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Abstract

We give an answer to a question posed in Amorim et al. (ESAIM Math Model
Numer Anal 49(1):19–37, 2015), which can loosely speaking, be formulated as
follows: consider a family of continuity equations where the velocity depends on
the solution via the convolution by a regular kernel. In the singular limit where the
convolution kernel is replaced by a Dirac delta, one formally recovers a conserva-
tion law. Can we rigorously justify this formal limit? We exhibit counterexamples
showing that, despite numerical evidence suggesting a positive answer, one does
not in general have convergence of the solutions. We also show that the answer
is positive if we consider viscous perturbations of the nonlocal equations. In this
case, in the singular local limit the solutions converge to the solution of the viscous
conservation law.

1. Introduction and Main Results

We are concerned with the so-called nonlocal continuity equation (or nonlocal
conservation law)

∂tw + div [w b(w ∗ η)] = 0. (1.1)

In the previous expression, b : R → R
d is a Lipschitz continuous vector-valued

function, the scalar function w : R
+ × R

d → R is the unknown, and div denotes
the divergence computed with respect to the space variable only. The symbol ∗
denotes the convolution computed with respect to the space variable only and η is
a convolution kernel satisfying

η : R
d → R, η∈C∞

c (Rd), η(x) = 0 if |x | � 1, η � 0,
∫
Rd

η(x) dx = 1.

(1.2)
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In recent years, conservation laws involving nonlocal terms have been extensively
studied owing to their applications to models for sedimentation [3], pedestrian [9]
and vehicular [5] traffic, and other phenomena. We refer to the recent paper [5] for
a more extended discussion and a more complete list of references. Here we only
mention that the basic idea underpinning the use of equations like (1.1) in traffic
models is, very loosely speaking, the following: the unknown w represents the
density of pedestrians or cars and b their velocity; the nonlocal term w ∗ η appears
since one postulates that pedestrians or drivers tune their velocity depending on the
density of pedestrians or cars surrounding them.

In the present work we investigate a question posed by Amorim et al. [2]. To
precisely state the question, we consider the family of Cauchy problems

{
∂t uε + div

[
uεb(uε ∗ ηε)

] = 0

uε(0, x) = ū(x),
(1.3)

where b is, as before, a Lipschitz continuous vector-valued function, ε is a positive
parameter and ū is a summable and bounded initial datum. Assume that the family
of convolution kernels ηε is obtained from η by setting

ηε(x) := 1

εd
η

( x

ε

)
, 0 < ε � 1, (1.4)

in such a way that when ε → 0+, the family ηε converges weakly-∗ in the sense
of measures to the Dirac delta. This implies that, when ε → 0+, the Cauchy
problem (1.3) formally reduces to a scalar conservation law

{
∂t u + div

[
ub(u)

] = 0

u(0, x) = ū(x).
(1.5)

The by now classical theory by Kružkov [18] provides global existence and
uniqueness results for so-called entropy admissible solutions. We refer to [13] for
the definition and an extended discussion concerning entropy solution of conser-
vation laws. The question posed in [2] can be formulated as follows:

Question 1. Can we rigorously justify the singular limit from (1.3) to (1.5)? In
other words, does uε converge to the entropy admissible u, in a suitable topology?

Some remarks are here in order. First, Question 1 is motivated by numerical experi-
ments. Indeed, in [2, Section 3.3] the authors exhibit numerical evidence suggesting
that there should be convergence. Second, to the best of our knowledge, the only
previous analytical result concerning Question 1 is due to Zumbrun [20] and states
that the answer to Question 1 is positive provided that the limit entropy solution
u is smooth and the convolution kernel is even, that is η(x) = η(−x) (see [20,
Proposition 4.1] for a more precise statement). Third, even in the case d = 1,
b(uε) = uε, establishing weak compactness of the family {uε} is not a priori suf-
ficient to establish convergence. Indeed, one needs strong convergence (or some
more refined argument) to pass to the limit in the nonlinear term uε uε ∗ηε. Fourth,
similar questions show up when considering equations in transport form instead of
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in continuity form as in (1.3) and (1.5) (see for instance [4]); the analysis in such a
case shares some similarities with that in the present paper and we plan to address
it in future work.

In this paper we exhibit explicit counterexamples showing that the answer to
Question 1 is, in general, negative. Also, we show that the answer is positive if we
add to the right hand side of the first line of both (1.3) and (1.5) a viscous term. As
we explain below, this is relevant in connection with the numerical analysis of the
singular limit from (1.3) to (1.5).

We now describe our results more precisely. Our counterexamples can be sum-
marized as follows:

• In Section 5.1 we exhibit a counterexample showing that, in general, uε does
not converge to the entropy admissible solution u weakly in L p or weakly∗ in
L∞. The example uses a family of even convolution kernels and is described in
Counterexample 5.1. A drawback is that the initial datum ū changes sign. This
is not completely satisfactory in view of the applications, where the unknown
typically represents a density.

• In Section 5.2 we exhibit a counterexample with a nonnegative initial datum
where we show that uε does not converge to u weakly in L p or weakly∗ in
L∞ (see Counterexample 5.2 for the precise statement). A drawback of this
example is that we have to use “completely asymmetric” convolution kernels,
namely we assume that η(x) = 0 for every x > 0. Note that this is consistent
with numerical experiments provided in [2, Section 3.2] and [5, Section 5],
where “completely asymmetric” kernels are connected with highly oscillatory
behaviors of the solution.

• In Section 5.3 we exhibit a counterexample involving a nonnegative initial
datum and a family of even convolution kernels. In this counterexample we
show that for every δ > 0 the family uε does not converge to u strongly in
L1+δ . See Counterexample 5.5 for the precise statement.

To find a contradiction to the convergence, in the three examples we construct a
family of solutions uε with some qualitative property which is stable under con-
vergence, but not satisfied by the entropic solution in the limit. These qualitative
properties differ in each case and are, roughly speaking, related to the total mass of
the solution in a suitable region (see Counterexample 5.1), the support (see Coun-
terexample 5.2), and the quantity

∫
u log u dx (which, under suitable assumptions,

is conserved by the nonlocal approximation and strictly dissipated in the limit, see
Counterexample 5.5). A more precise description of the idea behind each coun-
terexample can be found after each statement in Section 5.

As mentioned before, we manage to establish positive results by adding to the
first line of (1.3) and (1.5) a second order perturbation. More precisely, we consider
the family of Cauchy problems

{
∂t uεν + div

[
uενb(uεν ∗ ηε)

] = ν�uεν

uεν(0, x) = ū(x),
(1.6)
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which depends on two parameters ε > 0 and ν > 0. When ε → 0+ and ν is fixed,
the family of Cauchy problems (1.6) formally reduces to

{
∂t uν + div

[
uνb(uν)

] = ν�uν

uν(0, x) = ū(x).
(1.7)

On the other hand, when ν → 0+ and ε is fixed, the family of Cauchy problems
formally reduces to (1.3), while (1.7) reduces to (1.5) (see (1.9) below for a sum-
mary). The reason why we consider the viscous approximations (1.6), (1.7) is the
following. As mentioned before, Question 1 is motivated by the numerical evi-
dence exhibited in [2]. The numerical tests showing convergence are obtained by
using a Lax–Friedrichs type scheme involving some so-called numerical viscosity,
as it typical of many numerical schemes for conservation laws (see the book by
LeVeque [19] for an extended introduction). Very loosely speaking, the numerical
viscosity consists of finite differences terms that mimic a second order operator like
the Laplacian. For this reason, the analysis of the viscous approximation (1.6), (1.7)
may provide some insight in the understanding of the numerical tests; see also [7]
for further numerical investigations.

Our main result involving the singular limit from (1.6) to (1.7) is

Theorem 1.1. Let b be a Lipschitz continuous function, ū ∈ L1(Rd) ∩ L∞(Rd),
ν > 0 and p such that

2 � p < ∞, p > d. (1.8)

Let uεν and uν be the solutions of (1.6) and (1.7) starting from ū, respectively. Then

uεν → uν strongly in L∞
loc([0,+∞[; L p(Rd)).

Some remarks are here in order. First, the Cauchy problem (1.6) has a unique weak
solution; see Theorem 2.1 in Section 2 for the precise statement. Second, in the
case d = 1, b(u) = u, p = 2, ū ∈ W 1,∞(R), Theorem 1.1 was established by
Calderoni and Pulvirenti [6]. The main novelties of Theorem 1.1 with respect
to the analysis in [6] can be summarized as follows:

• We provide a completely different proof. Indeed, in [6] the authors explicitly
compute the equations satisfied by the Fourier transforms ûεν and ûν and use
them to control the L2 norm of the difference. The proof explicitly uses the fact
that b(u) = u and the regularity of the initial datum.

• On the other hand, our argument is based on a-priori estimates obtained by
extensively using energy estimates and the Duhamel representation formula.
We first establish Theorem 3.1 in the case when the initial datum ū is regular.
Next, we introduce a careful perturbation argument andwe establish the proof in
the general case. Our argument is fairly robust; it applies to general functions b,
to equations in several space dimensions, and to rough initial data, and provides
more quantitative estimates, see Remark 1.3 below.
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As a further remark, we explicitly point out that Theorem 1.1 requires neither
symmetry conditions on the convolution kernels ηε nor sign conditions on the
initial datum ū.

Finally, we discuss the vanishing viscosity limit from (1.6) to (1.3). Our result
is the following:

Proposition 1.2. Under the assumptions of Theorem 1.1, let uεν and uε satisfy (1.6)

and (1.3), respectively. For every ε > 0, we have that uεν
∗
⇀ uε weakly∗ in

L∞
loc([0,+∞[×R

d) as ν → 0+.

Note that in the statement of Proposition 1.2 the parameter ε > 0 is fixed and hence
the weak∗ convergence suffices to pass to the limit in the equation, owing to the
regularizing effect of the convolution. Also, note that at the local level the vanishing
viscosity limit from (1.7) to (1.5) is established in the work by Kružkov [18].

The take-home message obtained by combining the counterexamples, Theo-
rem 1.1, Kružkov’s Theorem and Proposition 1.2 can be therefore represented as
follows:

∂t uεν + div
[
uενb(uεν ∗ ηε)

] = ν�uεν
ε→0+−−−−−−−−−−−−−→

Theorem 1.1
∂t uν + div

[
uνb(uν)

] = ν�uν

ν→0+
⏐⏐
Proposition 1.2 ν→0+

⏐⏐
Kružkov’s Theorem

∂t uε + div
[
uεb(uε ∗ ηε)

] = 0
ε→0+−−−−−−−−−−−−−→

False in general
∂t u + div

[
ub(u)

] = 0

(1.9)

To conclude, we make two remarks concerning (i) the “diagonal” convergence,
which can be tracked explicitly in the case of regular initial data, and (ii) some
open questions.

Remark 1.3. Under the assumptions of Theorem 1.1, let uεν satisfy (1.6), let u
be the Kružkov entropy admissible solution of (1.5), and fix p satisfying (1.8).
Combining Kružkov’s Theorem with Theorem 1.1 and by a diagonal argument we
infer that there is a sequence (εn, νn) such that εn → 0+, νn → 0+ and uεnνn → u
strongly in L∞

loc([0,+∞[; L p(Rd)), as n → +∞. In the case when the initial
datum is sufficiently regular, namely u ∈ W 1,p(Rd), we explicitly determine a
coupling ε � e−Cν−β

(for constants C > 0 and β > 0 specified later) under which
the above diagonal convergence holds true (see Theorem 3.1 below).

