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Abstract

This manuscript extends the relaxation theory from nonlinear elasticity to elec-
tromagnetism and to actions defined on paths of differential forms. The introduction
of a gauge allows for a reformulation of the notion of quasiconvexity in Bandyopad-
hyay et al. (J Eur Math Soc 17:1009–1039, 2015), from the static to the dynamic
case. These gauges drastically simplify our analysis. Any non-negative coercive
Borel cost function admits a quasiconvex envelope for which a representation for-
mula is provided. The action induced by the envelope not only has the same infimum
as the original action, but has the virtue to admit minimizers. This completes our
relaxation theory program.

1. Introduction

The notion of quasiconvexity, the very essence of the theory of direct methods
of the calculus of variations developed by Morrey [21], has played an important
role in nonlinear elasticity theory [2] and is central in pde’s [14] and the calculus of
variations [10,21]. It is the right notion to guarantee the existence of minimizers for
actions on Sobolev spaces. The main goal of this manuscript is to show that a class
of actions appearing in the study of dynamical differential forms, can be recast into
a class of functionals to which Morrey direct methods of the calculus of variations
[21] is applicable. The introduction of gauge differential forms allows one to convert
pairs of dynamical differential forms on Rn into static exact forms on Rn+1. While
the former paths of form are subjected to tangential conditions on a n−dimensional
space, the latter static form is shown to be subjected to a Dirichlet type boundary
condition on the (n + 1) −dimensional space. As a consequence, relying on prior
studies, we initiate and drastically simplify the extension of a relaxation theory to
our context.

Let k ∈ {1, . . . , n} and let �k (Rn) denote the set of k−covectors of Rn .

This manuscript studies actions defined on paths of differential forms on an open
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bounded smooth contractible set � ⊂ R
n . Any smooth flow map � : C∞( [0, 1]

× �;�
)
such that �(t, ·) is a diffeomorphism of � onto � and any exact k−form

f0 ∈ C∞ (�;�k (Rn)
)
yields a path

t �→ f (t, ·) = �(t, ·)# f0 (1.1)

of exact k−forms on �. The path is driven by the velocity v, which, in “Eulerian
coordinates”, is uniquely determined by the identity

∂t�(t, ·) = v (t, ·) ◦ �(t, ·) .

In “Eulerian coordinates”, the transport equation in (1.1) reads as

∂t f + Lv f = 0, (1.2)

where L is the Lie derivative acting on the set of vector fields. Let dx denote the
exterior derivative on the set of differential forms on � and δx denote the adjoint
(or co-differential) of dx . Since f (t, ·) is a closed form, we use Cartan formula to
infer the existence of a path t �→ g (t, ·) of (k − 1)−forms such that

Lv f = dx g. (1.3)

When k = 2 andn = 2m is even, for given exact forms f0, f1 ∈ C∞ (�,�2
(
R
2m
))

the prototype action we are interested in is

E ( f, v) =
∫

(0,1)×�

1

2
f m |v|2 dt.

This represents the total kinetic energy of a physical system over the whole period
of time. We may interpret v as the velocity of a system of particles whose density
is given by the volume form � = f m . By (1.3), the continuity equation holds,
namely,

∂t� + ∇x · (� v) = 0.

The variational problem of interest is then

inf
( f,v)

{E ( f, v) : ∂t f + Lv f = 0, f (0, ·) = f0, f (1, ·) = f1} . (1.4)

Here ( f, v) satisfy some tangential boundary conditions, which will later be spec-
ified.

One cannot hope to turn the problem in (1.4) into a convex minimization prob-
lem unless m = 1. Our strategy is to introduce a gauge which turns (1.4) into a
polyconvex minimization problem, so that in the new formulation, the action E is
lower semicontinuous (cf. Subsection 3.6).

For general k and n, we start with a non-negative Borel cost function

c : �k (
R
n)× �k−1 (

R
n)→ [0,+∞] ,
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which is locally bounded on its effective domain. The action induced by the cost c
is

A ( f, g) =
∫

(0,1)×�

c ( f, g) dt dx . (1.5)

We sometimes impose a coercivity condition on c: there are s > 1, b1 > 0, and
a1 ∈ R such that

c (λ, μ) ≥ b1 |(λ, μ)|s + a1 (1.6)

for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) . While the purpose of prior studies [11–
13] was to characterize the paths minimizing the action in (1.5) when c is convex,
in the current manuscript, we refrain from imposing such a convexity condition.
We rather seek the most general conditions, which would ensure that our actions
are lower semicontinuous for a topology which allows for a theory for the existence
of minimizers. The use of a gauge turns out to be instrumental in linking the right
notion of quasiconvexity on c to the classical one, thereby inferring thatA is lower
semicontinuous (for a topology to be specified).

In order to better convey the approach we develop in the current manuscript,
we start by first highlighting the parallel between some of what we do and the
well–known use of a gauge in electromagnetism.

Model example step 1: turn A ( f, g) into
∫
C (∇u) dt dx, the setting of

Morrey [21] .
Suppose for a moment that (k, n) = (2, 3) . Let us consider paths of vector

fields

E, B : (0, 1) × � → R
3,

such that E represents an electric field and B represents amagnetic field. The Gauss
law for magnetism and the Maxwell–Faraday induction equations are

∇x · B = 0 and ∂t B + ∇x × E = 0. (1.7)

The ideal Ohm’s law in ideal magnetohydrodynamics links the velocity v of the
system and the electromagnetic field through the relation

E = −v × B. (1.8)

The path of vector fields E is used to obtain a path of 1−differential form g on
� while the path of vector fields B yields a path of 2−differential form f on �.

These differential forms are

f = B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2 and

g = E1dx
1 + E2dx

2 + E3dx
3.

We use the pair of dynamic path t �→ ( f (t, ·) , g (t, ·)) , defined on� a 3d−space,
to introduce a new static 2−form h on (0, 1) × �, a higher dimensional set; it is
defined as
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h = B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2

− dt ∧
(
E1dx

1 + E2dx
2 + E3dx

3
)

.

The equations in (1.7) are, respectively, equivalent to

dx f = 0 and ∂t f + dx g = 0, (1.9)

while (1.8) means

g =
(
v1dx1 + v2dx2 + v3dx3

)
� f,

where � denotes the interior product on the set of differential forms. Since � is a
contractible set, by the first system of equations in (1.9), t �→ f (t, ·) is a path of
exact forms. The second system of equations there is equivalent to (1.2 )–(1.3). Let
d denote the exterior derivative on the set of forms on (0, 1) × � and let δ denote
the adjoint of d. One verifies that (1.9) is equivalent to

dh = 0. (1.10)

Hence, there exists a 1−form on (0, 1) × �, which we denote as

ω = −ϕ dt + A1dx
1 + A2dx

2 + A3dx
3,

such that dω = h. This latter identity reads as

B = ∇x × A and E = −∇xϕ − ∂t A. (1.11)

In the physics literature, A is the so-called magnetic vector potential, ϕ is the so-
called electric scalar potential and the pair (ϕ, A) is referred to as a gauge. The
action

Agauge (B, E) =
∫

(0,1)×�

cgauge (B (t, x) , E (t, x)) dt dx

in terms of the gauge u = (ϕ, A) can be written, for a cost function C, as

A∗(u) =
∫

(0,1)×�

C (∇u) dt dx =
∫

(0,1)×�

cgauge (∇x × A,−∇xϕ − ∂t A) dt dx .

The functionalA∗ is in a form where Morrey’s theory [21], linking quasiconvexity
to lower semicontinuity, is applicable. However, there is still a missing piece of
information due to the fact that in spite of (1.6), there is no choice of C : R4×4 →
(−∞,+∞] and no choice of b̄1 > 0 and ā1 ∈ R such that

C (U ) ≥ b̄1 + ā1 |U |s .

In conclusion, neither the sublevel sets of {A∗ ≤ z} nor those of {Agauge ≤ z
}
are

expected to be pre-compact for the weak W 1,s−topology.
Model example step 2: remedies to make

{
Agauge ≤ z

}
pre-compact.

Note that for any real valued function (gauge function) ψ on (0, 1) × �, we
have d (ω + dψ) = dω. This shows that ω is far from being uniquely determined
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by the identity dω = h. Equivalently, in terms of the electromagnetic fields, the
latter identity amounts to asserting that

B = ∇x × (A + ∇xψ) and E = −∇x (ϕ − ∂tψ) − ∂t (A + ∇xψ, ) ,

and so

Agauge (A + ∇xψ, ϕ − ∂tψ) = Agauge (A, ϕ) .

