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Abstract

This paper is concerned with qualitative properties of bounded steady flows of
an ideal incompressible fluid with no stagnation point in the two-dimensional plane
R
2.We show that any such flow is a shear flow, that is, it is parallel to some constant

vector. The proof of this Liouville-type result is firstly based on the study of the
geometric properties of the level curves of the stream function and secondly on the
derivation of some estimates on the at-most-logarithmic growth of the argument of
the flow in large balls. These estimates lead to the conclusion that the streamlines
of the flow are all parallel lines.

1. Introduction and Main Results

In this paper, we consider steady flows v = (v1, v2) of an ideal fluid in the
two-dimensional plane R

2, which solve the system of the incompressible Euler
equations {

v · ∇ v + ∇ p = 0 in R2,

div v = 0 in R2.
(1.1)

Throughout the paper, the solutions are always understood in the classical sense,
that is, v and p are (at least) of class C1(R2) and satisfy (1.1). Any flow v is called
a shear flow if there is a unit vector e = (e1, e2) ∈ S

1 such that v is parallel to e (S1
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denotes the unit circle in R
2). Due to the incompressibility condition div v = 0,

any shear flow parallel to e only depends on the orthogonal variable x · e⊥, where
e⊥ = (−e2, e1). In other words, a shear flow is a flow for which there are e ∈ S

1

and a function V : R → R such that

v(x) = V (x · e⊥) e (1.2)

for all x ∈ R
2. It is easy to see that v is a shear flow if and only if the pressure p is

constant. In the sequel, we denote x �→ |x | the Euclidean norm in R2.
The main result of this paper is the following rigidity result for the stationary

Euler equations.

Theorem 1.1. Let v be a C2(R2) flow solving (1.1). Assume that v ∈ L∞(R2) and
that

inf
R2

|v| > 0. (1.3)

Then v is a shear flow. Namely, v is of the type (1.2) and the function V in (1.2)
has a constant strict sign.

Theorem 1.1 can also be viewed as a Liouville-type rigidity result since the
conclusion says that the argument of the flow is actually constant, and that the
pressure p is constant as well.

Some comments on the assumptions made in Theorem 1.1 are in order. First
of all, the assumption (1.3) means that the flow v has no stagnation point in R

2 or
at infinity. In other words, Theorem 1.1 means that any C2(R2) ∩ L∞(R2) flow
which is not a shear flow must have a stagnation point in R2 or at infinity.

Without the condition (1.3), the conclusion of Theorem 1.1 does not hold in
general. For instance, for any (α, β) ∈ R

∗ ×R
∗, the smooth cellular flow v defined

in R2 by

v(x1, x2) = ∇⊥(
sin(αx1) sin(βx2)

)
= (− β sin(αx1) cos(βx2), α cos(αx1) sin(βx2)

)
,

which solves (1.1) with p(x) = (β2/4) cos(2αx1)+(α2/4) cos(2βx2), is bounded,
but it has (countably many) stagnation points in R

2, and it is not a shear flow.
However, we point out that the sufficient condition (1.3) is obviously not equivalent
to being a shear flow. Indeed, any continuous shear flow v(x) = V (x · e⊥) e for
which V changes sign (or more generally if infR |V | = 0) does not satisfy the
condition (1.3).

Moreover, without the boundedness of v, the conclusion of Theorem 1.1 does
not hold either in general. For instance, the smooth flow v defined in R2 by

v(x) = ∇⊥(
x2 cosh(x1)) = (− cosh(x1), x2 sinh(x1)),

which solves (1.1) with p(x) = − cosh(2x1)/4 + x22/2, satisfies infR2 |v| > 0 but
it is not bounded in R2, and it is not a shear flow.