Remark 1.4. In the last few years, several authors have studied nonlocal traffic
models like (1.1) in the case when d = 1 and the convolution term w ∗η only takes
into account the downstream traffic density, see for instance [5]. The convolution
term in these models does not satisfy the regularity requirement in (1.2) because
it is piecewise smooth with one or two discontinuity points. We are confident that
the regularity requirement in (1.2) can be weakened and that Theorem 1.1 can be
extended to the viscous version of the model described in [5]. Note, however, that
the counterexamples discussed in Section 5 do not apply to the model discussed in
[5]: whether or not the singular limit from (1.3) to (1.5) can be rigorously justified
in this case is presently an open problem. Partial results have been recently obtained
in [8].
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Paper outline The paper is organized as follows. In Section 2 we establish well-
posedness of the Cauchy problem (1.6), we slightly extend known well-posedness
results for (1.3) and we establish Proposition 1.2. In Section 3 we establish Theo-
rem 1.1 under the additional assumption that the initial datum ū is regular. In Sec-
tion 4 we complete the proof of Theorem 1.1 and in Section 5 we discuss the
counterexamples to the nonlocal to local limit from (1.3) to (1.5).

Notation For the readers’ convenience, we recall here the main notation used in
the present paper.

We denote by C(a1, . . . , aN ) a constant only depending on the quantities
a1, . . . , aN . Its precise value can vary from occurrence to occurrence.

General mathematical symbols.

• f ∗ g: the convolution of the functions f and g, computed with respect to the
variable x only.

• div f : the divergence of the vector field f , computed with respect to the x
variable only.

• 1E : the characteristic function of the measurable set E .
• |E |: the Lebesgue measure of the measurable set E .
• L p: the Lebesgue space L p(Rd), p ∈ [1,+∞].
• ‖ · ‖L p : the standard norm in L p(Rd).

Symbols introduced in the present paper.

• b: the vector-valued function satisfying (1.10).
• L: the Lipschitz constant in (1.10).
• η, ηε: the convolution kernel in (1.2) and (1.4).
• u: the entropy solution of the conservation law (1.5).
• uε: the solution of the nonlocal nonviscous problem (1.3).
• uν : the solution of the local viscous problem (1.7).
• uεν : the solution of the nonlocal nonviscous problem (1.6).
• G, Gν : the heat kernel in (3.3) and (3.5).
• Sεν

t , Sν
t : the semigroups defined in (4.1).

Remark 1.5. Consider theLipschitz continuous functionb : R → R
d in (1.3), (1.5),

(1.6) and (1.7). We can assume, with no loss of generality, that b(0) = 0. Indeed,
assume that this is not the case and that b(0) = ξ �= 0. Assume furthermore that
the function uεν satisfies (1.6), then we can set

ũεν(t, x) := uεν(t, x − ξ t),

and obtain that ũεν satisfies

∂t ũεν + div
[
ũεν b̃(ũεν ∗ ηε)

]
= ν�ũεν where b̃(ũεν ∗ ηε) := b(ũεν ∗ ηε) − ξ.

For this reason, in what follows we assume that b satisfies

b(0) = 0, |b(x) − b(y)| � L|x − y| for every x, y ∈ R. (1.10)
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Remark 1.6. Theorem 1.1 states that uεν → uν strongly in L∞
loc([0,+∞[; L p),

hence to establish the thesis it suffices to prove that, for every T > 0, uεν → uν

strongly in L∞([0, T ]; L p). A similar remark applies to Proposition 1.2 and to the
other positive results, which are all local in time. To simplify the notation, in what
follows we take T = 1.

2. Preliminary Results: Well-Posedness of the Viscous and Nonviscous
Cauchy Problem with Nonlocal Fluxes

This section is organized as follows: in Section 2.1 for the sake of completeness
we establish well-posedness of the nonlocal viscous Cauchy problem (1.6).We rely
on fairly standard energy estimates and we apply a fixed point argument. In Sec-
tion 2.2 we establish a uniqueness result for the nonlocal conservation law (1.3) that
slightly extends previous results in [2,10,12,17]. Finally, in Section 2.3 we estab-
lish the proof of the nonlocal vanishing viscosity result stated in Proposition 1.2.
Since in this case the nonlocal parameter ε > 0 is kept constant, weak convergence
suffices to pass to the limit.

2.1. Well-Posedness of the Viscous Cauchy Problem with a Nonlocal Flux

We establish the following well-posedness result:

Theorem 2.1. Let ū ∈ L1 ∩ L∞(Rd) and let b satisfy (1.10). Then the nonlo-
cal viscous Cauchy problem (1.6) has a distributional solution uεν , unique in the
class (2.1)–(2.2), that satisfies

‖uεν(t, ·)‖L1 � ‖ū‖L1 ,

‖uεν(t, ·)‖L∞ � C(‖ū‖L∞ , ‖ū‖L1 , ‖∇η‖L∞ , L , d, ε), for every t ∈ [0, 1], (2.1)

∂t uεν ∈ L2([0, 1]; H−1(Rd)), uεν ∈ L2([0, 1]; H1(Rd)). (2.2)

Remark 2.2. The function uεν is in principle only defined for almost every (t, x).
However, the regularity (2.2) implies that, up to changing uεν in a set of measure 0
in [0, 1] × R

d , we can assume that uεν ∈ C0([0, 1]; L2(Rd)). In the following, we
always consider this L2-continuous representative; in this way the function uεν is
well-defined for every t and the estimates (2.1) hold for every t :

Proof of Theorem 2.1. To simplify the notation, let ε = 1, ν = 1 and consider
the Cauchy problem

{
∂tv + div

[
vb(v ∗ η)

] = �v

v(0, x) = ū(x).
(2.3)

The proof straightforwardly extends to the general case and relies on a classical
fixed point argument that we sketch below.

Step 1: we introduce the functional setting. We fix a constant 0 < τ < 1, to be
determined in what follows, and we define the set X by setting
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X :=
{

z ∈ C0([0, τ ]; L2(Rd)) : ‖z(t, ·)‖L1 � ‖ū‖L1 ∀ t ∈ [0, τ ]
}

. (2.4)

We fix a function ζ ∈ X and we consider the Cauchy problem{
∂t z + div

[
zb(ζ ∗ η)

] = �z
z(0, x) = ū(x).

(2.5)

Since ζ is now fixed, the equation at the first line of the above system is a standard
linear parabolic equation with smooth coefficients. By using classical methods for
evolution equations (see for instance [16, Section 7]) one can show that (2.5) has a
unique solution satisfying

∂t z ∈ L2([0, τ ]; H−1(Rd)), z ∈ L2([0, τ ]; H1(Rd)),

which implies that (up to re-defining z on a negligible set of times) z ∈
C0([0, τ ]; L2(Rd)). In what follows, we always identify z and its L2-continuous
representative, in such a way that z(t, ·) is well-defined for every t > 0. We define
the map T by setting T (ζ ) = z, where z is the solution of (2.5).

Step 2: we show that the map T defined as in Step 1 attains values in X . We fix a
regular function β : R → R and bymultiplying the equation at the first line of (2.5)
times β ′(z) we get

∂t
[
β(z)

] + div
[
b(ζ ∗ η)β(z)

] + div
[
b(ζ ∗ η)

](
zβ ′(z) − β(z)

)
= div

[∇zβ ′(z)
] − β ′′(z)|∇z|2. (2.6)

We point out that by (1.10) and (2.4),

|div [
b(ζ ∗ η)

]|�C(L , d)‖∇η‖L∞‖ū‖L1 .

By space-time integrating (2.6), we get
∫
Rd

β(z)(t, ·) dx −
∫
Rd

β(ū) dx +
∫ t

0

∫
Rd

β ′′(z)|∇z|2dxds

� C(L , d)‖ū‖L1‖∇η‖L∞
∫ t

0

∫
Rd

|zβ ′(z) − β(z)|dxds, for every t ∈ [0, τ ].
(2.7)

By applying (2.7) with β(z) = z2 and using the Grönwall Lemma we get that for
every t ∈ [0, τ ],

‖z(t, ·)‖L2 � C(L , d, ‖ū‖L1 , ‖∇η‖L∞)‖ū‖L2 . (2.8)

Also, by using (2.7) and choosing a suitable approximation of β(z) = |z|, we get∫
Rd

|z|(t, ·) dx −
∫
Rd

|ū|dx � 0. (2.9)

This implies that the solution of (2.5), that is T (ζ ), belongs to the set X defined as
in (2.4).

Step 3: we show that the map T defined as in Step 1 is a contraction provided that
τ is sufficiently small. We fix ζ1, ζ2 ∈ X and we term z1 = T (ζ1) and z2 = T (z2).
First, we point out that, owing to the Young Inequality,
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‖b(ζ1 ∗ η) − b(ζ2 ∗ η)‖L∞ � L‖(ζ1 − ζ2) ∗ η‖L∞

� L‖(ζ1 − ζ2)‖C0([0,τ ];L2)‖η‖L2 , (2.10)

for every t ∈ [0, τ ]. By subtracting the equation for z2 from the equation for z1,
we get

∂t
[
z1 − z2

] + div
[
[z1 − z2]b(ζ1 ∗ η) + z2

[
b(ζ1 ∗ η) − b(ζ2 ∗ η)

]] = �[z1 − z2].

By arguing as in Step 2 and recalling that z2 ≡ z1 at t = 0, we arrive at

∫
Rd

|z1 − z2|2(t, ·) dx � C(L , d, ‖ū‖L1 , ‖∇η‖L∞)

∫ t

0

∫
Rd

|z1 − z2|2(s, ·) dxds

+ 2

∣∣∣∣
∫ t

0

∫
Rd

div
[
z2

[
b(ζ1 ∗ η) − b(ζ2 ∗ η)

]]
(z1 − z2) dxds

∣∣∣∣
− 2

∫ t

0

∫
Rd

|∇[z1 − z2]|2dxds.

(2.11)

Next, we point out that
∣∣∣∣
∫ t

0

∫
Rd

div
[
z2

[
b(ζ1 ∗ η) − b(ζ2 ∗ η)

]]
(z1 − z2) dxds

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫
Rd

z2
[
b(ζ1 ∗ η) − b(ζ2 ∗ η)

] · ∇[z1 − z2]dxds

∣∣∣∣
� 1

2

∫ t

0

∫
Rd

z22
∣∣b(ζ1 ∗ η) − b(ζ2 ∗ η)

∣∣2dxds + 1

2

∫ t

0

∫
Rd

|∇[z1 − z2]|2dxds.

To control the first term in the right hand side of the above expression we com-
bine (2.8) and (2.10). By plugging the above inequality into (2.11) we then arrive
at

∫
Rd

|z1 − z2|2(t, ·) dx � C(L , d, ‖ū‖L1 , η)

[∫ t

0

∫
Rd

|z1 − z2|2(s, ·) dxds

+τ‖ū‖2L2‖(ζ1 − ζ2)‖2C0([0,τ ];L2)

]
,

and owing to the Grönwall Lemma and recalling that z1 = T (ζ1), z2 = T (ζ2) this
implies that T is a contraction provided that τ is sufficiently small. To establish
existence and uniqueness on the interval [0, 1] we iterate the above argument a
finite number of times.

