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Abstract

In the paper, assuming that the motion of rarefied gases in a bounded domain is
governed by the angular cutoff Boltzmann equation with diffuse reflection bound-
ary, we study the effects of both soft intermolecular interaction and non-isothermal
wall temperature upon the long-time dynamics of solutions to the corresponding
initial boundary value problem. Specifically,we are devoted to proving the existence
and dynamical stability of stationary solutions whenever the boundary temperature
has suitably small variations around a positive constant. For the proof of existence,
we introduce a new mild formulation of solutions to the steady boundary-value
problem along the speeded backward bicharacteristic, and develop the uniform
estimates on approximate solutions in both L2 and L∞. Such mild formulation
proves to be useful for treating the steady problem with soft potentials even over
unbounded domains. In showing the dynamical stability, a new point is that we
can obtain the sub-exponential time-decay rate in L∞ without losing any velocity
weight, which is actually quite different from the classical results, such as those
in Caflisch (Commun Math Phys 74:97–109, 1980) and Strain and Guo (Arch
Ration Mech Anal 187:287–339, 2008), for the torus domain and essentially due
to the diffuse reflection boundary and the boundedness of the domain.
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1. Introduction

1.1. Boltzmann Equation

Let a rarefied gas be contained in a bounded domain � in R
3, and let F =

F(t, x, v) denote the density distribution function of gas particles with position
x ∈ � and velocity v ∈ R

3 at time t > 0. We assume that F is governed by the
Boltzmann equation

∂t F + v · ∇x F = Q(F, F). (1.1)

The Boltzmann collision term on the right-hand takes the non-symmetric bilinear
form of

Q(F1, F2) =
∫
R3

∫
S2

B(|v − u|, ω)[F1(u′)F2(v′) − F1(u)F2(v)] dωdu, (1.2)

where the velocity pair (v′, u′) is defined by the velocity pair (v, u) as well as the
parameter ω ∈ S

2 in terms of the relation

v′ = v − [(v − u) · ω]ω, u′ = u + [(v − u) · ω]ω,

according to conservation laws of momentum and energy

v′ + u′ = v + u, |v′|2 + |u′|2 = |v|2 + |u|2,
due to the elastic collision of two particles. To the end, the Boltzmann collision
kernel B(|v − u|, ω), depending only on the relative velocity |v − u| and cosφ =
ω · (v − u)/|v − u|, is assumed to satisfy

B(|v − u|, ω) = |v − u|κb(φ), (1.3)

with

− 3 < κ < 0, 0 � b(φ) � C | cosφ| (1.4)

for a generic constant C > 0, namely, we consider in this paper the full range of
soft potentials under the Grad’s angular cutoff assumption.

1.2. Diffuse Reflection Boundary Condition

We assume that � = {ξ(x) < 0} is connected and bounded with ξ(x) being
a smooth function in R

3. At each boundary point with ξ(x) = 0, we assume
that ∇ξ(x) �= 0. The outward unit normal vector is therefore given by n(x) =
∇ξ(x)/|∇ξ(x)|. We define that � is strictly convex if there is cξ > 0 such that∑

i j ∂i jξ(x)ηiη j � cξ |η|2 for all x ∈ �̄ and all η ∈ R
3.

We denote the phase boundary of the phase space � × R
3 as γ = ∂� × R

3,
and split γ into three disjoint parts, outgoing boundary γ+, the incoming boundary
γ−, and the singular boundary γ0 for grazing velocities:

γ+ = {(x, v) ∈ ∂� × R
3 : n(x) · v > 0},
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γ− = {(x, v) ∈ ∂� × R
3 : n(x) · v < 0},

γ0 = {(x, v) ∈ ∂� × R
3 : n(x) · v = 0}.

We supplement the Boltzmann equation (1.1) with the diffuse reflection boundary
condition

F(t, x, v)|γ− = μθ(v)

∫
v′·n(x)>0

F(t, x, v′){v′ · n(x)} dv′, (1.5)

where μθ(v) is a local Maxwellian with a non-isothermal wall temperature θ =
θ(x) > 0:

μθ(v) = 1

2πθ2(x)
e− |v|2

2θ(x) .

Throughout this paper, we assume that θ(x) has a small variation around a fixed
postive temperature θ0 > 0. Without loss of generality, we assume θ0 = 1, and for
brevity we denote the global Maxwellian

μ = μ(v) ≡ μθ0(v) = 1

2π
e− |v|2

2 . (1.6)

1.3. Main Results

Note that ∫
v·n(x)>0

μθ(v){v · n(x)}dv = 1 (1.7)

for any x ∈ ∂�, and hence μθ(v) satisfies the boundary condition (1.5). However,
it is straightforward to see that the stationary local Maxwellian μθ(v) does not
satisfy the Boltzmann equation (1.1) because of spatial variation unless θ(x) is
constant on ∂�. One may expect that the long-time behavior of solutions to (1.1)
and (1.5) could be determined by the time-independent steady equation with the
same boundary condition. Thus the study of this paper includes two parts. In the first
part we investigate the steady problem in order to obtain the existence of stationary
solutions, and in the second part we are devoted to showing the dynamical stability
of the obtained stationary solutions under small perturbations and further under a
class of large perturbations in velocity weighted L∞ spaces.

Inwhat followswepresent themain results of this paper. Thefirst one is to clarify
the well-posedness of the boundary-value problem on the Boltzmann equation with
diffuse reflection boundary condition⎧⎪⎨

⎪⎩
v · ∇x F = Q(F, F), (x, v) ∈ � × R

3,

F(x, v)|γ− = μθ(v)

∫
v′·n(x)>0

F(x, v′){v′ · n(x)} dv′.
(1.8)

We define a velocity weight function

w = w(v) := (1 + |v|2) β
2 e
 |v|ζ , (1.9)
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where β > 0 and 0 < ζ � 2 are given constants, and (
, ζ ) belongs to
{
ζ = 2, 0 < 
 <

1

8

}
∪ {0 < ζ < 2, 
 > 0}. (1.10)

Here and in the sequel, for brevity we have omitted the explicit dependence of w

on all parameters β, 
 and ζ .

Theorem 1.1. Let −3 < κ < 0, β > 3 + |κ|, and (
, ζ ) belong to (1.10). For
given M > 0, there exist δ0 > 0 and C > 0 such that if

δ := |θ − θ0|L∞(∂�) � δ0, (1.11)

then there exists a unique nonnegative solution F∗(x, v) = Mμ(v)+μ
1
2 (v) f∗(x, v)

� 0 to the steady problem (1.8), satisfying the mass conservation
∫

�

∫
R3

f∗(x, v)μ
1
2 (v) dvdx = 0,

and the estimate

‖w f∗‖L∞ + |w f∗|L∞(γ ) � Cδ. (1.12)

Moreover, if� is strictly convex and θ(x) is continuous on ∂�, then F∗ is continuous
on (x, v) ∈ �̄ × R

3\γ0.
For simplicity, through the paper we would take M = 1 in Theorem 1.1 without

loss of generality, namely, the stationary solution F∗(x, v) has the same totalmass as
μ(v) in�. Note that when there is no spatial variation on the boundary temperature,
that is, δ = 0, the stationary solution is reduced to the global Maxwellian.

The second result is concerned with the dynamical stability of F∗(x, v) under
small perturbations in L∞. We assume that (1.1) is also supplemented with initial
data

F(t, x, v)|t=0 = F0(x, v). (1.13)

The goal is to show the large-time convergence of solutions of the initial-boundary
value problem (1.1), (1.5) and (1.13) to the stationary solution F∗(x, v), whenever
they are sufficiently close to each other in some sense at initial time.

Theorem 1.2. Let −3 < κ < 0, β > 3 + |κ| and (
, ζ ) belong to (1.10). Assume
(1.11)with δ0 > 0 chosen to be further small enough. There exist constants ε0 > 0,
C0 > 0 and λ0 > 0 such that if F0(x, v) = F∗(x, v)+μ

1
2 (v) f0(x, v) � 0 satisfies

the mass conservation ∫
�

∫
R3

f0(x, v)μ
1
2 (v) dvdx = 0, (1.14)

and

‖w f0‖L∞ � ε0, (1.15)
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then the initial-boundary value problem (1.1), (1.5) and (1.13) on the Boltzmann

equation admits a unique solution F(t, x, v) = F∗(x, v) + μ
1
2 (v) f (t, x, v) � 0

satisfying
∫

�

∫
R3

f (t, x, v)μ
1
2 (v) dvdx = 0, (1.16)

and

‖w f (t)‖L∞ + |w f (t)|L∞(γ ) � C0e
−λ0tα‖w f0‖L∞ , (1.17)

for all t � 0, where α ∈ (0, 1) is given by

α := ζ

ζ + |κ| . (1.18)

Moreover, if� is strictly convex, F0(x, v) is continuous except on γ0 and satisfying

F0(x, v)|γ− = μθ(v)

∫
v′·n(x)>0

F0(x, v
′){v′ · n(x)} dv′, (1.19)

and θ(x) is continuous on ∂�, then F(t, x, v) is continuous in [0,∞)×{�̄×R
3\γ0}.

We remark that the value of α in (1.18), which is optimal in terms of the expo-
nential velocity weighted function space, can be formally determined as in [11]; we
will come back to this point later. By (1.17), we have obtained the global existence
and large-time behavior of solutions simultaneously in the velocity-weighted L∞
space which is the same as that initial data belong to.

One may notice from (1.15) in Theorem 1.2 above that the initial perturbation
f0(x, v) is required to generally have a small amplitude in the velocity-weighted
L∞ space. The goal of the third result is to relax such restriction by allowing
F0(x, v) to have large oscillations around the stationary solution F∗(x, v) with the
price that the initial perturbation f0(x, v) is small enough in some L p norm for
1 < p < ∞.

Theorem 1.3. Assume that all conditions in Theorem 1.2 are satisfied, and addi-
tionally, let

max

{
3

2
,

3

3 + κ

}
< p < ∞, β > max{3 + |κ|, 4}. (1.20)

Assume (1.11) with δ0 > 0 chosen to be further small enough and initial data

F0(x, v) = F∗(x, v) + μ
1
2 (v) f0(x, v) � 0 satisfies the mass conservation (1.14).

There exist constants ε1 > 0, C1 > 1 and C2 > 1 such that if f0(x, v) satisfies

M0 := ‖w f0‖L∞ � C1| log δ|, (1.21)

and

‖ f0‖L p � ε1, (1.22)
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then the initial-boundary value problem (1.1), (1.5) and (1.13) on the Boltzmann

equation admits a unique solution F(t, x, v) = F∗(x, v) + μ
1
2 (v) f (t, x, v) � 0

satisfying (1.16) and

‖w f (t)‖L∞ + |w f (t)|L∞(γ ) � C2e
C2M0e−λ0tα‖w f0‖L∞ , (1.23)

for all t � 0, where α is the same as in (1.18) and λ0 is the same as in (1.17).
Moreover, if � is strictly convex, F0(x, v) is continuous except on γ0 satisfying
(1.19), and θ(x) is continuous over ∂�, then F(t, x, v) is continuous in [0,∞) ×
{�̄ × R

3 \ γ0}.
Remark 1.4. We give a few remarks in order on the above theorem.

(a) Note that C1 is independent of δ. Then, from (1.21), M0 = ‖w f0‖L∞ can
be arbitrarily large, provided that both δ and ‖ f0‖L p are sufficiently small.
Particularly, if one takes δ = 0 corresponding to the isothermal boundary
temperature, there is no restriction on the upper bound of M0. However, it is
unclear how to remove the condition (1.21) whenever δ > 0.

(b) From (1.20), p has to be large enough as κ gets close to −3. The condition
(1.22) for the smallness of f0 in L p is different from that in [18,19] where
L1 norm and L2 norm were used respectively. Note that (1.22) can be also
guaranteed by the smallness of L1 or L2 norm of f0 and the velocity-weighted
L∞ bound with the help of the interpolation.

(c) As already mentioned for Theorem 1.2, by (1.23) we have obtained the global
existence and large-time behavior of solutions simultaneously in the velocity-
weighted L∞ space which is the same as that initial data belong to. Estimate
(1.23) also implies that the solution may grow with an exponential rate of M0
within a short time.

1.4. Comments and Literature

The focus of this paper is on the effects of both the soft intermolecular interaction
and the non-isothermal wall temperature on the large-time behaviour of solutions
to the initial-boundary value problem on the Boltzmann equation. In what follows
we review some known results related to our results and also give comments on
how such effects occur.
(a) Effect of soft potentials. First of all, we discuss the effect of soft potentials on
the global well-posedness of the Boltzmann equation in perturbation framework.
Compared to the hard potentials, the main difficulty is the lack of the spectral gap
of the linearized Boltzmann operator L , for instance, the multiplication operator
ν(v) ∼ 〈v〉κ has no strictly positive lower bound over large velocities |v| for κ < 0.

In the spatially periodic domainT3, Caflish [10,11] first constructed the global-
in-time solution for −1 < κ < 0 and also studied the large-time behavior of
solutions, where the proof is based on the time-decay property of the linearised
equation together with the bootstrap argument on the nonlinear equation. One im-
portant observation by Caflish is that the function exp{−〈v〉κ t −c|v|2}, obtained as
the solution to the spatially homogeneous equation ∂t f +〈v〉κ f = 0with initial data
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f (0, v) = exp{−c|v|2}, decays in time with a rate exp{−λtβ}with β = 2/(2+|κ|)
by taking the infimum of 〈v〉κ t + c|v|2 in v ∈ R

3. We remark that such sub-
exponential time-decay is ensured essentially by adding more exponential velocity
weight at initial time; see [11, equations (3.1) and (3.2) of Theorem 3.1 on page 76].

Independently, Ukai–Asano [44] developed the semigroup theory in the case
of soft potentials −1 < κ < 0, and also obtained the global solution as well as the
large-time behavior of solutions for the problem in the whole spaceR3. As pointed
out by [44, Theorem 9.1 and Remark 9.1 on page 96], no solutions have been found
in the large in time if initial data and solutions belong to the function space with
the same velocity weights. We remark that it is the same situation if one adopts the
approach of [44] to treat the case of T3, for instance, one can obtain the arbitrarily
large algebraic time-decay rate by postulating more polynomial velocity weights
on initial data.

By the pure energy method in high-order Sobolev spaces, Guo [28] constructed
the global solutions over T3 for the full range of soft potentials −3 < κ < 0, but
the large-time behavior of solutions was left. This problem was later completely
solved by Strain–Guo in [42,43] in terms of the same spirit as in [11,44] by putting
additional polynomial or exponential velocityweights on initial data. Such approach
was also applied by Strain [40] to study the asymptotic stability of the relativistic
Boltzmann equation for the soft potentials in T

3.
In the case of R3, we also mention Duan–Yang–Zhao [20] and Strain [41] to

treat the optimal large-time behavior of solutions for−3 < κ < 0. Particularly, [20]
found a velocity weight function containing an exponential factor exp{c|v|2/(1 +
t)q}. We remark that this kind of weight could be useful for simultaneously dealing
with the global existence and large-time behavior of solutions for the problem in the
torus domain or even in the general bounded domain (for instance, [36]), since the
typical function exp{−〈v〉γ t−c|v|2/(1+t)q} induces a time-decay rate exp{−λtβ

′ }
with β ′ = (2 − q|κ|)/(2 + |κ|). Therefore, the large-time behavior of solutions
is gained by making the velocity weight in the solution space become lower and
lower as time goes on. Indeed, this is also in the same spirit as in [41] on the basis
of the velocity-time splitting technique.

By comparisonwith those resultsmentioned above, Theorems 1.2 or 1.3 implies
that the large-time behavior of solutions to the initial-boundary value problemunder
consideration of this paper is established in the situation where solutions and initial
data enjoy the same exponential velocity weight. In other words, to obtain the
sub-exponential time-decay for soft potentials, it is no need to put any additional
velocity weight on initial data. Roughly speaking, the main reason to realize this
point is due to not only the boundedness of the domain but also the diffuse reflection
boundary condition, which will be explained in more detail later on. We remark
that the results are nontrivial to obtain even if the wall temperature is reduced to a
constant implying that the stationary solution F∗(x, v) is a global Maxwellian.
(b) Effect of non-isothermal boundary. The non-isothermal wall temperature pro-
vides an inhomogeneous source to force the Boltzmann solution to tend in large
time to nontrivial stationary profiles. We review related works in the following two
aspects which also involve the case of isothermal boundary. We mainly focus on
general bounded domains. There exist also a number of papers in the setting of
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one-dimensional bounded intervals with different types of boundary conditions, cf.
[37,39]. Among them, we point out that Arkeryd, together with his collaborators,
made great contributions in this direction, see for instance, [3,4,7] and references
therein, where solutions are constructed mainly for large boundary data. The ex-
istence and dynamical stability of the stationary solution in a slab with diffuse
reflection boundary was considered by Yu [46] in terms of a new probabilistic ap-
proach. Hydrodynamic limit to the compressible Navier-Stokes equations for the
stationary Boltzmann equation in a slab was studied by Esposito–Lebowitz–Marra
[23,24]. For other related works on the effects of non-isothermal boundary, we also
mention [14,34,35].

• Time-dependent IBVP in general bounded domains. A first investigation of the
IBVP was made by Hamdache [32] for a large-data existence theory in the sense
of DiPerna–Lions [17]. Extensions of such result have been made in [2,5,12,38]
in several directions including the case of general diffuse reflection with variable
wall temperature. The large-time behavior of weak solutions was studied in [6,
15,16]. In the perturbation framework, via the idea of [45], Guo [29] developed a
new approach to treat the global existence, uniqueness and continuity of bounded
solutions with different types of boundary conditions. Further progress on high-
order Sobolev regularity of solutions was recently made in [30]; see also references
therein. For other relatedworks on the studyof the IBVPon thenonlinearBoltzmann
equation, we would mention [9] for the general Maxwell boundary condition, [31]
for the global existence of solutions with weakly inhomogeneous data in the case
of specular reflection, [33] for the specular boundary condition in convex domains
with C3 smoothness, and [36] for a direct extension of [29] from hard potentials to
soft potentials.

• Steady problem in general bounded domains. There are much less known results
on the mathematical analysis of the stationary Boltzmann equation in a general 3D
bounded domain. First of all, it seems still open to establish a large-data DiPerna-
Lions existence theory in the steady case; (see [8]), however, for an L1 existence
theorem with inflow data when the collision operator is truncated for small veloc-
ities. In Guiraud [26,27], existence of stationary solutions was proved in convex
bounded domains, but the positivity of obtained solutions remained unclear. Via
the approach in [29], Esposito et al. [21] constructed the small-amplitude non-
Maxwellian stationary solution for diffuse reflection when the space-dependent
wall temperature has a small variation around a positive constant for hard poten-
tials, and further obtained the positivity of stationary solutions as a consequence of
the dynamical stability for the time-evolutionary Boltzmann equation. Indeed, [21]
motivates us to study the steady Boltzmann equation for soft potentials, and we
will explain the new mild formulation of solutions as well as new a priori estimates
in more detail later on.

The hydrodynamic limit of the stationary Boltzmann equation on bounded do-
mains in the incompressible setting was recently justified in [22]. Notice that such
research topic was also discussed in [1] where the authors have particularly shown
the non-existence of steady solutions for the Boltzmann equation with smooth
divergence-free external forces in bounded domains with specular reflection.
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1.5. Strategy of the Proof

In what follows, we briefly explain the key points in our proof of Theorems 1.1,
1.2 and 1.3 respectively.
(a) First, for the proof of Theorem 1.1, the key step is to establish a priori L∞-
estimates on the steady solutions. The major difficulty comes from the degeneracy
of collision frequency ν(v) → 0 as |v| → ∞. Our strategy of overcoming this
relies on introducing a new mild formulation of the steady Boltzmann equation
along a speeded backward bi-characteristics on which the particles with large ve-
locity move much faster than one along the classical characteristics. Precisely, we
need to consider the solvability of the linearized steady Boltzmann equation with
inhomogeneous source and boundary data

{
v · ∇x f + L f = g,

f |γ− = Pγ f + r.
(1.24)

See Lemma 3.8, particularly (3.72) for the L∞ bound of f in terms of g and r .
Basing things on Lemma 3.8, Theorem 1.1 follows by showing the convergence of
the iterative approximate solution sequence.

To show Lemma 3.8, we turn to study in Lemma 3.5 the solvability of the
following approximate boundary-value problem:

⎧⎪⎨
⎪⎩
Lλ f := ε f + v · ∇x f + ν(v) f − λK f = g,

f |γ− =
(
1 − 1

n

)
Pγ f + r.

(1.25)

Here, compared to the previous works [21,22], we input an extra parameter λ ∈
[0, 1] in order to carry out a new strategy of the construction of solutions by making
the interplay of L2 and L∞ estimates. Specifically, we divide the proof by several
steps as follows:
Step 1.To show the well-posedness ofL−1

0 for λ = 0. The reason whywe start from
the case of λ = 0 is that there is no linear collision term K f . In this case, we are
able to directly construct the approximate solutions by solving the inflow problem,
so the L∞ bound of approximate solutions is a consequence of L∞ bounds of the
source term g as well as the corresponding boundary data. The uniform bound of
solutions can be obtained in the same way as in the next Step 2.
Step 2. To obtain the a priori estimates of solutions in both L2 and L∞ uniform in
all parameters ε, n and λ. For the L2 estimate, it is based on the fact that

ν − λK = (1 − λ)ν + λL

with 0 � λ � 1 is still nonnegative. For the velocity-weighted L∞ estimate on
h = w f , we formally multiply the equation of (1.25) by (1+|v|2)|κ|/2 so as to get

v̂ · ∇xh + (1 + |v|2)|κ|/2[ε + ν(v)]h = λ(1 + |v|2)|κ|/2Kwh + (1 + |v|2)|κ|/2wg,

and then write it as the mild form along the backward bi-characteristic [x − v̂(t −
s), v], where v̂ = (1+|v|2)|κ|/2v is the transport velocity speeded up by comparison
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with the original velocity v. The advantage of such new mild formulation is that
the corresponding new collision frequency

ν̂(v) = (1 + |v|2)|κ|/2[ε + ν(v)]
has a uniform-in-ε strictly positive lower bound independent of v. This is crucial
for obtaining L∞-estimates for the steady problem. It should be pointed out that by
using such new mild formulation, the L∞-estimates are also valid for the case that
the domain is unbounded, so that our method in principle could be used to further
study other physically important problems, such as exterior problems and shock
wave theory.
Step 3. To prove the well-posedness of L−1

λ for any λ ∈ [0, λ∗] with a constant
λ∗ > 0 small enough. The main idea of showing the existence of solutions is based
on the fixed point argument for the solution operator

L−1
λ f = L−1

0 (λK f + g).

Note that the contraction property is essentially the consequence of the fact that we
are restricted to λ > 0 small enough. Once the existence of solutions is established,
we also have the uniform estimates in L2 and L∞ obtained in Step 2.
Step 4. To prove the well-posedness of L−1

λ∗+λ for any λ ∈ [0, λ∗] small enough.
Formally, we have

L−1
λ∗+λ = L−1

λ∗ (λK f + g).

Therefore, we may make use of the same arguments as in Step 3 and also obtain the
corresponding uniform estimates. In the end, by repeating such procedure we can
establish the solvability of L−1

λ in the case of λ = 1, and complete the construction
of approximate solutions to the original boundary-value problem (1.24).
(b) Secondly, for the proof of Theorem 1.2, the key step is to study the time-
decay structure of linearized IBVP problem around the steady solution provided
by Theorem 1.1. In general, it is hard to obtain a satisfactory decay due to the
degeneracy of ν(v) at large velocity. Unfortunately, our newmild formulation above
no longer works for the time-dependent problem. Some new thought should be
involved in.Asmentioned before, so far there are basically twoways to get the decay
of the Boltzmann solution for soft potentials. The first one, which was developed
by Guo and Strain [43], is to first establish the global existence of the solution with
an extra sufficiently strong velocity weight and then obtain the decay of the solution
without weight by an interpolation technique. Following their idea, Liu and Yang
[36] extend their work into the IBVP problem. The other one, which is developed by
Duan et al. [20], is to introduce a velocity weight involving a time dependent factor
exp{c|v|ζ /(1+ t)q} in order to compensate the degeneracy of collision frequency.
One can see that there is an extra restriction in both theories that the initial datum
must involve additional velocity weight. One of main contributions in the present
work is to remove such a restriction.

