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Abstract

In this paper, we analyze a general diffuse interface model for incompressible
two-phase flows with unmatched densities in a smooth bounded domain � ⊂ R

d

(d = 2, 3). This model describes the evolution of free interfaces in contact with the
solid boundary, namely the moving contact lines. The corresponding evolution sys-
tem consists of a nonhomogeneous Navier–Stokes equation for the (volume) aver-
aged fluid velocity v that is nonlinearly coupled with a convective Cahn–Hilliard
equation for the order parameter ϕ. Due to the nontrivial boundary dynamics, the
fluid velocity satisfies a generalized Navier boundary condition that accounts for
the velocity slippage and uncompensated Young stresses at the solid boundary,
while the order parameter fulfils a dynamic boundary condition with surface con-
vection. We prove the existence of a global weak solution for arbitrary initial data
in both two and three dimensions. The proof relies on a combination of suitable
approximations and regularizations of the original system together with a novel
time-implicit discretization scheme based on the energy dissipation law.
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1. Introduction

In immiscible two-phase flows the contact line is defined as the intersection of
the fluid–fluid interface with the solid wall. The contact line problem turns out to
be of critical importance in many applications such as microfluidics, inkjet print-
ing, coating and oil recovery (see for example, [13,24,27,53]). The (static) contact
angle along the contact line characterizes fundamental concepts of wetting and
spreading phenomena on the solid surface (see Fig. 1). Furthermore, when one
fluid displaces another immiscible fluid, the contact line is moving relative to the
solid wall, resulting in a dynamic contact angle which deviates from the static one.
It is well-known that in immiscible two-phase flows, themoving contact line (MCL)
is incompatible with the no-slip boundary condition and predicts a non-integrable
singularity for the viscous stress, which results in a non-physical divergence for
the energy dissipation rate [27,28,43]. Much effort has been made to remove the
singularity, and various continuum models were proposed to regularize the prob-
lem, see for instance [27,39,59–61] and the references cited therein. Among those
contributions, the diffuse interface model turns out to be a useful and attractive
method to resolve the MCL conundrum [25,41,45,56,58,64,68,69,72,73]. The
diffuse interface models replace the classical hypersurface description of the free
interface between two fluids (that is, the so-called sharp interface) with a thin inter-
facial layer where microscopic mixing of the macroscopically distinct components
of matter are allowed, so that possible topological transitions such as pinch off and
reconnection of fluid interfaces can be handled in a natural way (see for example,
[8,11,44,49]). Moreover, the corresponding nonlinear partial differential equations
satisfy certain natural thermodynamics consistent energy dissipation laws, which
make it possible to carry out furthermathematical analysis [19,34,48,72] anddesign
efficient energy stable numerical schemes [9,12,22,36,63].

In this paper, we consider a thermodynamically consistent diffuse interface
model for an incompressible two-phase flow with different densities in a bounded
domain� ⊂ R

d (d = 2, 3) that accounts for the dynamics of moving contact lines
on the boundary ∂�. The resulting evolution system is of Cahn–Hilliard–Navier–
Stokes type:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t (ρv)+ div(ρv ⊗ v)− div(2ν(ϕ)Dv)+ ∇ p
+ div(v ⊗ J) = μ∇ϕ, in Q∞,

div v = 0, in Q∞,
∂tϕ + v · ∇ϕ = div (m(ϕ)∇μ) , in Q∞,
μ = −	ϕ + f (ϕ), in Q∞,

(1.1)

Fig. 1. Contact angle formed by the fluid–fluid interface with the solid boundary
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where Q(s,t) = � × (s, t), 0 � s, t � ∞ and Qt = Q(0,t). Let ui be the volume
fraction of fluid i (i = 1, 2). We take the difference of volume fractions as an order
parameter ϕ := u2−u1. Then the values ϕ = −1 and ϕ = 1 represent the unmixed
“pure” phases of fluid 1 and fluid 2, respectively. In terms of the order parameter
ϕ, the volume averaged velocity of the binary mixture takes the following form:

v = 1 − ϕ
2

v1 + 1 + ϕ
2

v2. (1.2)

In addition, the mass difference depends linearly on the order parameter and the
averaged density ρ of the mixture is given by

ρ(ϕ) = ρ2 − ρ1
2

ϕ + ρ1 + ρ2
2

, (1.3)

where ρi is the specific densities of fluid i (i = 1, 2). In system (1.1), Dv =
1
2 (∇v+∇vT ) stands for the rate of deformation tensor, p denotes the fluid pressure,
ν(ϕ) > 0 is a viscosity coefficient and m(ϕ) > 0 is a (non-degenerate) mobility
coefficient, both of them may depend on the order parameter ϕ. The relative mass
flux J related to the diffusion of mixture components is given by

J = −ρ′ (ϕ)m(ϕ)∇μ, (1.4)

where μ = −	ϕ + f (ϕ) is the chemical potential associated to ϕ. Moreover,
f = F ′ is the derivative of a homogeneous bulk potential density F for the binary
mixture with a double-well structure. One of the physically relevant choices for F
is the so-called logarithmic potential

F(s) = 


2

[
(1 + s) log(1 + s)+ (1 − s) log(1 − s)

] − 
0

2
s2, s ∈ [−1, 1],

(1.5)
where 0 < 
 < 
0 are positive constants denoting, respectively, the absolute
temperature and the critical temperature of the mixture. Although a comparison
principle for the fourth-order Cahn–Hilliard equation of ϕ is unknown, the singular
behavior of f at±1 ensures that the order parameter ϕ takes values in the physically
admissible interval [−1, 1] along the evolution (see [21]), moreover, this keeps the
positivity of the averaged density ρ(ϕ) in the general case of unmatched densities.

The diffuse interface model (1.1)–(1.5) was derived by Abels et al. [7] using
methods from rational continuum mechanics. Here, we have taken the coefficient
a(ϕ,∇ϕ) in the chemical potential μ therein to be constant 1 for the sake of sim-
plicity (cf. [7, (2.37)]). In the case of matched densities, that is, ρ1 = ρ2, the relative
mass flux J simply vanishes and the system (1.1) reduces to the classical “model
H” derived in [42] for the motion of an isothermal mixture of two immiscible and
incompressible fluids subject to phase separation (cf. also [8,40,62,65]). On the
other hand, for binary fluids with different densities, some other generalized diffuse
interface models were proposed in the literature (see, for instance, [16,17,26,49]).
The present model was derived using the volume averaged velocity (1.2), which
entails a divergence free mean velocity field. Moreover, it has the nice features of
being thermodynamically consistent and frame invariant (see [7, Remark 2.2]).
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There have been a considerable number of works devoted to the mathematical
analysis of various diffuse interface models for two-phase flows. We refer to, for
example, [1–3,10,14–16,18,31–33,38,40,46,75] and the references cited therein.
Most of these papers deal with the following classical boundary and initial condi-
tions:

v = 0, on �∞, (1.6)

∂nϕ = ∂nμ = 0, on �∞, (1.7)

v|t=0 = v0, ϕ|t=0 = ϕ0, in �, (1.8)

where�(s,t) = �×(s, t) and�t = �(0,t), with� = ∂� denoting the boundary of�
and n = n(x) being the exterior unit normal vector on �. System (1.1)–(1.5) (with
a singular potential and a non-degenerate mobility), subject to (1.6)–(1.8), was first
analyzed in [5], where the authors established the existence of globalweak solutions
through a suitable implicit time discretization scheme. Their approach preserves the
basic energy inequality at the discrete level and it allows one to avoid performing
approximation of the singular potential F , whichwould be rather involved. Here we
note that the singular potential forces the order parameter ϕ to take values only in
[−1, 1] and thus the linearly averaged densityρ (recall (1.3)) is bounded from above
andbelowby somepositive constants. The case of a regular potential (that is, defined
on R) and a degenerate mobility was then studied in [6], where the existence of
globalweak solutions to system (1.1) subject to (1.6)–(1.8)was obtained.Moreover,
the existence of global weak solutions to a non-Newtonian version of system (1.1)
with a regular potential F and a constant mobility was proven in [4]. Recently, a
nonlocal variant of system (1.1) endowed with a no-slip boundary condition for the
fluid velocity and a homogeneous Neumann boundary condition for the chemical
potential as well as the initial condition (1.8) was considered in [29]. Assuming that
the potential F is singular and the mobility is non-degenerate, the author of this
work proved the existence of a global weak solution based on the Faedo-Galerkin
method with the help of a three-level approximation of the original system.

We note that (1.6) yields a no-slip boundary condition for the fluid velocity,
which is widely used in the literature on Navier–Stokes equations. In (1.7), the
homogeneous Neumann boundary condition for the chemical potential μ entails
that � is impenetrable and as a consequence, there is no mass flux of the com-
ponents through the boundary. Together with (1.6), we can easily derive the mass
conservation property, that is, the total mass

∫

�
ϕ(x, t)dx is conserved for all t � 0.

Moreover, the condition ∂nϕ = 0 on � describes a static contact angle of θ = π/2
between the fluid–fluid free interface and the solid boundary of the domain at a
contact line (cf. Fig. 1), which however turns out to be quite restrictive for many
materials. Here, we are interested in the more physically relevant situation when
one fluid may displace another immiscible fluid along the boundary �. This phe-
nomenon effectively accounts for moving contact lines that result in a dynamic
contact angle which deviates from the static one like π/2 above. In this case, the
relative slipping between the fluids and the solid wall is in violation of the no-slip
boundary conditions and thus new boundary conditions are required to describe the
observed phenomena [27]. From detailedmolecular dynamics studies, a generaliza-
tion of the Navier boundary condition has been proposed in [56,57] to account for
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the MCL problem. This generalized Navier boundary condition (GNBC in abbre-
viation) can be derived from the laws of thermodynamics and variational principles
related to the minimum energy dissipation [54,55] (see also [60,61]). More pre-
cisely, denoting the interfacial free energy per unit area at the fluid-solid interface
by Ĝ(ϕ) = ζ

2ϕ
2 + G(ϕ), where ζ > 0 is a positive constant and G(ϕ) is a cer-

tain nonlinear function, then for system (1.1)–(1.5) we replace (1.6)–(1.7) by the
following no-flux boundary conditions

v · n = 0, ∂nμ = 0, on �∞, (1.9)

together with a generalized Navier boundary condition for the velocity v and a
dynamic boundary condition with surface convection for ϕ,

(2ν (ϕ) Dv · n)τ + β (ϕ) vτ = L (ϕ)∇τϕ, on �∞, (1.10)

∂tϕ + vτ · ∇τϕ = −l0 (ϕ)L (ϕ) , on �∞, (1.11)

where
L(ϕ) := −	τϕ + ∂nϕ + ζϕ + g(ϕ). (1.12)

Here, g = G ′, ∇τ denotes the tangential gradient operator defined along the tan-
gential direction τ = (τ1, ..., τd−1) at � and 	τ denotes the Laplace-Beltrami
operator on �. In general, for any vector v : � → R

d , vn := (v · n)n is the normal
component of the vector field, while vτ = v − vn corresponds to the tangential
component of v. Moreover, l0(ϕ) > 0 is a certain relaxation coefficient, while
β(ϕ) > 0 stands for a slip coefficient, both of them may locally depend on the
composition ϕ. Related to the MCL problem, one typical choice of the energy den-
sity function Ĝ takes the form Ĝ(ϕ) = − γ

2 cos θs sin(
πϕ
2 ), where θs is static contact

angle and γ stands for the interfacial tension (see, for example, [53,57,58]). The
generalized Navier boundary condition (1.10) indicates that the relative slipping is
proportional to the sum of tangential viscous stress and the uncompensated Young
stress L(ϕ)∇τϕ. On the other hand, the dynamic boundary condition (1.11) yields
a relaxation dynamics of the order parameter ϕ that is linear in L(ϕ), namely, an
Allen–Cahn type dynamics (with convection) for non-conserved quantities at the
fluid-solid interface (see Appendix A for more details). We note that this choice is
indeed not unique and a conserved dynamics of Cahn–Hilliard type for ϕ on the
solid boundary may also be possible, see [48] for a recent attempt in this direction,
where macroscopic effects of the flow is neglected for simplicity in the regime of
slow dynamics.

The aim of this paper is to prove that the system (1.1)–(1.5) endowedwith initial
and boundary conditions (1.8)–(1.12) admits a global weak solution (see Theorem
2.2). To the best of our knowledge, only the special case of matched densities has
been considered so far. Thiswas done in [34], where the existence of a global energy
solution was proven and, for a regular potential, the convergence of any such solu-
tion to a single equilibrium was also established. Several essential mathematical
difficulties will be encountered due to the highly nonlinear structure of the PDE
system and the complicated form of these non-classical boundary conditions. For
instance, due to the current boundary conditions, it is not clear how to implement
a suitable Galerkin type approximation since the test functions needed to derive
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the dissipative energy inequality will no longer be compatible with the possible
truncations (see, for example, [34, Remark 3.1]). Next, the presence of the uncom-
pensated Young stress L(ϕ)∇τϕ and the boundary advection term vτ · ∇τϕ entail
a strongly nonlinear boundary coupling for the system (1.1)–(1.5), which is rather
difficult to handle. On the other hand, the combination of the dynamic boundary
condition (1.11) with the singular potential F can produce additional strong singu-
larities of the corresponding solutions close to the boundary (see [37,52], cf. also
[23]). Moreover, as we shall see below, for the more general case with unmatched
densities new difficulties related to the density function arise and the fixed-point
argument used in [34] no longer seems applicable in a straight-forward way.

To resolve these mathematical issues, we shall combine and develop several
techniques in recent works [4,5,29] concerning local, nonlocal or non-Newtonian
versions of the diffuse interface system (1.1)–(1.5) that, nevertheless, are all related
to standard boundary conditions like (1.6)–(1.7).

It is important to point out a basic feature of our problem, namely, the (formal)
validity of the following dissipative energy law:

d

dt
Etot +

∫

�

2ν(ϕ) |Dv|2dx +
∫

�

β(ϕ) |vτ |2 dS

+
∫

�

m(ϕ)|∇μ|2dx +
∫

�

l0(ϕ)|L (ϕ) |2dS = 0, (1.13)

where the total energy Etot is given by the sum of the kinetic energy and the
bulk/surface free energies:

Etot := 1

2

∫

�

ρ (ϕ) |v|2 dx +
∫

�

(
1

2
|∇ϕ|2 + F(ϕ)

)

dx

+
∫

�

(
1

2
|∇τϕ|2 + ζ

2
|ϕ|2 + G(ϕ)

)

dS. (1.14)

The energy identity (1.13) can be (formally) deduced by multiplying the first and
third equations in (1.1) by v, μ, respectively, integrating over � and testing (1.11)
by L(ϕ) integrating over �, adding the resulting identies together and then apply-
ing integration by parts with the help of the incompressibility condition and the
boundary conditions (1.9), (1.10). Identity (1.13) indeed serves as a starting point
of our analysis though at the current stage we are only able to prove, even in two
dimensions, that the weak solution satisfies an energy inequality.

Our strategy relies on a combination of suitable approximations and regular-
izations of the original system together with a novel time-implicit discretization
scheme based on the energy dissipation law (1.13). First of all, we study a regular-
ized problem by approximating the singular potential F with a family of regular
potentials defined on R. However, this regularization leads to the problem that the
boundedness of ϕ can no longer be guaranteed and the averaged density ρ given by
(1.3) may be meaningless outside the physical domain [−1, 1] for ϕ (in particular,
it may not be a priori bounded from below by a positive constant). This fact also
causes difficulties for deriving the fundamental L∞

t L2
x -estimate of the velocity

field v from the energy identity (1.13). To handle this issue, we shall extend the
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density function ρ in a nonlinear way from [−1, 1] to the whole line R to preserve
its boundedness properties (see (4.3)–(4.4) below). Following this approach, in
order to preserve a dissipative energy identity in analogy with (1.13) that provides
basic uniform estimates of the approximate solutions, we have to further modify the
Navier–Stokes equations in (1.1) as follows (see also [4,29] for similar arguments):

∂t (ρv)+ div(ρv ⊗ v)− div(2ν(ϕ)Dv)+ ∇ p + div(v ⊗ J)

= μ∇ϕ + R

2
v, in Q∞, (1.15)

where the extra term R is given by

R = −m (ϕ)∇ρ′ (ϕ) · ∇μ. (1.16)

Then the above modified regularized problem can be solved as follows. First, in
order to gain enough compactness to pass to the limit in this new “artificial” non-
linear term (1.16), we add a viscous term σ∂tϕ (σ > 0) in the chemical potential
μ and a non-Newtonian stress-like term ε

(
div(|Dv|q−2 Dv)+ |v|q−2 v

)
(for some

q > 2d and ε > 0) in the modified Navier–Stokes system (1.15). Then the result-
ing approximating problem can be solved through an implicit time discretization
scheme in the spirit of [5]. Nonetheless, suitable modifications and extra efforts
have to be made in order to handle those new boundary conditions (1.10)–(1.11).
Next, for arbitrary but fixed positive parameters σ and ε, we proceed to solve the
regularized problem with the original singular potential F by passing to the limit in
the approximating family of regular potentials. This, in particular, implies that the
limit function ϕ satisfies ϕ ∈ [−1, 1] and thus R = 0 (see (1.16) and (4.3)), namely,
the additional higher-order nonlinear term in (1.15) disappears. At this point, we
will be able to recover the original momentum balance equation and collect all the
necessary uniform bounds with respect to σ and ε. Finally, the existence of a global
weak solution to the original problem will be obtained by passing to the limit as
σ → 0+ and ε → 0+.

