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Abstract

When the velocity field is not a priori known to be globally almost Lipschitz,
global uniqueness of solutions to the two-dimensional Euler equations has been
established only in some special cases, and the solutions to which these results
apply share the property that the diffuse part of the vorticity is constant near the
points where the velocity is insufficiently regular. Assuming that the latter holds
initially, the challenge is then to propagate this property along the Euler dynamic
via an appropriate control of the Lagrangian trajectories. In domains with obtuse
corners and sufficiently smooth elsewhere, Yudovich solutions fail to be almost
Lipschitz only near these corners, and we investigate the necessary and sufficient
conditions for the vorticity to remain constant there. We show that if the vorticity
is initially constant near the whole boundary, then it remains so forever (and global
weak solutions are unique), provided that no corner has angle greater than π . We
also show that this fails in general for domains that do have such corners.

1. Introduction

Themost celebrated equations modeling themotion of an adiabatic and inviscid
flow are undoubtedly the Euler equations. Fluid velocity u and pressure p on a
spatial domain � are related via the equation

∂t u + (u · ∇)u = −∇ p on (0,∞) × �, (1.1)

and in the simplest setting, the fluid is assumed to have a constant density and to
be incompressible:

div u = 0 on [0,∞) × �. (1.2)

Moreover, in domains with boundaries, it is natural to assume that the boundary is
impermeable:

u · n = 0 on [0,∞) × ∂�. (1.3)
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Even though these equations constitute the first PDE model for the motion of a
liquid, their study is still a very active area of research, in mathematics as well as in
engineering and physics, because they not only describe well the motion of perfect
fluids, but the structure of this system is also incredibly rich.

In two spatial dimensions, the case considered in this article, the vorticity

ω := curl u = ∂1u2 − ∂2u1 on [0,∞) × � (1.4)

plays a crucial role, which one can see after taking the curl of Equation (1.1) to
obtain

∂tω + u · ∇ω = 0 on (0,∞) × �. (1.5)

The velocity formulation (1.1)–(1.3) is then equivalent to the vorticity formulation
(1.2)–(1.5), that is, the Euler system can be viewed as a transport equation (1.5)
for the vorticity ω, with the advecting velocity field u obtained in terms of ω by
solving the div-curl problem (1.2)–(1.4).

1.1. Existing well-posedness results

Thanks to several conservation properties coming from the transport theory,
well-posedness results for strong solutions to Euler equations in two dimensions
were established long time ago; byWolibner [34] in bounded domains, byMcGrath
[28] in the whole plane, and by Kikuchi [18] in exterior domains. The vorticity
formulation allows us to look for more general solutions in spaces defined in terms
of the regularity of ω0 := ω(0, ·). The most celebrated result in this direction is the
work of Yudovich [35], in which he obtained existence and uniqueness of a global
weak solution forω0 ∈ L1∩L∞(�) (see also [4,31]). Disregarding the uniqueness
issue, one can even obtain existence of a global weak solution forω0 ∈ L1∩L p(�)

with p > 1 [11] and for ω0 ∈ H−1 ∩ M+(�) [8].
Unfortunately, all the above works consider only smooth domains, with ∂�

being at least C1,1. This restriction is not justified by the weak regularity of the
studied solutions, and leaves aside many situations of practical interest. Mathemat-
ically, smoothness of ∂� is used to deduce a priori estimates of ∇u = ∇∇⊥�−1ω

in terms of ω thanks to L p-continuity of the Riesz transform for any p ∈ (1,∞).
We mention that while Jerison and Kenig constructed an example of a simply-
connected bounded domain � of class C1 and a function f ∈ C∞(�) such that
D2�−1 f is not integrable [17], this problem does not arise for Leray solutions of
the Navier-Stokes equations on non-smooth domains because the estimate of ∇u
comes directly from the energy estimate (see, e.g., [7]).

If the domain is convex, then the Riesz transform is continuous on L2(�),
and Taylor used this to obtain global existence of weak solutions for the 2D Euler
equations [30]. More recently, Gérard-Varet and Lacave extended existence theory
to a large class of irregular domains [13,14], even allowing exotic geometries such
as the Koch snowflake. Both articles consider ω0 ∈ L1 ∩ L p(�) or ω0 ∈ H−1 ∩
M+(�), using only L2 estimates for the velocity.
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To address the question of uniqueness, even in smooth domains, we typically
need much more regularity for the velocity, namely almost Lipschitz. For instance,
Yudovich used the Calderón-Zygmund inequality

‖∇u‖L p � Cp‖ω‖L p ∀p ∈ [2,∞)

to perform a Gronwall type argument when ω ∈ L∞([0,∞); L1 ∩ L∞(�)). Alter-
natively, one can use the well-known log-Lipschitzness of the velocity associated
to a vorticity in L1 ∩ L∞(�). That is,

|u(x) − u(y)| � C(‖ω‖L1∩L∞)|x − y|max{1,− ln |x − y|} ∀x, y ∈ �,

which then implies uniqueness for the Lagrangian formulation [26]. Below this
level of velocity regularity, we are aware of only one example where we have
uniqueness in smooth domains, the vortex-wave system when the diffuse part of
the initial vorticity is constant near the point vortex. This system was introduced by
Marchioro and Pulvirenti to describe the Euler solution when the total vorticity is
composed of a regular part ω ∈ L1 ∩ L∞(�) and a concentrated part γ δz(t). After
proving that the regular part ω stays constant around the point vortex z [25], which
is the place where the velocity is not regular, it is possible to prove uniqueness
[22]. We also note that uniqueness may not hold for unbounded vorticities, even
in smooth domains, as is suggested by the papers [32,33] of Vishik, where non-
uniqueness was demonstrated on R

2 with ω(0, ·) ∈ L p(R2) for some p > 2 and
in the presence of forcing that is (uniformly in time) in the same space.

When it comes to less regular domains, most existing uniqueness results require
u ∈ ⋂

p�2 W
1,p(�), while the example of Jerison and Kenig shows that this

regularity cannot be reached for general C1 domains. Nevertheless, there is a large
literature on elliptic regularity in domains with corners, that is, such that ∂� is
piecewise regular,with the singular points all being corners. In this case, veryprecise
estimates on the solution to the Laplace problem are known (see, for instance,
[6,15,20]) and depend on the angles of the corners. In particular, we note that
D2�−1 f ∈ ⋂

p�2 W
1,p(�) for any smooth function f if and only if all the corners

are acute. However, the Calderón-Zygmund inequality had not been established in
this case and it was not clear how to use the above results to obtain uniqueness.

Instead, other methods have proved useful in recent years. Bardos, Di Plinio,
and Temam proved uniqueness when � is a square, using a reflexion argument [5],
which can also be extended to convex domains with angles of all corners being
π
2k

for some integers k. General domains with acute corners and ∂� ∈ C2,α (with
α > 0) away from the corners were treated by the first author, Miot, and Wang
in [23], where precise estimates on the relevant conformal mapping lead to a log-
Lipschitz estimate on the push forward of u onto the unit disk, followed by a version
of the uniqueness proof of Marchioro and Pulvirenti. Afterwards, Di Plinio and
Temam proved uniqueness for general domains with acute corners and ∂� ∈ C1,1

away from the corners [9], via obtaining a Calderón-Zygmund inequality for such
domains and then employing the argument of Yudovich.