More precisely, we are able to obtain simultaneously the global existence and
the sub-exponential decay of the solution, without loss of any weight. The key
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observation used in our arguments is twofold. The first is to split the large velocity
part and small velocity part in the following type estimate:

∫ t

max{t−tb,0}
e−ν(v)(t−s) ds =

∫ t

max{t−tb,0}
e−ν(v)(t−s){1{|v|�d�} + 1{|v|>d�}} ds,

so it holds that

∫ t

max{t−tb,0}
e−ν(v)(t−s) ds �

∫ t

max{t−tb,0}
e−ν̄0(t−s)1{|v|�d�} + 1t−1�s�t1{|v|>d�} ds,

(1.26)

which is essentially based on the elementary fact that the backward exit time

tb(x, v) � diam(�)

|v| . (1.27)

One can see that even for the soft potential, (1.26) still involves an exponential
decay structure. The second is to notice that due to the diffusive reflection boundary
condition, the boundary terms naturally exponentially decay in velocity. So, we can
make use of the Caflish’s idea to obtain that

e−ν(v)(t−t1)e− |v|2
16 � Ce−λ1(t−t1)α ,

where λ1 > 0 is obtained by taking the infimum of ν(v)(t − t1) + |v|2/16 with
respect to velocity. This reveals the decay structure for boundary terms. However,
(1.26) and (1.27) only work when � is bounded and the solution satisfies the
diffuse reflection boundary condition. So far we don’t know how to deal with the
same problem for the specular reflection or even in the torus.
(c) Thirdly, the strategy of the proof of Theorem 1.3 is to use the linear decay theory
provided by the second part to find a large time T0 = T0(M0, ε0), such that

‖w f (T0)‖L∞ � ε0. (1.28)

Then we can extend our solution into [T0,∞) by the previous small-amplitude
theory. Since the initial data is allowed to have large oscillation around F∗, more
efforts should be paid for treating the nonlinear termw(v)�( f, f ). The key point is
to bound it pointwisely by aproduct of L∞-normand L p-normwithmax{ 32 , 3

3+κ
} <

p < ∞ and then apply a nonlinear iteration. To show (1.28), we have to require
that the following estimates holds:

C

(
sup

0�t�T0

‖w f (t)‖L∞

)3

· |θ − 1|L∞(∂�) � ε0.

Hence the restriction (1.21) on the amplitude of initial data is naturally required.
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1.6. Plan of the Paper

In Section 2 we will provide some basic estimates on linear and nonlinear
collision terms. In Section 3, we study the steady problem and give the proof of
Theorem 1.1 for the existence of the stationary solution. In Section 4, we study
the large-time asymptotic stability of the obtained stationary solution under small
perturbations and give the proof of Theorem 1.2. In Section 5, we further extend
the result to the situation where initial perturbation can have large amplitude with
an extra restriction but be small in L p norm, and give the proof of Theorem 1.3. In
Appendix, we give the proof of a technical lemma which has been used before, and
also give the proof of the local-in-time existence of solutions for completeness.

1.7. Notations

Throughout this paper, C denotes a generic positive constant which may vary
from line to line. Ca,Cb, . . . denote the generic positive constants depending on
a, b, . . ., respectively, which also may vary from line to line. A � B means that
there exists a constant C > 0 such that A � CB. ‖ · ‖L2 denotes the standard
L2(� × R

3
v)-norm and ‖ · ‖L∞ denotes the L∞(� × R

3
v)-norm. For the functions

depending only in velocity v, we denote ‖·‖L p
v
as the L p(R3

v)-norm and 〈·, ·〉 as the
L2(�×R

3
v) inner product or L

2(R3
v) inner product. Moreover, we denote ‖ · ‖ν :=

‖√ν · ‖L2 . For the phase boundary integration, we define dγ ≡ |n(x) · v|dS(x)dx ,
where dS(x) is the surface measure and define | f |pL p = ∫

γ
| f (x, v)|pdγ and the

corresponding space is denoted as L p(∂�×R
3) = L p(∂�×R

3; dγ ). Furthermore,
we denote | f |L p(γ±) = | f Iγ±|L p and | f |L∞(γ±) = | f Iγ±|L∞ . For simplicity, we
denote | f |L∞(γ ) = | f |L∞(γ+) + | f |L∞(γ−).

2. Preliminaries

2.1. Basic Properties of L

First of all, associated with the global Maxwellian μ = μ(v) in (1.6), we
introduce the linearized collision operator L around μ and the nonlinear collision
operator �(·, ·) respectively as

L f = − 1√
μ

{
Q(μ,

√
μ f ) + Q(

√
μ f, μ)

}
, (2.1)

and

�( f, f ) = 1√
μ
Q+(

√
μ f,

√
μ f ) − 1√

μ
Q−(

√
μ f,

√
μ f )

:= �+( f, f ) − �−( f, f ), (2.2)

whereQ+ andQ− correspond to thegain part and loss part inQ in (1.2) respectively.
As in [25], under the Grad’s angular cutoff assumption (1.3) and (1.4), L can be
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decomposed as L = ν − K , where ν = ν(v) is the velocity multiplication operator
given by

ν(v) =
∫
R3

∫
S2

B(|v − u|, ω)μ(u) dωdu ∼ (1 + |v|)κ , (2.3)

and K = K1 − K2 is the integral operator in velocity given by

(K1 f )(v) =
∫
R3

∫
S2

B(|v − u|, ω)μ
1
2 (v)μ

1
2 (u) f (u) dωdu, (2.4)

(K2 f )(v) =
∫
R3

∫
S2

B(|v − u|, ω)μ
1
2 (u)

[
μ

1
2 (u′) f (v′) + μ

1
2 (v′) f (u′)

]
dωdu.

(2.5)

It is well-known that L is a self-adjoint nonnegative-definite operator in L2
v space

with the kernel

Ker L = span {φ0, . . . , φ4},
where φi = φi (v) (i = 0, 1, . . . , 4) are the normal orthogonal basis of the null
space Ker L given by

φ0 = (2π)−
1
4 μ

1
2 (v),

φi = (2π)−
1
4 viμ

1
2 (v), i = 1, 2, 3,

φ4 = (2π)− 1
4√

6
(|v|2 − 3)μ

1
2 (v).

For each f = f (v) ∈ L2
v , we denote the macroscopic part P f as the projection of

f onto Ker L , that is,

P f =
4∑

i=0

〈 f, φi 〉φi , (2.6)

and further denote (I − P) f = f − P f to be the microscopic part of f . It is
well-known (see [28] for instance) that there is a constant c0 > 0 such that

〈L f, f 〉 � c0

∫
R3

ν(v)|(I − P) f |2 dv. (2.7)

Note that L has no spectral gap in case of soft potentials with −3 < κ < 0,
particularly, the collision frequency ν(v) tends to zero as |v| → ∞ due to (2.3).

2.2. Estimates on Collision Operators

Recall K = K1 − K2 with K1 and K2 given in terms of (2.4) and (2.5). As in
[28], it holds that
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K f (v) =
∫
R3

k(v, u) f (u) du, (2.8)

where the integral kernel k(v, u) is real and symmetric.

Lemma 2.1. ([18]) The following estimate holds true:

|k(v, u)| � C |v − u|κe− |v|2
4 e− |u|2

4 + Cκ

|v − u| 3−κ
2

e− |v−u|2
8 e

−||v|2−|u|2|2
8|v−u|2 . (2.9)

Moreover, it holds that∫
R3

|k(v, u)|(1 + |u|)−β du � Cκ(1 + |v|)−1−β

for any β � 0.

In order to deal with difficulties in the case of the soft potentials, as in [43] we
introduce a smooth cutoff function 0 � χm(s) � 1 for s � 0 with 0 < m � 1 such
that

χm(s) = 1 for 0 � s � m; χm(s) = 0 for s � 2m.

Then we define

(Km f )(v) =
∫
R3

∫
S2

B(|v − u|, ω)χm(|v − u|)μ 1
2 (u)

[
μ

1
2 (u′) f (v′) + μ

1
2 (v′) f (u′)

]
dωdu

−
∫
R3

∫
S2

B(|v − u|, ω)χm(|v − u|)μ 1
2 (v)μ

1
2 (u) f (u) dω du

:= (Km
2 f )(v) − (Km

1 f )(v),

and

Kc = K − Km .

Similarly to (2.8), we denote

(Km f )(v) =
∫
R3

km(v, u) f (u) du, (Kc f )(v) =
∫
R3

kc(v, u) f (u) du. (2.10)

In the following lemmawe recall some basic estimates on Km and Kc, whose proof
can be found in [43] and further refined in a recent work [18]:

Lemma 2.2. Let −3 < κ < 0. Then, for any 0 < m � 1, it holds that

|(Km f )(v)| � Cm3+κe− |v|2
6 ‖ f ‖L∞

v
, (2.11)

where C > 0 is independent of m. The kernels km(v, u) and kc(v, u) in (2.10)
satisfy

|km(v, u)| � Cκ

{
|v − u|κ + |v − u|− 3−κ

2

}
e− |v|2+|u|2

16 ,
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and

|kc(v, u)| � Cκma(κ−1)

|v − u|1+ (1−a)
2 (1−κ)

1

(1 + |v| + |u|)a(1−κ)
e− |v−u|2

10 e
−||v|2−|u|2|2

16|v−u|2

+ C |v − u|κ [1 − χm(|v − u|)]e− |v|2
4 e− |u|2

4 , (2.12)

where 0 � a � 1 is an arbitrary constant, and Cκ is a constant depending only on
κ . It is worth to point out that Cκ is independent of a and m. Moreover, by denoting

kcw(v, u) = kc(v, u)
w(v)

w(u)
,

it holds that

∫
R3

|kcw(v, u)|e |v−u|2
32 du � Cmκ−1(1 + |v|)κ−2, (2.13)

and

∫
R3

|kcw(v, u)|e |v−u|2
32 du � C(1 + |v|)−1, (2.14)

where C > 0 is independent of m.

Furthermore, we need the following two lemmas for the later use:

Lemma 2.3. ([43]) Assume (1.10), then for any η > 0, it holds that

∣∣∣
〈
e



2 |·|ζ K f, f

〉∣∣∣ �
∥∥∥e


4 |·|ζ f
∥∥∥

ν

(
η

∥∥∥e

4 |·|ζ f

∥∥∥
ν

+ Cη

∥∥∥1{|·|�Cη} f
∥∥∥
L2

)
. (2.15)

Lemma 2.4. ([36]) It holds that

‖ν−1w�( f1, f2)‖L∞
v

� C‖w f1‖L∞
v

· ‖w f2‖L∞
v

. (2.16)

In the end we conclude this subsection with the following L p (p > 1) estimate
on the nonlinear collision term, which will be used in Section 5.

Lemma 2.5. Let 1 < p < ∞ and wβ := (1 + |v|2) β
2 with βp > 3. Then it holds

that

‖ν−1/p′
�( f, g)‖L p

v
� C min

{
‖wβ f ‖L∞

v
· ‖ν1/pg‖L p

v
, ‖wβg‖L∞

v
· ‖ν1/p f ‖L p

v

}
,

(2.17)

where p′ is the conjugate of p satisfying 1/p + 1/p′ = 1.
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Proof. We first consider the loss part. By Hölder inequality, we have

‖ν−1/p′
�−( f, g)‖p

L p
v

�
∫
R3

ν(v)−(p−1)| f (v)|p dv

×
(∫

R3

∫
S2

B(v − u, ω)
√

μ(u)|g(u)|p dω du

)

×
(∫

R3

∫
S2

B(v − u, ω)
√

μ(u) dωdu

)p−1

� C
∫
R3

∫
R3

∫
S2

B(v − u, ω)
√

μ(u)|g(u)|p| f (v)|p dωdudv.

(2.18)

Without loss of generality, we assume that

‖wβ f ‖L∞
v

· ‖ν1/pg‖L p
v

� ‖wβg‖L∞
v

· ‖ν1/p f ‖L p
v
.

Then from (2.18), it holds that

‖ν−1/p′
�−( f, g)‖p

L p
v

� C‖wβg‖p
L∞

v
·
∫
R3

| f (v)|p dv
∫
R3

∫
S2

B(v − u, ω)(1 + |u|2)− βp
2 dωdu

� C‖wβg‖p
L∞

v
· ‖ν1/p f ‖p

L p
v

� C min
{
‖wβ f ‖L∞

v
· ‖ν1/pg‖L p

v
, ‖wβg‖L∞

v
· ‖ν1/p f ‖L p

v

}p
.

(2.19)

Similarly, for the gain term �+( f, g), by Hölder inequality, we have

‖ν−1/p′
�+( f, g)‖p

L p
v

�
∫
R3

ν(v)−(p−1) dv

×
(∫

R3

∫
S2

B(v − u, ω)
√

μ(u)| f (v′)|p|g(u′)|p dωdu
)

×
(∫

R3

∫
S2

B(v − u, ω)
√

μ(u) dωdu

)p−1

� C
∫
R3

∫
R3

∫
S2

B(v − u, ω)
√

μ(u)|g(u′)|p| f (v′)|p dωdudv.

Making change of variable (v, u) → (v′, u′), it follows that

‖ν−1/p′
�+( f, g)‖p

L p
v

� C
∫
R3

∫
R3

∫
S2

B(v − u, ω)|g(u)|p| f (v)|p dωdudv.

By the same argument as in (2.19), one has

‖ν−1/p′
�+( f, g)‖p

L p
v
�C min

{
‖wβ f ‖L∞

v
· ‖ν1/pg‖L p

v
, ‖wβg‖L∞

v
· ‖ν1/p f ‖L p

v

}p
.

From this and (2.19), we prove (2.17). Therefore, the proof of Lemma 2.5 is
complete. ��
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2.3. Pointwise Weighted Estimates on Nonlinear Term �( f, f )

Recall (1.9), (1.10), and (2.2). We shall give the estimates on the upper bound
of |w(v)�±( f, f )(v)| for pointwise v in terms of the product of the weighted L∞
norm and the L p norm for a suitable p > 1 which is finite. These estimates will
play an essential role in the proof of Theorem 1.3 treating the initial data of large
oscillations but with small L p perturbations.

Lemma 2.6. Let −3 < κ < 0,max{ 32 , 3
3+κ

} < p < ∞, (
, ζ ) belong (1.10), and
β > 4. Then, for each v ∈ R

3, it holds that

|w�−( f, f )(v)| � Cν(v)‖w f ‖L∞
v

·
(∫

R3
| f (u)|p du

) 1
p

, (2.20)

|w�+( f, f )(v)| � Cν(v)‖w f ‖L∞
v

·
(∫

R3
|w f (u)|p(1 + |u|)−p(β−4)−4 du

) 1
p

,

(2.21)

where the generic constant C > 0 is independent of v.

Proof. First, we consider (2.20) regarding the estimate on the loss term. Indeed, it
follows from Hölder inequality that

|w�−( f, f )(v)| � |w f (v)|
∫
R3

∫
S2

B(|v − u|, ω)μ
1
2 (u)| f (u)| dudω

� C‖w f ‖L∞
v

·
(∫

R3
| f (u)|p du

) 1
p ·

×
(∫

R3
|v − u| pκ

p−1 μ
p

2(p−1) (u) du

) p
p−1

� Cν(v)‖w f ‖L∞
v

·
(∫

R3
| f (u)|p du

) 1
p

,

where we have used the fact that pκ
p−1 > −3 due to p > 3

3+κ
. Then, (2.20) is

proved.
To prove (2.21) for the gain term, we denote

ŵ(v) := e
 |v|ζ ,

which is the pure exponential factor of w(v), and also set g(v) = ŵ(v)| f (v)|.
Since |u|2 + |v|2 = |u′|2 + |v′|2, we have either |u′|2 � 1

2

(|u|2 + |v|2) or
|v′|2 � 1

2

(|u|2 + |v|2). Without loss of generality, we may assume that |v′|2 �
1
2

(|u|2 + |v|2), and then we have

|w�+( f, f )(v)| � Cŵ(v)‖w f ‖L∞
v

·
∫
R3

∫
S2

B(|v − u|, ω)μ
1
2 (u)|g(v′)|ŵ(v′)−1ŵ(u′)−1 dudω. (2.22)



942 Renjun Duan, Feimin Huang, Yong Wang & Zhu Zhang

Note that in virtue of 0 < ζ � 2, it holds that

ŵ(v) = e
 |v|ζ � e
(|u|2+|v|2) ζ
2 = e
(|u′|2+|v′|2) ζ

2 � e
(|u′|ζ +|v′|ζ ) = ŵ(v′)ŵ(u′).

Using this, (2.22) gives that

|w�+( f, f )(v)| � C‖w f ‖L∞
v

·
∫
R3

∫
S2

B(|v − u|, ω)μ
1
2 (u)|g(v′)| dudω.

(2.23)

To further estimate the integral term on the right-hand side of (2.23), we denote
z = u − v, z‖ = {(u − v) · ω}ω, and z⊥ = z − z‖, then the collision kernel can be
estimated as

B(|v − u|, ω) � C |z‖|
(
|z‖|2 + |z⊥|2

) κ−1
2

. (2.24)

Plugging (2.24) back to (2.23) and making change of variable u → z, |w�+( f, f )
(v)| can be further bounded by

C‖w f ‖L∞
v

·
∫
R3

∫
S2

|z‖| · |z|κ−1g(v + z‖)μ
1
2 (v + z) dzdω.

By writing dzdω = 2
|z‖|2 dz‖dz⊥, we derive that the above term is bounded by

C‖w f ‖L∞
v

·
∫
R3

|z‖|−1g(v + z‖) dz‖
∫

�⊥
(|z‖|2 + |z⊥|2) κ−1

2 μ
1
2 (v⊥ + z⊥) dz⊥,

(2.25)

where �⊥ = {
z⊥ ∈ R

3 : z‖ · z⊥ = 0
}
and v⊥ = v·z⊥|v|·|z⊥| z⊥ is the projection of v to

�⊥. To estimate (2.25), we divide it by two cases.
Case 1: −1 < κ < 0. In this case, thanks to −2 < κ − 1 < −1, we have∫

�⊥

(|z‖|2 + |z⊥|2) κ−1
2 μ

1
2 (v⊥ + z⊥) dz⊥ �

∫
�⊥

|z⊥|κ−1μ
1
2 (v⊥ + z⊥) dz⊥ � C,

for a finite constant C > 0. Then it holds that for p > 3
2 ,

|w�+( f, f )(v)| � C
∫
R3

|z‖|−1g(v + z‖) dz‖ = C
∫
R3

|u − v|−1g(u) du

� C

(∫
R3

(1 + |u|)−4

|u − v| p
p−1

) p−1
p
(∫

R3
|g(u)|p(1 + |u|)4p−4 du

) 1
p

� C(1 + |v|)−1
(∫

R3
|g(u)|p(1 + |u|)4p−4 du

) 1
p

. (2.26)

Case 2 : −3 < κ � −1. To avoid the higher singularity on the right hand side of
(2.25), we choose 0 < ε = ε(p, κ) < min{3 + pκ

p−1 ,
2p
p−1 } and bound (2.25) in

terms of
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|w�+( f, f )| � C‖w f ‖L∞
v

·
∫
R3

|z‖|κ− (p−1)ε
p g(v + z‖) dz‖

∫
�⊥

|z⊥|−2+ (p−1)ε
p μ

1
2 (v⊥ + z⊥) dz⊥

� C‖w f ‖L∞
v

·
∫
R3

|z‖|κ− (p−1)ε
p g(v + z‖) dz‖, (2.27)

where in the second line we have used the fact that∫
�⊥

|z⊥|−2+ (p−1)ε
p μ

1
2 (v⊥ + z⊥) dz⊥ < ∞.

Making change of variable z‖ + v → u and using Hölder’s inequality, it holds that
∫
R3

|z‖|κ− (p−1)ε
p g(v + z‖)dz‖ =

∫
R3

|u − v|κ− (p−1)ε
p g(u) du

�
[∫

R3

(1 + |u|)−4

|u − v|ε+ p|κ|
p−1

du

] p−1
p

×
[∫

R3
|g(u)|p(1 + |u|)4p−4 du

] 1
p

. (2.28)

Since 0 < ε + p|κ|
p−1 < 3, the right hand side of (2.28) can be further bounded by

C(1 + |v|)κ− p−1
p ε

[∫
R3

|g(u)|p(1 + |u|)4p−4 du

] 1
p

which combining with (2.27) and (2.26), immediately yields (2.21). Hence the
proof of Lemma 2.6 is complete. ��

3. Steady Problem

To construct the solution to the steady Boltzmann equation (1.8) and (1.5), we
first consider the approximate linearized steady problem

{
ε f + v · ∇x f + L f = g,

f (x, v)|γ− = Pγ f + r,
(3.1)

where Pγ f is defined as

Pγ f (x, v) = μ
1
2 (v)

∫
v′·n(x)>0

f (x, v′)μ
1
2 (v′){v′ · n(x)} dv′. (3.2)

As in [21], the penalization term ε f is used to guarantee the conservation of mass.
Recall the weight function w(v) defined by (1.9) with (1.10). We also define

h(x, v) := w(v) f (x, v),
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then (3.1) can be rewritten as
⎧⎪⎨
⎪⎩

εh + v · ∇xh + ν(v)h = Kwh + wg,

h(x, v)|γ− = 1

w̃(v)

∫
v′·n(x)>0

h(x, v′)w̃(v′) dσ ′ + wr(x, v),
(3.3)

where

w̃(v) ≡ 1

w(v)μ
1
2 (v)

, Kwh = wK

(
h

w

)
.

3.1. A Priori L∞ Estimate

For the approximate steady Boltzmann equation (3.3), the most difficult part is
to obtain the L∞-bound due to the degeneration of frequency ν(v) as |v| → ∞.
To overcome this difficulty, the main idea is to introduce a new characteristic line.

Definition 3.1. Given (t, x, v), let [X̂(s), V (s)] be the backward bi-characteristics
for the steady Boltzmann equation (1.8), which is determined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d X̂(s)

ds
= (1 + |V (s)|2) |κ|

2 V (s) := V̂ (s),

dV (s)

ds
= 0,

[X̂(t), V (t)] = [x, v].

(3.4)

The solution is then given by

[X̂(s; t, x, v), V (s; t, x, v)] = [x − v̂(t − s), v], v̂ := (1 + |v|2) |κ|
2 v, (3.5)

which is called the speeded backward bi-characteristic for the problem (1.8).

We note that compared to the usual characteristic line as used in the time-
evolutionary case, the particle along (3.4) or (3.5) with given (x, v) travels with the
velocity v̂ which has the much faster speed than |v| itself for |v| for large velocity.
This is the key idea to overcome the difficulty of soft potentials in treating the steady
problem on the Boltzmann equation.

In terms of the speeded backward bi-characteristic, we need to redefine the
corresponding backward exit time etc.. Indeed, for each (x, v) with x ∈ �̄ and
v �= 0, we define the backward exit time t̂b(x, v) � 0 to be the last moment at
which the back-time straight line [X̂(−τ ; 0, x, v), V (−τ ; 0, x, v)] remains in �̄:

t̂b(x, v) = sup {s � 0 : x − v̂τ ∈ �̄ for 0 � τ � s}.
We therefore have x − t̂bv̂ ∈ ∂� and ξ(x − t̂bv̂) = 0. We also define

x̂b(x, v) = x − t̂bv̂ ∈ ∂�.

Note that the fact that v · n(x̂b) = v · n(x̂b(x, v)) � 0 always holds true.
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Let x ∈ �̄, (x, v) /∈ γ0 ∪ γ− and (t0, x0, v0) = (t, x, v). For vk+1 ∈ V̂k+1 :=
{vk+1 · n(x̂k+1) > 0}, the back-time cycle is defined as

⎧⎪⎪⎨
⎪⎪⎩

X̂cl(s; t, x, v) =
∑
k

1[t̂k+1,t̂k )(s){x̂k − v̂k(t̂k − s)},

Vcl(s; t, x, v) =
∑
k

1[t̂k+1,t̂k )(s)vk,
(3.6)

with

(t̂k+1, x̂k+1, vk+1) = (t̂k − t̂b(x̂k, vk), x̂b(x̂k, vk), vk+1).

We also define the iterated integral
∫

�k−1
j=1V̂ j

�k−1
j=1 dσ̂ j :=

∫
V̂1

· · ·
{∫

V̂k−1

dσ̂k−1

}
· · · dσ̂1,

where

dσ̂ j := μ(v j ){n(x̂ j ) · v j }, j = 1, . . . , k − 1

are probability measures.

Lemma 3.2. Let (η, ζ ) belong to

{ζ = 2, 0 � η < 1/2} ∪ {0 � ζ < 2, η � 0}.
For T0 > 0 sufficiently large, there exist constants Ĉ1 and Ĉ2 independent of T0

such that for k = Ĉ1T
5
4
0 and (t, x, v) ∈ [0, T0] × �̄ × R

3, it holds that

∫
�k−1

j=1V̂ j

1{t̂k>0} �k−1
j=1e

η|v j |ζ dσ̂ j �
(
1

2

)Ĉ2T
5
4
0

. (3.7)

Proof. We take ε > 0 small enough, and define the non-grazing sets

V̂ε
j =

{
v j ∈ V̂ j : v j · n(x̂ j ) � ε and |v j | � 1

ε

}
, j � 1.