The plan of this paper goes as follows: in Section 2, we first summarize some
notations andpreliminary results.After thatwe introduce the necessary assumptions
as well as the definition of weak solutions and then state our main result, that is, the
existence of a globalweak solution. In Section 3,we study a regularized systemwith
regular approximating potentials and a nonlinear density function. The existence of
weak solutions for this system is proven via an implicit time discretization scheme
combined with the Leray–Schauder principle. In Section 4, after deriving necessary
uniform estimates and then passing to the limit, we prove our main result. Finally,
we provide a brief derivation of our diffuse interfacemodel by variational principles
in Appendix A and report some technical tools in Appendix B.

2. Existence of a Global Weak Solution

2.1. Preliminaries

We denote a ⊗ b = (ai b j )
d
i, j=1 for vectors a,b ∈ R

d and Asym = 1
2 (A + AT )

for a matrix A ∈ R
d×d . If X is a (real) Banach space and X∗ is its topological dual,
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then 〈 f, g〉 ≡ 〈 f, g〉X∗,X for f ∈ X∗, g ∈ X , denotes the corresponding duality

product. We write X
c
↪→ Y and X ↪→ Y if X is compactly (respectively, continu-

ously) embedded into Y . The space L p(0, T ; X) (1 � p � ∞) denotes the set of
all strongly measurable p -integrable functions or, if p = ∞, essentially bounded
functions. Furthermore, the space C([0, T ] ; X) denotes the Banach space of all
bounded and continuous functions u : [0, T ] → X equipped with the supremum
norm and Cw([0, T ] ; X) denotes the topological vector space of all bounded and
weakly continuous functions u : [0, T ] → X . By C∞

0 (0, T ; X) we denote the
vector space of all smooth functions u : (0, T ) → X with supp (u) ⊂⊂ (0, T ).
Finally, u ∈ W 1,p(0, T ; X), 1 � p < ∞, if and only if u, du

dt
∈ L p(0, T ; X),

where du
dt

denotes the vector-valued distributional derivative of u.

Let � ⊂ R
d (d = 2, 3) be a bounded domain with smooth boundary � = ∂�.

We denote by L p(�), L p(�) (1 � p � ∞) the usual Lebesgue spaces with norms
‖·‖L p and ‖·‖L p(�) , respectively. Then for s � 0 and p ∈ [1,∞), we denote by
Hs,p(�) the Bessel-potential spaces and by W s,p(�) the Slobodetskij spaces. One
has Hs,2(�) = W s,2(�) for all s, but for p �= 2 the identity Hs,p(�) = W s,p(�)

is only true if s ∈ N0. If s ∈ N0, then Hs,p(�) and W s,p(�) coincide with
the usual Sobolev spaces. The corresponding function spaces over the boundary
� = ∂� are defined via local charts. Letϒi : Ui ⊂ R

d−1 → � be a finite family of
parametrizations such that

⋃
i ϒi (Ui ) covers �, and let {ψi } be a partition of unity

for � subordinate to this cover. Then for s � 0 we have

Hs,p(�) = {
u ∈ L p(�) : (ψi u) ◦ϒi ∈ Hs,p(Rd−1) for all i

}
,

with an equivalent norm given by ‖u‖Hs,p(�) = ∑
i ‖(ψi u) ◦ ϒi‖Hs,p(Rd−1). The

spaces W s,p(�) are defined in the same manner, replacing H by W . In this way,
the properties of the spaces over � described above easily carry over to the spaces
over�. For p ∈ (1,∞) and s > 1/p the trace of a function denoted by tr (u) = u|�
extends to a continuous operator

tr : Hs,p(�)→ W s−1/p,p(�).

Here, we exclude the case s − 1/p ∈ N for p �= 2. In the case p = 2 and s ∈ N0,
we shall also use the standard notation Hs := Hs,2 = W s,2. In the Hilbert space
setting, (·, ·)O stands for the usual scalar product which further induces the L2 (O)-
norm, O being either a (measurable) subset of Rd or of Rd × (0, T ). Norms on
W s,p (�) and W s,p (�) will be indicated by ‖·‖W s,p and ‖·‖W s,p(�), respectively,
for any s ∈ R, p � 1. Besides, we recall the following continuous embeddings:
H1 (�) ↪→ L∞ (�) if d = 2 and H1(�) ↪→ Lq(�) for every q ∈ [1,∞) if d = 3;
H1/2 (�) ↪→ Ls (�) for every s ∈ [1,∞) if d = 2 and for s = 4 if d = 3.

Following the notation used in [34], we define the spaces

V s =
{
(ϕ, ψ) ∈ Hs (�)× Hs−1/2 (�) : ψ = tr (ϕ) ∈ Hs (�)

}
, s ∈ N,

equipped with norms given by

‖(ϕ, ψ)‖2V s = ‖ϕ‖2Hs + ‖ψ‖2Hs (�) .
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In particular, we shall set

‖(ϕ, ψ)‖2V 1 :=
∫

�

|∇ϕ|2 dx +
∫

�

(
|∇τψ |2 + ζ |ψ |2

)
dS

for some ζ > 0. Note that V s c
↪→ V s−1 for s ∈ N.

We now introduce the functional framework associated with the velocity field
(see, for example, [67]). To this end, we consider a (real) Hilbert space X and
denote by X the vector space X × · · · × X (d-times), endowed with the product
structure, and by X∗ its dual; ‖·‖X∗ will denote the dual norm of ‖·‖X on X∗. Then
we introduce (with some abuse of notation) the spaces H := H

0 and H
s (s > 0),

defined by

H := C
∞
div

(
�

)L2(�)
and H

s := C
∞
div

(
�

)Ws,2(�)
, (2.1)

where

C
∞
div

(
�

) = {
u ∈ C

∞ (
�

) : ∇ · u = 0 in �, u · n = 0 on �
}
.

The corresponding Helmholtz–Leray projection is denoted by P, such that P f =
f −∇ p, where p ∈ H1(�)with

∫

�
pdx = 0, is the solution of the weak Neumann

problem

(∇ p,∇ϕ)� = ( f,∇ϕ)�, ∀ϕ ∈ C∞(�). (2.2)

2.2. Statement of the Main Result

First, we introduce some necessary assumptions to formulate the notion of a
weak solution to our problem.

Assumption 1. We assume that � ⊂ R
d , d = 2, 3, is a bounded domain with a

smooth boundary of class C2. In addition, we impose the following conditions:

(1) The density function ρ is given by

ρ (r) = ρ2 − ρ1
2

r + ρ1 + ρ2
2

, ∀ r ∈ [−1, 1] ,

where the constants ρ1, ρ2 > 0 are specific densities of the corresponding two
fluids.

(2) We assume that m, l0 ∈ C1,1
loc (R), ν, β ∈ C0,1

loc (R) and

0 < m0 � l0(s), m(s), ν(s), β(s) � M0

for some given constants m0,M0 > 0.
(3) The free energy densities are given by

F (r) = F0 (r)− cF

2
r2 for some cF ∈ R, and G (r) =

∫ r

0
g(ξ) dξ,
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satisfying F0 ∈ C([−1, 1])∩ C2 (−1, 1) with F0 (0) = 0 and G ∈ C2 (R). For
f0 = F ′

0 ∈ C1 (−1, 1), we assume that f0(0) = 0 , f ′
0(r) � 0 for r ∈ (−1, 1)

and

lim
r→±1

f0 (r) = ±∞, lim
r→±1

f ′
0 (r) = +∞.

Besides, there exist constants Cg > 0 and cG � 0 such that for any r ∈ R

|g′ (r) | � Cg(1 + |r |p), g′ (r) � −cG , G (r) � −cG , (2.3)

where p ∈ [1,∞) is fixed, but arbitrary for d = 2, 3.
(4) There exist constants M ∈ (0, 1), δ > 0, Cδ,M > 0 and CM > 0 such that

f ′
0 (s)− δ ( f0 (s))

2 � −Cδ,M , for any s ∈ (−1,−M] ∪ [M, 1), (2.4)

f0 (s) ĝ(s) � −CM , for any s ∈ (−1,−M] ∪ [M, 1), (2.5)

where ĝ(s) = g(s)+ ζ s.

Remark 2.1. Assumptions (2.4) and (2.5) can be regarded as certain technical
assumptions for the existence of global weak solutions (cf., for example, [34]).
Nevertheless, they are fulfilled by a wide range of nonlinearities satisfying the
condition (3) above. For instance, (2.4) is satisfied by the classical logarithmic
function

f0 (s) = c0 ln

(
1 + s

1 − s

)

, for some c0 > 0.

Moreover, condition (2.5) can be satisfied by the above f0 as long as±ĝ (±1) > 0,
that is, the function ĝ(s) = g(s)+ ζ s shares the same sign as the singular potential
f0 near its singular points ±1. The later sign condition on ĝ turns out to be natural
in the study of the Cahn–Hilliard equation with dynamic boundary conditions and
singular potentials (see [37,52]). Indeed, this sign condition can be further relaxed
in view of (2.5). In particular, we recall that the typical interfacial free energy
density at the fluid-solid interface for the moving contact line problem is Ĝ(s) =
− γ

2 cos θs sin(πs
2 ) (see, for example, [57,58]). Then we have

ĝ(s) = −γπ
4

cos θs cos
(πs

2

)
,

and it is easy to verify that assumption (2.5) is fulfilled for this choice of ĝ together
with the logarithmic potential f0, since lims→±1 f0(s)ĝ(s) = 0.

Inspired by [51], it will be convenient to view the trace of the order parameter
ϕ as an unknown variable on the boundary �. Thus, in the following text, we shall
use the new variable

ψ := tr(ϕ).
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Then the original problem (1.1)–(1.5) subject to the initial and boundary conditions
(1.8)–(1.12) can be rewritten into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (ρv)+ div(ρv ⊗ v)− div(2ν(ϕ)Dv)+ ∇ p
+ div(v ⊗ J) = μ∇ϕ, in Q∞,

div v = 0, in Q∞,
∂tϕ + v · ∇ϕ = div (m(ϕ)∇μ) , in Q∞,
μ = −	ϕ + f (ϕ), in Q∞,
ρ(ϕ) = ρ2 − ρ1

2
ϕ + ρ1 + ρ2

2
, in Q∞,

J = −ρ′ (ϕ)m(ϕ)∇μ, in Q∞,

(2.6)

subject to the boundary conditions

v · n = 0, on �∞, (2.7)

(2ν (ϕ) Dv · n)τ + β (ψ) vτ = L (ψ)∇τψ, on �∞, (2.8)

ϕ = ψ, ∂nμ = 0, on �∞, (2.9)

∂tψ + vτ · ∇τψ = −l0 (ψ)L (ψ) , on �∞, (2.10)

with

L(ψ) := −	τψ + ∂nϕ + ζψ + g(ψ), on �∞, (2.11)

as well as to the initial conditions

v|t=0 = v0, ϕ|t=0 = ϕ0, ψ |t=0 = ψ0 = tr(ϕ0), in �. (2.12)

Remark 2.2. (1) If the solution (v, ϕ) to the original problem (1.1)–(1.5) subject
to (1.8)–(1.12) is sufficiently regular (for instance, ϕ is regular enough that its
trace makes sense), then the above two systems are equivalent. Conversely, the
conclusion is also true.

(2) From themathematical point of view, the evolution equation (1.11) serves as
a (nontrivial) boundary condition that is necessary for the solvability of the fourth-
orderCahn–Hilliard equation in a boundeddomain� (the other one is ∂nμ = 0), see
for example, [19,37,51,52,71]. We recall that in the classical setting of the Cahn–
Hilliard equation, this condition (1.11) is replaced by the simpler one ∂nϕ = 0 (see,
for example, [1,31,38,75] and references therein). On the other hand, the nontrivial
bulk-boundary interaction is more clearly described in the above reformulation
(2.6)–(2.12). Indeed, the bulk order parameter ϕ can be viewed as a solution to the
Cahn–Hilliard equation in� endowed with a nonhomogeneous Dirichlet boundary
condition ϕ = ψ and a homogeneous boundary condition ∂nμ = 0 on ∂�, where
the boundary datumψ is nowdetermined by anAllen–Cahn type evolution equation
(2.10) on ∂�.

Here we introduce the notion of weak solutions.

Definition 2.1. Let T ∈ (0,∞) be an arbitrary but fixed constant. Suppose that
Assumption 1 is satisfied, v0 ∈ H, (ϕ0, ψ0) ∈ V 1, F0 (ϕ0) ∈ L1 (�), F0(ψ0) ∈
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L1 (�) and 1
|�|

∫

�
ϕ0dx ∈ (−1, 1). A quadruplet (v, μ, ϕ,ψ) with the following

properties:

v ∈ Cw([0, T ] ;H) ∩ L2(0, T ;H1) ,

(ϕ, ψ) ∈ Cw([0, T ] ; V 1) ∩ L2(0, T ; V 2) ,

μ ∈ L2(0, T ; H1(�)), L (ψ) ∈ L2(0, T ; L2(�)),

is a weak solution to problem (2.6)–(2.12) (or, problem (1.1)–(1.5) subject to (1.8)–
(1.12)) on [0, T ], if the following conditions are satisfied:

− (ρv, ∂tw)QT
+ (div(ρv ⊗ v),w)QT

+ (2ν(ϕ)Dv, Dw)QT
+ (β(ψ)vτ ,wτ )�T

= ((v ⊗ J),∇w)QT
+ (μ∇ϕ,w)QT

+ (L (ψ)∇τψ,wτ )�T
, (2.13)

for all w ∈ C∞
0 (0, T ;C∞

div

(
�

)
),

− (ϕ, ∂tξ)QT
+ (v · ∇ϕ, ξ)QT

= − (m(ϕ)∇μ,∇ξ)QT
, (2.14)

− (ψ, ∂tθ)�T
+ (vτ · ∇τψ, θ)�T

= − (l0(ψ)L (ψ) , θ)�T
, (2.15)

for all ξ ∈ C∞
0 (0, T ; C1(�)), θ ∈ C∞

0 (0, T ; C(�)),

μ = −	ϕ + f (ϕ), almost everywhere in QT , (2.16)

L (ψ) = −	τψ + ∂nϕ + ζψ + g (ψ) , almost everywhere in �T , (2.17)

ρ(ϕ) = ρ2 − ρ1
2

ϕ + ρ1 + ρ2
2

, almost everywhere in QT , (2.18)

J = ρ1 − ρ2
2

m(ϕ)∇μ, almost everywhere in QT , (2.19)

|ϕ| < 1, almost everywhere in QT , (2.20)

|ψ | � 1, almost everywhere in �T , (2.21)

and (v, ϕ, ψ) |t=0 = (v0, ϕ0, ψ0). Moreover, the energy inequality

Etot(v(t), ϕ (t) , ψ (t))+
∫

Q(s,t)
2ν(ϕ) |Dv|2dxdτ +

∫

�(s,t)

β(ψ) |vτ |2 dSdτ

+
∫

Q(s,t)
m(ϕ)|∇μ|2dxdτ +

∫

�(s,t)

l0(ψ)|L (ψ) |2dSdτ

� Etot(v(s), ϕ (s) , ψ (s)) (2.22)

holds for all t ∈ [s,∞) and almost all s ∈ [0,∞) (including s = 0), where the
total energy Etot is given by

Etot(v, ϕ, ψ) := 1

2

∫

�

ρ (ϕ) |v|2 dx +
∫

�

(
1

2
|∇ϕ|2 + F(ϕ)

)

dx

+
∫

�

(
1

2
|∇τψ |2 + ζ

2
|ψ |2 + G(ψ)

)

dS. (2.23)
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Remark 2.3. The assumption 1
|�|

∫

�
ϕ0dx ∈ (−1, 1) indicates that the initial

datum is not allowed to be a pure state (that is, ±1). On the other hand, if the
initial datum is a pure state, then no separation process will take place, because
we now have a single fluid whose dynamics can be modeled by the Navier–Stokes
equations (and someother variants, see for instance, [35] and the references therein).

We are now in a position to state the main result of the paper.

Theorem 2.2. (Existence of a global weak solution) Let Assumption 1 hold. Sup-
pose that v0 ∈ H, (ϕ0, ψ0) ∈ V 1 with F0 (ϕ0) ∈ L1 (�), F0 (ψ0) ∈ L1 (�) and
1

|�|
∫

�
ϕ0dx ∈ (−1, 1). Then for any T ∈ (0,∞), there exists a global weak solu-

tion (v, μ, ϕ,ψ) to problem (1.1)–(1.5) subject to (1.8)–(1.12) on [0, T ] in the
sense of Definition 2.1.

Remark 2.4. Due to the highly nonlinear structure of our system (both in the bulk
and on the boundary) and the presence of the singular bulk potential, uniqueness of
weak solutions in the two dimensional case is still an open issue (even in the case
of matched densities, see [34]).

Remark 2.5. Comparingwith [58], in our systemwe include an additional Laplace-
Beltrami operator in the boundary condition (see (1.12)). On one hand, the term
	τψ corresponds to possible surface diffusion effect on the boundary �. This
appears physically meaningful since it also seems to have a damping effect on the
dynamics near � (cf. [30]). On the other hand, it is crucial from the mathemati-
cal point of view since this term provides extra regularity for the boundary order
parameter ψ (see Lemma B.4 and, for further discussion, see [30]). In particular, it
plays an important role in obtaining sufficient strong uniform estimates to pass to
the limit (see also [34, Remark 3.4]). Without this surface diffusion term in (1.12),
whether the problem (1.1)–(1.5) subject to (1.8)–(1.12) admits a global weak solu-
tion remains an open problem even in the case of matched densities (cf. [34]). For
attempts to study the fluid-free case without surface diffusion and its variants we
refer, for instance, to [19,30,37,48,70].