Step 4: we establish the L∞ estimate. We recall (2.5), we set


 := ‖div[b(ζ ∗ η)]‖L∞

and we point out that the solution z of the Cauchy problem (2.5) satisfies

‖z(t, ·)‖L∞ � ‖ū‖L∞ exp(
t), for every t . (2.12)
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The proof of the above estimate is standard, and can be found for instance in [11,
Lemma 3.4]. By construction, the solution of (2.3) satisfies (2.5) provided that
ζ = z. If this is the case, by (2.9),


 = ‖div[b(z ∗ η)]‖L∞ � C(L , d)‖z‖L1‖∇η‖L∞ � C(L , d)‖ū‖L1‖∇η‖L∞ ,

and owing to (2.12) this establishes the L∞ estimate in (2.1). 
�

2.2. Well-Posedness of the Cauchy Problem for a Continuity Equation with
Nonlocal Flux

In this section we establish an existence and uniqueness result that slightly
extends the well-posedness result in [2] (see also [10,17]).

Proposition 2.3. Assume that b and η satisfy (1.10) and (1.2), respectively, and
that ū ∈ L1 ∩ L∞. Then the Cauchy problem (1.3) has a distributional solution
that satisfies

uε ∈ L∞
loc([0,+∞[; L∞) ∩ C0([0,+∞[; L1).

Also, the solution is unique in the class of locally bounded, distributional solutions.

In what follows we identify uε and its L1 strongly continuous representative.
The existence part of Proposition 2.3 is a consequence of the analysis in [2, Sec-
tion 2] (see also [10,12]). The relatively new part is the uniqueness; indeed, in
[2,17], uniqueness is established in a slightly more restrictive class, while in [12]
it is established only for nonnegative data. More precisely, in [10] it is shown that
there is a unique solution u, in the sense of Kružkov [18], of the conservation law{

∂t uε + div
[
uεgε

] = 0
uε(0, x) = ū(x),

(2.13)

provided that the function gε is given by gε := b(uε∗ηε) (see [2,Definition 2.1]) and
that the initial datum is quite regular, namely ū has bounded total variation. On the
other hand, Proposition 2.3 states the uniqueness of locally bounded distributional
solutions.

Proof of Proposition 2.3, uniqueness. Let uε be a distributional solution of (1.3).
Then uε is a distributional solution of (2.13). Next, we observe that the first line
of (2.13) is a continuity equationwith a regular in space coefficient gε . Every locally
bounded distributional solution of (2.13) is therefore renormalized, meaning that
for every β ∈ C1(R) we have that β(u) is a distributional solution of

∂t
[
β(u)

] + div
[
β(u)gε

] + div gε

[
β ′(u)u − β(u)

] = 0. (2.14)

This is, for instance, an application (in a very easy case) of the DiPerna–Lions–
Ambrosio theory, and we refer to [1,15] for that. Equation (2.14) implies that, up
to redefining uε in a negligible set, uε belongs to C0([0,+∞[; L1) and it is a
Kružkov solution of the conservation law (2.13); this can be proved by arguing
as in the proof of Corollary 3.14 in [14]. Since, by [17, Theorem 3.2], distribu-
tional solutions of (1.3) in C0([0,+∞[; L1) are unique, this concludes the proof of
Proposition 2.3. 
�
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2.3. Proof of Proposition 1.2

Let ε > 0. We consider uεν satisfying (1.6) and we recall the L∞ estimate
in (2.1). We fix a sequence νn and a function uε ∈ L∞([0, 1] × R

d) such that

uενn

∗
⇀ uε weakly∗ in L∞([0, 1] × R

d) as νn → 0+. (2.15)

We claim that uε is a distributional solution of (1.3). To take the limit in the
distributional formulation of (1.6) and prove this claim, it is enough to show that

uενn ∗ ηε → uε ∗ ηε strongly in L1
loc([0, 1] × R

d). (2.16)

If the claim is true, since bounded, distributional solutions of (1.3) are unique by
Proposition 2.3, the whole family uενn converges to uε weakly∗ in L∞([0, 1]×R

d),
proving Proposition 1.2.

To show (2.16) we point out first that by (2.1) for every t ∈ [0, 1]

‖[uεν ∗ ηε](t, ·)‖L∞ + ‖∇[uεν ∗ ηε](t, ·)‖L∞

� ‖uεν(t, ·)‖L∞‖ηε‖W 1,1�C(‖ū‖L∞ , ‖ū‖L1 , η, L , d, ε). (2.17)

The time derivative of uεν ∗ ηε is obtained by convolving every term in (1.6) with
ηε, that is

∂t [uεν ∗ ηε](t, x) = −div
[
ηε ∗ (uενb(uεν))

] + νuεν ∗ �ηε.

By using (1.10), (1.4) and (2.1) we conclude that

‖∂t [uεν ∗ ηε](t, ·)‖L∞ � ‖∇ηε‖L∞‖uενb(uεν)‖L1 + ν‖uεν‖L1‖�ηε‖L∞

� C(‖ū‖L∞ , ‖ū‖L1 , η, L , d, ε). (2.18)

Finally, we combine (2.17) and (2.18) and we apply the Ascoli–Arzelà Theorem:
there is a continuous function w such that, up to subsequences (that we do not
re-label) uενn ∗ ηε → w uniformly on compact sets of [0, 1] × R

d . For any φ ∈
C∞

c ([0, 1] × R
d), terming η̌ε(z) := ηε(−z) and by (2.15), we have

∫ 1

0

∫
Rd

φ(t, x)w(t, x) dx dt = lim
n→∞

∫ 1

0

∫
Rd

φ[uενn ∗ ηε]dx dt

= lim
n→∞

∫ 1

0

∫
Rd

uενn [φ ∗ η̌ε]dy dt

=
∫ 1

0

∫
Rd

uε[φ ∗ η̌ε]dy dt =
∫ 1

0

∫
Rd

φ[uε ∗ ηε]dx dt.

By the arbitrariness of φ we deduce thatw = uε ∗ηε almost everywhere in [0, 1]×
R

d and hence we prove (2.16). 
�
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3. Convergence of the Nonlocal Viscous Approximation for Regular Data

In this section we establish the nonlocal to local limit asserted in Theorem 1.1
assuming more restrictive conditions on the initial data. This intermediate result is
pivotal to the proof of Theorem 1.1.

Theorem 3.1. Fix 0 < ν < 1/4. Assume that b satisfies (1.10) and ηε satisfies (1.2)
and (1.4). Let p satisfy (1.8), let β = (p + d)/(p − d) and assume that ū ∈
L1∩ L∞ ∩W 1,p(Rd). Let uεν and uν be the solutions of the Cauchy problems (1.6)
and (1.7), respectively. Then there exists C := C(d, p, L , ‖ū‖L∞ , ‖ū‖W 1,p ) such

that, if ε � e−Cν−β
, we have

‖uεν(t, ·) − uν(t, ·)‖L p � εeCν−β

, for every t ∈ [0, 1]. (3.1)

This, in particular, implies that uεν → uν strongly in L∞
loc([0,+∞[; L p(Rd)) as

ε → 0+.

To establish Theorem 3.1 we introduce the function

zε := uεν − uν . (3.2)

Note that, to simplify the notation, we do not explicitly indicate the dependence
of zε on ν. Next, we compute the equation satisfied by zε and we perform careful
a-priori estimates by extensively using the Duhamel representation formula.

The proof of Theorem 3.1 is organized as follows: in Section 3.1 we review
some basic results concerning viscous conservation laws. In Section 3.2 we provide
the proof of Theorem 3.1 by establishing precise a-priori estimates on the growth
rate of the function zε in (3.2).

3.1. Preliminary Results

In Section 3.1.1 we recall some basic results about heat kernels, in Section 3.1.2
we go over some a-priori estimates on solutions of viscous conservation laws that
we need in what follows.

3.1.1. Heat Kernels We recall some basic properties of the heat kernel G :
]0,+∞[×R

d → R

G(t, x) := C(d)
1

td/2 exp

(
−|x |2

4t

)
. (3.3)

The normalization constant C(d) is chosen in such a way that ‖G(t, ·)‖L1(Rd ) = 1,
for every t > 0. Since

|∇G(t, x)| = C(d)
|x |

td/2+1 exp

(
−|x |2

4t

)
,
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by using spherical coordinates and bymaking the change of variables ρ′ = ρ/2t1/2

we get

‖∇G(t, ·)‖Lq (Rd ) = C(d, q)

(∫ ∞

0
ρd−1 ρq

tq(d/2+1)
e− qρ2

4t dρ

)1/q

= C(d, q)t
d−q(d+1)

2q = C(d, q)tα.

For later use we have set

α := d − q(d + 1)

2q
(3.4)

in the formula above. Given ν > 0, we introduce the kernel

Gν(t, x) := G (νt, x) = 1

νd
G

(
t

ν
,

x

ν

)
, (3.5)

which is the fundamental solution of the equation ∂t u = ν�u and satisfies

‖Gν(t, ·)‖L1 = 1, ‖∇Gν(t, ·)‖Lq = ‖∇G(νt, ·)‖Lq = C(d, q)(νt)α. (3.6)

3.1.2. A Priori Estimates on Solutions of a Viscous Conservation Law The
next lemma collects some classical a-priori estimates we need in what follows.

Lemma 3.2. Let ν ∈ (0, 1). Assume b satisfies (1.10), ū ∈ L1(Rd)∩ L∞(Rd). The
solution of the Cauchy problem (1.7) satisfies:

‖uν(t, ·)‖L p � ‖ū‖L p , for every t ∈ [0, 1] and every p ∈ [1,+∞]. (3.7)

Let uν and wν be the two solutions corresponding to the data ū and w̄, respectively.
Then we have the following stability estimate: for every p ∈ [1,+∞],

‖uν(t, ·) − wν(t, ·)‖L p

� eC(d,p,L ,‖ū‖L∞ ,‖w̄‖L∞ )ν−1‖ū − w̄‖L p , for every t ∈ [0, 1]. (3.8)

If we also require ū ∈ W 1,p(Rd), then we have

‖∇uν(t, ·)‖L p � eC(d,p,L ,‖ū‖L∞ )ν−1 ‖∇ū‖L p , for every t ∈ [0, 1]. (3.9)

Remark 3.3. Note that [13, Lemma 6.3.3] implies that the function uν (which a
priori is only defined for almost every (t, x)) has a representative such that the
function t �→ u(t, ·) is continuous from [0, 1] to L1 endowed with the strong
topology. Here and in what follows, we always identify uν and its L1-continuous
representative.
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Proof of Lemma 3.2. When p = ∞, the estimate (3.7) is a maximum principle,
which is a classical result [13, Section VI]. The result for p ∈ [1,+∞[ is also
classical, but for the sake of completeness we provide a sketch of the proof. We
rewrite the equation at the first line of (1.7) in the quasi-linear form

∂t uν + f ′(uν)div uν = ν�uν, where f (u) := ub(u).