The actionAgauge then describes physical systems with redundant degrees of free-
dom,whichwe turn into our advantage by using the potentialψ as ameremathemat-
ical device which can help gain stronger compactness properties. More precisely,
we adjust ψ so that δ (ω + ψ) = 0, where we recall that δ is the adjoint of the op-
erator d. This amounts to assuming, without loss of generality, that we may choose
(A, ϕ) to satisfy

∂tϕ + ∇ · A = 0. (1.12)

The choice of gauge in (1.12) is the so-called Lorenz gauge. A task fulfilled in
the current manuscript has been to show that in addition to the requirement (1.12),
we may choose (A, ϕ) with appropriate boundary conditions such that Gaffney
inequality holds. Let us first recall the classical Gaffney inequality and then write
it in our context. The classical inequality states that there exists a constant C =
C (�, k) > 0 such that

‖∇ω‖2L2 ≤ C
(
‖dω‖2L2 + ‖δω‖2L2 + ‖ω‖2L2

)

for every ω ∈ W 1,2
T

(
�;�k

) ∪ W 1,2
N

(
�;�k

)
(the T, respectively the N , stands

for ν ∧ ω = 0 on ∂�, respectively, ν �ω = 0 on ∂�). Here, Gaffney inequality
takes the following form: there exists a constant a > 0 such that under the above
appropriate boundary conditions on (A, ϕ) , we have

a
(‖ϕ‖sW 1,s + ‖A‖sW 1,s

) ≤ ‖∂tϕ + ∇x · A‖sLs + ‖∇x × A‖sLs + ‖∇xϕ − ∂t A‖sLs .

Thus, if we further use (1.12), we have

a
(‖ϕ‖sW 1,s + ‖A‖sW 1,s

) ≤ ‖∇x × A‖sLs + ‖∇xϕ − ∂t A‖sLs . (1.13)

This, together with (1.6), shows that for any z ∈ R, the sublevel set
{
(A, ϕ) | Agauge (A, ϕ) ≤ z and (1.12) holds

}

is precompact for the weak W 1,s topology.
Back to the general setting.
In the remainder of the introduction, we assume that f0, f1 ∈ Ls

(
�;�k (Rn)

)

are closed forms, and thus since � is contractible, there exist F0, F1 ∈ W 1,s
(
�;�k−1 (Rn)

)
such that dF0 = f0 and dF1 = f1 . Set

ω̃ (t, x) = (1 − t) F0 (x) + t F1 (x) .
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In order to ease the study of the first part of themanuscript, wefirst replace (0, 1)×�

by a bounded open smooth contractible set O ⊂ R
n+1. This can be achieved, for

instance, by smoothing out the cylinder (0, 1) × � ⊂ R
n+1. Then in Subsections

2.4 and 3.5, we return to the study of differential forms on the cylinder (0, 1)×� ⊂
R
n+1. Given s ∈ (1,∞), we study an action on the set Ps (ω̃) which consist of

pairs ( f, g) such that f − dx0 ∧ g is a closed form on O ,

f ∈ Ls(O;�k(Rn)
)

and g ∈ Ls(O;�k−1(Rn)
)
,

and f − dx0 ∧ g − dω̃ is parallel to the boundary of O (see Definition 2.1). A first
goal is to completely characterize the class of cost functions for which A is lower
semicontinuous for an appropriate topology on Ps (ω̃) . To achieve this goal, we
propose a concept of quasiconvexity in Definition 3.1.We then identify an operator;
this is associated with c, the largest quasiconvex function smaller than c, which we
denote as Q [c] . We refer to Q [c] as the quasiconvex envelope of c.

Our definition of quasiconvexity is an appropriate variant of the classical one,
which Morrey introduced decades ago in the calculus of variations (cf. e.g. [10]);
for an intimately related definition we also refer the reader to [3]; for functionals
involving several closed differential forms we refer the reader to [23] and [24].
When k = 1 or k = n, quasiconvexity reduces to ordinary convexity, but, in
general, and particularly in the case k = 2, quasiconvexity is strictly weaker than
convexity (see Theorem 3.8). Note that if k = 1 or k = n, then Q [c] = c∗∗ the
convex envelope of c; in general (and particularly when k = 2) Q [c] ≥ c∗∗, but it
usually happens that Q [c] �≡ c∗∗.

Under (1.6), Corollary 3.11 establishes existence of minimizers of

(QP) inf

{∫

O
Q [c] ( f (t, x) , g (t, x)) dt dx : ( f, g) ∈ Ps (ω̃)

}
.

We show that the infimum in (QP) coincides with the infimum

(P) inf

{∫

O
c ( f (t, x) , g (t, x)) dt dx : ( f, g) ∈ Ps (ω̃)

}

(cf. Theorem 4.5), while no extra conditions are imposed on c (λ, μ) beyond the
fact that it grows as |(λ, μ)|s for large values of |(λ, μ)|s . The infima in (P) and
(QP) being the same is the basis of our assertion that (QP) is a relaxation of (P) .

Let us mention that when k = n, so that f is a volume form, and c is convex,
problem (P) falls into the category of the so–called mass transportation problem
and has received considerable attention (cf. e.g. [1,5,15,17–20]). However, while
the issues addressed in these works are rather comparable to those addressed in
[11–13], they do not fall into the scope of our current study. Indeed the present
approach allows us to extend the above analysis in two directions. First we can deal
with quasiconvex and polyconvex functions (cf. Subsection 3.6). We also develop
the relaxation setting in order to handle non-quasiconvex integrands.

We close this introduction by drawing the attention of the reader to related
works on A−quasiconvexity; see [9] and [16].
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2. Statement of the Variational Problem

In the present section O ⊂ R
n+1 � R×R

n is a bounded open contractible set
with smooth boundary and ν denotes the outward unit normal to ∂O. The variables
in O are denoted (t, x) ∈ R × R

n . Throughout the manuscript we let 1 ≤ k ≤ n
be an integer and s ∈ (1,∞). As is customarily done, �l (Rn) is the null set when
either l is negative or l is strictly larger than n.

2.1. Notations, Assumptions and Main Variational Problem

Let

f ∈ Ls
(
O;�k (

R
n)
)

and g ∈ Ls
(
O;�k−1 (

R
n)
)

. (2.1)

We denote as f # = f (t, ·)# the pullback of f (t, ·) under the natural projection
from R×R

n to Rn . We similarly define g# to obtain on O the differential form of
degree k, h := f # − dt ∧ g#. In the sequel, by abuse of notation, we write

f − dt ∧ g := f # − dt ∧ g#.

Definition 2.1. Let ω̃ ∈ W 1,s
(
O;�k−1

(
R
n+1
))

. We say that ( f, g) ∈ Ps (ω̃) if
( f, g) satisfies (2.1) and, setting h = f − dt ∧ g ∈ Ls

(
O;�k

(
R
n+1
))

,

dh = 0 in O and ν ∧ h = ν ∧ dω̃ on ∂O. (2.2)

Remark 2.2. (i) Note that dh = dx f + dt ∧ (∂t f + dx g), and thus dh = 0 means
that

dx f = 0 ∈ �k+1 (
R
n) and ∂t f + dx g = 0 ∈ �k (

R
n) .

(ii) The above conditions on h have to be understood in the weak sense, namely
∫

O
〈h; δϕ〉 =

∫

∂O
〈ν ∧ dω̃;ϕ〉 ∀ϕ ∈ C1

(
O;�k+1

(
R
n+1
))

.

Problem 2.3. (Main problem). Let c : �k (Rn) × �k−1 (Rn) → (−∞,∞] be
Borel measurable and locally bounded on its effective domain. The main problem
we consider is

(P) inf

{∫

O
c ( f, g) : ( f, g) ∈ Ps (ω̃)

}
.

We are interested in conditions on the cost function c which ensure that (P)

has a minimizer. More importantly, we are interested in identifying a relaxation
problem for (P) which will be denoted as (QP) .
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2.2. Projection of Differential Forms

Decomposition of exterior forms via projection operators.
Let {e1, . . . , en} be the standard orthonormal basis ofRn and let {ē0, ē1, . . . , ēn}

be the standard orthonormal basis of Rn+1 such that the last n entries of ē0 are null
while the first one equals 1. For 1 ≤ i ≤ n, we denote the dual vector to ei in
�1 (Rn) as dxi and identify it with the dual vectors to ēi in �1

(
R
n+1
)
. We write

x0 = t ∈ R and dx0 = dt.

Given ξ ∈ �l
(
R
n+1
)
, 0 ≤ l ≤ n,

ξ =
∑

0≤i1<···<il≤n

ξi1···ildxi1 ∧ · · · ∧ dxil ,

we define the projections
(
ξ x , ξ0

) ∈ �l (Rn) × �l−1 (Rn) as

ξ x = πx (ξ) =
∑

1≤i1<···<il≤n

ξi1···ildxi1 ∧ · · · ∧ dxil

ξ0 = π0 (ξ) =
∑

1≤i2<···<il≤n

ξ0i2···ildxi2 ∧ · · · ∧ dxil

so that

ξ = ξ x + dx0 ∧ ξ0. (2.3)

When l = 0, we set πx (ξ) = ξ and π0 (ξ) = 0. When l ≥ 1, we write

ξ xi1···il = ξi1···il and ξ0i2···il = ξ0i2···il .