3. An Approximating Problem with Regular Bulk Potential

Theproof ofTheorem2.2will be carried out through several steps (cf. Introduction).
First, we shall consider the following two-parameter approximating system with a
regular bulk potential:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (ρv)+ div(ρv ⊗ v)− div(2ν(ϕ)Dv)+ ∇ p + div(v ⊗ J)

+ ε
(
div(|Dv|q−2 Dv)+ |v|q−2 v

)
= μ∇ϕ + R

2
v, in Q∞,

div v = 0, in Q∞,
∂tϕ + v · ∇ϕ = div (m(ϕ)∇μ) , in Q∞,
μ = −	ϕ + f (ϕ)+ σ∂tϕ, in Q∞,
J = −ρ′ (ϕ)m(ϕ)∇μ, in Q∞,
R = −m (ϕ)∇ρ′ (ϕ) · ∇μ, in Q∞,

(3.1)



14 Ciprian G. Gal, Maurizio Grasselli & Hao Wu

for some σ, ε ∈ [0, 1] and q > 2d. The regularized system (3.1) is equipped with
the initial and boundary conditions (1.8)–(1.11), with the exception of (1.10) which
now reads

ε(|Dv|q−2 Dv · n)τ+ (2ν (ϕ) Dv · n)τ + β (ψ) vτ = L (ψ)∇τψ, on �∞.

In the text that follows, the resulting initial boundary value problem of system (3.1)
will be referred to as (Sσ,ε).

Now we state our assumptions in order to solve problem (Sσ,ε).

Assumption 2. We assume that � ⊂ R
d (d = 2, 3) is a bounded domain with a

smooth boundary of class C2 and additionally we impose the following conditions:

(1) Instead of the linear form (1.3), the density function satisfies ρ ∈ C2 (R),
ρ � ρ0 for some constant ρ0 > 0, and ρ, ρ′, ρ′′ are bounded in R.

(2) m, l0 ∈ C1,1
loc (R), ν, β ∈ C0,1

loc (R) such that 0 < m0
� l0(s), m(s), ν(s), β(s) � M0 for some given constants m0, M0 > 0.

(3) The free energy densities given by

F (r) =
∫ r

0
f (ζ )dζ ∈ C2 (R) , G (r) =

∫ r

0
g(ζ )dζ ∈ C2 (R)

satisfy the following assumptions: there exist cF , cG � 0 and C f , Cg > 0
such that

∣
∣ f ′ (r)

∣
∣ � C f

(
1 + |r |p) , f ′ (r) � −cF , F (r) � −cF , (3.2)

∣
∣g′ (r)

∣
∣ � Cg(1 + |r |q), g′ (r) � −cG , G (r) � −cG , (3.3)

for any r ∈ R. Here, p, q ∈ [1,∞) are arbitrary if d = 2, and p = 2,
q ∈ [1,∞) being arbitrary if d = 3.

Remark 3.1. In (3.1) we include a non-Newtonian type regularizing term in the
modified Navier–Stokes system (cf. [4]) and also a linear viscous term in the chem-
ical potential μ. The regularization of the original system (1.1)–(1.5) through these
additional terms allows us to handle successfully the extra term R, whose presence
is due to the nonlinear extension of the averaged density ρ (cf. (1) of Assumption
2 and see Introduction).

Next, we introduce the notion of weak solution for problem (Sσ,ε).

Definition 3.1. Let T ∈ (0,∞) be given, but otherwise arbitrary. Let v0 ∈ H,
(ϕ0, ψ0) ∈ V 1 and Assumption 2 be satisfied. A quadruplet (v, μ, ϕ,ψ) with the
properties

v ∈ Cw([0, T ] ;H) ∩ L2(0, T ;H1) ,

(ϕ, ψ) ∈ Cw([0, T ] ; V 1) ∩ L2(0, T ; V 2) ,

μ ∈ L2(0, T ; H1(�)), L (ψ) ∈ L2(0, T ; L2(�)),
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is a weak solution to the approximating problem (Sσ,ε) if the following conditions
are satisfied:

− (ρv, ∂tw)QT
+ (div(ρv ⊗ v),w)QT

+ (2ν(ϕ)Dv, Dw)QT

+ (β(ψ)vτ ,wτ )�T
+ ε

(
|Dv|q−2 Dv, Dw

)

QT
+ ε

(
|v|q−2 v,w

)

QT

= ((v ⊗ J),∇w)QT
+ 1

2
(Rv,w)QT

+ (μ∇ϕ,w)QT

+ (L (ψ)∇τψ,wτ )�T
, (3.4)

for all w ∈ C∞
0 (0, T ;C∞

div

(
�

)
),

− (ϕ, ∂tξ)QT
+ (v · ∇ϕ, ξ)QT

= − (m(ϕ)∇μ,∇ξ)QT
, (3.5)

− (ψ, ∂tθ)�T
+ (vτ · ∇τψ, θ)�T

= − (l0(ψ)L (ψ) , θ)�T
, (3.6)

for all ξ ∈ C∞
0 (0, T ; C1(�)), θ ∈ C∞

0 (0, T ; C(�)),

μ = −	ϕ + f (ϕ)+ σ∂tϕ, almost everywhere in QT , (3.7)

L (ψ) = −	τψ + ∂nϕ + ζψ + g (ψ) , almost everywhere in �T , (3.8)

and (v, ϕ, ψ) |t=0 = (v0, ϕ0, ψ0). The flux J satisfies (1.4) almost everywhere in
QT and

(Rv,w)QT
= −

∫

QT

m (ϕ)
(∇ρ′ (ϕ) · ∇μ)

v · wdxdt, (3.9)

for all w ∈ C∞
0 (0, T ;C∞

div

(
�

)
).

Remark 3.2. We note that according to the definitions of J and R (recall (1.4) and
(1.16)), the third equation of (3.1) for ϕ indeed implies that

∂tρ + div (ρv + J) = R, in QT . (3.10)

In this case, a weak formulation of (3.10) reads

− (ρ (ϕ) , ∂t�)QT
+ (div (ρv + J) ,�)QT

= (R,�)QT

for all� ∈ C∞
0 (0, T ; C1(�)).

Themain result of this section is the following existence theorem for the approx-
imating problem

(
Sσ,ε

)
:

Theorem 3.2. Let Assumption 2 be satisfied. Suppose that σ, ε ∈ (0, 1], v0 ∈ H

and (ϕ0, ψ0) ∈ V 1. Then for any T > 0, there exists a global weak solution
(v, μ, ϕ,ψ) of the approximating problem

(
Sσ,ε

)
in the sense of Definition 3.1. In

addition, we have

σ 1/2∂tϕ ∈ L2
(
0, T ; L2 (�)

)
, ε1/qv ∈ Lq

(
0, T ; W 1,q (�)

)
.
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Also, every weak solution satisfies the following (modified) energy inequality:

Etot(v(t), ϕ (t) , ψ (t))+
∫

Q(s,t)
2ν(ϕ) |Dv|2dxdτ +

∫

�(s,t)

β(ψ) |vτ |2 dSdτ

+
∫

Q(s,t)
m(ϕ)|∇μ|2dxdτ +

∫

�(s,t)

l0(ψ)|L (ψ) |2dSdτ

+ σ
∫

Q(s,t)
|∂tϕ|2 dxdτ + ε

∫

Q(s,t)

(|Dv|q + |v|q)
dxdτ

� Etot(v(s), ϕ (s) , ψ (s)), (3.11)

for all t ∈ [s,∞) and almost all s ∈ [0,∞) (including s = 0), where the total
energy Etot is given by (2.23) with F and G satisfying (3) of Assumption 2.

Theorem 3.2 will be proven by means of a suitable implicit time discretization
scheme in the spirit of [5], combined with a delicate compactness argument.

3.1. An Implicit Time Discretization Scheme

To set up our implicit time discretization, we consider the time step h = 1
N

for N ∈ N0 and the elements vk ∈ H, (ϕk, ψk) ∈ V 1 with f (ϕk) ∈ L2(�),

g (ψk) ∈ L2 (�) and ρk = ρ (ϕk) be given. Then we construct

(v, μ, ϕ,ψ) = (vk+1, μk+1, ϕk+1, ψk+1)

as a solution, with

J = Jk+1 := −ρ′ (ϕk)m(ϕk)∇μk+1 = −ρ′ (ϕk)m(ϕk)∇μ, (3.12)

to the following nonlinear system: find (v, μ, ϕ,ψ) with v ∈ H
1, (ϕ, ψ) ∈ V 2 and

μ ∈ H2
n (�) = {u ∈ H2(�) : ∂nu = 0 on �}, such that

(
ρv − ρkvk

h
,w

)

�

+ (div(ρkv ⊗ v),w)� + (2ν(ϕk)Dv, Dw)�

+ (β(ψk)vτ ,wτ )� + ε
(
|Dv|q−2 Dv, Dw

)

�
+ ε

(
|v|q−2 v,w

)

�

= (μ∇ϕk,w)� − (div(v ⊗ J),w)�

+ 1

2

((
ρ − ρk

h
+ div (ρkv + J)

)

v,w
)

�

+ (L (ψ)∇τψk,wτ )� (3.13)

for all w ∈ C
∞
div

(
�

)
, and

ϕ − ϕk

h
+ v · ∇ϕk = div (m(ϕk)∇μ) , almost everywhere in �,

(3.14)

μ+ cF

2
(ϕ + ϕk) = −	ϕ + f0(ϕ)+ σ ϕ − ϕk

h
, almost everywhere in �,

(3.15)
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ψ − ψk

h
+ vτ · ∇τψk = −l0 (ψk)L (ψ) , almost everywhere in �,

(3.16)

L (ψ)+ cG

2
(ψ + ψk) = −	τψ + ∂nϕ + ζψ + g0 (ψ) , almost everywhere in �.

(3.17)

Here, the potentials given by

F0 (r) = F (r)+ cF

2
r2 and G0 (r) = G (r)+ cG

2
r2 (3.18)

are convex functions owing to the assumptions (3.2)–(3.3). In particular,

f0 = F ′
0 and g0 = G ′

0.

Remark 3.3. Referring to the third term on the right-had side of (3.13), we have
discretized (3.10) in the following fashion:

ρ − ρk

h
+ div (ρkv + J) = Rk+1, (3.19)

where J is given by (3.12). Observe that, thanks to the obvious identity

div(v ⊗ J) = (divJ)v + (J · ∇) v,
we can write an equivalent version of (3.13), namely,

(
ρv − ρkvk

h
,w

)

�

+ (div(ρkv ⊗ v),w)� + (2ν(ϕk)Dv, Dw)�

+ (β(ψk)vτ ,wτ )� + ε
(
|Dv|q−2 Dv, Dw

)

�
+ ε

(
|v|q−2 v,w

)

�

+ ((J · ∇) v,w)� +
((

divJ − ρ − ρk

h
− v · ∇ρk

)
v
2
,w

)

�

= (μ∇ϕk,w)� + (L (ψ)∇τψk,wτ )� , (3.20)

for allw ∈ C
∞
div

(
�

)
. In what follows, wewill use (3.20) to deduce a priori estimates

for solutions of the time-discrete problem (3.13)–(3.17).

Remark 3.4. Integrating (3.14) with respect to the spatial variable x over�, using
the fact that v ∈ H

1, we obtain
∫

�
ϕdx = ∫

�
ϕkdx , which means that

∫

�

ϕkdx =
∫

�

ϕ0dx for all k.

Namely, the mass conservation property is also preserved at the discrete level.

For the convenience of notation, we define the following family of Banach
spaces

Uε :=
⎧
⎨

⎩

H
1, if ε = 0,

W
1,q
div = C

∞
div

(
�

)W1,q (�)
for some q > 2d, if ε ∈ (0, 1].

Then the existence of a solution to the time-discrete problem (3.13)–(3.17) is given
by
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Lemma 3.3. Suppose that Assumption 2 is satisfied. Let vk ∈ H, (ϕk, ψk) ∈ V 2,
σ, ε ∈ [0, 1] and ρk = ρ (ϕk) be given. Then there is some (v, μ, ϕ,ψ) ∈ Uε ×
H2

n (�)×V 2 that solves the discrete problem (3.13)–(3.17) and in addition, satisfies
the following discrete energy inequality:

Etot(v, ϕ, ψ)+
∫

�

ρk
|v − vk |2

2
dx + 1

2
‖(ϕ − ϕk, ψ − ψk)‖2V 1

+ h
∫

�

2ν(ϕk)|Dv|2dx + εh
∫

�

(|Dv|q + |v|q)
dx

+ h
∫

�

β(ψk) |vτ |2 dS + h
∫

�

m(ϕk)|∇μ|2dx

+ h
∫

�

l0(ψk)|L (ψ) |2dS + σ

h
‖ϕ − ϕk‖2L2(�)

� Etot(vk, ϕk, ψk). (3.21)

Remark 3.5. At the discrete level, the presence of any (ε, σ )-terms is in fact not
required. In particular, the discretization scheme works for the limiting case ε =
σ = 0 as well.

Proof. The proof of Lemma 3.3 consists of several steps.

Step 1 (The discrete energy estimate). First, we show the a priori estimate (3.21)
for any (v, μ, ϕ,ψ) ∈ Uε × H2

n (�) × V 2 solving the problem (3.13)–(3.17). In
order to test (3.20) withw = v, we recall the following identities (see for example,
[5, Lemma 4.3]):

∫

�

(
(div J)

v
2

+ (J · ∇) v
)

· vdx =
∫

�

div

(

J
|v|2
2

)

dx = 0,

∫

�

(
div(ρkv ⊗ v)− (v · ∇ρk)

v
2

)
· vdx =

∫

�

div

(

ρkv
|v|2
2

)

dx = 0.

In addition, the algebraic identity

a · (a − b) = |a|2
2

− |b|2
2

+ |a − b|2
2

for a,b ∈ R
d

yields that

1

h
(ρv − ρkvk) · v = 1

h

(

ρ
|v|2
2

− ρk
|vk |2
2

)

+ 1

h
(ρ − ρk)

|v|2
2

+ 1

h
ρk

|v − vk |2
2

.

Therefore, taking w = v in (3.20) and using the above identities we obtain

0 =
∫

�

ρ|v|2 − ρk |vk |2
2h

dx +
∫

�

ρk
|v − vk |2

2h
dx +

∫

�

2ν(ϕk)|Dv|2dx

+ ε
∫

�

(|Dv|q + |v|q)
dx +

∫

�

β(ψk) |vτ |2 dS −
∫

�

μ (∇ϕk · v)dx

−
∫

�

L (ψ) (∇τψk · vτ ) dS. (3.22)
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Moreover, taking μ as a test function for (3.14), we get

0 =
∫

�

ϕ − ϕk

h
μdx +

∫

�

(v · ∇ϕk)μdx +
∫

�

m(ϕk)|∇μ|2dx . (3.23)

Next, we test (3.15) and (3.17) by 1
h (ϕ − ϕk) and 1

h (ψ − ψk), respectively. This
gives

0 = 1

h

∫

�

∇ϕ · ∇(ϕ − ϕk)dx +
∫

�

f0(ϕ)
1

h
(ϕ − ϕk)dx

−
∫

�

∂nϕ
ψ − ψk

h
dS −

∫

�

μ
ϕ − ϕk

h
dx

−
∫

�

cF
ϕ2 − ϕ2k

2h
dx + σ

∫

�

(
ϕ − ϕk

h

)2

dx (3.24)

and

0 = 1

h

∫

�

∇τψ · ∇τ (ψ − ψk)dS + ζ

h

∫

�

ψ(ψ − ψk)dS +
∫

�

∂nϕ
ψ − ψk

h
dS

+
∫

�

g0(ψ)
1

h
(ψ − ψk)dS −

∫

�

cG
ψ2 − ψ2

k

2h
dS. (3.25)

Finally, testing (3.16) by −L (ψ), we find

0 =
∫

�

l0 (ψk) |L (ψ)|2 dS +
∫

�

L (ψ) (vτ · ∇τψk)dS +
∫

�

L (ψ) ψ − ψk

h
dS.