If� has a corner with an obtuse angle, then the velocity u is far from Lipschitz,
and it is not even bounded if the angle is greater than π . Thus, just as for the vortex-
wave system, the question of global uniqueness appears to be a very challenging
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problem if the vorticity is not constant in the neighborhood of the singularities of
the velocity (i.e., of the obtuse corners in this case). If, on the other hand, ω0 is
constant in these regions, the natural question becomes under what conditions this
remains the case at later times. This was addressed by the first author in [21], where
he introduced a special Lyapunov function that allowed him to show that if ω0 is
constant near all of ∂� (with ∂� ∈ C1,1 and � having no acute corners) and has a
definite sign, then the same will be true for all times t > 0.

The main purpose of this article is to show that the sign condition on ω as well
as the requirement of no acute corners are superfluous when all corners have angles
smaller than π , while the sign condition cannot be discarded in general when this
is not the case.

1.2. Main results

We will assume here that � is a bounded simply connected open subset of R2,
with a boundary that is C1,α except at a finite number of corners.

(H) Assume that ∂� is a piecewise C1,α Jordan curve with α > 0, that is,
there is a bijection γ : T → ∂� which is C1,α except at finitely many points
{sk = γ −1(xk)}Nk=1 and |γ ′(s)| = 1 for all s /∈ {s1, . . . , sN }. Also assume that
γ parametrizes ∂� in the counterclockwise direction (i.e., Indγ (z) ∈ {0, 1} for
each z) and all the singularities of ∂� are corners with positive angles. That is,
for k = 1, . . . , N we have

θk := lim
s→0+

Angle(γ ′(sk + s),−γ ′(sk − s)) ∈ (0, 2π ].

Remark. The case θk = 0 corresponds to an exterior cusp, whereas θk = 2π to an
interior cusp. In the course of the proof, we will need to straighten the corner via
the map z �→ zπ/θk . As in other works (see, e.g., [29]), we exclude the case θk = 0
in order to avoid complications arising from straightening exterior cusps (see, e.g.,
[27, Section 1]).

We will consider here velocity fields u in the Yudovich class, that is,

u ∈ L∞([0,∞); L2(�)) and ω := curl u ∈ L∞([0,∞) × �), (1.6)

that are weak solutions of the velocity or the vorticity formulation of the 2D Euler
equations. Existence of such solutions is established in [13], and we postpone their
precise definitions to Section 3.2. Since the velocity is far from Lipschitz when
corners with obtuse angles are present, a crucial step in the study of uniqueness
is to estimate particle trajectories near ∂�. As will be explained in Section 2.2
below, local elliptic regularity shows that for any divergence-free vector field u
verifying (1.6) and for any x ∈ �, there exists t (x) ∈ (0,∞] and a unique curve
X (·, x) ∈ W 1,∞([0, t (x))) with X (0, x) = x such that X (t, x) ∈ � for each
t ∈ [0, t (x)),

d

dt
X (t, x) = u(t, X (t, x)) for almost every t ∈ [0, t (x)), (1.7)
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as well as X (t (x), x) ∈ ∂� if t (x) < ∞. Here t (x) is the maximal time of
existence of the trajectory inside �. The first author showed in [21] that t (x) = ∞
for domains as above with α = 1 and no acute corners (i.e., mink θk � π

2 ) if either
ω(0, ·) � 0 or ω(0, ·) � 0. To get this result, he introduced a Lyapunov function
based on the Green’s function in order to obtain an algebraic cancelation of the
singularities at the corners, and the sign condition was useful to show that this
function essentially encodes the distance to the boundary (see Section 2.2 for more
details on his approach).

Our first main result shows that the sign condition can be dropped for domains
whose corners have angles less than π (including acute ones).

Theorem 1.1. Let � satisfy (H) with maxk θk < π , and let u be a global weak
solution of the Euler equations on � from the Yudovich class (1.6). Then:

(i) t (x) = ∞ for each x ∈ � and the corresponding trajectory X (·, x) from (1.7).
(ii) If α = 1, then ω(t, ·) = ω(0, X−1(t, ·)) for all t > 0 and (1.7) holds for all

(t, x) ∈ [0,∞) × �, with the velocity u being continuous on [0,∞) × �.
(iii) If α = 1 and there is a ∈ R such that ω(0, ·) − a is supported away from ∂�,

then the support of ω(t, ·) − a never reaches ∂�, and u is the unique global
weak solution from the Yudovich class with the same ω(0, ·).

Remark.

1. To obtain t (x) = ∞ in (i), we introduce a simpler Lyapunov function than
in [21], and the condition maxk θk < π will be necessary to obtain a relevant
Gronwall type estimate.

2. In fact, a more general version of (iii) holds, allowing suppω(0, ·) − a to meet
∂�. Namely, Proposition 3.2 below gives uniqueness until the first time t when
the support of ω(t, ·)− a reaches a point where ∂� is not C2,α̃ for some α̃ > 0
(e.g., a corner of�). We conjecture that C2,α̃ can be replaced by C1,1 here, that
is, uniqueness holds as long as suppω(t, ·) − a vanishes near the corners. We
also note that Proposition 3.2 holds for solutions satisfying (ii) on more general
domains � than just those from (H).

Our second main result shows that the sign condition in [21] is necessary for
general domains whose corners have angles greater than π . (Note that if θk = π

for some k, then ∂� is C1,α at xk , so xk is not a corner.)

Theorem 1.2. For any θ ∈ (π, 2π ], there exists � ⊆ R
2 satisfying (H) with ∂�

beingC∞ except at one point, which is a cornerwith angle θ , such that the following
holds. There are weak solutions in the Yudovich class (1.6) to the Euler equations
on � such that ω(0, ·) is compactly supported inside � and there are infinitely
many x ∈ supp(ω(0, ·)) such that the corresponding trajectory X (·, x) reaches ∂�

(at the obtuse corner) in finite time.

Remark. Our examples here are in spirit related to examples of solutions to the
2D Euler equations on domains with interior cusps that loose continuity in finite
time, by Kiselev and the second author [19]. We also provide in Section 4 examples
of solutions as in Theorem 1.2, but with the points x reaching ∂� in finite time
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not belonging to the support of the vorticity at t = 0, such that the Euler equations
have a unique weak solution on [0,∞) × �. In this case uniqueness holds because
the corresponding trajectories do not transport vorticity. Uniqueness of Yudovich
solutions when the vorticity is not constant near the obtuse corner remains an open
question.

The remainder of this article is divided into four parts. In Section 2 we recall
an explicit formula for u in terms of ω (the Biot-Savart law), expressed in terms
of the Green’s function on the unit disc via the Riemann mapping. We then obtain
necessary estimates on the derivatives of the Riemann mapping close to the cor-
ners. We also review the approach from [21], based on a Lyapunov function. In
Section 3, we prove Theorem 1.1, while Section 4 is devoted to the construction of
the examples from Theorem 1.2. A technical lemma, used in Section 3, is proved
in Appendix A.

