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Abstract

In this paper, the main objective is to generalize to the Navier—Stokes—Korteweg
(with density dependent viscosities satisfying the BD relation) and Euler—Korteweg
systems a recent relative entropy (proposed by BREscH et al. in C R Math Acad Sci
Paris 354(1):45-49, 2016) introduced for the compressible Navier—Stokes equa-
tions with a linear density dependent shear viscosity and a zero bulk viscosity.
As a concrete application, this helps to justify mathematically the convergence
between global weak solutions of the quantum Navier-Stokes system (recently
obtained simultaneously by LACROIX-VIOLET and VASSEUR in J Math Pures Appl
114(9):191-210, 2018) and dissipative solutions of the quantum Euler system when
the viscosity coefficient tends to zero; this selects a dissipative solution as the limit
of a viscous system. We also recover the weak—strong uniqueness for the Quantum-
Euler as in GIESSELMANN et al. (Arch Ration Mech Anal 223:1427-1484, 2017)
and extend the result for the Quantum-Navier—Stokes equations. Our results are
based on the fact that Euler—Korteweg systems and corresponding Navier—Stokes—
Korteweg systems can be reformulated through an augmented system such as the
compressible Navier—Stokes system with density dependent viscosities satisfying
the BD algebraic relation. This was also observed recently by BRESCH et al. (2016)
for the Euler—Korteweg system for numerical purposes. As a by-product of our
analysis, we show that this augmented formulation helps to define relative entropy
estimates for the Euler—Korteweg systems in a simplest way compared to recent
works (see DONATELLI et al. in Commun Partial Differ Equ 40:1314-1335, 2015;
GIESSELMANN et al. 2017) with less hypothesis required on the capillary coefficient.

1. Introduction

Quantum fluid models have attracted a lot of attention in recent decades due
to the variety of their applications. Indeed, such models can be used to describe
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superfluids [39], quantum semiconductors [25], weakly interacting Bose gases [30]
and quantum trajectories of Bohmian mechanics [46]. Recently some dissipative
quantum fluid models have been derived. In particular, under some assumptions
and using a Chapman-Enskog expansion in Wigner equation, the authors have
obtained in [16] the so-called quantum Navier—Stokes model. Roughly speaking,
it corresponds to the classical Navier—Stokes equations with a quantum correction
term. The main difficulties of such models lie in the highly nonlinear structure
of the third order quantum term and the proof of positivity (or non-negativity) of
the particle density. Note that formally, the quantum Euler system corresponds
to the limit of the quantum Navier—Stokes model when the viscosity coefficient
tends to zero. This type of model belongs to more general classes of models: the
Navier—Stokes—Korteweg and the Euler—Korteweg systems. Readers interested by
Korteweg type systems are referred to the following articles and books: [17,20,32,
35,40,41,43] and references cited therein.

The goal of this paper is to extend to these two Korteweg systems arecent relative
entropy proposed in [13] introduced for the compressible Navier—Stokes equations
with a linear density dependent shear viscosity and a zero bulk viscosity. This leads,
for each system, to the definition of what we call a dissipative solution following the
concept introduced by P.-L. Lions in the incompressible setting (see [38]) and later
extended to the compressible framework (see [5,23,24,42] for constant viscosities
and [13,31] for density dependent viscosities). As a consequence we obtain some
weak—strong uniqueness results and as an application, we can use it to show that
a global weak solution (proved in [36], which is also a dissipative one) of the
quantum Navier—Stokes system converges to a dissipative solution of the quantum
Euler system. Our results will be compared to recent results in [21,27] showing
that we relax one hypothesis on the capillarity coefficient by introducing entropy-
relative solutions of an augmented system. Note also the interesting paper [4] where
the authors prove the existence of global weak solutions of the quantum-Navier—
Stokes equations with a different method compared to [36]. It is worthy of note we
cannot use such global weak solutions because capillarity and viscosity magnitudes
are linked together in their study. Let us also mention the interesting new paper [19]
where the authors investigate the long-time behavior of solutions to the isothermal
Euler—Korteweg system.

Let us now present in more detail the models of interest here. Note that for the
convenience of the reader all the operators are defined in Sect. 6.3. Let Q = T be
the torus in dimension d (in this article 1 < d < 3).

Euler-Korteweg system. Following the framework of the paper, we first present
the Euler-Kortewg system and then the Navier—Stokes Korteweg one. Note that
throughout the paper, the systems are supplemented with the initial conditions

pli=0o = po, (pu)l;=0 = poup forx e Q, (1)
with the regularity po > 0, pg € LY(R), poluol*> € LY(RQ), VK(po)Vpy €

L%(Q). The Euler—Korteweg system describes the time evolution for 7 > 0 of the
density p = p(t, x) and the momentum J = J (¢, x) = p(t, x)u(t, x) (with u the
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velocity) for x € Q2 of an inviscid fluid. The equations can be written in the form

([21D):
orp+divJ =0, (2)
(IR J ) 1, 2
9, J + div +V(p(p)) =& pV | K(p)Ap + EK (»IVpl” ),
(3)

where K : (0, 00) — (0, 00) is a smooth function and p is the pressure function
given by p(p) = p? for y > 1. Note that it could be interesting to consider non-
monotone pressure laws as in [28] and [27]. The coefficient ¢ stands for the Planck
constant. In this paper we will consider a function K (p) which behaves as p* with
s € R. As mentioned in [21],

pV<KunAp+%K%anpF)=dww©,
with
K= (p div(K (p)Vp) + %(K(p) - pK’(p))IVpI2> Iga = K(p)Vp ® Vp.
Observing that K may be written as
K= <diV(pK(p)Vp) - %(K(p) + pK’(p))Isz) Iga — K(p)Vp ® Vp, (4)

and following the ideas of [8] with

w'(p) =v/pK(p), 5)

we can define the drift velocity v by

Ko V)
v = Vp =
P P

and show the following generalization of the Bohm identity:

div(K) = div(u(p)Vv) + %V(A(p)divv),
with
A(p) =2(u' (p)p — u(p)).

Remark 1. Note that the relation between A and p is exactly the BD relation found
in [9] in the Navier—Stokes setting: see the Navier—Stokes—Korteweg part below.
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We will choose K (p) as

2
(s +3) ey

K(p) = p’ withs € R inordertoget wu(p)=p

This multiplicative constant in the definition of K does not affect any generality,
it suffices to change the definition of €. Then, we obtain the following augmented
formulation for the Euler—Korteweg Equations (2)—(3):

3p +div(pu) =0, (6)

1
d(pu) +divipu ®u) +Vp(p) =¢ [div(u(p)Vﬁ) + EV(M'O) div 17)} (7

9 (p0)+divipt @u) =¢ [— div(u(p) 'Vu) — %V(k(p) div u)} , (8
with
A(p) =2(p ' (p) —u(p)), v=eVu(p)/p. 9

System (6)—(9) is called the Euler—Korteweg augmented system in the sequel. It has
been firstly introduced in this conservative form in [8] to propose a useful construc-
tion of a numerical scheme with entropy stability property under a hyperbolic CFL
condition for such dispersive PDEs. augmented system, the second order operator
matrix is skew-symetric.

The Quantum Euler Equations. Note that the choice K (p) = 1/p (which gives
u(p) = p and A(p) = 0) leads to the Bohm identity

1 A
pV (K(p)Ap + —K/<p>|Vp|2) — div(pVv) = 2pV (ﬂ) .
2 JP
In that case the system (6)—(9) becomes
orp +div(pu) =0, (10)
0 (pu) +diviou ®u) + V(p(p)) =& div(p Vv), (11)
3,(p ) +div(p D @ u) = —ediv(p ' Vu), (12)
with
v =¢Vlogp, (13)

which corresponds to the augmented formulation of the quantum Euler system:

3 p +div(pu) =0, (14)

A
3 (pu) +div(pu @ u) + Vp(p) =26 pV (ﬂ> (15)
NG
Then such a choice gives rise the so called quantum fluid system for which the
global existence of weak solutions of (14)—(15) has been shown in [2,3] and more



On Navier-Stokes—Korteweg and Euler—Korteweg Systems 979

recently in [18] assuming the initial velocity irrotational namely curl(poug) = 0.
Note that the quantum term is written as (4) in these papers, namely

A
2pV <7ﬁ> = div(V(leog p) —pVlogp ® Vlog ,0), (16)
0

observing that

JpVlogp =2V./p.

The existence of local strong solutions has also been proved (see [6]) and global
well-posedness for small irrotational data has been performed recently in [1],
assuming a natural stability condition on the pressure. We refer to (10)—(12) as
the quantum Euler augmented system in all the paper.

Important remark. Differentiating in space the mass equation in D'((0, T) x )
we get

9,V + Vdiv(pu) = 3,Vp +div('V(pu)) = 0,
which may be written
Vo +div(pVileg p Q@ u) + div("V(pu) — pVlog p ® u) = 0.

This formula will be used to show that global weak solutions of the Quantum-
Euler system (14)—(15) with the quantum term written as (16) will be global weak
solutions of the Quantum-Euler system in its augmented form.

Note that the quantum correction (A,/p)/./p can be interpreted as a quantum
potential, the so-called Bohm potential, which is well known in quantum mechanics.
This Bohm potential arises from the fluid dynamical formulation of the single-state
Schrodinger equation. The non-locality of quantum mechanics is approximated
by the fact that the equations of state do not only depend on the particle density
but also on its gradient. These equations were employed to model field emissions
from metals and steady-state tunneling in metal-insulator-metal structures and to
simulate ultra-small semiconductor devices.

Navier-Stokes—Korteweg system. Let us consider the compressible Navier—
Stokes—Korteweg system with density dependent viscosities u(p) and A(p) sat-
isfying the BD relation

A(p) =2 (p)p — n(p)),

and with the capillarity coefficient K (p) linked to the shear viscosity p(p) in the
following manner:

K(p) = [ (p)1*/p with u(p) = p® /% with s € R.

Remark 2. With this choice of shear viscosity, the relation between the capillarity
coefficient and the viscosity gives a capillarity coefficient proportional to p*.
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Then using the identity given in the Euler—Korteweg part, the Navier—Stokes—
Korteweg system can be written for x € Q and ¢ > 0,

3 p + div(pu) = 0, a7
9 (pu) +div(pu @ u) + Vp(p) —2v div(u(p) D)) — vV (A(p) divu)
=¢? [(div(u,(p)fw) + %V(X(p) div v)] , (18)

1
in which the symmetric part of the velocity gradient is D(u) = E(Vu +'Vu). The

parameter v > O stands for the viscosity constant. Multiplying (17) by u/(p) and
taking the gradient, we have the following equation on v:

1
3 (pv) +div(pv @ u) 4 div(u(p) ' Vu) + EV(K(,O) divu) = 0. (19)

Moreover, defining the intermediate velocity, called the effective velocity, w =
u + v v, Egs. (18) and (19) lead to

9 (pw) +diviow & u) + V(p(p)) — v div(u(p)Vw) — %V(A(p) div w)
= (e —1?) [div(,u(,o)Vv) + %V(A(p) div v)] )

Then (17)—(18) may be reformulated through the following augmented system:

8 p + div(pu) = 0, (20)
9 (pw) +divipw @ u) + V(p(p)) — v div(n(p)Vw) — gv(k(p) div w)
= (2 —1?) |:div(,u(,o)Vv) + %V(x(p) div v)] , 1)
3 (pv) +div(p v ® u) + div(u(p) ' Vu) + %V(A(p) divu) =0, (22)
with
w=u+vVup)/p, v=Vulp)/p, (23)

which we call the Navier—Stokes—Korteweg augmented system in the sequel.

