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Abstract

For the Restricted Circular Planar 3 Body Problem, we show that there exists
an open set U in phase space of fixed measure, where the set of initial points which

lead to collision is O(μ
1
20 ) dense as μ → 0.

1. Introduction

Understanding solutions of the Newtonian 3 body problem is a long standing
classical problem. There is not much hope to give a precise answer given an initial
condition. However, one hopes to give a qualitative classification; for example,
dividing solutions into several classes according to qualitative asymptotic behavior
and describing the geometry and measure theoretic properties of each set. The first
attempt to do this probably goes back to Chazy [12].

1.1. Chazy’s Classification and Kolmogorov’s Conjecture

If one ignores solutions not defined for all times, then one possible direction is to
study the qualitative behavior of bodies as time tends to infinity either in the future
or in the past. In 1922 Chazy [12] gave a classification of all possible types of
asymptotic motions (see also [4]). Define r3 = q2 − q1 (and r1, r2 analogously).
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Theorem 1.1. (Chazy, 1922) Every solution of the 3 body problem defined for all
time belongs to one of the following seven classes:

• H+ (hyperbolic): |rk | → ∞, |ṙk | → ck > 0 as t → +∞ for all k;
• HP+

k (hyperbolic-parabolic): There exists k such that |rk | → ∞, |ṙk | → 0
whereas |ṙi | → ci > 0 for i �= k, as t → +∞;

• HE+
k (hyperbolic-elliptic): There exists k such that |rk | → ∞, |ṙk | → ck > 0

as t → +∞ whereas supt�0 |ri | < ∞ for i �= k;

• PE+
k (hyperbolic-elliptic): There exists k such that |rk | → ∞, |ṙk | → 0 as

t → +∞, whereas supt�0 |ri | < ∞ for i �= k;

• P+ (parabolic) |rk | → ∞, |ṙk | → 0 as t → +∞ for all k;
• B+ (bounded): supt�0 |rk | < ∞ for all k;

• OS+ (oscillatory): lim supt→∞ maxk |rk | = ∞, lim inf t→∞ maxk |rk | < ∞.

Examples of thefirst six typeswere known toChazy.The existence of oscillatory
motions was proved by Sitnikov [38] in 1959. The next natural question is to
assert whether these sets have positive or zero measure. It turns out that the answer
is known for all the sets except one: the set of oscillatory motions. Proving or
disproving that this set hasmeasure zero is the central problem inqualitative analysis
of the 3 body problem.

Thus, the remaining major open problem is the following:

Conjecture (Kolmogorov) The set of oscillatory motions has zero Lebesgue
measure.1

1.2. The Oldest Open Question in Dynamics and Non-Wandering Orbits

Nowwe take a different look at the classification of qualitative behavior of solutions.
In the 1998 International Congress of Mathematicians, Herman [23] ended his
beautiful survey of open problemswith a question, which he called “the oldest open
question in dynamical systems”. Before coming to this, let us recall the definition
of a non-wandering point.

Definition 1.2. Consider a dynamical system {φt }t∈R definedon a topological space
X . Then, a point x ∈ X is called wandering, if there exists a neighborhood V of it
and T > 0, such that φ(t,V) ∩ V = ∅ for all t > T .

Conversely, x ∈ X is called non wandering, if for any neighborhood V of z
and any T > 0, there exists t > T such that φ(t,V) ∩ V �= ∅.

Consider the N -body problem in space with N � 3. Assume that:

• The center of mass is fixed at 0.
• On the energy surface we C∞-reparametrize the flow by a C∞ function ψE

(after reduction of the center of mass) such that the flow is complete: we replace
H by HE = ψE (H − E) so that the new flow takes an infinite time to go to
collisions (ψE is a C∞ function).

1 In [1] Alexeev attributes the conjecture that the set of oscillatory motions has measure
zero to Kolmogorov. In [2] Kolmogorov is not mentioned.
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Following Birkhoff [5] (who only considers the case N = 3 and nonzero angu-
lar momentum) (see also Kolmogorov [26]), Herman then asks the following
question:

Question 1. Is for every E the nonwandering set of the Hamiltonian flow of HE on
H−1

E (0) nowhere dense in H−1
E (0)?

In particular, this would imply that the bounded orbits are nowhere dense and
that no topological stability occurs.

It follows from the identity of Jacobi–Lagrange that when E � 0, every point
such that its orbit is defined for all times, is wandering. The only thing known is
that, even when E < 0, wandering sets do exist (Birkhoff and Chazy, seeAlexeev
[1] for references).

The fact that the bounded orbits have positive Lebesgue-measure when the
masses belong to a non–empty open set, is a remarkable result announced by
Arnold [3] (Arnold gave only a proof for the planar 3 body problem; see also
[14,16,33,34]). In some respect Arnold’s claim proves that Lagrange and Laplace,
who believed in the stability of the Solar system, are correct in the sense of mea-
sure theory. On the contrary, in the sense of topology, the above question, in some
respect, would show Newton, who believed the Solar system to be unstable, to be
correct.

1.3. Collisions are Frequent, are They?

The above discussion relies on solutions beingwell defined for all time.This leads to
the analysis of the set of solutions with a collision. Saari [35,36] (see also [24,25])
proved that this set has zero measure, however, it they might form a topologically
“rich” set. Here is a question which is proposed by Alekseev [1] and which might
be traced back to Siegel, Sec. 8, P. 49 in [37]:

Question 2. Is there an open subset U of the phase space such that for a dense
subset of initial conditions the associated trajectories go to a collision?

The geometric structure of the collision manifolds locally was given by Siegel
in [37], by applying the Sundmann regularization of double collisions. The above
question, however, is still open. In the current article we consider a special case:
the restricted planar circular 3 body problem and give a partial answer.

Marco and Niederman [27], Bolotin and McKay [6,7] and Bolotin [8–
10] studied collision and near collision solutions. Chenciner and Libre [13] and
Fejoz [15] constructed so-called punctured tori, i.e. tori with quasiperiodicmotions
passing through a double collision (see also [39]). In this paper we only deal with
double collisions, though triple collisions have also been thoroughly studied (see
[28–30] and references therein).
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1.4. Restricted Circular Planar 3 Body Problem (RCP3BP)

Consider two massive bodies (the primaries), which we call the Sun and Jupiter,
moving under the influence of the mutual Newtonian gravitational force. Assume
they perform circular motion. We can normalize the mass of Jupiter by μ and the
Sun by 1 − μ and fix the center of mass at zero. The restricted planar circular
3 body problem (RPC3BP) models the dynamics of a third body, which we call
the Asteroid, that has mass zero and moves by the influence of the gravity of the
primaries. In rotating coordinates, the dynamics of the Asteroid is given by the
Hamiltonian

Hμ(x, y) = |y|2
2

− xt J y − μ

|x − (1 − μ, 0)| − 1 − μ

|x − (−μ, 0)| , (1)

where x ∈ R
2 is the position, y ∈ R

2 is the conjugate momentum and

J =
(

0 1
−1 0

)

is the standard symplectic matrix. The positions of the primaries are always fixed
at (−μ, 0) (the Sun) and (1 − μ, 0) (Jupiter) respectively. In addition, the system
is conservative and J = −2Hμ(x, y) is called the Jacobi Constant.

An orbit γ (t) = (x(t), y(t)) of (1) is called a collision orbit if in finite time T
we have either x(T ) = (1 − μ, 0) or x(T ) = (−μ, 0). Then, the Siegel question
can be rephrased: does there exist an open set U in phase space independent of μ

where the collision orbits are dense? The main result of this paper is the following:

Theorem 1.3. (First main Result) There exists an open set U independent of μ > 0
where the collision orbits of the Hamiltonian Hμ in (1) are O(μ

1
20 ) dense as μ

tends to zero.

To explain this result heuristically, consider first the caseμ = 0. Since forμ = 0
the system is integrable, any energy surface {H0 = h} is foliated by invariant 2-
dimensional tori–which correspond to circular orbits of Jupiter and elliptic orbits
of the Asteroid. It turns out that for h ∈ (−3/2,

√
2) there are open sets Uh where

the orbits of Jupiter and the Asteroid intersect, see Fig. 1. Due to the nontrivial
dependence of the period of the Asteroid with respect to the semimajor axis of the
associated ellipse, there is a dense subset of tori in Uh such that periods of Jupiter
and the Asteroid are incommensurable. As a result, collision orbits are dense.

The proof of Theorem 1.3 consists in justifying that a similar phenomenon
takes place for μ > 0. In this case there are collisions and the Hamiltonian of
the RPC3BP becomes singular. As will be shown in the proof of Theorem 1.3 (in
particular in Section 2), the collisions in U happen only between Jupiter and the
Asteroid, but not with the Sun. The Jupiter-Asteroid collisions were also studied
by Bolotin and McKay [6].

Remark 1.4. The density exponent in Theorem 1.3 can be slightly improved from
1
20 to 1

17+ν
for any ν > 0 by refining the proof (see Remarks 3.5 and 3.10).



Asymptotic Density of Collision Orbits 803

Remark 1.5. The results given in the papers [13,15], which study the existence of
KAM solutions containing collisions also lead to asymptotic density of collision
orbits result. Nevertheless, those papers only lead to such density in very small sets.
Let us note that in [15] KAM tori passing through a collision can occupy a set of
large positive measure provided that the distance among bodies is not uniformly
bounded.

Theorem 1.3 gives asymptotic density in a “big” set independent ofμ. In Delau-
nay variables the set U is the interior of any compact set contained in

V =
{
− 1

2L2 − L
√
1 − e2 ∈ (−2

√
2, 3), L2(1 − e) < 1 < L2(1 + e)

}
,

(2)
where 0 � e < 1 is the eccentricity and L2 > 0 is the semimajor axis (see Fig.
1). In particular, the volume of this set can exceed any predetermined constant,
provided that μ is small enough; see Section 2 for more details.