2. Preliminaries

We start by recalling some basic results concerning the Biot-Savart law, which
determines the velocity field u from its vorticity ω. An explicit formula for this law,
in terms of the relevant conformal mapping, will be the key to building an appro-
priate Lyapunov function that controls the distance between particle trajectories
and the boundary ∂�. We will then discuss the construction and properties of the
trajectories, and recall the strategy of the proof of the main result of [21].

2.1. Riemann mapping and the Biot-Savart law

To find the velocity field u in the 2D Euler equations from its vorticity ω, one
needs to solve the div-curl problem

div u = 0 in �, curl u = ω in �, u · n = 0 on ∂�.

When the domain� is simply connected, for anyω ∈ H−1(�) there exists a unique
solution u ∈ L2(�) (in the sense of distributions; see [12,13] for the weak tangency
condition in non-smooth domains). Moreover, u can be expressed via the stream
function ψ := �−1ω ∈ H1

0 (�) (with � the Dirichlet Laplacian on �) through the
relation u = ∇⊥ψ = (−∂2ψ, ∂1ψ).

Identifying R
2 with C by setting z = x1 + i x2, one can invert the Laplacian

via a biholomorphism T : � → D (which exists due to the Riemann mapping
theorem), with D the unit disk. As ∂� ∈ C0,1, the Kellogg-Warschawski Theorem
(see [29, Theorem 3.6]) implies that T is continuous up to the boundary and maps
∂� on ∂D. Using the form of the Green’s function on D, we obtain the formula

ψ(x) = �−1ω(x) = 1

2π

∫

�

ln
|T (x) − T (y)|

|T (x) − T (y)∗||T (y)|ω(y) dy,
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where z∗ := z|z|−2. Therefore, the Biot-Savart law (for time-dependent functions)
reads

u(t, x) = K�[ω(t, ·)](x)
:= 1

2π
DT T (x)

∫

�

( T (x) − T (y)

|T (x) − T (y)|2 − T (x) − T (y)∗

|T (x) − T (y)∗|2
)⊥

ω(t, y) dy.

(2.1)

Having this formula, it is natural to first analyze the regularity properties of T .

Proposition 2.1. Let � satisfy (H) with maxk=1,...,N θk < π . Let δ0 := 1
6 mini �= j

{|xi − x j |, |T (xi )−T (x j )|}). There exists M � 1, depending only on �, such that

• for all x ∈ � \ ⋃N
k=1 B(xk, δ0) and y ∈ D \ ⋃N

k=1 B(T (xk), δ0) we have

M−1 � |DT (x)| � M and M−1 � |DT −1(y)| � M;
• for any k = 1, . . . , N and all x ∈ �∩ B(xk, δ0) and y ∈ D ∩ B(T (xk), δ0) we
have

M−1|x − xk |π/θk−1 �|DT (x)| � M |x − xk |π/θk−1,

M−1|y − T (xk)|θk/π−1 �|DT −1(y)| � M |y − T (xk)|θk/π−1,

M−1|x − xk |π/θk �|T (x) − T (xk)| � M |x − xk |π/θk .

This proposition is very similar to [23, Prop. 2.1], except that there ∂� needed
to be piecewise C2,α to guarantee certain properties of D2T . We provide the proof
of our version for the convenience of the reader.

Proof. We identifyR2 and C and we write here T ′ (i.e., derivative of T : C → C)
instead of DT . Consider now the corner at x1. The idea is to straighten it via the
map ϕ1(z) := (z − x1)π/θ1 . Since ϕ1 need not be injective on �, let δ1 ∈ (0, 1

2δ0]
be such that ϕ1 is injective on�∩ B(x1, 2δ1). We next let D1 ⊆ D be a C∞ Jordan
domain such that

� ∩ B(x1, δ1) ⊂ T −1(D1) ⊂ � ∩ B(x1, 2δ1)

and g1 : D1 → D be a Riemann mapping. From elliptic estimates on T in
B(x1, 2δ1) \ B(x1, δ1), we conclude that the boundary of �1 := T −1(D1) is
C1,α except at x1, whereas �̃1 := ϕ1(�1) is C1,α (for more details about local-
ization and straightening, we refer to the proof of [29, Theorem 3.9]). Then,
f1 := ϕ1 ◦ T −1 ◦ g−1

1 is a Riemann mapping from D to �̃1. The Kellogg-
Warschawski Theorem (see [29, Theorem 3.6]) now shows that f1 ∈ C1(D).
Moreover, there exists C1 > 0 such that

C−1
1 � | f ′

1(ζ )| � C1 ∀ζ ∈ D

(see [29, Theorem 3.5]). Similarly, we get the same properties for g−1
1 , so f̃1 :=

f1 ◦ g1 ∈ C1(D1) and

C̃−1
1 � | f̃ ′

1(ζ )| � C̃1 ∀ζ ∈ D1
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for some C̃1 > 0. The definition of f̃1 immediately gives

θ1

πC̃1
|T −1(y)−x1|−π/θ1+1� |(T −1)′(y)|� θ1C̃1

π
|T −1(y)−x1|−π/θ1+1 ∀y ∈ D1

(2.2)
and

π

θ1C̃1
|x − x1|π/θ1−1 � |T ′(x)| � πC̃1

θ1
|x − x1|π/θ1−1 ∀x ∈ �1. (2.3)

By connectedness of �1, we know that for any x ∈ �1, there exists a smooth
path γ in �1 joining x1 and x , and we have

|T (x)−T (x1)| =
∣
∣
∣

∫ 1

0
T ′(γ (t))γ ′(t)dt

∣
∣
∣ � sup

t∈(0,1)
|T ′(γ (t))|�(γ ) � πC̃1

θ1
�(γ )π/θ1 ,

where we have used that |γ (t) − x1| � �(γ ) and that π
θ1

− 1 > 0. We now claim
that �1 is a-quasiconvex for some a � 1, that is, for any x, y ∈ �1 there exists a
rectifiable path γ joining x, y and satisfying �(γ ) � a|x − y|. This follows from
(H) because ∂�1 is a piecewise C1 Jordan curve with no interior cusp and hence
a quasidisc (see, e.g., [16]), and Ahlfors shows in [2] that in two dimensions we
have

∂�1 is a quasidisk ⇐⇒ �1 is quasiconvex.

It follows that there is C2 > 0 such that

|T (x) − T (x1)| � C2|x − x1|π/θ1 ∀x ∈ �1,

so

|y − T (x1)|θ1/π � Cθ1/π
2 |T −1(y) − x1| ∀y ∈ D1.

If we also choose D1 convex (which can be done if we pick δ1 small enough), we
also obtain

|T −1(y) − x1| = | f̃1(y) − f̃1(T (x1))|θ1/π � C̃θ1/π
1 |y − T (x1)|θ1/π ∀y ∈ D1,

which also implies that

|x − x1|π/θ1 � C̃1|T (x) − T (x1)| ∀x ∈ �1.

These inequalities, together with (2.2) and (2.3) yield the claims in the second bullet
point for k = 1, and similarly for any k = 2, . . . , N . The claims in the first bullet
point are obtained similarly, by considering a smooth domain D0 ⊆ D such that

� \
N⋃

k=1

B(xk, δk) ⊂ T −1(D0) ⊂ � \
N⋃

k=1

B(xk, δk/2),

and using ϕ0(z) := z. ��
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Putting together the above estimates on T ′ and T , we obtain C � 1 such that
for k = 1, . . . , N we have

|DT (T −1(y))| � C ∀y ∈ D,

|DT (T −1(y))| � C |y − T (xk)|1−
θk
π ∀y ∈ D ∩ B(T (xk), δ0)

(2.4)

when � satisfies (H) and maxk=1,...,N θk < π .