The Quantum Navier-Stokes Equations. Note that with the choice K (p) = 1/p,
which gives 1 (p) = p and A(p) = 0, system (20)—(23) becomes

00 +div(pu) =0, (24)

I (pw) +divipw ® u) + V(p(p)) — v div(pVw) = (% — v?) div(pVv),
(25)

3 (pv) +div(pv ® u) +div(p'Vu) =0, (26)

with the constraints

w=u-+vVliogp, v=Vlogp, 27
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which is the augmented formulation of the compressible barotropic quantum
Navier—Stokes system

3 p +div(pu) =0, (28)

A
dr(pu) +div(pu @ u) + Vp(p) —2v div(pD(u)) = 282 oV <7{5) .

(29)

In [22,33,34], the global existence of weak solutions to (28)—(29) has been shown
following the idea introduced in [11] by testing the momentum equation by p ¢
with ¢ a test function. The problem of such formulation is that it requires y > 3
for d = 3, which is not a suitable assumption for physical cases. In [12] the
authors show the existence of solutions for (28)—(29) without quantum term (i.e.
for ¢ = 0) by adding a cold pressure term in the momentum equation. The cold
pressure is a suitable increasing function p, satisfying lim,_,¢ p.(n) = +o00c. The
key element of the proof is a x-entropy estimate. In [29], using the same strategy
and a «-entropy with k = 1/2, the existence of global weak solutions for (28)-
(29) is proven without any extra assumption on y and the semi-classical limit ¢
tends to zero is performed. In [44], A. Vasseur and C. Yu consider the compressible
barotropic quantum Navier—Stokes equations with damping i.e. system (28)—(29)
with additional terms in the right hand side of (29): —rou — r; plul?u. They prove
the global-in-time existence of weak solutions and their result is still valuable in the
case r;1 = 0 . Their proof is based on a Faedo-Galerkin approximation (following
the ideas of [34]) and a Bresch-Desjardins entropy (see [10, 11]). In [45], the authors
use the result obtained in [44] and pass to the limits ¢, ro, r1 tend to zero to prove
the existence of global-in-time weak solutions to degenerate compressible Navier—
Stokes equations. Note that to prove such a result they need uniform (with respect
to rg, r1) estimates to pass to the limit 7o, 71 tend to 0. To this end they have to firstly
pass to the limit ¢ tends to 0. The reader interested by the compressible Navier—
Stokes equations with density dependent viscosities is also referred to the interesting
paper [37] where more general viscosities are consiedered. Recently in [36] and
[4], global existence of weak solutions for the quantum Navier—Stokes equations
(28)—(29) has been proved without drag terms and without any cold pressure. In
the first paper, the method is based on the construction of weak solutions that are
renormalized in the velocity variable. Note that the construction being uniform
with respect to the Planck constant, the authors also perform the semi-classical
limit to the associated compressible Navier—Stokes equations. Note also the recent
paper [4] concerning the global existence for the quantum Navier—Stokes system
where they use in a very nice way the mathematical structure of the equations. It
is important to remark that a global weak solutions of the quantum Navier—Stokes
equations in the sense of [36] is also weak solution of the augmented system (due to
the regularity which is envolved allowing to write the equation on the drift velocity
v). Remark also that there exists no global existence result of weak solutions for
the compressible Navier—Stokes—Korteweg system with constant viscosities even
in the two-dimensional in space case.
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Main objectives of the paper. In this paper, in the authors’ point of view, there are
several interesting and new results. First, starting with the global weak solutions of
the quantum Navier—Stokes equations constructed in [36] (which is a 1/2-entropy
solution in the sense of [12]), we show at the viscous limit the existence of a
dissipative solution for the quantum Euler system letting the viscosity goes to zero.
This gives the first global existence result of dissipative solution for the quantum
Euler system obtained from a quantum Navier—Stokes type system. Note that in
[21], it is proved the existence of infinite dissipative solutions of such inviscid
quantum system. Here we present a way to select one starting from a Navier—
Stokes type system. Secondly, we develop relative entropy estimates for general
cases of the Euler—Korteweg and the Navier—Stokes—Korteweg systems extending
the augmented formulations introduced recently in [13] and [14]: more general
viscosities and third order dispersive terms. This gives a more simple procedure to
perform relative entropy than the one developped in [21,27] for the Euler—Korteweg
system but asks us to start with an augmented version of the Euler—Korteweg system.
This allows us to extend for the Euler—Korteweg the weak—strong uniqueness result
already proved for the quantume Euler-system in [27] and extend the result for the
Navier—Stokes—Korteweg systems.

This also helps to get rid the concavity assumption on 1/ K (p) which is strongly
used in [27]. For the interested readers, we provide a comparison of the quantities
appearing in our relative entropy to the ones introduced in [27] and remark that
they are equivalent under the assumptions made in [27]. Note that to perform our
calculations for the Navier—Stokes—Korteweg system, we need to generalize in
a non-trivial way the identity (5) in [13]; see Proposition 30 for the generalized
identity.

For reader’s convenience, let us explain the simple idea behind all the calcula-
tions. The kinetic energy corresponding to the Euler—Korteweg system reads

1 2 2
/<5plu| +H(p)+K(p)|Vp|>
Q
with

P
H(p) = p/ &?dz
1 Z

In [27], they consider that it is an energy written in terms of (p, u, Vp) and they
write a relative entropy playing with these unknowns. In our calculations, we write
the kinetic energy as follows:

1
fQ (§p|u|2 + H(p) + p|v|2) ,

with v = /K (p)Vp/,/p and we consider three quantities p, u and v. This moti-
vates to write an augmented system (p, u, v) and to modulate the energy through
these three unknowns. This gives the simplest way to define an appropriate rela-
tive entropy quantity compared to [27] and [21] and allows to relax the concavity
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assumption on 1/K(p) made in the part concerning Euler—Korteweg system in
[27]. Our result covers capillarity coefficient under the form

K(p) ~ p® withs +2 <y ands > —1.

Finally, our result makes the link between Euler—Korteweg system and Navier—
Stokes—Korteweg system. After proving the global existence of 1/2-entropy solu-
tions of the general Navier—Stokes—Korteweg system (this is the subject of a forth-
coming paper [15] still in progress; the case K (p) = 1/p has been recently proved
in [36]), this could give the mathematical justification of a physical dissipative solu-
tion of the Euler—Korteweg equations obtained from 1/2-entropy solutions of the
Navier—Stokes—Korteweg equations in the spirit of [12]. Note also the other inter-
esting result in [4] on the Quantum-Navier—Stokes equations but under hypothesis
between the magnitude of the viscous and capillarity coefficients. Let us also men-
tion that our relative entropies could be helpful for other singular limits as explained
in the book [24] in the case of constant viscosities.

The paper is organized as follows: in Sect. 2, we provide energy estimates and
the definition of weak solutions for the augmented Euler—Korteweg and Navier—
Stokes—Korteweg systems. In Sect. 3, we give the definition of the relative entropy
formula and we established the associated estimate. This one is used to define what
we call a dissipative solution for the Euler—Korteweg system and we established
a weak/strong uniqueness result. The same results are obtained for the Navier—
Stokes—Korteweg system in Sect. 4. In Sect. 5 we use the previous results to show
the limit when the viscosity tends to zero in the quantum Navier—Stokes system.
Finally we give in Appendix some technical lemmas on modulated quantities and
a comparaison between the relative entropy developed here and the one used in
[21,27], and we state the definitions used for the operators.

2. Energy Estimates and Definition of Weak Solutions

In this subsection we give the energy equalities for the augmented Euler—
Korteweg and Navier—Stokes—Korteweg systems. They will be used in the following
to establish the estimates for the relative entropy associated to each one. We also
define weak solutions concept for the two augmented systems. First of all, let us
recall the definition of the function H called the enthalpy by

o)
H(p) = pe(p) = pfl &f) dz.

Namely we have,

p'(p) .

pH'(p) — H(p) = p(p),  H'"(p) =

1
To be more precise, since p(p) = p¥ with y > 1, this yields H (p) = —1p(,0).
y —
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Euler-Korteweg system. For the augmented Euler—Korteweg system we can show
the following formal proposition:

Proposition 3. All strong enough solution (p, u, v) of system (6)—(9) satisfies

dEguk (0, u, v) _

0,
dt

where E g,k is the natural energy density given by

1 1
Eguk () = Eguk (p, u, v) = fg (5 o lul* + 3 e? K(p)|Vpl* + H(p)) :

(30)
Proof. It suffices to take the scalar product of the equation related to # by u and
the equation related to v by v and integrate in space using the mass equation, the
symmetry of Vv and the relation ,0|v|2 = K(,o)lV,o|2. |
Global weak solutions of the augmented system. An assumption between K (p) and

p(p) will be required to define global weak solutions of the augmented version of
the Euler—Korteweg system namely,

K(p) = [ (0)*/p with (p) = p"/2 and  p(p) = p?,
with
s+2 <y, s>—landy > 1.

Assume the initial density po positive and in L' (), namely

po >0 and f po < +00
Q
and

Exuk (0o, uo, vg) < 400,

where vg and ug is zero where py vanishes. We can define global weak solutions
of the augmented version of the Euler—Korteweg system as solutions satisfying for
aete[0,T]:

Eguk (0, u, 0)(t) < Egyk (p, u, 0)|;=0 < +00

with

p>0 and /p:/ £0 and sup fu(p) < 400,
Q Q 1e(0,7) JQ

and satisfying the following augmented system in a distribution sense:
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9;p +div(pu) =0, (31)
Oy rek ()

A (pu)+diviou @u) + Vp(p) = edlv(']I‘E”K( )+ 20(0)
(32)
Ap)

3 (p ) +div(p D @ u) = —& div((']I‘E”K(u))’ e}

Tr (T @) (33)
with

() =2(p ' (p) — n(p)), v=eVulp)/p, (34)

where the tensor valued function TZ“X (9) (for & = u and v) is defined through the
relation

1
TEK 9) = [V(M(p)e) — P60 ® a)}

with
TE“K 9y € L0, T; w—1(Q)).

Important property. Note that the energy estimate provides the bound L*°(0, T';
LY (R2)) on p and thus 11(p)//p € L*(0, T; L?*(£2)) and, using the mass equation,
p(p) € L=, T; L' ().

Important remark. Let us remark that for the global weak solutions of the Euler—
Korteweg, the following equation may be checked to be satsified in the distribution
sense:
a ( ) EuK
i(p) + div(u(p) u) + 200 )T r (T2 ()] = 0. (35)
Remark that A(p)/u(p) = 2(u'(p)p — p)/u(p) = Cte. Taking the gradient of
Eq. (41), we get
A(p)
21u(p)

and therefore, by definition of TZ*X (1) and expression of T, we can write

A(p)
21(p)
This explain why a global weak solution of the Euler—Korteweg system with the

extra equality (35) satsified is also global weak solution of the augmented Euler—
Korteweg system.