Then a direct calculation shows that∫
V̂ j\V̂ε

j

eη|v j |ζ dσ̂ j � Cε,

where the constant C > 0 is independent of j . By similar arguments as in [29,
Lemma 2], one can prove

t̂ j − t̂ j+1 � |v j · n(x̂ j )|
C�|v j |2(1 + |v j |2) |κ|

2
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with a positive constant C� depending only on the domain. If v j ∈ V̂ j , then we

have t̂ j − t̂ j+1 � ε3+|κ|
C�

. Therefore, if t̂k = t̂k(t, x, v, v1, · · · , vk−1) > 0, there can

be at most
[
C�T0
ε3+|κ|

]
+ 1 number of v j ∈ V̂ε

j for 1 � j � k − 1. Hence we have

∫
�k−1

j=1V̂ j

1{t̂k>0} �k−1
j=1e

η|v j |ζ dσ̂ j

�

[
C�T0
ε3+|κ|

]
+1∑

n=1

∫
{There are n number v j∈V̂ε

j for some 1� j�k−1}
�k−1

j=1e
η|v j |ζ dσ̂ j

�

[
C�T0
ε3+|κ|

]
+1∑

n=1

(
k − 1

n

) ∣∣∣∣∣supj
∫
V̂ε

j

eη|v j |ζ dσ̂ j

∣∣∣∣∣
n

·
∣∣∣∣∣supj

∫
V̂ j\V̂ε

j

eη|v j |ζ dσ̂ j

∣∣∣∣∣
k−1−n

�
([

C�T0
ε3+|κ|

]
+ 1

)
· (k − 1)

[
C�T0
ε3+|κ|

]
+1

(Cε)
k−1−2

[
C�T0
ε3+|κ| +1

]
. (3.8)

One can take k − 1 = N
([

C�T0
ε3+|κ|

]
+ 1

)
with

[
C�T0
ε3+|κ|

]
� 1 and N > 2(3 + |κ|), so

that (3.8) can be bounded as

∫
�k−1

j=1V̂ j

1{t̂k>0} �k−1
j=1e

η|v j |ζ dσ̂ j �
{
2N

([
C�T0
ε3+|κ|

]
+ 1

)}[ C�T0
ε3+|κ|

]
+1

(Cε)
N
2

(
1+

[
C�T0
ε3+|κ|

])

�
{
4N

[
C�T0
ε3+|κ|

]
(Cε)

N
2

}[ C�T0
ε3+|κ|

]
+1

�
{
C�,N · T0 · ε

N
2 −3−|κ|}

[
C�T0
ε3+|κ|

]
+1

.

We choose

ε =
(

1

2C�,N · T0
) 1

N
2 −3−|κ|

such that C�,N · T0 · ε N
2 −3−|κ| = 1/2. Note that for large T0, it holds that ε > 0 is

small, and

[
C�T0
ε3+|κ|

]
+ 1 ∼= C�,N T

1+ 3+|κ|
N
2 −3−|κ|

0 .

Finally, we take N = 6(3 + |κ|), so that
[
C�T0
ε3+|κ|

]
+ 1 = CT

5
4
0 and

k = 6(3 + |κ|)
{[

C�T0
ε3+|κ|

]
+ 1

}
+ 1 = CT

5
4
0 .

Therefore, (3.7) follows. This completes the proof of Lemma 3.2. ��
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Along the back-time cycle (3.6), we can represent the solution of (3.3) in a mild
formulation which enables us to get the L∞ bound of solutions in the steady case.
Indeed, for later use, we consider the following iterative linear problems involving
a parameter λ ∈ [0, 1]:

⎧⎨
⎩

εhi+1 + v · ∇xhi+1 + ν(v)hi+1 = λKm
w hi + λKc

wh
i + wg,

hi+1(x, v)|γ− = 1

w̃(v)

∫
v′·n(x)>0

hi (x, v′)w̃(v′) dσ ′ + w(v)r(x, v),
(3.9)

for i = 0, 1, 2, . . ., where h0 = h0(x, v) is given. For the mild formulation of (3.9),
we have the following lemma whose proof is omitted for brevity as it is similar to
that in [29].

Lemma 3.3. Let 0 � λ � 1. Denote ν̂(v) := (1 + |v|2) |κ|
2 [ε + ν(v)]. For each

t ∈ [0, T0] and for each (x, v) ∈ �̄ × R
3 \ (γ0 ∪ γ−), we have

hi+1(x, v) =
4∑

n=1

Jn +
14∑
n=5

1{t1>s} Jn, (3.10)

with

J1 = 1{t̂1�0}e−ν̂(v)t hi+1(x − v̂t),

J2 + J3 + J4 =
∫ t

max{t̂1,0}
e−ν̂(v)(t−s)(1 + |v|2) |κ|

2

[
λKm

w hi + λKc
wh

i + wg
]
(x − v̂(t − s), v) ds,

J5 = e−ν̂(v)(t−t̂1)w(v)r(x̂1, v),

J6 = e−ν̂(v)(t−t̂1)

w̃(v)

∫
�k−1

j=1V̂ j

k−2∑
l=1

1{t̂l+1>0}w(vl)r(x̂l+1, vl) d�̂l(t̂l+1),

J7 = e−ν̂(v)(t−t̂1)

w̃(v)

∫
�k−1

j=1V̂ j

k−1∑
l=1

1{t̂l+1�0<t̂l }h
i+1−l(x̂l − v̂l t̂l , vl) d�̂l(0),

J8 + J9 + J10 = e−ν̂(v)(t−t̂1)

w̃(v)

∫
�k−1

j=1V̂ j

k−1∑
l=1

∫ t̂l

0
1{t̂l+1�0<t̂l }

× (1 + |vl |2) |κ|
2

[
λKm

w hi−l + λKc
wh

i−l + wg
]

(x̂l − v̂l(t̂l − s), vl) d�̂l(s),

J11 + J12 + J13 = e−ν̂(v)(t−t̂1)

w̃(v)

∫
�k−1

j=1V̂ j

k−1∑
l=1

∫ t̂l

t̂l+1

1{t̂l+1�0<t̂l }

× (1 + |vl |2) |κ|
2

[
λKm

w hi−l + λKc
wh

i−l + wg
]
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(x̂l − v̂l(t̂l − s), vl) d�̂l(s),

J14 = e−ν̂(v)(t−t̂1)

w̃(v)

∫
�k−1

j=1V̂ j

I{t̂k>0}hi+1−k(x̂k, vk−1) d�̂k−1(t̂k),

where we have denoted

d�̂l(s) = {
�k−1

j=l+1dσ̂ j
} · {w̃(vl)e

−ν̂(vl )(t̂l−s)dσ̂l
} · {�l−1

j=1e
−ν̂(v j )(t̂ j−t̂ j+1)dσ̂ j

}
.

Lemma 3.4. Let β > 3. Let hi , i = 0, 1, 2, . . ., be the solutions to (3.9), satisfying

‖hi‖L∞ + |hi |L∞(γ ) < ∞.

Then there exists T0 > 0 large enough such that for i � k := Ĉ1T
5
4
0 , it holds that

‖hi+1‖L∞+|hi+1|L∞(γ ) � 1

8
sup

0�l�k
{‖hi−l‖L∞} + C

{
‖ν−1wg‖L∞ + |wr |L∞(γ−)

}

+ C sup
0�l�k

{∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

}
. (3.11)

Moreover, if hi ≡ h for i = 1, 2, . . ., that is, h is a solution, then (3.11) is reduced
to the following estimate

‖h‖L∞+|h|L∞(γ ) � C
{
‖ν−1wg‖L∞ + |wr |L∞(γ−)

}
+
∥∥∥∥
√

νh

w

∥∥∥∥
L2

. (3.12)

Here it is emphasized that the positive constant C > 0 does not depend onλ ∈ [0, 1]
and ε > 0.

Proof. By the definition of ν̂(v), we first note that

ν̂(v) � (1 + |v|2) |κ|
2 ν(v) � ν̂0 > 0, (3.13)

where ν̂0 is a positive constant independent of ε and v ∈ R
3. For J1, it follows from

(3.13) that

|J1| � e−ν̂0t‖hi+1‖L∞ . (3.14)

For J2, it follows from (2.11) that

|J2| � Cm3+κ

∫ t

max{t̂1,0}
e−ν̂0(t−s)(1 + |v|2) |κ|

2 e− |v|2
20 ‖hi‖ ds

� Cm3+κe− |v|2
32 ‖hi‖L∞ . (3.15)

For those terms involving the source g, we notice that

1

w̃(v)
� Cw(v)e− |v|2

4 � Ce− |v|2
8 , (3.16)
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which immediately yields that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�k−1

j=1V̂ j

w̃(vl)[1 + |vl |2] |κ|
2 �k−1

j=1dσ̂ j � C < ∞, for 1 � l � k − 1,

∫
�k−1

j=1V̂ j

k−1∑
l=1

1{t̂l+1�0<t̂l }w̃(vl)[1 + |vl |2] |κ|
2 �k−1

j=1dσ̂ j � Ck.

(3.17)

Then it follows from (3.16) and (3.17) that

|J4| + |J10| + |J13| � Ck‖ν−1wg‖L∞, (3.18)

|J5| + |J6| � Ck|wr |L∞(γ−), (3.19)

and

|J7| � Ce− 1
8 |v|2e−ν̂0(t−t1)

∫
�k−1

j=1V̂ j

k−1∑
l=1

1{t̂l+1�0<t̂l }d�̂l(0) · sup
1�l�k−1

{‖hi+1−l‖L∞}

� Cke−ν̂0t e− 1
8 |v|2 · sup

1�l�k−1
{‖hi+1−l‖L∞}. (3.20)

For the term J14, it follows from (3.16) and Lemma 3.2 that

|J14| � Ce− 1
8 |v|2

(
1

2

)Ĉ2T
5
4
0 · |hi+1−k |L∞(γ−), (3.21)

where we have taken k = Ĉ1T
5
4
0 and T0 is a large constant to be chosen later. From

the boundary condition given in the second equation of (3.9), it further holds that

|hi+1−k |L∞(γ−) � C |hi−k |L∞(γ+) + |wr |L∞(γ−).

For J8, using (2.11), (3.13), (3.16) and (3.17), one obtains that

|J8| � Cm3+κe− 1
8 |v|2 · sup

1�l�k−1
{‖hi−l‖L∞}

×
∫

�k−1
j=1V̂ j

k−1∑
l=1

I{t̂l+1�0<t̂l }
∫ tl

0
e−ν̂0(t−s) ds ν(vl)

−1w̃(vl)e
− |vl |2

8 �k−1
j=1 dσ̂ j

� Cm3+κe− 1
8 |v|2 · sup

1�l�k−1
{‖hi−l‖L∞}

∫
�k−1

j=1V̂ j

k−1∑
l=1

I{t̂l+1�0<t̂l }ν(vl)
−1w̃(vl)�

k−1
j=1 dσ̂ j

� Ckm3+κe− 1
8 |v|2 · sup

1�l�k−1

{
‖hi−l‖L∞

}
. (3.22)
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Here we remark that the factor e− 1
8 |v|2 on the right-hand side of (3.22) is very

crucial for the later use of the Vidav’s iteration. For J9, it holds that

|J9| � Ce− 1
8 |v|2

k−1∑
l=1

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l

0
e−ν̂0(t−s) ds

×
∫
Vl

∫
R3

1{t̂l+1�0<t̂l }ν(vl)
−1w̃(vl)|kcw(vl , v

′)hi−l(x̂l − v̂l(t̂l − s), v′)| dv′dσ̂l

= Ce− 1
8 |v|2

k−1∑
l=1

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l

0
e−ν̂0(t−s) ds

∫
Vl∩{|vl |�N }

∫
R3

(· · · ) dv′dσ̂l

+ Ce− 1
8 |v|2

k−1∑
l=1

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l

0
e−ν̂0(t−s)ds

∫
Vl∩{|vl |�N }

∫
R3

(· · · ) dv′dσ̂l

:=
k−1∑
l=1

(J91l + J92l) . (3.23)

We shall estimate the right-hand terms of (3.23) as follows. By using (2.14), we
have

k−1∑
l=1

J91l � Ce− 1
8 |v|2

k−1∑
l=1

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l

0
e−ν̂0(t−s) ds

×
∫
Vl∩{|vl |�N }

e− 1
8 |vl |2dvl · sup

1�l�k−1
{‖hi−l‖L∞}

� Cke− 1
8 |v|2e− 1

16 N
2 · sup

1�l�k−1
{‖hi−l‖L∞}, (3.24)

and, for each term J92l , we also have

J92l � Ce− 1
8 |v|2

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l

t̂l− 1
N

e−ν̂0(t−s) ds
∫
Vl∩{|vl |�N }

∫
R3

(· · · ) dv′dσ̂l

+ Ce− 1
8 |v|2

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l− 1

N

0
e−ν̂0(t−s) ds

∫
Vl∩{|vl |�N }

e− 1
8 |vl |2 dvl

×
∫

|v′|�2N
|kcw(vl , v

′)|e |vl−v′ |2
64 dv′e− N2

64 · sup
1�l�k−1

{‖hi−l‖L∞}

+ Ce− 1
8 |v|2

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l− 1

N

0
e−ν̂0(t−s)ds

∫
Vl∩{|vl |�N }

∫
|v′|�2N

× 1{t̂l+1�0<t̂l }e
− 1

8 |vl |2 |kcw(vl , v
′)hi−l(xl − v̂l(t̂l − s), v′)| dv′dvl

� Ce− 1
8 |v|2

∫
�l−1

j=1V̂ j

dσ̂l−1 · · · dσ̂1
∫ t̂l− 1

N

0
e−ν̂0(t−s)ds

∫
Vl∩{|vl |�N }

∫
|v′|�2N

× 1{t̂l+1�0<t̂l }e
− 1

8 |vl |2 |kcw(vl , v
′)hi−l(xl − v̂l(t̂l − s), v′)| dv′dvl

+ C

N
e− 1

8 |v|2 · ‖hi−l‖L∞ . (3.25)
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To estimate the first term on the right-hand side of (3.25), it follows from (2.12)
that

∫
Vl∩{|vl |�N }

∫
|v′ |�2N

1{t̂l+1�0<t̂l }e
− 1

8 |vl |2 |kcw(vl , v
′)hi−l (x̂l − v̂l (t̂l − s), v′)| dv′dvl

� CN

{∫
Vl∩{|vl |�N }

∫
|v′ |�2N

e− 1
8 |vl |2 |kcw(vl , v

′)|2 dv′dvl

} 1
2

×
{∫

Vl∩{|vl |�N }

∫
|v′ |�2N

1{t̂l+1�0<t̂l }
∣∣∣∣
√

ν(v′)hi−l (x̂l − v̂l (t̂l − s), v′)
w(v′)

∣∣∣∣
2

dv′dvl

} 1
2

� CNm
κ−1

{∫
Vl∩{|vl |�N }

∫
|v′ |�2N

1{t̂l+1�0<t̂l }
∣∣∣∣
√

ν(v′)hi−l (x̂l − v̂l (t̂l − s), v′)
w(v′)

∣∣∣∣
2

dv′dvl

} 1
2

.

(3.26)

Let yl = x̂l − v̂(t̂l − s) ∈ � for s ∈ [0, t̂l − 1
N ]. A direct computation shows that

∣∣∣∣∂yl∂vl

∣∣∣∣ = |t̂l − s| ·
∣∣∣∣∂v̂

∂v

∣∣∣∣ � (1 + |v|2) 3|κ|
2 −1

N 3 · {1 + (1 + |κ|)|v|2} � 1

N 3 . (3.27)

Thus, by making change of variable v̂l → yl and using (3.27), one obtains that

{∫
Vl∩{|vl |�N }

∫
|v′|�2N

1{t̂l+1�0<t̂l }
∣∣∣∣
√

ν(v′)hi−l(x̂l − v̂l(t̂l − s), v′)
w(v′)

∣∣∣∣
2

dv′dvl

} 1
2

� CN

{∫
�

∫
|v′|�2N

∣∣∣∣
√

ν(v′)hi−l(yl , v′)
w(v′)

∣∣∣∣
2

dv′dyl

} 1
2

� CN

∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

,

which, together with (3.26) and (3.25), yields that

J92l � C

N
e− 1

8 |v|2 · sup
1�l�k−1

{‖hi−l‖L∞} + CNm
κ−1e− 1

8 |v|2
∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

. (3.28)

Thus it follows from (3.28), (3.24) and (3.23) that

|J9| � Ck

N
e− 1

8 |v|2 · sup
1�l�k−1

{‖hi−l‖L∞} + CNkm
κ−1e− 1

8 |v|2 · sup
1�l�k−1

{∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

}
.

(3.29)

By similar arguments as to those in (3.22)–(3.29), one can obtain

|J11| + |J12| � Cke− 1
8 |v|2

{
m3+κ + 1

N

}
· sup
1�l�k−1

{‖hi−l‖L∞}

+ CNkm
κ−1e− 1

8 |v|2 · sup
1�l�k−1

{∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

}
. (3.30)
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Now substituting (3.30), (3.29), (3.22), (3.21), (3.20), (3.19), (3.18), (3.15) and
(3.14) into (3.10), we get, for t ∈ [0, T0], that

|hi+1(x, v)| �
∫ t

max{t̂1,0}
e−ν̂0(t−s)(1 + |v|2) |κ|

2

∫
R3

|kcw(v, v′)hi (x − v̂(t − s), v′)| dv′ds

+ Ai (t, v), (3.31)

where we have denoted

Ai (t, v) := Cke− 1
32 |v|2

⎧⎪⎨
⎪⎩m3+κ + e−ν̂0t +

(
1

2

)Ĉ2T
5
4
0 + 1

N

⎫⎪⎬
⎪⎭

· sup
0�l�k−1

{‖hi−l‖L∞+|hi−l |L∞(γ+)}

+ e−ν̂0t‖hi+1‖L∞ + Ck
{
‖ν−1wg‖L∞ + |wr |L∞(γ−)

}

+ CN ,k,m e− 1
8 |v|2 · sup

1�l�k−1

{∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

}
.

We denote x ′ = x − v̂(t − s) ∈ � and t̂ ′1 = t̂1(s, x ′, v′) for s ∈ (min{t1, 0}, t).
Using the Vidav’s iteration in (3.31), then we obtain that

|hi+1(x, v)| � Ai (t, v) +
∫ t

0
e−ν̂0(t−s)(1 + |v|2) |κ|

2

∫
R3

|kcw(v, v′)|Ai−1(s, v
′) dv′ds

+
∫ t

0
ds
∫ s

0
e−ν̂0(t−τ) dτ

∫
R3

∫
R3

|kcw(v, v′)kcw(v′, v′′)|
× 1{max{t̂1,0}<s<t}1{max{t̂ ′1,0}<τ<s}|hi−1(x ′ − v̂′(s − τ), v′′)| dv′′dv′

:= Ai (t, v) + B1 + B2. (3.32)

For the term B1, using (2.13) and (2.14), one has

B1 � Ck

⎧⎪⎨
⎪⎩m3+κ + mκ−1e− 1

2 ν̂0t +
(
1

2

)Ĉ2T
5
4
0 + 1

N

⎫⎪⎬
⎪⎭ · sup

0�l�k
{‖hi−l‖L∞ + |hi−l |L∞(γ+)}

+ Ck,m

{
‖ν−1wg‖L∞ + |wr |L∞(γ−)

}
+ CN ,k,m sup

0�l�k

{∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

}
. (3.33)

For the term B2, we split the estimate by several cases.
Case 1. For |v| � N , we have from (2.13) that

B2 � Cm2(κ−1)‖hi−1‖L∞(1 + |v|)−4 � Cm2(κ−1)

N 4 ‖hi−1‖L∞ . (3.34)
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Case 2. For |v| � N , |v′| � 2N or |v′| � 2N , |v′′| � 3N . In this case, we note
from (2.13) that⎧⎪⎪⎨

⎪⎪⎩

∫
|v|�N ,|v′|�2N

∣∣∣kcw(v, v′)e
|v−v′ |2

32

∣∣∣ dv′ � Cmκ−1(1 + |v|)κ−2,

∫
|v′|�2N ,|v′′|�3N

∣∣∣kcw(v′, v′′)e
|v′−v′′ |2

32

∣∣∣ dv′′ � Cmκ−1(1 + |v′|)κ−2.

This yields that

∫ t

0
ds
∫ s

0
e−ν̂0(t−τ) dτ

{∫
|v|�N ,|v′|�2N

+
∫

|v′|�2N ,|v′′|�3N

}
(· · · ) dv′′dv′

� e− N2
32 ‖hi−1‖L∞

∫
|v|�N ,|v′|�2N

|kcw(v, v′)e
|v−v′ |2

32 | · |kcw(v′, v′′)|ν(v)−1ν(v′)−1 dv′′dv′

+ e− N2
32 ‖hi−1‖L∞

∫
|v|�N ,|v′|�2N

|kcw(v, v′)| · |kcw(v′, v′′)e
|v′−v′′ |2

32 |ν(v)−1ν(v′)−1 dv′′dv′

� Cm2(κ−1)e− N2
32 ‖hi−1‖L∞ . (3.35)

Case 3. For |v| � N , |v′| � 2N , and |v′′| � 3N , we first note that

∫ t

0
ds
∫ s

0
e−ν̂0(t−τ) dτ

∫
|v′|�2N ,|v′′|�3N

(· · · ) dv′′dv′

� C

N
m2(κ−1)‖hi−1‖L∞ +

∫ t

0
ds
∫ s− 1

N

0
e−ν̂0(t−τ) dτ

∫
R3

∫
R3

(· · · ) dv′′dv′

� C

N
m2(κ−1)‖hi−1‖L∞

+ CN ,k

∫ t

0
ds
∫ s− 1

N

0
e−ν̂0(t−τ) dτ

{∫
|v′|�2N ,|v′′|�3N

|kc(v, v′)kc(v′, v′′)|2 dv′′dv′
} 1

2

×
{∫

|v′|�2N ,|v′′|�3N
1{max{t̂1,0}<s<t}1{max{t̂ ′1,0}<τ<s}

∣∣∣
√

ν(v′′)hi−1(y′, v′′)
w(v′′)

∣∣∣2 dv′′dv′
} 1

2

� C

N
m2(κ−1)‖hi−1‖L∞ + CN ,k,m

∫ t

0
ds
∫ s− 1

N

0
e−ν̂0(t−τ) dτ

×
{∫

|v′|�2N ,|v′′|�3N
1{max{t̂1,0}<s<t}1{max{t̂ ′1,0}<τ<s}

∣∣∣
√

ν(v′′)hi−1(y′, v′′)
w(v′′)

∣∣∣2 dv′′dv′
} 1

2

,

(3.36)

where we have denoted y′ = x ′ − v̂′(s − τ) ∈ � for s ∈ (max{t̂1, 0}, s) and
τ ∈ (max{t̂ ′1, 0}, s). Similar to (3.27), we make change of variable v′ �→ y′, so that
the second term on the right-hand side of (3.36) is bounded as

∫ t

0
ds
∫ s− 1

N

0
e−ν̂0(t−τ) dτ

{∫
|v′|�2N ,|v′′|�3N

(· · · ) dv′′dv′
} 1

2

� CN
3
2

∥∥∥∥
√

νhi−1

w

∥∥∥∥
L2

,
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which together with (3.36) yield that

∫ t

0
ds
∫ s

0
e−ν̂0(t−τ) dτ

∫
|v′|�2N ,|v′′|�3N

(· · · ) dv′′dv′

� C

N
m2(κ−1)‖hi−1‖L∞ + CN ,k,m

∥∥∥∥
√

νhi−1

w

∥∥∥∥
L2

. (3.37)

Combining (3.34), (3.35) and (3.37), we have

B2 � C

N
m2(κ−1)‖hi−1‖L∞ + CN ,k,m

∥∥∥∥
√

νhi−1

w

∥∥∥∥
L2

.

Hence, the above estimate together with (3.33) and (3.32) yields that for any t ∈
[0, T0],

|hi+1(x, v)| � Ck

⎧⎪⎨
⎪⎩m3+κ + mκ−1e− 1

2 ν̂0t +
(
1

2

)Ĉ2T
5
4
0 + m2(κ−1)

N

⎫⎪⎬
⎪⎭

× sup
0�l�k

{‖hi−l‖L∞+|hi−l |L∞(γ+)}

+ e−ν̂0t‖hi+1‖L∞ + Ck,m

{
‖ν−1wg‖L∞ + |wr |L∞(γ−)

}

+ CN ,k,m sup
0�l�k

{∥∥∥∥
√

νhi−l

w

∥∥∥∥
L2

}
.

Now we take k = Ĉ1t
5
4 = Ĉ1T

5
4
0 and choose m = T

− 9
4(3+κ)

0 . We first fix t = T0
large enough, and then choose N large enough, so that one has e−ν̂0t � 1

2 and

Ck

⎧⎪⎨
⎪⎩m3+κ + mκ−1e− 1

2 ν̂0t +
(
1

2

)Ĉ2T
5
4
0 + m2(κ−1)

N

⎫⎪⎬
⎪⎭ � 1

16
.

Therefore (3.11) follows. This completes the proof of Lemma 3.4. ��

3.2. Approximate Sequence

Now we are in a position to construct solutions to (3.1) or equivalently (3.3).
First of all, we consider the following approximate problem

⎧⎨
⎩

ε f n + v · ∇x f
n + ν(v) f n − K f n = g,

f n(x, v)|γ− =
(
1 − 1

n

)
Pγ f n + r,

(3.38)
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where ε ∈ (0, 1] is arbitrary and n > 1 is an integer. Recall k = Ĉ1T
5
4
0 with T0

large enough. To the end, we choose n0 > 1 large enough such that

1

8

(
1 − 2

n
+ 3

2n2

)− k+1
2

� 1

2

for any n � n0.