We set β(u) := |u|p and we multiply the above equation by β ′(uν). We arrive at

∂t
[
β(uν)

] + f ′(uν)β
′(uν)div uν = ν�

[
β(uν)

] − νβ ′′(uν)|∇uν |2.
We fix a function h : R → R

d satisfying h′ = f ′β ′ and we rewrite the above
equation as

∂t
[
β(uν)

] + div
[
h(uν)

] = ν�
[
β(uν)

] − νβ ′′(uν)|∇uν |2.
Next, we integrate with respect to x and use the convexity of the function β: we get

d

dt

∫
Rd

β(uν) dx � 0,

which implies (3.7). To prove (3.8), we take the difference between the equa-
tion (1.7) for uν and wν

∂t (uν − wν) + div
(
(uν − wν)b(uν) + wν(b(uν) − b(wν))

) = ν�(uν − wν).

Multiplying by p(uν − wν)|uν − wν |p−2 the previous equation and integrating in
space we have

∂t‖uν − wν‖p
L p =

∫
Rd

p(uν − wν)|uν − wν |p−2
[

− div
(
(uν − wν)b(uν)

+wν(b(uν) − b(wν))
) + ν�(uν − wν)

]
.

Integrating by parts, using assumptions (1.10) on b and (3.7) with p = ∞, we get

∂t‖uν − wν‖p
L p � C(p)

∫
Rd

|∇(uν − wν)||uν − wν |p−1|b(uν)|
+ |uν − wν |p−2|∇(uν − wν)||wν ||b(uν) − b(wν)|
− ν

∫
Rd

|∇(uν − wν)|2|uν − wν |p−2

� C0

∫
Rd

|∇(uν − wν)||uν − wν |p−1

− ν

∫
Rd

|∇(uν − wν)|2|uν − wν |p−2
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for a suitable constant C0. By Young’s inequality, we have∫
Rd

|∇(uν − wν)||uν − wν |p−1 � ν

2C0

∫
Rd

|∇(uν − wν)|2|uν − wν |p−2

+ C0

2ν

∫
Rd

|uν − wν |p,

which implies

∂t‖uν − wν‖p
L p � Cν−1‖uν − wν‖p

L p .

The Grönwall lemma allows us to conclude the validity of (3.8).
By the characterization of Sobolev functions in terms of finite differences

(notice that for p = 1 it would involve functions of bounded variation, but we
know a priori that ∇uν ∈ L2 for every t ∈ [0, 1]), we have

‖∇uν(t, ·)‖L p � C sup
h∈Rd\{0}

1

|h| ‖uν(t, ·) − uν(t, · + h)‖L p , for every t ∈ [0, 1].

Applying the stability (3.8) to ū and ū(· + h) we estimate the right-hand side as

‖∇uν(t, ·)‖L p � eC(d,L ,‖ū‖L∞ )ν−1
sup

h∈Rd\{0}
1

|h| ‖ū(·) − ū(· + h)‖L p

� eC(d,L ,‖ū‖L∞ )ν−1‖∇ū‖L p

for every t ∈ [0, 1]. This proves (3.9). 
�
Lemma 3.4. Assume that b satisfies (1.10) and that uν satisfies (3.9). Assume fur-
thermore that the convolution kernel ηε satisfies (1.2) and (1.4). Then for every
p ∈ [1,+∞[ we have

‖uν(t, ·) − ηε ∗ uν(t, ·)‖L p � εeC(d,p,L ,‖ū‖L∞ )ν−1‖∇ū‖L p , for every t ∈ [0, 1].
(3.10)

Proof. By Jensen’s inequality appliedwith respect to the probabilitymeasure ηε dx
and by the finite differences characterization of Sobolev functions, we get

‖uν(t, ·) − ηε ∗ uν(t, ·)‖p
L p

(1.2),(1.4)=
∫
Rd

∣∣∣∣
∫
Rd

[
uν(t, x − y) − uν(t, x)

]
ηε(y) dy

∣∣∣∣
p

dx

�
∫
Rd

∫
Rd

∣∣uν(t, x − y) − uν(t, x)
∣∣p

ηε(y) dydx

� ‖∇uν(t, ·)‖p
L p(Rd )

∫
Rd

ηε(y)|y|pdy

(3.9)

� ε peC(d,p,L ,‖ū‖L∞ )ν−1‖∇ū‖p
L p(Rd )

∫
Rd

ηε(y)
( |y|

ε

)p
dy.

Since ηε is supported where |y| � ε, the last integrand in the right-hand side is
estimated by ‖ηε‖L1 = 1, which concludes the proof of (3.10). 
�
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3.2. Proof of Theorem 3.1

First, we recall that uεν is the solution of (1.6) and uν is the solution of (1.7)
and we define zε as in (3.2). Note that zε satisfies the equation

∂t zε + div Tε = ν�zε,

where, thanks to (3.2), the term Tε is given by

Tε := uενb(uεν ∗ ηε)−uνb(uν)=uεν

[
b(uεν ∗ ηε) − b(uν)

] + [uεν − uν]b(uν)

= [zε + uν]
[
b
([zε + uν] ∗ ηε

) − b(uν)
] + zεb(uν).

(3.11)

We now proceed as follows: in Section 3.2.1 we establish some a-priori estimates
on zε, which are the key point in the proof, and in Section 3.2.2 we conclude the
proof of Theorem 3.1.

3.2.1. A-Priori Estimates on zε We establish a-priori estimates on the solution
of the Cauchy problem

{
∂t zε + div Tε = ν�zε

zε(0, x) = z0(x).
(3.12)

Lemma 3.5. Let b satisfy (1.10), 0 < ε, ν � 1/4, ηε as in (1.2) and (1.4),
z0 ∈ L p(Rd) with p as in (1.8), and β = (p + d)/(p − d). Assume
furthermore that the function uν satisfies (3.7) and (3.10). Then there exist
c0 := c0(d, p, L , ‖ū‖L∞) > 0 and τ0 := τ0(d, p, L , ‖ū‖L∞ , ‖ū‖W 1,p ) > 0, such
that if

‖z0‖L p � 1/4, ε � e−c0ν−1
/4, (3.13)

the solution of the Cauchy problem (3.12) starting from z0 satisfies

‖zε(t, ·)‖L p � 2[‖z0‖L p + ec0ν−1
ε], for every t ∈ [0, τ0νβ ]. (3.14)

Proof. Let c0 be the maximum between the constant in Lemma 3.4 and 1. Set

τ := sup
{
t ∈ [0, 1] : ‖zε(s, ·)‖L p � 2[‖z0‖L p + ec0ν−1

ε], for every s ∈ [0, t]}.
(3.15)

Owing to Remarks 2.2 and 3.3 and to (2.1) and (3.7), the functions uεν and uν are
continuous from [0,+∞[ to L p. Hence, the function ‖zε(t, ·)‖L p is continuous and
τ > 0. Moreover, (3.15) implies

‖zε(τ, ·)‖L p = 2[‖z0‖L p + ec0ν−1
ε]. (3.16)

We represent the solution of the Cauchy problem (3.12) by the Duhamel Principle
as

zε(τ, ·) = Gν(τ, ·) ∗ z0 −
∫ τ

0

∫
Rd

∇Gν(τ − s, · − y) · Tε(s, y)dyds,
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where Gν denotes the heat kernel (3.5). We apply (3.6) and the Bochner and Young
Theorems to get

‖zε(τ, ·)‖L p�‖Gν(τ, ·)‖L1‖z0‖L p +
∫ τ

0

∥∥∥∥
∫
Rd

∇Gν(τ − s, ·) · Tε(s, ·)
∥∥∥∥

L p
ds

�‖z0‖L p +
∫ τ

0
‖∇Gν(τ − s, ·)‖Lq ‖Tε(s, ·)‖L p/2 ds,

(3.17)

noting that p/2 � 1 owing to (1.8), and setting q := p/(p − 1). Only
in the rest of this proof we denote by C any constant that only depends on
d, p, L , ‖ū‖L∞ , ‖ū‖W 1,p . For every s ∈ [0, τ ], by (3.11), the Hölder inequality
and (1.10) we have

∥∥Tε(s, ·)
∥∥

L p/2 �
(‖zε‖L p + ‖uν‖L p

) ∥∥b
([zε + uν] ∗ ηε

) − b(uν)
∥∥

L p

+ ‖zε‖L p‖b(uν)‖L p

� C
(‖zε‖L p + ‖uν‖L p

) ‖([zε + uν] ∗ ηε) − uν‖L p

+ C‖zε‖L p‖uν‖L p

(all functions at the right hand side are evaluated at time s). By the Young inequality
we have ‖zε ∗ ηε‖L p � ‖zε‖L p , and applying also (3.10) we get

∥∥Tε(s, ·)
∥∥

L p/2�C
(‖zε(s, ·)‖L p + ‖uν(s, ·)‖L p

)[‖zε(s, ·)‖L p + ec0ν−1
ε
]
. (3.18)

We recall that s � τ and so (3.14) holds. Also, we recall (3.4) and (3.6), and we
point out that α = −(d + p)/(2p) ∈ (−1, 0) by (1.8). Using this and (3.18), we
go back to (3.17) to get

‖zε(τ, ·)‖L p � ‖z0‖L p + Cνα
[
2[‖z0‖L p + ec0ν−1

ε] + 1
][
2[‖z0‖L p + ec0ν−1

ε]
+ ec0ν−1

ε
]
τα+1

� ‖z0‖L p + 6Cνα[‖z0‖L p + ec0ν−1
ε]τα+1, (3.19)

where in the last inequalitywe used (3.13) to show that 2[‖z0‖L p +ec0ν−1
ε]+1 � 2.

By comparing (3.19) with (3.16) we arrive at

2[‖z0‖L p + ec0ν−1
ε] � ‖z0‖L p + 6Cνα[‖z0‖L p + ec0ν−1

ε]τα+1,

which implies

[‖z0‖L p + ec0ν−1
ε] � 6Cνα[‖z0‖L p + ec0ν−1

ε]τα+1 �⇒ (6C)−1ν−α � τα+1.

This gives a lower bound on τ and concludes the proof of the Lemma by choosing

τ0 = (6C)−
1

α+1 . 
�
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3.2.2. Conclusion of the Proof of Theorem 3.1 Let 0 < ν < 1/4, and let τ0 and
c0 be as in the statement of Lemma 3.5. Let m := int

(
(τ0ν

β)−1
) + 1, where int(·)

denotes the integer part, and let ε � e−2c0ν−1
4−m−1. This is implied, for instance,

by

ε � e−cν−β

for c := c(d, p, L , ‖ū‖L∞ , ‖ū‖W 1,p ) > 0.

We show by induction that for every i = 1, . . . , m,

‖zε(t, ·)‖L p � ec0ν−1
ε4i for every t ∈ [(i − 1)τ0ν

β, iτ0ν
β ]. (3.20)

Indeed, by (1.6), (1.7) and (3.2) we have zε(0, x) ≡ 0; we apply estimate (3.14)
on [0, τ0νβ ] to get (3.20) with i = 1. If the statement holds true for i , we have that
‖zε(iτ0νβ, ·)‖L p � ec0ν−1

ε4i � e−c0ν−1
/4; to get the statement for i +1, we apply

estimate (3.14) with z0 := zε(iτ0νβ, ·), obtaining

‖zε(t, ·)‖L p �2ec0ν−1[
ε4i +ε

]
� 4i+1ec0ν−1

ε for every t ∈ [iτ0νβ, (i + 1)τ0ν
β ].