3 V(p) +div('V(n(p)u) +V ( Tr (TE“K(u») =0,

3 (pv) + div(pT ® u) + e div((TE“K (u))") + eV ( 2 e (TEH K (y )))

Navier-Stokes—Korteweg system. Concerning the augmented Navier—Stokes—
Korteweg system (20)—(23), defining the energy

2 2

gc—v 0
Bt = By oo = [ (S50 10P 4 Sl + HG ).

we have the following formal equality:
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Proposition 4. For (p, v, w) a strong enough solution of (20)—(23) we have

d 811
K (p,v, w)+va<M(p) (IVwP? + @ = v)IVul) + 1 () H" (0 V o)

+v / ( () ((d w)? + (2 — v2)(div v)2)> =0.
Q

It suffices to take the scalar product of (21) with w and to take the scalar product of
(22) by (¢2 — v?)v, using the expressions of w and v, integrate in space and sum
to prove the result using the mass equation.

Global weak solutions of the augmented system. Looking at new unknowns
(p, v, w) with ¥ = +/&2 — v2, an assumption between K (p) and p(p) will be
required to define global weak solutions of the augmented version of the Navier-
Korteweg system, namely

K(p) = (W' (0)F/p with u(p) = p 2 and  p(p) = p”,
with
s+2 <y, s>—landy > 1.
Note that with this constraint on (), we have

A(p)/(p) =2 (p)p — (p))/1(p) = (s + 1) = Cst = 0.

Assume that the initial density pg is positive and in L'(€2) we have
o >0, / po < +00
Q
and
Ensk (o, Vo, wo) < +00
with

Ensk (00, Y0, wo) = [Exsk (p, ¥, w)],—g = [ / plo* + plw|* + H(p)}
Q =0
= / polol* + polwol® + H(po).
Q

We can define global weak solutions of the augmented version of the Navier-
Korteweg system as solutions satisfying, for r € [0, T'], a.e T € [0, t],

! 1
Esk(p. 3, w)(r>+v/ | <(|T(w)|2+|ﬂr(ﬁ)|2)+ LY U |2)
Q g2 —v2 1/ (p)
A
/ / ( @ (1 (T(w)>|2+|Tr(T(v)>|2)>sENSK(p,a,wxm,
2u(p)

(36)
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where

Ensk(p, U, w)=/,o|z7|2+p|w|2+H(p)
Q

p >0, /p=/po<+oo, sup/u(p)<+oo.
Q Q 1e(0,T) JQ

The augmented system in the distribution is as follows:

orp + div(pu) =0, (37)
9 (pw) +diviow ® u) + V(p(p))

A
o V[T ) — L /)T (T (w))1d]

2p(p)
= Ver = din[VRIT0) + 5 oI @)1 G8)
3 (p 0) + div(p b ® u) — v div[/u(p)T(@) + %mn (T(9))1d]
=~V =12 div[ V() (T(w))’ + %Wﬁﬂf(w»ld] (39)
with
w=u+vVup)/p.  5=e2 —2Vu(0)/p, (40)

and where the tensor valued function T(8) (for & = w and v) satisfies /v T(8) is
bounded in L2(0, T; L%(2)) and satisfies the relation

Vi(E)TO) = V(u(p)0) — =00 ® 1,

1
Vel —v
and is chosen equal to zero when p vanishes.

1) Important property. Note that the energy estimate provides the bound L*°(0, T';
LY(Q)) on p and thus u(p)//p € L*>(0,T; L%(Q)) and thus using the mass
quation u(p) € L°°(0, T; L1 (RQ)).

2) Important Remark. Let us remark that for the global weak solutions of the Navier—
Stokes—Korteweg, the following equation is satisfied in the distribution sense

A
v [@M(p) +div(u(p) u) + %\/ n(p)Tr (T(M))] =0, (41)

where u = w — v v/+/e%2 — v2. Taking the gradient of Eq. (41), we get

by
v [&Vu(p) +div('V(u(p)u)) + V(%\/M(P)TY(T(M)))] =0,

and therefore by definition of /1t (0)T(u) and expression of v, we can write
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v [3z (pv) +div(pv ® u) + div(y/ 1t (p) (T(w))")

+v (2 (f )) V(o) Tr(T(u)))]

This explains why a global weak solution of the Navier—Stokes—Korteweg system
is also global weak solution of the augmented Navier—Stokes—Korteweg system.

3. The Euler-Korteweg System: Relative Entropy and Dissipative Solution

In this section, we consider the problem (2)—(3) through its augmented formu-
lation (31)—(33). The main goal of this section is to give the definition of what
we call a dissipative solution for this problem. To this end we have to establish a
relative entropy inequality.

3.1. Relative Entropy Inequality

In [23], Feireisl et al. have introduced relative entropies, suitable weak solutions
and weak—strong uniqueness properties for the compressible Navier—Stokes equa-
tions with constant viscosities. The goal of this subsection is to establish a relative
entropy inequality for the Euler—Korteweg System using the augmented formula-
tion introduced in [8] and extending the ideas in [13] and [14] to such system in
order to be able to define what is called a dissipative solution.

Let us consider the relative entropy functional, denoted Eg, g (0, u, v|r, U, V)
and defined by

Eeux ) = Eeuk (o, u, v|r, U, V)(1)

:l/p lu—U?+e¢ (,0 ‘,K(r
2Ja V

_ 1 2., .2 2
_5/52'()('”_[]' +e |U—V|)+/S;H(,0|"),

H(plr) = H(p) — H(r) = H'(r)(p — 1),

where (p, u, v) isa weak solution of System (31)—(34) and (r, U, V') smooth enough
target functions. Note that the definition of the relative entropy used here is different
from the one used in [27] but we can show that the twice are equivalent in some
sense for some range of the capillary coefficient. We refer to appendix 6.2 for more
details. Let us just say that such an energy measures the distance between a weak
solution (p, u, v) of (31)—(34) to any smooth enough test function (r, U, V). The
goal here is to prove an inequality of type

f H(p|r)

(42)

with

t
Epux () — EEuk (0) < C/o Eruk (§)dE,

with C a positive constant. To this end let us first prove the following proposition:
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Proposition 5. Let us assume that u(p) = pC+t3/2 withy > s +2and s > —1.
Let (p, u, v) be a global weak solution to the augmented system (31)—(34). We have

t t
eEuKa)—eEuK(O)sf /p(U—u>~a,U+/ fp(vw)-(U—u)
0 Q 0 Q

t
+//p(17—5)-a,v
0 JQ
t
+f/,o(vf/u).(\7—a)
0 JQ

t
te / <11‘E”K(17)+ MO) iy (TEK ()14t VU)
0 2 ( ) W—l,l(Q)le,JrOO(Q)

' A(p)
—¢ / <(TEMK(M))[ T (TE”K( ))Id VV>
0 2

w(p)
t
—/ /P(p)divU
0 Ja

t
- /O /Q [0:(H' () (o = 1) + PV H' () - u]

WLI(@)x Wh+o(Q)

forallt € [0, T] and for all smooth test functions (r, U, V) with
reCl(0,T1xQ), r>0, U, Vel 0,T]xRQ).

Proof. Thanks to the global weak solutions definition given after Proposition 3 we
have

1 K
Epuk (1) — Epuk (0) < / gIUl2 —pu-U+ i,oezﬁWﬂ2

Q r
2 /K(p)vp [k W) »
o) r

2 K(r)
=

1 2
— |U| —pu- U+§ |Vr|

/K(p /K<r )(0)

—/Q (Hr) +H'(n(p—1) @)

+ /Q (H) + H (o — 1) 0,
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£ e < [ [ S (Lwe Ut spVP—po.V
Euk (1) — EMK()_/()/gZE(5| " —pu- +§P| “—pv- )
! d
—/0 /;ZE(H(r)+H/(r)(p—r)). 43)

We multiply (32) by U, (33) by V and we integrate with respect to time and space.
Writing

0(pu-U)y=0(pu)-U+pu-oU
and

o(pv-V)y=20(pv) - V4+pv-0,V
and thanks to integrations by parts, we obtain

Eeux () — EEuk (0)

t ,O t t
s//af(gwﬂ —f /Pu'azU—//p(VUM)'M
0 Q 0 Q

! Euk /- A(p) Euk
+s/('ﬂ‘ (>+2 LT ()l vu)

[ o) s
—/0 /Qp(vf/u)-a

t
— [ (R oy + ST e )

2u(p) W-L1(Q)x Wloo(Q)

/ /p(p)dwU / /az<H(r)+H<r)(p—r>)

Using (31) and

WL1(@)x Whoo(Q)

0 1
o (SIUP) = SaplUP+pU - 8U
2 2
P2 L. 2
o (5|V| )= —3div(pu)| V2 +p V-3V,

thanks to integrations by parts, we have

t t _ _
SEuKm—eEuK(ms/ /p(U—u>-atU+f /p(V—ﬁ)-atv
0 Q 0 Q

t t
+//p(VUu)~(U—u)~I—/fp(VVu)-(V—ﬁ)
0 JQ 0 JQ
! EukK /- . VU
8/0 <T @ >W‘1‘1($2)><W'v°°(§2)

—¢ / t((TE”Kw))f; vv)
0

WL Q)x W1 (Q)
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t
+f/ (MTr (TEK (5))1d: VU>
0

2 w(p) W-L1(Q)x Wl (Q)
t )\‘ _
—f/ (ﬂTr (']I‘E”K(u))ld;VV>
2 Jo \u(p) W-LI@)x Wloo(Q)

t t
—/ /p(p) divU—/ faf<H<r)+H’<r><p—r>>.
0 Q 0 Q

This last inequality gives the result since with Eq. (31) we have

/Q 3 (H'(r)(p — r)) = /Q (B (H' () (p — 1) + pV(H'(F)) - u).
O

Proposition 6. Let (p, u, v) be a global weak solution of the augmented system
(31)—(34) and (r, U, V) be a strong solution of

dr +div(rU) =0, (44)
r (U +U-VU)+Vp(r)—¢ [div(,u(r)V\_/) + %V(w) div V)} =0,
(45)
r(%V+U-VV)+ 8[div(;¢(r) 'VU) + %V(A(r) div U)] =0 (46)
belonging to the class

0 <inforyxor <r < sup(, 7yxol < +00

Vr e L*0,T; L®(Q) N L0, T; WH®(Q))

U e L®0, T; W>>*(Q)) N W-2(0, T; L®()),

V e L0, T; W»(Q)) N Wh®(0, T; L®(RQ)),

&H'(r) e L'YO,T; LYY=YV(Q)), VH'(r)e L', T; L' D(Q))

and V|;—o = eV u(ro)/ro. Then we have

t
Epur (1) — Epur (0) < /0 /Q plu—U) - (VUU — u)

t
—/ /p(V—a>~(vV(U—u)>
0 JQ
t
- / / (p(p) = p(r) = (p — P () divU
0 JQ
t
—/ /p(a—V)-VU(ﬁ—V)
0 JQ

t
+f /,0(17—\_/)~V\_/(M—U)
0 JQ

t
—8/ / p(w" (P)Vp =1 (r)V(r)
0 JQ
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(@=V)divU + (U —u) divV)

1

—e f / p (W (p) =1 () (@ = V)
0 JQ

V(divU) + (U —u) - V({div V)).