Lemma 3.5. Let ε > 0, n � n0, and β > 3. Assume ‖ν−1wg‖L∞ + |wr |L∞(γ−) <

∞. Then there exists a unique solution f n to (3.38) satisfying

‖w f n‖L∞ + |w f n|L∞(γ ) � Cε,n

(
|wr |L∞(γ−) + ‖ν−1wg‖L∞

)
,

where the positive constant Cε,n > 0 depends only on ε and n. Moreover, if � is a
strictly convex domain, g is continuous in � × R

3 and r is continuous in γ−, then
f n is continuous away from grazing set γ0.

Proof. We consider the solvability of the following boundary value problem:
{
Lλ f := ε f + v · ∇x f + ν(v) f − λK f = g,

f (x, v)|γ− = (
1 − 1

n

)
Pγ f + r(x, v),

(3.39)

for λ ∈ [0, 1]. For brevity we denote L−1
λ to be the solution operator associated

with the problem, meaning that f := L−1
λ g is a solution to the BVP (3.39). Our

idea is to prove the existence of L−1
0 , and then extend to obtain the existence of

L−1
1 in a continuous argument on λ. Since the proof is very long, we split it into

several steps.
Step 1. In this step, we prove the existence of L−1

0 . We consider the following
approximate sequence

{
L0 f i+1 = ε f i+1 + v · ∇x f i+1 + ν(v) f i+1 = g,

f i+1(x, v)|γ− = (
1 − 1

n

)
Pγ f i + r,

(3.40)

for i = 0, 1, 2, . . ., where we have set f 0 ≡ 0. We will construct L∞ solutions to
(3.40) for i = 0, 1, 2, . . ., and establish uniform L∞-estimates.

Firstly, we will solve inductively the linear equation (3.40) by the method of
characteristics. Let hi+1(x, v) = w(v) f i+1(x, v). For almost every (x, v) ∈ �̄ ×
R
3\(γ0 ∪ γ−), one can write

hi+1(x, v) = e−(ε+ν(v))tbw(v)

[(
1 − 1

n

)
Pγ f i + r

]
(xb(x, v), v)

+
∫ t

t−tb
e−(ε+ν(v))(t−s)(wg)(x − v(t − s), v) ds, (3.41)

and for (x, v) ∈ γ−, we write

hi+1(x, v) = w(v)

[(
1 − 1

n

)
Pγ f i + r

]
(x, v). (3.42)
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Noting the definition of Pγ f , we have

|wPγ f |L∞ � C | f |L∞(γ+). (3.43)

We consider (3.41) with i = 0. Noting h0 ≡ 0, then it is straightforward to see that

‖h1‖L∞ � |wr |L∞(γ−) + C

ε
‖wg‖L∞ < ∞.

Therefore we have obtained the solution to (3.40) with i = 0. Assume that we have
already solved (3.40) for i � l and obtained

‖hl+1‖L∞ + |hl+1|L∞(γ ) � Cε,n,l+1

(
|wr |L∞(γ−) + ‖wg‖L∞

)
< ∞. (3.44)

We now consider (3.40) for i = l + 1. Noting (3.44), then we can solve (3.40) by
using (3.41) and (3.42) with i = l + 1. We still need to prove hl+2 ∈ L∞. Indeed,
it follows from (3.41), (3.42) and (3.43) that

‖hl+2‖L∞ + |hl+2|L∞(γ ) � C(|wr |L∞(γ−) + |hl+1|L∞(γ+)) + C

ε
‖wg‖L∞

� Cε,n,l+2

(
|wr |L∞(γ−) + ‖wg‖L∞

)
< ∞.

Therefore, inductively we have solved (3.40) for i = 0, 1, 2, . . . and obtained

‖hi‖L∞ + |hi |L∞(γ ) � Cε,n,i

(
|wr |L∞(γ−) + ‖wg‖L∞

)
< ∞ (3.45)

for i = 0, 1, 2, . . .. The positive constant Cε,n,i may increase to infinity as i → ∞.
Here, we emphasize that we first need to know the sequence {hi }∞i=0 is in L

∞-space,
otherwise one can not use Lemma 3.4 to get uniform L∞ estimates.

If� is a convex domain, let (x, v) ∈ �×R
3\γ0, then it holds v ·n(xb(x, v)) < 0

which yields that tb(x, v) and xb(x, v) are smooth by Lemma 2 in [29]. Therefore
if g and r are continuous, we have that f i (x, v) is continuous away from grazing
set.

Secondly, in order to take the limit i → ∞, one has to get some uniform
estimates. Multiplying (3.40) by f i+1 and integrating the resultant equality over
� × R

3, one obtains that

ε‖ f i+1‖2L2 + 1

2
| f i+1|2L2(γ+)

+ ‖ f i+1‖2ν
� 1

2

(
1 − 2

n
+ 3

2n2

)
| f i |2L2(γ+)

+ Cn|r |2L2(γ−)
+ C

ε
‖g‖2L2 + ε

4
‖ f i+1‖2L2 ,

(3.46)

wherewe have used |Pγ f i |L2(γ−) = |Pγ f i |L2(γ+) � | f i |L2(γ+). Then, from (3.46),
we have

3

2
ε‖ f i+1‖2L2 + | f i+1|2L2(γ+)

+ 2‖ f i+1‖2ν
�
(
1 − 2

n
+ 3

2n2

)
| f i |2L2(γ+)

+ Cε,n

{
|r |2L2(γ−)

+ ‖g‖2L2

}
.
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Now we take the difference f i+1 − f i in (3.40), then by similar energy estimate
as above, we obtain

3

2
ε‖ f i+1 − f i‖2L2 + | f i+1 − f i |2L2(γ+)

+ 2‖ f i+1 − f i‖2ν
�
(
1 − 2

n
+ 3

2n2

)
| f i − f i−1|2L2(γ+)

� · · ·
�
(
1 − 2

n
+ 3

2n2

)i | f 1|2L2(γ )

� Cε ·
(
1 − 2

n
+ 3

2n2

)i ·
(
|wr |L∞(γ−) + ‖wg‖L∞

)
< ∞.

Noting 1 − 2
n + 3

2n2
< 1, thus { f i }∞i=0 is a Cauchy sequence in L2, that is,

‖ f i − f j‖2L2 + | f i − f j |2L2(γ+)
+ ‖ f i − f j‖2ν → 0, as i, j → ∞.

We also have, for i = 0, 1, 2, . . ., that

‖ f i‖2L2 + | f i |2L2(γ+)
+ ‖ f i‖2ν � Cε,n

{
|r |2L2(γ−)

+ ‖g‖2L2

}
, (3.47)

where Cε,n > 0 is a positive constant which depends only on ε and n.
Next we consider the uniform L∞ estimate. Here we point out that Lemma 3.4

still holds by replacing 1 with 1 − 1
n in the boundary condition, and the constants

in Lemma 3.4 do not depend on n � 1. Thus we apply Lemma 3.4 to obtain that

‖hi+1‖L∞ � 1

8
sup

0�l�k
{‖hi−l‖L∞} + C

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}

+ C sup
0�l�k

{
‖ f i−l‖ν

}

� 1

8
sup

0�l�k
{‖hi−l‖L∞} + Cε,n

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
,

where we have used (3.47) in the second inequality. Now we apply Lemma 6.1 to
obtain that for i � k + 1,

‖hi‖L∞ � 1

8
max
0�l�k

{
‖h1‖L∞ , ‖h2‖L∞ , · · · , ‖h2k‖L∞

}

+ 8 + k

7
Cε,n

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}

� Cε,n,k

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
, (3.48)

where we have used (3.45) in the second inequality. Hence it follows from (3.48)
and (3.45) that

‖hi‖L∞ � Cε,n,k

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
, for i � 1. (3.49)



958 Renjun Duan, Feimin Huang, Yong Wang & Zhu Zhang

Taking the difference hi+1 − hi and then applying Lemma 3.4 to hi+1 − hi , we
have that for i � k,

‖hi+2 − hi+1‖L∞

� 1

8
max
0�l�k

{
‖hi+1−l − hi−l‖L∞

}
+ C sup

0�l�k

{
‖ f i+1−l − f i−l‖ν

}

� 1

8
max
0�l�k

{
‖hi+1−l − hi−l‖L∞

}
+ Cε ·

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
· ηi−k

n

� 1

8
max
0�l�k

{
‖hi+1−l − hi−l‖L∞

}
+ Cε,k

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
· ηi+k+1

n ,

(3.50)

where we have denoted ηn := (1 − 2
n + 3

2n2
)1/2 < 1. Here we choose n large

enough so that 1
8η

−k−1
n � 1

2 , then it follows from (3.50) and Lemma 6.1 that

‖hi+2 − hi+1‖L∞ �
(
1

8

)[ i
k+1

]
max

0�l�2k

{
‖h1‖L∞ , ‖h2‖L∞ , · · · , ‖h2k+1‖L∞

}

+ Cε,k

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
· ηin

� Cε,n,k ·
{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
·
⎧⎨
⎩
(
1

8

)[ i
k+1

]
+ ηin

⎫⎬
⎭ ,

(3.51)

for i � k + 1. Then (3.51) implies immediately that {hi }∞i=0 is a Cauchy sequence
in L∞, that is, there exists a limit function h ∈ L∞ so that ‖hi − h‖L∞ → 0 as
i → ∞. Thus we obtained a function f := h

w
solves

⎧⎨
⎩
L0 f = ε f + v · ∇x f + ν(v) f = g,

f (x, v)|γ− =
(
1 − 1

n

)
Pγ f + r,

with n � n0 large enough. Moreover, from (3.49), there exists a constant Cε,n,k

such that

‖h‖L∞ + |h|L∞(γ ) � Cε,n,k

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
.

Step 2. A priori estimates. For any given λ ∈ [0, 1], let f n be the solution of (3.39),
that is,

{
Lλ f n = ε f n + v · ∇x f n + ν(v) f n − λK f n = g,

f n(x, v)|γ− = (
1 − 1

n

)
Pγ f n + r(x, v).

(3.52)
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Moreover we also assume that ‖w f n‖L∞ + |w f n|L∞(γ ) < ∞. Firstly, we shall
consider a priori L2-estimates. Multiplying (3.52) by f n , one has that

ε‖ f n‖2L2 + 1

2
| f n|2L2(γ+)

− 1

2
|
(
1 − 1

n

)
Pγ f n + r |2L2(γ−)

+ ‖ f n‖2ν

� λ〈K f n, f n〉 + ε

4
‖ f n‖L2 + C

ε
‖g‖2L2 . (3.53)

We note that 〈L f n, f n〉 � 0, which implies that

λ〈K f n, f n〉 � λ‖ f n‖ν . (3.54)

On the other hand, a direct computation shows that

∣∣∣∣
(
1 − 1

n

)
Pγ f n + r

∣∣∣∣
2

L2(γ−)

�
(
1 − 2

n
+ 3

2n2

)
| f n|L2(γ+) + Cn|r |2L2(γ−)

.

(3.55)

Substituting (3.54) and (3.55) into (3.53), one has that

‖L−1
λ g‖2L2 + |L−1

λ g|2L2(γ+)
= ‖ f n‖2L2 + | f n|2L2(γ+)

� Cε,n

[
|r |2L2(γ−)

+ ‖g‖2L2

]
.

(3.56)

Let hn := w f n . Then, by using (3.12) and (3.56), we obtain

‖wL−1
λ g‖L∞ = ‖hn‖L∞ � Cε,n

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
. (3.57)

On the other hand, Let ν−1wg1 ∈ L∞ and ν−1wg2 ∈ L∞. Let f n1 = L−1
λ g1 and

f n2 = L−1
λ g2 be the solutions to (3.52) with g replaced by g1 and g2, respectively.

Then we have that{
ε( f n2 − f n1 ) + v · ∇x ( f n2 − f n1 ) + ν(v)( f n2 − f n1 ) − λK ( f n2 − f n1 ) = g2 − g1,

( f n2 − f n1 )(x, v)|γ− = (
1 − 1

n

)
Pγ ( f n2 − f n1 ).

By similar arguments as to those in (3.52)–(3.57), we obtain

‖L−1
λ g2 − L−1

λ g1‖2L2 + |L−1
λ g2 − L−1

λ g1|2L2(γ+)
� Cε,n‖g2 − g1‖2L2 , (3.58)

and

‖w(L−1
λ g2 − L−1

λ g1)‖L∞ � Cε,n‖ν−1w(g2 − g1)‖L∞ . (3.59)

The uniqueness of solution to (3.52) also follows from (3.58). We point out that
the constant Cε,n in (3.56), (3.57), (3.58) and (3.59) does not depend on λ ∈ [0, 1].
This property is crucial for us to extend L−1

0 to L−1
1 by a bootstrap argument.

Step 3. In this step, we shall prove the existence of solution f n to (3.39) for suffi-
ciently small 0 < λ � 1, that is, to prove the existence of operator L−1

λ . Firstly,
we define the Banach space
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X :=
{
f = f (x, v) : w f ∈ L∞(� × R

3), w f ∈ L∞(γ ), and f (x, v)|γ−

=
(
1 − 1

n

)
Pγ f + r

}
.

Now we define

Tλ f = L−1
0

(
λK f + g

)
.

For any f1, f2 ∈ X, by using (3.59), we have that

‖w(Tλ f1 − Tλ f2)‖L∞ =
∥∥∥w{L−1

0 (λK f1 + g) − L−1
0 (λK f2 + g)}

∥∥∥
L∞

� Cε,n‖ν−1w{(λK f1 + g) − (λK f2 + g)}‖L∞

� λ‖ν−1w(K f1 − K f2)‖L∞

� λCK ,ε,n‖w( f1 − f2)‖L∞ ,

where we have used (2.11) and (2.13) with m = 1 in the last inequality. We take
λ∗ > 0 sufficiently small such that λ∗CK ,ε,n � 1/2, then Tλ : X → X is a
contraction mapping for λ ∈ [0, λ∗]. Thus Tλ has a fixed point, that is, ∃ f λ ∈ X
such that

f λ = Tλ f
λ = L−1

0

(
λK f λ + g

)
,

which immediately yields that

Lλ f
λ = ε f λ + v · ∇x f

λ + ν f λ − λK f λ = g.

Hence, for any λ ∈ [0, λ∗], we have solved (3.39) with f λ = L−1
λ g ∈ X. Therefore

we have obtained the existence of L−1
λ for λ ∈ [0, λ∗]. Moreover the operator L−1

λ

has the properties (3.56), (3.57), (3.58) and (3.59).
Next we define

Tλ∗+λ f = L−1
λ∗

(
λK f + g

)
.

Noting the estimates for L−1
λ∗ are independent of λ∗. By similar arguments, we

can prove Tλ∗+λ : X → X is a contraction mapping for λ ∈ [0, λ∗]. Then we
obtain the exitence of operator L−1

λ∗+λ, and (3.56), (3.57), (3.58) and (3.59). Step

by step, we can finally obtain the existence of operator L−1
1 , and L−1

1 satisfies the
estimates in (3.56), (3.57), (3.58) and (3.59). The continuity is easy to obtain since
the convergence of sequence under consideration is always in L∞. Therefore we
complete the proof of Lemma 3.5. ��
Lemma 3.6. Let ε > 0 and β > 3, and assume ‖ν−1wg‖L∞ + |wr |L∞(γ−) < ∞.
Then there exists a unique solution f ε to solve the approximate linearized steady
Boltzmann equation (3.1). Moreover, it satisfies

‖w f ε‖L∞ + |w f ε|L∞(γ ) � Cε

{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
, (3.60)

where the positive constant Cε > 0 depends only on ε. Moreover, if � is a strictly
convex domain, g is continuous in � × R

3 and r is continuous in γ−, then f ε is
continuous away from the grazing set γ0.
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Proof. Let f n be the solution of (3.38) constructed in Lemma 3.5 for n � n0 with
n0 large enough. Multiplying (3.38) by f n and using the coercivity estimate (2.7),
one obtains that

ε‖ f n‖2L2 + | f n |2L2(γ+)
+ 2c0‖(I − P) f n‖2ν � Cε‖g‖2L2 +

∣∣∣
(
1 − 1

n

)
Pγ f n + r

∣∣∣2
L2(γ−)

.

(3.61)

Here the projection P is defined by (2.6). A direct calculation shows that
∣∣∣
(
1 − 1

n

)
Pγ f n + r

∣∣∣2
L2(γ−)

� |Pγ f n|2L2(γ−)
+ 2|Pγ f n|L2(γ−) · |r |L2(γ−) + |r |2L2(γ−)

� |Pγ f n|2L2(γ+)
+ η|Pγ f n|2L2(γ+)

+ Cη|r |2L2(γ−)
,

which, together with (3.61), yields that

ε‖ f n‖2L2 + |(I − Pγ ) f n|2γ+ + 2c0‖(I − P) f n‖2ν � η|Pγ f n|2L2(γ+)

+ Cε,η(‖g‖2L2 + |r |2L2(γ−)
). (3.62)

where η > 0 is a small constant to be chosen later.
We still need to bound the first term on the right-hand side of (3.62). Firstly, a

direct calculation shows that

1

2
|Pγ f n|2L2(γ+)

� |Pγ f n I
γ+\γ ε′+

|2L2(γ+)
, (3.63)

provided that 0 < ε′ � 1. We note that

f n(x, v) = (I − Pγ ) f n(x, v) + Pγ f n(x, v), ∀ (x, v) ∈ γ+,

which yields that

|Pγ f n I
γ+\γ ε′+

|2L2(γ )
= 2| f n I

γ+\γ ε′+
|2L2(γ )

+ 2|(I − Pγ ) f n I
γ+\γ ε′+

|2L2(γ )
. (3.64)

On the other hand, it follows from (3.38) that

1

2
v · ∇x (| f n|2) = −ε| f n|2 − f n L f n + g f n,

which yields that

‖v · ∇x (| f n|2)‖L1 � C
{
‖ f n‖2L2 + ‖(I − P) f n‖2ν + ‖g‖2L2

}
. (3.65)

It follows from (3.65) and (3.62) that

| f n I
γ+\γ ε′+

|2L2(γ )
= |( f n)2 I

γ+\γ ε′+
|L1(γ )

� Cε′
{
‖ f n‖2L2 + ‖v · ∇x (| f n|2)‖L1

}
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� Cε′
{
‖ f n‖2L2 + ‖(I − P) f n‖2ν + ‖g‖2L2

}

� Cε′,εη|Pγ f n|2L2(γ+)
+ Cε′,ε,η

{
‖g‖2L2 + |r |2L2(γ−)

}
,

where in the second line we have used (4.7) which will be given in Lemma 4.1 later
on. The above estimate together with (3.63) and (3.64) yield that

|Pγ f n|2L2(γ+)
� Cε′,εη|Pγ f n|2L2(γ+)

+ Cε′,ε,η
{
‖g‖2L2 + |r |2L2(γ−)

}
.

Taking η small so that Cε′,vη � 1
2 , one obtains that

|Pγ f n|2L2(γ+)
� Cε′,ε

{
‖g‖2L2 + |r |2L2(γ−)

}
. (3.66)

Combining (3.66) and (3.62), one has

‖ f n‖2L2 + | f n|2L2(γ+)
+ 2c0‖(I − P) f n‖2ν � Cε′,ε(‖g‖2L2 + |r |2L2(γ−)

). (3.67)

We apply (3.12) and use (3.67) to obtain

‖w f n‖L∞+|w f n|L∞(γ ) � C
{
‖ν−1wg‖L∞ + |wr |L∞(γ−) + ‖ f n‖L2

}

� Cε′,ε
{
‖ν−1wg‖L∞ + |wr |L∞(γ−)

}
.

Taking the difference f n1 − f n2 with n1, n2 � n0, we know that

{
ε( f n1 − f n2) + v · ∇x ( f n1 − f n2) + L( f n1 − f n2) = 0,

( f n1 − f n2)(x, v)|γ− = (1 − 1
n1

)Pγ ( f n1 − f n2) +
(

1
n2

− 1
n1

)
Pγ f n2 .

(3.68)

Multiplying (3.68) by f n1 − f n2 , and integrating it over � × R
3, by similar argu-

ments as in (3.61)–(3.67), we can obtain

‖( f n1 − f n2)‖2L2 + |( f n1 − f n2)|2L2(γ+)
+ 2c0‖(I − P)( f n1 − f n2)‖2ν

� Cε′,ε
∣∣∣
( 1

n2
− 1

n1

)
Pγ f n2

∣∣∣2
L2(γ−)

� Cε′,ε ·
{( 1

n1

)2 +
( 1

n2

)2} · | f n2 |2L2(γ+)

� Cε′,ε · (‖g‖2L2 + |r |2L2(γ−)
) ·
{( 1

n1

)2 +
( 1

n2

)2} → 0, (3.69)

as n1, n2 → ∞, where we have used the uniform estimate (3.67) in the last
inequality. Applying (3.12) to f n1 − f n2 and using (3.69), then one has

‖w( f n1 − f n2)‖L∞+|w( f n1 − f n2)|L∞(γ )

� C
∣∣∣w
( 1

n2
− 1

n1

)
Pγ f n2

∣∣∣
L∞(γ−)

+ C‖ f n1 − f n2‖L2

� Cε′,ε · (‖wg‖L∞ + |wr |L∞(γ−)) ·
{ 1

n1
+ 1

n2

}
→ 0,
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as n1, n2 → ∞, which yields that w f n is a Cauchy sequence in L∞. We denote
f ε = limn→∞ f n , then it is direct to check that f ε is a solution to (3.1), and (3.60)
holds. The continuity of f ε is easy to obtain since the convergence of sequences is
always in L∞ and f n is continuous away from the grazing set. Therefore we have
completed the proof of Lemma 3.6. ��

Now we assume that∫∫
�×R3

g(x, v)μ
1
2 (v) dvdx =

∫
γ−

r(x, v)μ
1
2 (v) dγ = 0. (3.70)

Lemma 3.7. Let f be a solution

v · ∇x f + L f = g, fγ− = Pγ f + r

in the weak sense of
∫

γ

ψ f {v · n(x)} dvdSx −
∫

�×R3
v · ∇xψ f dvdx

= −
∫

�×R3
ψ L f dvdx +

∫
�×R3

ψgdvdx,

where ψ ∈ H1(� × R
3). Assume

∫
�×R3 f

√
μdvdx = 0 and (3.70), then it holds

that

‖P f ‖2L2 � C
{
‖(I − P) f ‖2ν + ‖g‖L2 + |(I − Pγ ) f |2L2(γ+)

+ |r |2L2(γ−)

}
.

Proof. The proof is almost the same to Lemma 3.3 in [21], the details are omitted
here for simplicity of presentation. ��
Lemma 3.8. Assume (3.70). Letβ > 3+|κ|, andassume‖ν−1wg‖L∞+|wr |L∞(γ−)

< ∞. Then there exists a unique solution f = f (x, v) to the linearized steady
Boltzmann equation

v · ∇x f + L f = g, f (x, v)|γ− = Pγ f + r, (3.71)

such that
∫
�×R3 f

√
μdvdx = 0 and

‖w f ‖L∞ + |w f |L∞(γ ) � C
{
|wr |L∞(γ−) + ‖ν−1wg‖L∞

}
. (3.72)

Moreover, if � is a strictly convex domain, g is continuous in � × R
3 and r is

continuous in γ−, then f is continuous away from the grazing set γ0.

