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Abstract

We consider a sequence of Leray-Hopf weak solutions of the 2D Navier-Stokes
equations on a bounded domain, in the vanishing viscosity limit. We provide suf-
ficient conditions on the associated vorticity measures, away from the boundary,
which ensure that as the viscosity vanishes the sequence converges to a weak solu-
tion of the Euler equations. Themain assumptions are local interior uniform bounds
on the L1-norm of vorticity and the local uniform convergence to zero of the total
variation of vorticity measure on balls, in the limit of vanishing ball radii.

The behavior of high Reynolds number flows is a major open problem of non-
linear and statistical physics and of PDE theory. Here we discuss a limited aspect
of this problem, namely the question of whether solutions of the unforced two
dimensional Navier-Stokes equations converge weakly on a fixed time interval to
solutions of Euler equations in bounded domains. This problem is well understood
in the absence of boundaries, in a smooth regime; the answer is then positive, and
the convergence holds in strong topologies, see [1,2]. The problem is however
widely open in general in the presence of boundaries, and the answer is not obvi-
ous. Boundary layers exist, and their limiting behavior is poorly understood. Also,
weak-strong uniqueness is not known, i.e. there may be a smooth solution and a
different, weak, vanishing-viscosity, solution of the Euler equations, with the same
initial data. This was remarked in [1].

In this paper we follow up on a result obtained in [3] by the first and fourth
author for two dimensional flows. We extend [3, Theorem 2.1] by weakening the
hypotheses; our main result (see Theorem 1 below) allows us to consider solutions
of the ideal fluid equations whose vorticity is a Radon measure with no atomic
part. We moreover give an explicit example of a vortex sheet limit Euler solution
satisfying our weaker hypotheses (See Proposition 1 below). It is known that if the
convergence is assumed in the vanishing viscosity limit, then vortex sheets must
develop at the boundary [4]. In fact, instability of strong shear flows and detachment
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of the boundary layer suggests that the limiting flow will not be smooth, see [5]
for a broad discussion and relevant numerical experiments. Our result, in contrast
with the Kato criterion [6], applies without assuming closeness to a given smooth
solution of the Euler equations, and allows considering weak solutions, such as
vortex sheets. The uniform conditions are imposed on the Navier Stokes solutions
away from boundaries.

The problem of studying weak continuity of the quadratic nonlinearity in the
Navier-Stokes and Euler equations is at the heart of this work. There is a large
literature associated with this problem, going back to [7]. One natural avenue is
to seek conditions which guarantee strong convergence of velocities in L2, see [8,
Theorem 1.2] and [9]. In [10,11] R. J. DiPerna and A. J. Majda went beyond strong
convergence and investigated concentration sets for kinetic energy. In 1991 J. M.
Delort obtained a breakthrough, establishing weak continuity of the nonlinearity
in two dimensions, under the assumption that vorticity is a single-signed measure,
using a compensated-compactness argument, see [12]. Delort’s insight has been
extensively clarified, extended and used, see [13–18]. The present work is based
on Delort’s main idea and on Schochet’s reformulation, [17]. In addition, we rely
on results described in [19,20]. These articles adapt the Delort-Schochet weak
vorticity formulation to flows on domains with boundary, with [19] concerning
bounded domains and [20] concerning exterior domains. For the convenience of
the reader we have included brief outlines of proofs contained in [19,20] whenever
pertinent.

Let T > 0 and let � ⊂ R
2 be a bounded, smooth, connected and simply con-

nected domain. Consider the initial boundary value problem for the incompressible
Navier-Stokes equations with viscosity ν > 0, given by

⎧
⎪⎪⎨

⎪⎪⎩

ut + (u · ∇)u = −∇ p + ν�u, in (0, T ) × �,

div u = 0, in [0, T ) × �,

u = 0, on (0, T ) × ∂�,

u|t=0 = u0, at {0} × �.

(1)

The initial boundary value problem for the incompressible Euler equations
corresponds to taking ν = 0 and substituting the no slip boundary condition u = 0
by the non-penetration condition u · n = 0 on (0, T )× ∂�, where n represents the
unit outer normal to ∂�.

Let us begin by recalling the definition of aweak solution of the Euler equations.

Definition 1. The vector field u ∈ L∞((0, T ); L2(�)) is said to be aweak solution
of the incompressible Euler equations if:

• div u(t, ·) = 0, a.e. t ∈ (0, T ), in the sense of distributions, and
• for each test vector field � ∈ C∞

c ((0, T ) × �) such that div�(t, ·) = 0, the
following identity holds true:

∫ T

0

∫

�

∂t� · u dxdt +
∫ T

0

∫

�

∇� : u ⊗ u dxdt = 0. (2)

Throughout we will use the notation ∇⊥ ≡ (−∂x2 , ∂x1).
We are now ready to state our main result.
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Theorem 1. Let νn be positive numbers such that νn → 0. Let un ∈ L∞((0, T );
L2(�)) ∩ L2((0, T ); H1

0 (�)) be a family of Leray-Hopf weak solutions of (1)
with viscosity ν = νn. Suppose that there exists u∞ such that un ⇀ u∞ weak-∗
L∞(0, T ; L2(�)). Set ωn = ωn(t, ·) = curl un ≡ ∇⊥ · un(t, ·).

Assume the following:

(1) { ωn} ⊂ L∞((0, T ); L1
loc(�)) and, for each K ⊂⊂ �, there exists CK > 0 so

that

sup
n

sup
t∈(0,T )

‖ωn(t, ·)‖L1(K) � CK < ∞;

(2) For any K ⊂⊂ � we have

sup
n

∫ T

0

(

sup
x∈K

∫

B(x;r)∩�

| ωn(t, y)| dy
)

dt → 0 as r → 0.

Then u∞ is a weak solution of the incompressible Euler equations in the sense of
Definition 1.

Remark 1. Note that no further passage to subsequences is necessary in Theorem
1.