With similar techniques, we can disprove a weak version of Herman’s conjec-
ture. Let us define approximately non-wandering points.

Definition 1.6. Consider a dynamical system {φt }t∈R definedon a topological space
X . Then, a point x ∈ X is called δ-non-wandering if, for any neighborhood U of it
containing the δ-ball Bδ(x), there exists T > 1 such that φT (U) ∩ U �= ∅.
Theorem 1.7. (Second main result) Any point belonging to the open set U consid-

ered in Theorem 1.3 is O(μ
1
20 ) − non wandering under the flow associated to the

Hamiltonian Hμ in (1)

More concretely, for any z ∈ U , we can find a O(μ
1
20 )-neighborhood Vμ of it

and times 0 < T ′
μ < Tμ such that φHμ(T ′

μ,Vμ) is O(μ
1
20 )−close to a collision

and φHμ(Tμ,Vμ) ∩ Vμ �= ∅.

We devote the main part of this paper to proving Theorem 1.3. Then in Section
6, we prove Theorem 1.7 by using the partial results obtained in Section 3 to prove
Theorem 1.3.

Remark 1.8. The existence of O(μ
1
20 )-non-wandering sets for the RPC3BP is not

a new result. In some “collisionless” regions of phase space it follows from the
KAM Theorem for small μ. Theorem 1.7 extends such property to a “collision”
region of the phase space U , see (2). Moreover, we believe that if the Alekseev
conjecture were true, application of our method would give a dense wandering set
in U and contradict Herman’s conjecture!

We finish this introduction by summarizing the scheme and the main heuristic
ideas of the proof of Theorem 1.3.

Scheme of the proof of Theorem 1.3: For the convenience of a local analysis, we
shift the position of Jupiter to the origin. Via the transformation

�0 : u = x − (1 − μ, 0), v = y − (0, 1 − μ),
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the Hamiltonian (1) becomes

Hμ(u, v) = |v|2
2

− ut Jv − (1 − μ)u1 − μ

|u| − 1 − μ

|u + 1| − 1

2
(1 − μ)2, (3)

where (u, v) ∈ R
4. Consider the following division of the phase space:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1 := {|u| � μ
3
20 }, Influence of the Sun dominates

R2 := {ρμ
1
2 � |u| � μ

3
20 }, Influence of the Sun & Jupiter may be comparable

R3 := {0 < |u| � ρμ
1
2 }, 0 < μ 
 ρ 
 1, Influence of Jupiter dominates.

(4)

The proof of Theorem 1.3 consists of three steps:

(1) (From global to local) For sufficiently small 0 < μ 
 1, and any initial point

X ∈ U , we can find a segment S of length O(μ
3
20 ) satisfying dist(S,X) �

O(μ
1
20 ) in the phase space, such that the push forward ofS along the flow of

Hμ will become a segment

S0 ⊂ ∂(R2 ∪ R3), (5)

which is a graph over the configuration space so that the incoming velocity
satisfies certain quantitative estimates (see Proposition 3.1 for more details
and Fig. 3). Inclusion (5) implies that S0 lies in the boundary of the local
region Rc

1 = R2 ∪ R3. Now we turn to a local analysis summarized on Fig. 4.
(2) (Transition zone) In this stepwe show that there exists a subsegmentS ′

0 ⊂ S0
such that the push forward along the flow of Hμ becomes a segment

S1 ⊂ ∂ R3

so that the shape of S1 and incoming velocity satisfy certain quantitative
estimates (see Proposition 4.1 and Fig. 4 for more details). In the region R2,

which is μ
3
20 -small we come with velocity O(1) and we show that a linear

approximation of the flow suffices, even though neither the Sun, nor Jupiter
have a dominant effect in this region.

(3) (Levi-Civita region and the local manifold of collisions) In the region R3,
we apply the Levi-Civita regularization and deduce a new system close to a
linear hyperbolic system. We analyze the local manifolds of the collisions,
denoted by ϒ , and we show that S1 intersects ϒ . This implies the existence
of collision orbits starting from S1, and, therefore, from S (see Lemma 5.2
and Fig. 5).

Heuristic ideas in the proof: Here we describe the main ideas of the proof:

• (From global to local) In order to control the long time evolution of S we
proceed as follows: inside the local region R2 ∪ R3, we modify Hμ into Ĥμ

by removing the singularity. This enables us to apply the KAM theorem. Thus
we can pick up a segment S on a suitable KAM torus Tw and show that the
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push forward along the flow of Hμ coincides with the flow of Ĥμ, as long as
it does not enter the collision region R2 ∪ R3. We also show that the final state
of S0 is a graph over the configuration space with almost constant velocity
component. More precisely, for any point in S0, the velocity is contained in a

O(μ
3
20 ) neighbourhood of a certain velocity v0 (see Proposition 3.1 and Fig. 3

for more details).
• (Transition zone)We start with the curve S0, which has almost constant veloc-

ity. Then we flow the segment by the flow of Hμ using that it is close to linear.
Controlling the evolution of the flow we get the desired estimate on the final
state S1 of S0 (see Proposition 4.1 and Fig. 4).

• (Levi-Civita region and local collision manifold)Once we have the informa-
tion about S1, the approximation by the linear hyperbolic system gives precise
enough local information about the collisions manifold ϒ . This allows us to
prove that S1

⋂
ϒ �= ∅ by using the intermediate value theorem (see Lemma

5.2 and Fig. 5).

Organization of this paper: The paper is organized as follows: in Section 2, we
introduce the Delaunay coordinates and discuss the integrable Hamiltonian (1) with
μ = 0. In Section 3, we analyze the dynamics “far away” from collisions (Step 1 of
the Scheme of the proof).We define the modified Hamiltonian Ĥμ and we apply the
KAM theory. Then, in Section 4, we analyze the dynamics in the transition zone
(Step 2). In Section 5, we use the Levi–Civita regularization to analyze a small
neighborhood of the collision (Step 3). This completes the proof of Theorem 1.3.

2. The Collision Set and Density of Collision Orbits for μ = 0

We start by considering Hamiltonian (1) with μ = 0. This simplified model
will give us the open set V where to look for (asymptotic) density of collisions. The
analysis of this set was already done in [6]. Hamiltonian (1) with μ = 0 reads

H0(x, y) = |y|2
2

− xt J y − 1

|x | . (6)

If we perform the classical Delaunay transformation (see Appendix A) �(x, y) =
(�, g, L , G), which is symplectic, to H0, we obtain

H0(L , G) = − 1

2L2 − G. (7)

We use these coordinates to define the set V where collisions orbits are dense when
μ = 0. We also define the eccentricity

e = e(L , G) =
√
1 − G2

L2 . (8)
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Fig. 1. Elliptic and circular orbits of Asteroid and Jupiter resp. for μ = 0

Lemma 2.1. ([6]) Fix J ∈ (−2
√
2, 3) and define the open set

V =
{
(�, g, L , G) ∈ T

2 × (0,+∞) × (−L , 0) ∪ (0, L) : G2

1 + e
< 1 <

G2

1 − e

}
.

Then, the set

VJ = V ∩ {−2H0 = J }
contains a dense subset whose orbits tend to collision.

Proof. To prove this lemma, we express the collision set in Delaunay coordinates
(see Appendix A). This expression is needed in Section 3. In polar coordinates the
collisions are defined (when μ = 0) by

r = 1, ϕ = 0.

By (47), this is equivalent to

L2(1 − e cos u) = 1

v(�) + g = 0.
(9)

To have solutions of the first equation, we impose

∣∣∣ L2 − 1

eL2

∣∣∣ < 1, (10)

which is equivalent to the condition

G2

1 + e
< 1 <

G2

1 − e
, (11)

imposed in the definition of V . Assuming this condition, the first equation has two
solutions in [0, 2π ]

u∗+ = arccos
L2 − 1

eL2 ∈ (0, π), u∗− = 2π − arccos
L2 − 1

eL2 ∈ (π, 2π).
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Using � = u − e sin u, we obtain �∗±,0(L , G). Finally, we can solve the second
equation in (9) as g∗±,0(L , G) = −v(�∗±) to obtain the collision set as two graphs
on the actions (L , G),

� = �
±,0
col (L , G)

g = g±,0
col (L , G).

(12)

Recall that H0(L , G) is completely integrable. For fixed J ∈ (−2
√
2, 3),

V ∩ {−2H0(L , G) = J }
is foliated by 2-dimensional tori defined by constant (L , G) (see Fig. 2), whose
dynamics is a rigid rotation with frequency vector ω = (∂L H0,−1). If ∂L H0 =
L−3 ∈ R\Q, the orbit{

ϕt

(
�
±,0
col (L , G), g±,0

col (L , G), L ,
J

2
− 1

2L2

) ∣∣∣∣ t ∈ R

}

is dense in the corresponding torus. Moreover, ∂L H0 = 1/L3 is a diffeomorphism
of (0,+∞). Thus, for a dense set L ∈ (0,+∞), the frequency vector is non-
resonant. These two facts lead to density of collisions lead to the existence of V of
which collision solutions are dense. ��

Lemma 2.1 does not only provide the open set V but also describes it in terms
of the Delaunay coordinates. Let us explain the set V geometrically. We need to
avoid the following:

• Degenerate ellipses with e = 1: so we impose G �= 0.
• Circles: so we impose |G| < L .
• Ellipses that do not intersect the orbit of the second primary (the unit circle)

or are tangent to it. This is given by two conditions. The first one is (11).
The second one is that the semimajor axis L cannot be too small. This second
condition is equivalent to take H0 in the imposed range of energies −2H0 =
J ∈ (−2

√
2, 3).

The proof of Lemma 2.1 also provides a description of the collision manifold
for H0 in V ∩ {−2H0(L , G) = J }. This manifold has two connected components
in the energy level defined as

C±
J =
{
(�, g, L , G) ∈ V ∩ {−2H0(L , G) = J }

∣∣∣� = �∗±,0(L , G), g=g∗±,0(L , G)
}
.

