Topg

y - 3
+Cy. Tom {eC3MT°||fo||u + (€55 follr) } :
From (5.38), we have

ft _pnsY 4 t ant
E(t) < E(0)CMo o0 ds +D~/ Mo [; e dr g < (1 4 DpyeCMo,
0
(5.39)
Substituting (5.39) into (5.38), we have

WA ()|l Loe + |h()| Loy S CMoeCMO(l + Dt)e_}“)’a +D< eCMO(l + D)e™ & + D.
) = =
(5.40)

Take M = 2¢Mo g = min{eg, (ZCO)_I} where Cy and &g are the same as ones in
Theorem 1.2, and

_ 1
2 (log 447 + |log]) |/
20 ’

TO = max 3(10g2M+1)+|10g2§|’<

_ 20 T0

such that 2= Topg3 < g and Me~ "2 < £. Then it holds that

Aoy

cr?sm’ < ¢y [| log 8|3 + 1] CiMog,
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for some universal constant C4 > 1. Let
2
3

0<5§30< 5
16c4[nogazz+1]

and 0 < My £ “20—55‘. Then it is straightforward to see that CTOS/ZSM3 < £
Now we take 0 < m < 1 suitably small and N suitably large, and finally take
| follLr < €1, with &1 > 0 sufficiently small, such that

1 1 . y Y 3 g
ﬂﬁﬂﬁﬂ+N+N;4MM4WMJJWMMMH{JWMWMQ}5%.
Therefore, we have D < f:‘. From (5.40), it holds, for any 7 € [0, Tp], that

g g _3M
IR @llzoe + 1R D)Ly S M1 +D) +D < (1 + Z) Moo=
(5.41)
Notice that at t = T, we have from (5.40) that
M ol €
[A(To) L = e (1 +D)e” "2 +D = 3
Then from (1.17), we have, for t > Ty,
. _3M
IA()|lL= + |h ()| Loy = Collh(To) e = Coé = R (5.42)

A combination of (5.41) and (5.42) justifies that the a priori assumption (5.1) can
be closed by our choice. Notice that the local existence has been established in
Proposition 6.2. Then the global existence of the solution follows from a standard
continuity argument. For large time behavior, it holds, for ¢ € [0, Tp], that

() L + [h(D) L) S M S M0PTT 720 < C5eC5Moe201" - (5.43)
for some constant C5 > 1. For t > T, it holds from (1.17) that

A0 Lo + [h(0) Loy £ Coe 010" | n(Tp) || e € CoCseCsMoe=40",
(5.44)

By taking C, = CyCs, (1.23) follows from (5.43) and (5.44). Therefore, the proof
of Theorem 1.3 is complete. 0O
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6. Appendix

6.1. An Iteration Lemma

Lemma 6.1. Consider a sequence {a;}7° with each a; 2 0. For any fixed k € N,
we denote

k
A} =max{a;, aji1, ..., a1}

(1) Assume D 2 0. If aj 1141 = %Af + D jfori =0,1,..., then it holds that

a

[IA

NE 8+ k
<§>[ }-maX{Ak, Ak,""Ai}‘F%D’ for i Zk+1.(6.1)

() Let0 < n < Lwithg**' 2 L Ifajyr < §AF + Co- ™ fori = 0,1, ...,
then it holds that

1

) 8 + k
Af s (—) ‘max{AS, AE Ak} 1200

7

3 nH’k, for i 2 k+1.

(6.2)

Proof. We first show (6.1). By iteration in i = 0, we obtain that

1 1
aip142kc < gAerk +D = 3 max{a; 2k, di42k—1s - - - diyik} + D
1 1 1
< gmax [ai+2k, Af-‘+k71] + D < gmax {gAﬁkfl + D, Aff+k71} +D
g 1 1y k
:gAi+k—l+ 1+§ D--~:§Ai+ 1+§ D. (6.3)
Similarly, forall j =0, 1, ...,k — 1, we also have
1 8+k
Gigiyjik S gAi-‘ +—5— D (6.4)
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Therefore, for 1 § € Ny, it follows from (6.3) and (6.4) that

Ai+142ks Ai+2k> * " » ai+1+k}
1

=
*
+
>~

|

=

o

>

+

18+k 8+k
k k
= Ai+TD<<§) Aiogry tg—g D+ —g D

1
8
1\* , 8+k 1
=3 Ai—2(k+1)+T 1+§ D=--.
1\ F 8+ k 1 1.
<= Ak~ (1+=-+(= D
_<8) 0t 3 <+8+(8) + )
1\ F 8+ k
< (§> Af + ——D. (6.5)

k+1 ¢ Nyandi = (k+ 1) [klﬁ] J for some 1 £ j < k, then by similar
arguments we have