Proof. Let f ε be the solution of (3.1) constructed in Lemma 3.6 for ε > 0. Multi-
plying the first equation of (3.1) by

√
μ, taking integration over�×R

3, and noting
(3.70), it is straightforward to see that

∫
�×R3

f ε(x, v)μ
1
2 (v) dvdx = 0
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for any ε > 0. Multiplying the first equation of (3.1) by f ε and integrating the
resultant equation over � × R

3, it follows from Cauchy inequality that

ε‖ f ε‖2L2 + 1

2
|(I − Pγ ) f ε|2L2(γ+)

+ c0‖(I − P) f ε‖2ν
� η[‖ f ε‖2ν + |Pγ f ε|2L2(γ+)

] + Cη[‖ν− 1
2 g‖2L2 + |r |2L2(γ−)

]. (3.73)

Applying Lemma 3.7 to f ε, we obtain

‖P f ε‖2L2 � C
{
‖(I − P) f ε‖2ν + ε‖ f ε‖2L2 + |(I − Pγ ) f ε|2L2(γ+)

+ ‖g‖2L2 + |r |2L2(γ−)

}
,

which, together with (3.73), implies that

ε‖ f ε‖2L2 + ‖ f ε‖2ν + |(I − Pγ ) f ε|2L2(γ+)

� Cη[‖ f ε‖2ν + |Pγ f ε|2L2(γ+)
] + Cη[‖ν− 1

2 g‖2L2 + |r |2L2(γ−)
], (3.74)

where η > 0 is a small positive constant to be determined later.
To control the term |Pγ f ε|2

L2(γ+)
on the right-hand side of (3.74), we should

be careful since we do not have the uniform bound on ‖ f ε‖L2 . Denote

zεγ (x) :=
∫

v′·n(x)>0
f ε(x, v′)

√
μ(v′){v′ · n(x)} dv′,

then one has Pγ f ε = zεγ (x)μ
1
2 (v). A direct calculation shows that

∫
v·n(x)�ε′, ε′�|v|� 1

ε′
ν(v)μ(v)|v · n(x)|dv � c1 > 0, (3.75)

provided that 0 < ε′ � 1, where c1 > 0 is a positive constant independent of ε′.
By using (3.75), we have that

|√νPγ f ε I
γ+\γ ε′+

|2L2 =
∫

∂�

|zεγ (x)|2dSx ·
∫

v·n(x)�ε′, ε′�|v|� 1
ε′

ν(v)μ(v)|v · n(x)|dv

� c1|Pγ f ε|2L2(γ+)
,

which yields that

|Pγ f ε|2L2(γ+)
� C |√νPγ f ε I

γ+\γ ε′+
|2L2

� C
{
|√ν f ε I

γ+\γ ε′+
|2L2 + |√ν(I − Pγ ) f ε I

γ+\γ ε′+
|2L2

}

� C |√ν f ε I
γ+\γ ε′+

|2L2 + Cη[‖ f ε‖2ν + |Pγ f ε|2L2(γ+)
]

+ Cη[‖ν− 1
2 g‖2L2 + |r |2L2(γ−)

]. (3.76)

It follows from (3.1) that

1

2
v · ∇x (ν| f ε|2) = −εν| f ε|2 − ν f εL f ε + ν f εg,
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which implies that

‖v · ∇x (ν| f ε|2)‖L1 � C{‖ f ε‖2ν + ‖g‖2ν}. (3.77)

It follows from (3.77) and (4.7) that

1

2
|√ν f ε I

γ+\γ ε′+
|2L2(γ+)

= 1

2
|ν( f ε)2 I

γ+\γ ε′+
|L1(γ+)

� C
{
‖ν ( f ε)2‖L1 + ‖v · ∇x (ν| f ε|2)‖L1

}

� C{‖ f ε‖2ν + ‖g‖2ν},
which, together with (3.76), and by taking η > 0 suitably small, yields that

|Pγ f ε|2L2(γ+)
� C‖ f ε‖2ν + C[‖ν− 1

2 g‖2L2 + |r |2L2(γ−)
]. (3.78)

Combining (3.78) and (3.74), then taking η > 0 small, one has that

‖ f ε‖2ν + | f ε|2L2(γ+)
� C[‖ν− 1

2 g‖2L2 + |r |2L2(γ−)
]. (3.79)

Applying (3.12) to f ε and using (3.79), then we obtain

‖w f ε‖L∞+|w f ε|L∞(γ ) � C[‖ν− 1
2 wg‖L∞ + |wr |L∞(γ−)]. (3.80)

Next we consider the convergence of f ε as ε → 0+. For any ε1, ε2 > 0, we
consider the difference f ε2 − f ε1 satisfying

{
v · ∇x ( f ε2 − f ε1) + L( f ε2 − f ε1) = −ε2 f ε2 + ε1 f ε1 ,

( f ε2 − f ε1)|γ− = Pγ ( f ε2 − f ε1).
(3.81)

Multiplying (3.81) by f ε2 − f ε1 , integrating the resultant equation and by similar
arguments as in (3.73)–(3.79), one gets

‖ f ε2 − f ε1‖2ν + | f ε2 − f ε1 |2L2(γ+)

� C‖ν− 1
2 (ε2 f

ε2 − ε1 f
ε1)‖2L2 � C(ε21 + ε22)[‖w f ε1‖2L∞ + ‖w f ε2‖2L∞]

� C(ε21 + ε22) · [‖ν−1wg‖L∞ + |wr |L∞(γ−)]2, (3.82)

as ε1, ε2 → 0+, where we have used (3.80) in the last inequality. Finally, applying
(3.12) to f ε2 − f ε1 , then we obtain

‖νw( f ε2 − f ε1)‖L∞+|νw( f ε2 − f ε1)|L∞(γ )

� C
{
‖w(ε2 f

ε2 − ε1 f
ε1)‖L∞ + ‖ f ε2 − f ε1‖ν

}

� C(ε1 + ε2) · [‖ν−1wg‖L∞ + |wr |L∞(γ−)], (3.83)

as ε1, ε2 → 0+, where we have used (3.82) and (3.80) above. Here we have to
demand β > 3+|κ| so that we can apply (3.12). We also point out here that we can
only obtain the convergence in a weak norm L∞

νw but not L∞
w . The main reason is

that for soft potentials, in order to get the uniform L∞
w estimate, one has to demand
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g to has the more velocity weight. With (3.83), we know that there exists a function
f so that ‖νw( f ε − f )‖L∞ → 0 as ε → 0+. And it is direct to see that f solves
(3.71). Also, (3.72) follows immediately from (3.80). If� is convex, the continuity
of f directly follows from the L∞-convergence. Therefore the proof of Lemma 3.8
is complete. ��

3.3. Proof of Theorem 1.1.

We consider the following iterative sequence

{
v · ∇x f j+1 + L f j+1 = �( f j , f j ),

f j+1|γ− = Pγ f j+1 + μθ−μ√
μ

+ μθ−μ√
μ

∫
v′·n(x)>0 f j (x, v′)

√
μ(v′){v′ · n(x)} dv′,

(3.84)

for j = 0, 1, 2 · · · with f 0 ≡ 0. A direct computation shows that
∫

�×R3
�( f j , f j )μ

1
2 (v) dvdx = 0,

∫
v·n(x)<0

[μθ(v) − μ(v)]{v · n(x)} dv = 0,

(3.85)

which yields that

∫
γ−

{
μθ − μ√

μ
+ μθ − μ√

μ

∫
v′·n(x)>0

f j (x, v′)
√

μ(v′){v′ · n(x)} dv′
}

μ
1
2 (v) dγ ≡ 0.

We note that

‖ν−1w�( f j , f j )‖L∞ � C‖w f j‖2L∞ , (3.86)

and
∣∣∣∣w

{
μθ − μ√

μ
+ μθ − μ√

μ

∫
v′·n(x)>0

f j (x, v′)
√

μ(v′){v′ · n(x)} dv′
}∣∣∣∣

L∞(γ−)

� Cδ + Cδ| f j |L∞(γ+). (3.87)

Noting (3.85)–(3.87), and using Lemma 3.8, we can solve (3.84) inductively for
j = 0, 1, 2, . . .. Moreover, it follows from (3.72), (3.86) and (3.87) that

‖w f j+1‖L∞ + |w f j+1|L∞(γ ) � C1δ + C1δ| f j |L∞(γ+) + C1‖w f j‖2L∞ . (3.88)

By induction, we shall prove that

‖w f j‖L∞ + |w f j |L∞(γ ) � 2C1δ, for j = 1, 2, . . . . (3.89)

Indeed, for j = 0, it follows from f 0 ≡ 0 and (3.88) that

‖w f 1‖L∞ + |w f 1|L∞(γ ) � C1δ.
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Now we assume that (3.89) holds for j = 1, 2 · · · , l, then we consider the case for
j = l + 1. Indeed it follows from (3.88) that

‖w f l+1‖L∞ + |w f l+1|L∞(γ ) � C1δ + C1δ| f l |L∞(γ ) + C1‖w f l‖2L∞

� C1δ(1 + 2C1δ + 4C2
1δ) � 3

2
C1δ,

where we have used (3.89) with j = l, and chosen δ > 0 small enough such that
2C1δ + 4C2

1δ � 1/2. Therefore we have proved (3.89) by induction.
Finally we consider the convergence of sequence f j . For the difference f j+1−

f j , we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v · ∇x ( f
j+1 − f j ) + L( f j+1 − f j ) = �( f j − f j−1, f j ) + �( f j−1, f j − f j−1),

( f j+1 − f j )|γ− = Pγ ( f j+1 − f j )

+μθ − μ√
μ

∫
v′ ·n(x)>0

[ f j − f j−1](x, v′)
√

μ(v′){v′ · n(x)} dv′.
(3.90)

Applying (3.72) to (3.90), we have that

‖w{ f j+1 − f j }‖L∞ + |w{ f j+1 − f j }|L∞(γ )

� C
{
‖ν−1w�( f j − f j−1, f j )‖L∞ + ‖ν−1w�( f j−1, f j − f j−1)‖L∞

}

+ C
∣∣∣w
{μθ − μ√

μ

∫
v′·n(x)>0

[ f j − f j−1](x, v′)
√

μ(v′){v′ · n(x)}dv′}∣∣∣
L∞(γ−)

� C[δ + ‖w f j‖L∞ + ‖w f j−1‖L∞] ·
{
‖w( f j − f j−1)‖L∞ + |w( f j − f j−1)|L∞(γ+)

}

� Cδ
{
‖w( f j − f j−1)‖L∞ + |w( f j − f j−1)|L∞(γ+)

}

� 1

2

{
‖w( f j − f j−1)‖L∞ + |w( f j − f j−1)|L∞(γ+)

}
, (3.91)

where we have used (3.89) and taken δ > 0 small such that Cδ � 1/2. Hence
f j is a Cauchy sequence in L∞, then we obtain the solution by taking the limit
f∗ = lim j→∞ f j . The uniqueness can also be obtained by using the inequality as
(3.91).

If� is convex, the continuity of f∗ is a direct consequence of L∞-convergence.
The positivity of F∗ := μ + √

μ f∗ will be proved in Section 4. Therefore we
complete the proof of Theorem 1.1. ��

4. Dynamical Stability Under Small Perturbations

In this section, we are concerned with the large-time asymptotic stability of the
steady solution F∗ obtained in Theorem 1.1. For this purpose, we introduce the
perturbation

f (t, x, v) := F(t, x, v) − F∗(x, v)√
μ

.
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Then the initial-boundary value problem on f (t, x, v) reads as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + L f = −L√
μ f∗ f + �( f, f ),

f (t, x, v)|t=0 = f0(x, v) := F(0, x, v) − F∗(x, v)

μ
1
2 (v)

,

f (t, x, v)|γ− = Pγ f + μθ − μ√
μ

∫
n(x)·u>0

f (t, x, u)
√

μ(u)|n(x) · u| du.

(4.1)

Here Pγ f is defined in (3.2), the linearized collision operator L is defined in (2.1),
the nonlinear term �( f, f ) is defined in (2.2) and

L√
μ f∗ f := − 1√

μ

[
Q(

√
μ f∗,

√
μ f ) + Q(

√
μ f,

√
μ f∗)

]
.

Recall (1.9). Let

h(t, x, v) := w(v) f (t, x, v). (4.2)

Then one can reformulate (4.1) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t h + v · ∇x h + ν(v)h − Kwh = −wL√
μ f∗ f + w�( f, f ),

h|t=0 = w f0 := h0,

h|γ− = 1

w̃(v)

∫
n(x)·u>0

h(u)w̃(u) dσ(x) + w(v)
μθ − μ√

μ

∫
n(x)·u>0

h(u)w̃(u) dσ(x),

(4.3)

where w̃ and Kwh are the same as ones defined before, and for each x ∈ ∂�, dσ(x)
denotes the probability measure

dσ(x) = {n(x) · u} du
in the velocity space V(x) := {u ∈ R

3 : n(x) · u > 0}. For simplicity, to the end
we denote

r [h](t, x, v) := μθ − μ√
μ

∫
n(x)·u>0

h(t, x, v)w̃(u) dσ(x). (4.4)

4.1. Characteristics for Time-Dependent Problem

Given (t, x, v), let [X (s), V (s)] be the backward bi-characteristics associated
with the initial-boundary value problem (4.1) on the Boltzmann equation, which is
determined by

⎧⎨
⎩
dX (s)

ds
= V (s),

dV (s)

ds
= 0,

[X (t), V (t)] = [x, v].
The solution is then given by

[X (s), V (s)] = [X (s; t, x, v), V (s; t, x, v)] = [x − (t − s)v, v].
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Similarly as to the steady case, for each (x, v) with x ∈ �̄ and v �= 0, we define
its backward exit time tb(x, v) � 0 to be the last moment at which the back-time
straight line [X (−τ ; 0, x, v), V (−τ ; 0, x, v)] remains in �̄:

tb(x, v) = sup{s � 0 : x − τv ∈ �̄ for 0 � τ � s}.
We also define

xb(x, v) = x(tb) = x − tbv ∈ ∂�.

Let x ∈ �̄, (x, v) /∈ γ0 ∪ γ− and (t0, x0, v0) = (t, x, v). For vk+1 ∈ Vk+1 :=
{vk+1 · n(xk+1) > 0}, the back-time cycle is defined as

⎧⎪⎪⎨
⎪⎪⎩

Xcl(s; t, x, v) =
∑
k

1[tk+1,tk )(s){xk − vk(tk − s)},

Vcl(s; t, x, v) =
∑
k

1[tk+1,tk )(s)vk,
(4.5)

with

(tk+1, xk+1, vk+1) = (tk − tb(xk, vk), xb(xk, vk), vk+1).

For k � 2, the iterated integral means that
∫

�k−1
l=1Vl

�k−1
l=1 dσl :=

∫
V1

...

{∫
Vk−1

dσk−1

}
· · · dσ1.

where

dσi := μ(vi ){n(xi ) · vi }dvi .
Note that all vl (l = 1, 2, . . .) are independent variables, and tk , xk depend on tl ,
xl , vl for l � k − 1, and the velocity space Vl implicitly depends on (t, x, v, v1,

v2, . . . , vl−1).

Define the near-grazing set of γ+ and γ− as

γ ε± =
{
(x, v) ∈ γ± : |v · n(x)| < ε or |v| � ε or |v| � 1

ε

}
. (4.6)

Then we have

Lemma 4.1. ([13,29]) Let ε > 0 be a small positive constant, then it holds that

| f 1γ±\γ ε±|L1(γ ) � Cε,�

{
‖ f ‖L1 + ‖v · ∇x f ‖L1

}
, (4.7)

and∫ t

0
| f (τ )1γ+\γ ε+|L1(γ ) dτ

� Cε,�

{
‖ f (0)‖L1 +

∫ t

0

[
‖ f (τ )‖L1 + ‖[∂τ + v · ∇x ] f (τ )‖L1

]
ds

}
, (4.8)

where the positive constant Cε > 0 depends only on ε.
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4.2. Linear Problem

In this part, we study the following linear inhomogeneous problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t f + v · ∇x f + L f = g,

f |γ− = Pγ f + μθ − μ√
μ

∫
n(x)·u>0

f
√

μ|n(x) · u| du,

f (t, x, v)|t=0 = f0(x, v),

(4.9)

where g is a given function. Recall that h(t, x, v) defined in (4.2). Then the equation
of h as well as the boundary condition reads

⎧⎪⎨
⎪⎩

∂t h + v · ∇x h + ν(v)h − Kwh = wg,

h|γ− = 1

w̃(v)

∫
n(x)·u>0

h(u)w̃(u)dσ(x) + w(v)
μθ − μ√

μ

∫
n(x)·u>0

h(u)w̃(u) dσ(x).
(4.10)

Recall the stochastic cycle defined in (4.5). For any 0 � s � t , we define

I (t, s) := e− ∫ t
s ν(Vcl (τ )) dτ .

The following Lemma is to establish the mild formulation for (4.10). (Since its
proof is almost the same as for [29, Lemma 24], we omit details for brevity):

Lemma 4.2. Let k � 1 be an integer and h(t, x, v) ∈ L∞ satisfy (4.10). For any
t > 0, for almost every (x, v) ∈ �̄ × R

3 \ γ0 ∪ γ− and for any 0 � s � t , it holds
that

h(t, x, v) =
4∑

n=1

In +
14∑
n=5

1{t1>s}In, (4.11)

where

I1 = 1{t1�s} I (t, s)h(s, x − (t − s)v, v)

I2 + I3 + I4 =
∫ t

max{t1,s}
I (t, τ )[Km

w h + Kc
wh + g](τ, x − (t − τ)v, v) dτ

I5 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1�s<tl }h(s, xl − (tl − s)vl , vl) d�l(s)

I6 + I7 + I8 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

∫ tl

s

k−1∑
l=1

1{tl+1�s<tl }

× [Km
w h + Kc

wh + wg](τ, xl − (tl − τ)vl , vl) d�l(τ ) dτ

I9 + I10 + I11 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

∫ tl

tl+1

k−1∑
l=1

1{tl+1>s}

× [Km
w h + Kc

wh + wg](τ, xl − (tl − τ)vl , vl) d�l(τ ) dτ
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I12 = I (t, t1)wr(t1, x1, v),

I13 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

k−2∑
l=1

1{tl+1>s}wr(tl+1, xl+1, vl) d�l(tl+1)

I14 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

1{tk>s}h(tk, xk, vk−1) d�k−1(tk),

where the measure d�l(τ ) is defined by

d�l(τ ) :=
⎧⎨
⎩

k−1∏
j=l+1

dσ j

⎫⎬
⎭ {w̃(vl)I (tl , τ ) dσl}

⎧⎨
⎩

l−1∏
j=1

I (t j , t j+1) dσ j

⎫⎬
⎭ .

The same as for Lemma 3.2, we have

Lemma 4.3. Let (η, ζ ) belong to

{ζ = 2, 0 � η < 1/2} ∪ {0 � ζ < 2, η � 0}.
For T0 sufficiently large, there exist constants Ĉ3 and Ĉ4 independent of T0 such

that for k = Ĉ3T
5
4
0 and (t, x, v) ∈ [s, s + T0] × �̄ × R

3, it holds that

∫
�k−1

j=1V̂ j

1{tk>s} �k−1
j=1e

η|v j |ζ dσ j �
(
1

2

)Ĉ4T
5
4
0

. (4.12)

The following proposition is to clarify the solvability of the linear problem
(4.9):

Proposition 4.4. Let −3 < γ < 0, β > 3+|κ|, and (
, ζ ) satisfy (1.10). Assume
that ∫

�

∫
R3

f0(x, v)μ
1
2 (v) dxdv =

∫
�

∫
R3

g(t, x, v)μ
1
2 (v) dxdv = 0,

and also assume that

‖w f0‖L∞ + sup
s�0

eλ0sα‖ν−1wg(s)‖L∞ < ∞,

where λ0 > 0 is a small constant to be chosen in the proof. Then the linear IBVP
problem (4.9) admits a unique solution f (t, x, v) satisfying

sup
0�s�t

eλ0sα {‖w f (s)‖L∞ + |w f (s)|L∞(γ )} � C‖w f0‖L∞ + C sup
0�s�t

eλ0sα ‖ν−1wg(s)‖L∞

(4.13)

for any t � 0. Moreover, if � is convex, f0(x, v) is continuous except on γ0, g is
continuous in (0,∞) × � × R

3,

f0|γ− = Pγ f0 + μθ − μ√
μ

∫
{n(x)·v′>0}

f0
√

μ|n(x) · v′| dv′,

and θ(x) is continuous on ∂�, then f (t, x, v) is continuous over [0,∞) × {�̄ ×
R
3 \ γ0}.
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The proof of Proposition 4.4 will be given after we prepare two lemmas.

Lemma 4.5. Let h(t, x, v) be the L∞-solution of the linear problem (4.10). Then
for any s � 0, for any s � t � s + T0 with T0 > 0 is sufficiently large, and for
almost everywhere (x, v) ∈ �̄ × R

3 \ γ0, it holds that

|h(t, x, v)| �CT 5/2
0 e−λ1(t−s)α ‖h(s)‖L∞

+ CT 5/2
0 e−λ̃tα

{
m3+κ + δ + 2−T0 + 1

N

}
· sup
s�τ�t

eλ̃τ α {‖h(τ )‖L∞ + |h(τ )|L∞(γ )

}

+ CN ,T0,me
−λ̃tα sup

s�τ�t
‖eλ̃τ α

f (τ )‖L2 + CT 5/2
0 e−λ̃tα sup

s�τ�t
‖ν−1eλ̃τ α

wg(τ )‖L∞ ,

(4.14)

where λ1 > 0 is a generic constant given in (4.21), and 0 < λ̃ < λ1 is an arbitrary
constant to be chosen later. Here m > 0 can be chosen arbitrarily small and N can
be chosen arbitrarily large.

Proof. We take T0 sufficiently large and k = Ĉ3T
5/4
0 such that (4.12) holds for

η = 5
16 . We first estimate I1. On one hand, if s � t � s+1, it obviously holds that

|I1| � ‖h(s)‖L∞ � eλ̃e−λ̃(t−s)‖h(s)‖L∞ , (4.15)

for any λ̃ > 0. On the other hand, if t > s + 1, we note that

0 � tb(x, v) � d�

|v| ,

where d� := supx,y∈� |x − y| is the diameter of the bounded domain �. Then for
|v| > d�, it holds that

t1 − s = t − tb(x, v) − s > 0.

In other words, I1 appears only when the particle velocity |v| is not greater than
d�, so that we have

|I1| � Ce−ν(v)(t−s)1{|v|�d�}‖h(s)‖L∞ � C�e
−ν̄0(t−s)‖h(s)‖L∞ , (4.16)

where

ν̄0 := inf
|v|�d�

ν(v) > 0

depends only on d�. Collecting the estimates (4.15) and (4.16) on these two cases,
we have

|I1| � C�e
−ν̄0(t−s)‖h(s)‖L∞ . (4.17)

For I4, we split the velocity to estimate it as

|I4| �
∫ t

max{t1,s}
e−ν(v)(t−τ)ν(v) · {1{|v|�d�} + 1{|v|>d�}} · ‖ν−1wg(τ )‖L∞ dτ.
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For |v| > d�, we have max{t1, s} � t1 � t − tb(x, v) � t − 1, which implies, for
any λ̃ > 0. that

∫ t

max{t1,s}
e−ν(v)(t−τ)ν(v)1{|v|>d�}‖ν−1wg(τ )‖L∞

� C
∫ t

max{t1,s}
1{t−1�τ�t}‖ν−1wg(τ )‖L∞

� eλ̃

∫ t

max{t1,s}
e−λ̃(t−τ)1{t−1�τ�t}‖ν−1wg(τ )‖L∞ dτ

� Cλ̃,αe
−λ̃tα · sup

s�τ�t
‖eλ̃τα

ν−1wg(τ )‖L∞ .

For |v| � d�, we have∫ t

max{t1,s}
e−ν(v)(t−τ)ν(v)1{|v|�d�}‖ν−1wg(τ )‖L∞ dτ

� C�

∫ t

max{t1,s}
e−ν̄0(t−τ)‖ν−1wg(τ )‖L∞ dτ

� C�,λ̃,αe
−λ̃tα · sup

s�τ�t
‖eλ̃τα

ν−1wg(τ )‖L∞ .

Conbining these two estimates, we have

|I4| � Ce−λ̃tα · sup
s�τ�t

‖eλ̃τα

ν−1wg(τ )‖L∞ . (4.18)

Similarly, by using (2.11), it holds that

|I2| � Cm3+κe−λ̃tαe− |v|2
16 sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ . (4.19)

For I5, we borrow an idea from [36]. Take |vm | = max{|v1|, |v2|, . . . , |vl |}. By a
direct computation, we have, for some positive constant c > 0, that

I (t, t1)

w̃(v)

[ l−1∏
j=1

I (t j , t j+1)

]
× w̃(vl)I (tl , s)

� e−c〈v〉κ (t−t1)

w̃(v)

l−1∏
j=1

e−c〈v j 〉κ (t j−t j+1) · e−c〈vl 〉κ (tl−s)w̃(vl)

� Ce−c〈v〉κ (t−t1)

w̃(v)
e−c〈vm 〉κ (t1−s)e

|vm |2
4 . (4.20)

Herewe have denoted 〈v〉 := (1+|v|2)1/2.Wenote the fact fromYoung’s inequality
that

c〈v〉κ (τ1 − τ2) + |v|ζ
16

� λ1(τ1 − τ2)
α, (4.21)
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for a generic constant λ1 > 0 depending only on ζ . Then the right-hand side of
(4.20) is further bounded as

C
e−c〈v〉κ (t−t1)e− |v|ζ

16

w̃(v)e− |v|ζ
16

e−c〈vm 〉κ (t1−s)− |vm |ζ
16 e

5|vm |2
16 � Ce− |v|2

16 e−λ1(t−s)αe
5|vm |2

16 .

Here we have used the elementary fact that xα + yα � (x + y)α for x, y � 0 and
0 � α � 1. Therefore, it holds that

|I5| �
k−1∑
l=1

l∑
m=1

Ce− |v|2
16 e−λ1(t−s)α‖h(s)‖L∞

×
{∫

∏l
j=1 V j

1{tl+1�s<tl } × 1{|vm |=max
[
|v1|,|v2|,...|vl |

]}e 5|vm |2
16

l∏
j=1

dσ j

}

�Ck2e− |v|2
16 e−λ1(t−s)α‖h(s)‖L∞ · sup

j

∣∣∣∣∣
∫
V j

e
5|v j |2
16 dσ j

∣∣∣∣∣
�Ck2e− |v|2

16 e−λ1(t−s)α‖h(s)‖L∞ . (4.22)

Similarly, we have

|I8| + |I11| � Ck2e− |v|2
16 e−λ̃tα · sup

s�τ�t
‖eλ̃τα

ν−1wg(τ )‖L∞ . (4.23)

Recall r defined in (4.4). Similar for obtaining (4.22), we have

|I12| + |I13| � Cδk2e− |v|2
16 e−λ̃tα · sup

s�τ�t
|eλ̃τα

h(τ )|L∞(γ+). (4.24)

By (2.11), it holds that

|I6| + |I9| � Ck2m3+κe− |v|2
16 e−λ̃tα · sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ . (4.25)

For I14, we have, from (4.12), that

|I14| �Ce− |v|2
16 e−λ̃tα · sup

s�τ�t
|eλ̃τα

h(τ )|L∞(γ−) ·
∫

�k−1
j=1V̂ j

1{tk>s} �k−1
j=1e

5|v j |2
16 dσ j

�Ce− |v|2
16 e−λ̃tα · sup

s�τ�t
|eλ̃τα

h(τ )|L∞(γ−) ·
(
1

2

)Ĉ4T
5
4
0

. (4.26)
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Now we consider the terms involving Kc
w. Similar as in (4.22), we have

|I7| � Ce− |v|2
16

k−1∑
l=1

l∑
m=1

∫
�l−1

j=1V j

dσl−1 · · · dσ1

×
∫
Vl

∫
R3

∫ tl

s
e−λ1(t−τ)α1{tl+1�s<tl }e

5|vm |2
16 |kcw(vl , v

′)

h(τ, xl − vl(tl − τ), v′)| dτ dv′dσl .