It can be easily seen that these manifolds intersect transversally each invariant torus
(L , G) = constant in V ∩ {−2H0(L , G) = J }.

Finally, let us point out that to prove Theorem 1.3 we cannot work with the
full set V but in open sets whose closure is strictly contained in V . Namely, the
closer we are to the boundary of U , the smaller we need to takeμ to prove Theorem
1.3. To this end, we define the following open sets. Fix δ > 0 small. Recall that

eccentricity e = e(L , G) =
√
1 − G2

L2 , see (8). Then, we define

Vδ ⊂ Vδ ⊂ V,
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energy surface

(l+,0
col , g

+,0
col )

(l−,0
col , g

−,0
col )

Fig. 2. For μ = 0, the energy surface {−2H0 = J } is foliated by punctured tori, where the
punctures correspond to collisions

where

Vδ = {(�, g, L , G) ∈ V : L ∈ (δ, δ−1),

δ < |G| < L − δ,
G2

1 + e(G, L)
+ δ < 1 <

G2

1 − e(G, L)
− δ

}
.

(13)

For μ > 0, one can analyze the collision set analogously as done in the proof
of Lemma 2.1. One just needs to replace the equations (9) by

L2(1 − e cos u) = 1 − μ

v(�) + g = 0,
(14)

which have solutions in Vδ for μ small enough and lead to a definition of the
collision set as two graphs

� = �
±,μ
col (L , G)

g = g±,μ
col (L , G).

(15)

Moreover, these graphs are non-degenerate in Vδ as the associated Hessian has
positive lower bounds (independent of μ).
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3. The Region R1: Dynamics Far from Collision

To study the region R1, that is dynamics “far from collision”, we apply KAM
Theory. To this end,wemodify theHamiltonian to avoid its blowupwhen approach-
ing collision. We modify the Hamiltonian in polar coordinates and then we express
the modified Hamiltonian in Delaunay variables.

The Hamiltonian (1) expressed in polar coordinates (45) is given by

Hμ(r, ϕ, R, G) = R2

2
+ G2

2r2
− G − μ√

r2 + (1 − μ)2 − 2(1 − μ)r cosϕ

− 1 − μ√
r2 + μ2 + 2μr cosϕ

, (16)

which can be written as

Hμ(r, ϕ, R, G) = R2

2
+ G2

2r2
− G − 1

r
− μg1(r, ϕ, μ) − μg2(r, ϕ, μ),

where

g1(r, ϕ, μ) = 1√
r2 + (1 − μ)2 − 2(1 − μ)r cosϕ

g2(r, ϕ, μ) =μ−1

(
1√

r2 + μ2 + 2μr cosϕ
− 1

r

)
.

The term g1 has a singularity at {(r, ϕ) = (1 − μ, 0)} and g2 is analytic in the
domainswe are considering (which do not contain the position of the other primary).
Wemodify g1 bymultiplying it by aC∞ smooth bump function. Consider� : R →
R so that

�(z) =
{
0 if |z| � 1
1 if |z| � 2

.

Then, if we fix τ > 0, we define

ĝ1(r, ϕ, μ) = �

(
μ−τ

√
(r cosϕ − 1 + μ)2 + r2 sin2 ϕ

)

· (g1(r, ϕ, μ) − 4μ−τ
)+ 4μ−τ ,

with

ĝ1(r, ϕ, μ) =
{

g1(r, ϕ, μ), for|(r cosϕ − 1 − μ, r sin ϕ)| � 2μτ

4μ−τ , for|(r cosϕ − 1 − μ, r sin ϕ)| � μτ .

Later, in Section 3.2, we show that the optimal choice for τ is τ = 3/20.
Notice that ‖ĝ1‖Cr � μ−(r+1)τ for sufficiently small μ 
 1, and ‖g2‖Cr � 1.

In this section, we consider the modified Hamiltonian

Ĥμ(r, ϕ, R, G) = R2

2
+ G2

2r2
− G − 1

r
− μĝ1(r, ϕ, μ) + μg2(r, ϕ, μ), (17)
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and we express it in Delaunay coordinates by considering the transformation
�2(r, ϕ, R, G) = (�, g, L , G) introduced in (46). This change leads to an iso-
energetic non-degenerate nearly integrable Hamiltonian

Ĥμ(�, g, L , G) = − 1

2L2 − G + μ f̂1(�, g, L , G, μ) − μ f2(�, g, L , G, μ). (18)

Fix δ > 0. Then, in the set Vδ defined in (13), the functions f1 and f2 satisfy

‖ f̂1‖Cr � Cμ−(r+1)τ , ‖ f2‖Cr � C

for some constant C which depends on δ but is independent of μ.
In polar coordinates, there are two disjoint subsets

D±
pol :=

{
(r, ϕ, R, G) ⊂ �2(Vδ)

∣∣∣ |(r cosϕ − 1 + μ, r sin ϕ)| � μτ
}
, (19)

at each of the considered energy levelswhere theHamiltonian Hμ in (16) is different
from the modified Ĥμ in (17). They correspond to two disjoint intersections (see
Fig. 1). Here the sign ± depends on the sign of the variable R.

The main result of this section is the proposition to follow, where we take

τ = 3

20
.

Note that we abuse notation and we refer to Vδ independently of the coordinates
we are using.

Proposition 3.1. Fix δ > 0 and � > 0 small. Then there exists μ0 > 0 depending
on δ and � , such that the following holds for any μ ∈ (0, μ0):

For any X ∈ Vδ , there exists a C1 curve S ∈ Vδ of length O(μ
3
20 ) satisfying

dist(S,X) � O(μ
1
20 )

and a continuous function T0 : S → R
+ such that

S0 = {
φHμ(T0(z), z) : z ∈ S

}

satisfies either S0 ⊂ ∂D+
pol or S0 ⊂ ∂D−

pol, where φHμ is the flow associated to the
Hamiltonian Hμ.

Moreover, we have that:

(1) There exists a C1 function V satisfying such that S0 is a graph over u as

S0 =
{
(u, V (u))

∣∣∣∣ u = μ
3
20 eis · v0

|v0| , s ∈
[
π

2
+ �,

3π

2
− �

]}
.

Moreover, there exists v0 ∈ R
2 satisfying |v0| � C for certain C > 0 indepen-

dent of μ such that

max |V (u) − v0| � O(μ1/20).
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(2) For all z ∈ S and t ∈ (0, T0(z)), φĤμ
(t, z) �∈ D+

pol ∪ D−
pol and, therefore,

φĤμ
(t, z) = φHμ(t, z), ∀z ∈ S and t ∈ (0, T0(z)).

This proposition implies that any point in Vδ has a curve S in its O(μ
1
20 )

neighborhood that hits “in a goodway” a O(μ
3
20 ) of the collision. To proveTheorem

1.3, it only remains to prove that the image curve S0 posesses a point whose orbit
leads to collision. We prove this fact in two steps in Sections 4 and 5.

The rest of this section is devoted to prove Proposition 3.1.

Proof of Proposition 3.1. The proof has several steps. We first analyze the dynam-
ics in the region R1 in Delaunay coordinates, then translate into the Cartesian
coordinates (u, v). ��

3.1. Application of the KAM Theorem

First step is to apply KAM Theorem to get invariant tori for the Hamiltonian Ĥμ.
We are not aware of any KAM Theorem in the literature dealing with C∞ iso-
energetically non-degenerate Hamiltonian systems. To overcome this problem, we
reduce Ĥμ to a two dimensional Poincaré map and use Herman’s KAM Theorem
[22].

Lemma 3.2. Fix r � 3 and τ > 0 such that 1 − (r + 2)τ > 0. Consider the
Hamiltonian (18) and fix an energy level {Ĥμ = h}, h ∈ (−3/2,

√
2). Then, for μ

small enough, the flow associated to (18) restricted to the level of energy induces
a two dimensional exact symplectic Poincaré map Ph,g0 : {g = g0} → {g = g0},
Ph,g0 = Ph,g0(�, L). Moreover, Ph,g0 is of the form

Ph,g0 :
(

�

L

)
→
(

� − 2πω(L)

L

)
+ F

(
�

L

)
,

where

ω(L) = 1

L3

and F depends on both h and g0 and satisfies

‖F‖Cr � Cμ1−(r+2)τ

for some C > 0 independent of μ.

We apply KAM Theory to the Poincaré map Ph,g0 . Recall that a real number ω

is called a constant type Diophantine number if there exists a constant γ > 0 such
that ∣∣∣∣ω − p

q

∣∣∣∣ � γ

q2 for all p ∈ Z, q ∈ N. (20)

We denote by Bγ the set of such numbers for a fixed γ > 0. The set Bγ has measure
zero. Nevertheless, it has the following property:
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Lemma 3.3. Fix γ 
 1. Then, the set Bγ is γ -dense in R.

We prove this lemma in Appendix B.
Now we can apply the following KAM theorem:

Theorem 3.4. (Herman [22], Volume 1, Sections 5.4 and 5.5) Consider a Cr ,
r � 4, area preserving twist map

fε : [0, 1] × T → [0, 1] × T of the form fε = f0 + ε f1,

where

f0(θ, I ) = (θ + A(I ), I )

and M−1
0 � A′(I ) � M0 > 0 for all I ∈ R. Assume ‖ f1‖Cr � 1. Then, if ε1/2M−1

0
is small enough, for each ω from the set of constant type Diophantine numbers with
γ ∼ ε1/2, the map fε posesses an invariant torus Tω which is a graph of Cr−3

functions Uω and the motion on Tω is Cr−3 conjugated to a rotation by ω with
‖Uω‖Cr−3 � ε1/2. These tori cover the whole annulus O(ε1/2)-densely.

Remark 3.5. In [22] it is shown that this theorem is also valid under the weaker
assumption that the map fε is C3+β with any β > 0 instead of C4. This would
slightly improve the density exponent in Theorem 1.3 as already pointed out in
Remark 1.4 (see also the Remark 3.10 below). We stay with regularity C4 to have
simpler estimates.