Nl sk
Ak, < <§) A+ =—=D. (6.6)

Hence, from (6.5) and (6.6), we complete the proof of (6.1).
It remains to show (6.2). Noting n < 1 and by similar arguments as in (6.3) and
(6.4), we can get

1 K\
Qi jrks1 S gA + Cx (1 + §> n L for0 < j < k. 6.7)

—k1<1

Hence, for | = = € N4, notlng 2 and using (6.7), then we have

JF

k
Af p = max{aipongts - Gigry1) S

1\ BT K\ | 1 2

(5)7 e (reg)re [1 g (517) *]
1\ & N\

<§> A’5+2Ck<l+§>n’+"+1. (6.8)

If klﬁ ¢ Npandi = (k+ 1)[ ] + j for some 1 < j < k, then by similar
arguments as above, we have

A
A

A

1\ L+ K\
k k k+1
Al S <§> Al +2Ck (1 + g) U (6.9)
Thus we prove (6.2) from (6.8) and (6.9). Therefore the proof of lemma 6.1 is
complete. O
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6.2. Local-in-Time Existence

Proposition 6.2. Let w(v) be the weight function defined in (1.9). Assume

1
0 —Oolrepa) =8 <1, Fo(x,v) = Fu(x,v) + u2 () fo(x,v) 20

and ||\wipllLe := Mo < o0o. Then there exists a positive time

—1
fi= [é(l + MO)]
such that the IBVP (1.1), (1.5) and (1.13) has a unique nonnegative solution

F(t,x,v) = Fu(x, v) + 12 (0) ft, x, v) = 0

in [0, f] satisfying

sup {IIWf(t)IILoo + IWf(t)ILoo(y>} <2C(Mo+ D).
0<t<f

Here C > 0 and C > 1 are generic constants independent of My. Moreover,
if the domain 2 is strictly convex, 0(x) is continuous over 0S2, the initial data
Fo(x, v) is continuous except on yy and satisfies (1.19) then the solution F (¢, x, v)
is continuous in [0, f] x {2 x R3 \ 10}

Proof. We consider the following iteration scheme:
O F"™ 4y v P Pt R(FTY = QT (FT, FTY,

F',x,v)| = Folx,v) 20,

(6.10)
F' @, x, V), = pe(x, v) F" @, x, w){u - n(x)} du,

n(x)u>0

FOt, x, v) = n(v),

where
R(F")(t,x,v):/ B —u,w)F"(t,x,u)dudw.
R3xS§?
Let
FHU(t x, v) — Fy(x, v
N xv) = 6%, 0) = Bl v) RN x, v) = wfT(e, x, ).

1
n2(v)
Then the equation of 2" *! reads as

O™ v V" B R(FT) = wK f1 o+ wTH (),

A x, v)‘t:O = ho(x, v),

(6.11)
o) do (x),

1 —
h”“‘ B () do (x) 4+ w() K

Y- B ﬁ)(v) {n(x)-u>0} \//7 n(x)-u>0
Ot x,v) = —wfi(x,v),
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where we have denoted

Kof" = =i RIS P+ TH (", F) +TH(F i f™)

Now we shall use the induction onn = 0, 1, . .. to show that there exists a positive
time f; > 0, independent of n, such that (6.10) or equivalently (6.11) admits a
unique mild solution on the time interval [0, 7], and the following uniform bound
and positivity hold true:

IR ()]l oo + [R" ()| 1oy < 2C [ hollL + 11, (6.12)
and

F"(t,x,v) 20, (6.13)

~ A -1 ~ A
for0<t <t = (C{l + ||h0||Loo}) and suitably chosen constants C > 0 and C
independent of ¢. Thanks to the fact that

1001 Lo + 1RO (D) |00y S Nlwfillzee + Wil < C8,

we see that (6.12) is obviously true for n = 0. To proceed, we assume that (6.12)
holds true up to n = 0. Since F" = 0, it holds that R(F") = 0. Then by using
a similar argument as in [19, Lemma 3.4], one can construct the solution operator
G"(¢) to the following linear problem:

dh+v-Vih+R(FDOh =0, t>0, xeQ, velR?,
h(t, x,v)|1=0 = ho(x, v),
1

w(v) n(x)-u>0

h(t,x,v)) = h(t,x,u)i)(u)do(x)—i-w(v)u/ h(t, x, u)w(u)do (x)
Y- \/,[7 n(x)-u>0

over (0, p) for some universal constant p > 0 independent of n, provided that
|0 — 1|r=(5g) is sufficiently small. Moreover, G" (¢) satisfies the estimate