The assumption on theC2(R2) smoothness of v is a technical assumptionwhich
is used in the proof. It is connected with the C1 smoothness of the nonlinear source
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term f in the equation satisfied by the stream function u of the flow v, see (2.2)
and (2.15) below. We refer to Section 2 for further details. However, no uniform
smoothness is assumed, namely v is not assumed to be uniformly continuous and
its first and second order derivatives are not assumed to be bounded nor uniformly
continuous.

In our previous paper [11], we considered the case of a two-dimensional strip
with bounded section and the case of the half-plane, assuming in both cases that
the flow was tangential on the boundary. In those both situations, the boundary of
the domain was a streamline and the conclusion was that the flow is a shear flow,
parallel to the boundary of the domain. In the present paper, there is no boundary
and no obvious simple streamline. We shall circumvent this difficulty by proving
additional estimates on the flow and its stream function at infinity, and in particular
on the at-most-logarithmic growth of the argument of the flow in large balls. We
also mention other rigidity results for the stationary solutions of (1.1) in other two-
dimensional domains, such as the analyticity of the streamlines under a condition
of the type v1 > 0 in the unit disc [12], and the local correspondence between
the vorticities of the stationary solutions of (1.1) and the co-adjoint orbits of the
vorticities for the non-stationary version of (1.1) in annular domains [4].

Lastly, we list after its proof at the end of Section 2.3 two immediate corollaries
of Theorem 1.1 concerned with periodic flows without stagnation points and small
L∞ perturbations of bounded shear flows satisfying (1.3).

Remark 1.2. If, in addition to the condition infR2 |v| > 0, one assumes that v·e > 0
in R

2 for some direction e ∈ S
1 (by continuity, up to changing v into −v, it is

therefore sufficient to assume that v(x) · e 
= 0 for all x ∈ R
2), then the end of

the proof of Theorem 1.1 would be much simpler; indeed, in that case, the stream
function u defined in (2.2) below would be monotone in the direction e⊥. Since u
satisfies a semilinear elliptic equation of the type �u + f (u) = 0 in R2 (see (2.15)
below), it would then follow that u is one-dimensional, as in the proof of a related
conjecture of De Giorgi [5] in dimension 2 (see [3,10] and see also [1,2,6,8,9,15]
for further references in that direction). Finally, since u is one-dimensional, the
vector field v is a shear flow. We refer to Section 2.4 below for further details.

Remark 1.3. A Liouville theorem is known for the Navier–Stokes equations on
the plane [13]. For a viscous flow the Liouville property has a different form:
any uniformly bounded solution of the Navier-Stokes equations on the plane is a
constant.

2. Proof of Theorem 1.1

Sections 2.1 and 2.2 are devoted to some important notations and to the proof of
some preliminary lemmas. The proof of Theorem 1.1 is completed in Section 2.3,
assuming the technical Proposition 2.10 below on the at-most-logarithmic growth
of the argument of the flow in large balls. In Section 2.4, we consider the special
case where v · e > 0 in R

2 (see Remark 1.2 above), in which case the end of the
proof of Theorem 1.1 is much easier and does not require Proposition 2.10.



602 François Hamel & Nikolai Nadirashvili

2.1. The Main Scheme of the Proof and Some Important Notations

Let us first explain the main lines of the proof of Theorem 1.1. It is based on
the study of the geometric properties of the streamlines of the flow v and of the
orthogonal trajectories of the gradient flow defined by the potential u of the flow v

(see definition (2.2) below). The first main point is to show that all streamlines of
v are unbounded and foliate the plane R2 in a monotone way. Since the vorticity

∂v2

∂x1
− ∂v1

∂x2

is constant along the streamlines of the flow v, the potential function u will be
proved to satisfy a semilinear elliptic equation of the type �u + f (u) = 0 in R

2.
Another key-point consists in proving that the argument of the flow v (and of ∇u)
grows at most as ln R in balls of large radius R. Finally, we use a compactness
argument and a result of Moser [14] to conclude that the argument of v, which
solves a uniformly elliptic linear equation in divergence form, is actually constant.