This theorem can be applied to the Poincaré map obtained in Lemma 3.2.
Moreover, these KAM tori have smooth dependence on g0. Indeed, all Poincaré
maps Ph,g0 : {g = g0} → {g = g0} with different g0 are conjugate to each other.

Theorem 3.4 implies the existence of 2–dimensional tori T h
ω which are invariant

by the flow of Ĥμ in (18) with energy h = −J/2 ∈ (−3/2,
√
2). Note that we

cannot identify the quasiperiodic frequency ω = (ωh
� , ωh

g) of the dynamics on Tω,

only that their ratio ωh
� /ωh

g = −1/L3
0,ω is fixed (and Diophantine).

Corollary 3.6. For each ω̂ ∈ Bγ with γ satisfying γ ∼ ε1/2 and any h ∈
(−3/2,

√
2) fixed, there is a KAM torus T h

ω , which is given by

T h
ω = {(�, g, Lh

ω,μ(�, g), Gh
ω,μ(�, g)) | (�, g) ∈ T

2},
where ω2/ω1 = ω̂ and (Lh

ω,μ, Gh
ω,μ) is a Cr−3 graph satisfying

∥∥∥Lh
ω,μ − Lω,0

∥∥∥
Cr−3

� ε1/2,

∥∥∥Gh
ω,μ − Gω,0

∥∥∥
Cr−3

� ε1/2, (21)

where ε = μ1−6τ ,

ω̂ = 1

L3
0,ω

, h = − 1

2L2
0,ω

− G0,ω.

Moreover,
⋃

ω∈Bγ T h
ω is O(γ )-dense in Vδ .
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This corollary is a direct application of Theorem 3.4. The frequency in this
setting is given by ω(L) = 1/L3 and, thus

∣∣ω′(L)
∣∣ = 3

L4

has a lower bound independent of μ (but depending on δ) in Vδ . Since the lower
is the regularity, the better are the estimates for ε, we choose r = 4. To simplify
notation, we omit the superindex h. Note that the density of the KAM tori is due
to the γ -density of Bγ , the relation between ω̂ and L and (21).

Remark 3.7. Note that one can apply Theorem 3.4 with any γ � √
ε at the expense

of obtaining aworse density of invariant tori. In Section 3.2,we chooseγ to optimize
density for the collision orbits.

3.2. The Segment Density Argument in Delaunay Coordinates

We use the KAMTheorem to obtain the segment density estimates stated in Propo-
sition 3.1. We first obtain this density result in Delaunay coordinates. Taking into
account that the change from Delaunay to the Cartesian coordinates (u, v) is a dif-
feomorphism with uniform bounds independent of μ, this will lead to the density
estimates in Proposition 3.1.

For μ = 0 Lemma 2.1 describes the collision set in Delaunay coordinates as
(two) graphs over the actions (L , G) (see (12)). By the implicit function theo-
rem the same holds for small μ > 0 (see (14)). Since the KAM tori obtained in
Corollary 3.6 are graphs over (�, g) and “almost horizontal” (see (21)), the intersec-
tion between each of these KAM tori T and the collision set consist of two points
(�

±,μ
col , g±,μ

col , L(�
±,μ
col , g±,μ

col ), G(�
±,μ
col , g±,μ

col )). Denote the restriction of the collision
neighborhoodsD±

pol to these cylinders byD±. Since the coordinate change from the
polar coordinates to Delaunay is a diffeomorphism there are constants C > C ′ > 0
independent of μ such that

∂D± ⊂
{

C ′μτ � |(� − �
±,μ
col , g − g±,μ

col )| � Cμτ
}

. (22)

For any of the tori T obtained in Corollary 3.6 we consider their graph param-
eterization

T = {(�, g, Lh
ω,μ(�, g), Gh

ω,μ(�, g))|(�, g) ∈ T
2}

and we define the balls

B±
T = T ∩

{
|(� − �

±,μ
col , g − g±,μ

col )| � Cμτ
}

. (23)

These balls can be viewed on Fig. 2 as neighborhoods ofmarked collision points
in each torus. The main result of this section is
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Lemma 3.8. Fix δ > 0 and � > 0 small. Then, there exists μ0 > 0 depending
on δ and � , such that the following holds for any μ ∈ (0, μ0): for any X ∈ Vδ ,
there exists an invariant torus T obtained in Corollary 3.6 and a C1 curve S ⊂ T
of length O(μ

3
20 ) satisfying dist(S,X) � O(μ

1
20 ) and a continuous function T0 :

S → R
+ such that

S0 = {
φHμ(T0(z), z) : z ∈ S

}
satisfies either S0 ∈ ∂B+

T or S0 ∈ ∂B−
T . In addition, we have that:

(1) The set S0 is a graph over (�, g) and satisfies either

S0 =
{
(�, g, Lh

ω,μ(�, g), Gh
ω,μ(�, g))

∣∣∣(�, g) = (�
+,μ
col , g+,μ

col ) + μ
3
20 eis · ω

|ω| ,

s ∈
[
π

2
+ �,

3π

2
− �

]}

or the same for the collision (�
−,μ
col , g−,μ

col ).
(2) For all z ∈ S and t ∈ (0, T0(z)), φĤμ

(t, z) �∈ B+
T ∪ B−

T and therefore

φĤμ
(t, z) = φHμ(t, z), ∀z ∈ S and t ∈ (0, T0(z)).

We devote the rest of the section to prove this lemma. Since the segments S
considered are contained in the KAM tori from Corollary 3.6, we will use the
density of tori to ensure that any point in Vδ has one of those segments nearby.
Thus, we need to ensure that

1. By adjusting γ in Corollary 3.6: the KAM tori are dense enough (see Remark
3.7);

2. There are segments whose future evolution “spreads densely enough” on these
tori.

Item 2 requires strong (Diophantine) properties on the frequency of the torus.
The stronger the conditions we impose on the frequency, the better the spreading
at expense of having fewer tori. This would give worse density in item 1. Thus, we
need to obtain a balance between the density of tori in the phase space and the good
spreading of orbits in the chosen tori.

Fix one torus T from Corollary 3.6 and consider the associated balls B±
T given

by (23). To obtain the density statement, we first prove it for points belonging to
the torus T . Then, due to sufficient density of KAM tori, we deduce Lemma 3.8.

We want to show that any point z ∈ T has a segment S ⊂ T in its O(μ
1
20 )-

neighborhood which, under the flow of Hamiltonian (1) (in Delaunay coordinates),
hits “in a good way” either ∂B−

T or ∂B+
T . Namely, covering a large enough part

of the boundary of the balls and incoming velocity being almost constant (see
Fig. 3). Note that we apply the KAM Theorem to the Hamiltonian (18) instead of
the original one (1). Since the Hamiltonians coincide only away from the union
B−
T ∪ B+

T , we need to make sure that the evolution of S does not intersect this
union before hitting it “in a good way”.
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To start, assume that T has only one collision instead of two. Making a trans-
lation, we can assume that it is located at (�, g) = (0, 0). Later, we adapt the
construction to deal with tori having two collisions.
One collision model case: Since T is a graph on (�, g), we analyze the density
in the projection onto the base. By Theorem 3.4, the torus and its dynamics are
ε1/2 = μ(1−6τ)/2-close to the unperturbed one. Moreover, after a ε1/2-close to the
identity transformation, the base dynamics is a rigid rotation. Somewhat abusing
notation, we still denote transformed variables (�, g). We analyze the density on
the section {g = 0}. Since the dynamics is a rigid rotation, the density in the section
implies the density in the whole torus.

We flow backward the collision and analyze the intersections of the orbits with
{g = 0}. By a change of time, the orbits on the projection are just

(�(t), g(t)) = (�0 + ωt, g0 + t), (24)

where ω ∈ Bγ , defined in (20), with γ � √
ε. The intersections of the backward

orbit starting at the collision (0, 0) with {g = 0} are given by ‖qω‖, where
‖α‖ = min

p∈Z |α − p|. (25)

Fix C > 0. We study this orbit until it hits again a Cμτ neighborhood of the
collision. Thus, we consider q = −1, . . . ,−q∗ where q∗ + 1 ∈ N is the smallest
solution to

‖(q∗ + 1)ω‖ � 4Cμτ .

Assume that the (ratio of) frequencies of the torus T is in Bγ (with γ to be specified
later). Then, we obtain that

|q∗| � 1

4C
γμ−τ − 1. (26)

We need to study the density of −qω (mod 1) with q = −1, . . . ,−q∗. We apply
the following non-homogeneous Dirichlet Theorem (see [11]), where we use the
notation (25):

Theorem 3.9. Let L(x), x = (x1, . . . , xn) be a linear form and fix A, X > 0.
Suppose that there does not exist any x ∈ Z

n \ 0 such that

‖L(x)‖ � A and |xi | � X.

Then, for any a ∈ R, the equations

‖L(x) − a‖ � A1 and |xi | � X1

have an integer solution, where

A1 = 1

2
(h + 1)A, X1 = 1

2
(h + 1)X and h = X−n A−1.
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We use this theorem to show that the iterates −qω (mod 1) are γ -dense.
Since the frequency ω is in Bγ , the equation ‖qω‖ < γ X−1 has no solution

for |q| � X and any X > 0. Therefore, Theorem 3.9 implies that for any ω ∈ R/Z

there exists q satisfying

‖qω − α‖ � 1

X
and |q| � Xγ −1.

We take q∗ = [Xγ −1]. Since we need γ -density, X = γ −1. Then, using also (26),
we obtain the following condition:

γ −2 = |q∗| � 1

4C
γμ−τ − 1 � 1

5C
γμ−τ .

Moreover, to apply Corollary 3.6, one needs

γ � μ
1−6τ
2 .

Thus, one can take, in particular, γ � (5C)
1
3 μ

1−6τ
2 . Then, it is easy to check that

taking

τ = 3

20
, γ = Cμ

1
20

for C > 1 large enough independent of μ, the two inequalities are satisfied. More-
over, this choice of γ , optimizes the density of both KAM tori and the spreading
of orbits in these tori.