Let {un0}n ⊂ L2(�) be such that ‖un0‖L2 � C . If un is the unique Leray-
Hopf weak solution of (1) with viscosity νn and initial condition un0, then {un} is a
bounded subset of L∞((0, T ); L2(�)). Hence, passing to subsequences as needed,
un ⇀ u∞ weak-∗ L∞(0, T ; L2(�)) for some u∞.

Remark 2. There is no mention in Definition 1 of initial conditions. We observe
however that it is easy to incorporate initial data into the weak formulation by
taking test vector fields � ∈ C∞

c ([0, T );�). Now, if in Theorem 1 the initial
data un(0, ·) ≡ un0 converge weakly in L2(�) to some u∞

0 , then it follows that
u∞(0, ·) = u∞

0 in this (new) weak sense as well.

Remark 3. We note that, by linearity, div u∞(t, ·) = 0 in the sense of distribu-
tions, a.e. t ∈ (0, T ), since div un(t, ·) = 0. Now, because u∞ ∈ L∞((0, T );
L2(�)) is divergence free, its normal component at the boundary has a trace in
L2(0, T ; H−1/2(∂�)). Because of weak continuity of the trace operator, and as
un ∈ L2((0, T ); H1

0 (�)), the trace of the normal component of u∞ vanishes on
∂�.

Remark 4. Let BM(�) denote the space of bounded Radon measures on � with
the total variation norm. Itwill become apparent in the proof that the vorticity ω∞ =
curl u∞ ≡ ∇⊥ · u∞ belongs to L∞((0, T );BMloc(�) ∩ H−1(�)). Moreover,
we further show that ω∞ is a weak solution of the vorticity formulation of the
incompressible 2-D Euler equations, in a sense to be made precise, see Definition
2. We contrast the solutions u∞ obtained here with wild solutions of the Euler
equation (see for instance the review articles [21,22], and the papers [1,23] in the
case of bounded domains). These wild solutions are also weak solutions in the
sense of Definition 1, but the corresponding vorticity ω∞ is not regular enough to
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be a weak solution of the vorticity formulation. Also, the wild weak solutions of
the 3-D Navier-Stokes equation constructed in [24] have vorticity which does lie
in L∞(0, T ; L1+ε ∩ H−1+ε) for some ε > 0, and they do converge in the inviscid
limit to weak solutions of the Euler equations, but the L1 norm of their vorticity
degenerates as the viscosity vanishes (in contrast to Assumption (1) of Theorem 1),
and they are not Leray-Hopf solutions.

Remark 5. Assumption (2) is referred to as (time integrated) uniform decay of the
vorticity maximal function. Recall that the maximal function of vorticity is defined
as

Mω(t,·)(x) ≡ sup
r>0

1

πr2

∫

B(x;r)∩�

| ω(t, y)| dy,

so the object being considered in (2) is only reminiscent of the maximal function
of vorticity. The terminology “maximal vorticity function” was used in the work
of DiPerna and Majda, see [10, page 65] and [8, Theorem 3.1], while studying the
weak evolution of vortex sheet initial data. Conditions such as Assumption (2) have
appeared previously as non-concentration conditions, for instance, in [17], see also
[15].

Remark 6. We note that if we replace Assumption (2) by Assumption (2’):

sup
n

sup
0�t�T

(

sup
x∈K

∫

B(x;r)∩�

| ωn(t, y)| dy
)

dt → 0 as r → 0,

then Assumption (2’) implies Assumption (1). However, Assumption (2) is more
natural in view of the analysis for mirror-symmetric flows, see [15].

Remark 7. We emphasize that the assumptions of Theorem 1 are only posed on
compact subdomains K. The constant CK of Assumption (1) and the convergence
rate of Assumption (2) are allowed to degenerate as dist(K, ∂�) → 0. A different
practical set of interior sufficient conditions such that u∞ is a weak solution of the
Euler equations is provided by [3, Theorem 3.1] in 3D and [25, Theorem 1] in 2D.
These are uniform bounds for the interior second order structure function of un ,
with arbitrarily small exponent, in a suitably defined inertial range of scales. These
assumptions imply the uniform boundedness of ωn in L2(0, T ; H−1+εK(K)) for
some εK > 0, and thus from the point of view of scaling, the assumptions of
Theorem 1 appear to be more general.

Before we give the proof of Theorem 1 we introduce the notion of interior
weak solution and then we discuss the equivalence between this notion and the
weak solutions as in Definition 1.

Denote G� = G�(x, y) the Green’s function for the Laplacian �, with homo-
geneous Dirichlet boundary conditions on �. We write G�[ f ] to denote �−1

0 ( f ),
and we denote the Biot-Savart kernel on � by K� = K�(x, y) ≡ ∇⊥

x G�(x, y).
We write K�[ f ] to denote ∇⊥

x G�[ f ].
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Definition 2. The scalar ω ∈ L∞((0, T );BMloc(�) ∩ H−1(�)) is said to be
an interior weak solution of the vorticity formulation of the incompressible Euler
equations if, for each test function ϕ ∈ C∞

c ((0, T ) × �), there exists χ = χ(x) ∈
C∞
c (�) satisfying 0 � χ � 1 and χ ≡ 1 in a neighborhood of the support of ϕ,

such that the following identity holds true:

∫ T

0

∫

�

∂tϕ(t, x) ω(t, x) dxdt

+
∫ T

0

∫

�

∫

�

Hϕ
�(t, x, y)χ(x) ω(t, x)χ(y) ω(t, y) dxdydt

+
∫ T

0

∫

�

∫

�

K�(x, y)(1 − χ(y))χ(x) · ∇ϕ(t, x) ω(t, x) ω(t, y) dxdydt = 0,

(3)

where Hϕ
� = Hϕ

�(x, y) is the auxiliary test function given by

Hϕ
�(x, y) = K�(x, y) · ∇ϕ(t, x) + K�(y, x) · ∇ϕ(t, y)

2
. (4)

As discussed in Remark 10 below, this Definition is independent of the choice
of χ .