Throughout Section 2, v is a givenC2(R2)∩L∞(R2) vector field solving (1.1),
and such that infR2 |v| > 0. Therefore, there is 0 < η � 1 such that

0 < η � |v(x)| � η−1 for all x ∈ R
2. (2.1)

Our goal is to show that v is a shear flow. To do so, let us first introduce some
important definitions. Let u be a potential function (or stream function) of the flow
v. More precisely, u : R2 → R is a C3(R2) function such that

∇⊥u = v, that is,
∂u

∂x1
= v2 and

∂u

∂x2
= −v1 (2.2)

in R
2. Since v is divergence free and R

2 is simply connected, it follows that the
potential function u is well and uniquely defined in R

2 up to a constant. In the
sequel, we call u the unique stream function such that u(0) = 0.

The trajectories of the flow v, that is, the curves tangent to v at each point,
are called the streamlines of the flow. Since |v| > 0 in R

2, a given streamline �

of v cannot have an endpoint in R
2 and it always admits a C1 parametrization

γ : R → R
2 (γ (R) = �) such that |γ̇ (t)| > 0 for all t ∈ R. Actually, since v is

bounded too, it follows that, for any given x ∈ R
2, the solution γx of{

γ̇x (t) = v(γx (t)),

γx (0) = x
(2.3)

is defined in the whole intervalR and is a parametrization of the streamline �x of v

containing x . By definition, the stream function u is constant along the streamlines
of the flow v and, for any given x ∈ R

2, the level curve of u containing x , namely
the connected component of the level set {y ∈ R

2; u(y) = u(x)} containing x , is
nothing but the streamline �x .
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Wewill also consider in the proof of Theorem 1.1 the trajectories of the gradient
flow σ̇ = ∇u(σ ). Namely, for any x ∈ R

2, let σx be the solution of{
σ̇x (t) = ∇u(σx (t)),

σx (0) = x .
(2.4)

As for γx in (2.3), the parametrization σx of the trajectory 
x of the gradient flow
containing x is defined in the whole R. Furthermore, 
x is orthogonal to �x at x .

In the sequel, we denote

B(x, r) = {
y ∈ R

2; |x − y| < r
}

as the open Euclidean ball of centre x ∈ R and radius r > 0. We also use at some
places the notation 0 = (0, 0) and then

B(0, r) = B((0, 0), r)

for r > 0.

2.2. Some Preliminary Lemmas

Let us now establish a few fundamental elementary properties of the streamlines
of the flow and of the trajectories of the gradient flow. The first such property is the
unboundedness of the trajectories of the gradient flow.

Lemma 2.1. Let 
 be any trajectory of the gradient flow and let σ : R → R
2 be

anyC1 parametrization of
 such that |σ̇ (t)| > 0 for all t ∈ R. Then |σ(t)| → +∞
as |t | → +∞ and the map t �→ u(σ (t)) is a homeomorphism from R to R.

Proof. Let x be any point on 
, that is, 
 = 
x , and let σx : R → R
2 be the

parametrization of 
 defined by (2.4). The function g : t �→ g(t) := u(σx (t)) is
(at least) of class C1(R) and

g′(t) = |∇u(σx (t))|2 = |v(σx (t))|2 � η2 > 0 (2.5)

for all t ∈ R by (2.1). In particular, g(t) → ±∞ as t → ±∞. Since u is locally
bounded, it also follows that |σx (t)| → +∞ as |t | → +∞.