This establishes (3.1) and concludes the proof of Theorem 3.1. 
�

4. Proof of Theorem 1.1

We first explain the basic ideas of the proof. To fix some notation, we term

Sεν
t : L1 ∩ L∞×[0,+∞[→ L1 ∩ L∞, Sν

t : L1 ∩ L∞ × [0,+∞[→ L1 ∩ L∞

(4.1)

the semigroup of solutions of the equations at the first line of (1.6) and (1.7),
respectively. In other words, uεν(t, ·) = Sεν

t ū and uν(t, ·) = Sν
t ū. Next, we fix

d ∈ L1 ∩ L∞ and a regularity parameter 0 < λ < 1 and we decompose d as

d := dr + ds, where dr := d ∗ ρλ, ds = d − d ∗ ρλ. (4.2)

In the previous expression ρλ is a given standard family of convolution kernels,
obtained by setting ρλ(x) := λ−dρ (x/λ) for a standard (that is, smooth, positive,
radial, compactly supported, and with unit integral) convolution kernel ρ, with
‖ρ‖C1(Rd ) � C(d).

Note that dr is regular, and hence we can apply Theorem 3.1 to show that Sεν
t dr

converges to Sν
t dr , with a convergence rate that deteriorates when λ → 0+. Also,

we can choose the regularizing parameter λ in such a way that ds = d − dr is
small. The basic point in the proof of Theorem 1.1 is then establishing a uniform
control on the growth of ‖Sεν

t d − Sεν
t dr‖L p . This is done in Section 4.1 below.

Next, in Section 4.2 we establish some stability estimates and in Section 4.3 we
conclude the proof by using an iteration argument.
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4.1. Perturbations Estimates

We begin by establishing some perturbation estimates.

Lemma 4.1. Fix p satisfying (1.8), d ∈ L1 ∩ L∞, and let dr and ds be as in (4.2).
Assume that

‖ds‖L p � δ � 1, (4.3)

‖d‖L p � D, ‖d‖L∞ � B (4.4)

for some positive constants D > 0, B > 0. Then there are constants
ε̄(d, p, L , B, D, ν, λ) and σ = σ(d, p, L , D, ν) such that, if ε � ε̄, then

‖Sεν
t d − Sεν

t dr‖L p � 2δ, for every t ∈ [0, σ ].
Proof. We set

vε := Sεν
t d − Sεν

t dr (4.5)

and we point out that vε is a solution of the Cauchy problem
{

∂tvε + div
[
vεb(Sεν

t d ∗ ηε) + Sεν
t dr

(
b(Sεν

t d ∗ ηε) − b(Sεν
t dr ∗ ηε)

)] = ν�vε.

vε(0, x) = ds(x).

We introduce σ by setting

σ := sup
{
t ∈ [0, 1] : ‖vε(s, ·)‖L p � 2δ for every s ∈ [0, t]}.

Note that, if σ < 1, we have

‖vε(σ, ·)‖L p = 2δ. (4.6)

We now provide a lower bound on σ . By using the Duhamel representation formula
we get

vε(t, ·) = Gν(t, ·) ∗ ds −
∫ t

0

∫
Rd

∇Gν(t − s, · − y) ·
[
vεb(Sεν

t d ∗ ηε)

+Sεν
t dr

[
b(Sεν

t d ∗ ηε) − b(Sεν
t dr ∗ ηε)

]]
(s, y) dyds.

We fix q := p/(p − 1) and α > −1 given by (3.4). Applying the Bochner and
Young Theorems we get

‖vε(t, ·)‖L p � ‖Gν(t, ·)‖L1‖ds‖L p

+
∫ t

0
‖∇Gν(t − s, ·)‖Lq

[
‖vεb(Sε

t d ∗ ηε)(s, ·)

+ Sε
t dr

[
b(Sε

t d ∗ ηε) − b(Sε
t dr ∗ ηε)

]
(s, ·)‖L p/2

]
ds

(3.6),(4.3)

� δ + C(d, p, ν)

∫ t

0
(t − s)α

[
‖vεb(Sεν

t d ∗ ηε)(s, ·)‖L p/2

+ ‖Sεν
t dr

[
b(Sεν

t d ∗ ηε) − b(Sεν
t dr ∗ ηε)

]
(s, ·)‖L p/2

]
ds.

(4.7)
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Next, by the Hölder inequality, (1.10), (4.5) and the Young inequality, we get

‖vεb(Sεν
t d ∗ ηε)‖L p/2 + ‖Sεν

t dr
[
b(Sεν

t d ∗ ηε) − b(Sεν
t dr ∗ ηε)

]‖L p/2

� ‖vε‖L p‖b(Sεν
t d ∗ ηε)‖L p + ‖Sεν

t dr‖L p‖b(Sεν
t d ∗ ηε)

− b(Sεν
t dr ∗ ηε)‖L p

� L‖vε‖L p‖Sεν
t d ∗ ηε‖L p + L‖Sεν

t dr‖L p‖vε ∗ ηε‖L p

� L‖vε‖L p‖Sεν
t d‖L p + L‖Sεν

t dr‖L p‖vε‖L p

� L‖vε‖L p
[‖Sεν

t dr‖L p + ‖vε‖L p
] + L‖Sεν

t dr‖L p‖vε‖L p

� 2L‖vε‖L p
[‖Sεν

t dr‖L p + ‖vε‖L p
]
.

(4.8)

We recall the definition (4.2) ofdr andwe point out thatdr is smooth and henceforth
satisfies the hypotheses of Theorem 3.1. By applying (3.1) and (3.7), we get

‖Sεν
t dr‖L p � ‖Sεν

t dr − Sν
t dr‖L p + ‖Sν

t dr‖L p

� C(d, p, L , ‖dr ‖L∞ , ‖dr‖W 1,p , ν)ε + ‖dr‖L p . (4.9)

Since dr = d ∗ ρλ, by (4.4) we have

‖dr‖L∞ � ‖d‖L∞ � B, ‖dr‖L p � ‖d‖L p �D,

‖∇dr‖L p � ‖d‖L p‖∇ρλ‖L1�C(d, D, λ),

and hence (4.9) implies

‖Sεν
t dr‖L p � C(d, p, L , B, D, ν, λ)ε + D,

so if ε � ε̄(d, p, L , B, D, ν, λ) is sufficiently small, then

‖Sεν
t dr‖L p � 3D/2. (4.10)

We combine (4.6), (4.7), (4.8) and (4.10) to get that

‖vε(σ, ·)‖L p = 2δ � δ + C(d, L , p, ν)

∫ σ

0
(σ − s)α

[
‖vε‖L p

[
D + ‖vε‖L p

]]
(s, ·) ds

s�σ

� δ + C(d, L , p, ν)

∫ σ

0
(σ − s)α

[
2δ

[
D + 2δ

]]
(s, ·) ds

=
[
1 + C(d, L , p, ν)σα+1[D + 2δ

]]
δ

δ�1

�
[
1 + C(d, L , p, ν)σα+1[D + 2

]]
δ.

The above chain of inequalities implies that 1 � C(d, L , p, ν)σα+1
[
D + 2

]
and

this provides a lower bound on σ that only depends on d, p, L , ν and D. 
�
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4.2. Stability Estimates

We now establish a conditional stability estimate.

Lemma 4.2. Fix d1,d2 ∈ L1 ∩ L∞ and p satisfying (1.8) and assume there are
constants F > 0 and T > 0 such that

‖Sεν
t d1‖L p , ‖Sεν

t d2‖L p � F, for every t ∈ [0, T ]. (4.11)

Then there is a threshold � = �(L , F, d, p, ν) ∈ ]0, T ] such that

‖Sεν
t d1 − Sεν

t d2‖L p � 2‖d1 − d2‖L p , for every t ∈ [0,� ].
Proof. We use the Duhamel Representation Formula and get

Sεν
t d1 − Sεν

t d2 =[d1 − d2] ∗ Gν(t, ·)
−

∫ t

0

∫
Rd

∇Gν(t − s, · − y)
[
Sεν

s d1 b(Sεν
s d1 ∗ ηε)

− Sεν
s d2 b(Sεν

s d2 ∗ ηε)
]
(y) dyds,

which, owing to the Bochner and Young Theorems, implies

‖Sεν
t d1 − Sεν

t d2‖L p � ‖d1 − d2‖L p‖Gν(t, ·)‖L1

+
∫ t

0
‖∇Gν(t − s, ·)‖Lq ‖Sεν

s d1 b(Sεν
s d1 ∗ ηε)

−Sεν
s d2 b(Sεν

s d2 ∗ ηε)‖L p/2ds, (4.12)

provided q := p/(p − 1). By the Hölder inequality we get

‖Sεν
s d1 b(Sεν

s d1 ∗ ηε) − Sεν
s d2 b(Sεν

s d2 ∗ ηε)‖L p/2

� ‖Sεν
s d1 b(Sεν

s d1 ∗ ηε) − Sεν
s d2 b(Sεν

s d1 ∗ ηε)‖L p/2

+ ‖Sεν
s d2 b(Sεν

s d1 ∗ ηε) − Sεν
s d2 b(Sεν

s d2 ∗ ηε)‖L p/2

Hölder,(1.10)

� L
∥∥Sεν

s d1 − Sεν
s d2

∥∥
L p

∥∥Sεν
s d1 ∗ ηε

∥∥
L p

+ L
∥∥Sεν

s d2
∥∥

L p

∥∥[
Sεν

s d1 − Sεν
s d2

] ∗ ηε

∥∥
L p

Young,(1.2)

� L
∥∥Sεν

s d1−Sεν
s d2

∥∥
L p

∥∥Sεν
s d1

∥∥
L p +L

∥∥Sεν
s d2

∥∥
L p

∥∥Sεν
s d1 − Sε

s d2
∥∥

L p

(4.11)

� C(L , F)
∥∥Sεν

s d1 − Sεν
s d2

∥∥
L p .

(4.13)

We now introduce the value � by setting

� :=sup
{
t ∈ [0, 1] : ∥∥Sεν

s d1−Sεν
s d2

∥∥
L p � 2

∥∥d1−d2
∥∥

L p for every s ∈ [0, t]}.
Note that

∥∥Sεν
� d1 − Sεν

� d2
∥∥

L p = 2
∥∥d1 − d2

∥∥
L p . (4.14)
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Also, by combining (4.12), (3.6) and (4.13), we get that∥∥Sεν
� d1 − Sεν

� d2
∥∥

L p �
∥∥d1 − d2

∥∥
L p + C(L , F)

∥∥d1
− d2

∥∥
L p

∫ �

0
‖∇Gν(� − s, ·)‖Lqds

(3.6),(3.4)

�
∥∥d1 − d2

∥∥
L p + C(L , F, p, d, ν)

∥∥d1
− d2

∥∥
L p

∫ �

0
(� − s)αds

�
∥∥d1 − d2

∥∥
L p [1 + C(L , F, p, d, ν)�α+1].