Proof. First remark that due to the initial condition hypothesis and the regularity
hypothesis on U, we can prove that V = &V (r)/r. Multiplying (45) by L (U —u)
r

and (46) by L (V — ¥) and integrating with respect to time and space we have
r

t
Epur () — Exur (0) < —/0 /Qp(w(u_u)).(y_u)

t
—/ /p(VV(U—u))~(‘7—17)
0 JQ

with
t
JEvK / / (ﬁ div((r)VV) - (U —u) — 2 diviuey' vy - (7 — 5))
0 Q\r r
! Fuk =
+/0 <T )3 VU>Wflv1(s2)xwl-°°(sz)
t
- [ (@ vy)
0

t t
2 1FuK =f / B(U—u).v()\(r) divV)—/ / P —9-vou divo
0oJor 0oJar

W-L1(@)x Whoo(Q)

t
+/ <MTr(TE"K(ﬁ))Id; VU>
0

u(p) W=Ll(@)x Whoo(Q)
t A _
—/ <ﬂTr(TE"K(u))Id;vv>
0 \1e(p) W@ x W)

t
K = f / (=) divu = 2V p(r) - U —u)

0 JQ r

—0:(H'(r)(p—r) —pV(H'(r)) - u).
Using rH” (r) = p’(r), we have

EVp(r) = pV(H ().
Mutiplying (44) by H” (r) and using r H” (r) = p’(r), we obtain
OH' (r)+VH'(r)- U+ p'(r)divU = 0.

Using r H”(r) = p’(r) and an integration by parts, we have

' t
/ / rVH (U = —/ / p(r)divU.
0 Ja 0 Ja
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Then,
t
Ik = /0 /Q (p(r) — p(p) — (r — p)p'(r)) div U.
We have
IEMK IEMK + IEMK, (47)
where

t
sIFuK =e/ /B,u(r)[A\_/o(U—u)—VdiVU'(V—ﬁ)]
0oJar

t
/ fp<V~W)-(U—u)—p<(V—v>~VU)-V,
0 Q

and using the symmetry of V4 and VV and the definition the tensor value function
TE“K (41) and TE“K () which may be also written for U and V (recalling that
u(p) € L0, T; L'(Q))),

t
eIEHK = e/ (TE% @); vu)
0 WLL(@)x W!oo()
t
—sf (=K Gyy'; v V)
0 WLL @) x Woo(Q)
t
— TEMK = l; VU)
8/0 <( @) W1 (Q) x W1-o0(R)

t
—s/ <TEMK(M); vv)
0 W-LL@)xWhoo(Q)

—¢ /O l(((TE“K(V»‘; vu)

W-LH@Q)x Who(Q)

t
+s/ <']1‘E“K(U); vv)
0 W-LL (@) x W1 ()

t
- e/ / M(,o)[(\_/ — %) VdivU + (u — U)AV]
0 JQ

t
+/ p(V—=10)-VU)-v—p{@-VV)- (U —u).
0

Then we get

EuK // (M(P)
t
—//,0(17—\_/)~VU(17—‘7)+f/p(D—V)-V‘_/(u—U).
0 JQ 0 JQ

Let us now look at 1, EuK wWe have

1fK //—(U—u) V(r)divV) — //—(V—v) V(i (r)divU)

“ir)) (5= V) -div(VU) + (u — U) - div(VV))
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"1 2(p) Euk -
+ —Tr(T*"** (v))Id; VU
/(\) <:u*(10) ( ( )) )W—IVI(Q)le,m(Q)
APk B}
- ——Tr(T*K (u))ld; VV ,
+/o <M(p) " ) >W*“(Q)><W1,oo(§2)

and therefore, recalling that A'(p) = 2pu” (p) and playing as for I“X we get
t
208K = 2 / / p (1 @)V —pn')Vr) - (0= V) divU + (U — u) div V)
0 JQ

1
—/ / (1) = 22)) (G = V) - V(@ivU) + (U = w) - V(div D)),
0 JQ r

and therefore because A(p) = 2(u'(p)p — n(p)), we get

13
e(IE"K 4+ [fvKy = —/0 /Qp(ﬁ ~V)- VU@ - V)

t
+/ fp(ﬁ—V)-vV(u—U)
0 JQ
t
—8/0 /Qp(u”(p)Vp—u”(r)V(r))
(@=V)divU + (U —u) divV)

t -
—8/ / P (p) — ' () (0= V)
0 J@
V(divU) + (U —u) - V(div V)).
This concludes the proof. O

Theorem 7. Let us assume ju(p) = p+3/2 withy > s +2and s > —1. Let
(p, u, v) be a global weak solution of the augmented system (31)—(34) and (r, U, V)
be a strong solution of (44)—(46) in the sense of Proposition 6. We have

t
Eeuk (1) — Epux (0) < C(r, U, V)/o Eeuk (§)dE,

where C(r, U, V) is a uniformly bounded constant on R x Q.

Using Gronwall’s Lemma, we directly obtain

Corollary 8. Let us assume j1(p) = p®T3/2 withy > s +2and s > —1. Let
(p, u, v) be a global weak solution of (31)—(34) and (r, U, V) a strong solution of
(44)—(46) in the sense of proposition 6. Then

Eruk (t) < Epuk (0) exp(C 1),

with C = C(r,U, V) a uniformly bounded constant on R™ x Q. It the initial
conditions coincide for (p,u,v) and (r,U, V) thenp =r,u=U, v =1V.

Note that theorem 7 is a direct consequence of proposition 6 and the following
lemma:
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Lemma 9. We assume that ju(p) = p+3/2 withs > —1. Let (p, u, v) be a global
weak solution of (31)—(34) and (r, U, V) be a strong solution of (44)—(46) in the
sense of Proposition 6. Then

&

t —_ —_
/0 /Qp (" @)V — 1" (V) - (0 =V)divU + (U — u) div V)'

s+1 [! o
<cC / /p(|v—V|2+|u—U|2),
2 Jo Ja

and, if y > 2 + s, we have
t - -
’ [ [ et @ = wen (@ =9y - vaive) + @ - - v V))‘
t -
sc [ [ (#ein+paz-VP+u-UP).
0 JQ

where C = C(r, U, V) is a uniformly bounded constant on R™ x Q.

Proof. As (r,U,V)isa strong solution of (44)—(46) then we can prove that V=
eV(u(r))/r. Since u(p) = p“ /2 and o = eV (u(p))/p, we have

1 Vi N + 1 — b
e (P)Vp —pu (r)Vr) = > (v—=1V),

which gives the first part of the lemma using Young’s inequality. For the second
one, using Young’s inequality, we have

t
/0 f9|p(/ﬂ(p) — W) (@ =V) - VdivU) + U —u) - V(divV))|

1 [ ’ y ’
§C<§/ /p|u’(p)—u’(r)|2+/ /p|ﬁ—V|2+/ /p|u—U|2),
0 Q 0 Q 0 JQ

with C = C(U, V) a uniformly bounded constant on R™ x . Using Lemma 35
in the first integral, we obtain the result. O

Let us now give a weak—strong uniqueness result based on solutions that have
been already constructed in [3—18] and [6].

Theorem 10. Let (ro, ug) € HTH(Q) x H(Q) withs > 2+ d/2 withry > 0
such that curl(roug) = 0. Let (p, u) be a global weak solution in (0, T) x Q2 of the
Quantum-Euler system

orp +div(pu) =0 (48)
0 (pu) + div(pu @ u) = &2 div (VVp —pVlogp ® Vlog p) 49)

corresponding to the initial data (rq, roug) and let (r, U) a local strong solution in
(0, T*) x Q of this system for the same initial data with

O<c<r<c!<+o0,
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where c is a constant and

reC(0,T] x HTH(Q)) x ([0, T] x H~1(Q))
U eC([0,T] x H () x C'([0, T] x H*"2(Q)),
then p=r,u=U and w = W on (0, min {T, T*}) x Q.

Proof. Let us first remark that such existence of local strong solution has been proved
for instance in [6] in the whole space without the constraint on curl(pgug) = O but
may be considered in the periodic case. The global existence of weak solution for
the Quantum—Euler System with the constraint curl(pgup) = 0 has been obtained
in two papers, namely [3] and [18]. For a strong solution, it is not difficult to prove
that it also satisfies the augmented system. Concerning the global weak solution, it
suffices to recall the important remark given in the introduction. Differentiating in
space the mass equation in D'((0, T) x ), we get

3, Vp + Vdiv(pu) = 8, Vp + div('V(pu)) = &2 diviap — V/p ® /pl,
which may be written
3V +div(pVileg p @ u) + div("V(pu) — pViog p @ u) = 0,
and therefore
Vp +div(pVlog p ® u) + div(Tw)") = 0.

Using the definition pv = ¢V p, we can rewrite the Quantum-Euler system and the
previous relation in its augmented form:

d:p + div(pu) =0 50)
0r(pu) + div(pu ® u) = ediv T(v) 5D
0 pv + div(pv Q@ u) + ¢ diV(T(u)’) =0, (52)

which is the augmented version of the Quantum-Euler equations. Thus a global
weak solution of the Quantum-Euler system is a global weak solution of the aug-
mented Quantum-Euler system and therefore the weak—strong uniqueness corollary
8 may be applied due to the regularity of the strong solution.

3.2. Dissipative Solutions and Weak—Strong Uniqueness Result

In this subsection, we give the definition of what we call a dissipative solution
for the Euler—Korteweg System. We recall that £, (f) stands for

Eeuk () = Epuk (o, u, v|r, U, V)(1),

defined in (42). Let U be a smooth function, then we solve the transport equation
for r for the initial data ro such that 0 < rg < 400. We then define the function &
as
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Er,U)y=r@,U+U-VU)+Vp(r) — &2 div(iu(r)'VV) + %V(A(r) divV),

(53)
with 7 V = V(u(r)). Then we can prove, differentiating (44), that
1
0=r@V+U-VV)+div(u(r)'VU) + V() div U). (54)
Definition 11. Let us assume w(p) = pY /2 (ie. K(p) = %p‘) with y >

s+2ands > —1.Let pg and ug smooth enough. The triplet (p, u, v) is a dissipative
solution of the Euler—Korteweg System corresponding to the initial conditions

pli=0 = po,  puli=0 = pouo,  PV|i=0 =/ PoK (P0)V po,

if the triplet (p, u, v) satisfies
t
Epuk (1) < Epur (0)exp(C 1) + bguk (1) + C / bk (€) exp(C (t — ) d&
0

withC =C (82, r, U, V) a uniformly bounded constant on R™ x €, and where

"o
bEuKm:f f—|£~(U—u>|
0 Qr

for all strong enough U test functions and with (r, &) given respectively through
(44) and (53) and the identity (54):

As a direct consequence, we can establish the following weak—strong unique-
ness property (see [26]).

(s +3)?

Theorem 12. Let us assume w(p) = pS+3)/2 (ie. K(p) = 0°) with

y > s+ 2ands > —1. Let us consider a dissipative solution (p, u, v) to the
Euler—Korteweg system satisfying the initial conditions

pli=0 = po,  puli=0 = pouo,  PV|r=0 = /oK (p0)V po.