Remark 8. We are abusing notation above, as the low regularity of ω does not
allow one to write the integrals in identity (3). However, we remark that all the
expressions above make sense when suitably interpreted (cf. the discussions after
(10) and (15) below).

Remark 9. If instead, ω ∈ L∞((0, T );BM(�) ∩ H−1(�)) then the identity (3)
makes sense even if χ ∈ C∞(�), χ ≡ 1, giving rise to the usual weak vorticity
formulation of the 2D Euler equations, see [17], and also [19,20] for the case of
domains with boundary.

Lemma 1. Let ω∞ ∈ L∞((0, T );BMloc(�) ∩ H−1(�)) be an interior weak
solution of the vorticity formulation of the incompressible Euler equations. Then
u∞ = K�[ ω∞] is a weak solution of the Euler equations in the sense of Definition
1.

Conversely, let u∞ ∈ L∞((0, T ); L2(�)) be a weak solution of the Euler
equations in the sense of Definition 1. Let ω∞ = ω∞(t, ·) = curl u∞(t, ·) ≡
∇⊥ · u∞(t, ·), a.e. t ∈ (0, T ), in the sense of distributions. Assume that ω∞ ∈
L∞((0, T );BMloc(�)). Then ω∞ is an interior weak solution in the sense of
Definition 2.

Remark 10. In view of Lemma 1 it follows that, given ϕ ∈ C∞
c ((0, T ) × �),

identity (3) in Definition 2 is independent of the choice of χ ∈ C∞
c (�) such that

0 � χ � 1 and χ ≡ 1 in a neighborhood of the support of ϕ.

We postpone the proof of the lemma until after the proof of our main result.
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Proof of Theorem 1:. The strategy of the proof is to use the vorticity equation and
pass to the limit in a suitable weak formulation, namely the interior weak vorticity
formulation. The proof is concluded once we establish the equivalence between
this weak formulation for the vorticity equation and the weak velocity formulation
in Definition 1, which is the content of Lemma 1.

Let νn → 0 and let un be a solution of the Navier-Stokes equations (1) with
viscosity νn , as in the statement of Theorem 1. Then ωn = curl un is a solution of
the vorticity formulation of the Navier-Stokes equations

∂t ω
n + div(un ωn) = νn�ωn (5)

in (0, T ) × �.
First, let us note that { ωn} is bounded in L∞(0, T ; H−1(�)). Next, we observe

that we can rewrite the nonlinear term div(un ωn) in (5) as second derivatives of
terms which are quadratic with respect to the components of un :

div(un ωn) =
(
∂2x1 − ∂2x2

)
un1u

n
2 − ∂2x1x2 [(un1)2 − (un2)

2].

It follows that {∂t ωn} is a bounded subset of L∞(0, T ; H−L(�)), for some large
L > 0. Thus, from theAubin-Lions lemma, we obtain that { ωn} is a compact subset
of L∞(0, T ; H−M (�)), for some1 < M � L . Becausewe assumed that un ⇀ u∞
weak-∗ in L∞(0, T ; L2(�)), it follows by linearity that the accumulation points
of { ωn} are all ω∞ ≡ ∇⊥ · u∞ and hence the whole sequence { ωn} converges
strongly in L∞(0, T ; H−M (�)), to ω∞. Furthermore, clearly we have ωn ⇀ ω∞
weak-∗ in L∞(0, T ; H−1(�)).

We note that the vector field given by K�[ ω∞] is divergence free, has ω∞ as
its two dimensional curl, and is tangent to ∂�. Since � was assumed to be simply
connected there is a unique vector field which is divergence free, has curl equal to
ω∞ and is tangent to the boundary of �. Since u∞ satisfies these same conditions,
see Remark 3, it follows that u∞ = K�[ ω∞].

Fix ϕ ∈ C∞
c ((0, T ) × �). Multiplying (5) by ϕ, integrating in (0, T ) × � and

transferring derivatives to ϕ leads to
∫ T

0

∫

�

∂tϕ(t, x) ωn(t, x) + ∇ϕ(t, x) · un(t, x) ωn(t, x) dxdt

= νn

∫ T

0

∫

�

�ϕ(t, x) ωn(t, x) dxdt. (6)

We wish to pass to the limit in each of the terms of (6).
The convergence of the linear terms follows easily from the convergence ωn ⇀

ω∞ weak-∗ in L∞(0, T ; H−1(�)) and, in particular, inD′((0, T )×�). Hence we
have

∫ T

0

∫

�

∂tϕ(t, x) ωn(t, x) dxdt →
∫ T

0

∫

�

∂tϕ(t, x) ω∞(t, x) dxdt, and (7)

νn

∫ T

0

∫

�

�ϕ(t, x) ωn(t, x) dxdt → 0 (8)
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as n → ∞.
It remains to treat the nonlinear term in (6). Let χ = χ(x) ∈ C∞

c (�) be a cutoff
so that 0 � χ � 1 and χ ≡ 1 in a neighborhood of the support of ϕ. In particular,
there exists η > 0 such that the supports of 1−χ and of ϕ are at a distance η apart.

We show that

∫ T

0

∫

�

∇ϕ(t, x) · un(t, x) ωn(t, x) dxdt →
∫ T

0

∫

�

∫

�

Hϕ
�(t, x, y)χ(x) ω∞(t, x)χ(y) ω∞(t, y) dxdydt

+
∫ T

0

∫

�

∫

�

K�(x, y)(1 − χ(y))χ(x) · ∇ϕ(t, x) ω∞(t, x) ω∞(t, y) dxdydt

(9)

as n → ∞, where Hϕ
� was given in (4).