The map πx × (−π0) is a bijection of �l
(
R
n+1
)
onto �l (Rn) × �l−1 (Rn), and

so c can be expressed as a function defined on the former set. We define

cgauge : �l
(
R
n+1
)

→ (−∞,+∞]

as

cgauge (ξ) = c (πx (ξ) ,−π0 (ξ)) . (2.4)

From the above definitions, it is straightforward to obtain the following lemma:

Lemma 2.4. Let 1 ≤ l,m ≤ n be integers, ξ ∈ �l
(
R
n+1
)
and η ∈ �m

(
R
n+1
)
.

Then

πx (ξ ∧ η) = πx (ξ) ∧ πx (η) and

π0 (ξ ∧ η) = (−1)l πx (ξ) ∧ π0 (η) + π0 (ξ) ∧ πx (η) .

Let r ≥ 2 be an integer, ξ ∈ �l
(
R
n+1
)
, and let

ξ r = ξ ∧ · · · ∧ ξ︸ ︷︷ ︸
r times
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(so that ξ r = 0 if l is odd or if r · l > n + 1). Then (inductively),

πx
(
ξ r
) = [πx (ξ)]r and π0

(
ξ r
) =

{
r [πx (ξ)]r−1 ∧ π0 (ξ) if l is even

0 if l is odd.

In particular, if l is even and r · l = n + 1, then πx (ξ r ) = 0 (but, in general,
π0 (ξ r ) �= 0).

Decomposition of differential forms. If ω ∈ W 1,s
(
O;�k

(
R
n+1
))

, then di-
rect computations reveal that

dω = dx F + dx0 ∧ (∂t F − dxG) ∈ �k+1 and

δω = (∂tG + δx F) − dx0 ∧ δxG ∈ �k−1, (2.5)

or, equivalently, in terms of the projections and differential operators,

πx ◦ d = dx ◦ πx and π0 ◦ d = ∂t ◦ πx − dx ◦ π0 (2.6)

πx ◦ δ = ∂t ◦ π0 + δx ◦ πx and π0 ◦ δ = −δx ◦ π0. (2.7)

2.3. The Gauge Formulation

Intimately related to the previous problem is a new one which uses a kind of
gauge.

Problem 2.5. (Gauge formulation). Let O, cgauge and ω̃ as above. The gauge prob-
lem is then defined as

(
Pgauge

)
inf
ω

{∫

O
cgauge (dω) : ω ∈ Ps

gauge (ω̃)

}
,

where

Ps
gauge (ω̃) = ω̃ + W 1,s

0

(
O;�k−1

(
R
n+1
))

. (2.8)

Remark 2.6. In the case k = 1 (i.e. ω is a function), we have

cgauge (dω) = cgauge (∇ω) = c (πx (∇ω) ,−π0 (∇ω)) = c (∇xω,−∂tω) .

The following proposition shows the equivalence between (P) and
(
Pgauge

)
:

Proposition 2.7. Under the above hypotheses,

inf (P) = inf
(
Pgauge

)
.

More precisely, if ω ∈ Ps
gauge (ω̃) , then

( f, g) = (πx ,−π0) (dω) ∈ Ps (ω̃) .

Conversely, given ( f, g) ∈ Ps (ω̃) , there exists ω ∈ Ps
gauge (ω̃) such that

( f, g) = (πx ,−π0) (dω).



326 Bernard Dacorogna & Wilfrid Gangbo

Proof. Step 1. Let ω ∈ Ps
gauge (ω̃) , write the decomposition ω = πx (ω) + dx0 ∧

π0 (ω) = F + dx0 ∧ G, and then set

f = πx (dω) , g = −π0 (dω) and h = f − dx0 ∧ g.

It follows from (2.6) that

f = dx F ∈ Ls
(
O;�k (

R
n)
)

and g = −∂t F + dxG ∈ Ls
(
O;�k−1 (

R
n)
)

.

Observe that

dh = dx f + dx0 ∧ (∂t f + dx g) = 0.

Since dω = h in O and ω = ω̃ on ∂O, we have

ν ∧ dω̃ = ν ∧ h on ∂O,

and thus ( f, g) ∈ Ps (ω̃) .

Step 2. Conversely, let ( f, g) ∈ Ps (ω̃) and recall that

h = f − dx0 ∧ g ∈ Ls
(
O;�k

(
R
n+1
))

.

Since

dh = 0 in O and ν ∧ h = ν ∧ dω̃ on ∂O,

we can find (cf. Theorem 5.3) ω ∈ W 1,s
(
O;�k−1

(
R
n+1
))

such that

{
dω = h in O
ω = ω̃ on ∂O.

Thus, ω ∈ Ps
gauge (ω̃) . ��

Remark 2.8. Let O and ω̃ be as above. In the proof of Proposition 2.7, the heart
of the matter was to know that for any h ∈ Ls

(
O;�k

(
R
n+1
))

satisfying (2.2),
we could find ω ∈ ω̃ ∈ W 1,s

(
O;�k−1

(
R
n+1
))

such that dω = h. We would like
to draw the attention of the reader to the fact that if O was only assumed to be a
connected bounded open smooth set (not necessarily contractible), an additional
condition would have to be imposed on h to obtain the existence of such a ω.

Mainly, we would need to impose the additional requirement that

∫

O
〈h;χ〉 =

∫

∂O
〈ν ∧ ω̃;χ〉 ∀χ ∈ HT

(
O;�k

(
R
n+1
))

.

Here HT is the set of harmonic forms with vanishing tangential component (see
[6], for details).
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2.4. The Case of the Cylinder

In Proposition 2.7 (above), the smoothness of the domain O ⊂ R
n+1 made it

easier to reach our conclusions. We now show how, by reinforcing the hypotheses a
little, we can handle the case of the cylinder O = (0, 1)×� ⊂ R

n+1. Let � ⊂ R
n

be an open bounded smooth convex set. We assume, without loss of generality, that
0 ∈ �, and so there is a 1−homogeneous convex function �� : Rn �→ [0,∞)

smooth except at the origin such that

� = {�� < 1} and ∂� = {�� = 1} .

For δ ∈ (0, 1/2) , we set

�δ = {�� < 1 − δ} and ∂�δ = {�� = 1 − δ} .

We let O = (0, 1) × �, ν and νx denote, respectively, the outward unit normal to
∂O and ∂�. We also let c : �k (Rn) × �k−1 (Rn) → R be Borel measurable and
locally bounded. We further assume that there are a1 , a2 ∈ R and b1, b2 > 0 such
that

a1 + b1 |(λ, μ)|s ≤ c (λ, μ)

≤ a2 + b2 |(λ, μ)|s , ∀ (λ, μ) ∈ �k (
R
n)× �k−1 (

R
n) .

(2.9)

Definition 2.9. Let f0, f1 ∈ Ls
(
�;�k (Rn)

)
and δ ∈ (0, 1/2) be such that

supp ( f0) ∪ supp ( f1) ⊂ �δ (2.10)

and dx f0 = dx f1 = 0 in �. This last condition, coupled with (2.10), means that
∫

�

〈 f1; δφ〉 =
∫

�

〈 f0; δφ〉 = 0, ∀φ ∈ C1
(
�;�k+1

)
.

Remark 2.10. In view of the above properties of f0 and f1 , we can find Fi ∈
W 1,s

(
�δ,�

k−1 (Rn)
)
, i = 0, 1, such that

{
dFi = fi in �δ

Fi = 0 on ∂�δ .

Setting

Fi (x) :=
{
Fi (x) if x ∈ �δ

0 if x ∈ � \ �δ

and defining

ω̃ (t, x) = (1 − t) F0 (x) + t F1 (x) , ∀ (t, x) ∈ O,

we have ω̃ ∈ W 1,s
(
O,�k−1

(
R
n+1
))

and

ω̃ ≡ 0, dω̃ ≡ 0 on [0, 1] × (� \ �δ) . (2.11)
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Definition 2.11. Let f0, f1 be as in Definition 2.9 and let

f ∈ Ls
(
(0, 1) ; Ls

(
�;�k (

R
n)
))

and g ∈ Ls
(
(0, 1) ; Ls

(
�;�k−1 (

R
n)
))

satisfy the following properties:

(i) ∂t f + dx g = 0 in O, νx ∧ g = 0 on ∂� for every t ∈ [0, 1] , f (0, ·) = f0 and
f (1, ·) = f1 , meaning that

∫

�

(〈 f1;ϕ (1, ·)〉 − 〈 f0;ϕ (0, ·)〉) dx

=
∫

O
(〈 f ; ∂tϕ〉 + 〈g; δxϕ〉) dt dx, ∀ϕ ∈ C1

(
O;�k

)
;

(ii) dx f = 0 in� and νx ∧ f = νx ∧ f0 = νx ∧ f1 = 0 on ∂� for every t ∈ [0, 1] ,
meaning that

∫

�

〈 f ; δφ〉=
∫

�

〈 f0; δφ〉=
∫

�

〈 f1; δφ〉 , ∀ φ ∈ C1
(
�;�k+1

)
∀ t ∈ [0, 1] .