Let us assume that (r, U) is a strong solution of (44) and
1
r (U +VUU)+Vp(r)—e*rv (K(r)Ar + EK’(r)|Vr|2) =0, (55

with the regularity given in proposition 6 where we denote V.= eV (ju(r))/r
and with (po, ug) € W>®(Q) x WHo(Q). If rli—o = po, Uli—o = ug then
p=r,u=Uandv =V, which means that the problem satisfies a dissipative-
strong uniqueness property.

Proof. If (r, U) is a strong solution of (44), (55) then & = 0 and b,k (t) = 0. We
have

0 =< Eeuk (1) = Epuk (0) exp(C1). (56)

Ifr(t =0) = pg, U(t =0) = ug then v(t =0) = V(t = 0) and Eg,x(0) = 0,
then this leadsto p = r,u = U, v = V using (56). O



998 DIDIER BRESCH ET AL.

Note that, as already mentioned, all the results and definitions of this section
are still valid for the compressible quantum Euler System. Indeed this corresponds
to the special case K(p) = 1/p in the Euler—Korteweg System for which the
assumption 2 + s < y is satisfied since s = —1 and y > 1. In particular we have
the following definition of what we call a dissipative solution of the quantum Euler
system this one will be used in Sect. 5:

Definition 13. Let pg and up smooth enough. The triplet (p, u, v) is a dissipa-
tive solution of the quantum Euler system (14)—(15) corresponding to the initial
conditions

pli=0 = po,  puli=0 = pouo,  pvl;=0 = poV log po,

if the triplet (o, u, v) satisfies
t
Eeuo ) < Eup0)exp(Ct) +bpyo(t) +C /0 beuo(§)exp(C (t — §)) d§,

where ££,0(0) = EEupli—o0 and with a constant C = C2, U, V) uniformly
bounded on Rt x , and

gEuQ(t) = Epuk (1), for K(p) = 1/:0,

"o
bEuQm:f /—|£.(U—u)|
0 Qr

for all smooth U and (r, V, &) defined, respectively, through (44) and

V =Vlogr, (57)
ErU) = (U +U -VU) + Vp(r) — e2div (rVV). (58)

Remark. Note that, in the definition above, since U is regular and also r, we have
V which satisfies

r @V +U-VV)+div('VU) =0. (59)

4. The Navier-Stokes—Korteweg System: Relative Entropy and Dissipative
Solution

The goal of this section is to define what we call a dissipative solution for the
Navier—Stokes—Korteweg System. To this end, we consider the augmented System
(20)—(23) and we establish a relative entropy estimate. Here the viscous term adds
some difficulties compared to the case of the Euler—Korteweg system.
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4.1. Relative Entropy Inequality

In this section, we establish a relative entropy inequality for a weak solution
(p, v, w) of the augmented System (37)—(39). This will then be used to give the
definition of what is called a dissipative solution for the Navier—Stokes—Korteweg
system. We define the following relative entropy functional:

Ensk (t) = Ensk (p, D, wir, V, W)

:%/ (|v—V|2+|w WI2 /H(plr)
~ T(w) 2)
+ —— - VV*+ —- VW
"/ /“(p) (' T V! |«/M(p) |
T div 712 Tr T'(w) >
V)2 + —divw
// ()( T V) (\/u(p) )

Proposition 14. Any global weak solution (p, v, w) of the augmented system (37)—
(40) satisfies the following inequality for all t € [0, T] and for any test functions

reCl (0, T1xQ), r>0, V,WeC*0,T]x Q),
Ensk (p, D, wlr, V, W)(1)
<&nsk(p,v,wl|r, V, W)(0)

+/(;t/9p(8,f/~(‘7—17)+(V\_/u)~(‘7—17))
+/O'/Qp<atW~<W—w)+<VWu>-(W—w))

+v[)l/S2M(p) (|VV|2+|VW|2> — V() (T(@) : VV + T(w) : VW)
+/ﬂ/t/ Vielp) (T@) : VW — (Tw))" : VV)

+/e2 — vz/ / 2«/% (Tr(T(®) div W — Tr(T(w)) div V)

42 / [ 2(p) (div V)2 + (div W)Z) (60)
2 Jo Ja

S

t
- fo [Q (B (H' () (p—r)+pV(H'(r) - u+ p(p)divw)

t
—v/ /M/(p)H”(p)IVplz-
0 JQ

Remark. Note that each of these quantities are defined in the usual sense for
weak solution (p, v, w) and regular test functions (7, V, W) as chosen in the
proposition above. The main difference compared to the Euler—Korteweg sys-
tem is that here we control /v T(¥) and /v T(w) in L?>(0, T; L*(2)) and

Tr(T(?) div V + Tr(T(w)) div W)
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Ji(p) € L0, T, L%(Q)) to define in the usual way the first order derivative

quantities.

Proof. Thanks to (36) , we have

Ensk ) = Ensi® = [ (5177 = po- V4 2IWE = pw- W) ()
Q

where

—/ (SIVR = po - 7+ 21WP = pw - W) ©)
q \2 2

- /Q (H) + H () p — 1) ()

+/Q (H(r) + H'(r)(p—1)) (0)

t
o [ [ W ooR v (1 + 1),
0 JQ

NS (p) ) . 2
21 //QW | div V| +|d1vW|),
/ / *p) (Tr(T (D)) div V + Tr(T(w)) div W),

Q

Vi (p)

IZNS=/ [ o (1972 + 1vwP)
0 JQ

t
— 2/0 /Q,/M(p) (T(@): VV +T(w): VW).

Using (38),

(pw-W)y=0(w) - W+pw-o,W
= (~div(pw @) = Vp(p) + v div(y/ (o) T(w))

where

A=

Using (39),

v
=V
2 (

9 (pv

-

+Ve — 12 div(y/ () T(D)); W}

W21(Q)x W2°(Q)

+ < Al; w >W’2'I(Q)><W2’°°(Q) +p w - 8;W,

A(p)

A(p) ) g2 —v? (
Tr(T + v
w(p) v 2

V)=d(pv) - V+pi -8V

—div(p v @ u) + vdiv(y/ u(p)T(v))

v u(p)

Tr(']I‘(ﬁ))) .

(61)

(62)

(63)

(64)
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—Ve? =2 div(y (o) (T(w))"): V)

W21 Q)x W22(Q)

+ < AZ, ‘7 >W—2,I(Q)Xw2.oc(sz) +p v - 8[‘_/, (65)
where
Ay = > \Y < = 00) Tr(’]I‘(v))) > Ve PEAY (WTr(T(w))> .

Then, Using (37),
t t
f / B (H(r) + H' (M) (p — r)) = / / (H'(r) dr + 0, (' (M) (o — 1)
0 Q 0 Q
CH'(r) 0o — H'(F) 3rr)

t
_ /0 /Q (B (H () (p — ) — H'(Ddiv (pu))

t
- /O /Q (B (H' (")) (p — 1) + pV(H'() - u)
Since
P2 ! 712 YA RY, P w2 1 2
o (5IVP) = 30pl VP + 0V -0V, o (S1W12) = Sapl WP+ pW -0 W,

and since Vo, VV are symmetric matrices (recall that v and V are gradient of
functions), thanks to (37) and integrations by parts we obtain

t t
SNSK(I)_SNSK(O)S/ /,031‘7'(‘7—6)+/ /,o(VVu)-(V—D)
0 Ja 0 Ja

t t
—i—//,OatW~(W—w)+//,o(VWu)~(W—w)
0 JQ 0 JQ

t
+v/ /,/M(p) (T@): VV 4+ T(w) : VW)
0 JQ
t
+veZ2 — 2 / f Vi(p) (T@): VW — (T(w))" : VV)
0 JQ

t t
—/ fp(p)divW—v/ /w(p)H”(pnvmz
0 Q 0 Q
t t
- / / a(H'(n)(p —r1) — / / pV(H'(r)) - u
0 JQ 0 JQ

t
+/ /(vAg—\/82—v2A4)+v(11NS+12NS),
0 JQ

where

A(p)
n(p
Ap)

Vi (p)

and / lN S and IZN S are given through (62)—(63), which gives the proposition. O

245 = (Tr(T(®)) div V + Tr(T(w)) div W),

3

2A4 = (Tr(T(w)) div V — Tr(T(D)) div W)
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Let us introduce that there exists a strong solution of

or +div(rU) =0, (66)

r (W +VWU)+Vpr)—vdiviu@r) VW) — EV(A(;") div W)

=2 -2 <div(u(r) vV)+ %V(A(r) div f/)) ) (67)

r (BV+VVU)—vdiviu(r) VV) — gV(k(r) divV)
+v/e2 — 2 (div(u(r)’VW) + %V(A(r) div W)) =0, (68)
with
U=W-—vV, V=ve2-12V
belonging to the class

0 <inforyxor <r < SUp(, 7yxo! < +00

Vr e L*(0,T; L®(Q) N L0, T; wWh(Q))

W e L®0, T; W>®(Q)) N Wh>(0, T; L®(Q)), (69)
Ve L=, T; W»*(Q) N W20, T; L®(RQ)),

OH'(r) e L'O,T; LYY=D(Q)), VH'(r)e L', T; L?/7Y=D(Q)),

and where V|,—o = /€2 — v2Vu(ro)/ro. Defining

t
s = f / A(p) (div V)2 + (div W)Z) (70)

/ /Q j% (Te(T(D)) div V + Tr(T(w)) div W)

+/ / L V(k(r)divV)~(\7—6)+V(A(r)divW)-(W—w)),
0o Jaor

t

L{”=f /M(p) (1vvi+1vwp) (71)
0 JQ

t -

_/0 /Q,/M(p) (T(@): VV + VW : T(w))
t

+/ / B(div(u(r)VV)-(V—f))—}—div(u(r)VW)-(W—w)),
0oJar

t
NS _ / / f(div (W()VTV) - (W = w) — div () VW) - (V — ﬁ))
0oJQr
(72)

t —
+/0 /Q,/M(p) (T(®) : VW — (T(w))" : VV),
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= /[/ L (V@) div V) - (W — w) — V(L) div W) - (V — D)) (73)

/ /Q «//i% Tr(T(w)) div V — Tr(T(2)) div W),

we have

Proposition 15. Let (r, V, W) be a strong solution of (66)—(68) belonging to the
class (69). Let us assume that Vo = /&2 — v 2V u(rg)/ro. Any weak solution
(p, v, w) of the augmented system (37)—(40) satisfies the inequality

t
Ensk (t) — Ensk (0) S/O /Q,o [(VV@—U))-(V-1)
+(VW @ -U)) - (W —w)]

t
- /0 /Q (P(p) = p(r) = p'(r) (p = 1)) divU

t
+\/ﬁ/0 fg(p V(H'(r) - (T~ V)~ p(p) div V)

t
— / / W (o) H" ()| VP
0 Q

+§13NS + oIS e =02 (1S 4 1)),

where IiNSfori =3,4,5, 6 are given by (70)—(73).