Now, consider any C1 parametrization σ : R → R
2 of 
 such that |σ̇ (t)| > 0

for all t ∈ R. Since σ̇ (t) 
= (0, 0) is parallel to ∇u(σ (t)) 
= (0, 0) at each t ∈ R,
the continuous function t �→ σ̇ (t) · ∇u(σ (t)) has a constant sign in R and the
C1 function t �→ u(σ (t)) is then either increasing or decreasing. Since σ is a
parametrization of 
 and since u(
) = R from the previous paragraph, one infers
that either u(σ (t)) → ±∞ as t → ±∞, or u(σ (t)) → ∓∞ as t → ±∞. In any
case, t �→ u(σ (t)) is a homeomorphism from R to R and, as for σx (t), one gets
that |σ(t)| → +∞ as |t | → +∞. �

An immediate consequence of the proof of Lemma 2.1 is the following estimate,
which we state separately since it will be used several times in the sequel:
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Lemma 2.2. Let 
 be any trajectory of the gradient flow, with parametrization
σ : R → R

2 solving σ̇ (t) = ∇u(σ (t)) for all t ∈ R. Then, t �→ u(σ (t)) is
increasing and, for any real numbers α 
= β,

|u(σ (α)) − u(σ (β))| � η × length(σ (I )) � η |σ(α) − σ(β)|, (2.6)

where I = [
min(α, β),max(α, β)

]
.

Proof. The fact that g : t �→ u(σ (t)) is increasing follows from (2.5). Furthermore,
for all t ∈ R, g′(t) = |∇u(σ (t))|2 � η |σ̇ (t)|. This inequality immediately yields
the conclusion. �

Like the trajectories of the gradient flow, it turns out that the streamlines of the
flow are also unbounded. More precisely, the following result holds:

Lemma 2.3. Let � be any streamline of the flow v and γ : R → R
2 be any C1

parametrization of � such that |γ̇ (t)| > 0 for all t ∈ R. Then |γ (t)| → +∞ as
|t | → +∞.

Proof. First of all, let us notice that � is not closed in the sense that any C1

parametrization γ : R → R
2 of � such that |γ̇ (t)| > 0 for all t ∈ R is actually

one-to-one. Indeed, otherwise, there would exist two real numbers a < b such
that γ (a) = γ (b) and � would then be equal to γ ([a, b]). Then the open set �

surrounded by � = γ ([a, b]) would be nonempty (since |γ̇ | > 0 in R) while, by
definition of u, the function u is constant on the streamline � = ∂�. Thus, u would
have either an interior minimum or an interior maximum in �, which is ruled out
since ∇u = −v⊥ does not vanish.

Let now x be any point on � (in other words, � = �x ) and let γx : R → R
2

be the parametrization of � defined by (2.3). We claim that |γx (t)| → +∞ as
|t | → +∞. Assume not. Then there are y ∈ R

2 and a sequence (τn)n∈N in R such
that

|τn| → +∞ and γx (τn) → y as n → +∞.

Since u(γx (τn)) = u(x) by definition of γx and u, the continuity of u implies that
u(x) = u(y). Now call

 = {
z ∈ R

2; u(z) = u(x) = u(y)
}

the level set of u with level u(x) = u(y). Since ∇u(y) = −v⊥(y) 
= (0, 0), the
implicit function theorem yields the existence of r > 0 small enough such that
B(y, r)∩ is a graph in the variable parallel to v(y) and such that it can be written
as

B(y, r) ∩  = B(y, r) ∩ �y = {
γy(t); α < t < β

}
for some real numbers α < 0 < β. Since u(γx (τn)) = u(x) = u(y) and γx (τn) →
y as n → +∞, it follows that γx (τn) ∈ B(y, r) ∩  for n large enough, hence
γx (τn) ∈ �y for such n. But γx (τn) ∈ �x by definition, hence �x = �y and

y = γx (t)
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for some t ∈ R. Furthermore, still for n large enough, γx (τn) ∈ B(y, r)∩, hence
γx (τn) = γy(tn) for some tn ∈ (α, β). As a consequence, γx (τn) = γx (t + tn) for
n large enough, and τn = t + tn for such n since γx is one-to-one from the previous
paragraph. This leads to a contradiction as n → +∞, since the sequence (tn)n∈N
is bounded whereas |τn| → +∞ as n → +∞.