Remark 3.10. If one considers regularity C3+β with β > 0 small instead of C4,
as explained in Remark 3.5, one can proceed analogously. One would obtain then

τ = 3

17 + 3β
, γ = Cμ

1
17+3β .

This would lead to the improved density pointed out in Remark 1.4.

Two collisions in each torus: The reasoning above has the simplifying assumption
that each torus has only one collision instead of two. Nowwe incorporate the second
collision. Note that the only problem of including the other collision is that the
considered backward orbit departing from collision 1 located at (0, 0) may have
intersected the 4Cμτ -neighborhood of the other collision, where the two flows
φĤμ

(t, z) and φHμ(t, z) differ, before reaching the final time t = −q∗. We prove
that the backward orbit until time −q∗ from one collision may intersect the 4Cμτ -
neighborhood of the other collision, but this cannot happen for the (−q∗)-time
backward orbits of the two collisions, just for one of them.

Assume that the collisions are located at (0, 0) and (�′, g′). Call (�′′, 0) the first
intersection between g = 0 and the backward orbit of the point (�′, g′) under the
flow (24) (see Fig. 2). The time to go from (�′, g′) to (�′′, 0) is independent of μ

and, therefore, studying returns to the 1-dimensional section suffices. Assume that
both the (−q∗)-backward orbit of (0, 0) hits a 4Cμτ neighborhood of (�′′, 0) and
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the (−q∗)-backward orbit of (�′′, 0) hits a 4Cμτ neighborhood of (0, 0). That is,
there exist 0 � q1, q2 � q∗ such that

‖q1ω − �′′‖ < 4Cμτ

‖q2ω + �′′‖ < 4Cμτ .

Using the Diophantine condition
γ

|q1 + q2 + 2| � ‖(q1 + q2 + 2)ω

‖ � ‖(q1 + 1)ω − �′′‖ + ‖(q2 + 1)ω + �′′‖ < 8Cμτ ,

we get q1+q2 > 8Cγμ−τ −2, which, by (26), implies that either q1 or q2 satisfies
qi > 4Cγμ−τ − 1. This contradicts qi � q∗.

Thus, the (−q∗)-backward orbit under the flow φHμ of one of the two collisions

covers the torusμ
1
20 –densely. Equivalently, for any point (�0, g0) in the torus, there

exists a point (�∗, g∗) which is μ
1
20 -close to a trajectory of the flow φHμ hitting

either ∂B−
T or ∂B+

T . Now, since the invariant tori are γ ∼ μ
1
20 dense in Vδ by

Corollary 3.6, we have that the μ
1
20 neighborhood of any point in Vδ contains a

point whose orbit reaches either ∂B−
T or ∂B+

T .
We do not want just one orbit to hit ∂B±

T but we want a whole segment of

length ∼ μ
3
20 to hit as stated in Item 1 of Lemma 3.8. Since we have considered

coordinates such that the dynamics on T is a rigid rotation, one can see that the
orbit of any point Cμτ -close to (�∗, g∗) does not hit B+

T for time q∗ + O(1) either.

Therefore, μ
1
20 -close to any point one can construct a segment which hits ∂B+

T as
stated in Item 1 of Lemma 3.8.

The considered coordinates are different but ε1/2-close to the original (�, g)

(recall that abusing notation we have kept the same notation for both systems
of coordinates). Nevertheless, all the statements proven are coordinate free and,
therefore, are still valid in the original (�, g) coordinates.

Moreover, the localization in actions is a direct consequence from the graph
property in Corollary 3.6. Item 2 is a direct consequence of the fact that the con-
structed orbits do not intersect B±

T until they hit its boundary at time q∗ + O(1).
This completes the proof of Lemma 3.8.

3.3. Back to Cartesian Coordinates: Proof of Proposition 3.1

To deduce Proposition 3.1 from Lemma 3.8 it only remains to change coordinates
to (u, v). Note that the only statement which is not coordinate free in Lemma 3.8
is the graph property and localization in the variable v in Item 1. To this end we
need to analyze the change of coordinates (�, g) → u in a neighborhood of the
collisions (note that the graph property is only stated in these neighborhoods).

Using the Delaunay transformation and the graph property obtained in Lemma
3.8, the segment S expressed in cartesian coordinates can be parameterized as

u ≡ u(�, g, L , G) = u(�, g, L(�, g), G(�, g)),

v ≡ v(�, g, L , G) = v(�, g, L(�, g), G(�, g)).
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It only remains to show that we can invert the first row to express (�, g) as a function
of u. As a first step, we can express (�, g) in terms of the polar coordinates (r, ϕ).
Using the definition of Delaunay coordinates, one can easily check that

∣∣∣∣∂(�, g)

∂(r, ϕ)

∣∣∣∣ =
∣∣∣∣
(

∂r� 0
∂r g ∂ϕg

)∣∣∣∣ = ∣∣∂r� · ∂ϕg
∣∣ =

∣∣∣∣1 − e cos u

L2e sin u

∣∣∣∣ .
The location of the collisions in Delaunay coordinates has been given in (14). This
implies that in a μτ–neighborhood of the collisions

1 − e cos u = 1

L2 + O(μτ ) �= 0.

Moreover, by condition (10), | cos u| < 1 − δ′ for some δ′ > 0 independent of
μ and depending only on the parameter δ introduced in (13). This implies that
| sin u| � δ′′ for some δ′′ > 0 only depending on δ′. This implies that the change
(r, ϕ) → (�, g) is well defined and a diffeomorphism in a μτ–neighborhood of
the collisions. Since (r, ϕ) → u is a diffeomorphism, this gives the graph property
stated in Proposition 3.1.

Now, we need to prove the localization of the velocity v. To this end, it suffices
to define the velocity v0 as

v0 = v
(
�
±,μ
col , g±,μ

col , Lω,μ(�
±,μ
col , g±,μ

col ), Gω,μ(�
±,μ
col , g±,μ

col )
)

.

That is, the velocity v evaluated on the (removed) collision point at the torusT . Here
the choice of + or − depends on the neighborhood of what collision the segment
S0 has hit. Using the smoothness of the torus, the estimate (21) and estimates on
the changes of coordinates just mentioned, one can obtain the localization in Item
1 of Proposition 3.1.

Finally, let us mention that Lemma 3.8 considers S0 ⊂ ∂B±
T (see (23)). On

the contrary, Propostion 3.1 considers S0 at ∂D±
pol (see (19)). These balls do not

coincide since are expressed in different variables. Nevertheless, the boundaries are
very close as stated in (22). Since the flow is close to integrable in the annulus in
(22), one can flow S0 from ∂B±

T to ∂D±
pol keeping all the stated properties. ��

4. The Transition Region R2

In this section, we analyze the evolution of the segment S0 in the Transition
Region (see (4)). More precisely, the goal is to prove that the evolution under the
flow of Hμ of a subset of S0 reaches the inner boundary of the annulus R2 (see (4))
and to obtain properties of this image set (see Fig. 4).

To this end, we take ρ > 0 and we consider a section �1 transversal to the flow

�1 =
{
ξeiπ/2 v0

|v0| ∈ R
2
∣∣∣ξ ∈ [−μτ ,−ρμ1/2 sec

�

2
] ∪ [ρμ1/2 sec

�

2
, μτ ]

}⋃
{
λρμ1/2ei( �

2 + π
2 ) v0

|v0| + (1 − λ)ρμ1/2 sec
�

2
eiπ/2 v0

|v0|
∣∣∣ λ ∈ [0, 1]

} ⋃
�1,�

,
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Fig. 3. Projection of S0 onto the configuration space along with incoming velocity, which
must belong to the grey cones

where

�1,� :=
{
ρμ1/2eiθ · v0

|v0|
∣∣∣∣θ ∈

[
π

2
+ �

2
,
3π

2
− �

2

]}
(27)

(see Fig. 4 ). The main result of this section is

Proposition 4.1. Consider the curve S0 defined in Proposition 3.1. Then, for ρ > 0
large enough and μ > 0 small enough, there exists a subset S ′

0 ⊂ S0 such that for
all P ∈ S ′

0 there exists a time T1(P) > 0 continuous in P ∈ S ′
0 such that

�1,� ⊂ πu

{
φHμ(T1(P), P) : P ∈ S ′

0

}
⊂ �1,

where φHμ(t, ·) is the flow associated to the Hamiltonian (1).
Moreover, if we have

S1 :=
{
φHμ(T1(P), P)

∣∣∣ P ∈ S ′
0

}
,

the following properties hold:

• S1 is a C0 curve.
• For all P ∈ S1 , ‖πv P − v0‖ � O(μτ/3).
• For all P ∈ S1, T1(P) � μτ .

ToproveProposition4.1wefirst consider afirst order of the equations associated
to Hamiltonian Hμ in (1). Taking into account that in the region R2 we have that
|u| � μτ (see (4)), we define the Hamiltonian

Hlin(u, v) = |v|2
2

− ut Jv, (28)
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Fig. 4. Geometry of the incoming curve near collisions, see (4)

which will be a “good first order” of Hμ and whose equations are linear:

u̇1 = v1 + u2

u̇2 = v2 − u1

v̇1 = v2

v̇2 = −v1.

Lemma 4.2. Consider the curve S0 defined in Proposition 3.1. Then, there exists
a subset S lin

0 ⊂ S0 such that for all P ∈ S lin
0 there exists a time Tlin(P) > 0

continuous in P ∈ S lin
0 such that

�1,� ⊂ πu

{
φHlin(Tlin(P), P) : P ∈ S lin

0

}
⊂ �1, (29)

where �1,� has been defined in (27) and φHlin(t, ·) is the flow associated to Hamil-
tonian (28). Moreover, if we define

S lin
1 =

{
φHlin(Tlin(P), P)

∣∣∣P ∈ S lin
0

}
,

the following properties hold:

• S lin
1 is a C0 curve.