Proof. Multiplying (67) by B(W — w) and (68) by E(\_/ — v), integrating with
r

respect to time and space, and using (66), we obtain
t
Ensk (1) — Ensk(0) < v /0 /Q 2 [diV(u(r)VV) (V- 1)
+%V(A(r) divV) - (V — a)}
t
Ve = v2/ / L |:div(,u(r)tVW) (V=)
0oJQr
+%V(A(r) divw) - (V — 5)}
t
+/ fp(vv(u_u».(v_a)
0 JQ
t
+/ / pTW (= U)) - (W — w)
0 JQ
t
—i—v/ / L |:div(u(r)VW) (W —w)
0oJar

+% VO.(r) div W) - (W — u))i|
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V2 — 02 /1/ é |:div(,u(r)V‘_/) (W —w)
0 JQ
+%V(A(r)div V) (W — w)i|
t -
+v/ //L(p) (19712 + 1vwP)
0 JQ
t -
—V/O L\/M(p) (']1‘(1_)) :VV +T(w) : VW)
t
+\/82—v2/ / Vi) (T@) : VW — (T(w))" : VV)
0 JQ

! r(p) e
+\/2—2//—TT div W
e 0 Ja?2 M(,O)(r( (o) div

—Tr(T(w)) div V)

v t —
__f /A(p) (div V)2 + (div W)2)

/ /Q \/% (Tr(T(®)) div V + Tr(T(w) div W)

+/ /(p(r)divU—p(p)divW)
0 JQ
t
—v/ /M/(p)H/’(p)IVpI2+I7NS,
0 JQ

where

t t
WS = _/ / LYoty - (W = w) —/ / W(H' (M) —r) (14
0JQr 0 JQ

t '
—/ / oV(H'(r) -u +/ / H'(r) o,r.
0 JQ 0 JQ

Using (66) H'(r)d,;r + H'(r)div(r U) = 0 which leads, with an integration by
parts, to

'
/ / (H'(ro,r —rV(H'(r)) -U) =0.
0 JQ
Then
t
/ / (H'(r)o;r —Vp(r)-U) =0,
0 JQ
or
!
f / (H'(r)o;r + p(r)div(U)) = 0. (75)
0 JQ

Moreover,

0(H'(r)) = —p'(r)divU — H'(r)Vr - U = —p'(r)divU — V(H'(r)) - U.
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Then

t t
17NS=/ /pV(H’(r))~(—W+w—I—U—u)+/ /p’(r)divU(p—r)
0 JQ 0 JQ

t 1
= V/ / pV(H'(r) - (v—V) +/ f p'(divU (o —r).
0 Je 0 Je

Therefore

t
SNSK(t)—SNSK(O)S/O /Q,o [(VV @ —U))-(V-1)
+(VW (u - U)) - (W —w)]

t
+/ / [p(r)divU — p(p)divU — v p(p)divV]
0 JQ
t
—vf /u/(p)H”(mwmz
0 Q

v [! _
+—/ /k(p) (div V)% + (div W)Z)

—= / /Q \/A% Tr(T(v)) div V + Tr(T(w)) div W)

15 v VS v + Ve =02 (1S + 1Y),

where

1S = / / (V) div V) - (V = B) + VL) div W) - (W — w))
(76)

and I[N Stori =4,5,6,7 are given by (71)—(74). Finally,
t —_ —_
Ensk (1) — Ensk (0) s/o /Q[p YV w—U)) - (V - )
+o (VW (u —U)) - (W —w)]

t
+/O /Q [(P'(r)(p—r)— p(p) + p(r)) divU
—v p(p) div V]

v t _
— VH'(r)- (V-1
_82_‘)2/0/90 H' ")) - (V - D)
t
—v/ /u/(p)H”(pwmz
0 Q

v [! _
z / / A(p) (div V)2 + (div W)Z)

f /Q ATY(); Tr(T(9)) div V + Tr(T(w)) div W)
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v [T p o e
+—/ / — (V(A(r) divV)-(V —v)
2 0 Qr
+V (@) divw) - (W — w))

t —_
+u/ / u(o) (IVVP + VWP
0 JQ
t
—vfo /Q,/M(p) (T@): VV + VW : T(w))
t
+v/ / ﬁ(div (L(r)VV) - (V = b)
0 Qr
Fdiv ((r) VW) - (W — w))

NS NS
++/ 2 — 2 (15 + 1 )

with 15N $ and I6N 5 given by (72) and (73). This gives the proposition. 0O

Lemma 16. Let ISNS given by (72) and I6NS given by (73). Under the assumptions
of Proposition 15, we have

Vs = / / <M(p) uir)) (div(V\?) W = w) + div( VW) - (5 — V))

—/ /,0 VV(W—w)+VW(ﬁ—V))-(u—V),
0 JQ

and
t
215 =2 / f p (1 (P)Vp—p(r)Vr) - (W —w) divV + (& — V) div W)
0 JQ

t
—/ / (A(p) _ gk(r)) (W=w) - V(div V) + (5 — V) - V(div W)) .
0 Q

Proof. The proof follows the same lines that the ones for (47) in the Euler—Korteweg
section. 0O

Lemma 17. Let I5NS given by (72) and 16NS given by (73). Let us assume u(p) =

oI 2 withy > s +2and s > —1. Under the assumptions of Proposition 15 we
have

t
\INS sc/ f (olw = WP+ plo = VP + plo = V12 + Hpl)
0 Q

where C = C(r, V, W) is a uniformly bounded constant on RT x Q.

Proof. By definition of A(p), lemma 16 directly leads to

t -
ISNS+16NS=—/O /Qp(VV(W—w))~(v—V)
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t
+/ /p(VW(V—rJ»-(v—V)
/ Lo @ve = wve)
(W—w) divV + (@ —V) d1VW)

—/0 fgp(u/(p) — W) (W —w)
V(divV) + (0 — V) - V(divW)).

Moreover, more of in an analogous way than for Lemma 9, we can show that

t - _
‘/O /Qp (" (©)Vo — 1" (V) - (W—w) divV + (0 — V) div W)‘

t
sc/ /p(|W—w|2+|ﬁ—V|2)
0 Q
and

t - -
‘/0 /Q/O(//(p) — 1 @) (W —w)-V(divV) + (v - V) - V(div W))‘

t
< cf / (Holr) + o = WP+ 15 = 7P))
0 Q
O

Lemma 18. Let ISNS given by (70) and IA{VS given by (71). Under the assumptions
of Proposition 15, we have

t
JARE —2/ f oW (P)Vp — 1 F)Vr) - (V = 0)divV + (W — w) div W)
0 JQ
t
—/ / (1) = 230)) (Vdiv V) - (V = ) + V(div W) - (W = w)),
0 JQ r
and
t
—/ / p(w—V)- (VV(V —=0)+ 'VW(W —w))
0 JQ

t
—/ / p (M — @) (div(VV) - (V = 0) + div(VW) - (W — w)).
0 JQ 1Y r

Proof. The proof follows the same lines that the ones for (47) in the Euler—Korteweg
section. O

Using the previous lemma and the symmetry of VV, we obtain the following
lemma:
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Lemma 19. Let I3NS given by (70) and IA{VS given by (71). We assume pu(p) =
pSHI2 withy > s +2 and s > —1. Under the assumptions of Proposition 15,
we have

1 ' o
SHS 1S < [ [ (ol = VP4 plo = TP+ plu = WP+ Heol)
0 JQ

where C = C(r, V, W) is a uniformly bounded constant on RT x Q.

Proof. We have:

1 ! 5
513"’S+L{VS=—/O /Qp(u—V).(VV(V—a)Jr’VW(W—w))

_ /Otfg 0 (W (0)Vp — 1 (V) - (V — ) div V
+ (W — w) div W)
_ /OI/Q p (W (p) — 1/ (1) (V(div V) - (V — v)
LV (div W) - (W — w))
/ / (u(p) ir)> (div(VW) — V(div W)) - (W — w).

In more of an analogous way than for the Lemma 9, we can show

// (u(p) M(r))(d V(VW) — V(div W)) - (W — w)

sc/ / (Holr) + o 1W —wl?).
0 Q

Then using more of an analogous result than the one used in the proof of Lemma
17, we obtain the result. O

Let us now define

Iy = (0V(H'(r)) - (V = 0) + p(p) div V)

=il .

t
v / / W (o) H" () VP
0 Q

Using the definition of H and an integration by parts, we obtain

p(r)— p'(p)
v 77
= —vZ// (u(r) u(p)> Vw07

with v = V(u(p))/p, v =vVe2 —v2v, V. =V(u@r)/r, V=2 —12V.We

can now show the following proposition:

NS _
Iy =—
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Proposition 20. Let 111\{5 given by (77). Assuming u(p) = pY+3I2 with y >
s + 2, s > —1 and the hypothesis of Proposition 15, there exists a contant C =

c(r,U, Vv, W) uniformly bounded on Rt x Q such that

NS
1" =

Proof. Using Lemma 36, we can write

v ' P'p) -
NS = / / — I35, 78
! e2—v2 Jo Jo g w(p) o~ 112 (7%

where
t
0 = [ (V= aen + aaein?) 7. (09)
&S —=Vv° Jo JQ

Using an integration by parts,

INS _

t
—ﬁfo [ ooy + 5 /f¢2(P|V)V V.

Now, using lemma 34, we obtain

INS < __U //H(p|r>+ f/H(pm

_vz/ /H(p|r>

which gives the result due to Expression (78) and the sign of the first quantity in
the right-hand side. O

Theorem 21. Assuming u(p) = p®t3/2 y > s+ 2 and s > —1, any weak
solution (p, v, w) of System (37)—(40) satisfies the following inequality:

t
Ensk (1) —Ensk (0) = C <1 + 3 E v2> /(; Ensk (§)dE, (80)

where (r, V, W) is a  strong solution of (66)—~(68) belonging to the class (69) and
where C = C(r, U, V, W) is a constant uniformly bounded on R™ x Q.

Proof. Thanks to Proposition 15, we have
t
Ensk (1) — Ensk (0) s/o /Qp (V7 -1y - (V- )
+(VW (- U)) - (W —w)]
t
—/0 fQ (p(p) = p(r) = p'(r) (p — 1)) divU

vV
+INS + 513"’5 + oINS +\/e2 =12 (ISNS +16NS),
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with INS fori = 3, 4,5, 6 given by (70)~(73) and IS given by (77). This gives,
with the regularity of U, V and W and the previous lemmas,

t
Evsk®) = Ensk® =€ [ [ p (1= UP + 1= VP +1w—WP)

t
_/0 /Q (p(p) = p(r) = p'(r) (p = 1)) divU

ng_—zf /H(,0|”)
C<1+ )/ Ensk (§)dE.

Corollary 22. Let (r, V, W) be a strong solution of (66)—(68) in the class belonging
to the class (69). Assuming u(p) = pC+t3/2 y > s+ 2 and s > —1 any weak
solution (p, w, v) of (37)—(40) satisfies the following inequality:

O

Ensk (p, v, wlr, V, W)(1)
< Ensk (p, v, wlr, V, W)(0) exp <C (1 + ’ 2) t)’
—V

where C = C(r, U, V, W) is a constant uniformly bounded on RT x Q.