Then, by splitting the integral domain, we further have

|I7| � Ce− |v|2
16

k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
R3

∫ tl

s
� dτdv′dσl

+ Ce− |v|2
16

k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
R3

∫ tl

tl− 1
N

� dτdv′dσl

+ Ce− |v|2
16

k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
{|v′ |�2N }

∫ tl− 1
N

s
� dτdv′dσl

+ Ce− |v|2
16

k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
{|v′ |�2N }

∫ tl− 1
N

s
�dτ dv′dσl

:= Ce− |v|2
16

k−1∑
l=1

{
I71l + I72l + I73l + I74l

}
, (4.27)

where we have denoted that

� := e−λ1(t−τ)α1{tl+1�s<tl }e
5|vl |2
16 |kcw(vl , v

′)h(τ, xl − vl(tl − τ), v′)|.

For I71l , we use (2.14) to obtain, for any 0 < λ̃ < λ1, that

I71l � Cke−λ̃tα · sup
s�τ�t

‖eλ̃τα

h(τ )‖L∞ · sup
j=0,...,l−1

∣∣∣∣∣
∫
V j

e
5|v j |2
16 dσ j

∣∣∣∣∣ ·
∣∣∣∣∣
∫

|vl |�N
e− |vl |2

16 dvl

∣∣∣∣∣
� Cke− N2

32 e−λ̃tα · sup
s�τ�t

‖eλ̃τα

h(τ )‖L∞ . (4.28)

For I72l , it is straightforward to see that

I72l � Ck

N
e−λ̃tα · sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ . (4.29)

For I73l , since |v′ − vl | � N , then by (2.14), it holds that

|I73l | � Cke− N2
32 e−λ̃tα · sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ . (4.30)
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For I74l , by Hölder’s inequality, it holds that
∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�dτ dv′dσl

� C
∫ tl− 1

N

s
e−λ1(t−τ)α dτ

{∫
Vl∩{|vl |�N }

∫
|v′|�2N

e− 1
8 |vl |2 |kcw(vl , v

′)|2 dv′dvl
}1/2

×
{∫

Vl∩{|vl |�N }

∫
|v′|�2N

1{tl+1�s<tl }
∣∣h(τ, xl − vl(tl − τ), v′)

∣∣2 dv′dvl
}1/2

� CNm
κ−1

∫ tl− 1
N

s
e−λ1(t−τ)α dτ

×
{∫

Vl∩{|vl |�N }

∫
|v′|�2N

1{tl+1�s<tl }
∣∣ f (τ, xl − vl(tl − τ), v′)

∣∣2 dv′dvl
}1/2

.

Here we have used (2.12) for α = 1 in the last inequality. Note that yl := xl −
v(tl − τ) ∈ � for s � τ � tl − 1

N . Making change of variable vl → yl , we obtain
that

∫
Vl∩{|vl |�N }

∫
R3

∫ tl− 1
N

s
�dτ dv′dσl � CNm

κ−1e−λ̃tα · sup
s�τ�t

eλ̃τα‖ f (τ )‖L2 .

Combing this with (4.27), (4.28), (4.29), (4.30), we have

|I7| �Ck

N
e− |v|2

16 e−λ̃tα · sup
s�τ�t

‖eλ̃τα

h(τ )‖L∞ + CNm
κ−1e− |v|2

16 e−λ̃tα

· sup
s�τ�t

eλ̃τα‖ f (τ )‖L2 . (4.31)

Similarly,

|I10| � Ck

N
e− |v|2

16 e−λ̃tα · sup
s�τ�t

‖eλ̃τα

h(τ )‖L∞ + CNm
κ−1e− |v|2

16 e−λ̃tα

· sup
s�τ�t

eλ̃τα‖ f (τ )‖L2 . (4.32)

Substituting (4.17), (4.18), (4.19), (4.22), (4.24), (4.23), (4.25), (4.26), (4.31), (4.32)
into (4.11), we have

|h(t, x, v)| �
∫ t

max{t1,s}

∫
R3

I (t, τ )
∣∣kcw(v, u)h(τ, x − (t − τ)v, u)

∣∣ dudτ + Â(t, v),

(4.33)
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where we have denoted

Â(t, v) :=Ck2e−λ1(t−s)α‖h(s)‖L∞

+ Ck2e−λ̃tαe− |v|2
16

{
m3+κ + δ + 2−T0 + 1

N

}

· sup
s�τ�t

eλ̃τα {‖h(τ )‖L∞ + |h(τ )|L∞(γ )}

+ CN ,T0,me
− |v|2

16 e−λ̃tα · sup
s�τ�t

‖eλ̃τα

f (τ )‖L2

+ Ck2e−λ̃tα sup
s�τ�t

‖ν−1eλ̃τα

wg(τ )‖L∞ .

Denote x ′ := x − (t − τ)v and t ′1 := t1(τ, x ′, u). Now we use (4.33) for h(τ, x −
(t − τ)v, u) to evaluate

|h(t, x, v)| � Â(t, v) +
∫ t

max{t1,s}

∫
R3

I (t, τ )

∣∣∣kcw(v, u) Â(τ, u)

∣∣∣ dudτ

+
∫ t

s

∫ τ

s

∫
R3

∫
R3

1{max{t1,s}�τ�t}1{max{t ′1,s}�τ ′�τ }

× I (t, τ ′)
∣∣kcw(v, u)kcw(u, u′)h(τ ′, x ′ − (τ − τ ′)u, u′)

∣∣ du du′dτ ′dτ
:= Â(t, v) + B̂1 + B̂2. (4.34)

Similar for obtaining (4.18), we have

|B̂1| �
∫ t

max{t1,s}

∫
R3

{
1{|v|�d�} + 1{|v|>d�}

}
I (t, τ )|kw(v, u)A(τ, u)| dudτ

�C�

∫ t

max{t1,s}

∫
R3

{
e−ν̄0(t−τ)1{t−1�τ�t} + e−ν̄0(t−τ)1{|v|�d�}

}
|kw(v, u)A(τ, u)| dudτ

�Ck2e−λ1(t−s)α ‖h(s)‖L∞

+ Ck2e−λ̃tα
{
m3+κ + δ + 2−T0 + 1

N

}
· sup
s�τ�t

eλ̃τ α {‖h(τ )‖L∞ + |h(τ )|L∞(γ )}

+ CN ,T0,me
−λ̃tα · sup

s�τ�t
‖eλ̃τ α

f (τ )‖L2 + Ck2e−λ̃tα sup
s�τ�t

‖ν−1eλ̃τ α

wg(τ )‖L∞ .

(4.35)

Finally, we estimate B̂2. If |v| > N , we have, from (2.14), that

|B̂2| � C(1 + |v|)−2e−λ̃tα sup
s�τ�t

‖eλ̃τα

h(τ )‖L∞

� C

N 2 e
−λ̃tα sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ . (4.36)
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If |v| � N , we denote the integrand of B2 as U (τ ′, v′, v′′; τ, v), and split the
integral domain with respect to dτ ′ dv′′dv′ into the following four parts:

∪4
i=1Oi := {|v′| � 2N }

∪ {|v′| � 2N , |v′′| > 3N }
∪
{
|v′| � 2N , |v′′| � 3N , τ − 1

N
� τ ′ � τ

}

∪
{
|v′| � 2N , |v′′| � 3N , s � τ ′ � τ − 1

N

}
.

Over O1 and O2, we have either |v − v′| � N or |v′ − v′′| � N , so that one of the
following is valid:

⎧⎨
⎩

|kcw(v, v′)| � e− N2
32 e

|v−v′ |2
32 |kcw(v, v′)|,

|kcw(v′, v′′)| � e− N2
32 e

|v′−v′′ |2
32 |kcw(v, v′)|.

By (2.14), one has
∫ t

s

∫
O1∪O2

U (τ ′, v′, v′′; τ, v) dv′′dτ ′ dv′dτ � Ce− N2
32 e−λ̃tα sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ .

(4.37)

Over O3, it is direct to obtain∫ t

s

∫
O3

U (τ ′, v′, v′′; τ, v) dv′′dτ ′ dv′dτ � C

N
e−λ̃tα sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ .

(4.38)

For O4, it holds from Holder’s inequality that∫
O4

U (τ ′, v′, v′′; τ, v) dv′′dτ ′dv′

� CNe
−ν̄0(t−τ)

(∫
O4

e−ν̄0(τ−τ ′)|kcw(v, u)kcw(u, u′)|2 dτ ′dudu′
)1/2

×
(∫

O4

e−ν̄0(τ−τ ′)1{y′∈�}|h(τ ′, y′, u′)|2 dτ ′dudu′
)1/2

� CNm
2(κ−1)e−ν̄0(t−τ)

(∫
O4

e−ν̄0(τ−τ ′)1{y′∈�}| f (τ ′, y′, u′)|2 dτ ′dudu′
)1/2

,

(4.39)

where we have denoted y′ := x ′ − (τ − τ ′)u. Making change of variable u → y′

and noting that the Jacobian
∣∣∣ dy′
du

∣∣∣ � 1
N3 > 0 for s � τ ′ < τ − 1

N , the right-hand

side of (4.39) is bounded by

CNm
2(κ−1)e−λ̃tαe− ν̄0(t−τ )

2 · sup
s�τ�t

‖eλ̃τα

f (τ )‖L2 ,
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which implies that

∫ t

s

∫
O4

U (τ ′, v′, v′′; τ, v) dv′′dτ ′ dv′dτ � CNm
2(κ−1)e−λ̃tα · sup

s�τ�t
‖eλ̃τα

f (τ )‖L2 .

Combining this with (4.36), (4.37), (4.38) yields that

|B̂2| � C

N
e−λ̃tα sup

s�τ�t
‖eλ̃τα

h(τ )‖L∞ + CNm
2(κ−1)e−λ̃tα · sup

s�τ�t
‖eλ̃τα

f (τ )‖L2 .

(4.40)

Substituting (4.35) and (4.40) into (4.34), one has (4.14). The proof of Lemma 4.5
is complete. ��

The following lemma gives the L2-decay of the solution:

Lemma 4.6. If
∫

�

∫
R3

f0(x, v)μ
1
2 (v) dxdv =

∫
�

∫
R3

g(t, x, v)μ
1
2 (v) dxdv = 0, (4.41)

and |θ − 1|L∞(∂�) is sufficiently small, then there exists a constant λ2 > 0 such
that for any t � 0,

‖ f (t)‖L2 � Ce−λ2tα‖w f0‖L∞ +
∫ t

0
e−λ2(t−s)α‖ν−1wg(s)‖L∞ ds. (4.42)

Proof. We first consider the case g ≡ 0. Multiplying both sides of (4.9) by f , we
have

1

2
‖ f (t)‖2L2 + 1

2

∫ t

0
| f (s)|2L2(γ+)

ds +
∫ t

0
〈L f (s), f (s)〉 ds

= 1

2
‖ f0‖2L2 + 1

2

∫ t

0
|Pγ f + r |2L2(γ−)

ds, (4.43)

where r is defined in (4.4). By the coercivity estimate (2.7), it holds that

∫ t

0
〈L f (s), f (s)〉ds � c0

∫ t

0
‖ν1/2(I − P) f (s)‖2L2 ds. (4.44)

Notice that Pγ r ≡ 0. Therefore, it follows that

1

2

∫ t

0
|Pγ f + r |2L2(γ−)

ds = 1

2

∫ t

0
|Pγ f (s)|2L2(γ+)

ds + 1

2

∫ t

0
|r(s)|2L2(γ−)

ds

� 1

2

∫ t

0
|Pγ f (s)|2L2(γ+)

ds + Cδ

∫ t

0
| f (s)|2L2(γ+)

ds.

(4.45)
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To estimate |Pγ f |L2(γ+), recall the cutoff function 1γ ε+ with respect to the near
grazing set γ ε+ defined in (4.6). Then we have

|Pγ f (s)|2L2(γ+)
=
∫

γ−
μ(v)|n(x) · v| dγ

×
(∫

n(x)·v′>0
f (s){1γ ε+ + 1γ ε+\γ ε+}√μ|n(x) · v′| dv′

)2

� Cε| f (s)|2L2(γ+)
+ C |e− |v|2

16 f (s)1γ+\γ ε+|2L2(γ+)
. (4.46)

Notice that

1

2
(∂t + v · ∇x )e

− |v|2
8 f 2 = e− |v|2

8 f L f,

which implies that
∫ t

0
‖(∂t + v · ∇x )e

− |v|2
8 f 2(s)‖L1ds � C

∫ t

0
‖e− |v|2

16 f (s)‖2L2 ds.

Therefore, by the trace estimate (4.8), we have
∫ t

0
|e− |v|2

16 f (s)1γ+\γ ε+|2L2(γ+)
ds =

∫ t

0
|e− |v|2

8 f 2(s)1γ+\γ ε+|L1(γ+)ds

� Cε‖e− |v|2
16 f0‖2L2 + Cε

∫ t

0
‖e− |v|2

16 f (s)‖2L2 ds

� Cε‖ f0‖2L2 + Cε

∫ t

0
‖ν1/2 f (s)‖2L2 ds.

Combining this with (4.46), we have
∫ t

0
| f (s)|2L2(γ+)

ds

=
∫ t

0
|Pγ f (s)|2L2(γ+)

ds +
∫ t

0
|(I − Pγ ) f (s)|2L2(γ+)

ds

� C
∫ t

0
|(I − Pγ ) f (s)|2L2(γ+)

ds + Cε

∫ t

0
| f (s)|2L2(γ+)

ds

+ Cε‖ f0‖2L2 + Cε

∫ t

0
‖ν1/2 f (s)‖2L2 ds

� C
∫ t

0
|(I − Pγ ) f (s)|2L2(γ+)

ds + C‖ f0‖2L2 + C
∫ t

0
‖ν1/2 f (s)‖2L2 ds.

(4.47)

Here we have taken ε > 0 suitably small in the last inequality. For the macroscopic
part P f , we multiply

√
μ to both sides of the first equation in (4.9) and use (4.41)

to get ∫
�

∫
R3

f (t, x, v)μ
1
2 (v) dxdv =

∫
�

∫
R3

f0(x, v)μ
1
2 (v) dxdv = 0.
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Then is a fashion similar to [21, Lemma 6.1], there exists a functional e f (t) with
|e f (t)| � ‖ f (t)‖2

L2 such that

∫ t

0
‖ν1/2P f (s)‖2L2 ds �

(
e f (t) − e f (0)

)
+
∫ t

0
‖ν1/2(I − P) f (s)‖2L2 ds

+
∫ t

0
|r(s)|2L2(γ−)

ds +
∫ t

0
|(I − Pγ ) f (s)|2L2(γ+)

ds.

�
(
e f (t) − e f (0)

)
+
∫ t

0
‖ν1/2(I − P) f (s)‖2L2 ds

+ δ

∫ t

0
| f (s)|2L2(γ+)

ds +
∫ t

0
|(I − Pγ ) f (s)|2L2(γ+)

ds.

Suitably combining the estimate above with (4.43), (4.44), (4.45) and (4.47) and
taking δ > 0 suitably small, we have

‖ f (t)‖2L2 +
∫ t

0
‖ν1/2 f (s)‖2L2 ds +

∫ t

0
| f (s)|2L2(γ+)

ds � C‖ f0‖2L2 . (4.48)

Next we need to obtain the weighted L2 estimate in order to obtain L2 decay of f .

Multiplying e

 |v|ζ

2 f to both sides of the first equation in (4.9), we have

1

2
‖e
 |·|ζ

4 f (t)‖2L2 + 1

2

∫ t

0
|e
 |·|ζ

4 f (s)|2L2(γ+)
ds +

∫ t

0
‖ν1/2e
 |·|ζ

4 f (s)‖2L2 ds

= 1

2
‖e
 |·|ζ

4 f0‖2L2 + 1

2

∫ t

0
|e
 |·|ζ

4 f (s)|2L2(γ−)
+
∫ t

0
〈K f (s), e


 |·|ζ
2 f (s)〉ds.

(4.49)

A direct computation shows that

∫ t

0
|e
 |·|ζ

4 f (s)|2L2(γ−)
� C

∫ t

0
|e
 |·|ζ

4 Pγ f (s)|2L2(γ−)
ds + C

∫ t

0
|e
 |·|ζ

4 r(s)|2L2(γ−)
ds

� C
∫ t

0
| f (s)|2L2(γ+)

ds. (4.50)

As for the last term on the right-hand side of (4.49), we use (2.15) to obtain

∫ t

0

∣∣∣∣〈K f (s), e

 |·|ζ
2 f (s)〉

∣∣∣∣ ds � η

∫ t

0
‖ν1/2e 
 |·|ζ

4 f (s)‖2L2 ds + Cη

∫ t

0
‖ν1/2 f (s)‖2L2 ds.

(4.51)

Therefore, suitably combining (4.48), (4.49), (4.50) and (4.51) and taking η > 0
suitably small, we have

‖e 
 |·|ζ
4 f (t)‖2L2 +

∫ t

0
‖e 
 |·|ζ

4 ν1/2 f (s)‖2L2 ds +
∫ t

0
|e 
 |·|ζ

4 f (s)|2L2(γ+)
ds � C‖e 
 |·|ζ

4 f0‖2L2 .
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Now we are ready for obtaining L2 decay of f in terms of the idea in [43]. Let
f̃ = eλ′(1+t)α f , with λ′ > 0 is a suitably small constant to be determined later.
Then applying the same energy estimate for obtaining (4.48), we have

‖ f̃ (t)‖2L2 +
∫ t

0
‖ν1/2 f̃ (s)‖2L2 ds � C‖ f0‖2L2 + Cλ′

∫ t

0
(s + 1)α−1‖ f̃ (s)‖2L2 ds.

(4.52)

To estimate the last term, we split the v-integration domain into

R
3
v = {1 + |v| � (1 + t)

1
ζ+|κ| } ∪ {1 + |v| < (1 + t)

1
ζ+|κ| } = M(t) ∪ Mc(t).

One one hand, we have
∫ t

0
(s + 1)α−1‖ f̃ 1M(s)(s)‖2L2 ds � C

∫ t

0

∥∥∥eλ′(1+|·|)ζ f (s)
∥∥∥2
L2

ds

� C
∫ t

0
‖ν1/2e
 |·|ζ

4 f (s)‖2L2 ds

� C‖e
 |·|ζ
4 f0‖2L2 ,

by taking λ′ > 0 suitably small. On the other hand, inMc(s), we have

(1 + s)α−1 � (1 + |v|)(α−1)·(ζ+|κ|)1Mc(s) � Cν(v)1Mc(s).

Therefore, we have
∫ t

0
(s + 1)α−1‖ f̃ 1Mc(s)(s)‖2L2 ds � C

∫ t

0
‖ν1/2 f̃ (s)‖2L2 ds.

Combining these estimates with (4.52) and taking λ′ > 0 suitably small, we have

‖ f̃ (t)‖2L2 +
∫ t

0
‖ν1/2 f̃ (s)‖2L2 ds � C‖e
 |·|ζ

4 f0‖2L2 + Cλ′
∫ t

0
‖ν1/2 f̃ (s)‖2L2 ds

� C‖e
 |·|ζ
4 f0‖2L2 . (4.53)

Then (4.42) for g ≡ 0 naturally follows. We denote G(t) as the solution operator
to the linear homogeneous problem (4.9) with g ≡ 0. Then for non-trivial g, from
Duhamel’s formula, it holds that

‖ f (t)‖L2 � ‖G(t) f0‖L2 +
∫ t

0
‖G(t − s)g(s)‖L2ds

� Ce−λ′tα‖e
 |·|ζ
4 f0‖L2 + C

∫ t

0
e−λ′(t−s)α‖e
 |·|ζ

4 g(s)‖L2ds

� Ce−λ′tα‖w f0‖L∞ +
∫ t

0
e−λ′(t−s)α‖ν−1wg(s)‖L∞ds. (4.54)

Here we have used (4.53) in the second inequality. Then (4.42) follows from (4.54)
by taking λ2 = λ′. The proof of Lemma 4.6 is complete. ��
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Proof of Proposition 4.4. The local existence and uniqueness of solutions to the
linear inhomogeneous problem (4.10) can be obtained in a similar way as in Propo-
sition 6.2. We omit the details for brevity. In what follows we will show the decay
estimate (4.13). Recall the finite-time estimate (4.14).We define λ0 = min{λ1

4 , λ2
4 },

and

m =
( η

2C

) 1
3+κ

T
− 5

2(3+κ)

0

with η > 0 suitably small to be determined later. Then we choose T0 suitably large
and δ > 0 suitably small, and also take N suitably large, such that

CT 5/2
0

{
m3+κ + δ + 2−T0 + 1

N

}
� η, CT 5/2

0 e− λ1
2 T α

0 � 1.

Then it holds from (4.14) with the choice of λ̃ = λ0 that for any s � 0 and any
t ∈ [s, s + T0],

‖h(t)‖L∞ + |h(t)|L∞(γ ) � e− λ1
2 (t−s)α‖h(s)‖L∞ + e−λ0tαD(t, s), (4.55)

where we have defined

D(t, s) = η sup
s�τ�t

eλ0τ
α {‖h(τ )‖L∞ + |h(τ )|L∞(γ )}

+ C sup
s�τ�t

‖eλ0τ
α

f (τ )‖L2 + C sup
s�τ�t

‖ν−1eλ0τ
α

wg(τ )‖L∞ . (4.56)

For any t > 0, there exists a positive integer n � 1, such that nT0 � t < (n+1)T0.
Then applying (4.55) to [0, T0], [T0, 2T0], · · · , [(n − 1)T0, nT0] inductively, we
have

‖h(nT0)‖L∞ � e− λ1
2 T α

0 ‖h(n − 1)T0‖L∞ + e−λ0(nT0)α D(nT0, [n − 1]T0)
� e−λ1T α

0 ‖h(n − 2)T0‖L∞ + e−λ0(nT0)α D(nT0, [n − 1]T0)
+ e− λ1T

α
0

2 −λ0([n−1]T0)α D([n − 1]T0, [n − 2]T0)
� e−λ1T α

0 ‖h(n − 2)T0‖L∞ + e−λ0(nT0)α
{
1 + e− λ1T

α
0

4

}
D(nT0, [n − 2]T0)

� · · ·
� e− λ1nT

α
0

2 ‖h0‖L∞ + e−λ0(nT0)α
{
1 + e− λ1T

α
0

4 + · · · + e− (n−1)λ1T
α
0

4

}
D(nT0, 0)

� Ce− λ1(nT0)α

2 ‖h0‖L∞ + Ce−λ0(nT0)αD(nT0, 0), (4.57)

where in the third inequality we have used 0 < λ0 � λ1
4 . Here we also have used

the elementary fact that xα + yα � (x + y)α for x , y � 0 and 0 � α � 1. Finally
applying (4.55) in [nT0, (n + 1)T0] and using (4.57), we have
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‖h(t)‖L∞ + |h(t)|L∞(γ )

� e− λ1(t−nT0)α

2 ‖h(nT0)‖L∞ + e−λ0tαD(t, nT0)

� e−λ0tαD(t, nT0) + e− λ1(t−nT0)α

2

{
Ce− λ1(nT0)α

2 ‖h0‖L∞ + Ce−λ0(nT0)α D(nT0, 0)

}

� Ce− λ1 t
α

2 ‖h0‖L∞ + Ce−λ0tαD(t, 0). (4.58)

Recall (4.56). Let η > 0 be suitably small, then (4.13) follows from (4.58) and
(4.42). Therefore, the proof of Proposition 4.4 is complete. ��

4.3. Proof of Theorem 1.2.

The local existence and uniqueness of the solution to nonlinear problem (4.1)
is provided in Proposition 6.2. In what follows we will show (1.17). Notice that for
any t > 0, it holds that

∫
�

∫
R3

√
μL√

μ f∗ f dxdv =
∫

�

∫
R3

√
μ�( f, f ) dxdv ≡ 0.