• For all P ∈ S lin
1 , ‖πv P − v0‖ � O(μτ/3).

• For all P ∈ S lin
1 , Tlin(P) � O(μτ ).
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Proof. The proof of this lemma is straightforward taking into account that |u| � μτ

in R2, that the trajectories associated to the Hamiltonian in (28) are explicit and
given by

(
u1
u2

)
=
(

cos t sin t
− sin t cos t

)(
u0
1

u0
2

)
+ t

(
cos t sin t

− sin t cos t

)(
v01
v02

)
(

v1
v2

)
=
(

cos t sin t
− sin t cos t

)(
v01
v02

)

and the fact that (v01, v
0
2) has a lower bound independent of μ. ��

Once Lemma 4.2 has given the behavior in Region R2 of the flow associated to
the Hamiltonian (28), now we compare its dynamics to those of Hμ in (1).

Lemma 4.3. Take ρ > 0 large enough and μ > 0 small enough. Then, for all
P ∈ S0, there exists T1(P) > 0 continuous in P satisfying

|T1(P) − Tlin(P)| � ρ−1μ2τ (30)

such that πuφHμ(t, P) ∈ Int(R2) for all t ∈ (0, T1(P)), πuφHμ(T1(P), P) ∈ �1

with ∥∥πvφHμ(T1(P), P) − πv φHlin(Tlin(P), P)
∥∥ � ρ−1μ2τ . (31)

Proof. The region R2 satisfies |u| � μτ . Therefore, the equation associated to
Hamiltonian Hμ in (1) satisfies

u̇1 = v1 + u2

u̇2 = v2 − u1

v̇1 = v2 + O
(
ρ−1 + μ

)

v̇2 = −v1 + O
(
ρ−1 + μ

)
.

Since ρ is taken such that ρ−1 � μ; we have that this equation is O(ρ−1)–close
to the equation of Hlin (see (28)).

Consider the trajectory (u(t), v(t)) of (u0, v0) ∈ S0 under the flow of Hμ.
Then, applying variation of constants formula, as long as the trajectory remains in
R2, we have(

u1
u2

)
=
(

cos t sin t
− sin t cos t

)(
u0
1

u0
2

)
+ t

(
cos t sin t

− sin t cos t

)(
v01
v02

)
+ O

(
ρ−1t2

)
(

v1
v2

)
=
(

cos t sin t
− sin t cos t

)(
v01
v02

)
+ O

(
ρ−1t

)
.

Then, it is straightforward to prove (30) and (31). ��
Recall that for any starting point (u0, v0) ∈ S0, we know ‖v0 − v0‖ � μτ/3. From
Lemmas 4.2 and 4.3, one can easily deduce the proof of Proposition 4.1.
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5. Levi-Civita Regularization in the Region R3

The last step to prove Theorem 1.3 is to show that there is a point inside the
curve S1 (from Proposition 4.1) whose trajectory hits a collision. To this end we
analyze a ρμ1/2–neighborhood of the collision u = 0 by means of the Levi-Civita
regularitzation (Fig. 5).

For |u| � ρμ1/2, system Hμ(u, v) can be expanded as

Hμ(u, v) = |v|2
2

−ut Jv− μ

|u| − 1

2
(μ−1)(μ−3)− 1

2
(1−μ)(2u2

1−u2
2)+ O(u3).

(32)
Performing the following scaling and time reparamaterization:

u = μ1/2ũ, t = μ1/2ς, (33)

we obtain a new system, which is Hamiltonian with respect to

H̃ρ (̃u, v) = 1

2
|v|2 − μ1/2ũt Jv − μ1/2 1

|̃u| − 1

2
μ(1− μ)(2ũ2

1 − ũ2
2) + O(μ3/2ũ3).

(34)
Recall that we have fixed CJ ∈ (−2

√
2, 3). Thus, for μ 
 1 small enough, the

energyof H̃ρ (̃u, v)belongs to (0,
√
2+3/2) (note the constant term (μ−1)(μ−3)/2

in (32) and recall that CJ = −2Hμ).
Consider the set �1,� introduced in (27). We express it in the new coordinates

�0
1,� =

{
ρeis · v0

|v0|
∣∣∣∣ s ∈

[
π

2
+ �

2
,
3π

2
− �

2

]}
. (35)

We want to apply the Levi Civita regularization to the Hamiltonian H̃ρ (̃u, v)

restricted to fixed level of energies. To this end, we introduce the constant ξ which
represents the energy of H̃ρ as H̃ρ (̃u, v) = 1

2ξ2
. Denote by H̃0

ρ (̃u, v), the Hamilto-

nian containing the “leading” terms of H̃ρ ,

H̃0
ρ (̃u, v) = 1

2
|v|2 − μ1/2ũt Jv − μ1/2 1

|v| .

Then the difference between H̃0
ρ (̃u, v) and H̃ρ (̃u, v) satisfies ‖H̃ρ (̃u, v) −

H̃0
ρ (̃u, v)‖C3 � O(μ).

Fix � > 0 a small constant independent of μ and ρ and a level of energy in
(0,

√
2+3/2). The goal of this section is to study which orbits starting at ũ = ρeis ,

with s ∈ [π
2 + �, 3π

2 − � ], tend to collision. We analyze them by considering the
Levi-Civita transformation

ũ = 2z2, v = w

ξ z̄
(36)

with ũ ∈ R
2 ∼= C uniquely identified by a complex number and ξ ∼ O(1) being a

scaling constant depending on the energy. Applying this change of coordinates and
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a time scaling to H̃ρ in (34), we obtain a new system which is Hamiltonian with
respect to

Kρ(z, w) = ξ2|z|2
[

H̃ρ

(
2z2,

w

ξ z̄

)
− 1

2ξ2

]
.

Note that the change of time is regular only away from collision z = 0. At z = 0
it regularizes the collisions.

The change of coordinates (36) implies that K −1
ρ (0)\{z = 0} defines a two-

fold covering of the energy surface H̃−1
ρ (1/2ξ2) \ {u = 0}. Moreover, the flow

on K −1
ρ (0)\{z = 0} becomes the flow on H̃−1

ρ (1/2ξ2) \ {u = 0} via the time
reparametrization.

In the new coordinates (z, w), the section �0
1,� in (35) becomes

�̃0
1,� =

{
z =

√
ρ

2
ei(s+s0)

∣∣∣∣ s ∈
[
π

4
+ �

4
,
3π

4
− �

4

]}
,

where 2s0 is the argument of v0,w. Define ρ̃ =
√

ρ

2
.

If one restricts �̃0
1,� to the zero level of energy, that is �̃0

2 ∩ K −1
ρ (0), one has

|z| = ρ̃ and |w| = ρ̃ + O(μ1/2). Thus, since �̃0
1,� ∩ K −1

ρ (0) is two dimensional,
it can be parameterized by the arguments of z and w. We can express Kρ(z, w) as

Kρ(z, w) =1

2
(|w|2 − |z|2) − 1

2
μ1/2ξ2

− 2iξ2μ1/2|z|2(z̄w − w̄z)

− 1

2
(1 − μ)μξ2

[
2|z|6 + 3|z|2(z4 + z̄4) + O(z8)

]
,

(37)

with (z, w) ∈ B(0, O(ρ̃)) ⊂ C
2. Taking into account that |z| = ρ̃ and |w| ∼ ρ̃,

the second line is of higher order compared to the first one.
We want to analyze the orbits which hit a collision. In coordinates (z, w), this

corresponds to orbits intersecting {z = 0}. Equivalently, we analyze orbits with
initial condition at {z = 0} at the energy surface K −1

ρ (0) and we consider their
backward trajectory.

Consider the first order of the Hamiltonian (37), given by

K 0
ρ(z, w) = 1

2
(|w|2 − |z|2) − 1

2
μ1/2ξ2; (38)

it has a resonant saddle critical point (0, 0), with 1 as a positive eigenvalue of
multiplicity two. We analyze the dynamics of the quadratic Hamiltonian at the
energy surface K −1

ρ (0). Later we deduce that the full system has approximately the
same behavior.

We consider collisions points at K −1
ρ (0) as initial condition. That is, by (38),

points of the form

z = 0, w = δμeiψ with δμ = μ1/4ξ and ψ ∈ R/(2πZ). (39)

Consider an initial condition of the form (39) and call (z(t), w(t)) the corresponding
orbit under the flow of (38).
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Lemma 5.1. Fix � > 0 small and a closed interval I ⊂ (0, 2
√
2+ 3). Then for μ

small enough and ξ with 1/(2ξ2) ∈ I , after time

T = −arcsinh

(
ρ̃

δμ

)
= − log

2ρ̃

δμ

+ O(δ2μ) < 0,

the orbit satisfies (z(T ), w(T )) ∈ �̃0
1,� and the image contains the curve

{
(w, z) ∈ �̃0

1,� : arg(w) = arg(z) − π + O(μ1/4), arg(z) ∈
[

π

2
+ �,

3π

2
− �

]}
.

(40)

Proof. The proof of this lemma is a direct consequence of the integration of the
linear system associated to Hamiltonian (38). Indeed, the trajectory associated to
this system with initial condition (39) is given by

z(t) = δμeiψ sinh t

w(t) = δμeiψ cosh t.

Thus taking T < 0 as stated in the lemma the orbits reach �̃0
1,� and

satisfy (40) ��

The next lemma shows that if one considers the full Hamiltonian (37), the same
is true with a small error. Call (z(t), w(t)) to the orbit with initial condition of the
form (39) under the flow associated to (37).

Lemma 5.2. Fix � > 0 small, a closed interval I ⊂ (0, 2
√
2 + 3) and an initial

condition of the form (39). Then, for μ small enough and ξ with 1/(2ξ2) ∈ I , there
exists a time T < 0 (depending on the initial condition), satisfying

∣∣∣∣T + log
2ρ̃

δμ

∣∣∣∣ � Cμ1/4

for some C > 0 independent of μ, such that (z(T ), w(T )) ∈ �̃0
1,� .