Proof. Thanks to the previous proposition and the Gronwall’s Lemma, we have
the inequality. O

Let U be a given and smooth function. We define r as the strong solution of
(44), and we introduce the functions &}’ and &’ such that

EVr, V., W), =1 (W +U-VW) + Vp(r) 81)
—v div(u(r) VW) — %V(k(r) div W)

—Ve2 =2 (div(y,(r) vV) + %V(k(r) div V))

0=r (3V+U-VV)—vdiv(u(r)VV) — %V(k(r) divV)
(82)

+ve2 -2 (div(pb(r) VW) + %V(A(r) div W)) ,

where V = +/e2 — v2Vu(r)/r. In a same way than for the proof of Theorem 21,
we have the following result:

3 2
Proposition 23. Let us assume pu(p) = p@+3I/2 (ie. K(p) = u/os), y >

s +_2 ands > —1. Let (p, v, w) be a global weak solution of System (37)—(40) and
(r, V, W) a strong solution of (44), (82)—(82) in the class (69). Then
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Ensk (p, v, wlr, V, W)(t) — Ensk (p, B, wlr, V, W)(0)

t
§C<1+%)/ Ensk + b" (1),
e —V 0

with

bv(;):/ot/g[g@@]w(w—w)],

and where C = C(r, U, Vv, W) is a constant uniformly bounded on R™ x Q.
Using Gronwall’s Lemma, we immediately obtain the following corollary:

(s +3)2

Corollary 24. Let us assume pu(p) = pYt3/2 (ie. K(p) = %) with

y =s+2ands > —1. Let (p, v, w) be a weak solution of System (37)~(40) and
(r, V, W) a strong solution of (44), (82)—(82) in the class (69). Then

t
Ensk (1) < Ensk (0) exp(F” 1) + F”/O b" (&) exp(F" (t — £))d& +b" (1),

where b" is defined in Proposition 23 and

FP=cir+-"_).
2 _ 2

with C = C(r, U, Vv, W) a constant uniformly bounded on R™ x Q.

4.2. Dissipative Solution and Weak—Strong Uniqueness Result

Let us now give the definition of what is called a dissipative solution of the
compressible Navier—Stokes—Korteweg System. To this end, let U be a smooth
function, then (r, £V (r, U)) defined through Eq. (44) and

E'(r,U)=r@QU+U-VU)+ Vp(r)—2vdiv(iu(r)DU)) — vV (1(p) divU)

+&2 [(div(,u(r)tVV) + %V(k(r) div V)] , (83)

where V = Vu(r)/r. Denoting

V=ve2— 2V, W=U+vV,
we then have the following:
E'rU)y=r (W +U-VW)+Vp(r) —v div(u(r) VW) (84)
—%V(/\(r) div W) — v — 12 (div(,u(r) vV) + %V(A(r) div \7)) ,

0=r (V+U-VV)++e2 -2 (div(u(r)’VU) + %V(k(r) div U) )
(85)
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Before giving the definition, let us recall that Ey g () stands for

Ensk () = Ensk (p, 0, wlr, V, W)(1).

Definition 25. Let us assume u(p) = p®1t3/2 y > s +2and s > —1. Let pg and
uo smooth enough. The pair (p, u) is a dissipative solution of (17)—(18), (1) if the
triplet (p, v, w) (with pv = Vu(p), 0 = ve2 —v2 v, w = u + v v) satisfies

t
Ensk (t) < Ensk (0) exp(F't) + F” /0 bnsk (&) exp(F" (t —&))d& + bysk (1),

with F given in Corollary 24 and

bNSKa):/Oth[ff“.(W—w)]

with (r, V, W) and & are defined as mentioned above from all given smooth
function U.

Noticing that each global weak solutions of the Navier—Stokes—Korteweg is
global weak solutions of the augmented Navier—Stokes—Korteweg system, a direct
consequence of the method is the following weak—strong uniqueness result:

Theorem 26. Let us assume w(p) = pS+3I/2 y > s +2and s > —1. Let
us consider (p,u) a global weak solution to the compressible Navier—Stokes—
Korteweg system and define w = u + v Vu(p)/p and v = /&2 —v2Vu(p)/p.
Let us assume that there exists (r,U) a strong solution of the compressible
Navier—Stokes—Korteweg System and let us define W = U + vVu(r)/r and
V = Ve2—v2Vu(r)/r. Assume that (r, W, V) satisfies hypothesis (69). If
(po, ug) = (r, U)(t = 0) then (p, v, w) = (r, V, W) or (p,u) = (r, U), which
corresponds to a weak—strong uniqueness property.

Finally, let us give Definition 25 in the particular case of K (p) = 1/p which
corresponds to the quantum Navier—Stokes system. This one will be used in Sect. 5.
To this end we introduce the function &, sp given by

Enso(r.U) =r QU + U -VU) + Vp(r) = 2vdiv(rD(U)) + &> div(r' VV(R6)

with U a given smooth enough function, r a strong solution of the mass equation
(44) and rV = Vu(r). Defining

V=ve2-12V, W=U-+vV,

and using Eq. (44), we obtain

E'rU)=r (W +U-VW)+Vp(r)—v div(r VW)
—Ve2 —v2div(r VV), (87)

0=r (3,V+U-VV)+vVe2—v2div(r'VU). (88)
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We define Eys0 () by

Enso(t) = Ensk (t) with K(p) =1/p.

Definition 27. Let pp and uo smooth enough. The pair (p, u) is adissipative solution
of (28), (29), (1) if the triplet (p, v, w) (with pv = Viu(p), v = V&2 —vZv, w =
u + v v) satisfies

t
Enso(t) < Enso(0) exp(F"r) + F”/O bnso(&) exp(F" (t — &))d& + byso(1),

with F given in Corollary 24 and

t

0
b = —gu o W_ )
NSQ(I) /()L[r NSQ ( w)]

with (r, V, W) and Eng 0 defined as mentioned above from all given smooth func-
tions U.

Remark 28. Note that by definition, using Corollary 24, all weak solution of (28)—
(29), (1) is also a dissipative solution in the sense of Definition 27.

5. From the Quantum Navier-Stokes System to the Quantum Euler System:
The Viscous Limit

We can now perform the limit of a dissipative solution of the quantum Navier—
Stokes system to one of the quantum Euler system when the viscosity constant v
tends to zero. Thanks to the entropies, we have the following regularities on the
global weak solution of the quantum Navier—Stokes equations:

Vv Y e L0, T; L*(Q)), /p' w”
€ L0, T; L*(R)), H(p") € L0, T, L'(Q)),
where
¥ = \/HVlogp”, w” =u"+vVlogp".
The goal of this section is then to prove the following result:

Theorem 29. Let py and uy smooth enough. Let (p¥, u") be a global weak solution
to the quantum Navier—Stokes system (28)-(29) with initial conditions (1). Let (p, u)
be the weak limit of (p", u") when v tends to 0 in the sense that

p” — p weakly x in L>(0, T; LY (2)),
Vv w¥ — Jpu weakly « in L0, T; L*(2)),
VPV Y — e /pv weakly x in L0, T; L*(Q)),

with pv = V. Then (p, u) is a dissipative solution of the quantum Euler system
(14)—(15) with initial conditions (1).
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Proof. According to Remark 28, the pair (0", ") being an entropic weak solution,
it is also a dissipative one. We want to prove that (o, u), which is the limit of
(p¥, u”) when v tends to zero, is a dissipative solution of (14)—(15) satisfying the
initial conditions (1). The goal is then to prove that (p, u) satisfies Definition 13.
Let us define v = Vlogp (because in this case u(p) = p). Let U be smooth
function and let (r, &(r, U), V) be defined with V. = Vlogr, (44) and (58). We
define

V=V =2V, W'=U+vV.
Then it is easy to see that (r, V¥, W") is a candidate for (44), (87)—(88) with
Nso( U) = &, U) = 2vdiv(r D(U)).
Then, using Definition 27, and with (p”, u") being a dissipative solution, we have
Enso(t) < Ensp(0) exp(F't)

t
+FV/0 b})st(E) exp(F" (t — &))d& +b}’VSQ([), (89)
with
M v
F=cllta—n)
and
“[r1e
byso(®) = / / [— (& —2vdiv(rD(U))) - (W — w)] .
o Jalr
Since, by definition, we have

_ 1 _
Enso(p" ¥ wln VW0 =5 [ p (18 = VP = W)
Q

+ /Q (H(p") = H(r) = H'(r)(p" — 1))

t
+v/ /p” (|Vﬁ"—VV|2+|Vw“—VW|2),
0 Q

we easily obtain

1 _
—/ (1" = VR4 — W) +/ (H(") = H(r) = H'(r)(p" = 1))
2 Ja i Q

< Enso (0", 0, w'Ir V' W ()

and
v o=V v 7V v 1 v -V V2 v V|2
Enso(p' 0wl VY WO = 5 | " (18" = VP + 1" = W) ©0)
Q

+/Q (H(p") = H(r) = H'(r)(p" — 1)) (0).
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Then (89) gives
/ p' (18" = VP + 1wt = W) @
Q

+ /Q (H(p") — H) — H (" — 1) @)

< Enso(p”, 0", w"|r, V', W) (0) exp(F" 1)

N =

t
+F”/O biyso (&) exp(F" (1 — §))d& + by o (0).

It remains now to pass to the limit v tends to zero in this inequality. Clearly, using
the lower semi-continuity of the term Exso(p¥, vV, w"|r, V¥, W"), the left-hand
side is greater than

1 2 2 2
5 |e (o= vE+u—vR) o+ [ Heno,

Q Q
which is Egug(p, u, v|r, U, V)(¢) (ie. Egux(p,u,v|r, U, V)(t) given by (42)
with K (p) = 1/p). For the right hand side, we use the direct limit of the term
Enso(p’, v", w’|r, V¥, W")(0) (through the expression of the initial data) and
b}’st tends to

bEuQ(t)=/0t/Q[§£~(U—u)],

to conclude that
t
EEup(t) < Epup0)exp(Ct) + bpyo(t) +C /o exp(C (t — &)bpup(§) d&,

where C = C(¢2,r,U, V) isa uniformly bounded constant on R* x €. Therefore
we finally obtain that (p, u) satisfies the Definition 13 and then is a dissipative
solution of (14)-(15), (1). O
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6. Appendix

6.1. Technical Lemmas on Modulated Quantities

In this section we give some technical lemmas which are used in the paper.
We introduce the function ¢ defined by
T /(1
p(n”(s)
b(1) = f LRSI (90)
o (= (s)
and the two functions

P1(plr) = () — P ((r) — @' (L)) (1(p) — p(r)), oD
P2(plr) = ¢" () (r(p) — u() r = p (¢ (1(p)) — @' (u(r))).  (92)

Remark 30. Note that in the case K (p) = 1/p, which gives (using (5)) u(p) = p,
these two functions are directly linked to H (p|r). Indeed, in this case we have

¢1(plr) = p(p) — p(r) — p'(r)(p —r) = (y — DH(plr),
$2(plr) = pp'(r) — pp'(p) +rp" (r)(p —r) = —y(y — DH(p|r).O

As is usual in compressible flows (see [24]) let us define the set F by

f:{pg%or,ozZr}.