2.2. Particle trajectories and the approach of [21]

Existence of global weak solutions to the 2D Euler equations in very general
bounded domains (see Section 3.2 for the precise definition) was established in
[13] in the Yudovich class (1.6). With this level of regularity, local elliptic estimates
allow us to define the Lagrangian flow up to the time of collision with the boundary.
Indeed, following [26, Chap. 2] we infer fromω ∈ L∞([0,∞)×�) that u is locally
log-Lipschitz, and a classical extension of the Cauchy-Lipshitz theorem shows that
for any x ∈ �, there exists t (x) > 0 and a unique curve X (·, x) ∈ W 1,∞([0, t (x)))
such that X (t, x) ∈ � for each t ∈ [0, t (x)),

X (t, x) = x +
∫ t

0
u(s, X (s, x)) ds ∀t ∈ [0, t (x)),

as well as X (t (x), x) ∈ ∂� if t (x) < ∞. As u is uniformly (in time) log-Lipshitz
on any compact subset of �, we obtain

d

dt
X (t, x) = u(t, X (t, x)) for a.e. t ∈ [0, t (x)).

If u is not globally log-Lipshitz in � or does not belong to
⋂

p�2 W
1,p(�),

uniqueness of solutions is not known in general. However, it should hold if the
vorticity is constant in the neighborhood of the set of points where the velocity
is singular, which in our case are the obtuse corners (and possibly other points
on the boundary with insufficient regularity). Here we will look for assumptions
guaranteeing that the trajectories X (·, x) transporting ω that start inside � never
reach ∂�, which means, in particular, that if initially the vorticity is constant in a
neighborhood of ∂�, then it will remain such for all t > 0.

In order to illuminate our approach, we now recall the strategy of the proof of the
main result from [21]. Roughly speaking, the latter was inspired by the Lyapunov
method developed by Marchioro [24], but the Lyapunov function

L(t) := − ln |L1(t, X (t, x))| with

L1(t, z) := 1

2π

∫

�

ln
|T (z) − T (y)|

|T (z) − T (y)∗||T (y)|ω(t, y) dy

is more complicated in [21] because the singularity is weaker than in the case of
a point vortex. As L1(t, ·) = �−1

z ω(t, ·) (with the Dirichlet Laplacian), one can
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majorize L1 by the distance to ∂�. Hence one only needs to prove that L stays
finite in order to conclude that t (x) = ∞. We have

L ′(t) = −
d
dt X (t, x) · ∇z L1(t, X (t, x)) + ∂t L1(t, X (t, x))

L1(t, X (t, x))
= −∂t L1(t, X (t, x))

L1(t, X (t, x))
,

where the (most singular) first term vanishes due to u(t, z) = ∇⊥
z L1(t, z) (this

motivated the choice of L in [21,24]). To conclude, one needs to estimate ∂t L1(t, z)
by L1(t, z), particularly where L1(t, z) = 0. When ω has a definite sign, L1 only
vanishes on ∂�, and a technical lemma is used in [21] to prove that ∂t L1 also
vanishes on ∂� and to control the relevant rate by L1. The sign condition is needed
for this choice of Lyapunov function L , as otherwise L1 can vanish inside �. The
mainmotivation for this Lyapunov functionwas to treat large angles like the interior
cusp, and it turned out that the arguments worked as long as all θk ∈ (π

2 , 2π ]. For
a more detailed discussion of the Lyapunov method in other contexts (such as the
vortex-wave system in R

2 or Euler equations with fixed point vortices in R
2) we

refer to [21, Sect. 7.5].
In contrast to [21], we use here a much simpler Lyapunov function to obtain

Theorem 1.1, which allows us to discard the sign condition onωwhen all corners of
� have angles smaller than π . Conversely, in the proof of our Theorem 1.2 we show
that the sign condition is in fact necessary to prevent particle trajectories reaching
∂� in finite time for general domains with corners whose angles are greater than
π .

3. Control of trajectories for domains with convex corners

3.1. The Lyapunov function and the proof of Theorem 1.1(i)

Let us consider a global weak solution (u, ω) of the Euler equations, a point
x ∈ � and the trajectory X (·, x) starting at x . As T maps � to D and ∂� to ∂D,
it is clear that for any t < t (x)

L(t) := 1 − ln
(
1 − |T (X (t, x))|

)
∈ [1,∞).

If t (x) < ∞, then we must have limt→t (x) L(t) = ∞. That is, to prove that the
trajectory does not reach the boundary in finite time, we need to show that L stays
bounded on bounded intervals. We have

L ′(t) = T (X (t, x)) · (
DT (X (t, x)) d

dt X (t, x)
)

|T (X (t, x))|(1 − |T (X (t, x))|)

whenever |T (X (t, x))| ∈ (0, 1). As T is holomorphic, DT is of the form

(
a b

−b a

)

and we have DT DT T = (det DT )I2. Using the Biot-Savart formula (2.1) to
evaluate d

dt X (t, x) now yields
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L ′(t) = det DT (X (t, x))

2π |T (X (t, x))|(1 − |T (X (t, x))|)
×

∫

�

(−T (X (t, x)) · T (y)⊥

|T (X (t, x)) − T (y)|2 + T (X (t, x)) · T (y)∗⊥

|T (X (t, x)) − T (y)∗|2
)

ω(t, y) dy

= det DT (X (t, x))(1 + |T (X (t, x))|)
2π |T (X (t, x))|

×
∫

�

|T (y)|2(|T (y)|2 − 1)T (X (t, x)) · T (y)⊥

|T (X (t, x)) − T (y)|2||T (y)|2T (X (t, x)) − T (y)|2ω(t, y) dy,

where we have used z∗ = z|z|−2. This implies that

L ′(t) � 2‖ω‖L∞ det DT (X (t, x))

π |T (X (t, x))|
×

∫

�

(1 − |T (y)|)|T (X (t, x)) · T (y)⊥|
|T (X (t, x)) − T (y)|2||T (y)|2T (X (t, x)) − T (y)|2 dy.

Theorem 1.1(i) now follows from the following technical lemma:

Lemma 3.1. Let� ⊆ R
2 be aboundedopendomain satisfying (H), withmaxk θk <

π . Then there is C� > 0 such that

det DT (T −1(ξ))

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 det DT −1(z) dz � C� |ln(1 − |ξ |)|

(3.1)
for all ξ ∈ D \ B(0, 1

2 ).

The proof is postponed to Appendix A. The lemma and the change of variables
z = T (y) show that

L ′(t) � C‖ω‖L∞ |ln(1 − |T (X (t, x))|)| � C‖ω‖L∞L(t)

when L(t) � 2 (because then |T (X (t, x))| > 1
2 ), with C depending on D. This

and L(t) � 1 now imply L(t) � (1 + L(0))eC‖ω‖L∞ t � 2L(0)eC‖ω‖L∞ t , so

|T (X (t, x))| � 1 − exp(−2L(0)eC‖ω‖L∞ t ).