Remark 2.12. If ( f, g) are as in Definition 2.11, then t �→ ∫
�

〈 f (t, ·) ;φ〉 dx is
continuous on [0, 1] for any φ ∈ C1

0

(
�;�k

)
. Consequently, we may modify f

on a set of null measure and tacitly assume that f (t, ·) is well–defined for every
t ∈ [0, 1] . With this in mind, (ii) of Definition 2.11 is well defined.

Notation 2.13. Let Ps ( f0, f1) be the set of ( f, g) satisfying the assumptions in
Definition 2.11. Then:

(i) Recall O = (0, 1)×�. Using ω̃ as in Remark 2.10,Ps ( f0, f1) can be identified
with Ps (ω̃) . We prefer using the notation Ps ( f0, f1) rather than Ps (ω̃) .

(ii) We continue to denote cgauge as in (2.4) and Ps
gauge (ω̃) as in (2.8).

We now extend Proposition 2.7 to the case of the cylinder O = (0, 1) × �.

Theorem 2.14. Assume that c satisfies (2.9) and ( f0, f1) is as in Definition 2.9.
Let

(P) inf

{∫

O
c ( f, g) dt dx : ( f, g) ∈ Ps ( f0, f1)

}

and recall

(
Pgauge

)
inf

{∫

O
cgauge (dω) dt dx : ω ∈ Ps

gauge (ω̃)

}
.

Then

inf (P) = inf
(
Pgauge

)
.



Quasiconvexity and Relaxation in Optimal Transportation of Closed Forms 329

Proof. Because there is an imbedding ofPs
gauge (ω̃) intoPs ( f0, f1) ,we have that

inf (P) ≤ inf
(
Pgauge

)
,

and so it remains to prove the reverse inequality. It suffices to show that for every
ε0 > 0 we have

inf
(
Pgauge

) ≤ inf (P) + ε0 .

This will be proved in six steps. Fix ε0 > 0 and choose ( f, g) ∈ Ps ( f0, f1) such
that

∫

O
c ( f, g) dt dx < ε0 + inf (P) . (2.12)

Step 1. We define, for l ∈ (1 − δ, 1) ,

f l (t, x) :=

⎧
⎪⎨

⎪⎩

f0 (x) if 0 < s ≤ 1 − l

f
(
t+l−1
2l−1 , x

)
if 1 − l < s < l

f1 (x) if l < s ≤ 1

and

gl (t, x) :=

⎧
⎪⎨

⎪⎩

0 if 0 < s ≤ 1 − l
1

2l−1 g
(
t+l−1
2l−1 , x

)
if 1 − l < s < l

0 if l < s ≤ 1.

By (2.10) and the definition of gl , we have

f l ≡ 0, gl ≡ 0 on ([0, 1 − l] ∪ [l, 1]) × (� \ �δ

)
. (2.13)

Note that
∫

O
c
(
f l , gl

)
dt dx = (1 − l)

∫

�

(c( f0, 0) + c( f1, 0)) dx

+
∫ l

1−l

∫

�

c
(
f l , gl

)
dt dx,

and thus
∫

O
c
(
f l , gl

)
dt dx

= (1 − l)
∫

�

(c( f0, 0) + c( f1, 0)) dx + (2l − 1)
∫ 1

0

∫

�

c

(
f,

1

2l − 1
g

)
dt dx .

(2.14)

We invoke (2.9) and (2.12) to obtain |( f, g)|s ∈ L1 (O) . Observe that if l ∈
(1 − δ, 1) , then (2.9) implies

c

(
λ,

μ

2l − 1

)
≤ a2 + b2

(
|λ|s + |μ|s

(2l − 1)s

)
≤ a2 + b2

(|λ|s + |μ|s)
(2l − 1)s
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≤ a2 + b2
(|λ|s + |μ|s)

(1 − 2δ)s

for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) . We may therefore apply the dominated
convergence theorem to conclude that

lim
l→1−

∫ 1

0

∫

�

c

(
f,

1

2l − 1
g

)
dt dx =

∫

O
c ( f, g) dt dx .

This, together with (2.14), implies

lim
l→1−

∫

O
c
(
f l , gl

)
dt dx =

∫

O
c ( f, g) dt dx .

Combining the above identity and (2.12), we find that there exists l such that
∫

O
c
(
f l , gl

)
dt dx < ε0 + inf (P) . (2.15)

Step 2. It is straightforward to verify that
(
f l , gl

) ∈ Ps ( f0, f1) .

Step 3. For every ε ∈ (0, δ) , we define a new convex set Oε as

Oε = {(t, αε (t) x) : t ∈ (0, 1) , x ∈ �} ,

where we choose αε ∈ C∞ (R, (1/2, 1]) such that αε(0) = αε(1) = 1 − ε and
⎧
⎨

⎩

α′
ε > 0 in (0, ε)

α′
ε < 0 in (1 − ε, 1)

αε ≡ 1 in [ε, 1 − ε] .

We denote by νε the outward unit normal to ∂Oε. Note that

O \ Oε = {(t, x) : t ∈ (1 − ε, 1) , x ∈ � \ �1−αε(t)
}

∪ {(t, x) : t ∈ (0, ε) , x ∈ � \ �1−αε(t)
}
,

(2.16)

and so for ε ∈ (0, δ), we get

O \ Oε ⊂ ((0, δ) ∪ (1 − δ, 1)) × (� \ �δ) . (2.17)

Observe that ∂Oε consists of five parts:

∂Oε = S1ε ∪ S2ε ∪ S3ε ∪ Stopε ∪ Sbottomε , (2.18)

where

S1ε := [ε, 1 − ε] × ∂�,

S2ε := {(t, x) | t ∈ (1 − ε, 1), x ∈ ∂�1−αε(t)},
S3ε := {(t, x) | t ∈ (0, ε), x ∈ ∂�1−αε(t)}

and

Stopε := {0} × �ε, Sbottomε := {1} × �ε .
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Step 4. Set

hl = f l − dx0 ∧ gl .

Assume 0 < ε < 1 − l < δ (in particular, 1 − δ < l < 1). We want to prove that
{

dhl = 0 in Oε

νε ∧ hl = νε ∧ dω̃ on ∂Oε .
(2.19)

Indeed by Step 2,
(
f l , gl

) ∈ Ps ( f0, f1), and hence

{
dhl = 0 in O

ν ∧ hl = ν ∧ dω̃ on ∂O.
(2.20)

Let � ∈ C1
(
R
n+1;�k

(
R
n+1
))

. By (2.20), we have
∫

O

〈
hl; δ�

〉
dt dx =

∫

∂O
〈ν ∧ dω̃;�〉 . (2.21)

By (2.13) and (2.17), we have hl ≡ 0 on O \ Oε . We therefore find that
∫

O

〈
hl; δ�

〉
dt dx =

∫

Oε

〈
hl; δ�

〉
dt dx . (2.22)

Similarly, by (2.11) and (2.17), we have dω̃ ≡ 0 on O \ Oε . We then get that
∫

∂O
〈ν ∧ dω̃;�〉 =

∫

Oε∩∂O
〈ν ∧ dω̃;�〉

=
∫

{1}×�ε

〈
dx0 ∧ dω̃;�

〉
−
∫

{0}×�ε

〈
dx0 ∧ dω̃;�

〉
.

(2.23)

Since dω̃ ≡ 0 on S1ε ⊂ ∂O and dω̃ ≡ 0 on S2ε ∪ S3ε , we obtain
∫

S1ε

〈ν ∧ dω̃;�〉 +
∫

S2ε

〈νε ∧ dω̃;�〉 +
∫

S3ε

〈νε ∧ dω̃;�〉 = 0 (2.24)

and

ν|S1ε = νε |S1ε . (2.25)

We combine (2.23), (2.24) and (2.25) to conclude that
∫

∂O
〈ν ∧ dω̃;�〉 =

∫

∂Oε

〈νε ∧ dω̃;�〉 .

This, together with (2.21) and (2.22), implies (2.19), i.e.,
∫

Oε

〈
hl; δ�

〉
dt dx =

∫

∂Oε

〈νε ∧ dω̃;�〉 .
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Step 5. Since Oε is a smooth set, it follows from Step 4, that there exists
ωl ∈ ω̃ + W 1,2

0

(
Oε,�

k−1
(
R
n+1
))

such that dωl = hl = f l − dx0 ∧ gl in Oε .

Step 6. We finally prove that

inf
(
Pgauge

) ≤ ε0 + inf (P) .

Set

ω (t, x) :=
{

ωl (t, x) in Oε

ω̃ (t, x) in O \ Oε .
(2.26)

We have ω ∈ ω̃ + W 1,2
0

(
O,�k−1

(
R
n+1
))

. Since hl ≡ 0 on O \ Oε and dω̃ ≡ 0
on O \ Oε , we obtain

{
dω = hl in O
ω = ω̃ on ∂O

, (2.27)

and thus

inf
(
Pgauge

) ≤
∫

O
cgauge (dω) dt dx =

∫

O
c
(
f l , gl

)
dt dx .

The last inequality is due to the fact that by (2.27), ω is an admissible element in
the minimization problem of (Pgauge). Invoking (2.15), we obtain

inf
(
Pgauge

) ≤ inf (P) + ε0 .