Let us now give some technical lemmas which will be used in what follows. First
of all, following [23] we have

/
Lemma 31. Assuming p smooth, p(0) =0, p'(p) >0 VYp > 0,lim,_, M =
P

a—1

a > 0fora > 1, we have

H(plr) > C(r)(p —r)? if p € F¢ and H(p|r) = C(r)(1 + p)¥ otherwise,
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.
Concerning the functions ¢; and ¢», we have

Lemma 32. Let us assume that u(p) = p®t/2 withy > s +2and s > —1.
Assume ¢; withi = 1, 2 defined by (90)—(92). Then

i (plr)| < C(r)lp—rPif p € F¢ and |¢i(plr)| < Cr)(1 + p)” otherwise,
with C(r) uniformly bounded for r belonging to compact sets in R* x Q.

Remark 33. Let us remark that the choice u(p) = p“*+/2 with s € R and the
assumption y > 2 + s correspond to the case considered in [27] because K (p) is
of order p*. Moreover, for the particular case of interest in this paper K (p) = 1/p
(i.e. s = —1), the assumption 2 + s < vy is trivially satisfied since we have y > 1.
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Proof of the lemma for ¢1. Using Taylor expansions and the fact that ¢” (u(c)),
u’(c) are bounded with ¢ in a compact we easily obtain

1 (plr)| < C()m(p) — n()|* < C(r)lp —r|* on F.
Moreover, since

(s +3)2
4

p°, 1 (p) =/ pK(p),
we have ¢ (7) = t2¥/6+3) and then by definition,

2y —(s+3) s+3
ro 2 p2 —r

r(p) =p", K(p) =

2y
s+3

lp1(plr)| = |p" =1V —

which gives
lp1(plr)| < C(r)(1+ p)” on F,

since, by assumption, 2y > 2(s + 2) > s + 3 with s > —1.

3
Proof of the lemma for ¢,. Let us write 0 = % then u(p) = p? and ¢ (p)
p?/? . Then

2 [/ 2 o . -
$a(plr) = ﬁ <S I3 —1) 300 = — p(p7 0 =Y 9)]
2y [ 2y y—s—2, 6 4 1+y—6 y—6
T 543 s+3_1 g (0" =r)—p +por
2y [( 2v y—s—2, 6 _ 0 -8
=3l Y e =) = fe) F o

y+l1

with f(p) =p @

Flplr) = f(u(p)) — f(u(r) — /() (n(p) — pn(r))

~1. Note that we have

y+ 1 2
= [ (u(p) — *)FT — (% - 1) )2 ),
Then
2y 2y —s=2, 6 0 g g
¢z(p|r)=m[(s+3 —l)rV (0" =) = flplr) = ") }

_SZ—i)_/3 <2(SJ/++31) _ 1) (re)VT“—z(pe _ pry—91|

2 2

=5 [(s - 1)rV‘S‘2<p9 — ") = f(plr) —r”V—@}
2y [[(2(y+1

1 ( (sy+3 - 1) = _prye}
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2 1
= - 13 [—gﬂ—s—%pf’ —r%) = folr) +pr’ ™" — r”V‘g} :

2
This can be written ¢ (p|r) = %(—f(plr) + g(p|r)) with
s

. Loy
glplr) =rr~" [p—r—grf ' 2(p9—r9)]

— vt [(pe)l/e — e l(re)l/e—l(pe _ re)] _
0
In the case p € F¢, using Taylor expansions, this leads to
£ (oI < C)ulp) — n)* < Cr)lp —rl,
8ol < Cp® =P < Cr)lp —r,
and then

lp2(plr)| < C(r)]p —rl*

When p € F,since2y >2s+4>s+3ands + 3 > 2,

s+3
2

_ s+3 _s+3 _s+3
g2 (ol < CHIFY (02 —r ) —p(p?™ 2 — 1" 2)| < Cr)(1+p).

This completes the proof of Lemma 32. O
Using Lemmas 31 and 32, we directly obtain

Lemma 34. Let us assume that j(p) = pSt3/2 withy > s +2and s > —1. We
have

lp1(plr)| = C(r)H(plr) and |$2(plr)| < C(r)H (plr),
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.
Let us now prove

Lemma 35. Let us assume that ju(p) = p$t3/2 withy > s +2and s > —1. We
have

pli' (p) — ' (> < CGr)H (plr),
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.
Proof.
pli' () — W (1> = pld' (0) — W ()P 1F + pli’ () — 1 ()1 e
We have
pli () — ' (NP 1F < 2p(1 () + 1 (D) 17

- (s +3)2

5 PPl r+2C0)p 1x.
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Using p*+2 < (1 + p)**+? and the assumption y > s + 2 in the first term, and, the
assumption y > 1 in the second one, we obtain

3 2
Pl (p) — 1 (NP1 g < %(1 + ) 1F+2CE)(1+ p) 1

<CMHA+p)lr.

Moreover,
s+3 s+l s+1 ]2 s+3 |ptt — psTL2
Pl (p) — ' ()1 e ZTP’P T = T o, L
oz +r 7|2
and then

s+ 3p |ps+l _ rs—i—l |2
s+1
2 |,,YT|2

CO)p™ =Pz < Cr)lp — P 1pe.

IA

ol (p) — W (r)* 1 e

Fc¢

IA

Using lemma 31, we finally obtain the result. O

An important relation. The last technical and important lemma is

Lemma 36. Let us assume that ju(p) = pCt3/2 withy > s +2and s > —1. We
have

v
wip) W)

(p (p) P V) (v —=V) =[Vei(plr) + ¢2(pIr)V]

P (p)

IV =P
wp)

V+p

with ¢1 and ¢, defined by (90)—(92).

Remark 37. This lemma generalizes to general w(p) the relation (5) established in
[13] when i (p) = p. This is an important lemma which helps to control the terms
coming from the pressure in the relative entropy at the Navier—Stokes level.

Proof. Remark first that
P'(p) p'(r) P (p) )
_ V). —V) = VvV —
(wwf) wv>> C=Vr=rimV
(p’(p) P
wp) w@)

)(v—V)-V.

‘We have
P pr)
- -V
p(ww> wm)w )
p'(p)  p(r)
wp) ()

)(pv—pV)



1020 DIDIER BRESCH ET AL.

p'(p)  p'r) p'(p)  p'r)
_ _ v .
<u/(p) u/(r)> Vo) = (u(p) u/(r)> ()

Moreover, it is easy to see that, by definition,

V(g1(plr)) = ¢ (n(p)Vi(p) — ¢" (u(r))(u(p) — p(r)Vu(r)
—¢'((r)Vi(p)

= <p/(p) - p,(r)) Vi(p) — " () (u(p) — ur)Vu(r),
wp) w)

and then using the definition of ¢, (p|r),
(p’(p) P
wp)  w(r)

) W —=V)=Voi(plr) + p2(plr)V.

6.2. Equivalence of Eg,x and the Relative Entropy in [27]

Let us consider the relative entropy functional, denoted Eg, x (0, u, v|r, U, V) and
defined by (42). The goal of this section is to prove that this relative entropy is
equivalent to the relative entropy defined by (2.23) in [27] under the concavity
assumption on K with K(p) = p°. Let us first recall the relative entropy EgMLKT
defined in [27], which reads

1 1
ESLL (o, u, Vplr, U, Vr) = Z/Q,OW—U|2+§82/QIT+/QH(PIV),
(93)
where
It = K(p)|Vpl* — K(")|Vr|* = K'()|Vr|*(p —r) = 2K(r)Vr(Vp — Vr).

Note that I7 corresponds to the term K (p)|V p|? linearized in the variables (p, ¢)
where g = Vp. Let us now introduce the quantity

,K(p ,/K( ‘\/K(p YWp— \/7\/K(r Vr

Then our Euler—Korteweg modulated energy reads

IEuK =p

1 1
gEuK(pvuanyUv V)=E\/p|u_U|2+§82\/I§MK+/H(10|r)7

where v = \/K(p)Vp//pand V = K (r)Vr//r. Let us prove that under the
hypothesis on K introduced in [27]

Epuk (P u, I, U, V) =0 & ESEL(p,u, Vplr, U, Vr) = 0.

If this is so, we prove has that our relative entropy and the one in [27] are equivalent
under the hypothesis in [27]. Our convergence result will therefore be more general
that the one in [27] because it has not asked for a concavity hypothesis on K (p).
First let us prove the following lemma:
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@_JE
K(p) r
1 1

+ K/(r)( ))
- —r
K K@) K@z’

= Iy + 2K () Vr Ik ( / g((;)) - \/g) .

Proof. After computations, we check that

Lemma 38. We have the equality

2
g + K@) |Vr]?

—K () |Vr|? (

)
Tiux = Ir + K'OIVrP(o =) + ZK ()| Vr|?

_2\/?\/mmvp Vr 4+ 2K()Vr - Vp — K()|VrP,

=Ir+1
where
_ (P K'(r) VK@) [p g)
I = K(r)|Vr| (r 1+K(r)(p r)+2m . 2r + Iy,

with

L =2JK(r)Vrilg,x  and h:/%—\@.

Corollary 39. Let K(p) = p¥ with —1 < s <0, then
GLT _ _
Eguk (0w, Vplr, U, Vr) =0 & Epuk (o, u,v|r, U, V) =0.

Proof. Under the assumption on K, we check that
2
12 — K(r) \/?
2= R
: K(p) r
2
PN [P
(&)
2 2
P\ p
2 — -1 2(1—./—
(/&) 1) +2(1-2)

1 2
<2 (Vo =V 4 S = VD)

<

IA

_ _ 2
"o~ =+ S = pl,
r r
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with 0 < —s < 1. Assume EELL (o, u, Vplr, U, V) = 0, then I3 = 0 and

( L1l KO _r)>_0
Kp K K@2” e

Therefore, using Lemma 38, we conclude that Eg,x (p, u, vlr, U, V) = 0 (the
inverse follows along the same lines). This ends the proof. O

6.3. Definition of the Operators

For the convenience of the reader we recall in this section all the definitions of the
operators used in this article. The definitions used here are the ones presented in
[7] in Appendix A.

Let f be a scalar, u, v two vectors, and o = (0;)1<i, j<a a tensor field defined on
Q c R? smooth enough.

e Denoting by vy, - - - , vy the coordinates of v, we call divergence of v the scalar
given by:
. ¢ av;
div(v) = —
im0

We call laplacian of f the scalar given by:

d

Af =div(Vf) = Z

i=1

9% f

—5
0x;

We call gradient of v the tensor given by:

<8v,~>
Vo= — .
0x; 1<i,j<d

e We call divergence of o the vector given by:

. 903
diV(G) = E le
J

j=1 l1<i<d

We call laplacian of v the vector given by:

Av = div(Vv).

We call tensor product of u and v the tensor given by:

UV = (uivf)lsi,jsd'

Proposition 40. Let u, v, w three smooth enough vectors on 2 and r a scalar
smooth enough on Q2. We have the following properties:
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e (U V)W = (v-w)u,

e diviu ® v) = (divv)u + (v - V)u,

e div(ru) =Vr-u—+r divu,

o divru®v) = (Vr-v)u+rw-Viu+r div(v)u.

Definition 41. Let T and o be two tensors of order 2. We call scalar product of the

two

The
that

tensors the real defined by
oO.T= Z 0ijTij-
I=<i,j=d

norm associated to this scalar product is simply denoted by | - | in such a way

Remark 42. By definition, we have

10.

11.

12.
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