Moreover, the intersection between �̃0
1,� and the union of orbits with initial

conditions (39) with any ψ ∈ [0, 2π ] contains a continuous curve (z, w) =
(γ1(ψ), γ2(ψ)) which satisfies

arg z(ψ1) = π

2
+ � , arg z(ψ2) = 3π

2
− �

for some ψ1 < ψ2, ψ1, ψ2 ∈ [0, 2π ], and

|argγ1(ψ) − argγ2(ψ) − π | � O
(
μ1/4

)
.
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Proof. We prove the lemma by using the variation of constants formula. Consider
the symplectic change of coordinates

Xi = zi + wi√
2

, Yi = zi − wi√
2

, i = 1, 2, (41)

which transforms K 0
ρ into

K̃ 0
ρ = 1

2
(X1Y1 + X2Y2) − 1

2
μ1/2ξ2 + μ1/2O4(X, Y ).

We consider the corresponding initial condition X0 = δμeiψ
√
2
, Y0 = −δμeiψ

√
2

and the

equations associated to K̃ 0
ρ , which are of the form

Ẋ = X + μ1/2O3(X, Y )

Ẏ = −Y + μ1/2O3(X, Y ).

We obtain estimates by using a bootstrap argument. Call T ∗ < 0 the first time such
that (X (t), Y (t)) leave the ball of radius one (if it does not exist, set T ∗ = −∞).
Then, using the variation of constants formula, we have that for t ∈ (T ∗, 0),

X (t) = et
(

X0 + O(μ1/2)
)

Y (t) = e−t Y0 + O(μ1/2).

Using the value of X0 and Y0, there exists T < 0 depending on (X0, Y0) satisfying
that ∣∣∣∣T + log

2ρ̃

δμ

∣∣∣∣ � Cμ1/2

for someC > 0 independent ofμ (but depending on ρ) such that the corresponding
(z(T ), w(T )) (by (41)) belongs to �̃0

2 and satisfy

arg z(T ) = ψ + π + O
(
μ1/4

)
, argw(T ) = ψ + O

(
μ1/4

)
.

This implies the statements of the lemma. ��
Undoing the changes of coordinates (33) and (36), we can analyze the orbits

leading to collision for the Hamiltonian (1).

Corollary 5.3. For � > 0 small there exists a curve ϒ = {(u, v) =
(u(ψ), v(ψ)) ⊂ R

4 : ψ ∈ J } where J ⊂ R is an interval such that:

(1) The projection of ϒ onto the u variable contains the set

�′
1,� =

{
ρμ1/2eiθ · v0

|v0|
∣∣∣∣ θ ∈

[
π

2
+ �,

3π

2
− �

]}
.
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θ0 + 3π
2 −

θ0 − π
2 +

θ0

θ0 + π
2 +

θ0 + π
2 −

O(µτ )

O(μ1/4)

Fig. 5. The Blue curve is the projection of S1 obtained in Proposition 4.1 onto the
(arg(u), arg(v)) plane whereas the red curve is the projection onto the same plane of the
curve ϒ obtained in Corollary 5.3. We use the notation θ0 = arg(v0)

(2) It satisfies

u(ψ) = ρμ1/2e2iψ
(
1 + O

(
μ1/4

))

v(ψ) = −ξ−1e2iψ
(
1 + O

(
μ1/4

))
.

(3) The orbits of the Hamiltonian Hμ in (1)with initial condition in ϒ hit a collision.

Proposition 4.1 and Corollary 5.3 imply Theorem 1.3. Indeed, it only remains to
prove that the segment S1 obtained in Proposition 4.1 and the segment ϒ obtained
in Corollary 5.3 intersect. Note that both curves project onto �1,� in (29) and
belong to the same level of energy of the Hamiltonian Hμ in (1). Therefore, these
two curves belong to the two dimensional surface

Mh =
{
(u, v) ∈ R

4 : |u| = ρμ1/2, Hμ(u, v) = h
}

for some h ∈ R. Therefore, to complete the proof of Theorem 1.3, we only need to
prove that the two curves intersect in this 2 dimensional surface. To parameterize
Mh , taking into account that |u| = ρμ1/2 and that this implies

h = Hμ(u, v) = |v|2
2

+ O
(
μ1/2

)
,

one can consider as variables the arguments of u and v. In these coordinates, the
two continuous curves S1 and ϒ satisfy the following:
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• By Proposition 4.1, the projection onto the argument of u of the curve S1
contains the interval[

arg(v0) + π

2
+ �

2
, arg(v0) + 3π

2
− �

2

]

whereas the v component satisfies arg(v) = arg(v0) + O(μτ ). That is, in the
plane (arg(u), arg(v)) is a curve close to horizontal.

• By Corollary 5.3, the projection onto the argument of u of the curveϒ contains[
arg(v0) + π

2
+ �

2
, arg(v0) + 3π

2
− �

2

]
. Moreover, ϒ satisfies

arg(v) = arg(u) − π + O(μ1/4).

Since the two curves are continuous, they must intersect. This completes the proof
of Theorem 1.3.

6. Proof of Theorem 1.7

To prove Theorem 1.7 we use the ideas developed in Section 3 to analyze
the region R1. We only need to modify the density argument from the one given in
Section 3.2. As explained in Section 3.3, the change fromDelaunay to the Cartesian
coordinates (u, v) is a diffeomorphism with uniform bounds independent of μ.
Therefore, it is enough to prove Theorem 1.7 in Delaunay coordinates.

Theorem 1.7 is a consequence of the following lemma. We use the notation of
Section 3: we consider the tori T given by Corollary 3.6 and we denote by B±

T the
balls of radius Cμτ in these tori centered at collisions (see (23)). The Hamiltonians
Hμ in (16) (expressed in Delaunay coordinates) and Ĥμ in (18) coincide away from
B±
T .

Lemma 6.1. Fix δ > 0 small, there exists μ0 > 0 depending on δ, such that the
following holds for any μ ∈ (0, μ0): for any X ∈ Vδ , there exists a invariant torus

T obtained in Corollary 3.6 and a point Y ∈ T satisfying dist(Y,X) � O(μ
1
20 ),

such that:

(1) (Away from the collision) There exists 0 < T (Y) � O(μ− 1
10 ), such that for

all t ∈ (0, T (Y)), φĤμ
(t, z) �∈ B+

T ∪ B−
T ; Therefore, we have

φĤμ
(t,Y) = φHμ(t,Y), for all t ∈ [0, T (Y)].

(2) (Recurrence) dist(φHμ(T (Y),Y),X) � O(μ
1
20 ).

(3) (Close to collision) There exists T ′(Y) ∈ (0, T (Y)], such that

dist(φHμ(T ′(Y),Y),B±
T ) � O(μ

1
20 ).

We devote the rest of the section to prove this lemma. The reasoning follows the
same lines as that of Section 3.2. Namely, since the pointY considered is contained
in one of the KAM tori T from Corollary 3.6 we need to optimize γ (see (20)) so
that we get enough density of tori in Corollary 3.6 and strong enough Diophantine
condition so that the orbits of Ĥμ are well spread in T .
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6.1. Proof of Lemma 6.1

Fix X ∈ Vδ and consider a torus T among the ones given in Corollary 3.6 γ -close
ot it with γ to be determined. We look for a point Y in this torus satisfying the
statements of Lemma 6.1. To this end, we look for an orbit in T spreading densely
enough on the torus.

We proceed as in Section 3.2. Corollary 3.6 implies that T is a graph over
(�, g) and the dynamics on T is ε1/2 = μ(1−6τ)/2-close to the unperturbed one.
Moreover, after a ε1/2-close to the identity transformation, the dynamics (projected
to the base) is a rigid rotation, which by a time reparamaterization, is given by

(�(t), g(t)) = (�0 + ωt, g0 + t),

where ω ∈ Bγ (see (20)).
It is enough to analyze the orbits in T in these coordinates. We analyze the

density of orbits in T on the section {g = 0}. Since the dynamics is a rigid rotation,
the density in the section implies the density in the whole torus.

Proceeding as in Section 3.2, we first assume that each torus has just one colli-
sion and then we adapt the proof to deal with tori having two collisions.
One collision model case: Consider the point z0 on the same horizontal as the
collisionC+ with � coordinate 4Cμτ bigger. This point is outside of the puncture B+

T
since it has radius Cμτ (see (23)). By a translation we can assume that z0 = (0, 0)
and the collision is at C+ = (−4Cμτ , 0).

In Section 3.2 we have considered the backward orbit of (0, 0). Since now we
want a non-wandering result, we consider both the forward and backward orbits.
We want both of them to cover γ -densely the torus without intersecting the B+

T .
As explained in Section 3.2, it is enough to consider the intersections of the orbit
with {g = 0} given by ‖qω‖ (see (25)) for q = −q∗, . . . , q∗ with

q∗ =
⌈

1

20C
γμ−τ − 1

⌉
. (42)

The Diophantine condition (20) implies that ‖qω‖ � 20Cμτ for q = −q∗, . . . , q∗
and, therefore, none of these iterates belong to B+

T . Moreover, applying Theorem
3.9 and choosing

τ = 3

20
and γ ∼ μ

1
20 ,

one can see (as in Section 3.2) that both the forward and the backward orbits are
O(γ )-dense in the torus.

If the torus T would have only one collision, this would complete the proof of
Lemma 6.1. Indeed, the O(γ )-neighborhood of any point in T intersects both the
forward and the backward orbit of z0. Since the tori are γ -dense (Corollary 3.6), for
any point X ∈ Vδ , there exists a torus T γ -close to it and a point Y which belongs
to the just constructed backward orbit on this torus T which is also O(γ )-close to
X. If one considers now the forward orbit of Y, after time T ∼ γμ−τ ∼ μ−1/10

there is an iterate of the orbit which is O(γ )-close to Y and therefore O(γ )-close
to X. Moreover, this orbit has not intersected BT .
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Two collisions case: Now we show that the same reasoning goes through if we
include the second collision of the torus. If we add the second collision, there are
two possibilities:

• If the orbit of z0 does not intersect B−
T for the considered times the proof of

Lemma 6.1 is complete.
• If the orbit of z0 does intersect B−

T , we move slightly z0 to have an orbit with
the same properties as the previous one and not intersecting either of B±

T .