This concludes the proof of the theorem. ��

3. Quasiconvexity and Existence of Minimizers

3.1. Polyconvexity, Quasiconvexity and Rank One Convexity

We start with a new appropriate definition of quasiconvexity; it is inspired by
the classical notion introduced by Morrey (cf. [10] and [21]) and connects with
the one for differential forms (cf. [3] and [4]), through an explicit transformation.

Definition 3.1. Let c : �k (Rn) × �k−1 (Rn) → R ∪ {+∞} . Then:

(i) The function c is called rank one convex if the function g : R → R ∪ {+∞} ,

defined as

g (s) = c
(
λ + s α ∧ a, μ + s

[
b α + γ ∧ a

])

is convex for every

(λ, μ) ∈ �k (
R
n)

×�k−1 (
R
n) , α ∈ �k−1 (

R
n) , γ ∈ �k−2 (

R
n) , a ∈ �1 (

R
n) , b ∈ R.

If g is affine, we call c rank one affine.



Quasiconvexity and Relaxation in Optimal Transportation of Closed Forms 333

(ii) Assume that c is Borel measurable and locally bounded (in particular, c never
takes the value +∞). Then c is called quasiconvex if

∫

O
c (λ + dxϕ,μ − ∂tϕ + dxψ) dt dx ≥ c (λ, μ)meas O (3.1)

for every bounded open set O ⊂ R
n+1 and for every

(λ, μ) ∈ �k (
R
n)

×�k−1 (
R
n) , ϕ ∈ W 1,∞

0

(
O;�k−1 (

R
n)
)

, ψ ∈ W 1,∞
0

(
O;�k−2 (

R
n)
)

.

If we further have equality in (3.1), we call c quasiaffine.
(iii) The function c is called polyconvex if there exists a convex function

� : �k
(
R
n+1
)

× · · · × �

[
n+1
k

]
k
(
R
n+1
)

→ R ∪ {+∞}

such that, for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) ,

c (λ, μ) = �

(
ξ, ξ2, · · · , ξ

[
n+1
k

])
, where ξ = λ + dx0 ∧ μ ∈ �k

(
R
n+1
)

.

If we further assume that � is affine, we call c polyaffine.

Remark 3.2. (i) For k = 1 the above definitions (theywill turn out to be equivalent
to ordinary convexity, cf. Theorem 3.8) read as follows:
– The function c is rank one convex if

s �→ g (s) = c (λ + s a, μ + s b)

is convex for every λ, a ∈ �1 (Rn) and μ, b ∈ R.

– The function c is quasiconvex if, for every (λ, μ) ∈ �1 (Rn) × R and
ϕ ∈ W 1,∞

0 (O) ,

∫

O
c (λ + ∇xϕ,μ − ∂tϕ) dt dx ≥ c (λ, μ)meas O.

(ii) It is easily proved that a quasiconvex (or rank one convex or polyconvex) func-
tion is necessarily locally Lipschitz continuous (see Theorem 2.31 in [10]).

(iii) When k = 2, by abuse of notations, we may write the quasiconvexity condition
as
∫

O
c
(
λ + (∇xϕ)t − ∇xϕ,μ − ∂tϕ + ∇xψ

)
dt dx ≥ c (λ, μ)meas O

for every (λ, μ) ∈ �2 (Rn)×�1 (Rn) , ϕ ∈ W 1,∞
0 (O;Rn) andψ ∈ W 1,∞

0 (O) .

(iv) Depending on the value of k, e.g. k = 2, we prove in Theorem 3.8 (iii) that the
notion of quasiconvexity is strictly weaker than the usual notion of convexity.
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(v) It will turn out (cf. Theorem 3.8 (ii)) that the notion of polyconvexity and the
usual notion of convexity are equivalent when k is odd. This comes from the
simple observation that if ξ = λ + dx0 ∧ μ and k is odd then ξ s = 0 for every
integer s ≥ 2.

(vi) When k is even, the definition of polyconvexity can be reformulated as follows.
The function c is called polyconvex if there exists a convex function

� : �k (
R
n)× · · · × �

[ n
k

]
k (

R
n)× �k−1 (

R
n)

× · · · × �

[
n−k+1

k

]
k+k−1 (

R
n)→ R ∪ {+∞}

such that, for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) ,

c (λ, μ) = �

(
λ, λ2, · · · , λ

[ n
k

]
, μ, λ ∧ μ, · · · , λ

[
n−k+1

k

]

∧ μ

)
.

It is interesting to relate these definitions to those introduced in [3], which apply
to cgauge : �k

(
R
n+1
)→ R ∪ {+∞} where

cgauge (ξ) = c (πx (ξ) ,−π0 (ξ)) .

Proposition 3.3. The function c is respectively rank one convex, quasiconvex or
polyconvex if and only if the associated function cgauge is, respectively,

– ext. one convex, meaning that g : R → R ∪ {+∞} defined by

g (s) = cgauge (ξ + s α ∧ β)

is convex for every ξ ∈ �k
(
R
n+1
)
, α ∈ �k−1

(
R
n+1
)
and β ∈ �1

(
R
n+1
) ;

– ext. quasiconvex, meaning that c is Borel measurable and locally bounded and
for every bounded open set O ⊂ R

n+1, ξ ∈ �k
(
R
n+1
)
and ω ∈ W 1,∞

0(
O;�k−1

(
R
n+1
))

∫

O
cgauge (ξ + dω) ≥ cgauge (ξ)meas O;

– ext. polyconvex, meaning that there exists a convex function

� : �k
(
R
n+1
)

× �2k
(
R
n+1
)

× · · · × �

[
n+1
k

]
k
(
R
n+1
)

→ R ∪ {+∞}

such that

cgauge (ξ) = �

(
ξ, ξ2, · · · , ξ

[
n+1
k

])
, for every ξ ∈ �k

(
R
n+1
)

.

Proof. We only prove the statement concerning rank one convexity, the others
being established in the same manner. Let ξ ∈ �k

(
R
n+1
)
, σ ∈ �k−1 (Rn) ,

β ∈ �1 (Rn) and s ∈ R. According to Lemma 2.4, we have
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ξ + s σ ∧ β = [πx (ξ) + s πx (σ ) ∧ πx (β)]

+ dx0 ∧
[
π0 (ξ) + s (−1)k−1 πx (σ ) ∧ π0 (β) + s π0 (σ ) ∧ πx (β)

]
.

Setting

λ = πx (ξ) , μ = −π0 (ξ) , α = πx (σ ) , a = πx (β) , γ = −π0 (σ ) ,

b = (−1)k π0 (β) ∈ R,

we have

ξ + s σ ∧ β = (λ + s α ∧ a) + dx0 ∧ (−μ − s
[
b α + γ ∧ a

])
.

Therefore

s �→ cgauge (ξ + s σ ∧ β)

is convex if and only if

s �→ c
(
λ + s α ∧ a, μ + s

[
b α + γ ∧ a

])

is convex. ��

3.2. Identification of �k (Rn) with RN and Comparison with Morrey’s Notions

We follow here [3,4]. By abuse of notations when needed, we identify �k (Rn)

with R
(n
k

)
.

Definition 3.4. Let 1 ≤ k ≤ n. We define the projection map

π : R
( n
k−1

)
×n → �k (

R
n)

in the following way: when k = 1,

π : Rn → �1 (
R
n) , π (�) =

n∑

i=1

�i dx
i ;

when 2 ≤ k ≤ n, to a matrix � ∈ R

( n
k−1

)
×n

, written as

� =
⎛

⎜
⎝

�
1···(k−1)
1 · · · �

1···(k−1)
n

...
. . .

...

�
(n−k+2)···n
1 · · · �

(n−k+2)···n
n

⎞

⎟
⎠ ,

the upper indices being ordered alphabetically, we associate
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π (�) =
∑

1≤i1<···<ik≤n

k∑

j=1

(−1) j+1 �
i1···i j−1i j+1···ik
i j

dxi1 ∧ · · · ∧ dxik

=
n∑

i=1

�i ∧ dxi ,

where

�i =
∑

1≤i1<···<ik−1≤n

�
i1···ik−1
i dxi1 ∧ · · · ∧ dxik−1 =

∑

I∈T n
k−1

�I
i dx

I .

Remark 3.5. (i) When k = 0, we let π = id : R → �0 (Rn) ∼ R.

(ii) When k = 2, we find that π : Rn×n → �2 (Rn) is defined as

π (�) =
n∑

i=1

�i ∧ dxi =
∑

1≤i< j≤n

(
�i

j − �
j
i

)
dxi ∧ dx j ,

where

� =
⎛

⎜
⎝

�1
1 · · · �1

n
...

. . .
...

�n
1 · · · �n

n

⎞

⎟
⎠ = (�1, · · · , �n) ,

so that when restricted to the set of skew symmetric matrices, namely

R
n×n
as = {� ∈ R

n×n : �t = −�
}
,

we have

π (�) = 2
∑

1≤i< j≤n

�i
j dx

i ∧ dx j .