(3.26)
Summing the identities (3.22)–(3.26) together, we obtain

0 =
∫

�

ρ|v|2 − ρk |vk |2
2h

dx +
∫

�

ρk
|v − vk |2

2h
dx +

∫

�

2ν(ϕk)|Dv|2dx

+
∫

�

β(ψk) |vτ |2 dS + ε
∫

�

(|Dv|q + |v|q)
dx +

∫

�

m(ϕk)|∇μ|2dx

+
∫

�

l0 (ψk) |L (ψ)|2 dS +
∫

�

f0(ϕ)
1

h
(ϕ − ϕk)dx −

∫

�

cF
ϕ2 − ϕ2k

2h
dx

+
∫

�

g0(ψ)
1

h
(ψ − ψk)dS −

∫

�

cG
ψ2 − ψ2

k

2h
dS + σ

∫

�

(
ϕ − ϕk

h

)2

dx

+ 1

h

∫

�

∇ϕ · ∇(ϕ − ϕk)dx + 1

h

∫

�

∇τψ · ∇τ (ψ − ψk)dS

+ ζ

h

∫

�

ψ(ψ − ψk)dS

�
∫

�

ρ|v|2 − ρk |vk |2
2h

dx +
∫

�

ρk
|v − vk |2

2h
dx +

∫

�

2ν(ϕk)|Dv|2dx

+
∫

�

β(ψk) |vτ |2 dS +
∫

�

m(ϕk)|∇μ|2dx +
∫

�

l0 (ψk) |L (ψ)|2 dS
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+ 1

h

∫

�

F0(ϕ)− F0(ϕk)dx −
∫

�

cF
ϕ2 − ϕ2k

2h
dx

+ 1

h

∫

�

G0(ψ)− G0 (ψk) dS −
∫

�

cG
ψ2 − ψ2

k

2h
dS

+ 1

h
‖(ϕ − ϕk, ψ − ψk)‖2V 1 + σ

∫

�

(
ϕ − ϕk

h

)2

dx

+ 1

h

∫

�

|∇ϕ|2
2

− |∇ϕk |2
2

dx + 1

h

∫

�

|∇τψ |2
2

− |∇τψk |2
2

dS

+ ζ

h

∫

�

|ψ |2
2

− |ψk |2
2

dS, (3.27)

where we have used the inequalities (recall that F0, G0 are convex functions)

f0(ϕ) (ϕ−ϕk) � F0(ϕ)−F0(ϕk), g0(ψ) (ψ−ψk) � G0(ψ)−G0(ψk) (3.28)

as well as the identities

∇ϕ · ∇(ϕ − ϕk) = |∇ϕ|2
2

− |∇ϕk |2
2

+ |∇ϕ − ∇ϕk |2
2

, (3.29)

∇τψ · ∇τ (ψ − ψk) = |∇τψ |2
2

− |∇τψk |2
2

+ |∇τψ − ∇τψk |2
2

. (3.30)

Thenwe immediately obtain the claimeddiscrete energy estimate (3.21) from (3.27)
and the definition of Etot (recall (2.23)).

Step 2 (The fixed point argument). In order to show the existence of a weak solution
to the discrete problem (3.13)–(3.17), we apply the Leray–Schauder principle. To
this end, we define the nonlinear operators Mk, Fk : X → Y , where

X = Uε × H2
n (�)× V 2, Y = (Uε)∗ × L2(�)×

(
L2(�)× L2 (�)

)
.

More precisely, for p = (v, μ, ϕ,ψ) ∈ X , we set

Mk(p) =

⎛

⎜
⎜
⎜
⎝

Lk,ε(v)

−div(m(ϕk)∇μ)+
∫

�

μdx

AW

(
ϕ

ψ

)

⎞

⎟
⎟
⎟
⎠
,

where

〈
Lk,ε(v),w

〉 = ε
∫

�

|Dv|q−2 Dv : Dwdx + ε
∫

�

|v|q−2 v · wdx

+
∫

�

2ν(ϕk)Dv : Dwdx +
∫

�

β(ψk)vτ · wτdS,
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for all w ∈ Uε, while the operator AW denotes the so-called Wentzell Laplacian
(see, for example, [30]), given by

AW

(
ϕ

ψ

)

=
( −	ϕ

−	τψ + ∂nϕ + ζψ
)

,

(
ϕ

ψ

)

∈ dom (AW ) = V 2.

Note that since ζ > 0, AW is positive and for any (ϕ, ψ) ∈ dom (AW ), it holds

AW

(
ϕ

ψ

)

∈ L2 (�) × L2 (�). Therefore, the last line in Mk(p) lies in L2(�) ×

L2 (�). Furthermore, for p = (v, μ,�) ∈ X with � :=
(
ϕ

ψ

)

, we define

Fk(p) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

S� + S�

−ϕ − ϕk

h
− v · ∇ϕk +

∫

�

μdx

(μ+ cF

2
(ϕ + ϕk)− f0 (ϕ)− σ

h
(ϕ − ϕk)

L (ψ)+ cG

2
(ψ + ψk)− g0 (ψ)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

S� := −ρv − ρkvk

h
− div(ρkv ⊗ v)+ μ∇ϕk

−
(

divJ − ρ − ρk

h
− v · ∇ρk

)
v
2

− (J · ∇) v,
S� := L (ψ)∇τψk .

In particular, the first line F (1)k (p) of Fk(p) must be understood as follows:

〈
F (1)k (p),w

〉
=

∫

�

S� · w dx +
∫

�

S� · wτ dS, for all w ∈ Uε ⊆ H
1.

The remaining lines of Fk(p) are defined in a pointwise sense (that is, almost
everywhere). Besides, in the last line of Fk(p), L (ψ) also satisfies the following
equation pointwisely almost everywhere

L (ψ) = − 1

l0 (ψk)

(
ψ − ψk

h
+ vτ · ∇τψk

)

. (3.31)

Then p = (v, μ, ϕ,ψ) ∈ X is a weak solution of the time discrete problem (3.13)–
(3.17) if and only if

Mk(p) = Fk(p).

Note that here we have used the equivalent version (3.20) instead of (3.13).
The standard theory of partial differential equations implies the invertibility of

Lk,ε : Uε → (Uε)
∗ and the continuity of L−1

k,ε. Indeed, Lk,ε is a strictly monotone
operator, namely,

〈
Lk,εv − Lk,εw, v − w

〉
� 0, ∀ v, w ∈ Uε
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and

〈
Lk,εv − Lk,εw, v − w

〉 = 0, if and only if v = w.

Moreover, the operator Lk,ε is clearly coercive (and thus onto) since

lim‖v‖Uε→+∞

〈
Lk,εv, v

〉

‖v‖Uε
= +∞. (3.32)

Hence, it follows that Lk,ε is a bijection. To show the continuity of its inverse L−1
k,ε , if

wn → w in (Uε)∗ such that Lk,εvn = wn and Lk,εv = w, then by the boundedness
of wn in (Uε)∗ and ( 3.32), we have

〈
Lk,εvn − Lk,εv, vn − v

〉 = 〈wn − w, vn − v〉 → 0

since wn → w (in the strong sense). It follows in the least that vn → v (strongly)
in U0 for any ε ∈ [0, 1]. Since vn is bounded in Uε, then it also holds vn ⇀ v
(weakly) in Uε for ε > 0. Finally, for each ε > 0, since

εlim sup
n→∞

‖vn‖q
W1,q � lim sup

n→∞
〈
Lk,εvn, vn

〉 = 〈
Lk,εv, v

〉
� ε ‖v‖q

W1,q ,

we can deduce that vn → v (strongly) in Uε for ε > 0 as well.
Following [5], we consider for a given functionα ∈ L2(�) the elliptic boundary

value problem
⎧
⎨

⎩

−div(m(ϕk)∇μ)+
∫

�

μdx = α, in �,

∂nμ = 0, on �.

There exists a unique weak solution μ ∈ H2
n (�) satisfying the estimate

‖μ‖H2(�) � Ck
(‖μ‖H1(�) + ‖α‖L2(�)

)
(3.33)

for some positive constant Ck = Ck
(‖ϕk‖L∞(�)

)
.

Besides, since the Wentzell Laplacian AW is positive and linear, the operator
AW : V 2 → L2 (�) × L2 (�) is invertible and A−1

W is continuous as a mapping
from L2 (�)× L2 (�) into V 2 (see [30]).

In summary, we obtain that the operator Mk : X → Y is invertible with
a continuous inverse M−1

k : Y → X . To further get a compact operator, we
introduce the Banach space

Ỹ :=
(
H

3/4
)∗ × W 1,3/2(�)×

(
W 1/2,2(�)× W 1/4,2 (�)

)
.

Since Ỹ
c
↪→ Y due to Uε

c
↪→ H

3/4, the restriction M−1
k : Ỹ ⊂ Y → X is indeed a

compact operator.
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The next step is to show that the operator Fk : X → Ỹ is continuous and
it maps bounded sets into bounded sets. More precisely, we have the following
estimates (note that (ϕk, ψk) ∈ V 2 and therefore ρk ∈ H2(�) ):

‖ρv‖H−3/4(�) � C‖v‖H1(�)(‖ϕ‖L2(�) + 1),

‖div(ρkv ⊗ v)‖H−3/4(�) � Ck‖v‖2H1(�)
,

‖μ∇ϕk‖H−3/4(�) � Ck‖μ‖L2(�),

‖(divJ)v‖H−3/4(�) � Ck‖v‖H1(�)‖μ‖H2(�),

‖(J · ∇)v‖H−3/4(�) � C‖v‖H1(�)‖μ‖H2(�),

‖v · ∇ϕk‖W 1,3/2(�) � Ck‖v‖H1(�),

‖vτ · ∇τψk‖W 1/4,2(�) � Ck ‖v‖H1(�) .

The first six estimates follow directly from [5, (i)–(vi), pp. 467], using the fact that
L3/2 (�) ↪→ (

H3/4(�)
)∗ := H−3/4(�). Note that f0 (·) as a nonlinear mapping

from H2 (�) → W 1/2,2 (�) is continuous and maps bounded sets to bounded
sets, due to the growth assumption in (3.3). Analogously, the same conclusion
holds for the nonlinear mapping g0 (·) : H2 (�) → W 1/4,2 (�). In the seventh
estimate involving vτ · ∇τψk , we have exploited the fact that vτ j ∂τ jψ is bounded
in W 1/4,2 (�), as a product of functions in W 1/2,2 (�)× H1 (�) (cf. Lemma B.3).
Next, recalling the definition of S� , we also have

sup
‖w‖

H3/4�1
|(S�, wτ )�| � Ck ‖L (ψ)‖H1/4(�) ,

where L (ψ), as defined pointwisely in (3.31) in terms of (ψ, v), is a continuous
operator from H2 (�)× H

1 → W 1/4,2 (�), mapping bounded subsets to bounded
subsets. More precisely, according to Lemma B.3 (for some ε ∈ (0, 1/8)), we have

‖L (ψ)‖H1/4(�) � ‖1/ l0 (ψk)‖L2(�) ‖(ψ − ψk) /h‖H2(�)

+ ‖1/ l0 (ψk)‖W 3/4+2ε,2(�) ‖vτ · ∇τψk‖W 1/2−ε,2(�)
� Ck

(‖ψ‖H2(�) + ‖v‖H1(�) + 1
)
.

In order to apply the Leray–Schauder principle on Ỹ , we rewrite the identity
Mk(p) = Fk(p) for a solution p ∈ X of problem (3.13)–(3.17) into the following
form:

(
Fk ◦ M−1

k

)
(f) = f, for f = Mk (p) .

Note that the mapping Kk := Fk ◦ M−1
k : Ỹ → Ỹ is a compact operator because

M−1
k is compact and Fk is continuous. The foregoing equation is then equivalent

to finding a fixed point of Kk , namely,

Kk (f) = f .
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The existence of such a fixed point can be deduced by an application of the abstract
result [74, Theorem 6.A], where it remains to show that

∃ R > 0 such that, if f ∈ Ỹ and 0 � λ � 1 fulfill f = λKk (f) , then ‖f‖Ỹ � R.
(3.34)

For this purpose, let f ∈ Ỹ and 0 � λ � 1 satisfying f = λKk (f). With
p = M−1

k (f) we have

f = λKk(f) ⇐⇒ Mk(p)− λFk(p) = 0, (3.35)

which is equivalent to the weak formulation

ε

∫

�

|Dv|q−2 Dv : Dwdx + ε
∫

�

|v|q−2 v · wdx +
∫

�

2ν(ϕk)Dv : Dwdx

+
∫

�

β(ψk)vτ · wτdS + λ
∫

�

ρv − ρkvk

h
· wdx

+ λ
∫

�

div(ρkv ⊗ v) · wdx + λ
∫

�

(

divJ − ρ − ρk

h
− v · ∇ρk

)
v
2

· wdx

+ λ
∫

�

(J · ∇) v · wdx

= λ
∫

�

μ (∇ϕk · w) dx + λ
∫

�

L (ψ) (wτ · ∇τψk)dS, (3.36)

for all w ∈ Uε, and the pointwise identities
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

div(m(ϕk)∇μ)−
∫

�

μdx = λϕ − ϕk

h
+ λv · ∇ϕk − λ

∫

�

μdx,

−	ϕ = λμ+ λcF

2
(ϕ + ϕk)− λ f0 (ϕ)− λσ ϕ − ϕk

h
,

−	τψ + ∂nϕ + ζψ = λL (ψ)+ λcG

2
(ψ + ψk)− λg0 (ψ) ,

(3.37)

for μ ∈ H2
n (�), (ϕ, ψ) ∈ V 2, with L (ψ) being given pointwisely by (3.31).

Analogously as in the derivation of the discrete energy estimate (3.21), we set
w = v in (3.36), test the first equation of (3.37) with μ, the second and third ones
of (3.37) with 1

h (ϕ − ϕk) and 1
h (ψ − ψk), respectively. Similar calculations yield

that

λ

∫

�

ρ|v|2 − ρk |vk |2
2h

dx + λ
∫

�

ρk
|v − vk |2

2h
dx + ε

∫

�

(|Dv|q + |v|q)
dx

+
∫

�

2ν(ϕk)|Dv|2dx +
∫

�

β(ψk) |vτ |2 dS +
∫

�

m(ϕk)|∇μ|2dx

+λ
∫

�

l0 (ψk) |L (ψ)|2 dS + λ

h

∫

�

f0(ϕ)(ϕ − ϕk)dx

+λ
h

∫

�

g0(ψ)(ψ − ψk)dS + (1 − λ)
(∫

�

μdx

)2

+λσ
∫

�

(
ϕ − ϕk

h

)2

dx + 1

h

∫

�

∇ϕ · ∇(ϕ − ϕk)dx
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+1

h

∫

�

∇τψ · ∇τ (ψ − ψk)dS + ζ

h

∫

�

ψ(ψ − ψk)dS

= λcF

∫

�

ϕ2 − ϕ2k
2h

dx + λcG

∫

�

ψ2 − ψ2
k

2h
dS. (3.38)

Exploiting now the inequality (3.28) and the identities (3.29)–(3.30) once again,
dropping any non-essential nonnegative terms on the left-hand side, we deduce the
inequality

λ

∫

�

ρ|v|2
2

dx + λ
∫

�

ρk
|v − vk |2

2
dx + hε

∫

�

(|Dv|q + |v|q)
dx

+ h
∫

�

2ν(ϕk)|Dv|2dx + h
∫

�

β(ψk) |vτ |2 dS

+ h
∫

�

m(ϕk)|∇μ|2dx + λh
∫

�

l0 (ψk) |L (ψ)|2 dS

+ (1 − λ) h

(∫

�

μdx

)2

+ λσh
∫

�

(
ϕ − ϕk

h

)2

dx

+ 1

2
‖(ϕ, ψ)‖2V 1 + λ

∫

�

(
F0(ϕ)− cF

2
ϕ2

)
dx

+ λ
∫

�

(
G0(ψ)− cG

2
ψ2

)
dS

� λ
∫

�

ρk |vk |2
2

dx + 1

2
‖(ϕk, ψk)‖2V 1 + λ

∫

�

(
F0 (ϕk)− cF

2
ϕ2k

)
dx

+ λ
∫

�

(
G0(ψk)− cG

2
ψ2

k

)
dS. (3.39)

In order to absorb the potentially nonnegative quadratic terms on the left-hand side
of (3.39), we recall (3.18) and the assumptions (3.2)–(3.3) to deduce that

λ

∫

�

(
F0(ϕ)− cF

2
ϕ2

)
dx = λ

∫

�

F(ϕ)dx � −λcF |�| , (3.40)

λ

∫

�

(
G0(ψ)− cG

2
ψ2

)
dS = λ

∫

�

G(ψ)dS � −λcG |�| . (3.41)

Then by ignoring certain summands that have a factor λ or 1−λ (since they do not
give a contribution to some estimates of ‖p‖X independent of λ ∈ [0, 1]), we infer
from (3.39)–(3.41) that

h
∫

�

2ν(ϕk)|Dv|2dx + h
∫

�

β(ψk) |vτ |2 dS + h
∫

�

m(ϕk)|∇μ|2dx

+ 1

2
‖(ϕ, ψ)‖2V 1 + hε

∫

�

(|Dv|q + |v|q)
dx

+ λσ
∫

�

(ϕ − ϕk)
2

h
dx + (1 − λ) h

(∫

�

μdx

)2
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+ λh
∫

�

l0 (ψk) |L (ψ)|2 dS

� Ck . (3.42)

Korn’s inequality for v ∈ Uε and the fact that ν, β, l0 and m are all bounded from
below by certain positive constants, gives the following bound:

‖v‖H1(�) + ε1/q‖v‖W1,q (�) + ‖∇μ‖L2(�) + ‖(ϕ, ψ)‖V 1

+ √
1 − λ

∣
∣
∣
∣

∫

�

μdx

∣
∣
∣
∣ + √

λ ‖L (ψ)‖L2(�)

� Ck, (3.43)

where the constant Ck depends on h but is independent of λ.
To get an estimate on the L2-norm of the chemical potential μ, we distinguish

two cases. For λ ∈ [0, 12 ), we directly use (3.43) to obtain
∣
∣
∫

�
μdx

∣
∣ � Ck . For

λ ∈ [ 12 , 1], we integrate the pointwise identities associated with the last two lines
of (3.37) to get

λ

∫

�

μdx = λ
∫

�

f0 (ϕ) dx − λcF

2

∫

�

(ϕ + ϕk) dx + ζ
∫

�

ψdS

+ λσ
∫

�

ϕ − ϕk

h
dx + λ

∫

�

g0 (ψ) dS

− λcG

2

∫

�

(ψ + ψk) dS − λ
∫

�

L (ψ) dS. (3.44)

The growth assumptions (3.2)–(3.3) of the potentials f0, g0 together with the uni-
form V 1-estimate on (ϕ, ψ) from (3.43) yield that

1

2

∣
∣
∣
∣

∫

�

μdx

∣
∣
∣
∣ � λ

∣
∣
∣
∣

∫

�

μdx

∣
∣
∣
∣

� Q
(‖(ϕ, ψ)‖V 1

) + λ |�|1/2 ‖L (ψ)‖L2(�)

� Ck, (3.45)

for some positive function Q independent of λ, since λ �
√
λ when λ ∈ [ 12 , 1].