(4.15)

By comparing (4.15) with (4.14), we get

2
∥∥d1 − d2

∥∥
L p �

[
1 + C(L , F, d, p, ν)�α+1]∥∥d1 − d2

∥∥
L p ,

and this provides a lower bound on � . 
�
We conclude this Sect. 4.2 by establishing a uniform a-priori estimate on the

growth of d.

Lemma 4.3. Assume that d ∈ L∞ ∩ L1 and that

‖d‖L p � Q.

Then there is a constant θ = θ(d, p, L , Q) > 0 such that

‖Sεν
t d‖L p � 2Q, for every t ∈ [0, θ ].

Proof. We set

θ := sup
{
t ∈ [0, 1] : ‖Sεν

s d‖L p � 2Q, for every s ∈ [0, t]},
and we point out that

‖Sεν
θ d‖L p = 2Q. (4.16)

To establish a lower bound on θ we use the Duhamel representation formula. We
have

Sεν
θ d = d ∗ Gν(θ, ·) −

∫ θ

0

∫
Rd

∇Gν(θ − s, · − y) · [
Sεν

s d b(Sεν
s d ∗ ηε)

]
(y) dyds.

We use the Bochner and Young Theorems to get

‖Sεν
θ d‖L p � ‖d‖L p +

∫ θ

0
‖∇Gν(θ − s, ·)‖Lq ‖Sεν

s d b(Sεν
s d ∗ ηε)‖L p/2ds,

provided q := p/(p − 1). Next, by Hölder inequality, (1.10), and since s � θ , we
infer that

‖Sεν
s d b(Sεν

s d ∗ ηε)‖L p/2 � ‖Sεν
s d‖L p‖b(Sεν

s d ∗ ηε)‖L p

� L‖Sεν
s d‖L p‖Sεν

s d ∗ ηε‖L p � L‖Sεν
s d‖2L p�4L Q2.

We let α > −1 be as in (3.4). By (3.6) and the above inequalities we infer that

‖Sεν
θ d‖L p � Q + C(d, p, L)θα+1Q2,

and by comparing the above inequality with (4.16) we establish a lower bound on
θ . 
�
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4.3. Conclusion of the Proof of Theorem 1.1

We first introduce some notation. First, we fix a parameter 0 < h < 1. We set

D := ‖ū‖L p , B := ‖ū‖L∞ , F := 4D, Q := 2D

and choose a threshold ξ = ξ(d, p, L , D, ν, Q) in such a way that

ξ := min{σ,�, θ},
where σ , � and θ are as in the statement of Lemmas 4.1, 4.2 and 4.3, respectively.

Step 1: we choose d := ū and the regularity parameter λ in (4.2) (depending only
on on p, ū and h) in such a way that

‖ds‖L p = ‖d − d ∗ ρλ‖L p � h < 1.

We establish convergence on the interval [0, ξ ]. First we decompose ū as in (4.2).
Note that

‖dr‖L p � ‖d‖L p � D, ‖dr‖L∞ � ‖d‖L∞ � B.

Next, we fix t ∈ [0, ξ ] and we introduce the following decomposition:

‖Sεν
t d − Sν

t d‖L p � ‖Sεν
t d − Sεν

t dr‖L p + ‖Sεν
t dr − Sν

t dr‖L p

+‖Sν
t dr − Sν

t d‖L p =: T1 + T2 + T3. (4.17)

To control the term T1, we apply Lemma 4.1 and we infer that, if ε �
ε̄(d, p, L , B, D, ν, λ), then

‖Sεν
t d − Sεν

t dr‖L p � 2h. (4.18)

To control the term T2, we apply Theorem 3.1. First, we point out that

∇dr = d ∗ ∇ρλ �⇒ ‖∇dr‖L p � ‖ū‖L p‖∇ρλ‖L1 = C(d, D, λ).

By applying Theorem 3.1 we arrive at

‖Sεν
t dr − Sν

t dr‖L p � C(d, p, L , B, D, ν, λ)ε � h, (4.19)

provided that ε � ε̄(d, p, L , B, D, λ, ν, h). Finally, to control the term T3, we
apply (3.8) and we get

‖Sν
t dr − Sν

t d‖L p � C(d, p, L , B, ν)‖dr − d‖L p � C(d, p, L , B, ν)h.(4.20)

By combining (4.18), (4.19) and (4.20) with (4.17), we eventually get that

‖Sεν
t d − Sν

t d‖L p � C(d, p, L , B, ν)h, (4.21)

provided that ε � ε̄(d, p, L , B, D, λ, ν, h).

Step 2: we establish convergence on the interval [ξ, 2ξ ]. First, we fix t ∈ [0, ξ ]
and we introduce the following decomposition:
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‖Sεν
t+ξ ū − Sν

t+ξ ū‖L p = ‖Sεν
t Sεν

ξ ū − Sν
t Sν

ξ ū‖L p

� ‖Sεν
t Sεν

ξ ū − Sεν
t Sν

ξ ū‖L p

+‖Sεν
t Sν

ξ ū − Sν
t Sν

ξ ū‖L p =: S1 + S2. (4.22)

To control the term S1 we apply Lemma 4.2. First, we set

d1 := Sεν
ξ ū, d2 := Sν

ξ ū,

and we recall that F = 4‖ū‖L p . Now we want to show that (4.11) holds true—we
do this by applying Lemma 4.3. First, we check that

‖Sεν
t d2‖L p � F. (4.23)

We recall that Q = 2‖ū‖L p and we point out that, owing to (3.7), we have

‖d2‖L p � ‖ū‖L p � Q.

By applying Lemma 4.3, we get (4.23). Next, by (4.21) and (3.7), we point out that

‖d1‖L p � ‖Sεν
ξ ū − Sν

ξ ū‖L p + ‖Sν
ξ ū‖L p � C(d, p, L , B, ν)h + ‖ū‖L p

� 2‖ū‖L p = Q,

provided that h is sufficiently small. By applying Lemma 4.3, we get ‖Sεν
t d1‖L p �

F and by recalling (4.23) we conclude that (4.11) is satisfied. By applying
Lemma 4.2 we conclude that

S1
(4.22)= ‖Sεν

t Sεν
ξ ū − Sεν

t Sν
ξ ū‖L p � 2‖Sεν

ξ ū − Sν
ξ ū‖L p

(4.21)

� C(d, p, L , B, ν)h,

provided that ε � ε̄(d, p, L , B, D, λ, ν, h).
We now control S2, the second term in (4.22). We set d := Sν

ξ ū and we point
out that

‖Sν
ξ ū‖L p � D, ‖Sν

ξ ū‖L∞ � B,

owing to (3.7). By applying the same argument as in Step 1 we conclude that

S2=‖Sεν
t Sν

ξ ū − Sν
t Sν

ξ ū‖L p � C(d, p, L , B, ν)h,

provided that ε � ε̄(d, p, L , B, D, λ, ν, h). By recalling (4.22), this establishes
the convergence on the interval [ξ, 2ξ ].
Step 3: by iterating the argument at Step 2 a finite number of times we can prove
that

‖Sεν
t ū − Sν

t ū‖L p � C(d, p, L , B, ν)h, for every t ∈ [0, 1],
provided that ε � ε̄(d, p, L , B, D, λ, ν, h). This establishes the strong L p conver-
gence and concludes the proof of Theorem 1.1. 
�
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5. Counterexamples

In this section we focus on the family of Cauchy problems in one space dimen-
sion: {

∂t uε + ∂x
[
uε uε ∗ ηε

] = 0
uε(0, ·) = ū,

(5.1)

which is exactly (1.3) in the case when d = 1 and b(u) = u. When ε → 0+, the
Cauchy problem in (5.1) formally reduces to the Cauchy problem for the Burgers’
equation

{
∂t u + ∂x

[
u2

] = 0
u(0, ·) = ū.

(5.2)

In this section we provide three explicit counterexamples showing that, in general,
uε does not converge to the entropy admissible solution u.

5.1. A Counterexample with Sign-Changing Data and Symmetric Kernels

We begin by stating and proving our first counterexample.

Counterexample 5.1. Assume that ηε satisfies (1.2) and (1.4) and that η is an even
function, namely η(x) = η(−x) for every x. Assume furthermore that the initial
datum ū ∈ BV (R) is an odd function, namely ū(x) = −ū(−x) for almost every x,
and such that

ū(x) :=
⎧⎨
⎩
1 −1 < x < 0
−1 0 < x < 1
0 |x | > 2.

(5.3)

Let uε be the solution of (5.1) and u be the entropy admissible solution of (5.2).
Then∫ 0

−∞
u(t, x) dx <

∫ 0

−∞
ū(x) dx =

∫ 0

−∞
uε(t, x) dx, for every t ∈ [0, 1/4[.(5.4)

In particular, the family {uε}ε>0 does not converge to u, not even in the weak
topology of L p, p � 1, in the weak∗ topology of L∞, or up to subsequences.

The precise meaning of the last statement is the following: for every p � 1
and T > 0 the statement “there is a sequence εk such that εk → 0+ and uεk ⇀ u
in L p([0, T ] × R)” is false; the statement “there is a sequence εk such that εk →
0+ and uεk

∗
⇀ u in L∞([0, T ] × R)” is also false. The basic idea underpinning

Counterexample 5.1 is, very loosely speaking, the following: one can show that for
t small enough, the entropy admissible solution of the Cauchy problem (5.2), (5.3)
has a steady shock at x = 0 between the values 1 (on the left) and−1 (on the right).
By using the formal computation

d

dt

∫ 0

−∞
u(t, x) dx

(5.2)= −
∫ 0

−∞
∂x [u2](t, x) dx = −u2(0−) = −1 < 0,
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we infer the first inequality in (5.4). On the other hand, we can show that the solution
uε of (5.1), (5.3) is odd. Since the function ηε is even, this implies that uε ∗ ηε = 0
at x = 0 and hence that

d

dt

∫ 0

−∞
uε(t, x) dx

(5.1)= −
∫ 0

−∞
∂x [uε uε ∗ ηε](t, x)dx = 0,

which in turn implies the equality in (5.4). By (5.4) and doing some more work
one can eventually rule out weak convergence. We now give the rigorous proof of
Counterexample 5.1.

Proof of Counterexample 5.1. We proceed according to the following steps:

Step 1:we investigate the structure of the entropy solution u. First, we collect some
properties of u:

(a) u ∈ C0([0,+∞[; L1(R)).
(b) Since ‖ū‖L∞ � 1, then by the maximum principle ‖u(t, ·)‖L∞ � 1 for every

t � 0.
(c) Since ū ∈ BV (R), then u(t, ·) ∈ BV (R) for every t � 0.
(d) A 0-speed shock is created at t = 0 at the origin x = 0. Owing to the finite

propagation speed, this shock will survive for some time. More precisely, we
have

u(t, x) =
{
1 for almost every x ∈] − 1/2, 0[
−1 for almost every x ∈]0, 1/2[ , for every t ∈ [0, 1/4].

(5.5)

(e) Owing to the finite propagation speed and to the fact that ū = 0 if |x | > 2, we
have u(t, x) = 0 for almost every |x | � 3 and for every t ∈ [0, 1/4].