(iii) For k = n, we write for any � ∈ R

( n
n−1

)
×n = R

n×n and any 1 ≤ i, j ≤ n,

�
ĵ
i = �

1···( j−1)( j+1)···n
i ,

so that

� =
⎛

⎜
⎝

�
1···(n−1)
1 · · · �

1···(n−1)
n

...
. . .

...

�2···n
1 · · · �2···n

n

⎞

⎟
⎠ =

⎛

⎜
⎝

�n̂
1 · · · �n̂

n
...

. . .
...

�1̂
1 · · · �1̂

n

⎞

⎟
⎠ .

The projection map π : R
( n
n−1

)
×n = R

n×n → �n (Rn) is therefore defined as

π (�) =
⎛

⎝
n∑

j=1

(−1)n− j �
ĵ
j

⎞

⎠ dx1 ∧ · · · ∧ dxn .



Quasiconvexity and Relaxation in Optimal Transportation of Closed Forms 337

(iv) Set

T n
k :=

{
(i1, · · · , ik) ∈ N

k
∣
∣∣ 1 ≤ i1 < · · · < ik ≤ n

}
.

We claim that π defined above is onto �k(Rn). Indeed if ξ ∈ �k (Rn) , then

choose, for example, � ∈ R

( n
k−1

)
×n as

�I
i =

{
(−1)σ

k! ξi I if i /∈ I
0 if i ∈ I

;

the sign being chosen in order to have (i, I ) ∈ T n
k . For example. when k = 2.

one way of constructing a preimage is to choose � ∈ R
n×n
as with

�i
j = 1

2
ξi j .

One easily gets the following result:

Lemma 3.6. (i) If α ∈ �k−1 (Rn) ∼ R

( n
k−1

)
and β ∈ �1 (Rn) ∼ R

n, then

π (α ⊗ β) = α ∧ β.

(ii) If ω ∈ C1
(
�;�k−1

)
, then, by abuse of notations,

π (∇ω) = dω.

It is interesting to point out the relationship between the notions introduced in
the present article and the classical notions of the calculus of variations (which apply
below to cgauge ◦π ), namely rank one convexity, quasiconvexity and polyconvexity
(see [10]). Combining the results in [4], Definition 3.1 and Proposition 3.3, we
obtain the following theorem (which is a tautology when k = 1):

Theorem 3.7. Letting 2 ≤ k ≤ n,

c : �k (
R
n)× �k−1 (

R
n)→ R, cgauge : �k

(
R
n+1
)

→ R and

π : R
(n+1
k−1

)
×(n+1) → �k

(
R
n+1
)

,

as above. Then the following equivalences hold:

c rank one convex ⇔ cgauge ext. one convex ⇔ cgauge ◦ π rank one convex

c quasiconvex ⇔ cgauge ext. quasiconvex ⇔ cgauge ◦ π quasiconvex

c polyconvex ⇔ cgauge ext. polyconvex ⇔ cgauge ◦ π polyconvex

c convex ⇔ cgauge convex ⇔ cgauge ◦ π convex.
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3.3. Main Properties

Thanks to [3], we use Proposition 3.3 to derive the following theorem:

Theorem 3.8. Suppose that c : �k (Rn)×�k−1 (Rn) → R (in particular c assumes
only finite values). Then:

(i) In general

c convex ⇒ c polyconvex ⇒ c quasiconvex ⇒ c rank one convex.

(ii) If k = 1, k = n or k = n − 1 is odd, then

c convex ⇔ c polyconvex ⇔ c quasiconvex ⇔ c rank one convex.

Moreover, if k is odd or 2k > n + 1, then

c convex ⇔ c polyconvex.

(iii) If either k = 2 and n ≥ 3 or 3 ≤ k ≤ n − 2 or k = n − 1 ≥ 4 is even, then

c polyconvex
⇒
�⇐ c quasiconvex,

while if 2 ≤ k ≤ n − 2 (and thus n ≥ k + 2 ≥ 4), then

c quasiconvex
⇒
�⇐ c rank one convex.

Remark 3.9. When k = 2, Theorem 3.8 yields the following:

If n = 2, then

c convex ⇔ c polyconvex ⇔ c quasiconvex ⇔ c rank one convex.

If n = 3, then

c convex
⇒
�⇐ c polyconvex

⇒
�⇐ c quasiconvex.

If n ≥ 4, then

c convex
⇒
�⇐ c polyconvex

⇒
�⇐ c quasiconvex

⇒
�⇐ c rank one convex.

We also rely on [3] and Proposition 3.3 to completely characterize the quasi-
affine functions.

Lemma 3.10. Let 1 ≤ k ≤ n and c : �k (Rn) × �k−1 (Rn) → R. The following
statements are then equivalent:

(i) c is polyaffine;
(ii) c is quasiaffine;
(iii) c is rank one affine;
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(iv) If k is odd or 2k > n + 1, then c is affine, i.e. there exist c0 ∈ R, c1 ∈ �k (Rn)

and d0 ∈ �k−1 (Rn) such that, for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) ,

c (λ, μ) = c0 + 〈c1; λ〉 + 〈d0;μ〉 ,

while if k is even and 2k ≤ n + 1, there exist c0 ∈ R, d0 ∈ �k−1 (Rn) ,

cr ∈ �kr (Rn) for 1 ≤ r ≤ [ nk
]
, ds ∈ �ks+(k−1) (Rn) for 1 ≤ s ≤ [ n−k+1

k

]
,

such that, for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) ,

c (λ, μ) = c0 +
[ n
k

]
∑

r=1

〈
cr ; λr

〉+ 〈d0;μ〉 +

[
n−k+1

k

]

∑

s=1

〈
ds; λs ∧ μ

〉
.

3.4. Existence of Minimizers

We now turn to the existence theorem for (P) and
(
Pgauge

)
defined in Problems

2.3 and 2.5. We assume that O ⊂ R
n+1 is a bounded open contractible set with a

smooth boundary, ω̃ ∈ W 1,s
(
O;�k−1

(
R
n+1
))

, c : �k (Rn) × �k−1 (Rn) → R

is quasiconvex, and that there exist a2 , b2 > 0 such that

|c (λ, μ)| ≤ a2 + b2 |(λ, μ)|s , ∀ (λ, μ) ∈ �k (
R
n)× �k−1 (

R
n) .

Corollary 3.11. Under the above hypotheses, and if

(P) inf

{∫

O
c ( f, g) dt dx : ( f, g) ∈ Ps (ω̃)

}

(
Pgauge

)
inf

{∫

O
cgauge (dω) dt dx : ω ∈ Ps

gauge (ω̃)

}
,

then

inf (P) = inf
(
Pgauge

)
.

If, in addition to the above hypotheses, there exist a1 ∈ R, b1 > 0 such that

a1 + b1 |(λ, μ)|s ≤ c (λ, μ) , ∀ (λ, μ) ∈ �k (
R
n)× �k−1 (

R
n) ,

then (P) and
(
Pgauge

)
attain their minimum.

Proof. The fact that inf (P) = inf
(
Pgauge

)
, as well as the fact that (P) attains its

minimum if and only if
(
Pgauge

)
attains its minimum, follow at once from Proposi-

tion 2.7.We refer to [3] for the existence ofminimizers in
(
Pgauge

)
,where Theorem

5.1 is used (to remedy the lack of compactness mentioned in the introduction). ��
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3.5. Existence of Minimizers When O is the Cylinder

We adopt the same hypotheses (in particular, ( f0, f1) are as in Definition 2.9
with s = 2) and notations as in Subsection 2.4. In particular, O = (0, 1) × �,

(P) inf

{∫

O
c ( f, g) dt dx : ( f, g) ∈ P2 ( f0, f1)

}
,

and

(
Pgauge

)
inf

{∫

O
cgauge (dω) dt dx : ω ∈ P2

gauge (ω̃)

}
.

Theorem 3.12. Let c : �k (Rn) × �k−1 (Rn) → R be quasiconvex and satisfy, for
some a1 , a2 ∈ R and b1, b2 > 0,

a1 + b1 |(λ, μ)|2 ≤ c (λ, μ)

≤ a2 + b2 |(λ, μ)|2 , ∀ (λ, μ) ∈ �k (
R
n)× �k−1 (

R
n) .

(3.2)

Then

inf (P) = inf
(
Pgauge

)
.

Moreover, (P) and
(
Pgauge

)
attain their minimum.

Proof. The statement that inf (P) = inf
(
Pgauge

)
has already been proved in The-

orem 2.14 .
Step 1. The proof of Theorem 2.14 reveals the following facts when s = 2:

there is a monotone sequence (εm)m ⊂ (0, 1) decreasing to 0 such that by Step 2
of the proof of the theorem and by (2.26), there are

(
f m, gm

) ∈ P2 ( f0, f1)

such that
∫

O
c
(
f m, gm

)
dt dx ≤ inf (P) + 1

m
. (3.3)

If we further set hm := f m − dx0 ∧ gm, then using Step 4 of the proof of Theorem
2.14, we have

{
dhm = 0 in Oεm

νεm ∧ hm = νεm ∧ dω̃ on ∂Oεm .