Hence the trajectory X (·, x) cannot reach ∂� in finite time, and Theorem 1.1(i) is
proved.

3.2. Renormalized solutions and the proofs of Theorem 1.1(ii,iii)

The goal of this section is to show how Theorem 1.1(i) implies Theo-
rem 1.1(ii,iii).

Consider an initial vector field u0 ∈ L2(�) such that curl u0 ∈ L∞(�) and
u0 verifies the divergence free and impermeability conditions in the weak sense,
which in bounded domains means

∫

�

u0 · h dx = 0 ∀h ∈ G(�) := {∇ p : p ∈ H1(�)}. (3.2)
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Similarly, we can instead consider an initial function ω0 ∈ L∞(�), and then there
exists a unique u0 ∈ L2(�) with curl u0 = ω0 that verifies (3.2).

We say that u belonging to the Yudovich class (1.6) is a weak solution of the
velocity formulation (1.1)-(1.3) with initial data u0 whenever

∫ ∞

0

∫

�

(u · ∂tϕ + (u ⊗ u) : ∇ϕ) dxdt = −
∫

�

u0 · ϕ(0, ·)dx
∀ϕ ∈ D ([0,+∞) × �) with div ϕ = 0 (3.3)

and ∫

R+

∫

�

u · h dxdt = 0 ∀h ∈ D ([0,+∞);G(�)) . (3.4)

This is equivalent to having a pair (u, ω) with u in the Yudovich class (1.6) and
ω = curl u inD′((0,+∞)×�) that is a weak solution of the vorticity formulation
(1.2)-(1.5) for initial data ω0 in the sense of (3.4) and
∫ ∞

0

∫

�

(ω∂tϕ + ωu · ∇ϕ) dxdt = −
∫

�

ω0ϕ(0, ·)dx ∀ϕ ∈ D ([0,+∞) × �) .

(3.5)
Without any assumption on the regularity of ∂�, existence of a global weak

solutionwas established in [13] (see [14, Remark 1.2] for the vorticity formulation).
Let us consider such a solution when � is a domain verifying (H). As explained in
Section 2, we can write u in terms of ω := curl u through the Biot-Savart law (2.1)
and construct for every x ∈ � a W 1,∞-in-time trajectory X (·, x) starting at x . The
main result of the previous section is that these trajectories never reach ∂� in finite
time and they are then defined for every t ∈ [0,∞).

Nevertheless, it is not obvious for weak solutions that the vorticity is transported
by the flow, namely that ω(t, X (t, x)) = ω0(x). To get this property, we recall in
Step 1 below that the solution is more regular than (1.6) when � satisfies (H) with
α = 1, and that it is actually a renormalized solution in the sense of DiPerna-
Lions. This will imply that ω(t, X (t, x)) = ω0(x). We can then also conclude
from the previous section that the vorticity stays constant in the neighborhood of
the boundary if it verifies this property initially, which then implies uniqueness of
global weak solutions as we show in Step 2.
Step 1: Renormalized solutions

When the domain is piecewise C1,1 with the corners having arbitrary angles,
and the vorticity is bounded, it is known fromelliptic theory in domainswith corners
(see, e.g., [6,15,20]) that the stream function ψ := �−1ω (with � the Dirichlet
Laplacian) belongs to W 2,p(�) for any p ∈ [1, 4

3 ). (We recall that this is false in
general for C1 domains, see [17].) Then ω solves (in the weak sense of (3.5)) the
transport equation with the advecting vector field u = ∇⊥ψ and

ψ ∈ L∞([0,∞);W 2,5/4(�)).

This regularity would allow us to apply DiPerna-Lions theory for linear transport
equations [10], but the latter was developed only for smooth domains. To bypass
this restriction, we extend (u, ω) on R

2 as follows. First, we note that � verifies
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the Uniform Cone Condition (see [1, Par. 4.8] for the precise definition) because
θk > 0 for all k = 1, . . . , N . Therefore [1, Theorem 5.28] states that there exists
a simple (2, 5

4 )-extension operator E : W 2,5/4(�) → W 2,5/4(R2), that is, there
exists K > 0 such that for any v ∈ W 2,5/4(�),

Ev = v a.e. in � and ‖Ev‖W 2,5/4(R2) � K‖v‖W 2,5/4(�).

Introducing a smooth cutoff function χ such that χ ≡ 1 on B(0, R) and χ ≡ 0 on
B(0, R + 1), with R large enough so that � ⊂ B(0, R), we let, for a.e. t � 0,

ψ̄(t, ·) = χEψ(t, ·) and ū(t, ·) = ∇⊥ψ̄(t, ·).
Hence we have, for a.e. t � 0,

ū(t, ·) = u(t, ·) a.e. on �, (3.6)

and
div ū(t, ·) = 0 a.e. on R

2 and ū ∈ L∞(R+;W 1,5/4(R2)).

We next let ω̄ be the extension of ω by zero outside � and we note that ω̄ is a
weak solution (see (3.5), with R2 in place of �) of the transport equation

∂t ω̄ + ū · ∇ω̄ = 0 and ω̄(0, ·) = ω0.

To prove this, one only needs to consider test functions in (3.5) whose the support
intersects [0,∞) × ∂�. This was done in [23, Lemma 4.3] for angles less than
or equal to π

2 using log-Lipschitz regularity of u close to acute corners, and in
[21, Proposition 2.5] for angles in (π

2 , 2π ] using tangency properties hidden in
the explicit form of the Biot-Savart law (2.1) (see [21, Lemma 2.6]). By using
appropriate cutoff functions supported near the corners, one can use these two
results to obtain the desired claim about ω̄.

Therefore, the results of DiPerna and Lions [10] on linear transport equations
ensure that ω̄ is the unique weak solution in L∞([0,∞), L5(R2)) to the linear
transport equation with velocity field ū. For a precise statement we refer to [10,
Theorem II.2]; we also refer to, e.g., [3, Section 4] for more recent developments
in the theory.

Next, Theorem 1.1(i) shows that X (t,�) ⊆ � for all t � 0. Using this and
(3.6), one can readily prove that ω̃(t) := X (t, ·)#ω̄0 is an L∞([0,∞), L5(R2))

(recall that ω0 is bounded) solution to the same transport equation but with velocity
field ū (see e.g. the proof of Proposition 2.1 in [3]). As ω̄0 ≡ 0 in �c, we can
consider any extension of X on R2, for instance the flow map associated to ū. Due
to uniqueness, we can now conclude that ω̄(t) = ω̃(t) for a.e. t � 0, which, in
particular, yields

ω(t) = X (t, ·)#ω0, for a.e. t � 0,

in the sense that for a.e. t � 0wehave
∫
�

ω(t, x)ϕ(x) dx = ∫
�

ω0(x)ϕ(X (t, x)) dx
for all ϕ ∈ Cc(�).

After redefining ω on a set of measure zero, this becomes ω(t, x) =
ω0(X−1(t, x)). Uniform boundedness of u on any compact subset of �, which
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follows from boundedness of ω, now yields ω ∈ C([0,∞); L1(�)). It is then not
hard to show, using the Biot-Savart law, that u is continuous on [0,∞)×�, which
also means that (1.7) holds for all (t, x) ∈ [0,∞) × �. We have therefore proved
Theorem 1.1(ii).
Step 2: Uniqueness if the vorticity is constant in the neighborhood of the sin-
gular part of ∂�.