We now want to show that∫ 0

−4
u(1/4, x) dx =

∫ 0

−4
ū(x) dx − 1

4
. (5.6)

We can formally obtain (5.6) by pointing out that

d

dt

∫ 0

−4
u(t, x) dx

(5.2)= −
∫ 0

−4
∂x [u2](t, x)dx = −u2(t, 0−) + u2(t,−4)

d), e)= −1,

and by integrating with respect to time. We now sketch a rigorous argument to
justify (5.6). First, we point out that u is a distributional solution of (5.2), which
amounts to say that

∫ +∞

0

∫
R

u∂tϕ dx dt +
∫ +∞

0

∫
R

u2∂xϕ dx dt +
∫
R

ϕ(0, ·)ū dx = 0 (5.7)

for everyϕ ∈ C∞
c (R2).Wenow introduce the sequence of functions {χn} ⊆ C∞

c (R)

such that

χn(x) =
{
1 −4 + 1/n � x � −1/n
0 x � −4 or x � 0.

(5.8)
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As a matter of fact, χn is an approximation of the characteristic function of [−4, 0].
We fix an arbitrary θ ∈ C∞

c (]0, 1/4[), we plug ϕn(t, x) := χn(x)θ(t) as a test
function in (5.7) and we point out that

∫ +∞

0

∫
R

u2∂xϕn dx dt =
∫ 1/4

0
θ(t)

∫
R

u2(t, x)χ ′
n(x) dx dt

(5.8)=
∫ 1/4

0
θ(t)

∫ −4+1/n

−4
u2(t, x)χ ′

n(x) dx dt

+
∫ 1/4

0
θ(t)

∫ 0

−1/n
u2(t, x)χ ′

n(x) dx dt

(5.5), e)=
∫ 1/4

0
θ(t)

∫ −4+1/n

−4
0 · χ ′

n(x) dx dt

+
∫ 1/4

0
θ(t)

∫ 0

−1/n
1 · χ ′

n(x) dx dt

(5.8)=
∫ 1/4

0
θ(t)(−1) dt.

Next, we let n → +∞ in the other term in (5.7) and we eventually arrive at

∫ 1/4

0
θ ′(t)

∫ 0

−4
u(t, x) dx dt +

∫ 1/4

0
θ(t)(−1) dt = 0.

Owing to the arbitrariness of θ , this implies that the continuous function

t �→
∫ 0

−4
u(t, x) dx (5.9)

has distributional derivative equal to −1. This implies that the above function is
actually absolutely continuous and, owing to theFundamental TheoremofCalculus,
we get (5.6).

Since we will need it in what follows, we also point that, since the map in (5.9)
is continuous, then (5.6) implies that there is h > 0 such that

∫ 1/4+h

1/4−h

∫ 0

−4
u(t, x) dx dt �

∫ 1/4+h

1/4−h

(∫ 0

−4
ū dx − 1

8

)
dt = 2h

∫ 0

−4
ū dx − h

4
.

In other words, if we define E by setting

E := {
(t, x) : t ∈ [1/4 − h, 1/4 + h], x ∈ [−4, 0]} (5.10)

and we denote by 1E the characteristic function of E , then

∫ ∞

0

∫
R

1E u dx dt � 2h
∫ 0

−4
ū dx − h

4
. (5.11)

Step 2: we show that the distributional solution uε of (5.1) is odd, namely that,
for almost every (t, x) ∈ R

+ × R, u(t, x) = −u(t,−x). We set vε(t, x) :=
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−uε(t,−x). If we can prove that vε is also a distributional solution of the Cauchy
problem (5.1), then by the uniqueness part of Proposition 2.3 we get that for every
t � 0 it holds vε(t, x) = uε(t, x) for almost every x , namely that uε is an odd
function.

To show that vε is a distributional solution of (5.1), we first observe that, by
using the fact that ηε is even and making the change of variables z = −y, we get

(
vε ∗ ηε

)
(t, x) = −

∫
R

uε(t,−x + y)ηε(y) dy

= −
∫
R

uε(t,−x − z)ηε(z) dz = −(
uε ∗ ηε

)
(t,−x). (5.12)

Next, we fix ϕ ∈ C∞
c (R2), we set φ(t, x) := −ϕ(t,−x), and we obtain

∫ +∞

0

∫
R

vε∂tϕ dx dt+
∫ +∞

0

∫
R

vε(vε ∗ ηε)∂xϕ dx dt+
∫
R

ϕ(0, ·)ū dx = [z = −x]

=
∫ +∞

0

∫
R

(−uε)(−∂tφ) dz dt +
∫ +∞

0

∫
R

(−uε)(−uε ∗ ηε)(∂xφ) dz dt

+
∫
R

(−φ(0, ·))(−ū) dz = 0.

To establish the last equality we have used the fact that uε is a distributional solution
of (5.1). The above chain of equalities states that vε is a distributional solution
of (5.1) and hence concludes Step 2.

Step 3: we show that

uε(t, x) = 0, for almost every |x |�2 and every t � 0 and ε > 0. (5.13)

We note that uε is a distributional solution of the Cauchy problem
{

∂t uε + ∂x
[
uεgε

] = 0
uε(0, ·) = ū,

(5.14)

provided that the vector field gε is defined as gε(t, x) := uε ∗ ηε. Since the vector
field gε is smooth, then we can apply themethod of characteristics.We term X (t, x)

the characteristic curve solving the Cauchy problem

⎧⎪⎨
⎪⎩

dX

dt
= gε(t, X)

X (0, x) = x .

(5.15)

Recall that uε is an odd function by Step 2. Since ηε is an even function by
assumption, by arguing as in the chain of equalities (5.12) we obtain that uε ∗ ηε is
an odd function. Since it is also smooth, we eventually conclude that

gε(t, 0) = uε ∗ ηε(t, 0) = 0, for every t � 0. (5.16)
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This means that X (t, 0) ≡ 0 and, since (5.15) has a unique solution, implies that
the characteristic curves cannot cross the t axis. Since ū(x) � 0 if x � 0 and
ū(x) � 0 if x � 0, this in turn implies that

for every t � 0, uε(t, x) � 0 for almost every x < 0 and

uε(t, x) � 0 for almost every x > 0. (5.17)

This implies that, if x � −2, then x + ε � 0, and hence

gε(t, x) = uε ∗ ηε(t, x) =
∫ x+ε

x−ε

uε(y)ηε(x − y) dy
(1.10),(5.17)

� 0. (5.18)

If x1 < x2, then X (t, x1) < X (t, x2) for every t � 0 (to see this, we use again the
fact that the solution of (5.15) is unique). By recalling (5.18), this implies that

x � −2 �⇒ X (t, x) � −2 for every t � 0,

and hence that

for every t � 0, X (t, x) < −2 �⇒ x < −2.

Since ū(x) = 0 for almost every x � 2, this eventually implies that uε(t, x) = 0
for every x � −2. Since the function uε is odd, this establishes (5.13).

Step 4: we conclude the proof. Recall that the set E is defined as in (5.10) for a
suitable h and assume that we have shown that

∫ +∞

0

∫
R

1E uεdx dt = 2h
∫ 0

−4
ū dx . (5.19)

Since the function 1E ∈ L p(R+ × R), for every p ∈ [1,+∞], then by com-
paring (5.19) and (5.11) we rule out the possibility that uε converges weakly or
weakly∗ to u. We are thus left with establishing (5.19). To this end, we first use the
formal computation

d

dt

∫ 0

−4
uε(t, x) dx

(5.1)= −
∫ 0

−4
∂x

[
uε(uε ∗ ηε)

]
(t, x) dx

= uε(uε ∗ ηε)(t,−4) − uε(uε ∗ ηε)(t, 0)
(5.13),(5.16)= 0.

(5.20)

This implies that

∫ +∞

0

∫
R

1E uεdx dt =
∫ 1/4+h

1/4−h

∫ 0

−4
uεdx dt =

∫ 1/4+h

1/4−h

∫ 0

−4
ū(x) dx dt

= 2h
∫ 0

−4
ū(x) dx,

namely (5.19). To provide a rigorous justification of (5.20) one can argue as in Step
1. This concludes the proof of the lemma. 
�
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5.2. A Counterexample with Positive Data and Asymmetric Kernels

This paragraph aims at establishing the following lemma, which rules out also
the possibility that uεk weakly converges to a distributional, not necessarily entropy
admissible, solution of (5.2).

Counterexample 5.2. Assume that ηε satisfies (1.2) and (1.4) and moreover that

η(x) = 0, for every x � 0. (5.21)

Let ū be given by

ū(x) =
{
1 −1 < x < 0
0 otherwise.

(5.22)

Let uε be the solution of the Cauchy problem (5.1), (5.22) and u be the entropy
admissible solution of (5.2), (5.22). Then we have that:

(1) the family of distributional solutions {uε}ε>0 does not converge to u, not even
in the weak topology of L p, p � 1, in the weak∗ topology of L∞, or up to
subsequences;

(2) more in general, any weak limit w of a subsequence of {uε}ε>0 (in the weak
topology of L p, p � 1, in the weak∗ topology of L∞) cannot be a L2

loc distri-
butional (not necessarily entropy admissible) solution of (5.2).

The basic idea underpinning Counterexample 5.2 is, very loosely speaking, the
following: owing to (5.21), the convolution uε ∗ ηε evaluated at the point x only
depends on the values of uε on the right hand side of x and owing to the particular
structure of the initial datum ū this implies that uε ∗ ηε(0, 0) = 0 and hence that
the characteristic line of the velocity field uε ∗ ηε starting at x = 0 has zero initial
speed. Then, one can show that the speed is identically zero—this implies that the
characteristic lines coming from the half line x < 0 cannot cross the axis x = 0,
and hence that nomass can enter the half line x > 0. In conclusion, uε(t, x) = 0 for
almost every x > 0. Notice that this last equality could be shown also by noticing
that the approximating sequence in the construction of uε in [12, Section 5] enjoys
the same property.

On the other hand, the entropy admissible solution of (5.2), (5.22) is explicit
and not identically 0 for x > 0. With some more work, one can show that any
distributional solution of (5.2), (5.22) is not identically 0 for x > 0. This allows
us to rule out weak convergence to a distributional solution. We now make the
previous argument rigorous.

Lemma 5.3. Assume that η and ηε satisfy (1.2), (1.4) and (5.21) and let ū be as
in (5.22). Then

for every t � 0, uε(t, x) = 0 for almost every x < −1

and almost every x > 0. (5.23)
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Proof. We argue according to the following steps:

Step 1: we show that uε(t, x) = 0 for almost every x < −1. We use the method
of characteristics: note that uε is a distributional solution of the continuity equa-
tion (5.14) provided the vector field gε is given by gε := uε ∗ηε. Since ū � 0, then
gε(t, x) � 0 for every (t, x). This implies that, for every t � 0 and every x < −1,
the characteristic line Yt (s, x) solving the (backward) Cauchy problem

⎧⎪⎨
⎪⎩

dYt

ds
= gε(s, Yt )

Yt (t, x) = x

satisfies Yt (0, x) < −1 and hence ū(Yt (0, x)) = 0. Since the value 0 is propagated
along the characteristic lines of the continuity equation, then uε(t, x) = 0.