This, thanks to Theorem 7.2 [6], provides us with

ωm ∈ W 1,2
(
Oεm ,�k−1

(
R
n+1
))
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such that
⎧
⎨

⎩

dωm = f m − dx0 ∧ gm in Oεm

δωm = 0 in Oεm

νεm ∧ ωm = νεm ∧ ω̃ on ∂Oεm .

(3.4)

Step 2. The first inequality in (3.2), together with (3.3), implies

∥∥ f m
∥∥2
L2(O)

+ ∥∥gm∥∥2L2(O)
≤ 1

b1

(
1

m
+ inf (P) − a1 |O|

)
. (3.5)

Passing to a subsequence, if necessary, wemay conclude that ( f m, gm)m converges
weakly in L2 (O) to some ( f, g), which must satisfy

( f, g) ∈ P2 ( f0, f1) . (3.6)

Thanks to (3.4), we use Theorem 8 in [7] (recall that Oεm is smooth and convex)
to infer that

∥∥∇ωm − ∇ω̃
∥∥2
L2(Oεm )

≤
∥∥∥ f m − dx0 ∧ gm − dω̃

∥∥∥
2

L2(Oεm )
+ ‖δω̃‖2L2(Oεm )

.(3.7)

We combine (3.5) and (3.7) to obtain a constant C∗ > 0 independent of m such
that

∥
∥∇ωm

∥
∥
L2(Oεm )

≤ C∗ . (3.8)

For δ > 0 and εm ∈ (0, δ) (note that then Oδ ⊂ Oεm ), we define for (t, x) ∈ Oδ ,

ωm
δ (t, x) := ωm − 1

|Oδ|
∫

Oδ

ωm (s, y) ds dy.

Invoking the PoincaréWirtinger inequality, we obtain a constantCδ which depends
only on �δ (but independent of m) such that

∥∥ωm
δ

∥∥
W 1,2(Oδ)

≤ Cδ

∥∥∇ωm
δ

∥∥
L2(Oδ)

= Cδ

∥∥∇ωm
∥∥
L2(Oδ)

≤ C∗Cδ . (3.9)

By (3.4), we have

dωm
δ = f m − dx0 ∧ gm on Oδ . (3.10)

From (3.9), we find that there exists ωδ ∈ W 1,2
(
Oδ;�k−1

(
R
n+1
))

such that, up
to a subsequence,

(
ωm

δ

)
m ⇀ ωδ in W 1,2

(
Oδ;�k−1

(
R
n+1
))

. By (3.10), we get

dωδ = f − dx0 ∧ g on Oδ . (3.11)

Since by (3.2) c − a1 ≥ 0, replacing c by c − a1 , if necessary, we may assume,
without loss of generality, that c ≥ 0.We use first this fact and then (3.10) to obtain
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lim inf
m→∞

∫

O
c
(
f m, gm

)
dt dx ≥ lim inf

m→∞

∫

Oδ

c
(
f m, gm

)
dt dx

= lim inf
m→∞

∫

Oδ

cgauge
(
dωm

δ

)
dt dx .

This, together with the quasiconvexity of c, the fact that
(
ωm

δ

)
m ⇀ ωδ in W 1,2

(
Oδ;�k−1

(
R
n+1
))
, and (3.11), implies

lim inf
m→∞

∫

O
c
(
f m, gm

)
dt dx ≥

∫

Oδ

cgauge (dωδ) dt dx

=
∫

Oδ

c ( f, g) dt dx .

We let δ tend to 1 and use the monotone convergence theorem to obtain

lim inf
m→∞

∫

O
c
(
f m, gm

)
dt dx ≥

∫

O
c ( f, g) dt dx .

We combine this with (3.3) to infer that
∫

O
c ( f, g) dt dx = inf (P) .

This concludes the proof of the theorem. ��

3.6. An Important Example for Applications

As mentioned in the introduction, the actions which motivate this manuscript
include those which may be interpreted as kinetic energy functionals of physical
systems of particles. In the sequel, we assume that k = 2 and n = 2m is even and
s ≥ 1.

Given a path of symplectic forms f ∈ C∞ ([0, 1] ;C∞
0

(
�,�2 (Rn)

))
(i.e.

dx f = 0 and f m �= 0) and a vector field v ∈ C∞
0 ([0, 1] × �;Rn) such that

∂t f + Lv f = 0,

define the generalized kinetic energy functional

Es ( f, v) =
∫

(0,1)×�

1

2
|v|s � dt,

where � = f m . Note that � satisfies the continuity equation

∂t� + ∇x · (� v) = 0.

Setting v =∑n
i=1 vi dx

i ,

g = v � f, f0 = f (0, ·) , f1 = f (1, ·) , (3.12)
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we have that ( f, g) ∈ Ps( f0, f1). The first identity in (3.12) yields (since f m �= 0)
v = g � f −1, and so

|v|s =
∣∣∣g � f −1

∣∣∣
s
.

Therefore, the generalized kinetic energy functional is

Es ( f, v) =
∫

(0,1)×�

1

2

∣∣∣g � f −1
∣∣∣
s
f mdt.

As announced in the introduction, we show in the next proposition that, written in
terms of ( f, g) , Es has a polyconvex integrand (we do not speak of quasiconvexity,
because the function below can take the value +∞).

Proposition 3.13. (i) For any λ ∈ �2 (Rn) and μ ∈ �1 (Rn) , we have that
(∗λm

)
μ = m (μ � λ) �

(
∗λm−1

)
.

In particular, if ∗λm �= 0, and setting λ−1 = m
∗λm

(∗λm−1
)
, then

μ � λ = μ̃ ⇔ μ̃ � λ−1 = μ.

(ii) For any ε ≥ 0, the cost cε : �2 (Rn) × �1 (Rn) → R ∪ {+∞} defined as

cε (λ, μ) =
{ ∣∣μ � λ−1

∣∣s (∗λm) if ∗ λm > ε

+∞ otherwise

is polyconvex.

Proof. (i) Appealing to Proposition 2.16 in [6], we can write
(∗λm

)
μ = − [∗ (μ � λm

)]

= −
[
∗
[
m (μ � λ) ∧ λm−1

]]
= m

[
(μ � λ) �

(
∗λm−1

)]
,

which establishes (i).
(ii) Step 1. Let γε : �1 (Rn) × R → R ∪ {+∞} be defined as

γε (x, y) =
{ |x |s

ys−1 if y > ε

+∞ otherwise

(if s = 1, replace |x |s /ys−1 by |x |). Note that γε is convex.
Step 2. According to (i), we can write

∣∣
∣μ � λ−1

∣∣
∣
s (∗λm

) =
∣∣
∣μ �

( m

∗λm

(
∗λm−1

))∣∣
∣
s (∗λm

) = ms

∣∣λm−1 ∧ μ
∣∣s

(∗λm)s−1 .

We observe that if we set e = dx1 ∧ · · · ∧ dxn, then ∗λm = 〈e; λm〉, and thus

cε (λ, μ) = ms γε

(
λm−1 ∧ μ,

〈
e; λm

〉)
.

The function cε is therefore expressed as a convex function γε whose arguments
are quasiaffine functions (namely λm−1∧μ and 〈e; λm〉) according to Lemma 3.10,
and hence cε is, by definition, polyconvex. ��
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4. Quasiconvex Envelope and the Relaxation Theorem

4.1. The Quasiconvex Envelope

As in the classical case [8], we define an operator c �→ Q [c] which associates
to any cost function a quasiconvex cost function which is its envelope.

Definition 4.1. The quasiconvex envelope of c : �k (Rn) ×�k−1 (Rn) → R is the
largest quasiconvex function Q [c] : �k (Rn) × �k−1 (Rn) → R which lies below
c, i.e.

Q [c] = sup {g : g ≤ c and g quasiconvex} .

Remark 4.2. (i) For cgauge : �k
(
R
n+1
)→ R, as in Problem 2.5 (see also Propo-

sition 3.3), we define the quasiconvex envelope as

Q
[
cgauge

] = sup
{
g : g ≤ cgauge and g is ext. quasiconvex

}
.

(ii) If we set

Cgauge = cgauge ◦ π : R
(n+1
k−1

)
×(n+1) → R

(cf. Theorem 3.7), then Q
[
Cgauge

]
is the quasiconvex envelope in the classical

sense.

The next theorem provides a representation formula for Q [c] in terms of c.

Theorem 4.3. Let c, h : �k (Rn) × �k−1 (Rn) → R be Borel measurable and
locally bounded with h quasiconvex below c (i.e. h ≤ c). Let cgauge , Q

[
cgauge

]
,

Cgauge and Q
[
Cgauge

]
be as in Remark 4.2. Then

Q [c] = Q
[
cgauge

]
and Q

[
Cgauge

] = Q
[
cgauge

] ◦ π.