Thus, |γx (t)| → +∞ as |t | → +∞. The same conclusion immediately follows
for any C1 parametrization γ : R → R

2 of � such that |γ̇ (t)| > 0 for all t ∈ R

and the proof of Lemma 2.3 is thereby complete. �
The previous lemma says that the parametrizations γx (t) solving γ̇x (t) =

v(γx (t)) with γx (0) = x converge to infinity in norm for any given x ∈ R
2. It

actually turns out that this convergence holds uniformly in x when x belongs to a
fixed bounded set. Namely, the following result holds:

Lemma 2.4. Let K ⊂ R
2 be a bounded set and let γx : R → R

2 be defined as
in (2.3). Then |γx (t)| → +∞ as |t | → +∞ uniformly in x ∈ K.

Proof. Assume by way of contradiction that the conclusion does not hold for some
bounded set K ⊂ R

2. Then there are x, y ∈ R
2, a sequence (xn)n∈N in R

2 and a
sequence (tn)n∈N in R such that

xn → x, yn := γxn (tn) → y and |tn| → +∞ as n → +∞. (2.7)

Up to extraction of a subsequence, one can assume that tn → ±∞ as n → +∞.
We only consider the case

tn → +∞ as n → +∞ (2.8)

(the case tn → −∞ can be handled similarly).
Fix now some positive real numbers r and then R such that

max
(|x |, |y|) < r < R and 2Mr < η (R − r), (2.9)

where η > 0 is as in (2.1) and

Mr := max
B(0,r)

|u|.

Then, since |γy(t)| → +∞ as |t | → +∞ by Lemma 2.3, there is T > 0 such that
|γy(−T )| > R.

From the continuous dependence of the solutions γX (t) of (2.3) with respect
to the initial value X for each given t ∈ R, one knows that γyn (−T ) → γy(−T ) as
n → +∞. Since yn = γxn (tn), this means that γxn (tn−T ) = γyn (−T ) → γy(−T )

as n → +∞, hence |γxn (tn − T )| → |γy(−T )| > R as n → +∞. Together
with (2.7), (2.8) and (2.9), one infers the existence of an integer N ∈ N such that

|γxN (0)|=|xN |<r, |γxN (tN )| < r, 0< tN −T < tN and |γxN (tN−T )|> R (> r).
(2.10)
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Fig. 1. The streamlines �xN and �y , the domain �, and the trajectory 


By continuity of the parametrization t �→ γxN (t) of�xN , there are some real number
α and β such that

0 < α < tN − T < β < tN , |γxN (α)|
= |γxN (β)| = r and |γxN (t)| > r for all t ∈ (α, β);

see Fig. 1.
Let then � be the non-empty bounded domain (open and connected set) sur-

rounded by the closed simple curve γxN ([α, β])∪ A, where A is the arc on the circle
∂B(0, r) joining γxN (α) and γxN (β) in such a way that � ∩ B(0, r) = ∅ (� is the
hatched region in Fig. 1). Let 
 := 
γxN (tN−T ) be the trajectory of the gradient
flow containing the point γxN (tN − T ), and let σ := σγxN (tN−T ) be the solution
of (2.4) with initial value σ(0) = γxN (tN −T ). Since 
 is orthogonal to �xN at the
point γxN (tN − T ) with tN − T ∈ (α, β) and since 
 is unbounded by Lemma 2.1,
one infers the existence of a real number τ 
= 0 such that

σ(τ) ∈ ∂� and σ(t) ∈ � for all t ∈ I,

where I denotes the open interval I = (0, τ ) if τ > 0 (resp. I = (τ, 0) if τ < 0).
Since u is constant along γxN ([α, β]) and t �→ u(σ (t)) is increasing by Lemma