Then for all λ ∈ [0, 1], using the above estimates for themean value of the chemical
potential μ and Poincaré’s inequality, we can improve estimate (3.43) to

‖v‖H1(�) + ε1/q‖v‖W1,q (�) + ‖μ‖H1(�) + ‖(ϕ, ψ)‖V 1 � Ck, (3.46)

where Ck depends on h but is independent of λ.
Next, together with (3.37)1, from the H2-estimate (3.33) with

α := −λϕ − ϕk

h
− λv · ∇ϕk + λ

∫

�

μdx,

we also get a uniform (in λ) estimate on the H2-norm of the chemical potential μ
such that

‖μ‖H2 � Ck . (3.47)



Incompressible Two-Phase Flows with Moving Contact Lines 27

The same pointwise identities (see (3.37)2 and (3.37)3) allow us to write an elliptic
boundary value problem for (ϕ, ψ) ∈ V 2 in the form

{−	ϕ = h1, in �,
−	τψ + ∂nϕ + ζψ = h2, on �,

(3.48)

where

h1 = λμ+ λcF

2
(ϕ + ϕk)− λ f0 (ϕ)− λσ ϕ − ϕk

h
,

h2 = λL (ψ)+ λcG

2
(ψ + ψk)− λg0 (ψ) .

Owing to the estimate (3.46), we deduce from Lemma B.4 that

‖ϕ‖H2 + ‖ψ‖H2(�) � C
(‖h1‖L2 + ‖h2‖L2(�)

)
� Ck . (3.49)

Summing up, (3.45), (3.47) and (3.49) lead to the uniform (in λ) estimate

‖p‖X � Ck,

where
‖p‖X =

(
‖v‖H1 + ε1/q‖v‖W1,q

)
+ ‖μ‖H2 + ‖(ϕ, ψ)‖V 2 .

Finally, to get an estimate of Mk (p) = f ∈ Ỹ , we recall that f = λFk(p) (cf.
(3.35)) and the fact that Fk : X → Ỹ maps bounded sets into bounded sets, which
holds due to the previous estimates for Fk . As a consequence, we obtain

‖f‖Ỹ = ‖λFk(p)‖Ỹ � Ck(‖p‖X + 1) � Ck,

which establishes the desired claim stated in (3.34).
Hence, the proof of Lemma 3.3 is complete. ��

3.2. Proof of Theorem 3.2

Here we always assume that σ, ε ∈ (0, 1].1
Step1 (Construction of approximating solutions). Let N ∈ Nbe a given number and
let (vk+1, μk+1, ϕk+1, ψk+1) be chosen successively as a solution of the discrete
problem (3.13)–(3.17) with h = 1

N and (v0, ϕN
0 , ψ

N
0 ) as the initial value. Here,

the regularized initial datum
(
ϕN
0 , ψ

N
0

) ∈ V 2 is constructed in Lemma B.5 and
it satisfies

(
ϕN
0 , ψ

N
0

) → (ϕ0, ψ0) in V 1 as N → ∞. Furthermore, due to the
convexity of the potentials F0 and G0, it follows that

F
(
ϕN
0

)
→ F (ϕ0) in L1 (�) ,

G
(
ψN
0

)
→ G (ψ0) in L1 (�) .

1 Of course, bounds on (v, μ, ϕ,ψ) depend explicitly on σ, ε > 0 in some places, but we
choose not to show this dependence for the sake of the simplicity of notations.
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As in [5, Section 5], we define f N (t) on [−h,∞) through
f N (t) = fk for t ∈ [(k − 1)h, kh),

where k ∈ N0 and f ∈ {v, μ, ϕ,ψ}. In particular, it holds that
f N ((k−1)h) = fk, f N (kh) = fk+1, and f N (t) = fk+1 for t ∈ [kh, (k+1)h).

Moreover, we define

fh := f (t − h)

and

(
	+

h f
)
(t) := f (t + h)− f (t), ∂+

t,h f (t) := 1

h

(
	+

h f
)
(t),

(
	−

h f
)
(t) := f (t)− f (t − h), ∂−

t,h f (t) := 1

h

(
	−

h f
)
(t).

We also set

ρN := ρ
(
ϕN

)
.

Then, for arbitrary vectorw ∈ C∞
0

(
0, T ;C∞

div

(
�

))
, we shall choose w̃ := ∫ (k+1)h

kh
wdt as a test function in the weak formulation (3.13) and sum over k ∈ N0 to get

∫ T

0

∫

�

∂−
t,h(ρ

NvN ) · wdxdt +
∫ T

0

∫

�

div
(
ρN

h vN ⊗ vN
)

· wdxdt

+ ε
∫ T

0

∫

�

(∣
∣
∣DvN

∣
∣
∣
q−2

DvN : Dw +
∣
∣
∣vN

∣
∣
∣
q−2

vN · w
)

dxdt

+
∫ T

0

∫

�

2ν(ϕN
h )DvN : Dwdxdt +

∫ T

0

∫

�

β(ψN
h )v

N
τ · wτdSdt

−
∫ T

0

∫

�

(
vN ⊗ JN

)
: ∇wdxdt

=
∫ T

0

∫

�

μN ∇ϕN
h · wdxdt +

∫ T

0

∫

�

L
(
ψN

)
∇τψ

N
h · wτdSdt

+ 1

2

∫ T

0

∫

�

RNvN ·wdxdt, (3.50)

for all w ∈ C∞
0

(
0, T ;C∞

div

(
�

))
, where by definition (see (3.12) and (3.19)) we

have {
JN = −ρ′ (ϕN

h

)
m(ϕN

h )∇μN ,

RN = ∂−
t,hρ

N + div
(
ρN

h vN + JN
)
.

(3.51)

Using integration by parts, the first term in (3.50) can also be rewritten as

∫ T

0

∫

�

∂−
t,h(ρ

NvN ) · wdxdt = −
∫ T

0

∫

�

(ρNvN ) · ∂+
t,hwdxdt.
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Analogously, we deduce from (3.14)–(3.17) that
∫ T

0

∫

�

∂−
t,hϕ

N ξdxdt−
∫ T

0

∫

�

vNϕN
h ·∇ξdxdt = −

∫ T

0

∫

�

m(ϕN
h )∇μN ·∇ξdxdt

(3.52)
for all ξ ∈ C∞

0 (0, T ; H1 (�)), and
∫ T

0

∫

�

∂−
t,hψ

N θdSdt +
∫ T

0

∫

�

(
vN
τ · ∇τψ

N
h

)
θdSdt = −

∫ T

0

∫

�

l0
(
ψN

h

)
L(ψN )θdSdt

(3.53)
for all θ ∈ C∞

0 (0, T ; L2 (�)), respectively. Furthermore, we have that the follow-
ing equations:

⎧
⎨

⎩

μN + cF

2

(
ϕN + ϕN

h

)
= −	ϕN + f0(ϕ

N )+ σ∂−
t,hϕ

N ,

L (
ψN

) + cG

2

(
ψN + ψN

h

)
= −	τψ

N + ∂nϕN + ζψN + g0
(
ψN

)
,

(3.54)
which hold almost everywhere in QT and �T , respectively.

Let now E N (t) be the piecewise linear interpolant of Etot(vk, ϕk, ψk) at tk = kh
given by

E N (t) = (k + 1)h − t

h
Etot(vk, ϕk, ψk)+ t − kh

h
Etot(vk+1,ϕk+1, ψk+1)

for t ∈ [kh, (k + 1)h). For all t ∈ (kh, (k + 1)h), k ∈ N0, we also define

DN (t) :=
∫

�

2ν(ϕk)|Dvk+1|2dx +
∫

�

β(ψk)
∣
∣(vk+1)τ

∣
∣2 dS

+
∫

�

m(ϕk)|∇μk+1|2dx +
∫

�

l0 (ψk) |L(ψk+1)|2 dS

+ ε
∫

�

(|Dvk+1|q + |vk+1|q
)
dx + σ

∫

�

(
ϕk+1 − ϕk

h

)2

dx .

Then the discrete energy estimate obtained in Lemma 3.3 (cf. (3.21)) implies that

− d

dt
E N (t) = Etot(vk, ϕk, ψk)− Etot(vk+1, ϕk+1, ψk+1)

h
� DN (t) (3.55)

for all t ∈ (tk, tk+1), k ∈ N0.

Step 2 (Passing to the limit as N → ∞). To complete the proof of Theorem 3.2,
we shall pass to the limit as h → 0 (resp. N → ∞) in our approximating solutions.

Integrating (3.55) with respect to time gives

Etot(vN (t), ϕN (t), ψN (t))+
∫ t

s

∫

�

(
2ν(ϕN

h )|DvN |2 + m(ϕN
h )|∇μN |2

)
dxdτ

+ ε
∫ t

s

∫

�

(
|DvN |q + |vN |q

)
dxdτ + σ

∫ t

s

∫

�

∣
∣
∣∂

−
t,hϕ

N
∣
∣
∣
2
dxdτ
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+
∫ t

s

∫

�

(
β(ψN

h )|vN
τ |2 + l0(ψ

N
h )|L

(
ψN

)
|2

)
dSdτ

� Etot(vN (s), ϕN (s), ψN (s)) (3.56)

for all 0 � s � t < T with s, t ∈ hN0.
Exploiting the fact that Etot(v0, ϕN

0 , ψ
N
0 ) is bounded (note that F

(
ϕN
0

) ∈
L1 (�) and G

(
ψN
0

) ∈ L1 (�) hold uniformly in N → ∞ in light of the assump-
tions), we infer from (3.56) the following uniform bounds:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vN is bounded in L2(0, T ;H1) and in L∞(0, T ;H),
∇μN is bounded in L2(0, T ;L2(�)),

L (
ψN

)
is bounded in L2(0, T ; L2(�)),

(
ϕN , ψN

)
is bounded in L∞(0, T ; V 1),

F0
(
ϕN

)
is bounded in L∞(0, T ; L1 (�)),

G0
(
ψN

)
is bounded in L∞(0, T ; L1 (�)),

JN is bounded in L2(0, T ;L2(�)),
∫ T

0

∣
∣
∣
∣

∫

�

μN dx

∣
∣
∣
∣ dt � Q(T ),

σ 1/2∂−
t,hϕ

N is bounded in L2(0, T ; L2(�)),

ε1/qvN is bounded in Lq
(
0, T ;W1,q

)
for q > 2d,

(3.57)

for a certain monotone function Q : R+ → R
+. Moreover, we observe that

{
f0

(
ϕN

)
is bounded uniformly in L2

(
0, T ; L2 (�)

)
,

g0
(
ψN

)
is bounded uniformly in L2

(
0, T ; L2 (�)

)
,

(3.58)

due to the growth assumptions on f , g (see (3.3)), (3.57)4 and the Sobolev embed-
ding theorem.2 Then by the elliptic estimate for problem (3.54) (recall Lemma
B.4), (3.57) and (3.58), we can further derive that

(
ϕN , ψN

)
is bounded uniformly in L2(0, T ; V 2). (3.59)

Using these bounds, we can pass to the limit for a subsequence (not relabelled
for simplicity) to get the following preliminary convergent results:

vN ⇀ v in L2(0, T ;H1), (3.60)

vN ⇀∗ v in L∞(0, T ;H) ∼=
(

L1(0, T ;H)
)∗
, (3.61)

(
ϕN , ψN

)
⇀∗ (ϕ, ψ) in L∞(0, T ; V 1) ∼=

(
L1(0, T ; (V 1)∗)

)∗
, (3.62)

(
ϕN , ψN

)
⇀ (ϕ,ψ) in L2(0, T ; V 2), (3.63)

2 The bounds referred to here are indeed also uniform in (ε, σ ).
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μN ⇀ μ in L2(0, T ; H1(�)), (3.64)

L
(
ψN

)
⇀ L(ψ) in L2(0, T ; L2(�)), (3.65)

JN ⇀ J in L2(0, T ;L2(�)), (3.66)

σ
1
2 ∂−

t,hϕ
N ⇀ σ

1
2 ∂tϕ in L2(0, T ; L2 (�)), (3.67)

ε1/qvN ⇀ ε1/qv in Lq
(
0, T ;W1,q

)
. (3.68)

Remark 3.6. Here and after, all limits must be understood for suitable convergent
subsequences Nk → ∞ (resp. hk → 0) for k → ∞, unless otherwise stated.
We also use the abbreviation “∈σ ” to mean that the corresponding bounds are
independent of N in the associated spaces, but will blow up as σ → 0+.

Next, let ϕ̃N be the piecewise linear interpolant of ϕN (tk), where tk = kh,
k ∈ N0, namely, ϕ̃N = 1

hχ[0,h] ∗t ϕ
N , where the convolution is only taken with

respect to the time variable t . By a similar construction, we also define ψ̃N such
that ψ̃N = 1

hχ[0,h] ∗t ψ
N . Then it follows that

∂t ϕ̃
N = ∂−

t,hϕ
N , ∂t ψ̃

N = ∂−
t,hψ

N

and

‖ϕ̃N − ϕN ‖(H1(�))∗ � h‖∂t ϕ̃
N ‖(H1(�))∗, ‖ψ̃N − ψN ‖L2(�) � h‖∂t ψ̃

N ‖L2(�).

(3.69)
From equation (3.52) and the estimates (3.57)1, (3.57)2 and (3.57)4, we obtain that

∂t ϕ̃
N ∈ L2(0, T ; (H1(�))∗)

is bounded, since vNϕN
h and ∇μN are both bounded in L2(0, T ;L2(�)). On

the other hand, from (3.57)1, (3.57)3, (3.57)4 together with (3.59), we see
that l0

(
ψN

)L(ψN ) is bounded in L2
(
0, T ; L2 (�)

)
and moreover, vN

τ j
∂τ jψ

N is

bounded in L4/3
(
0, T ; L2 (�)

)
ifd = 3 and in L

4s
3s−2

(
0, T ; L2 (�)

)
for s ∈ (2,∞),

if d = 2. As a result, it follows from equation (3.53) that

∂t ψ̃
N is uniformly bounded in

{
L4/3

(
0, T ; L2 (�)

)
, if d = 3,

L
4s

3s−2
(
0, T ; L2 (�)

)
, if d = 2, s > 2.

(3.70)
We remark that (3.70) can also be improved to ∂t ψ̃

N ∈ L2(0, T ; L2(�)) using
the last estimate in (3.57). Together with the boundedness of (ϕ̃N , ψ̃N ) in
L∞(0, T ; V 1), which follows from the estimates of

(
ϕN , ψN

)
in L∞(0, T ; V 1),

we get, with the help of the lemma of Aubin–Lions–Simon (see Lemma B.1), the
strong convergence

(ϕ̃N , ψ̃N )→ (ϕ̃, ψ̃) in C([0, T ]; V 1−s), ∀ s ∈
(

0,
1

2

)

(3.71)

for some
(ϕ̃, ψ̃) ∈ L∞(0, T ; V 1).
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In particular, it holds for a subsequence that

(ϕ̃N , ψ̃N )→ (ϕ̃, ψ̃) almost everywhere in �× (0, T ) .

On the other hand, we infer from (3.69) that
{
ϕ̃N − ϕN → 0 in L2(0, T ; (H1(�))∗),
ψ̃N − ψN → 0 in L4/3(0, T ; L2(�)),

(3.72)

which yields

ϕ̃ = ϕ and ψ̃ = ψ.
Furthermore, since

ϕ̃N ∈ H1(0, T ; (H1(�))∗) ∩ L2(0, T ; H2(�)) ↪→ C([0, T ] ; H1−s(�)),

ψ̃N = tr
(
ϕ̃N

)
∈ W 1,4/3(0, T ; L2(�)) ∩ L2(0, T ; H2 (�)) ↪→ C([0, T ] ; H1−s (�))

for some s ∈ (1/2, 1) as well as (ϕ̃N , ψ̃N ) ∈ L∞(0, T ; V 1) is bounded, it also
follows that

(ϕ, ψ) = (ϕ̃, ψ̃) ∈ Cw([0, T ] ; V 1).

To verify the initial condition (ϕ(0), ψ(0)) = (ϕ0, ψ0), we first observe that

ϕ̃N (0) ⇀∗ ϕ̃(0) = ϕ(0), in (H1(�))∗,
ψ̃N (0) = trϕ̃N (0) ⇀∗ ψ̃(0) = ψ(0), in L2(�).

Furthermore, it holds that ϕ̃N (0) = ϕN
0 and ψ̃N (0) = ψN

0 , with the right-hand
sides converging strongly to ϕ0 in L2(�) and to ψ0 in L2 (�), respectively. Then
we can conclude that

ϕ(0) = ϕ0 and ψ(0) = ψ0.