We prove here a stronger result than Theorem 1.1(iii). Namely, that appropriate
solutions to the 2D Euler equations in the sense of Theorem 1.1(ii) are unique on
more general domains �, as long as the vorticity is constant in a neighborhood of
the part of ∂� where ∂� /∈ C2,α̃ . Let α̃ > 0 be arbitrary and denote by

�α̃ := {x ∈ ∂� : ∂� ∩ B(x, ε) /∈ C2,α̃ for all ε > 0}
the singular part of ∂�. In particular, all corners of � belong to this set.

Proposition 3.2. Let � ⊆ R
2 be an open bounded simply connected domain and

let u be a global weak solution to the Euler equations on� from the Yudovich class
(1.6) such that ω(t, ·) = ω(0, X−1(t, ·)) for all t > 0. If there is a ∈ R such that
supp(ω(0, ·) − a) ∩ �α̃ = ∅ (for some α̃ > 0), then u is the unique such solution
with initial value ω(0, ·) until the first time t such that supp(ω(t, ·)− a)∩�α̃ �= ∅.

Theorem 1.1(iii) will then follow from this and from Theorem 1.1(i,ii), because
Theorem 1.1(i) shows that the (closed) support of ω − a can never reach ∂�. We
prove Proposition 3.2 by adapting the uniqueness proof ofMarchioro and Pulvirenti
[26] to non-smooth domains.

Proof of Proposition 3.2. Let ω0 := ω(0, ·) and assume without loss that
‖ω0‖L∞ � 1. Let T > 0 be any time by which the support of ω − a did not
reach �α̃ . Let �0 ⊆ � be an open set such that |∂�0| = 0 and ω0 ≡ a on � \ �0,
as well as

⋃
t∈[0,T ) X (t,�0) (which is compact) contains no point from �α̃ . Let

CT > 0 and an open set �T ⊆ � containing � ∩ ⋃
t∈[0,T ) X (t,�0) be such that

with dT (·, ·) the distance function in�T , we have dT (x, y) � CT |x − y|whenever
x, y ∈ �T and |x − y| � C−1

T , as well as

|D j
xG�(x, y)| � CT

|x − y| j for j = 1, 2

for each (x, y) ∈ �T × �. Here G� is the Dirichlet Green’s function for � and
existence of �T follows from the definition of �0 and the relation G�(x, y) =
GD(T (x), T (y)). Indeed, the Kellogg-Warschawski Theorem shows that T is C2

away from �α̃ , so the above bounds on G� for x away from �α̃ follow from the
same bounds on the explicitly given function GD .

Let Y be the flow map of another solution w(t, ·) = ω(0,Y−1(t, ·)) as above,
and let

η(t) := |�0|−1
∫

�0

|X (t, x) − Y (t, x)|dx .
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Let T ′ � T be the latest time such that � ∩ ⋃
t∈[0,T ′′) Y (t,�0) ⊆ �T for any

T ′′ ∈ [0, T ′). Let K� := ∇⊥
x G�, so that the Biot-Savart laws (2.1) for ω and w

read

u(t, x) :=
∫

�

K�(x, y)ω(t, y)dy and v(t, x) :=
∫

�

K�(x, y)w(t, y)dy.

Let

φ(r) :=
{
r(1 − ln r) r ∈ (0, 1),

1 r � 1.

A standard argument using the above bounds on G� (see Appendix 2.3 in [26])
shows that

max

{∫

�

|K�(x, y)−K�(x ′, y)|dy,
∫

�

|K�(y, x)−K�(y, x ′)|dy
}

�Cφ(|x−x ′|)

for all x, x ′ ∈ �T and some C depending only on CT , �T , and �. This then also
implies that |u(t, x) − u(t, x ′)| � Cφ(|x − x ′|) (3.7)

for any t < T ′ and x, x ′ ∈ �T (recall that ‖ω‖L∞ � 1). We have
|�0|−1

∫
�0

φ( f (x))dx � φ(|�0|−1
∫
�0

f (x)dx) for any f , due to concavity of φ

and Jensen’s inequality. Hence for any t < T ′ we have

η(t) � |�0|−1
∫

�0

∫ t

0
|u(s, X (s, x)) − u(s, Y (s, x))|dsdx

+ |�0|−1
∫

�0

∫ t

0
|u(s, Y (s, x)) − v(s, Y (s, x))|dsdx,

� C
∫ t

0
φ(η(s))ds

+ |�0|−1
∫ t

0

∫

�0

∣
∣
∣
∣

∫

�

K�(Y (s, x), y)ω(s, y)dy −
∫

�

K�(Y (s, x), y)w(s, y)dy

∣
∣
∣
∣ dxds

= C
∫ t

0
φ(η(s))ds

+ |�0|−1
∫ t

0

∫

�0

∣
∣
∣
∣

∫

�

[
K�(Y (s, x), X (s, y))− K�(Y (s, x), Y (s, y))

]
ω0(y)dy

∣
∣
∣
∣ dxds,

where at the endwe used themeasure-preserving changes of variables y �→ X (s, y)
and y �→ Y (s, y).

Since ω0 ≡ a on � \ �0, we get

∫

�\�0

K�(z, X (s, y))ω0(y)dy = a
∫

�

K�(z, X (s, y))dy − a
∫

�0

K�(z, X (s, y))dy

= a
∫

�

K�(z, y)dy − a
∫

�0

K�(z, X (s, y))dy



72 Christophe Lacave & Andrej Zlatoš

for any z ∈ �. Similarly,
∫

�\�0

K�(z,Y (s, y))ω0(y)dy = a
∫

�

K�(z, y)dy − a
∫

�0

K�(z,Y (s, y))dy,

so this, |a| � ‖ω0‖L∞ � 1, and the measure-preserving change of variables
Y (s, x) �→ x , yield

η(t) � C
∫ t

0
φ(η(s))ds

+ 2|�0|−1
∫ t

0

∫

�0

∫

�0

∣
∣K�(Y (s, x), X (s, y)) − K�(Y (s, x),Y (s, y))

∣
∣dydxds

� C
∫ t

0
φ(η(s))ds

+ 2|�0|−1
∫ t

0

∫

�0

∫

�

∣
∣K�(x, X (s, y)) − K�(x,Y (s, y))

∣
∣dxdyds

� C
∫ t

0
φ(η(s))ds + 2C |�0|−1

∫ t

0

∫

�0

φ(|X (s, y) − Y (s, y)|)dyds

� 3C
∫ t

0
φ(η(s))ds

for any t < T ′. Since η(0) = 0, it follows that η ≡ 0 on [0, T ′). So X (t, ·)|�0 =
Y (t, ·)|�0 for all t ∈ [0, T ′), which means that ω ≡ w on [0, T ′) × �. Therefore
also T ′ = T , by the definition of T ′, finishing the proof. ��

4. Reaching the boundary in finite time at concave corners

We now prove Theorem 1.2. Our domain � will be any domain satisfying the
hypotheses which is also symmetric across the x1 axis and its intersection with D
is the set of all z ∈ D \ {0} with arg(z) ∈ (− θ

2 , θ
2 ) (while in the case θ = 2π the

domain has an inward cusp at the origin). We let ω(0, ·) �≡ 0 be supported inside
�, odd in x2 and such that sgn(x2)ω(0, x) � 0. Steps 1 and 2 of Section 3.2 (in
particular, uniqueness) and the odd symmetry show that these properties continue to
hold for ω(t, ·) as long as suppω(t, ·) = X (t, suppω(0, ·)) does not reach ∂�. We
let�+ := �∩(R×(0,∞)),�− := �∩(R×(−∞, 0)), and�0 := �∩(R×{0}).