We devote the rest of the section to deal with the second possibility. We use the
same system of coordinates as before, which locates z0 = (0, 0) and the first
collision at C+ = (−4Cμτ , 0). We denote the second collision by C− = (�′, g′).
Call C′− = (�′′, 0) the first intersection between {g = 0} and the backward orbit
of C−. Since the time to go from one point to the other is independent of μ, it is
enough to study the forward and backward orbit of z0 in the section {g = 0}.

By assumption, there exists q ′ with |q ′| � q∗ such that

‖q ′ω − �′′‖ � 4Cμτ . (43)

Then, we consider a new point z1 = (�1, 0) = (10Cμτ , 0), which is 10Cμτ far
away from z0 and 14Cμτ far away from the collision C+. We will see that the
forward and backward orbit of this point z1 intersected with {g = 0}, which is
given by

‖�1 + qω‖, q = −q̂∗ . . . q̂∗ with q̂∗ = q∗/10, (44)

does not hit the 4Cμτ -neighborhoods of C+ and C′−.
First we prove that the points in (44) are away from the 4Cμτ neighborhood of

C+. Indeed, since q̂∗ � q∗ we know that ‖qω‖ � 20Cμτ for all q = −q̂∗ . . . q̂∗
(see (20)). Then, the distance from the collision C+ = (−4Cμτ , 0) is

‖�1 + qω + 4Cμτ‖ � ‖qω‖ − ‖�1‖ − 4Cμτ � 6Cμτ .

Now it only remains to prove that this orbit does not intersect the 4Cμτ -
neighborhood of C′−. We look first at the iterate which was too close to collision
for z0, that is, q = q ′, which satisfied (43). Then, for the orbit of z1 we have

‖�1 + q ′ω − �′′‖ � 10Cμτ − ‖q ′ω − �′′‖ � 6Cμτ .

Now we prove that for all other q = −q̂∗ . . . q̂∗ with q �= q ′ we are also far from
collision. Indeed, assume that there exists q ′′ = −q̂∗ . . . q̂∗ with q ′′ �= q ′ such that

‖�1 + q ′′ω − �′′‖ � 4Cμτ ,

and we reach a contradiction. Indeed,

‖(q ′ − q ′′)ω‖ � ‖q ′ω − �′′‖ + ‖�1‖ + ‖�1 + q ′′ω − �′′‖ � 18Cμτ .

Then, since ω ∈ Bγ (see (20),

γ

2q̂∗ � γ

|q ′ − q ′′| � ‖(q ′ − q ′′)ω‖ � 18Cμτ .
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This implies that

q̂∗ � γμ−τ

36C
.

Nevertheless, by assumption,

q̂∗ = q∗

10
= 1

10

⌈
1

20C
γμ−τ − 1

⌉
.

This completes the proof of Lemma 6.1. Note that changing the number of forward
and backward iterates from q∗ in (42) to q̂∗ = q∗/10 still leads to γ -density of the
forward and backward orbits.
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Appendix A. The Delaunay Coordinates

To have a self-contained paper, in this appendix we recall the definition of the
Delaunay coordinates. For μ = 0, system (1) becomes (6):

H0(x, y) = |y|2
2

− xt J y − 1

|x | .

The Delaunay transformation is a symplectic transformation defined by

�(x, y) = (�, g, L , G),

under which H0(x, y) becomes the totally integrable Hamiltonian

H0(L , G) = − 1

2L2 − G.

One can construct the change of coordinates � in two steps. First we take the usual
symplectic transformation to polar coordinates

(x1, x2, y1, y2) = �1(r, ϕ, R, G), (45)

http://creativecommons.org/licenses/by/4.0/
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defined as ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = r cosϕ

x2 = r sin ϕ

y1 = R cosϕ − G

r
sin ϕ

y2 = R sin ϕ + G

r
cosϕ.

The Hamiltonian in (6) becomes

H0(r, R, ϕ, G) = R2

2
+ G2

2r2
− G − 1

r
.

Recall that G is the angular momentum and itself is a first integral for the 2 body
problem. To obtain the Delaunay coordinates, to obtain Hamiltonian (7), we con-
sider a second symplectic transformation

(r, ϕ, R, G) = �2(�, g, L , G), (46)

where:

• L = √
a where a is the semimajor axis of the ellipse.

• G is the angular momentum.
• � is the mean anomaly.
• g is the argument of the perihelion with respect the primaries line.

The change of coordinates �2 is not fully explicit. Nevertheless, for some
components it can be defined through successive changes of variables (for a more
extensive explanation, one can see Appendix B.1 in [17]). For the position variables
(r, ϕ), one has

r =r(�, L , G) = L2(1 − e cos u(�))

ϕ = φ(�, g, L , G) = v(�) + g,
(47)

where e = e(L , G) is the eccentricity defined in (8) the two functions u(�) and
v(�) are implicitly defined by

� = u − e sin u

tan
v

2
=
√
1 + e

1 − e
tan

u

2
.

Appendix B. Density Estimate of the Diophantine Numbers of Constant Type

Consider the set of all Diophantine numbers with constant type satisfying (20),
which we have denoted by Bγ . We devote this appendix to proving the density of
the set stated in Lemma 3.3. Without loss of generality, we restrict things on the
[0, 1] interval and we prove that Bγ is O(γ )−dense in it. We split the proof into
several lemmas.
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Lemma B.1. For any γ > 0, there exists a constant C(γ ) satisfying

1

γ
− 2 � C(γ ) � 1

γ

such that, for any ω ∈ Bγ , the associated continuous fraction ω = [a1, a2, . . .]
satisfies

0 � ai � C(γ ) for all i ∈ N.

Proof. To prove this lemma, consider the sequence of convergents of ω, { pn
qn

}n∈N,
which is defined by

pn

qn
= [a1, a2, . . . , an].

The integers pn , qn satisfy

pn = an pn−1 + pn−2, n � 2

qn = anqn−1 + qn−2, n � 2,

where p0 = a0 = 0, p1 = 1, q0 = 1 and q1 = a1. They also satisfy

1

q2
n (2 + an+1)

<
1

qn(qn + qn+1)
�
∣∣∣ω − pn

qn

∣∣∣ � 1

qnqn+1
<

1

q2
n an+1

. (48)

For anyω ∈ Bγ , there exists γω � γ , usually called aDiophantine constant, defined
by

inf
n�0

|qn(qnω − pn)| = γω.

From (48), one has

1

2 + an+1
< |qn(qnω − pn)| <

1

an+1
.

Therefore, on the one hand,

inf
n�1

1

an
� γω � γ,

which implies supn�1 an � γ −1. On the other hand,

inf
n�1

1

an + 2
� γω,

which is equivalent to supn�1 an � γ −1
ω − 2. Taking the supremmum over all

ω ∈ Bγ we obtain

sup
ω∈Bγ

sup
n�1

an � 1

γ
− 2.

Therefore, we can conclude that

1

γ
− 2 � C(γ ) � 1

γ
.

��
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The set Bγ is a closed Cantor set (proved in [32]), and it can therefore be expressed
as [0, 1]\Bγ = ⋃∞

i=1(αi , βi ). We call (αi , βi ) a gap of Bγ . The collection of the
boundary points {αi , βi }∞i=1 is a countable set, which is ordered.

Lemma B.2. Consider the set CK of all continuous fractions with entries upper
bounded by a given K . Then, formally we have [0, 1]\CK = ⋃∞

i=1(αi , βi ) and
each gap (αi , βi ) can be expressed either as

(αi , βi ) =
(
[a1, a2, . . . , am , L + 1, K , 1, K , 1, . . .], [a1, a2, . . . , am , L , 1, K , 1, K , . . .]

)
(49)

for some even m, or

(αi , βi ) =
(
[a1, a2, . . . , am , L , 1, K , 1, . . .], [a1, a2, . . . , am , L + 1, K , 1, K , 1, . . .]

)
(50)

for some odd m. In both cases, L ∈ {1, 2, . . . , K − 1}.
Proof. Consider the continuous fraction associated with a constant type number;
namely ω = [a1, a2, . . .] with each ai ∈ {1, 2 . . . , K }. Then, the one has the
following monotonicity: ω decreases when increasing an odd entry and increases
when decreasing an even entry. This gives a rule to order all the continuous fractions
with K -bounded entries. Since CK does not intersect the gaps (α, β), the first
different entry of α and β should have a difference of 1. After that, it can be seen
that the following entries must have consecutive values, as is shown in (49) and
(50): ��
Corollary B.3. The largest gap in [0, 1]\CK = ⋃∞

i=1(αi , βi ) is

GK =
(
[2, K , 1, K , . . .], [1, 1, K , 1, K , . . .]

)
.

Proof. In Lemma B.2 we have shown that

0 < βi − αi = diam (αi , βi ) <

∣∣∣[a1, a2, . . . , am, L] − [a1, a2, . . . , am, L + 1]
∣∣∣,

where ai � 1 for all i = 1, . . . , m. Thus, the smaller m is, the smaller the diameter
of the gap. Therefore the first different entry has to be m = 1. Lemma B.2 gives all
the other entries in the continuous fraction expansion. ��

This corollary implies the proof of Lemma 3.3. Indeed, Bγ contains CK with

K = 1

γ
− 2.

Then, the width of the largest gap in Bγ cannot exceed the width of the interval

GK =
(
[2, K , 1, K , . . .], [1, 1, K , 1, K , . . .]

)
,

which is bounded by O(1/K ). Thus Bγ is at least O(γ )-dense in [0, 1].
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