The estimates (3.71) and (3.72) yield the strong convergence results
{
ϕN − ϕ → 0 in L2(0, T ; (H1(�))∗),
ψN − ψ → 0 in L4/3(0, T ; L2(�)),

(3.73)

which together with (3.59), (3.63) and suitable interpolation inequalities further
imply that {

ϕN → ϕ in L2(0, T ; H2−s(�)),

ψN → ψ in L
8

6−s (0, T ; H2−s(�))
(3.74)

for s ∈ (0, 2). Then we have the pointwise convergence (ϕN , ψN ) → (ϕ, ψ)

almost everywhere in�× (0, T ). Combining this fact with the continuity of f0, g0
and (3.58), we can deduce the (weak) convergence for the nonlinear terms f0 = F ′

0,
g0 = G ′

0, namely,
{

f0
(
ϕN

)
⇀ f0 (ϕ) in L2(0, T ; L2(�)),

g0
(
ψN

)
⇀ g0 (ψ) in L2(0, T ; L2(�)),

(3.75)
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owing to the Lebesgue convergence theorem (see Lemma B.2). Concerning the
nonlinear density function ρ, due to the boundedness of ρ′, ρ′′, we infer from
(3.74) and the pointwise convergence of ϕN that

ρ(ϕN )→ ρ(ϕ) in L2(0, T ; H1(�)) ∩ L p(QT ), ∀ p ∈ [2,∞). (3.76)

In a similar manner, for p ∈ [2,∞), we have
m(ϕN )→ m(ϕ), ν(ϕN )→ ν(ϕ) in L p(QT ),

l0(ψ
N )→ l0(ψ), β(ψN )→ β(ψ) in L p(�T ).

It easily follows the above facts and (3.51), (3.64) and (3.66) that the weak limit
of JN can be identified as

J = −ρ′(ϕ)m(ϕ)∇μ in L2(0, T ;L2(�)).

Next, taking advantage of (3.63), (3.67), (3.75), and the fact that the left-hand sides
of (3.54) converge to μ+ cFϕ + σ∂tϕ and L(ψ)+ cGψ , respectively as N → ∞
up to a subsequence (in light of the properties (3.64) and (3.65)), we finally deduce
that

{
μ+ cFϕ = −	ϕ + f0(ϕ)+ σ∂tϕ, in L2(0, T ; L2(�)),

L(ψ)+ cGψ = −	τψ + ∂nϕ + ζψ + g0 (ψ) , in L2(0, T ; L2(�)).

(3.77)
In (3.77), we also note that f0 (r)− cFr = f (r) and g0 (r)− cGr = g (r). Taking
s ∈ (0, 1/2) in (3.74), it also holds that
(
ϕN , ψN

)
→ (ϕ, ψ) in L

8
6−s

(
0, T ; V 2−s

)
↪→ L

8
6−s

(
0, T ; L∞ (�)× L∞ (�)

)
,

(3.78)

with strong convergence.
Our next aim is to show the strong convergence vN → v in L2(0, T ;H). First,

owing to the fact for ρN
h = ρ(ϕN

h ) that

ρ
(
ϕN

h

)
, ρ′(ϕN

h ) ∈ L∞ (QT )

are bounded by Assumption 2, and using suitable interpolation inequalities, we can
obtain the following bounds (cf. [5, Section 5, (i)–(iv), pp. 474]):

⎧
⎪⎪⎨

⎪⎪⎩

ρN
h vN ⊗ vN is bounded in L2(0, T ; L3/2(�)d×d),

DvN is bounded in L2(0, T ;L2(�)),

vN ⊗ ∇μN is bounded in L8/7(0, T ; L4/3(�)d×d),

μN ∇ϕN
h is bounded in L2(0, T ;L3/2(�)).

(3.79)

Thenwe see that that all the four terms in (3.79) are bounded in L8/7(0, T ; L4/3(�)),
in particular, the third estimate also implies that

vN ⊗ JN is bounded in L8/7(0, T ; L4/3(�)d×d).
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In addition, exploiting the interpolation inequality

‖ψ‖W 1,8/3(�) � C ‖ψ‖1/4
H2(�)

‖ψ‖3/4
H1(�)

with the third and fourth estimates in (3.57) and (3.59), we have
∥
∥
∥

(
L

(
ψN

)
∇τψ

N
h ,wτ

)

�

∥
∥
∥

L4/3(0,T )

� C‖L
(
ψN

)
‖L2(0,T ;L2(�)) ‖ψ‖1/4

L2(0,T ;H2(�))
‖ψ‖3/4

L∞(0,T ;H1(�))
‖wτ‖L8(0,T ;L8(�))

� C‖wτ‖L8(0,T ;L8(�)), ∀wτ ∈ L8(0, T ;L8(�)). (3.80)

Therefore, it follows that

sup
‖w‖L8(0,T ;W1,4)�1

∣
∣
∣

(
L

(
ψN

)
∇τψ

N
h ,wτ

)

�

∣
∣
∣ is bounded in L4/3(0, T ) ⊂ L8/7 (0, T ) ,

(3.81)

since for w ∈ C
∞
div

(
�

)W1,4

:= W
1,4
div ⊂ W

1,4(�) it holds that tr(w) ∈
W

3/4,4 (�) ↪→ L
8 (�), and so does its tangential component wτ . In view of the

equation (3.50), it remains to estimate the last term RNvN . This requires some
improved estimates for the case σ > 0 and relies on the definition of RN in (3.51).
For eachσ > 0,we have, from (3.67) that ∂−

t,hϕ
N ∈σ L2

(
0, T ; L2 (�)

)
is bounded.

Then thanks to the boundedness of ρ′, ρ′′ and (3.74), we have, for any η ∈ C(QT ),
∣
∣
∣
∣

∫ T

0

∫

�

(
∂−

t,hρ(ϕ
N )− ρ′(ϕ)∂tϕ

)
ηdxdt

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ T

0

∫

�

(
∂−

t,hρ(ϕ
N )− ρ′(ϕN )∂−

t,hϕ
N
)
ηdxdt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0

∫

�

(
ρ′(ϕN )∂−

t,hϕ
N − ρ′(ϕ)∂−

t,hϕ
N
)
ηdxdt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0

∫

�

ρ′(ϕ)
(
∂−

t,hϕ
N − ∂tϕ

)
ηdxdt

∣
∣
∣
∣

� ‖ρ′′‖L∞(QT )‖∂−
t,hϕ

N ‖2L2(0,T ;L2(�))
‖η‖L∞(QT )h

+ ‖ρ′′‖L∞(QT )‖ϕN − ϕ‖L2(0,T,L∞(�))‖∂−
t,hϕ

N ‖L2(0,T ;L2(�))‖η‖L∞(0,T ;L2(�))

+
∣
∣
∣
∣

∫ T

0

∫

�

(
∂−

t,hϕ
N − ∂tϕ

)(
ρ′(ϕ)η

)
dxdt

∣
∣
∣
∣

→ 0,

as N → ∞ (up to a subsequence), which implies the sequential convergence

∂−
t,hρ(ϕ

N )→ ρ′(ϕ)∂tϕ

in the sense of distribution. Next, we find from (3.51) that
〈
RNvN ,w

〉
=

(
∂−

t,hρ
NvN ,w

)

�
−

(
ρN

h vN + JN ,∇
(
vN · w

))

�
(3.82)
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for any smooth test function w ∈ C
∞
div(�). Since v

N
i wi is bounded in H1 (�) as a

product of functions in H1 (�)× H3/2+δ (�), for some δ > 0 (cf. Lemma B.3), we
infer from (3.82), the seventh and ninth estimates in (3.57) on JN and ∂−

t,hρ(ϕ
N )

that
sup

‖w‖L∞(0,T ;H3/2+δ )�1

∣
∣
∣

〈
RNvN ,w

〉∣
∣
∣ ∈σ L1 (0, T ) , (3.83)

because∇ (
vN

i wi
) ∈ L2(0, T ;L2 (�)) is bounded, for anyw ∈ L∞ (

0, T ;H3/2+δ)

with δ > 0. Therefore, on account of (3.79), (3.81) and (3.83), we can allow in
the weak formulation (3.50) for test functions with w ∈ L∞(0, T ;H3/2+δ) ↪→
L8(0, T ;W1,4(�)), provided that δ � 1/4.

Now let ρ̃vN be the piecewise linear interpolant of
(
ρNvN

)
(tk), where tk = kh,

k ∈ N0. By definition, it holds that

∂t (ρ̃vN ) = ∂−
t,h

(
ρNvN

)
.

Hence, from the equation (3.50), the last estimate in (3.57) and estimates (3.79),
(3.81) and (3.83), we obtain

∂t (P(ρ̃vN )) ∈
(

L∞(0, T ;H3/2+δ)⊕ Lq
(
0, T ;W1,q(�)

))∗

= L1(0, T ;H−3/2−δ)⊕ L
q

q−1

(
0, T ;

(
W

1,q(�)
)∗)

for any δ � 1/4, q > 2d, where P is the Helmholtz–Leray projection P :
L2(0, T ;L2(�)) → L2(0, T ;H). Noting that P(ρ̃vN ) ∈ L2(0, T ;W1,2(�)) is
bounded, then we can therefore conclude from Lemma B.1 the strong convergence

P(ρ̃vN )→ v∗ in L2(0, T ;H) (3.84)

for some vectorial function v∗ ∈ L∞(0, T ;H). We also infer the following weak
convergence results from (3.60), (3.76) and the boundedness of ρ:

(ρN )γ vN ⇀ ργ v in L2(0, T ;L2(�)), for γ = 1,
1

2
. (3.85)

Observing that

‖P(ρ̃vN )− P(ρNvN )‖L8/7(0,T ;(W1,4)∗) � h‖∂t (P(ρ̃vN ))‖L8/7(0,T ;(W1,4)∗) → 0

as h → 0, since the projection P is weakly continuous, then it follows from (3.84)
and (3.85) with γ = 1 that

v∗ = P(ρv).

Moreover, since P(ρNvN ) ∈ L2(0, T ;W1,2(�)) ∩ L∞(0, T ;L2(�)), from the
above strong convergence result and interpolation inequality, we have

P(ρNvN )→ P(ρv) in L2(0, T ;H).
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This fact and the weak convergence of vN in L2(0, T ;H) entail that
∫ T

0

∫

�

ρN |vN |2dxdt =
∫ T

0

∫

�

P(ρNvN ) · vNdxdt

−→
∫ T

0

∫

�

P(ρv) · vdxdt

=
∫ T

0

∫

�

ρ |v|2dxdt,

which together with (3.85) (taking γ = 1/2) further yields the strong convergence

(ρN )1/2vN → ρ1/2v in L2(0, T ;L2(�)).

By (3.76), we also have ρ(ϕN )→ ρ(ϕ) almost everywhere in QT . Hence, we can
conclude from the above fact and ρN � ρ0 > 0 that

vN = (ρN )−1/2
(
(ρN )1/2vN

)
→ v in L2(0, T ;L2(�)). (3.86)

Recalling the first estimate in (3.57) and using interpolation, we also have

vN → v in L2(0, T ;H1−s(�)), s ∈ (0, 1]. (3.87)

Then it follows that (for a proper subsequence)

vN → v almost everywhere in QT .

Moreover, one can also show that the velocity v fulfills the initial condition v (0) =
v0 in L2 (�) thanks to Lemma B.7 and arguing as in [5, Section 5.2].

Finally, we can pass to the limit as N → ∞ (up to a subsequence) in (3.50)–
(3.54) to show that the limit (v, μ, ϕ,ψ) is indeed a weak solution in the sense of
Definition 3.1 for each fixed σ , ε > 0.

Owing to the strong convergence
(
ϕN , ψN

)
−→ (ϕ, ψ) in L4

(
0, T ; V 1

)
,

which follows by interpolation using (3.74) and the boundedness of
(
ϕN , ψN

) ∈
L∞(0, T ; V 1), the passage to the limit on the right-hand side of (3.50 ) is reasonably
straightforward. Indeed, since μN ⇀ μ in L2

(
0, T ; H1 (�)

)
and L (

ψN
)
⇀

L (ψ) in L2(0, T ; L2 (�)), we get

∫ T

0

∫

�

μN ∇ϕN
h · wdxdt = −

∫ T

0

∫

�

(∇μNϕN
h

) · wdxdt

−→ −
∫ T

0

∫

�

(∇μϕ) · wdxdt

=
∫ T

0

∫

�

μ∇ϕ · wdxdt (3.88)
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and
∫ T

0

∫

�

L
(
ψN

)
∇τψ

N
h · wτdSdt −→

∫ T

0

∫

�

L (ψ)∇τψ · wτdSdt (3.89)

for all divergence free w ∈ C∞
0 (0, T ;H3/2+δ ∩ W

1,q(�)), where δ � 1/4 and
q > 2d. Next, by (3.61) and (3.87) we have the strong convergence

vN −→ v in L p(0, T ;L4 (�)) for any p ∈ [1, 8/3),
from which we infer that

vN
i vN

j −→ viv j in Ll(0, T ; L2 (�)) for any l ∈ [1, 4/3).
Due to (3.68) and (3.87), we also have the strong convergence

DvN −→ Dv in L2(0, T ; L4 (�)d×d), (3.90)

which improves upon (3.87) when ε > 0. Then we can deduce that, for all w ∈
C∞
0 (0, T ;H3/2+δ ∩ W

1,q(�)) (with δ � 1/4), it holds that
〈
RNvN ,w

〉
→ 〈Rσv,w〉 ,

where

〈Rσv,w〉 := (
(ρ′ (ϕ) ∂tϕ)v,w

)

QT
− ((ρv + J) ,∇ (v · w))QT

. (3.91)

Passing to the limit in (3.52)–(3.54) to recover (3.5)–(3.8) is also straightforward
on account of (3.62)–(3.67), (3.70), (3.74) and (3.75).

In summary, we obtain that

− (ρv, ∂tw)QT
+ (div(ρv ⊗ v),w)QT

+ (2ν(ϕ)Dv, Dw)QT

+ (β(ψ)vτ ,wτ )�T
+ ε

(
|Dv|q−2 Dv, Dw

)

QT
+ ε

(
|v|q−2 v,w

)

QT

= ((v ⊗ J), Dw)QT
+ 1

2
〈Rσ ,w〉 + (μ∇ϕ,w)QT

+ (L (ψ)∇τψ,wτ )�T
(3.92)

for all w ∈ C∞
0 (0, T ;H3/2+δ ∩ W

1,q(�)), as well as

− (ϕ, ∂tξ)QT
+ (v · ∇ϕ, ξ)QT

= − (m(ϕ)∇μ,∇ξ)QT
(3.93)

for all ξ ∈ C∞
0 (0, T ; H1 (�)).

Observe now that (3.93) can be written in a stronger form, namely,
〈
∂tϕ, ξ̃

〉 + (
v · ∇ϕ, ξ̃)

�
= −(

m(ϕ)∇μ,∇ ξ̃)
�

(3.94)

for all ξ̃ ∈ H1(�) and almost everywhere in [0, T ]. Hence, choosing
ξ̃ = ρ′ (ϕ(t)) v(t) · w(t)
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in (3.94) and recalling (1.16) and (3.91), we deduce that

〈Rσv,w〉 = −
∫

QT

m (ϕ)
(∇ρ′ (ϕ) · ∇μ)

v · wdxdt = 〈Rv,w〉 (3.95)

for all w ∈ C∞
0 (0, T ;H3/2+δ ∩ W

1,q(�)).

Step 3 (Dissipative energy inequality). Multiplying the discrete energy inequality
(3.55) by η ∈ W 1,1(0, T ) with η � 0, η(T ) = 0 and using integration by parts, we
obtain

Etot(v0, ϕN
0 , ψ

N
0 )η(0)+

∫ T

0
E N (t)η′(t)dt �

∫ T

0
DN (t)η(t)dt. (3.96)

Because of the strong convergence of vN and
(
ϕN , ψN

)
(recall (3.74) and (3.86)),

we have

vN (t)→ v(t) in H,
(
ϕN (t), ψN (t)

)
→ (ϕ(t), ψ (t)) in C(�)× C(�)

for almost every t ∈ (0, T ), along a proper subsequence. Then it holds that

E N (t)→ Etot(v(t), ϕ(t), ψ(t)) for almost all t ∈ (0, T ).

Moreover, by the lower semicontinuity of norms and the almost everywhere con-
vergence of

(
ϕN , ψN

)
to (ϕ, ψ), the inequality

lim inf
N→∞

∫ T

0
DN (t)η(t)dt �

∫ T

0
D(t)η(t)dt

for all η ∈ W 1,1(0, T ) with η � 0 holds, where

D(t) :=
∫

�

2ν(ϕ)|Dv|2dx +
∫

�

β(ψ) |vτ |2 dS +
∫

�

m(ϕ)|∇μ|2dx

+
∫

�

l0 (ψ) |L(ψ)|2 dS + ε
∫

�

(|Dv|q + |v|q)
dx + σ

∫

�

|∂tϕ|2 dx .

Hence, passing to the limit in (3.96), we obtain

Etot(v0, ϕ0, ψ0)η(0)+
∫ T

0
Etot(v(t), ϕ(t), ψ(t))η(t)dt �

∫ T

0
D(t)η(t)dt

for all η ∈ W 1,1(0, T ) with η � 0 and η(T ) = 0. In view of Lemma B.6 we then
arrive at the energy inequality (3.11).

The proof of Theorem 3.2 is now complete.