By the Riemann mapping theorem, there is a unique biholomorphism T :
� → D such that T (( 12 , 0)) = 0 and T ′(( 12 , 0)) ∈ (0,∞). It is easy to show that
T̃ := R ◦ T ◦ R, with R(x1, x2) := (x1,−x2), has the same properties, hence

T = R ◦ T ◦ R.

So we obtain G�±(x, y) = G�(x, y) − G�(x, Ry) for x, y ∈ �±, with

G�(x, y) = 1

2π
ln

|T (x) − T (y)|
|T (x) − T (y)∗||T (y)|

the Green’s function on �, where we recall that the Green’s functions satisfy



The Euler Equations in Planar Domains with Corners 73

G�±(x, y) = G�±(y, x) ∀(x, y) ∈ (�±)2,

G�±(x, y) = 0 ∀(x, y) ∈ �± × ∂�±,

�xG�±(·, y) = δ(· − y) ∀y ∈ �±.

As the Biot-Savart law (2.1) can be written as

u(t, x) =
∫

�

∇⊥
x G�(x, y)ω(t, y)dy,

it follows that if any solution on �± is extended onto � via an odd-in-x2 reflection
(that is, ω(t, Rx) = −ω(t, x) and u(t, Rx) = Ru(t, x)), this extension will be a
solution on �. Conversely, the restriction to �± of any odd-in-x2 solution on � is
also a solution on �±.

Ifω(0, ·) is as above and suppω(0, ·) ⊆ �+∪�−, then Theorem 1.1 shows that
we have a unique global solution on �+ with the initial vorticity being restricted to
that set, and its trajectories starting inside �+ never reach ∂�+. Its odd reflection
on � is then a global solution ω on � whose trajectories starting in �+ ∪�− never
reach ∂�∪�0. Hence the solution is unique, andω(t, ·) vanishes on a neighborhood
of ∂� ∪ �0 for each t � 0. We will show below that, nevertheless, the trajectory
X (t, x) for any x ∈ �0 does reach the origin (and hence ∂�) in finite time.

If � := suppω(0, ·) ∩ �0 �= ∅, the solution remains unique as long as no
trajectory starting at some x ∈ � reaches the origin. This is because the restriction
of the solution to �± is a solution on that set, and hence trajectories starting in
�± cannot reach ∂�± in finite time by Theorem 1.1 (while trajectories starting in
�0 \ � do not pose a problem). We will show below that X (t, �) does reach the
origin in some (first) time t0 > 0, and does not reach the other end of �0 before
time t0 because our choice of ω(0, ·) ensures that u2(t, x) = 0 and u1(t, x) < 0
for each (t, x) ∈ [0, t0) × �0 (see below). Therefore the solution remains unique
up to time t0 and 0 ∈ suppω(t0, ·) ∩ ∂�.

The claims in the last two paragraphs (and hence Theorem 1.2) will be proved
once we show existence of ν < 1 such that for each β < 1 there is Cβ > 0 such
that

u1(t, x) � −Cβx
ν
1 (4.1)

for all (t, x) ∈ [0, t0)×β�0, with t0 the first time such that 0 ∈ X (t0, �). Because
of the symmetry of ω, it is sufficient to show this for the solution on �+, which
satisfies ω � 0 and is a restriction to �+ of the solution from �.

Remark. As θ > π , the velocity u is in general unbounded close to the corner.
Nevertheless, for odd-in-x2 vorticities, u is given by the Biot-Savart law on �+,
where the corner has angle θ

2 � π . Thus the symmetry cancels the most singular
term in the Biot-Savart law on �, and u will be bounded and continuous on �. If
θ < 2π , this continuity and the tangency condition imply that u vanishes at the
corner, so θ > π (i.e., θ

2 > π
2 ) is necessary to have (4.1) with ν < 1.

Let us now show (4.1). Let T : �+ → D be as before (but for�+ and mapping
( 12 ,

1
2 ) to 0). Since

|ζ − z|2
|ζ − z∗|2|z|2 = 1 − (1 − |ζ |2)(1 − |z|2)

|ζ − z∗|2|z|2 ∈ [0, 1]
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for z ∈ D and ζ ∈ D, we have GD(ζ, z) < 0 when ζ ∈ D and GD(ζ, z) = 0
when ζ ∈ ∂D (recall that GD(ζ, z) = 1

2π ln |ζ−z|
|ζ−z∗||z| ). Hence when x ∈ ∂�+ (so

that |T (x)| = 1), the integrand in (2.1) is

2π∇⊥
ζ GD(T (x), T (y))ω(t, y) = 2π |∇ζGD(T (x), T (y))|T (x)⊥ω(t, y).

Moreover, from Step 1 in Section 3.2 we know that the vorticity is transported
by the flow X , so the L∞(�+) and L1(�+) norms of ω are conserved, and for
γ ∈ (0, 1) close enough to 1 and all t � 0, we have

‖ω(t, ·)‖L1(T −1(B(0,γ ))) � 1

2
‖ω0‖L1(�+).

This, ω � 0 on �+, and

inf
(ζ,z)∈∂D×γ D

|∇ζGD(ζ, z)| = inf
(ζ,z)∈∂D×γ D

∣
∣
∣
∣

ζ − z

|ζ − z|2 − ζ − z∗

|ζ − z∗|2
∣
∣
∣
∣ > 0

show that the integral in (2.1) is a vector −g(t, x)T (x)⊥ with

inf
(t,x)∈[0,t0)×∂�+ g(t, x) > 0.

It therefore suffices to analyze the time-independent term −DT T (x)T (x)⊥ for

x ∈ �0. Since DT is of the form

(
a b

−b a

)

, we have DT T DT = (det DT )I2 =
|∇|T (x)||2I2, with the last equality due to x ∈ ∂�+. Hence

−DT T (x)T (x)⊥ = −DT T (x)|∇|T (x)||−1DT (x)τx = −√
det DT (x)τx ,

with τx the counter-clockwise unit tangent to ∂�+ at x . Proposition 2.1 shows
that for each β < 1 there is Cβ > 0 such that

√
det DT (x) = √

a2 + b2 �
1
2 |DT (x)| � Cβ |x |2π/θ−1 for all x ∈ β�0, which proves (4.1) with ν := 2π

θ
− 1.