Then applying the linear theory Proposition 4.4 to f , we have

sup
0�s�t

eλ0sα {‖w f (s)‖L∞ + |w f (s)|L∞(γ )}

� C‖w f0‖L∞ + C sup
0�s�t

eλ0sα {‖ν−1wL√
μ f∗ f (s)‖L∞ + ‖ν−1w�( f, f )(s)‖L∞}

� C‖w f0‖L∞ + C{δ + sup
0�s�t

‖w f (s)‖L∞} · sup
0�s�t

eλ0sα ‖w f (s)‖L∞ , (4.59)

where we have used the nonlinear estimate (2.16). Now we make the a priori
assumption that

sup
0�s�t

eλ0sα‖w f (s)‖L∞ � 2C‖w f0‖L∞ .

Then from (4.59), we have

sup
0�s�t

eλ0sα {‖w f (s)‖L∞ + |w f (s)|L∞(γ )}

� C‖w f0‖L∞ + 2C2‖w f0‖L∞ · {δ + 2C‖w f0‖L∞} � 3C

2
‖w f0‖,

provided that both δ > 0 and ‖w f0‖L∞ are suitably small. This justifies that the
a priori assumption can be closed. Then from a standard continuity argument, the
global existence together with the estimate (1.17) follow. Therefore, the proof of
Theorem 1.2 is complete. Note that since the obtained time-independent solution
F(t, x, v) is nonnegative for all t � 0 and converges to the stationary solution
F∗(x, v) in large time, one then has the non-negativity of F∗(x, v). ��
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5. Dynamical Stability Under a Class of Large Perturbations

The section is devoted to provingTheorem1.3.Recall h(t, x, v) := w f (t, x, v).
In what follows, we make the following a priori assumption:

sup
0�s�T

‖h(s)‖L∞ + sup
0�s�T

|h(s)|L∞(γ ) � M̄, (5.1)

where T > 0 is an arbitrary constant and M̄ is a positive constant depending only
on M0 as given in (1.21). We emphasize here that M0 is not necessarily small and
will be determined at the end of the proof.

5.1. L p
x,v Estimates

First of all, we have

Lemma 5.1. ([30]) Let 1 < p < ∞. Assume that f , ∂t +v ·∇x f ∈ L p([0, T ]; L p)

and f 1γ− ∈ L p([0, T ]; L p(γ )). Then f ∈ C0([0, T ]; L p) and f 1γ+ ∈ L p([0, T ];
L p(γ )) and for almost every t ∈ [0, T ]:

‖ f (t)‖p
L p +

∫ t

0
| f (s)|pL p(γ+) = ‖ f0‖p

L p

+
∫ t

0
| f (s)|pL p(γ−) + p

∫ t

0

∫
�

∫
R3

{∂t f + v · ∂x f }| f |p−2 f. (5.2)

Moreover, we prove that the L p bound of solutions grows in time exponentially
related to M̄ . Note that M̄ is to be chosen depending only on M0, so that within a
finite time interval, the solution can be uniformly small in L p if it is so initially.

Lemma 5.2. Let 1 < p < ∞. Under the assumption (5.1), it holds that

‖ f (t)‖L p � eC3 M̄t‖ f0‖L p , (5.3)

for any t ∈ [0, T ]. Here C3 > 1 is a generic constant depending only on κ and p.

Proof. By Green’s identity (5.2), one has

‖ f (t)‖p
L p +

∫ t

0
| f (s)|pL p(γ+)ds + p

∫ t

0
‖ν1/p f (s)‖p

L pds

= ‖ f0‖p
L p +

∫ t

0
| f (s)|pL p(γ−) + p

∫ t

0
〈| f (s)|p−2 f (s), K f (s)〉ds

+ p
∫ t

0
〈| f (s)|p−2 f (s),−L√

μ f∗ f (s) + �( f, f )(s)〉ds. (5.4)

It is straightforward to see from (2.9) that K is bounded from L p to L p. Therefore,
one has
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∣∣∣∣
∫ t

0
〈| f (s)|p−2 f (s), K f (s)〉ds

∣∣∣∣ � C
∫ t

0
‖ f (s)‖p−1

L p · ‖K f (s)‖L pds

� C
∫ t

0
‖ f (s)‖p

L pds. (5.5)

As for the last term on the right-hand side of (5.4), it holds from (2.17) that

∣∣∣〈| f |p−2 f, −L√
μ f∗ f + �( f, f )〉

∣∣∣ � ‖ν1/p f ‖p−1
L p ‖ν−1/p′ ∣∣∣−L√

μ f∗ f + �( f, f )
∣∣∣ ‖L p

� C{‖w f∗‖L∞ + sup
0�s�t

‖w f (s)‖L∞} · ‖ν1/p f ‖p
L p

� C(M̄ + 1)‖ν1/p f ‖p
L p . (5.6)

To treat the boundary term | f |L p(γ−), the same as before, we introduce the cutoff
function 1γ ε+ near the grazing set γ ε+ defined in (4.6). Then by a direct computation,
we have

| f |pL p(γ−) � C |Pγ f |pL p(γ−) + C |r |pL p(γ−) � C |Pγ f |pL p(γ−) + Cδ p| f |pL p(γ+)

�
∫

γ−
μp/2(v)|n(x) · v| dγ

(∫
V(x)

√
μ(u){ f 1γ ε+ + f 1γ+\γ ε+}|n(x) · u| du

)p

+ Cδ p| f |pL p(γ+)

� C{ε p + Cδ p} · | f |pL p(γ+) + C | f 1γ+\γ ε+|pL p(γ+). (5.7)

From the trace estimate (4.8), it holds that
∫ t

0
| f 1γ+\γ ε+(s)|pL p(γ+)ds =

∫ t

0

∣∣∣| f |p1γ+\γ ε+(s)
∣∣∣
L1(γ+)

ds

� Cε,�

{
‖ f0‖p

L p +
∫ t

0
‖ f (s)‖p

L pds +
∫ t

0

∥∥[∂t + v · ∇x ]| f (s)|p
∥∥
L1 ds

}
.

(5.8)

Notice that

[∂t + v · ∇x ]| f |p = p| f |p−2 f {∂t f + v · ∇x f }
= p| f |p−2 f

{
−ν f + K f + �( f, f ) − L√

μ f∗ f
}

.

Then from (5.5) and (5.6), it holds that
∫ t

0

∥∥[∂t + v · ∇x ]| f (s)|p
∥∥
L1 ds � C(M̄ + 1)

∫ t

0
‖ f (s)‖p

L pds.

Combining this with (5.7) and (5.8), we obtain that
∫ t

0
| f (s)|pL p(γ−)ds � C{ε p + δ p} ·

∫ t

0
| f (s)|pL p(γ+)ds

+Cε‖ f0‖p
L p + Cε(M̄ + 1)

∫ t

0
‖ f (s)‖p

L pds. (5.9)
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Substituting (5.5), (5.6) and (5.9) into (5.4), and then taking both ε > 0 as well as
δ > 0 suitably small, we have

‖ f (t)‖p
L p +

∫ t

0
| f (s)|pL pds +

∫ t

0
‖ν1/p f (s)‖p

L pds

� C‖ f0‖p
L p + C(M̄ + 1)

∫ t

0
‖ f (s)‖p

L pds.

Then (5.3) follows from Gronwall’s inequality. Therefore, the proof of Lemma 5.2
is complete. ��

5.2. L∞
x,v-Estimate

Lemma 5.3. Under the a priori assumption (5.1), for t ∈ [0,min{T, T0}] and for
almost every (x, v) ∈ �̄ × R

3 \ γ0, it holds that:

|h(t, x, v)| �S(t) +
∫ t

max{t1,0}
I (t, s) |w�( f, f )(s, x − (t − s)v, v)| ds, (5.10)

where

S(t) =Ce−λtα M0 + CT 5/2
0

{
m3+κ + δ + 2−Ĉ4T

5/4
0 + 1

N
+ 1

Nβ−4

} · {M̄ + M̄2}

+ CN ,T0,m

{
sup

0�s�t
‖ f (s)‖L p + sup

0�s�t
‖ f (s)‖2L p

}
.

Here the positive constants T0 and N can be taken arbitrarily large and m can be
taken arbitrarily small.

Proof. We denote G̃(t) as the solution operator of (4.10) provided by Proposi-
tion 4.4. Then the solution h of (4.3) is given in terms of Duhamel’s formula as

h(t, x, v) =
(
G̃(t)h0

)
(t, x, v)

+
∫ t

0

(
G̃(t − s)[−wL√

μ f∗ f (s) + w�( f, f )(s)]ds
)

(t, x, v).

(5.11)

Using (4.13) and (2.16), we have

‖G̃(t)h0‖L∞ � Ce−λ0tα‖h0‖L∞ , (5.12)

and ∣∣∣∣
∫ t

0
G̃(t − s)wL√

μ f∗ f (s) ds

∣∣∣∣ � C‖w f∗‖L∞ ·
∫ t

0
e−λ0(t−s)α‖h(s)‖L∞ds

� Cδ sup
0�s�t

‖h(s)‖L∞ . (5.13)
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To estimate the last term on the right-hand side of (5.11), denoting

Z(t, x, v) :=
(
G̃(t − s)w�( f, f )(s)

)
(t, x, v)

and then applying the mild formulation (4.11) to Z(t, x, v), we obtain that

(
G̃(t − s)w�( f, f )

)
(t, x, v) =

3∑
i=1

Hi + 1{t1>s}
11∑
i=4

Hi , (5.14)

where

H1 = 1{t1�s} I (t, s)w�( f, f )(s, x − (t − s)v, v)

H2 + H3 =
∫ t

max{t1,s}
I (t, τ )[Km

w + Kc
w]Z(τ, x − (t − τ)v, v) dτ, H4 = I (t, t1)wr [Z ](t1, x1, v)

H5 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1�s<tl }w�( f, f )(s, xl − (tl − s)vl , vl ) d�l (s)

H6 + H7 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

∫ tl

s

k−1∑
l=1

1{tl+1�s<tl }[Km
w + Kc

w]Z(τ, xl − (tl − τ)vl , vl ) d�l (τ ) dτ

H8 + H9 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

∫ tl

tl+1

k−1∑
l=1

1{tl+1>s}[Km
w + Kc

w]Z(τ, xl − (tl − τ)vl , vl ) d�l (τ ) dτ

H10 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

k−2∑
l=1

1{tl+1>s}wr [Z ](tl+1, xl+1, vl ) d�l (tl+1)

H11 = I (t, t1)

w̃(v)

∫
∏k−1

j=1 V j

1{tk>s}Z(tk , xk , vk−1) d�k−1(tk),

and r is defined in (4.4). Here the same as before, k = Ĉ3T
5/4
0 such that (4.12)

holds for η = 5
16 . We first consider terms H2, H5 and H7 involving Km

w . On one
hand, similar for obtaining (4.19), we have

|H2| �
∫ t

max{t1,s}
I (t, τ )

∣∣Km
w Z(τ, x − (t − τ)v, v)

∣∣ dτ

�
∫ t

max{t1,s}
I (t, τ ){1{|v|�d�} + 1{|v|>d�}}

∣∣Km
w Z(τ, x − (t − τ)v, v)

∣∣ dτ

� Cm3+κ

∫ t

max{t1,s}
e−ν̄0(t−τ)‖G̃(τ − s)w�( f, f )(s)‖L∞ dτ

� Cm3+κ‖h(s)‖2L∞ ·
∫ t

max{t1,s}
e−ν̄0(t−τ)−λ0(τ−s)α dτ

� Cm3+κe−λ0(t−s)α‖h(s)‖2L∞ . (5.15)
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On the other hand, similar for obtaining (4.22), we have

|H6| �
k−1∑
l=1

l∑
m=1

C

{∫
∏l

j=1 V j

1{tl+1�s<tl } × 1{|vm |=max
[
|v1|,|v2|,...|vl |

]}e 5|vm |2
16

l∏
j=1

dσ j

×
∫ tl

s
e−λ1(t−τ)α‖Km

w Z(τ )‖L∞ dτ

}

�Ck2m3+κe−λ0(t−s)α‖h(s)‖2L∞ · sup
j

∣∣∣∣∣
∫
V j

e
5|v j |2
16 dσ j

∣∣∣∣∣
�Ck2m3+κe−λ0(t−s)α‖h(s)‖2L∞ . (5.16)

Similarly, it holds that

|H8| � Ck2m3+κe−λ0(t−s)α‖h(s)‖2L∞ . (5.17)

For the terms H4 and H10 involving r , we see from (4.13) and (4.4) that

|r [Z ](τ )|L∞(γ−) � Cδe−λ0(τ−s)α |h(s)|2L∞(γ+).

Therefore, similar for obtaining (5.16), we have

|H10| �
k−1∑
l=1

l∑
m=1

C

{∫
∏l

j=1 V j

1{tl+1>s}

× 1{|vm |=max
[
|v1|,|v2|,...|vl |

]}e 5|vm |2
16 e−λ1(t−tl+1)

α |r [Z ](tl+1)|L∞(γ−)

l∏
j=1

dσ j

}

�Ck2δe−λ0(t−s)α |h(s)|2L∞(γ+) · sup
j

∣∣∣∣∣
∫
V j

e
5|v j |2
16 dσ j

∣∣∣∣∣
�Ck2δe−λ0(t−s)α |h(s)|2L∞(γ+), (5.18)

and

|H4| � C1{t1>s} I (t, t1){1{|v|�d�} + 1{|v|>d�}} |wr [Z ](t1, x1, v)|
� Ce−ν̄0(t−t1) |wr [Z ](t1, x1, v)| � Cδe−λ0(t−s)α |h(s)|2L∞(γ+). (5.19)

For H11, we note that

|Z(tk, xk, vk−1)| �
∣∣∣G̃(tk − s)w�( f, f )(s)

∣∣∣
L∞(γ−)

� e−λ0(tk−s)α‖h(s)‖2L∞ .

Then by (4.12), we have

|H11| � Ce−λ0(t−s)α‖h(s)‖2L∞ ·
(
1

2

)Ĉ4T
5/4
0

. (5.20)
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For the terms H7 and H9 involving Kc
w, similar for obtaining (4.27), we have

|H8| � C
k−1∑
l=1

l∑
m=1

∫
�l−1

j=1V j

dσl−1 · · · dσ1

×
∫
Vl

∫
R3

∫ tl

s
e−λ1(t−τ)α1{tl+1�s<tl }e

5|vm |2
16 |kcw(vl , v

′)

Z(τ, xl − vl(tl − τ), v′)| dτ dv′dσl ,

and further split it as

|H8| � C
k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
R3

∫ tl

s
�̄dτdv′dσl

+ C
k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
R3

∫ tl

tl− 1
N

�̄dτdv′dσl

+ C
k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�̄dτdv′dσl

+ C
k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�̄dτdv′dσl ,

where

�̄ := e−λ1(t−τ)α1{tl+1�s<tl }e
5|vl |2
16 |kcw(vl , v

′)Z(τ, xl − vl(tl − τ), v′)|.
Then it follows that

|H8| � Ck2e−λ0(t−s)α

N
sup

s�τ�t
‖h(τ )‖2L∞

+ C
k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�̄dτdv′dσl ,

(5.21)

By Hölder inequality, it holds that

∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�̄dτdv′dσl

� C
∫ tl− 1

N

s
e−λ1(t−τ)αdτ

(∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

e− |vl |2
8 |kcw(vl , v

′)|p′
dv′dvl

) 1
p′

×
(∫

Vl∩{|vl |�N }

∫
{|v′|�2N }

1{tl+1�s<tl }|Z(τ, xl − (tl − τ)vl , v
′)|pdv′dvl

) 1
p

.

(5.22)
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Since 1 < p′ = p
p−1 < 3, then by (2.12) with a = 1, it holds that

∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

e− |vl |2
8 |kcw(vl , v

′)|p′
dv′dvl � Cmp′(κ−1).

Therefore, it holds that

Right-hand side of (5.22) � CNm
κ−1

∫ tl− 1
N

s
e−λ1(t−τ)α dτ

×
(∫

Vl∩{|vl |�N }

∫
{|v′|�2N }

1{tl+1�s<tl }
∣∣∣∣ Zw(τ, xl − (tl − τ)vl , v

′)
∣∣∣∣
p

dv′dvl

) 1
p

.

Note that yl := xl − (tl − τ)vl ∈ � for s � τ � tl − 1
N . Then making chang of

variable vl → yl , we obtain that

∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�̄dτdv′dσl � CN ,m

∫ tl− 1
N

s
e−λ1(t−τ)α

∥∥∥∥ Z(τ )

w

∥∥∥∥
L p

dτ.

Similarly, for obtaining (5.3), we have

∥∥∥∥ Z(τ )

w

∥∥∥∥
L p

=
∥∥∥∥∥
G̃(τ − s)w�( f, f )(s)

w

∥∥∥∥∥
L p

� CeC(τ−s)‖�( f, f )(s)‖L p

� CT0e
−λ0(τ−s)α‖�( f, f )(s)‖L p � CT0e

−λ0(τ−s)α‖h(s)‖L∞ · ‖ f (s)‖L p

� Ce−λ0(τ−s)α

N
‖h(s)‖2L∞ + CN ,T0e

−λ0(τ−s)α‖ f (s)‖2L p , (5.23)

which implies that

∫
Vl∩{|vl |�N }

∫
{|v′|�2N }

∫ tl− 1
N

s
�̄dτdv′dσl

� Ce−λ0(t−s)α

N
‖h(s)‖2L∞ + CN ,T0,me

−λ0(t−s)α‖ f (s)‖2L p .

Substituting this into (5.21), we have

|H8| � Ck2e−λ0(t−s)α

N
sup

0�s�t
‖h(s)‖2L∞ + CN ,T0,me

−λ0(t−s)α sup
0�s�t

‖ f (s)‖2L p .

(5.24)

Similarly, we have

|H10| � Ck2e−λ0(t−s)α

N
sup

0�s�t
‖h(s)‖2L∞ + CN ,T0,me

−λ0(t−s)α sup
0�s�t

‖ f (s)‖2L p .

(5.25)
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For H5, similar as (4.22), we have

∫ t

0
|H5|ds � C

∫ t

0
e−λ1(t−s)αds

k−1∑
l=1

l∑
m=1

∫
�l−1

j=1V j

dσl−1 · · · dσ1

×
∫
Vl

∫
R3

1{tl+1�s<tl }e
5|vm |2

16 |w�( f, f )(s, xl − (tl − s)vl , vl)| dτdv′dσl .

Then it follows that

∫ t

0
|H5|ds � C

∫ t

0
e−λ1(t−s)α ‖h(s)‖L∞ds

k−1∑
l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1

×
∫
Vl

e− |vl |2
8 1{tl+1�s<tl }dvl

{∫
R3

∣∣h(s, xl − (tl − s)vl , v
′)
∣∣p 〈v′〉−4−p(β−4) dv′

}1/p

� C
∫ t

0
e−λ1(t−s)α ‖h(s)‖L∞ds

×
( k−1∑

l=1

l−1∑
m=1

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1
{∫

Vl

∫
R3

�̃dvl dv
′
}1/p )

, (5.26)

where we have used (2.20) and (2.21) in the first inequality, and also denoted that

�̃ := e− |vl |2
8 1{tl+1�s<tl }

∣∣h(s, xl − (tl − s)vl , v
′)
∣∣p 〈v′〉−4−p(β−4).

Now, we consider the integral in (5.26) over either {|vl | � N } or {|vl | � N , |v′| �
N } or {|vl | � N , |v′| � N , tl − 1/N � s � tl} or {|vl | � N , |v′| � N , 0 �
s � tl − 1/N }. Over {|vl | � N } or {|vl | � N , |v′| � N } or {|vl | � N , |v′| �
N , tl − 1/N � s � tl}, it is bounded by

Ck2
(
1

N
+ 1

Nβ−4

)
M̄2.

Over {|vl | � N , |v′| � N , 0 � s � tl − 1/N }, it is bounded by

CN

k−1∑
l=1

l−1∑
m=1

∫ t

0
e−λ1(t−s)α‖h(s)‖L∞ds

∫
�l−1

j=1V j

e
5|vm |2

16 dσl−1 · · · dσ1

×
{∫

Vl∩{|vl |�N }

∫
{|v′|�N }

e− |vl |2
8 1{tl+1�s<tl− 1

N }
∣∣ f (s, xl − (tl − s)vl , v

′)
∣∣p dvldv′

}1/p

� CNk
2
∫ t

0
e−λ1(t−s)α‖h(s)‖L∞ · ‖ f (s)‖L pds � Ck2

N
M̄2 + CNk

2 sup
0�s�t

‖ f (s)‖2L p ,

where we have used the change of variable vl → yl := xl − (tl − s)vl above.
Therefore, for H5, it holds that∫ t

0
|H5| ds � Ck2

(
1

N
+ 1

Nβ−4

)
M̄2 + CNk

2 sup
0�s�t

‖ f (s)‖2L p . (5.27)
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Substituting (5.15), (5.16), (5.17), (5.18), (5.19), (5.20), (5.24) (5.25) and (5.27)
into (5.14), we have

∫ t

0

∣∣∣
(
G̃(t − s)w�( f, f )(s)

)
(t, x, v)

∣∣∣ ds

�
∫ t

0
1{t1�s} I (t, s)w�( f, f )(s, x − (t − s)v, v) ds

+
∫ t

0
ds
∫ t

max{t1,s}
I (t, τ ) dτ

∫
R3

∣∣∣kcw(v, u)
(
G̃(τ − s)w�( f, f )(s)

)
(τ, x − (t − τ)v, u)

∣∣∣ du

+ CT 5/2
0 M̄2{m3+κ + δ + 2−Ĉ4T

5/4
0 + 1

N
+ 1

Nβ−4

}+ CN ,T0,m sup
0�s�t

‖ f (s)‖2L p

:= H12 + H13 + H14. (5.28)

To further estimate H13, we denote x ′ = x − (t − τ)v and τ ′
1 = t1(τ, x ′, u). Then

by Fubini Theorem and (5.28), it holds that

|H13| =
∣∣∣∣
∫ t

max{t1,0}

∫
R3

I (t, τ )kcw(v, u) dudτ
∫ τ

0

(
G̃(τ − s)w�( f, f )(s)

)
(τ, x ′, u) ds

∣∣∣∣
� H13,1 + H13,2 + H13,3, (5.29)

where

H13,1 =
∫ t

max{t1,0}

∫ τ

0

∫
R3

|kcw(v, u)|1{t ′1�s} I (t, s)
∣∣w�( f, f )(s, x ′ − (τ − s)u, u)

∣∣ dudsdτ,

H13,2 =
∫ t

max{t1,0}

∫ τ

0

∫
R3

∫ τ

max{t ′1,s}
I (t, τ ′)|kcw(v, u)| dτ ′dudsdτ

×
∫
R3

∣∣∣kcw(u, u′)
(
G̃(τ ′ − s)w�( f, f )(s)

)
(τ ′, x ′ − (τ − τ ′)u, u′)

∣∣∣ du′,

H13,3 = |H14| ·
∫ t

max{t1,0}

∫
R3

I (t, τ )|kcw(v, u)| dudτ.

Similarly to before, we have

|H13,3| � |H14| ·
∫ t

max{t1,0}
I (t, τ ){1{|v|�d�} + 1{|v|>d�}} dτ

∫
R3

|kcw(v, u)| du

� C |H14| ·
∫ t

max{t1,0}
e−ν̄0(t−τ) dτ � CH14. (5.30)

For H13,1, we have from (2.20) and (2.21) that

|H13,1| � C
∫ t

max{t1,0}
dτ
∫
R3

|kcw(v, u)| du
∫ τ

0
1{t ′1�s}e−ν̄0(t−s)‖h(s)‖L∞ds

×
(∫

R3

∣∣h(s, x ′ − (τ − s)u, u′)
∣∣p 〈u′〉−4−p(β−4)du′

)1/p

.

Now we divide the estimates by the following cases:



994 Renjun Duan, Feimin Huang, Yong Wang & Zhu Zhang

Case 1. |v| � N . We have from (2.14) that

|H13,1| � C

N
sup

0�s�t
‖h(s)‖2L∞ .

Case 2. |v| � N , |u| � 2N . In this case, we have |v − u| � N , so that by (2.14),
∫

{|u|�2N }
|kcw(v, u)| du � e− N2

32

∫
{|u|�2N }

|kcw(v, u)e
|v−u|2

32 | du � Ce− N2
32 .

It then follows that

|H13,1| � Ce− N2
32 sup

0�s�t
‖h(s)‖2L∞ .

Case 3. |v| � N , |u| � 2N , |u′| > N . By β > 4, it holds that

|H13,1| � C

Nβ−4 sup
0�s�t

‖h(s)‖2L∞ .

Case 4. |v| � N , |u| � 2N , |u′| � N , τ − 1/N < s � τ . It is straightforward to
see that

|H13,1| � C

N
sup

0�s�t
‖h(s)‖2L∞ .

Case 5. |v| � N , |u| � 2N , |u′ � N , 0 � s � τ − 1/N . By Hölder’s inequality,
we have

|H13,1| � CN sup
0�s�t

‖h(s)‖L∞ ·
∫ t

max{t1,0}

∫ τ− 1
N

0
e−ν̄0(t−s)dsdτ

(∫
{|u|�2N }

|kcw(v, u)|p′
du

)1/p′

·
(∫

{|u|�2N }

∫
{|u′ |�N }

1{t ′1�s}
∣∣ f (s, x ′ − (τ − s)u, u′)

∣∣p dudu′
)1/p

� CN ,m sup
0�s�t

‖h(s)‖L∞ · sup
0�s�t

‖ f (s)‖L p � C

N
sup

0�s�t
‖h(s)‖2L∞ + CN ,m sup

0�s�t
‖ f (s)‖2L p .