4. Proof of Theorem 2.2

We are now in a position to prove our main result Theorem 2.2 by taking advantage
of the existence of a solution to the approximating problem studied in Section 3.
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4.1. An Auxiliary Problem with Singular Bulk Potential

We first consider a regularized version of the original problem (1.1)–(1.5) sub-
ject to boundary and initial conditions (1.8)–(1.12), with two-parameter viscous
regularizing terms, that is, ε, σ > 0.

Step 1 (Construction of solutions to an approximating problem with a regular
potential). On account of Assumption 1 and following [34], we can construct a
smooth monotone sequence { f0κ} ⊂ C2 (R), approximating the singular part of
the potential f0 on compact subintervals of (−1, 1), satisfying (3.2) as well as
f0κ (0) = 0. Moreover,

| f0κ (s)| � | f0 (s)| , |F0κ (s)| � |F0 (s)| , ∀ s ∈ (−1, 1) , (4.1)

and

lim
κ→0+ f0κ (s) = f0 (s) , lim

κ→0+ F0κ (s) = F0 (s) , ∀ s ∈ (−1, 1) . (4.2)

On the other hand, we replace the linear density function ρ (see Assumption 1) by
a smooth nonlinear extension ρ̃ : R → R

+, satisfying

ρ̃(s) = ρ(s), ∀ s ∈ [−1, 1], (4.3)

0 < m∗ � ρ̃ (r) � M∗,
∣
∣
∣ρ̃
( j) (r)

∣
∣
∣ � C j , j = 1, 2 (4.4)

for some C1,C2, m∗, M∗ > 0. It is easy to verify that the approximations f0κ−cFr
and ρ̃ satisfy the conditions of Theorem 3.2 (cf. Assumption 2).

After the above preparations, in the previous auxiliary system (3.4)–(3.9), we
now replace the potential f (r) therein by f0κ(r) − cFr and replace the density
function ρ by ρ̃ constructed above (then dropping the tilde from ρ̃ for the simplicity
of notation). For the sake of simplicity, below we set the regularizing parameters

ε = σ > 0.

Under above choices for the regularized system with a regular potential, for any
initial data v0 ∈ H, (ϕ0, ψ0) ∈ V 1 such that F0(ϕ0) ∈ L1(�), F0(ψ0) ∈ L1(�), it
follows fromTheorem3.2 that there exists a globalweak solution

(
vσ,κ , μσ,κ , ϕσ,κ ,

ψσ,κ
)
to the corresponding approximating problem (3.4)–(3.9) in the sense of

Definition 3.1, which also satisfies the energy inequality (3.11).

Step 2 (Passage to the limit as κ → 0+, the case of singular potential). Our next aim
is to pass to the limit with respect to κ → 0+ (that is, the approximating parameter
for the singular potential f0) with fixed regularizing parameters ε = σ > 0.
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The energy inequality (3.11) implies the following uniform (in κ) bounds (cf.
(3.57)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vσ,κ is bounded in L2(0, T ;H1) and in L∞(0, T ;H),
∇μσ,κ is bounded in L2(0, T ;L2(�)),

L (
ψσ,κ

)
is bounded in L2(0, T ; L2(�)),(

ϕσ,κ , ψσ,κ
)

is bounded in L∞(0, T ; V 1),

F0κ
(
ϕσ,κ

)
is bounded in L∞(0, T ; L1 (�)),

G
(
ψσ,κ

)
is bounded in L∞(0, T ; L1 (�)),

∫ T

0

∣
∣
∣
∣

∫

�

μσ,κdx

∣
∣
∣
∣ dt � Q(T ),

(4.5)

for certain monotone function Q : R+ → R
+ independent of σ, κ . Indeed, choos-

ing the test function ξ = 1 in (3.5), we obtain that
∫

�

ϕσ,κ (t) dx =
∫

�

ϕ0dx,

and then the last estimate in (4.5) follows by a similar argument, as exploited
in (3.44). Then following the same argument as in the proof of Step 1 of [34,
Section 7, Theorem 3.5], we obtain that

f0κ
(
ϕσ,κ

)
is bounded in L2(0, T ; L1 (�)), (4.6)

∂tϕσ,κ is bounded in L2(0, T ; (H1 (�))∗), (4.7)

μσ,κ is bounded in L2(0, T ; H1 (�)). (4.8)

According to the assumptions (2.4)–(2.5), it is easy to verify that

f ′
0κ(s)− δ( f0κ(s))

2 � −Cδ,M , ∀ s ∈ R\[−M,M],
f0κ(s)(g(s)+ ζ s) � −CM , ∀ s ∈ R\[−M,M],

with constants Cδ,M , CM > 0 independent of κ ∈ (0, κ0] for some κ0 > 0. Then
an argument similar to Step 2 of [34, Section 7, Theorem 3.5] yields

f0κ
(
ϕσ,κ

)
is bounded in L2(0, T ; L2 (�)), (4.9)

F0κ
(
ψσ,κ

)
is bounded in L∞(0, T ; L1 (�)), (4.10)

provided that the additional assumption F0 (ψ0) ∈ L1 (�) holds.
Using these bounds, we can pass to the limit up to a subsequence, as κ → 0+,

to get

vσ,κ ⇀ vσ in L2(0, T ;H1), (4.11)

vσ,κ ⇀∗ vσ in L∞(0, T ;H) ∼=
(

L1(0, T ;H)
)∗
, (4.12)

(
ϕσ,κ , ψσ,κ

)
⇀∗ (ϕσ , ψσ ) in L∞(0, T ; V 1) ∼=

(
L1(0, T ; (V 1)∗)

)∗
, (4.13)

μσ,κ ⇀ μσ in L2(0, T ; H1(�)), (4.14)
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∇μσ,κ ⇀ ∇μσ in L2(0, T ;L2(�)), (4.15)

L (
ψσ,κ

)
⇀ L (ψσ ) in L2(0, T ; L2(�)). (4.16)

By the growth assumption on g, we have

g
(
ψσ,κ

)
is bounded in L2

(
0, T ; L2 (�)

)
. (4.17)

This together with (4.9) and σ∂tϕσ,κ ∈ L2(0, T ; L2 (�)) allows us to conclude the
following estimate:

(
ϕσ,κ , ψσ,κ

)
is bounded in L2(0, T ; V 2), (4.18)

by the same argument as for (3.59) with the aid of Lemma B.4. Due to (4.5)–(4.8),
we also have ∂tψσ,κ is bounded (uniformly in κ) in L2

(
0, T ; L2 (�)

)
, since

vσ,κ is bounded in Lq
(
0, T ;W1,q (�)

)
, for some q > 2d, (4.19)

uniformly with respect to κ > 0. Hence, Lemma B.1 yields that
(
ϕσ,κ , ψσ,κ

) −→ (ϕσ , ψσ ) in L2(0, T ; V 2−s), for any s ∈ (0, 1/2), (4.20)

which also implies, due to (4.13) and (4.18), the improved strong convergence
(
ϕσ,κ , ψσ,κ

) −→ (ϕσ , ψσ ) in Lr (0, T ; H1 (�)× H1 (�)), ∀ r ∈ [2,∞)
(4.21)

and
(
ϕσ,κ , ψσ,κ

) −→ (ϕσ , ψσ ) in L2 (
0, T ; L∞ (�)× L∞ (�)

)
. (4.22)

In fact, by interpolation in (4.20) together with (4.13) we can get even stronger
convergence results, namely,

∇ϕσ,κ → ∇ϕσ in L4(0, T ;L 6
2+s (�)) ∩ L4(1−s)(0, T ;L3 (�)), (4.23)

∇ϕσ,κ → ∇ϕσ in L p(0, T ;Lp (�)), with p := (10 − 4s) /3, (4.24)

∇τψσ,κ → ∇τψσ in L4(0, T ;L 4
1+s (�)) ∩ L4(1−s)(0, T ;L4 (�)), (4.25)

for any s ∈ (0, 1/2). Owing to (4.9), the pointwise convergence of ϕσ,κ due to
(4.20) and the assumptions on f0 (see Assumption 1), we can conclude that (cf.
[52, Section 3])

|ϕσ | < 1 almost everywhere in QT .

Then by (4.10) and (4.20) we also have

|ψσ | � 1 almost everywhere on �T .

From the above facts, (4.9), (4.10) and the convergence of ϕσ,κ and ψσ,κ almost
everywhere in QT and on �T , respectively, we also deduce that
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f0κ
(
ϕσ,κ

)
⇀ f0 (ϕσ ) in L2

(
0, T ; L2 (�)

)
, (4.26)

g
(
ψσ,κ

)
⇀ g (ψσ ) in L2(0, T ; L2 (�)), (4.27)

F0κ
(
ψσ,κ

)
⇀∗ F0 (ψσ ) in L∞(0, T ; L1 (�)), (4.28)

since F0κ and F0 are (strictly) convex functions, obeying (4.1)–(4.2).
In view of the convergence relations in (4.11)–(4.16) and (4.20)–(4.27), wemay

pass to the limit in a straightforward manner as in [34, Section 5, pp. 29–31], to
deduce that the limit function (vσ , μσ , ϕσ , ψσ ), obtained from the limit procedure
in κ → 0+, satisfies equations (3.5)–(3.7).

The final step consists in showing that the limit function vσ also satisfies a
suitable equation for the fluid velocity. This is the most crucial point. As in the
proof of Theorem 3.2 (now with σ = ε > 0), we require to show that, along a
suitable subsequence, it holds that vσ,κ → vσ in L2(0, T ;L2(�)) at least. To this
end, it suffices to show exactly, as in the foregoing proof (now with σ = ε > 0),
that

∂t (P(ρ
(
ϕσ,κ

)
vσ,κ )) is bounded in L1(0, T ;H−3/2−δ)⊕L

q
q−1

(
0, T ;

(
W

1,q(�)
)∗)

(4.29)
for any δ � 1/4, q > 2d. However this bound requires once again some uniform
bounds of the nonlinear terms that occur in the equation for vσ,κ . Due to the previous
bounds in (4.5)–(4.18), we have, exactly3 as in (3.79)–(3.80), that

⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
ϕσ,κ

)
vσ,κ ⊗ vσ,κ is bounded in L2(0, T ; L3/2(�)d×d),

vσ,κ ⊗ ∇μσ,κ is bounded in L8/7(0, T ; L4/3(�)d×d),

μσ,κ∇ϕσ,κ is bounded in L2(0, T ;L3/2(�)),

L (
ψσ,κ

)∇τψσ,κ is bounded in L8/7(0, T ;L8/7(�)).

(4.30)

Thus, it remains to bound the following term uniformly in κ:

〈
Rσvσ,κ ,w

〉 = −
∫

QT

m
(
ϕσ,κ

) (∇ρ′ (ϕσ,κ
) · ∇μσ,κ

)
vσ,κ · wdxdt, (4.31)

for all w ∈ C∞
0 (0, T ;H3/2+δ ∩ W

1,q(�)). Since ρ′′ ∈ L∞ ((0, T )×�) and

∇ϕσ,κ ∈ L4
(
0, T ;L3 (�)

)
, ∇μσ,κ ∈ L2

(
0, T ;L2 (�)

)

are bounded as κ → 0+, it also follows that Rσvσ,κ ∈ L1(0, T ;H−3/2−δ) is
uniformly boundedwith respect toκ > 0 because of (4.19).Hence,we can conclude
the estimate (4.29) on time derivative. As a consequence, owing to (4.29) with the
help of Lemma B.1, we deduce once again as in (3.84)–(3.90) that

vσ,κ → vσ in L2(0, T ;W1,4 (�)) ↪→ L2(0, T ;L∞ (�)). (4.32)

3 Note that the bounds in (3.79)–(3.81) are already uniform in σ = ε > 0, κ ∈ [0, 1].
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This strong convergence together with (4.19) yields yet by interpolation that

vσ,κ → vσ in L5+δ(0, T ;L5+δ (�)), (4.33)

for some sufficiently small δ = δ (q) > 0 for q > 2d sufficiently large. Then the
passage to the limit as κ → 0+ in all nonlinear terms that occur in the equation for
vσ,κ , with the exception of the one involving the source term Rσvσ,κ , is easy on
account of the same arguments used in (3.88)–(3.89). On the other hand, since we
have shown that |ϕσ | < 1 almost everywhere in QT , then the nonlinear extended
density function ρ(r) constructed in Step 1 is indeed linear for r ∈ [−1, 1]. As a
consequence, it now follows from (4.24), (4.33) and the weak convergence (4.15)
that 〈

Rσvσ,κ ,w
〉 −→ 0 for all w ∈ C∞

0

(
0, T ;C∞

div

(
�

))
, (4.34)

as long as we fix a sufficiently small s ∈ (0, 1/2) from (4.24) satisfying

3

10 − 4s
+ 1

5 + δ � 1

2
. (4.35)

Since (4.33) holds for some fixed δ > 0, we infer from (4.34) that (vσ , μσ , ϕσ , ψσ )
is indeed a weak solution in the sense of Definition 3.1 with now a trivial external
source

Rσ = 0.

The energy inequality (3.11) associated with (vσ , μσ , ϕσ , ψσ ) can be proven
exactly as before, taking advantage of the convexity properties of F0, F0κ , (4.1)–
(4.2) and the strong convergence results (4.20)–(4.22). Besides, the initial condi-
tions vσ (0) = v0, ϕσ (0) = ϕ0 and ψσ (0) = ψ0, can be verified in a similar
fashion as in the proof of Theorem 3.2.

4.2. Passage to the Limit as ε = σ → 0+

To complete the proof of Theorem2.2, it remains to pass to the limit as ε = σ → 0+
in the above approximating problem.

As a consequence of the energy inequality for (vσ , μσ , ϕσ , ψσ ) (cf. (3.11)), we
again have the uniform (in σ = ε) bounds (4.5)–(4.10) for (vσ , μσ , ϕσ , ψσ ). The
passage to the limit as ε = σ → 0+ is simply based on these estimates and we only
briefly mention some details at the expense of repeating several earlier arguments.

To this end, for a proper subsequence, we have, once again,

vσ ⇀ v in L2(0, T ;H1), (4.36)

vσ ⇀∗ v in L∞(0, T ;H) ∼=
(

L1(0, T ;H)
)∗
, (4.37)

(ϕσ , ψσ ) ⇀
∗ (ϕ, ψ) in L∞(0, T ; V 1) ∼=

(
L1(0, T ; (V 1)∗)

)∗
, (4.38)

μσ ⇀ μ in L2(0, T ; H1(�)), (4.39)

∇μσ ⇀ ∇μ in L2(0, T ;L2(�)), (4.40)

L (ψσ ) ⇀ L (ψ) in L2(0, T ; L2(�)). (4.41)
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Employing the same arguments from [34, Section 7, Theorem 3.5], we obtain

f0 (ϕσ ) is bounded in L2(0, T ; L1 (�)) (4.42)

as well as
∂tϕσ is bounded in L2(0, T ; (H1 (�))∗) (4.43)

and

∂tψσ is bounded in

{
L4/3

(
0, T ; L2 (�)

)
, if d = 3,

L
4s

3s−2
(
0, T ; L2 (�)

)
, if d = 2, s > 2.

(4.44)

The bound (4.44) is weaker than the one we used in Section 4.1, since we can no
longer rely on (4.19). Furthermore, we see from [34, Section 7, Theorem 3.5] that

f0 (ϕσ ) is bounded in L2(0, T ; L2 (�)), (4.45)

F0 (ψσ ) is bounded in L∞(0, T ; L1 (�)). (4.46)

Then we recover once again, as for (4.20), a strong convergence on (ϕσ , ψσ ):

(ϕσ , ψσ ) −→ (ϕ, ψ) in L2(0, T ; V 2−s), for any s ∈ (0, 1/2). (4.47)

Due to the pointwise convergence of ϕσ → ϕ in QT , the continuity of f0 ∈
C (−1, 1) and the fact |ϕσ | < 1 almost everywhere in QT , it holds that

f0 (ϕσ )→ f0 (ϕ) almost everywhere in QT .

Then the pointwise convergence of f0 (ϕσ ), together with the bound (4.45), yields,
up to a subsequence that

f0 (ϕσ ) ⇀ f0 (ϕ) in L2
(
0, T ; L2 (�)

)
. (4.48)

Also, the weak convergence for the nonlinear boundary term

g (ψσ ) ⇀ g (ψ) in L2
(
0, T ; L2 (�)

)

follows from a similar argument as to that for (3.75).
The strong convergence

vσ → v in L2(0, T ;L2 (�))

in fact requires no changes to the bounds in (4.30), since these were already uniform
in σ, ε > 0 andmerely a consequence of (4.36)–(4.41). Indeed, since the additional
(highly nonlinear) source Rσ is no longer present on the right-hand side for the
equation of vσ , the uniform bound in (4.29) is readily available as

∂t (P(ρ (ϕσ ) vσ )) is bounded in L1(0, T ;H−3/2−δ)⊕ L
q

q−1

(
0, T ;

(
W

1,q(�)
)∗)

(4.49)
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for some q > 2d. Hence, once againwe can reach the necessary strong convergence
vσ → v by virtue of (3.84)–(3.87). Next, because, as σ = ε → 0+, it holds that

σ∂tϕσ → 0 in L2
(
0, T ; L2 (�)

)
,

ε
(
|Dv|q−2 Dv + |v|q−2 v

)
→ 0 in L

q
q−1

(
0, T ;

(
W

1,q(�)
)∗)

,

one can easily show that (v, μ, ϕ,ψ) is a weak solution in the sense of Definition
2.1 with now a zero source term R = 0.