2.2, it follows that σ(τ) ∈ A. Lemma 2.2 also implies that |u(σ (τ )) − u(σ (0))| �
η |σ(τ) − σ(0)|, that is,

|u(σ (τ )) − u(γxN (tN − T ))| � η |σ(τ) − γxN (tN − T )|,
but |u(γxN (tN − T ))| = |u(xN )| � Mr = maxB(0,r) |u| since |xN | < r by (2.10).
Furthermore, |u(σ (τ ))| � Mr too since σ(τ) ∈ A ⊂ ∂B(0, r). Thus,

η |σ(τ) − γxN (tN − T )| � |u(σ (τ )) − u(γxN (tN − T ))| � 2Mr .

Since |σ(τ)| = r and |γxN (tN − T )| > R by (2.10), the triangle inequality yields
η (R − r) < 2Mr . That contradicts the choice of R in (2.9) and the proof of
Lemma 2.4 is thereby complete. �
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The next lemma shows the important property that two streamlines �y and �z

are close to each other in the sense of Hausdorff distance when y and z are close to
a given point x . We recall that, for any two subsets A and B of R2, their Hausdorff
distance dH(A, B) is defined as

dH(A, B) = max
(
sup

{
d(a, B); a ∈ A

}
, sup

{
d(b, A); b ∈ B

})
,

where d(x, E) = inf
{|x − y|; y ∈ E

}
for any x ∈ R

2 and E ⊂ R
2.

Lemma 2.5. For any x ∈ R
2 and any ε > 0, there is r > 0 such that dH(�y, �z) �

ε for all y and z in B(x, r).

Proof. We fix x ∈ R
2 and ε > 0. Up to translation and rotation of the frame, let

us assume without loss of generality that x is the origin

x = 0 = (0, 0),

and that v(x) = v(0) points in the x2 direction, that is, v(0) = |v(0)| e2 with
e2 = (0, 1). Firstly, by continuity of u, there is r0 > 0 such that

osc
B(0,r0)

u � ε η, (2.11)

where for any non-empty subset E ⊂ R
2,

osc
E

u = sup
E

u − inf
E

u

denotes the oscillation of u on E , and η > 0 is given in (2.1). Secondly, since

∂u

∂x1
(0) = v2(0) = |v(0)| > 0

and u is (at least) of class C1, there are some real numbers r ∈ (0, r0) and r− �
−r < 0 < r � r+ such that ∂u

∂x1
(·, 0) > 0 in (r−, r+) and⋃

X∈B(0,r)

�X =
⋃

x1∈(r−,r+)

�(x1,0).

In other words, the streamlines of the flow generated by points in the ball B(0, r)
are actually generated by the points of the one-dimensional straight curve

I = {
(x1, 0); r− < x1 < r+} = (r−, r+) × {0},

and these streamlines �(x1,0) are pairwise distinct since u is one-to-one on I .
Let now y and z any two points in the ball B(0, r), such that �y 
= �z . From the

previous paragraph, there are some real numbers ỹ1 and z̃1 in (r−, r+) such that

�y = �ỹ and �z = �̃z, with ỹ = (ỹ1, 0) and z̃ = (̃z1, 0).

Since �y 
= �z , there holds ỹ 
= z̃. Without loss of generality, one can then assume
that

r− < ỹ1 < z̃1 < r+
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(hence, u(y) = u(ỹ1, 0) < u(̃z1, 0) < u(z)). Denote

G =
⋃

x1∈(ỹ1 ,̃z1)

�(x1,0). (2.12)

Let us list in this paragraph and the next one some elementary properties of the
set G. First of all, owing to its definition, G is connected. Secondly, we claim that
the set G is open. To show this property, let X be any point in G. By definition,
there are x1 ∈ (ỹ1, z̃1) and τ ∈ R such that X = γ(x1,0)(τ ), that is, (x1, 0) =
γX (−τ). Since |v(x1, 0)| > 0 and v2(x1, 0) = ∂u

∂x1
(x1, 0) > 0, there is ρ > 0

such that �x ′ intersects the one-dimensional straight curve (ỹ1, z̃1) × {0} for every
x ′ ∈ B((x1, 0), ρ). On the other hand, by Cauchy-Lipschitz theorem, there is δ > 0
such that, for every x ′′ ∈ B(X, δ), γx ′′(−τ) ∈ B((x1, 0), ρ) and then �x ′′ intersects
(ỹ1, z̃1) × {0}. Therefore, B(X, δ) ⊂ G and the set G is then open.