Note that because un(t, ·) satisfies the no slip boundary conditions, we have, in
particular, that un(t, ·) can be recovered from ωn(t, ·) by the Biot-Savart law:

un(t, x) =
∫

�

K�(x, y) ωn(t, y) dy;

this holds true in L∞(0, T ; L2(�)).
We write the nonlinear term as

∫ T

0

∫

�

∇ϕ(t, x) · un(t, x) ωn(t, x) dxdt

=
∫ T

0

∫

�

∫

�

K�(x, y) ωn(t, y) · ∇ϕ(t, x) ωn(t, x) dydxdt

=
∫ T

0

∫

�

∫

�

K�(x, y) ωn(t, y) · ∇ϕ(t, x)χ(x) ωn(t, x) dxdydt

=
∫ T

0

∫

�

∫

�

K�(x, y)χ(y) ωn(t, y) · ∇ϕ(t, x)χ(x) ωn(t, x) dxdydt

+
∫ T

0

∫

�

∫

�

K�(x, y)(1 − χ(y)) ωn(t, y) · ∇ϕ(t, x)χ(x) ωn(t, x) dxdydt

≡ An + Bn .

We also introduce

A∞ =
∫ T

0

∫

�

∫

�

Hϕ
�(x, y)χ(y) ω∞(t, y)χ(x) ω∞(t, x) dxdydt

and

B∞ =
∫ T

0

∫

�

∫

�

K�(x, y)(1 − χ(y)) ω∞(t, y) · ∇ϕ(t, x)χ(x) ω∞(t, x) dxdydt.
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Let us first consider the limit of Bn . We note that, if Oη ≡ {(x, y) ∈ � ×
� | |x − y| > η}, then, for a.e. t ∈ (0, T ), the support of the integrand in Bn is
contained in Oη, which avoids the singularity at the diagonal of K�(x, y). Hence,

Bn =
∫ T

0

∫

Oη

K�(x, y) · ∇ϕ(t, x)(1 − χ(y))χ(x) ωn(t, y) ωn(t, x) dxdydt.

Now, for each t ∈ (0, T ), we have K�(·, ·) · ∇ϕ(t, ·) ∈ C∞(Oη). Moreover, since
the support of ϕ is a compact subset of (0, T ) × �, K�(x, y) · ∇ϕ(t, x) vanishes
if x ∈ ∂�, for every t ∈ (0, T ). Because G�(x, y) vanishes for x ∈ �, y ∈ ∂�, it
follows that K�(x, y) = ∇⊥

x G�(x, y) also vanishes for x ∈ �, y ∈ ∂�. Recall that
ωn ⇀ ω∞ weak-∗ in L∞(0, T ; H−1(�)). By linearity, the tensor product ωn⊗ ωn

converges weak-∗, in L∞(0, T ; H−1(�×�)), to ω∞ ⊗ ω∞. From what we have
argued it follows that K�(x, y) ·∇ϕ(t, x)(1−χ(y))χ(x) ∈ L1(0, T ; H1

0 (�×�)),
and so we conclude that

Bn → B∞ as n → ∞, (10)

with the spatial integral in B∞ being interpreted as a duality pairing between
H−1(� × �) and H1

0 (� × �).
Next we address the convergence of An . Symmetrizing with respect to the

variables x and y as was done in [17] for flows in all of R2, we find

An =
∫ T

0

∫

�

∫

�

K�(x, y)χ(y) ωn(t, y) · ∇ϕ(t, x)χ(x) ωn(t, x) dxdydt

=
∫ T

0

∫

�

∫

�

K�(y, x)χ(x) ωn(t, x) · ∇ϕ(t, y)χ(y) ωn(t, y) dydxdt

=
∫ T

0

∫

�

∫

�

Hϕ
�(x, y)χ(y) ωn(t, y)χ(x) ωn(t, x) dxdydt.

We already know that χ ωn → χ ω∞ strongly in L∞(0, T ; H−M (�)) and that
χ ωn ⇀ χ ω∞ weak-∗ in L∞(0, T ; H−1(�)). Byhypothesis (2), {χ ωn} is bounded
in L∞(0, T ; L1(�)), hence, passing to subsequences as needed, we find χ ωn is
weak-∗ convergent in L∞(0, T ;BM(�)). Putting these facts together allows us to
identify the weak-∗-L∞(0, T ;BM(�)) limit as χ ω∞, so that there is no need to
pass to further subsequences; moreover, we have that χ ω∞ ∈ L∞(0, T ;BM(�)).

We have that

Hϕ
� ∈ L∞((0, T ) × � × �),

analogously to what holds inR2, see [17]. In the case of bounded domains, this was
first established in the proof of [20, Proposition 2.2], see also [19, Proposition 2.1].
SetM ≡ ‖Hϕ

�‖L∞((0,T )×�×�). In addition, it was observed in [19, Proposition 2.1],

see also [20, Proposition 2.2], that Hϕ
� is continuous on � × � \ {(x, x) ; x ∈ �}.

It is the fact that the diagonal, in � × �, is excluded from the set of continuity of
Hϕ

� that makes the convergence of An above a delicate problem – we must split the
integral in An into a portion far from the diagonal and a portion near the diagonal.
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Before we proceed let us note that, in this proof, we only use the boundedness
of Hϕ

�, and its continuity away from the diagonal, in the interior of � × �. It is
a simple matter to verify these properties in the interior of � × � because the
Biot-Savart kernel K� is the sum of the kernel for the full plane, KR2 , (for which
these properties are trivial), with an analytic vector field.

Let ρ ∈ C∞
c (R) be such that ρ = 1 on [0, 1/2], supp(ρ) ⊂ [0, 1], and 0 �

ρ � 1. For each δ > 0 set ρδ = ρδ(x, y) = ρ(|x − y|/δ). We rewrite An as

An =
∫ T

0

∫

�

∫

�

Hϕ
�(x, y)χ(y) ωn(t, y)χ(x) ωn(t, x)ρδ(x, y) dxdydt

+
∫ T

0

∫

�

∫

�

Hϕ
�(x, y)χ(y) ωn(t, y)χ(x) ωn(t, x)(1 − ρδ(x, y)) dxdydt

≡ An
1 + An

2 .