IG" (OhollL= + 1G" (Dhol L) = CpllhollLoe. (6.14)

Here the constant C,, > 0 is independent of n. Then applying Duhamel’s formula
to (6.11), we have, for 0 < ¢ < p, that

t

"t = G"(t, 0)ho + / G"(t, ) [wK4 f"(s) + wlT(f", fM(s)]ds. (6.15)
0
Taking L°°-norm on the both sides of (6.15) and using (2.16) and (6.14), we have
IR (@) oo + 1B (O oo

t
< C,llhollx +C, /0 10Ky /")l + [T F)s) [eds

t
< Cllhollze + C/O A" ()l Lo + 17" (5) |17 ds

< CsllhollL= + Cst - { sup [[A" ()]l + sup [|h" ()] 7o} (6.16)
0<s<t 0<Ss5<t
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for some constants C3 > 1. Now we take C = Csz and C = 8C32. Then by the
induction hypothesis (6.12), for any 0 < ¢ < 7, it follows from (6.16) that

1" @) oo 4 IR0 | 1oy S Calllollzoe 4+ 1} - {1 4 2C31[1 + 2C5]
-[1+ [|holl L]}
< 2C3{|lholl Lo + 1)

This then proves (6.12) for n + 1. Next we show the non-negativity (6.13) forn + 1.
We denote that
t
I"(t,s) == exp {—/ [R(F™)](T, X (T), Ve (7)) df}
N

and

k—1
Az (r) =4 [] doj ¢ - 1"t Olvr - n(wp)ldu;
j=l+1

-1
T Tt 0G0, v l; - nx 1
j=1

Then we have the following mild formulation for F”*1:
Frax,0) = 1o {170, 0 Fotx = vt v)

t
+/ I"(t, ) QT (F", F")(s, x — v(t — 5), V) ds}
0

k-1
+1{n>0)M9(X1,v)ln(f,ll){/k 1 > 1y oo Folx — vt v) AT} (0)
oy 15 =

k—1

1
+/k 1 Z/O 1(11+1S0<11}Q+(Fn’ F)(z, Xa(0), Va (1)) dzlm(f) de
m_,v; -
j=1Yi 1=1

=1
=1

+/n§;‘lv Z

/ L,y 20 @ (F", FY(x, Xt (), Ve (0) A7 (7) dr}
j =1 Yl+1

+1{[,>0)M9(X1,v)’"(t,tl)/k ] Le=0) F" Pty x, vim1) dB7_ (1),
nk-ly;
j=1Yi

(6.17)
forr > 0,x € 2 x R3\ y U y_ and integer k > 1. From (6.12), it holds that

1 M, x,v) 1
Fi(x,v) + pu2 () —————| = C(1 + ||holl L) 2 (v)

n+1 _
[F77 (1, x, v)| = o)
(6.18)

for some constant C > 0. Furthermore, a direct computation shows that

8lvjI?
2(1 —8)

1
0 < po(xjy1,vj) = eXp{ }M(vj)-

T (1-9)?
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Then similarly as for (4.12), we have, for sufficiently large 7y > 0 and for k =
Iy
Cs TO , that

k-2 | Cory"
/ 2y, L s0 [ [ o Gejn, vpn(x)) - vj)do; < (5)

j=1Yj j=1

for some generic constant 6'5 > 0 and 6‘6 > 0. Then, by (6.17) and (6.18), we
have

P2 = CuaCaa, o)1+ holles) [ Lo
Hj;l V.i
k-2
H/’L@(-xj-‘rlvvj){n(xj)'vj}dvj (6.19)
j=1

es1
> —Cpg (e, ){1 + Ilhol| L} - <5> .

Since Ty > 0 can be taken arbitrarily large, we have F”*! > 0. This then proves
(6.12) and (6.13). Finally, with the uniform estimates (6.12) in hand, we can use a
similar argument as one in [19, Theorem 4.1] to show that A", n =0, 1,2--- , is
a Cauchy sequence in L. We omit here for brevity. The solution is obtained by
taking the limitn — oo.If Q2 is convex and the compatibility condition (1.19) holds,
the continuity is a direct consequence of the L°°-convergence. The uniqueness is
standard. The proof of Proposition 6.2 is complete. O
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