The proof is finished.
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A. Proof of Lemma 3.1

Let δ ∈ (0, δ0] be such that T (B(xk, δ)) ⊆ B(T (xk), δ) for all k = 1, . . . , N , with
δ0 > 0 from Proposition 2.1. Such δ exists because maxk θk < π .
Let us first assume that ξ is not near any T (xk) (with xk the corners of �). Specifi-
cally, we assume that T −1(ξ) ∈ �\⋃N

k=1 B(xk, δ). Then Proposition 2.1 provides
a uniform bound on the first determinant in (3.1), as well as on the second determi-
nant when z ∈ D \⋃N

k=1 B(T (xk), δ̃), where we pick δ̃ = δ̃(�, δ) ∈ (0, 1
6 ) so that

T (� ∩ ⋃N
k=1 B(xk, δ)) ⊇ D ∩ ⋃N

k=1 B(T (xk), 3δ̃) (the second bound will then
depend on δ̃). We therefore only need to estimate the integrals

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 dz and

∫

D∩⋃N
k=1 B(T (xk),δ̃)

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 det DT −1(z) dz.

If z ∈ B(T (xk), δ̃), then we have |ξ − z| > 2δ̃ because ξ ∈ D \ B(T (xk), 3δ̃), and

||z|2ξ − z| � |z|2
(
|ξ − T (xk)| − |T (xk) − z

|z|2 |
)

� (1 − δ̃)2(3δ̃ − 3
2 δ̃) > δ̃,

because δ̃ < 1
6 . This and the DT −1 bound from Proposition 2.1 estimate the second

integral above by a constant depending only on � (through δ and δ̃, which depend
only on �).
If ξ ∈ B(0, 1−δ), then ||z|2ξ−z| � (1−|z||ξ |)|z| � δ|z|. Since |ξ ·z⊥| � |ξ−z||z|
andweonly consider ξ ∈ D\B(0, 1

2 ) in this lemma (so thatmax{|ξ−z|, |z|} � 1
4 ), it

follows that the first integral above is also uniformly bounded in all ξ ∈ B(0, 1−δ).
It therefore suffices to show that

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 dz � C |ln(1 − |ξ |)| (A.1)

for ξ ∈ D \ B(0, 1 − δ). From rotational symmetry of this integral in ξ it follows
that we only need to consider ξ ∈ D ∩ B(−e1, δ), with e1 = (1, 0), to finish the
proof for T −1(ξ) ∈ � \ ⋃N

k=1 B(xk, δ).
If instead T −1(ξ) ∈ B(xk, δ) for some k, then our choice of δ shows that ξ ∈
B(T (xk), δ), and so Proposition 2.1 and (2.4) show that we only need to prove

|ξ − T (xk)|2
π−θk

π

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 |z − T (xk)|2

θk−π

π dz � C |ln(1 − |ξ |)| .

This is because the integral in (3.1) over B(T (x j ), δ) for each j �= k is obviously
estimated above by a constant, using again mink θk > 0. We can now assume
without loss that T (xk) = −e1. Thus we only need to show

|ξ + e1|2 π−θ
π

∫

D

(1 − |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2 |z + e1|2 θ−π

π dz � C |ln(1 − |ξ |)| (A.2)
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for any ξ ∈ D ∩ B(−e1, δ) and any fixed θ ∈ (0, π ] (so this includes also (A.1)),
where C may depend on θ .
Let Rξ := 1

4 (1−|ξ |) and first consider the left-hand side of (A.2) with the integral
only over z ∈ B(ξ, Rξ ). The substitution η := z − ξ yields

|ξ + e1|2 π−θ
π

∫

B(0,Rξ )

(1 − |η + ξ |)|ξ · η⊥|
|η|2|(1 − |η + ξ |2)ξ + η|2 |η + ξ + e1|2 θ−π

π dη. (A.3)

For η ∈ B(0, Rξ ) we have |η| � 1
4 (1 − |ξ |) � 1

4 |ξ + e1|, hence |ξ + e1| �
|η+ξ +e1|+|η| yields |η+ξ +e1| � 3

4 |ξ +e1|. Since also 1−|η+ξ | ∈ (3Rξ , 5Rξ )

and |ξ | � 1 − δ � 2
3 , (A.3) is no more than

∫

B(0,Rξ )

5Rξ |η|
|η|2|2Rξ − |η||2 (4/3)2 dη � 10

∫

B(0,Rξ )

1

Rξ |η| dη = 20π.

Hence we only need to prove (A.2) with the integral over z ∈ D \ B(ξ, Rξ ).
For these z we employ the estimate

∣
∣
∣|z|2ξ − z

∣
∣
∣ = |z|

∣
∣
∣
∣|z|ξ − z

|z|
∣
∣
∣
∣ � |z||ξ − z|,

where in the inequality we used that the points |z|ξ and z
|z| lie on the same radii of D

as the points ξ and z, respectively, but ||z|ξ | < |z| and | z
|z| | > |ξ | (hence the distance

of the former pair is larger). After also using |ξ · z⊥| = |(ξ − z) · z⊥| � |ξ − z||z|,
we are left with proving

|ξ + e1|2 π−θ
π

∫

D\B(ξ,Rξ )

1 − |z|
|ξ − z|3|z| |z + e1|2 θ−π

π dz � Cθ |ln(1 − |ξ |)|

for all ξ ∈ D ∩ B(−e1, δ) and θ ∈ (0, π ]. This is obviously true if we restrict the
integral to z ∈ B(0, 1

2 ), while on the rest of the domain the |z| in the denominator
can be neglected. Therefore after we also shift both ξ and z to the right by 1 (and
let R′

ξ := 1
4 (1 − |ξ − e1|)), it suffices to prove that

|ξ |2 π−θ
π

∫

B(e1,1)\B(ξ,R′
ξ )

1 − |z − e1|
|ξ − z|3 |z|2 θ−π

π dz � Cθ |ln(1 − |ξ − e1|)| (A.4)

for all ξ ∈ B(e1, 1) ∩ B(0, δ) and θ ∈ (0, π ].
If we restrict the integral to z ∈ B(0, 1

2 |ξ |) and use |z| � 1−|z− e1|, the left-hand
side will be no more than

|ξ |2 π−θ
π

∫

B(0, 12 |ξ |)
|z|

|ξ |3/8 |z|2 θ−π
π dz � C.

If we restrict the integral in (A.4) to z /∈ B(ξ, 1
2 |ξ |) ∪ B(0, 1

2 |ξ |) and also use
|ξ − z| � 1

3 |z|, the left-hand side will be no more than

|ξ |2 π−θ
π

∫

B(e1,1)\(B(ξ, 12 |ξ |)∪B(0, 12 |ξ |))
|z|

|z|3/27 |z|2 θ−π
π dz�

{
C(π−θ)−1 θ ∈ (0, π),

C |ln |ξ || θ = π.
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If we restrict the integral in (A.4) to z ∈ B(ξ, 1
2 |ξ |) and use that

1 − |z − e1| � |ξ − z| + (1 − |ξ − e1|) = |ξ − z| + 4R′
ξ � 5|ξ − z|

for z ∈ B(e1, 1) \ B(ξ, R′
ξ ), the left-hand side will be no more than∫

B(ξ, 12 |ξ |)\B(ξ,R′
ξ )

5

|ξ − z|2 4 dz � C
∣
∣
∣ln R′

ξ

∣
∣
∣ .

Since 4R′
ξ = 1−|ξ −e1| � |ξ | � δ � 1

3 , we obtain (A.4), and the proof is finished.
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