We have

sup
n

|An1 | � M sup
n

‖χ ωn‖L∞(0,T ;L1(�)) sup
n

∫ T

0

(

sup
x∈supp(χ)

∫

B(x;δ)
|χ ωn(t, y)| dy

)

dt.

(11)

It follows from the decay of the vorticity maximal function, Assumption (2), that

lim
δ→0

sup
n

|An
1| = 0. (12)

In addition,

An
2 →

∫ T

0

∫

�

∫

�

Hϕ
�(x, y)χ(y) ω∞(t, y)χ(x) ω∞(t, x)(1 − ρδ(x, y)) dxdydt,

(13)

as n → ∞, since Hϕ
�(x, y)(1 − ρδ(x, y)) is a legitimate test function for the

convergence of χ ωn ⊗ χ ωn to χ ω∞ ⊗ χ ω∞ weak-∗-L∞(0, T ;BM(� × �)).
The measures χ ω∞(t, ·) are weak-∗ limits of continuous measures, i.e., mea-

sures with no atomic parts. Because norms are weak-∗ lower semicontinuous, we
find

∫

B(x;δ)
|χ ω∞(t, y)| dy � lim inf

n→∞

∫

B(x;δ)
|χ ωn(t, y)| dy. (14)

Here we are abusing notation, writing
∫

B(x;δ)
|χ ω∞(t, y)| dy for

∫

B(x;δ)
d|χ ω∞(t, y)|.

Therefore, from Assumption (2) and (14), we obtain

∫ T

0

(

sup
x∈suppχ

∫

B(x;δ)
|χ ω∞(t, y)| dy

)

dt → 0,
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as δ → 0. An argument similar to what was used to study An
1 now gives

lim
δ→0

lim
n→∞ An

2 = A∞, (15)

where the integral in A∞ is to be interpreted as integration against a continuous
measure, namely χ ω∞ ⊗ χ ω∞.

It follows that

An → A∞ as n → ∞. (16)

Putting together (16) and (10), we deduce

An + Bn → A∞ + B∞, (17)

as n → ∞. This establishes (9).
It follows from (6), (7), (8) and (9) that ω∞ satisfies the interior weak vortic-

ity formulation (3). Since we already know that ω∞ ∈ L∞((0, T ); H−1(�)) ∩
L∞((0, T );BMloc(�)), we have established that ω∞ is an interior weak solution
of the incompressible 2D Euler equations, in the sense of Definition 2.

As u∞ = K�[ ω∞], the proof of the theorem is concluded once we establish
Lemma 1. ��

Now we give the proof of Lemma 1, which is a result on the equivalence
between the weak velocity formulation and the interior weak vorticity formulation.
The argument is based on the proofs of equivalence contained in [19] and [20],
with variations due to the fact that the vorticity is only a bounded Radon measure
locally, in the interior of the fluid domain. When regarded as a distribution in the
entire fluid domain, the best regularity for ω∞ is H−1, which is the same as for
wild solutions.

Proof of Lemma 1. Let us first assume that ω∞ ∈ L∞((0, T );BMloc(�) ∩
H−1(�)) is an interior weak solution in the sense of Definition 2. Set u∞ ≡
K�[ ω∞]. Now, K� = ∇⊥(�0)

−1 and therefore the operator K�[·] is continuous
from H−1(�) to L2(�). It follows that u∞ ∈ L∞((0, T ); L2(�)). We also have
from the definition of K� that div u∞ = 0 and curl u∞ ≡ ∇⊥ · u∞ = ω∞ in the
sense of distributions, and that the trace of the normal component of u∞ vanishes
at ∂�, see also Remark 3.

Let � ∈ C∞
c (0, T ;�) with div�(t, ·) = 0. Then � = ∇⊥ϕ for some ϕ ∈

C∞(0, T ;�), and ϕ(t, ·) is constant in a neighborhood of ∂�. Since� is connected
and simply connected we may assume without loss of generality that this constant
is 0, so that ϕ ∈ C∞

c ((0, T ) × �). From the relation between u∞ and ω∞ we
obtain that

∫ T

0

∫

�

∂t� · u∞ dxdt = −
∫ T

0

∫

�

∂tϕ(t, x) ω∞(t, x) dxdt. (18)

Let χ = χ(x) ∈ C∞
c (�), such that 0 � χ � 1 and χ ≡ 1 in a neighborhood

of the support of ϕ. In order to establish the weak formulation (2) for u∞, in view
of (3) and (18), it remains only to show that
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∫ T

0

∫

�

u∞ ⊗ u∞ : ∇� dxdt

= −
∫ T

0

∫

�

∫

�

Hϕ
�(t, x, y)χ(x) ω∞(t, x)χ(y) ω∞(t, y) dxdydt

−
∫ T

0

∫

�

∫

�

K�(x, y)(1 − χ(y))χ(x) · ∇ϕ(t, x) ω∞(t, x) ω∞(t, y) dxdydt.

(19)

To prove (19) it is enough to establish the following identity a.e. in time:
∫

�

u∞ ⊗ u∞ : ∇� dx

= −
∫

�

∫

�

Hϕ
�(t, x, y)χ(x) ω∞(t, x)χ(y) ω∞(t, y) dxdy

−
∫

�

∫

�

K�(x, y)(1 − χ(y))χ(x) · ∇ϕ(t, x) ω∞(t, x) ω∞(t, y) dxdy.