Collecting the estimates for these cases, we have

|H13,1| � C

(
1

N
+ 1

Nβ−4

)
sup

0�s�t
‖h(s)‖2L∞ + CN ,m sup

0�s�t
‖ f (s)‖2L p . (5.31)

Similarly, for H13,2, we have

|H13,2| �
∫ t

max{t1,0}

∫ τ

0
dsdτ

∫ τ

s
e−ν̄0(t−τ ′) dτ ′

×
∫
R3

∫
R3

∣∣∣kcw(v, u)kcw(u, u′)1{max{t ′1,s}�τ ′�τ }Z(τ ′, x ′ − (τ − τ ′)u, u′)
∣∣∣ dudu′

�C

N
sup

0�s�t
‖h(s)‖2L∞ + CN

∫ t

max{t1,0}

∫ τ

0
dsdτ

∫ τ− 1
N

s
e−ν̄0(t−τ ′) dτ ′
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×
(∫

{|u|�2N }

∫
{|u′ |�3N }

∣∣kcw(v, u)kcw(u, u′)
∣∣p′

dudu′
)1/p′

×
(∫

{|u|�2N }

∫
{|u′ |�3N }

1{max{t ′1,s}�τ ′�τ }
∣∣∣∣ Zw (τ ′, x ′ − (τ − τ ′)u, u′)

∣∣∣∣
p

dudu′
)1/p

� C

N
sup

0�s�t
‖h(s)‖2L∞ + CN ,m

∫ t

max{t1,0}

∫ τ

0
dsdτ

∫ τ− 1
N

s
e−ν̄0(t−τ ′)

∥∥∥∥ Z(τ ′)
w

∥∥∥∥
L p

dτ ′

� C

N
sup

0�s�t
‖h(s)‖2L∞ + CN ,T0,m sup

0�s�t
‖ f (s)‖2L p . (5.32)

Here we have used (5.23) in the last inequality. Substituting (5.30), (5.31) and
(5.32) into (5.29), we have
∫ t

0

∣∣∣
(
G̃(t − s)w�( f, f )(s)

)
(t, x, v)

∣∣∣ ds

�
∫ t

0
1{t1�s} I (t, s)w�( f, f )(s, x − (t − s)v, v) ds

+ CT 5/2
0

{
m3+κ + δ + 2−Ĉ4T

5/4
0 + 1

N
+ 1

Nβ−4

}
M̄2 + CN ,T0,m sup

0�s�t
‖ f (s)‖2L p .

(5.33)

Then (5.10) naturally follows from (5.12), (5.13) and (5.33). Therefore, the proof
of Lemma 5.3 is complete. ��
Lemma 5.4. Under the assumption (5.1), there exists a constantC > 0 independent
of t , such that, for any 0 � t � min{T, T0}, it holds that

‖h(t)‖L∞ + |h(t)|L∞(γ ) �CM0e
−λ0tα

(
1 +

∫ t

0
‖h(τ )‖L∞ dτ

)

+ CT 5/2
0

{
m3+κ + δ + 2−Ĉ4T

5/4
0 + 1

N
+ 1

Nβ−4

}
· {M̄ + M̄3}

+ CN ,T0,m

{
sup

0�s�t
‖ f (s)‖L p + sup

0�s�t
‖ f (s)‖3L p

}
. (5.34)

Here the positive constants T0 and N can be chosen arbitrarily large and m can
be chosen arbitrarily small.

Proof. We denote x ′ := x − (t − s)v and t ′1 := t1(s, x ′, u). It suffices to consider
the last term on the right-hand side of (5.10). By (2.20) and (2.21), it holds that

∫ t

max{t1,0}
I (t, s) |w�( f, f )(s, x − (t − s)v, u)| duds

�
∫ t

max{t1,0}
e−ν̄0(t−s)‖w f (s)‖L∞ds

(∫
R3

|h(s, x − (t − s)v, u)|p 〈u〉−4−p(β−4)
)1/p
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� C

Nβ−4 sup
0�s�t

‖h(s)‖2L∞

+ C
∫ t

max{t1,0}
e−ν̄0(t−s)‖w f (s)‖L∞ds ×

(∫
{|u|�N }

∣∣h(s, x ′, u)
∣∣p 〈u〉−4−p(β−4)

)1/p

.

Notice that x ′ := x − (t − s)v ∈ �. Then applying (5.10) to h(s, x ′, u), we have
∫ t

max{t1,0}
I (t, s) |w�( f, f )(s, x − (t − s)v, u)| dudτ

� C

Nβ−4 sup
0�s�t

‖h(s)‖2L∞ + R1 + R2, (5.35)

where we have defined

R1 = C
∫ t

max{t1,0}
e−ν̄0(t−s)‖w f (s)‖L∞ S(s) ds,

and

R2 = C
∫ t

max{t1,0}
e−ν̄0(t−s)‖w f (s)‖L∞ds ×

(∫
{|u|�N }

〈u〉−4−p(β−4)du

×
{∫ s

max{t ′1,0}
e−ν̄0(s−s′)|w�( f, f )(s′, x ′ − (s − s′)u, u)| dτ ′

}p)1/p

.

A direct computation shows that

|R1| �C
∫ t

max{t1,0}
e−ν̄0(t−s)‖w f (s)‖L∞e−λ0sα ‖h0‖L∞ds

+ CT 5/2
0 sup

0�s�t
‖h(s)‖L∞ × {

m3+κ + δ + 2−T0 + 1

N
+ 1

Nβ−4

} · {M̄ + M̄2}

+ CN ,T0,m sup
0�s�t

‖h(s)‖L∞ · { sup
0�s�t

‖ f (s)‖L p + sup
0�s�t

‖ f (s)‖2L p

}

�CM0e
−λ0tα

∫ t

0
‖h(s)‖L∞ds + CT 5/2

0

{
m3+κ + δ + 2−T0 + 1

N
+ 1

Nβ−4

}
· {M̄ + M̄3}

+ CN ,T0,m
{

sup
0�s�t

‖ f (s)‖L p + sup
0�s�t

‖ f (s)‖3L p

}
. (5.36)

For R2, using (2.20) and (2.21) again, we have

|R2| �C sup
0�s�t

‖h(s)‖2L∞ ·
∫ t

max{t1,0}
e−ν̄0(t−s)ds

×
(∫

|u|�N

∫ τ

max{t ′1,0}

∫
R3

e−ν̄0(s−s′)|h(s′, x ′ − (s − s′)u, u′)|p[〈u〉〈u′〉]−4−p(β−4)
)1/p

�C

(
1

N
+ 1

Nβ−4

)
sup

0�s�t
‖h(s)‖3L∞ + CN sup

0�s�t
‖h(s)‖2L∞ ·

∫ t

max{t1,0}
e−ν̄0(t−s)ds
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×
(∫ s− 1

N

0
e−ν̄0(s−s′)ds′

∫
|u|�N

∫
|u′ |�N

1max{t ′1,0}�s′�s | f (s′, x ′ − (s − s′)u, u′)|pdudu′
)1/p

�C

(
1

N
+ 1

Nβ−4

)
sup

0�s�t
‖h(s)‖3L∞ + CN sup

0�s�t
‖ f (s)‖3L p . (5.37)

Here we have used the change of variable u → y′ := x ′ − (s − s′)u. Then from
combining (5.10), (5.35), (5.36) and (5.37), (5.34) follows. Therefore, the proof of
Lemma 5.4 is complete. ��

5.3. Proof of Theorem 1.3.

Let

E(t) := 1 +
∫ t

0

(‖h(s)‖L∞+|h(s)|L∞(γ )

)
ds.

Then it holds from (5.34) that

‖h(t)‖L∞ + |h(t)|L∞(γ ) = E ′(t) � CM0e
−λ0tαE(t) + D, (5.38)

where

D := CT 5/2
0

{
m3+κ + δ + 1

N
+ 1

Nβ−4

}
M̄3 + 2−T0 M̄3

+CN ,T0,m

{
eC3 M̄T0‖ f0‖L p +

(
eC3 M̄T0‖ f0‖L p

)3}
.

From (5.38), we have

E(t) � E(0)eCM0
∫ t
0 e

−λ0s
α
ds + D ·

∫ t

0
eCM0

∫ t
s e

−λ0τα
dτds � (1 + Dt)eCM0 .

(5.39)

Substituting (5.39) into (5.38), we have

‖h(t)‖L∞ + |h(t)|L∞(γ ) � CM0e
CM0 (1 + Dt)e−λ0tα + D � eCM0 (1 + D)e− λ0 t

α

2 + D.

(5.40)

Take M̄ = 2eCM0 , ε̃ = min{ε0, (2C0)
−1} where C0 and ε0 are the same as ones in

Theorem 1.2, and

T0 := max

⎧⎨
⎩3

(
log2 M̄ + 1

)+ | log2 ε̃|,
(
2
(
log 4M̄ + | log ε̃|)

λ0

)1/α
⎫⎬
⎭ ,

such that 2−T0 M̄3 � ε̃
8 and M̄e− λ0T

α
0

2 � ε̃
4 . Then it holds that

CT 5/2
0 δM̄3 � C4

[
| log ε̃| 5

2α + 1
]
eC4M0δ,
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for some universal constant C4 > 1. Let

0 < δ � δ0 <

⎛
⎝ ε̃

16C4

[
| log ε̃| 5

2α + 1
]
⎞
⎠

2

,

and 0 < M0 � | log δ|
2C4

. Then it is straightforward to see that CT 5/2
0 δM̄3 � ε̃

16 .
Now we take 0 < m < 1 suitably small and N suitably large, and finally take
‖ f0‖L p � ε1, with ε1 > 0 sufficiently small, such that

CT 5/2
0

{
m3+κ + 1

N
+ 1

Nβ−4

}
M̄3 + CN ,T0,m

{
eC3 M̄T0‖ f0‖L p +

(
eC3 M̄T0‖ f0‖L p

)3}
� ε̃

16
.

Therefore, we have D � ε̃
4 . From (5.40), it holds, for any t ∈ [0, T0], that

‖h(t)‖L∞ + |h(t)|L∞(γ ) � eCM0(1 + D) + D �
(
1 + ε̃

4

)
eCM0 + ε̃

4
� 3M̄

4
.

(5.41)

Notice that at t = T0, we have from (5.40) that

‖h(T0)‖L∞ � eCM0(1 + D)e− λ0T
α
0

2 + D � ε̃

2
.

Then from (1.17), we have, for t > T0,

‖h(t)‖L∞ + |h(t)|L∞(γ ) � C0‖h(T0)‖L∞ � C0ε̃ � 3M̄

4
. (5.42)

A combination of (5.41) and (5.42) justifies that the a priori assumption (5.1) can
be closed by our choice. Notice that the local existence has been established in
Proposition 6.2. Then the global existence of the solution follows from a standard
continuity argument. For large time behavior, it holds, for t ∈ [0, T0], that

‖h(t)‖L∞ + |h(t)|L∞(γ ) � M̄ � e2CM0eλ0T α
0 e−λ0tα � C5e

C5M0e−λ0tα , (5.43)

for some constant C5 > 1. For t > T0, it holds from (1.17) that

‖h(t)‖L∞ + |h(t)|L∞(γ ) � C0e
−λ0(t−T0)α‖h(T0)‖L∞ � C0C5e

C5M0e−λ0tα .

(5.44)

By taking C2 = C0C5, (1.23) follows from (5.43) and (5.44). Therefore, the proof
of Theorem 1.3 is complete. ��
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6. Appendix

6.1. An Iteration Lemma

Lemma 6.1. Consider a sequence {ai }∞i=0 with each ai � 0. For any fixed k ∈ N+,
we denote

Ak
i = max{ai , ai+1, . . . , ai+k}.

(1) Assume D � 0. If ai+1+k � 1
8 A

k
i + D for i = 0, 1, . . ., then it holds that

Ak
i �

(
1

8

)[ i
k+1

]
· max{Ak

0, Ak
1, · · · , Ak

k} + 8 + k

7
D, for i � k + 1. (6.1)

(2) Let 0 � η < 1 with ηk+1 � 1
4 . If ai+1+k � 1

8 A
k
i +Ck · ηi+k+1 for i = 0, 1, . . .,

then it holds that

Ak
i �

(
1

8

)[ i
k+1

]
· max{Ak

0, Ak
1, . . . , Ak

k} + 2Ck
8 + k

7
ηi+k, for i � k + 1.

(6.2)

Proof. We first show (6.1). By iteration in i � 0, we obtain that

ai+1+2k � 1

8
Ak
i+k + D = 1

8
max{ai+2k , ai+2k−1, . . . , ai+k} + D

� 1

8
max

{
ai+2k , Ak

i+k−1

}
+ D � 1

8
max

{
1

8
Ak
i+k−1 + D, Ak

i+k−1

}
+ D

� 1

8
Ak
i+k−1 +

(
1 + 1

8

)
D · · · � 1

8
Ak
i +

(
1 + k

8

)
D. (6.3)

Similarly, for all j = 0, 1, . . . , k − 1, we also have

ai+1+ j+k � 1

8
Ak
i + 8 + k

8
D. (6.4)
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Therefore, for 1 � i
k+1 ∈ N+, it follows from (6.3) and (6.4) that

Ak
i+1+k = max

{
ai+1+2k, ai+2k, · · · , ai+1+k

}

� 1

8
Ak
i + 8 + k

8
D �

(
1

8

)2

Ak
i−2(k+1) + 1

8

8 + k

8
D + 8 + k

8
D

=
(
1

8

)2

Ak
i−2(k+1) + 8 + k

8

(
1 + 1

8

)
D = · · ·

�
(
1

8

) i
k+1

Ak
0 + 8 + k

8

(
1 + 1

8
+ (1

8

)2 + · · ·
)
D

�
(
1

8

) i
k+1

Ak
0 + 8 + k

7
D. (6.5)

If i
k+1 /∈ N+ and i = (k + 1)

[
i

k+1

]
+ j for some 1 � j � k, then by similar

arguments we have

Ak
i+1+k �

(
1

8

)[ i
k+1

]
+1

Ak
j + 8 + k

7
D. (6.6)

Hence, from (6.5) and (6.6), we complete the proof of (6.1).
It remains to show (6.2). Noting η < 1 and by similar arguments as in (6.3) and
(6.4), we can get

ai+ j+k+1 � 1

8
Ak
i + Ck

(
1 + k

8

)
ηi+k+1, for 0 � j � k. (6.7)

Hence, for 1 � i
k+1 ∈ N+, noting 1

8 · η−k−1 � 1
2 and using (6.7), then we have

Ak
i+k+1 = max{ai+2k+1, · · · , ai+k+1} � 1

8
Ak
i + Ck

(
1 + k

8

)
ηi+k+1

� · · · �
(
1

8

) i
k+1

Ak
0 + Ck

(
1 + k

8

)
ηi+k+1 ·

{
1 + 1

8
η−k−1 +

(
1

8
η−k−1

)2

+ · · ·
}

�
(
1

8

) i
k+1

Ak
0 + 2Ck

(
1 + k

8

)
ηi+k+1. (6.8)

If i
k+1 /∈ N+ and i = (k + 1)

[
i

k+1

]
+ j for some 1 � j � k, then by similar

arguments as above, we have

Ak
i+k+1 �

(
1

8

)[ i
k+1

]
+1

Ak
j + 2Ck

(
1 + k

8

)
ηi+k+1. (6.9)

Thus we prove (6.2) from (6.8) and (6.9). Therefore the proof of lemma 6.1 is
complete. ��
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6.2. Local-in-Time Existence

Proposition 6.2. Let w(v) be the weight function defined in (1.9). Assume

|θ − θ0|L∞(∂�) = δ � 1, F0(x, v) = F∗(x, v) + μ
1
2 (v) f0(x, v) � 0

and ‖w f0‖L∞ := M0 < ∞. Then there exists a positive time

t̂ :=
[
Ĉ

(
1 + M0

)]−1

such that the IBVP (1.1), (1.5) and (1.13) has a unique nonnegative solution

F(t, x, v) = F∗(x, v) + μ
1
2 (v) f (t, x, v) � 0

in [0, t̂] satisfying

sup
0�t�t̂

{
‖w f (t)‖L∞ + |w f (t)|L∞(γ )

}
� 2C̃(M0 + 1).

Here C̃ > 0 and Ĉ > 1 are generic constants independent of M0. Moreover,
if the domain � is strictly convex, θ(x) is continuous over ∂�, the initial data
F0(x, v) is continuous except on γ0 and satisfies (1.19) then the solution F(t, x, v)

is continuous in [0, t̂] × {� × R
3 \ γ0}.

Proof. We consider the following iteration scheme:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t F
n+1 + v · ∇x F

n+1 + Fn+1 · R(Fn) = Q+(Fn, Fn),

Fn+1(t, x, v)

∣∣∣
t=0

= F0(x, v) � 0,

Fn+1(t, x, v)|γ− = μθ(x, v)

∫
n(x)·u>0

Fn+1(t, x, u){u · n(x)} du,

F0(t, x, v) = μ(v),

(6.10)

where

R(Fn)(t, x, v) =
∫
R3×S2

B(v − u, ω)Fn(t, x, u) dudω.

Let

f n+1(t, x, v) = Fn+1(t, x, v) − F∗(x, v)

μ
1
2 (v)

, hn+1(t, x, v) = w f n+1(t, x, v).

Then the equation of hn+1 reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t h
n+1 + v · ∇x h

n+1 + hn+1 · R(Fn) = wK∗ f n + w�+( f n, f n),

hn+1(t, x, v)

∣∣∣
t=0

= h0(x, v),

hn+1
∣∣∣
γ−

= 1

w̃(v)

∫
{n(x)·u>0}

hn+1w̃(u) dσ(x) + w(v)
μθ − μ√

μ

∫
n(x)·u>0

hn+1w̃(u) dσ(x),

h0(t, x, v) = −w f∗(x, v),

(6.11)
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where we have denoted

K∗ f n := −√
μ

−1 {R(
√

μ f n)F∗ + �+(
√

μ f n, F∗) + �+(F∗,
√

μ f n)
}
.

Now we shall use the induction on n = 0, 1, . . . to show that there exists a positive
time t̂1 > 0, independent of n, such that (6.10) or equivalently (6.11) admits a
unique mild solution on the time interval [0, t̂1], and the following uniform bound
and positivity hold true:

‖hn(t)‖L∞ + |hn(t)|L∞(γ ) � 2C̃[‖h0‖L∞ + 1], (6.12)

and

Fn(t, x, v) � 0, (6.13)

for 0 � t � t̂ =
(
Ĉ{1 + ‖h0‖L∞}

)−1
and suitably chosen constants C̃ > 0 and Ĉ

independent of t . Thanks to the fact that

‖h0(t)‖L∞ + |h0(t)|L∞(γ ) � ‖w f∗‖L∞ + |w f∗|L∞(γ ) � Cδ,

we see that (6.12) is obviously true for n = 0. To proceed, we assume that (6.12)
holds true up to n � 0. Since Fn � 0, it holds that R(Fn) � 0. Then by using
a similar argument as in [19, Lemma 3.4], one can construct the solution operator
Gn(t) to the following linear problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t h + v · ∇x h + R(Fn)h = 0, t > 0, x ∈ �, v ∈ R
3,

h(t, x, v)|t=0 = h0(x, v),

h(t, x, v)

∣∣∣
γ−

= 1

w̃(v)

∫
n(x)·u>0

h(t, x, u)w̃(u) dσ(x) + w(v)
μθ − μ√

μ

∫
n(x)·u>0

h(t, x, u)w̃(u) dσ(x)

over (0, ρ) for some universal constant ρ > 0 independent of n, provided that
|θ − 1|L∞(∂�) is sufficiently small. Moreover, Gn(t) satisfies the estimate

‖Gn(t)h0‖L∞ + |Gn(t)h0|L∞(γ ) � Cρ‖h0‖L∞ . (6.14)

Here the constant Cρ > 0 is independent of n. Then applying Duhamel’s formula
to (6.11), we have, for 0 < t < ρ, that

hn+1(t) = Gn(t, 0)h0 +
∫ t

0
Gn(t, s)[wK∗ f n(s) + w�+( f n, f n)(s)]ds. (6.15)

Taking L∞-norm on the both sides of (6.15) and using (2.16) and (6.14), we have

‖hn+1(t)‖L∞ + |hn+1(t)|L∞(γ )

� Cρ‖h0‖L∞ + Cρ

∫ t

0
‖wK∗ f n(s)‖L∞ + ‖w�+( f n, f n)(s)‖L∞ds

� C‖h0‖L∞ + C
∫ t

0
‖hn(s)‖L∞ + ‖hn(s)‖2L∞ds

� C3‖h0‖L∞ + C3t · { sup
0�s�t

‖hn(s)‖L∞ + sup
0�s�t

‖hn(s)‖2L∞} (6.16)
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for some constants C3 > 1. Now we take C̃ = C3 and Ĉ = 8C2
3 . Then by the

induction hypothesis (6.12), for any 0 < t < t̂ , it follows from (6.16) that

‖hn+1(t)‖L∞ + |hn+1(t)|L∞(γ ) � C3{‖h0‖L∞ + 1} · {1 + 2C3t[1 + 2C3]
· [1 + ‖h0‖L∞]}

� 2C3{‖h0‖L∞ + 1}.
This then proves (6.12) for n+1. Next we show the non-negativity (6.13) for n+1.
We denote that

I n(t, s) := exp

{
−
∫ t

s
[R(Fn)](τ, Xcl(τ ), Vcl(τ )) dτ

}

and

d�n
l (τ ) :=

⎧⎨
⎩

k−1∏
j=l+1

dσ j

⎫⎬
⎭ · I n(tl , τ )[vl · n(vl)]dvl

·
l−1∏
j=1

{
I n(t j , t j+1)μθ (x j+1, v j )[v j · n(x j )]dv j

}
.

Then we have the following mild formulation for Fn+1:

Fn+1(t, x, v) = 1{t1�0}
{
I n(t, 0)F0(x − vt, v)

+
∫ t

0
I n(t, s)Q+(Fn, Fn)(s, x − v(t − s), v) ds

}

+ 1{t1>0}μθ (x1, v)I n(t, t1)

{∫
�k−1

j=1V j

k−1∑
l=1

1{tl+1�0<tl }F0(x − vt, v) d�n
l (0)

+
∫

�k−1
j=1V j

k−1∑
l=1

∫ tl

0
1{tl+1�0<tl }Q

+(Fn, Fn)(τ, Xcl (τ ), Vcl (τ )) d�m
l (τ ) dτ

+
∫

�k−1
j=1V j

k−1∑
l=1

∫ tl

tl+1

1{tl+1�0<tl }Q
+(Fn, Fn)(τ, Xcl (τ ), Vcl (τ )) d�m

l (τ ) dτ

}

+ 1{t1>0}μθ (x1, v)I n(t, t1)
∫

�k−1
j=1V j

1{tk>0}Fn+1(tk , xk , vk−1) d�
n
k−1(tk),

(6.17)

for t > 0, x ∈ �̄ × R
3 \ γ0 ∪ γ− and integer k � 1. From (6.12), it holds that

|Fn+1(t, x, v)| =
∣∣∣∣F∗(x, v) + μ

1
2 (v)

hn+1(t, x, v)

w(v)

∣∣∣∣ � C(1 + ‖h0‖L∞)μ
1
2 (v)

(6.18)

for some constant C > 0. Furthermore, a direct computation shows that

0 < μθ(x j+1, v j ) � 1

(1 − δ)2
exp

{
δ|v j |2

2(1 − δ)

}
μ(v j ).
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Then similarly as for (4.12), we have, for sufficiently large T0 > 0 and for k =
Ĉ5T

5/4
0 , that

∫
∏k−2

j=1 V j

1{tk−1>0}
k−2∏
j=1

μθ(x j+1, v j ){n(x j ) · v j }dv j �
(
1

2

)Ĉ6T
5/4
0

for some generic constant Ĉ5 > 0 and Ĉ6 > 0. Then, by (6.17) and (6.18), we
have

Fn+1 � −Cμθ(x1, v){1 + ‖h0‖L∞}
∫
∏k−2

j=1 V j

1{tk−1>0}

k−2∏
j=1

μθ(x j+1, v j ){n(x j ) · v j }dv j

� −Cμθ(x1, v){1 + ‖h0‖L∞} ·
(
1

2

)Ĉ6T
5/4
0

.

(6.19)

Since T0 > 0 can be taken arbitrarily large, we have Fn+1 � 0. This then proves
(6.12) and (6.13). Finally, with the uniform estimates (6.12) in hand, we can use a
similar argument as one in [19, Theorem 4.1] to show that hn, n = 0, 1, 2 · · · , is
a Cauchy sequence in L∞. We omit here for brevity. The solution is obtained by
taking the limit n → ∞. If� is convex and the compatibility condition (1.19) holds,
the continuity is a direct consequence of the L∞-convergence. The uniqueness is
standard. The proof of Proposition 6.2 is complete. ��
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