Moreover, for every (λ, μ) ∈ �k (Rn) × �k−1 (Rn) ,

Q [c] (λ, μ)

= inf
ϕ∈W 1,∞

0

(
O;�k−1(Rn)

)

ψ∈W 1,∞
0

(
O;�k−2(Rn)

)

{
1

meas O

∫

O
c (λ + dxϕ,μ − ∂tϕ + dxψ) dt dx

}
,

where O ⊂ R
n+1 is a bounded open set. In particular, the infimum in the formula

is independent of the choice of O and can be taken, for example, as (0, 1)n+1 .

Proof. The identity Q [c] = Q
[
cgauge

]
has to be understood as

Q
[
cgauge

]
(ξ) = Q [c] (πx (ξ) ,−π0 (ξ)) , ∀ ξ ∈ �k

(
R
n+1
)

,

and it follows at once from the definition of cgauge and Theorem 3.7. Next, let

� ∈ R

(n+1
k−1

)
×(n+1) and ξ = π (�) ∈ �k

(
R
n+1
)

,
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and set

c̃ (ξ) = inf

{
1

meas O

∫

O
cgauge (ξ + dω) dt dx : ω ∈ W 1,∞

0

(
O;�k−1

(
R
n+1
))}

.

If we denote C̃ = c̃ ◦ π, then

c̃ (ξ) = c̃ ◦ π (�) = C̃ (�) .

It follows by the classical result (see [8] and [10]) that, with the notations of Remark
4.2,

Q
[
Cgauge

]
(�)

= inf

{
1

meas O

∫

O
Cgauge (� + ∇�) dt dx : � ∈ W 1,∞

0

(
O;R

(n+1
k−1

))}

(and also that the formula is independent of the set O). We therefore deduce that
Q
[
Cgauge

] = C̃ = c̃ ◦ π. Thus C̃ is quasiconvex and, by Theorem 3.7, c̃ is ext.
quasiconvex. We have hence obtained that c̃ ≤ Q

[
cgauge

]
. Using Theorem 3.7

again, we infer that Q
[
cgauge

] ◦ π is quasiconvex. Summarizing these results, we
have shown that

Q
[
cgauge

] ◦ π ≤ Q
[
Cgauge

] = C̃ = c̃ ◦ π,

and thus Q
[
cgauge

] ≤ c̃. We have therefore proved that

Q
[
cgauge

] = c̃ and Q
[
Cgauge

] = Q
[
cgauge

] ◦ π = c̃ ◦ π,

and the theorem is established. ��
Remark 4.4. In view of Theorem 3.8 (ii), when k = 1 (and henceψ ≡ 0) or k = n,

then Q [c] = c∗∗. In general, Q [c] ≥ c∗∗, but it usually happens (particularly when
k = 2) that Q [c] > c∗∗.

4.2. The Relaxation Theorem

We assume below that O ⊂ R
n+1 is a bounded open contractible set with

smooth boundary, ω̃ ∈ W 1,s
(
O;�k−1

(
R
n+1
))

, h, c : �k (Rn)×�k−1 (Rn) → R

with h quasiconvex and there exist a2 , b2 > 0 such that

h (λ, μ) ≤ c (λ, μ) ≤ a2 + b2 |(λ, μ)|s , ∀ (λ, μ) ∈ �k (
R
n)× �k−1 (

R
n) .

Theorem 4.5. (Relaxation theorem). Let Q [c] be the quasiconvex envelope of c
and

(P) inf

{∫

O
c ( f, g) dt dx : ( f, g) ∈ Ps (ω̃)

}

(QP) inf

{∫

O
Q [c] ( f, g) dt dx : ( f, g) ∈ Ps (ω̃)

}
.
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Then

inf (P) = inf (QP) .

Moreover, if there exists a1 ∈ R, b1 > 0 such that

a1 + b1 |(λ, μ)|s ≤ c (λ, μ) , ∀ (λ, μ) ∈ �k (
R
n)× �k−1 (

R
n) , (4.1)

then (QP) attains its minimum and, for every ( f, g) ∈ Ps (ω̃) , there exists a
sequence

{(
f N , gN

)}∞
N=1 ⊂ Ps (ω̃) such that, as N → ∞,

(
f N , gN

)
⇀ ( f, g) weakly in Ls

(
O;�k (

R
n)× �k−1 (

R
n)
)

∫

O
c
(
f N , gN

)
dt dx →

∫

O
Q [c] ( f, g) dt dx .

Remark 4.6. Combining the above Theorem 4.5 with Corollary 3.11, we also have

inf (P) = inf (QP) = inf
(
Pgauge

) = inf
(
(QP)gauge

)
,

where

(
Pgauge

)
inf

{∫

O
cgauge (dω) dt dx : ω ∈ Ps

gauge (ω̃)

}

(
(QP)gauge

)
inf

{∫

O
Q
[
cgauge

]
(dω) dt dx : ω ∈ Ps

gauge (ω̃)

}
.

Proof. (Theorem 4.5). We set Cgauge = cgauge ◦ π. Recall that we identified

�k−1
(
R
n+1
)
with R

(n+1
k−1

)
. Therefore, depending on the context, we write

ω ∈ ω̃ + W 1,s
0

(
O;�k−1

(
R
n+1
))

.

Step 1.Appealing to Theorem 4.3 and Lemma 3.6 (ii), we infer the new formu-
lations

(
Pgauge

)
inf

{∫

O
Cgauge (∇ω) : ω ∈ ω̃ + W 1,s

0

(
O;�k−1

(
R
n+1
))}

(
(QP)gauge

)
inf

{∫

O
Q
[
Cgauge

]
(∇ω) : ω ∈ ω̃ + W 1,s

0

(
O;�k−1

(
R
n+1
))}

.

By the classical relaxation theorem (cf. e.g. [8] or Theorem 9.1 in [10]),

inf
(
Pgauge

) = inf
(
(QP)gauge

)
,

which establishes the fact that inf (P) = inf (QP) .

Step 2. It remains to address the properties of minimizing sequences under the
extra assumption (4.1). Let ( f, g) ∈ Ps (ω̃) . Invoking Proposition 2.7, we find

ω ∈ ω̃ + W 1,s
0

((
O;�k−1

(
R
n+1
)))

such that

( f, g) = (πx (dω) ,−π0 (dω)) .
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The classical duality theory (cf. e.g. Theorem 9.1 in [10]) gives that for every
ω ∈ ω̃ + W 1,s

0 , there exists ωN ∈ ω̃ + W 1,s
0 such that

dωN ⇀ dω in Ls
(
O;�k

(
R
n+1
))

and
∫

O
Cgauge

(
∇ωN

)
→
∫

O
Q
[
Cgauge

]
(∇ω) .

Setting
(
f N , gN

) = (
πx
(
dωN

)
,−π0

(
dωN

))
, we have indeed established the

theorem. ��
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5. Appendix: Systems of the Type (d, δ) and Poincaré lemma

We start with a classical theorem which can be found, for instance, in [6] Theorem
7.2 or Schwarz [22].

Theorem 5.1. Let 1 ≤ k ≤ n be an integer, 1 < s < ∞ and � ⊂ R
n be a bounded

open smooth contractible set with exterior unit normal ν. Then the following state-
ments are equivalent:

(i) f ∈ Ls
(
�;�k

)
, g ∈ Ls

(
�;�k−2

)
and F0 ∈ W 1,s

(
�;�k−1

)
satisfy

⎧
⎪⎨

⎪⎩

∫

�

〈 f ; δϕ〉 −
∫

∂�

〈ν ∧ F0; δϕ〉 = 0, ∀ϕ ∈ C∞ (�;�k+1
)
if 1 ≤ k ≤ n − 1

∫

�

f =
∫

∂�

ν ∧ F0 if k = n

∫

�

〈g; dϕ〉 = 0, ∀ϕ ∈ C∞
0

(
�;�k−3

)
;

(ii) There exists F ∈ W 1,s(�;�k−1) such that
{
dF = f and δF = g in �

ν ∧ F = ν ∧ F0 on ∂�.

Remark 5.2. (i) If 1 ≤ k ≤ n−1, then the conditions in (i) just mean, in the weak
sense, that

[dF = 0 and δg = 0 in �] and [ν ∧ f = ν ∧ dF0 on ∂�] .
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(ii) If k = 1, then the terms δF and g are not present, while if k = 2, then δg = 0
automatically.

The preceding theorem leads to the Poincaré lemma (cf., for example, Theorem
8.16 in [6]).

Theorem 5.3. (Poincaré Lemma). Let 1 ≤ k ≤ n be an integer, 1 < s < ∞ and
� ⊂ R

n be a bounded open smooth contractible set with exterior unit normal ν.

Then the following statements are equivalent:

(i) f ∈ Ls
(
�;�k

)
and F0 ∈ W 1,s

(
�;�k−1

)
satisfy

⎧
⎪⎨

⎪⎩

∫

�

〈 f ; δϕ〉 −
∫

∂�

〈ν ∧ F0; δϕ〉 = 0, ∀ϕ ∈ C∞ (�;�k+1
)
if 1 ≤ k ≤ n − 1

∫

�

f =
∫

∂�

ν ∧ F0 if k = n;

(ii) There exists F ∈ W 1,s(�;�k−1) such that
{
dF = f in �

F = F0 on ∂�.
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