(20)

Because time is frozen at t we omit it in this discussion.
We adapt what was done in [20, Theorem 6.1 and Proposition 6.2], see also

[19, Theorem 3.4 and Proposition 3.5], to the situation we have, where only interior
estimates are available. Let ρk be a cutoff away from the boundary. More precisely,
we assume that

ρk ∈ C∞
c (�; [0, 1]), ρk ≡ 1 in �c

2
k
, ρk ≡ 0 in � 1

k
, ‖∇ρk‖L∞(� 2

k
\� 1

k
) � Ck,

where

�a = {x ∈ � ; dist(x, ∂�) � a}.
In addition, we introduce

ζ ∈ C∞
c (R2;R+), ζ is even, supp ζ ⊂ B(0; 1/2),

∫

ζ = 1,

and set

ζk(x) = k2ζ(kx). (21)

Next, set ωk ≡ (ρk ω∞) ∗ ζk, uk ≡ K�[ ωk]. We first note that uk and ωk are
smooth functions, ωk = curl uk , and uk is divergence free and tangent to ∂�. Since
� = ∇⊥ϕ and ϕ is compactly supported, we obtain, by integration by parts,

∫

�

uk(x) ⊗ uk(x) : ∇�(x) dx = −
∫

�

uk(x) · ∇ϕ(x) ωk(x) dx . (22)

We wish to show that the left-hand-side and right-hand-side of (22) converge,
respectively, to the left-hand-side and right-hand-side of (20).

We begin by analyzing the left-hand-side of (22). To this end we claim that
uk → u∞ strongly in L2(�). The proof of this claim follows precisely the proof
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of [20, Proposition 4.8], see also [19, Proposition 2.10], once we observe that
ωk ⇀ ω∞ inD′(�). We give an outline for the convenience of the reader, omitting
some of the details. There are three steps: first it is shown that uk is bounded in
L2(�), then it is established that uk ⇀ u∞ weakly in L2(�). Finally, it is proved
that ‖uk‖L2(�) → ‖u∞‖L2(�). To show the first step consider F ∈ C∞(�), and
set f ≡ G�[curl F], where curl F ≡ ∇⊥ · F. Then f ∈ C∞(�), f is bounded
and vanishes at ∂�. Step 1 follows from the observation that
∫

�

uk · F = −
∫

�

ωk f =
∫

�

(u∞ · ∇⊥ρk) ( f ∗ ζk) +
∫

�

ρku∞ · (∇⊥ f ∗ ζk).

(23)

Using the Hardy inequality it follows that
∣
∣
∣
∣

∫

�

uk · F
∣
∣
∣
∣ � C‖u∞‖L2(�)‖F‖L2(�).

Step 2 holds by virtue of the convergence ωk ⇀ ω∞ inD′(�), which is classical.
To prove Step 3, F = uk is used in (23), so that

‖uk‖2L2(�)
=

∫

�

(u∞ · ∇⊥ρk) (G�[ ωk] ∗ ζk) +
∫

�

ρku∞ · (uk ∗ ζk).

The first term vanishes as k → ∞ and the second term converges to ‖u∞‖2
L2(�)

.

In view of the strong convergence of uk to u∞ it follows that the left-hand-side
of (22) converges to the left-hand-side of (20).

Now we discuss the right-hand-side of (22). Let χ be a cutoff for the support
of ϕ as in the proof of Theorem 1 and set

η ≡ dist{supp (1 − χ), suppϕ} > 0.

We decompose ωk into an interior part and a boundary part:

ωk
I ≡ (ρkχ ω∞) ∗ ζk, ωk

B ≡ ωk − ωk
I = [ρk(1 − χ)ω∞)] ∗ ζk .

Correspondingly, we decompose the velocities uk :

ukI ≡ K�[ ωk
I ], ukB ≡ uk − ukI = K�[ ωk

B].
With this notation we rewrite the right-hand-side of (22) as

∫

�

uk(x) · ∇ϕ(x) ωk(x) dx

=
∫

�

ukI (x) · ∇ϕ(x) ωk
I (x) dx +

∫

�

ukB(x) · ∇ϕ(x) ωk
I (x) dx

+
∫

�

ukI (x) · ∇ϕ(x) ωk
B(x) dx +

∫

�

ukB(x) · ∇ϕ(x) ωk
B(x) dx . (24)

We claim that for sufficiently large k the two integrals in the last line above
vanish. To see this, first recall that the support of 1− χ is at a distance η > 0 from



Vorticity Measures and the Inviscid Limit 587

the support of ϕ. Let k > 1/η. Then, by construction, if x ∈ suppϕ and y ∈ �

is such that |x − y| < η/2, it follows that ωk
B(y) = 0. In particular, if k > 1/η,

∇ϕ ωk
B ≡ 0 on all of �.

Next we analyze the second integral on the right-hand-side of (24):
∫

�

ukB(x) · ∇ϕ(x) ωk
I (x) dx =

∫

�

∫

�

K�(x, y) · ∇ϕ(x) ωk
I (x) ωk

B(y) dxdy.

(25)

As noted above, if k > 1/η then dist{suppϕ, supp ωk
B} � η/2. Let ψ = ψ(z) be

a cut-off of |z| � η/2, so that ψ ∈ C∞(R2), 0 � ψ � 1, ψ(z) ≡ 1 if |z| � η/2
and ψ(z) ≡ 0 if |z| < η/4. Then, for k > 1/η, we may re-write (25) as

∫

�

ukB(x) · ∇ϕ(x) ωk
I (x) dx

=
∫

�

∫

�

K�(x, y) · ∇ϕ(x)ψ(x − y) ωk
I (x) ωk

B(y) dxdy. (26)

Now, arguing similarly to what was done in the proof of Theorem 1, we obtain
K�(x, y) · ∇ϕ(x)ψ(x − y) ∈ H1

0 (� × �). We easily deduce that ωk
I ⊗ ωk

B ⇀

χ ω∞ ⊗ (1− χ)ω∞ weakly in H−1(� × �). Therefore, the sequence of integrals
on the left-hand-side of (25) converge to the second integral on the right-hand-side
of (20).