Step 2: we again regard uε as the solution of the continuity equation (5.14) and
we term X the characteristic line solving the (forward) Cauchy problem (5.15). We
claim that

X (t, x) = x for every t � 0, x � 0. (5.24)

Indeed, by the spatial smoothness of the vector field uε ∗ηε, the characteristic lines
“cannot cross” the curve X (t, 0); in particular for any t > 0 and x > X (t, 0) we
have Yt (0, x) > 0. Hence

uε(t, x) = 0 for any t > 0, x � X (t, 0). (5.25)

Since ηε satisfies (1.2) and (1.4), for any x ∈ R the quantity uε ∗ηε(x) is an average,
weighted with ηε, of the values of uε(t, ·) on the right of x . From (5.25), we deduce
that

uε ∗ ηε(t, x) = 0 for any t > 0, x � X (t, 0). (5.26)

From (5.26) applied to x = X (t, 0) and (5.15)with x = 0,we deduce that X (t, 0) =
0 for any t > 0; applying again (5.26) with this further information, we deduce
(5.24).

Since the value 0 is propagated along the characteristic lines of the continuity
equation, which in turn are constant for any x � 0 thanks to (5.24), we have shown
that uε(t, x) = 0 for any x � 0, concluding the proof of (5.23). 
�
Proof of Counterexample 5.2(1). First, we point out that, if ū is given by (5.22),
then the entropy admissible solution of the Cauchy problem (5.2) is

u(t, x) =

⎧⎪⎨
⎪⎩
0 x � −1 or x � t
x + 1

2t
−1 � x � 2t − 1

1 2t − 1 � x � t,

for almost every (t, x) ∈ [0, 1] × R.

(5.27)
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Assume by contradiction that there is a sequence {εk} such that uεk weakly
converges to u. We use as a test function the characteristic function of the set
E := [0, 1/2] × [0, 1]. Since
∫
R+×R

uεk1E dx dt
Lemma 5.3= 0,

∫
R+×R

u 1E dx dt
(5.27)=

∫ 1/2

0

∫ t

0
1 dx dt = 1

8
,

we find a contradiction. 
�

The proof of Counterexample 5.2(2) is based on the following result, which
could be generalized to Young measure solutions of the Cauchy problem (5.2) (we
refer to [13] for an extended discussion on Young measures and their applications
to nonlinear conservation laws):

Lemma 5.4. Let a, b ∈ R, a < b, and let u ∈ L2
loc([0, 1] × R) be a nonnegative,

distributional solution of the Cauchy problem (5.2) compactly supported in [0, 1]×
(a, b). Then the baricenter of u is a nondecreasing function and

∫ b

a
xu(t, x) dx �

( ∫ b

a
ū
)2

t +
∫ b

a
xū(x) dx . (5.28)

Theproof ofCounterexample 5.2(2) straightforwardly follows fromLemma5.4.
Indeed, any nonnegative distributional solution u of the Cauchy problem (5.2) start-
ing from ū in (5.22) cannot satisfy

u(t, x) = 0 for almost every t ∈ [0, 1], x ∈ (−∞,−1) ∪ (0,∞),

because otherwise it would contradict (5.28) for a = −1− σ, b = σ (σ arbitrarily
small) and any t > 1/2. Hence we find a contradiction with (5.23) as in the proof
of Counterexample 5.2(1).

Proof of Lemma 5.4. The conservation law (5.2) implies

∫ b

a
u(t, x) dx =

∫
R

u(t, x) dx =
∫ b

a
ū(x) dx for almost every t > 0.

We perform some formal computations, which can be made rigorous by arguing as
in the proof of Counterexample 5.1: by (5.2), the Jensen inequality, and the previous
equality, we have

d

dt

∫ b

a
x u(t, x) dx =

∫ b

a
x ∂t u(t, x) dx = −

∫ b

a
x ∂x

[
u2](t, x) dx

=
[

− x u2(t, x)
]x=a

x=b
+

∫ b

a
u2(t, x)dx � 1

b − a

(∫ b

a
u(t, x)dx

)2

.

Integrating in time, we get (5.28). 
�
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5.3. A Counterexample with Positive Data and Symmetric Kernels

We now establish the following result:

Counterexample 5.5. Assume that η and ηε are as in (1.10) and (1.4), respec-
tively, and that η is an even function. Let u denote the entropy admissible solution
of (5.2), (5.22) and uε the solution of (5.1), (5.22). Then for every δ > 0, the family
uε does not converge to u strongly in L1+δ , not even up to subsequences. More
precisely,

∀ t > 0, � {εk}, εk → 0+ such that uεk (t, ·) → u(t, ·) strongly in L1+δ .

(5.29)

Note that (5.29) rules out the possibility that uε converges to u in L1+δ([0, 1]×
R): indeed, if this were true then, up to subsequences, uε(t, ·) → u(t, ·) in L1+δ

for almost every t , and this is ruled out by (5.29).
The basic idea underpinning Counterexample 5.5 is the following: we introduce

the entropy function

E (u) :=
∫
R

u ln u dx,

where by a slight abuse of notation we have continuously extended the function
u ln u with value 0 for u = 0. By using the formal computation (5.35), one gets
that

d

dt
E (uε) = 0

if uε is a nonnegative solution of (5.1). On the other hand, the function u ln u
is convex and hence E (u) is non increasing for nonnegative entropy admissible
solutions of (5.2). In particular, if the initial datum is as in (5.22), then E (u) is
strictly decreasing. After some more work this allows us to rule out the strong
convergence of uε to u.

The precise argument requires some preliminary results.

Lemma 5.6. Fix δ > 0 and assume that {vk} ⊆ L1+δ satisfies vk → v in L1+δ , for
some compactly supported v ∈ L1+δ . Then

∫
R

v ln v dx � lim sup
k→+∞

∫
R

vk ln vk dx . (5.30)

Proof. Let � ⊂ R be a compact set s.t. v = 0 almost everywhere in R\�. Up to
a (not relabelled) subsequence, we can assume that the lim sup in the right-hand
side in (5.30) is a limit. Since vk → v in L1+δ , up to a further subsequence, we
can assume that vk converges pointwise to v almost everywhere in R and that there
exists a function h ∈ L1+δ(R) such that h � |vk | almost everywhere for any k ∈ N.
We observe that

|w lnw| � C(δ)
(
1{w<1} + 1{w�1}|w|1+δ), for every w � 0. (5.31)
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Since the function s → s ln s is negative for s < 1, by (5.31), and since vk → v in
L1+δ(R\�) we have

lim sup
k→∞

∫
R\�

vk ln vk dx � lim sup
k→∞

∫
R\�

vk ln vk1vk�1 dx

� C(δ) lim
k→∞

∫
R\�

|vk |1+δ dx = 0.

Since the functions vk ln vk converge pointwise to v ln v as k → ∞ and the con-
vergence is dominated by C(δ)(1 + |h|1+δ) ∈ L1(�), we have

∫
�

v ln v dx = lim
k→∞

∫
�

vk ln vk dx � lim
k→∞

∫
�

vk ln vk dx

+ lim sup
k→∞

∫
R\�

vk ln vk dx = lim sup
k→∞

∫
R

vk ln vk dx,

which proves (5.30). 
�
Lemma 5.7. Let uε be the solution of (5.2) and assume that ηε satisfies (1.10)
and (1.4) and that η is an even function. Let ū ∈ L∞ be a compactly supported
function satisfying ū � 0 and

∫
R

ū ln ū dx < +∞.

Then for every t � 0 the distributional solution satisfies the following properties:
uε(t, ·) � 0 and

∫
R

uε ln uε(t, ·) dx =
∫
R

ū ln ū dx . (5.32)

Proof. First, we point out that one can check by direct computation that, for every
a, b ∈ L2(R), c ∈ C∞

c (R), we have
∫
R

a(b ∗ c) dx =
∫
R

(a ∗ č)b dx, (5.33)

where č(x) = c(−x). We apply the above formula with a = b = uε(t, ·) and
c = η′

ε. Since ηε is an even function, then the derivative η′
ε is an odd function and

hence η̌′
ε = −η′

ε. We then obtain
∫
R

uε∂x
[
uε ∗ ηε

]
(t, ·) dx =

∫
R

uε(uε ∗ η′
ε)(t, ·) dx

(5.33)= −
∫
R

(uε ∗ η′
ε)uε(t, ·) dx

= −
∫
R

uε∂x
[
uε ∗ ηε

]
(t, ·) dx,

which implies that
∫
R

uε∂x
[
uε ∗ ηε

]
(t, ·) dx = 0. (5.34)
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We can then establish (5.32) by using the following (formal) computation:

d

dt

∫
R

uε ln uε(t, ·) dx =
∫
R

(1 + ln uε)∂t uε(t, ·) dx

(5.2)= −
∫
R

(1 + ln uε)∂x
[
uε(uε ∗ ηε)

]
(t, ·) dx

=
∫
R

∂x uε

1

uε

uε(uε ∗ ηε)(t, ·) dx

=
∫
R

∂x uε(uε ∗ ηε)(t, ·) dx

= −
∫
R

uε∂x
[
uε ∗ ηε

]
(t, ·) dx

(5.34)= 0.

(5.35)

To make the above argument rigorous, we recall that uε is the solution of the
Cauchy problem (5.14), where the velocity field gε = uε ∗ ηε is smooth. By the
renormalization property, for every β ∈ C1 we have (2.14). This implies that
∫
R

β(uε(t, ·)) dx =
∫
R

β(ū) dx −
∫ t

0

∫
R

∂x
[
uε ∗ ηε

][
uεβ

′(uε) − β(uε)
]
dxds.

(5.36)

We construct a sequence of functions βn : R
+ → R by setting

βn(v) :=
∫ v

0

[
1 + ln

(
ξ + 1

n

)]
dξ.

Note that

βn(v) →
∫ v

0
[1 + ln ξ ] dξ = v ln v, for every v � 0, as n → +∞,

vβ ′
n(v) − βn(v) → v, for every v � 0, as n → +∞.

By testing the inequality (5.36) with βn and passing to the limit for n → +∞ we
obtain∫
R

uε ln uε dx =
∫
R

ū ln ū dx −
∫ t

0

∫
R

∂x
[
uε ∗ ηε

]
uε dsdx

(5.34)=
∫
R

ū ln ū dx .

This concludes the proof of the lemma. 
�
Proof of Counterexample 5.5. If ū is given by (5.22), then the entropy admissible
solution u can be explicitly computed and is given by (5.27). Note that ū only attains
the values 0 and 1, whereas if t ∈ (0, 1] then u attains values between 0 and 1.
Therefore∫

R

u(t, x) ln u(t, x) dx < 0 =
∫
R

ū ln ū dx for any t ∈ (0, 1]. (5.37)

Owing to Lemma 5.7, for every ε > 0 and t � 0 we have∫
R

uε(t, x) ln uε(t, x) dx = 0. (5.38)
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Assumeby contradiction that there is a sequence εk → 0+ and a time t > 0 such that
uεk (t, ·) → u(t, ·) strongly in L1+δ(R). We apply Lemma 5.6 with vk := uεk (t, ·),
v := u(t, ·). By combining (5.38) and (5.30) we get

∫
R

u(t, x) ln u(t, x) dx � 0,

which contradicts the second inequality in (5.37). This concludes the proof of the
lemma. 
�
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