Finally, the proof of the energy inequality (2.22) and the equalities on initial
data

v (0) = v0, ϕ (0) = ϕ0, ψ (0) = ψ0

follow verbatim from the proof of Theorem 3.2, only with some minor inessential
modifications and arguments. We skip these obvious details.

The proof of Theorem 2.2 is complete.
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Appendix A. Derivation of the Model via Variational Principles

In this section,we derive the diffuse interfacemodel (1.1)–(1.5) subject to (1.8)–
(1.12) by employing fundamental postulations of thermodynamics, in particular,
the Onsager’s variational principle (see [54,55,58]).

Following the argument in [7], we adopt an order parameter ϕ (= u2 − u1) as
the difference of the volume fractions u j ( j = 1, 2) of the two liquids involved.
We assume u1 + u2 = 1 and the averaged density of the mixture can be expressed
as an affine function in terms of ϕ such that

ρ(ϕ) = ρ2 − ρ1
2

ϕ + ρ1 + ρ2
2

, (A.1)
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where ρ1 and ρ2 are the specific densities of liquid 1 and 2, respectively. In addition,
we choose the volume averaged velocity

v := u1v1 + u2v2 = 1 − ϕ
2

v1 + 1 + ϕ
2

v2, (A.2)

where v j ( j = 1, 2) is the individual velocity for component j . A direct calculation
implies that

div v = 0. (A.3)

Then the balance laws for mass and linear momentum can be given as the following
set of partial differential equations in terms of ϕ and v (see [7, Section 2]):

ρ∂tv +
((

ρv + ∂ρ

∂ϕ
Jϕ

)

· ∇
)

v − div S + ∇ p = K, (A.4)

∂tϕ + v · ∇ϕ + div Jϕ = 0, (A.5)

with ρ(·) being exactly as in (A.1) and

Jϕ =
(
ρ1 + ρ2

2

)−1

J

being a rescaled mass flux. Here, S denotes the symmetric stress tensor and K
stands for the force density. These equations hold in a space-time cylinder QT with
� ⊂ R

d (d = 2, 3) being the domain where this process takes place in the absence
of any dynamical effects at the solid boundary � = ∂�. Conservation of mass
requires that the normal component of Jϕ is zero, while an impenetrable boundary
� requires that the normal component of the velocity v is also zero, namely,

Jϕ · n = 0, v · n = 0, on �.

Next, concerning the free energy of the system, we choose

Efree :=
∫

�

 b(ϕ,∇ϕ)dx +
∫

�

 s(ϕ,∇τϕ)dS

with  b(z, p) =  1
b(z) +  2

b(p), and  s (z, p) =  1
s (z) +  2

s (p). Here, the
second term represents an interfacial free energy per unit surface area at the fluid-
solid interface, which is a function of the local composition. Then the total energy
is given by the sum of kinetic and free energies such that

F :=
∫

�

1

2
ρ(ϕ)|v|2dx +

∫

�

 b(ϕ,∇ϕ)dx +
∫

�

 s(ϕ,∇τϕ)dS.

The time derivative of the free energy is given by

dF
dt

= 1

2

∫

�

∂ρ

∂ϕ
|v|2∂tϕdx +

∫

�

∂ b

∂ϕ
∂tϕdx

−
∫

�

div

(
∂ b

∂∇ϕ
)

∂tϕdx +
∫

�

ρ(ϕ)v · ∂tvdx
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+
∫

�

(
∂ s

∂ϕ
+ ∂ b

∂∇ϕ · n
)

∂tϕdS

−
∫

�

divτ

(
∂ s

∂∇τϕ

)

∂tϕdS, (A.6)

which follows by integration by parts (using the divergence theorems in � and
on �, respectively) in the third and last summands of dFdt

. Here divτ denotes the
tangential divergence on �. We observe from (A.4) that

∂tv = 1

ρ

{

K + div S −
((

ρv + ∂ρ

∂ϕ
Jϕ

)

· ∇
)

v − ∇ p

}

.

Inserting this equation and (A.5) into the right-hand side of (A.6), then using inte-
gration by parts and v · n = 0 on �, we obtain

dF
dt

= −1

2

∫

�

∂ρ

∂ϕ
|v|2(v · ∇ϕ + div Jϕ)dx

−
∫

�

∂ b

∂ϕ
(v · ∇ϕ + div Jϕ)dx

+
∫

�

div

(
∂ b

∂∇ϕ
)

(v · ∇ϕ + div Jϕ)dx

+
∫

�

(
∂ s

∂ϕ
+ ∂ b

∂∇ϕ · n−divτ

(
∂ s

∂∇τϕ

))

∂tϕdS

+
∫

�

v ·
{

K + div S −
((

ρv + ∂ρ

∂ϕ
Jϕ

)

· ∇
)

v − ∇ p

}

dx

= −
∫

�

v · ∇ϕμϕdx +
∫

�

Jϕ · ∇μϕdx −
∫

�

Dv : Sdx

+
∫

�

Lϕ∂tϕdS +
∫

�

v · Kdx +
∫

�

(S · n)τ · vτdS. (A.7)

Here we have used the following fact:
∫

�

v ·
((

ρv + ∂ρ

∂ϕ
Jϕ

)

· ∇
)

vdx = −1

2

∫

�

∂ρ

∂ϕ
|v|2 (

v · ∇ϕ + divJϕ
)
dx,

which, as a consequence of the no-flux boundary conditions Jϕ · n = v · n = 0 on
�, follows easily from integration by parts. Moreover, we have set

μϕ := −div

(
∂ b

∂∇ϕ
)

+ ∂ b

∂ϕ
,

Lϕ := ∂ s

∂ϕ
+ ∂ b

∂∇ϕ · n − divτ

(
∂ s

∂∇τϕ

)

in order to denote the chemical potentials corresponding to ϕ in the bulk � and on
the solid boundary �, respectively. On the other hand, the work rate dW

dt
is due to

the work done by the flow to the fluid–fluid interface and is defined by

dW
dt

= −
∫

�

(v · ∇ϕ)μϕdx +
∫

�

v · Kdx −
∫

�

(vτ · ∇τϕ)LϕdS, (A.8)
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whereμϕ∇ϕ is the capillary force density andLϕ∇τϕ is the uncompensated Young
stress (see [57,58]), both being the “elastic" interfacial forces. We recall that vτ =
v − (v · n) n is defined as the tangential fluid velocity at the solid boundary �
measured relative to the wall. Then the rate of change of the mechanical work
becomes

dW
dt

=
∫

�

v · Kgravdx −
∫

�

(vτ · ∇τϕ)LϕdS

if K = μϕ∇ϕ + Kgrav, where Kgrav denotes the gravitational force.
To derive a closed system for (A.4)–(A.5), it remains to determine the flux Jϕ

and the stress tensor S. For this purpose, we introduce the dissipation functional
(see [58])

!(Jϕ,S, ∂τ
t ϕ, v)

:=
∫

�

{ |Jϕ |2
2m(ϕ)

+ |S|2
4ν(ϕ)

}

dx +
∫

�

{
β (ϕ)

2
|vτ |2 +

∣
∣∂τ

t ϕ
∣
∣2

2l0 (ϕ)

}

dS. (A.9)

Here, m plays the role of mobility, ν is the shear viscosity and β is a slip coefficient
relative to the solid boundary �, all may depend on the local concentration. There
are four physically distinct sources of the dissipation in (A.9), the first and second
summands represent the composition diffusion in the bulk and shear viscosity in the
bulk, respectively. The third summand arises from the assumption of fluid slipping at
the solid surface�, while the last summand accounts for the composition relaxation
at the solid surface with a relaxation parameter l0, where ∂τ

t ϕ = ∂tϕ + vτ · ∇τϕ.
Notice that each term that contributes to! is positive definite and quadratic in a rate
that arises from the displacement from the equilibrium. This quadratic dependence
follows from the general rule governing entropy production in a thermodynamic
process; it directly arises from a linear response to small perturbations away from
the equilibrium. Next, we employ Onsager’s variational principle (see [54,55]),
which postulates that

δ(Jϕ,S,v,∂τ
t ϕ)

(

! + dF
dt

)

= 0. (A.10)

Since ! is quadratic in (Jϕ,S, v, ∂τ
t ϕ) and

dF
dt

is linear in (Jϕ,S, v, ∂τ
t ϕ), using

the fact that in (A.7),

∫

�

Lϕ∂tϕdS =
∫

�

Lϕ
(
∂τ

t ϕ − vτ · ∇τϕ
)
dS,

we deduce from (A.7) and (A.9) that the variational principle presented in equation
(A.10) gives

Jϕ = −m(ϕ)∇μϕ and S = 2ν(ϕ)Dv,

as well as a generalized Navier boundary condition with uncompensated Young
stress

(S · n)τ + β (ϕ) vτ = Lϕ∇τϕ on �.
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Similarly, the corresponding Euler–Lagrange equation for minimizing ! + dF
dt

with respect to ∂τ
t ϕ at the solid wall � yields the dynamic boundary condition

∂τ
t ϕ = ∂tϕ + vτ · ∇τϕ = −l0 (ϕ)Lϕ. (A.11)

Namely, the relaxation dynamics of the moving contact line at the solid surface is
linearly proportional toLϕ , which is determined by an advection-reaction equation
of Allen–Cahn type.

Remark A.1. In order to simplify the notation, we actually use the same symbol for
a function and its trace on the boundary. As it was clarified in [37], we note that the
compatibility relation ∂t (tr(ϕ)) = tr(∂tϕ) on �, whenever ϕ is a smooth function,
while the right-hand side of such a formula ismeaningless in the opposite case. Here
in our context, the true meaning of ∂tϕ on the boundary should be ∂t (tr(ϕ)), which
is meaningful (at least in a generalized sense) whenever ϕ ∈ L2(0, T ; H1(�)).

In conclusion, in the absence of any gravitational forces (Kgrav = 0), with a
density ρ given by (A.1), we end up with the evolution system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ∂tv +
((

ρv + ∂ρ

∂ϕ
Jϕ

)

· ∇
)

v − div (2ν (ϕ) Dv)+ ∇ p = μϕ∇ϕ, in QT ,

div v = 0, in QT ,

∂tϕ + v · ∇ϕ − div
(
m (ϕ)∇μϕ

) = 0, in QT ,

μϕ = −div

(
∂ b

∂∇ϕ
)

+ ∂ b

∂ϕ
, in QT ,

(A.12)
subject to the boundary conditions

⎧
⎨

⎩

v · n = ∂nμϕ = 0, on �T ,

(2ν(ϕ)Dv · n)τ + β (ϕ) vτ = Lϕ∇τϕ, on �T ,

∂tϕ + vτ · ∇τϕ = −l0 (ϕ)Lϕ, on �T ,

(A.13)

where

Lϕ = ∂ s

∂ϕ
+ ∂ b

∂∇ϕ · n − divτ

(
∂ s

∂∇τϕ

)

, on �T . (A.14)

Finally, we make some comments on the above model derivation.

(1) Using (A.1), the expression of Jϕ and the incompressibility condition∇·v = 0,
we infer from the Cahn–Hilliard equation for ϕ in (A.12) that

∂tρ + div(ρv + J) = 0, where J = ∂ρ

∂ϕ
Jϕ.

As a consequence, the Navier–Stokes equation for v in (A.12) can be rewritten
as

∂t (ρv)+ div (ρv ⊗ v)− div (2ν (ϕ) Dv)+ ∇ p + div(v ⊗ J) = μϕ∇ϕ,
which is exactly the same as in (1.1).
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(2) If we choose the viscosity parameter in (A.9) as ν(ϕ, Dv), then non-Newtonian
effects, for example, shear thinning or shear thickening, can be included aswell.

(3) The interfacial force term μϕ∇ϕ can also be written as

∇( b(ϕ,∇ϕ))− div

(

∇ϕ ⊗ ∂ b(ϕ,∇ϕ)
∂∇ϕ

)

.

Thus, the first term may be regarded as an extra-pressure whereas ∇ϕ ⊗ ∂ b
∂∇ϕ

provides an additional stress tensor contribution which represents interfacial
forces.

(3) The uncompensated Young stress Lϕ∇τϕ on the right-hand side of the gen-
eralized Navier boundary condition in (A.13) is simply the manifestation of
the fluid–fluid interfacial tension at the solid boundary, whereas the dynamic
boundary condition in (A.13) is a consequence of the contact line moving with
respect to the solid wall �.

(4) If a more general density ρ is desired than a linear dependence in (A.1), the
momentum equation of (A.12) must also incorporate an additional source pro-
portional to (1/2) Rv (R is given by (1.16)) in order to obtain a local energy
dissipation inequality as well as a global energy law for the resulting system.
We refer the readers to [4] for further discussions.

Appendix B. Supporting Technical Tools

We report here some technical lemmas that have been used in our analysis. First,
we recall the compactness lemma of Aubin–Lions–Simon type (see, for instance,
[47] in the case q > 1 and [66] when q = 1).

Lemma B.1. Let X0
c
↪→ X1 ⊂ X2 where X j are (real) Banach spaces ( j =

1, 2, 3). Let 1 < p � ∞, 1 � q � ∞ and I be a bounded subinterval of R. Then,
we have the sets

{
ϕ ∈ L p (I ; X0) : ∂tϕ ∈ Lq (I ; X2)

} c
↪→ L p (I ; X1) , if 1 < p <∞,

and
{
ϕ ∈ L p (I ; X0) : ∂tϕ ∈ Lq (I ; X2)

} c
↪→ C (I ; X1) , if p = ∞, q > 1.

The following result gives a weaker version of the Lebesgue (dominated) con-
vergence theorem (see, for example, [20]):

Lemma B.2. LetO be a bounded domain inR×R
d and let a sequence qn ∈ L p (O),

p ∈ (1,∞), be given. Assume that ‖qn‖L p(O) � C, with C > 0 independent of
n, qn → q almost everywhere on O and q ∈ L p (O). Then as n → ∞, qn ⇀ q
weakly in L p (O).

We recall a fundamental result on pointwise multiplication of functions in
Sobolev spaces on smooth compact manifolds X with or without boundary
(see [50]).
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Lemma B.3. Let nX � 1 be the dimension of X. Let s, s1, s2 ∈ R be such that

s1 + s2 � 0, min(s1, s2) � s and s1 + s2 − s >
nX

2
,

where the strictness of the last two inequalities can be interchanged if s ∈ N0.
Then, the pointwise multiplication of functions extends uniquely to a continuous
bilinear map

W s1,2 (X)⊗ W s2,2 (X)→ W s,2 (X) .

Next, we report a basic result on the regularity of an elliptic boundary value
problem for (φ,ψ) with ψ = tr(φ) (see [51, Lemma A.1]).

Lemma B.4. Consider the following linear elliptic boundary value problem:

{ −	φ = h1, in �,
−	τψ + ∂nφ + ζψ = h2, on �,

where ζ > 0 and (h1, h2) ∈ L2 (�)× L2 (�). Then the following estimate holds:

‖φ‖H2(�) + ‖ψ‖H2(�) � C
(‖h1‖L2(�) + ‖h2‖L2(�)

)
,

for some constant C > 0 independent of (φ,ψ).

The following lemma provides an easy way to approximate an initial datum
(ϕ0, ψ0) ∈ V 1 by a sequence of smooth functions:

Lemma B.5. Let (ϕ0, ψ0) ∈ V 1 be given. There exists a sequence {(ϕ0N , ψ0N )}N∈N
⊂ V 2 such that (ϕ0N , ψ0N )→ (ϕ0, ψ0) in the V 1-norm as N → ∞.

Proof. Let (u, v) be a solution of the (linear) parabolic problem associated with
the Wentzell Laplacian AW , namely,

⎧
⎨

⎩

∂t u −	u = 0, in QT ,

∂tv −	�v + ∂nu + ζv = 0, on �T ,

(u, v) |t=0 = (ϕ0, ψ0) , in �× �.
Then it holds that

(u, v) ∈ C
(
(0, T ]; V 2

)
∩ C

(
[0, T ] ; V 1

)
.

Set (ϕ0N , ψ0N ) := (u (t) , v (t)) |t= 1
N
. We have (ϕ0N , ψ0N ) ∈ V 2 and (ϕ0N , ψ0N )

→ (ϕ0, ψ0) in V 1, as N → ∞, by the standard semigroup theory associated with
AW .

The following result is helpful to obtain a (strong) energy inequality (see [2,
Lemma 4.3]):
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Lemma B.6. Let E : [0, T ) → [0,∞), 0 < T � ∞, be a lower semi-continuous
function and let D : (0, T )→ [0,∞) be an integrable function. Then

E(0)η(0)+
∫ T

0
E(t)η′(t)dt �

∫ T

0
D(t)η(t)dt (B.1)

holds for all η ∈ W 1,1(0, T ) with η(T ) = 0 and η � 0 if and only if

E(t)+
∫ t

s
D(τ )dτ � E(s) (B.2)

holds for all s � t < T and almost all 0 � s < T including s = 0.

Finally, we report a result that can be proven in a similar way as to [5,
Lemma 5.1].

Lemma B.7. Let v, ṽ ∈ H
1 and ρ ∈ L∞(�) with ρ � ρ0 > 0 such that

∫

�

ρv · wdx =
∫

�

ρṽ · wdx, ∀w ∈ C
∞
div(�).

Then it holds that v = ṽ almost everywhere in �.
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