Finally, we deal with the first integral on the right-hand-side of (24). We have
∫

�

ukI (x) · ∇ϕ(x) ωk
I (x) dx =

∫

�

∫

�

Hϕ
�(x, y) ωk

I (x) ωk
I (y) dxdy. (27)

Now, χ ω∞ ∈ BM ∩ H−1(�), hence the result in [20, Proposition 4.8], see
also [19, Proposition 2.10], applies to ωk

I :

ωk
I is bounded in L1(�), ωk

I ⇀ χ ω∞ weak − ∗BM(�) and

any weak − ∗ limit in BM(�), μ, of | ωk
I | is a continuous measure,

i.e., μ(P) = 0, for any P ∈ �. (28)

For the convenience of the reader we give an outline of the proof of (28); more
details can be found in [19,20]. The statements on the first line of (28) follow
from the definition of ωk

I . Let us discuss the last statement in (28), regarding
weak−∗ limits in BM(�) of | ωk

I |. Let χ ω∞ = ν+ + ν− be an orthogonal (Hahn-
Jordan) decomposition into positive and negative parts,with disjoint supports. Since
χ ω∞ ∈ H−1(�) is a measure, it is necessarily a continuous measure. Since the
supports of ν+ and ν− are disjoint, they too are each continuous measures. Write
ωk
I = (ρkν

+) ∗ ζk + (ρkν
−) ∗ ζk ; this is a decomposition into positive and negative

measures, albeit with supports that are no longer necessarily disjoint. Still, we have

| ωk
I | � (ρkν

+) ∗ ζk − (ρkν
−) ∗ ζk .

In addition, (ρkν±)∗ζk ⇀ ν± weak-∗ inBM(�). Now, letμ be a weak-∗BM(�)

limit of | ωk
I |. Then we find μ is a nonnegative measure which is bounded in the
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sense of measures by ν+ −ν− ≡ |χ ω∞|. Therefore, 0 � μ(P) � |χ ω∞|(P) = 0
for any P ∈ �, as desired.

Nextwe recall [26,Lemma6.3.1],where itwas established that, ifνk ⇀ νweak-
∗ BM, then

∫
f νk → ∫

f ν for any bounded test function f which is continuous
off of a μ-negligible set, where μ is any weak-∗ limit of |νk |. We may use this
result with f = Hϕ

� and νk = ωk
I ⊗ ωk

I , since it has already been observed, in the
proof of Theorem 1, that Hϕ

� is continuous off of the diagonal of � × �, and we
have established in (28), that the diagonal is a negligible set for any weak-∗ limit
of | ωk

I ⊗ ωk
I |, together with the fact that ωk

I ⊗ ωk
I ⇀ χ ω∞ ⊗χ ω∞. We conclude

that the integrals on the left-hand-side of (27) converge to the first integral on the
right-hand-side of (20).

Putting together our analysis of the terms in (24) we obtain that the right-hand-
side of (22) converges to the right-hand-side of (20). This establishes (19).

Conversely, suppose that u∞ ∈ L∞((0, T ); L2(�)) is a weak solution of the
Euler equations as in Definition 1, and assume further that ω∞ ≡ curl u∞ ∈
L∞((0, T );BMloc(�) ∩ H−1(�)). Let ϕ ∈ C∞

c ((0, T ) × �) and set � ≡ ∇⊥ϕ.
It is easy to see that � ∈ C∞

c ((0, T ) × �), div� = 0 and (18) holds true. In
addition, in view of the regularity assumption on ω∞, the proof we gave of (19),
for a suitable cut-off function χ , may be used once again. Putting together (18),
(19) and (2) yields that ω∞ satisfies (3). This concludes the proof. ��

Next we give an example of a sequence of solutions of the Navier-Stokes equa-
tions which satisfy the hypothesis of Theorem 1 and for which the limiting Euler
solution is not smooth. In fact, it is a vortex sheet and thus it falls outside the scope
of the Kato criterion.

We take � = {x ∈ R
2 | |x | < 1}, the unit disk. Set

u0 =
⎧
⎨

⎩

0, if |x | < 1
2 ,

x⊥

|x |2 , if 1
2 < |x | < 1.

(29)

The corresponding vorticity is

ω0 = δ{|x |=1/2}. (30)

Let νn be any sequence of positive numbers such that νn → 0. Choose circularly
symmetric approximations un0 ∈ C∞(�) ∩ L2(�), div un0 = 0, un0 · n∣

∣
{|x |=1}

= 0,

such that

un0 → u0 strongly in L2(�) and, for ωn
0 = ∇⊥ · un0, it holds that

ωn
0 � 0, ωn

0 circularly symmetric, and ‖ωn
0‖L1(�) � ‖ω0‖BM(�) ≡ π.

Let un be the unique solution of the initial boundary value problem for the
Navier-Stokes equations (1) with viscosity νn and initial velocity un0 above, as in
Theorem 1. Let ωn = ∇⊥ · un .
Proposition 1. The sequences {un}, { ωn} satisfy Assumptions (1) and (2) of Theo-
rem 1. Furthermore, un has a weak limit, u∞, which is time-independent and equal
to u0.
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Proof of Proposition 1. We first note that u0 ∈ L2(�) is circularly symmetric.
Let vn denote the solution of (1) with viscosity νn and initial data u0. It follows
from the analysis developed in [27] (see also [23]) that

vn → u0, strongly in L∞((0, T ); L2(�)).

In addition, un −vn is the solution of (1) with viscosity νn and initial data un0 − u0.
The most elementary of energy estimates yields that

sup
t∈[0,T ]

‖un − vn‖L2(�) � ‖un0 − u0‖L2(�) → 0 as n → ∞.

Hence {un} converges strongly to u∞ = u0.
Next we recall the result in [28, Proposition 9.4], where it was established that

‖ωn‖L∞((0,T );L1(�)) � 4‖ωn
0‖L1(�).

Therefore we find, from the construction of un0, that

‖ωn‖L∞((0,T );L1(�)) � 4π,

which gives Assumption (1).
Lastly, we establish the uniform decay of the vorticity maximal function. We

first show that ωn locally may be written as the sum of a positive measure in
H−1(�) and a uniformly bounded function. To see this, fixK ⊂⊂ � and let ε > 0
satisfyK ⊂ {|x | < 1−3ε}. Choose χε ∈ C∞

c (�) such that 0 � χε � 1, χε(x) ≡ 1
if |x | < 1 − 2ε, χε(x) ≡ 0 if 1 − ε < |x | � 1. Let ωn

ε ≡ χε ωn , and note that
ωn

ε ≡ ωn on K. We extend ωn
ε to all of R2 by setting it to vanish outside of �.

Observe that ωn
ε is a solution of the following heat equation in the full plane:

∂t ω
n
ε = νn�ωn

ε − νn ωn
ε�χε − 2νn∇ ωn · ∇χn

ε ≡ νn�ωn
ε − Fn

ε .

It follows that

ωn
ε = eνn t�[ ωn

ε (0, ·)] −
∫ t

0
eνn(t−s)�[Fn

ε (s, ·)] ds ≡ In + IIn .

We will analyze ( ωn
ε )∣∣

K
≡ ωn∣

∣
K
. We make two claims.

Claim 1. We have {In = eνn t�[ ωn
ε (0, ·)]}n is a bounded subset of L∞((0, T );

BM(R2) ∩ H−1(R2)) and eνn t�[ ωn
ε (0, ·)] � 0.

Claim 2. There exists C = C(‖ω0‖BM(�), ε) > 0 such that, on K,

∣
∣
∣
∣IIn =

∫ t

0
eνn(t−s)�[Fn

ε (s, ·)] ds
∣
∣
∣
∣ � C

for all n, t ∈ [0, T ].
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It follows from Claim 1 and well-known estimates in potential theory, see also
[17], that

∫

B(x;r)∩�

In dy �
(

sup
n

‖In‖H−1(�)

)

| log r |−1/2 → 0,

as r → 0, uniformly in n and x ∈ K. In addition, from Claim 2 we find
∫

B(x;r)∩�

|IIn| dy � Cr2 → 0,

as r → 0, uniformly in n and x ∈ K. Thus Claims 1 and 2 are sufficient to establish
Assumption (2) of Theorem 1.

Proof of Claim 1. Recall ωn
ε (0, ·) = χε ωn

0 . By hypothesis, ωn
0 � 0 and, also,

χε � 0. It follows from the maximum principle for the heat equation that eνn t�

[ ωn
ε (0, ·)]}n � 0. In addition, the L1-norm of eνn t�[ ωn

ε (0, ·)]}n is a non-increasing
function of time, so that, using again the hypotheses we made on ωn

0 ,

‖eνn t�[ ωn
ε (0, ·)]‖L1(R2) � ‖ωn

ε (0, ·)‖L1 � ‖ω0‖BM(�).

Lastly,we argue that eνn t�[ ωn
ε (0, ·)] is uniformlybounded in L∞((0, T ); H−1(R2)).

We first observe that

ωn
ε (0, ·) = χε ωn

0 = ∇⊥ · (χεun0) − un0 · ∇⊥χε.

Therefore,

eνn t�[ ωn
ε (0, ·)] = ∇⊥ · {

eνn t�[χεun0]
} − eνn t�[un0 · ∇⊥χε].

Clearly, eνn t�[χεun0] and eνn t�[un0 ·∇⊥χε] are, both, bounded subsets of L∞((0, T );
L2(R2)), hence the desired assertion follows. ��
Proof of Claim 2. We write

−
∫ t

0
eνn(t−s)�[Fn

ε (s, ·)] ds = νn

∫ t

0
eνn(t−s)�[ ωn�χε(s, ·)] ds

+ 2νn

∫ t

0
eνn(t−s)�[∇ ωn · ∇χn

ε (s, ·)] ds
≡ An + Bn .

Now,

|An(t, x)| =
∣
∣
∣
∣νn

∫ t

0

∫

R2

1

4πνn(t − s)
e−|x−y|2/(4νn(t−s)) ωn(s, y)�χε(y) dyds

∣
∣
∣
∣

� νn

πε2
sup
ρ

(ρe−ρ)T ‖ωn‖L∞((0,T );L1(�))‖�χε‖L∞(R2),

since supp�χε ⊂ {1 − 2ε � |y| � 1 − ε} and |x | < 1 − 3ε. It follows that |An|
is bounded, uniformly with respect to n, t ∈ (0, T ), for x ∈ K.
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Next, we examine Bn :

|Bn(t, x)|
=

∣
∣
∣
∣2νn

∫ t

0

∫

R2

1

4πνn(t − s)
e−|x−y|2/(4νn(t−s))∇ ωn(s, y) · ∇χn

ε (y) dyds

∣
∣
∣
∣

=
∣
∣
∣
∣−2νn

∫ t

0

∫

R2

1

4πνn(t − s)
e−|x−y|2/(4νn(t−s)) ωn(s, y)�χn

ε (y) dyds

+ 4νn

∫ t

0

∫

R2

(x − y)

π(4νn(t − s))2
e−|x−y|2/(4νn(t−s)) ωn(s, y) · ∇χn

ε (y) dyds

∣
∣
∣
∣ .

Therefore, reasoning similarly as for An , we find that

|Bn| � νn

πε2
sup
ρ

(ρe−ρ)T ‖ωn‖L∞((0,T );L1(�))‖�χε‖L∞(R2)

+ νn

πε3
sup
ρ

(ρ2e−ρ)T ‖ωn‖L∞((0,T );L1(�))‖∇χε‖L∞(R2).

Hence it follows that |Bn| is uniformly bounded, for x ∈ K, with respect to n and
t ∈ (0, T ). ��

This concludes the proof of Proposition 1. ��
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