Thirdly, we claim that
∂G = �y ∪ �z . (2.13)

Indeed, first of all, since the map X �→ γX (t) is continuous for every t ∈ R and
since G is open, it follows that �y ∪ �z = �(ỹ1,0) ∪ �(̃z1,0) ⊂ ∂G. Conversely, let
now X be any point in ∂G. There are then some sequences (x1,n)n∈N in (ỹ1, z̃1)
and (tn)n∈N in R such that γ(x1,n ,0)(tn) → X as n → +∞. Since the sequence
((x1,n, 0))n∈N is bounded, Lemma 2.4 implies that the sequence (tn)n∈N is bounded
too. Therefore, up to extraction of a subsequence, there holds x1,n → x1 ∈ [̃y1, z̃1]
and tn → t ∈ R as n → +∞, hence X = γ(x1,0)(t) and X ∈ �(x1,0). But X 
∈ G
since X ∈ ∂G and G is open. Thus, either x1 = ỹ1 or x1 = z̃1. In other words,
X ∈ �(ỹ1,0) ∪ �(̃z1,0) = �y ∪ �z . Finally, ∂G ⊂ �y ∪ �z and the claim (2.13) has
been shown.

In order to complete the proof of Lemma 2.5, consider any point Y ∈ �y . Let

′

Y be the restriction to G of the trajectory 
Y of the gradient flow σ̇ = ∇u(σ )

containing Y (∈ �y ⊂ ∂G) and let σY be the solution of (2.4) starting at σY (0) =
Y . Remember that the function t �→ gY (t) := u(σY (t)) is increasing in R by
Lemma 2.2. Since u(Y ) = u(y) = u(ỹ1, 0) < u(̃z1, 0) = u(z) and ∇u(Y ) is
orthogonal to ∂G at Y , there is t0 > 0 such that σY (t) ∈ G for all t ∈ (0, t0).
Furthermore, one infers from the definition of the streamlines and from (2.12) that
u is bounded in the open set G. Since ∂G = �y ∪ �z and g′

Y (t) � η2 > 0 in R,
there is t1 > 0 such that σY (t) ∈ G for all t ∈ (0, t1) and Z := σY (t1) ∈ ∂G
(hence, Z ∈ �z since u(σY (·)) is increasing). Therefore, 
′

Y can be parametrized
by σY (t) for t ∈ [0, t1] and, by Lemma 2.2,

|Y − Z | = |σY (0) − σY (t1)| � u(σY (t1)) − u(σY (0))

η

= u(Z) − u(Y )

η
= u(z) − u(y)

η
.

Since both points y and z belong to B(0, r) ⊂ B(0, r0) and oscB(0,r0) u � ε η

by (2.11), one infers that |Y − Z | � ε. Since Z ∈ �z , it follows that

d(Y, �z) � ε.
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As Y was arbitrary in �y and both points y and z play a similar role, one concludes
that dH(�y, �z) � ε. The proof of Lemma 2.5 is thereby complete. �

Based on the previous results, we show in the following lemma that the level
curves of u foliate the plane R2 in a monotone way:

Lemma 2.6. For any trajectory 
 of the gradient flow, there holds⋃
x∈


�x = R
2. (2.14)

Notice that this lemma implies that any level set of u has only one connected
component. Indeed, for any λ ∈ R, Lemma 2.1 implies that there is a unique x ∈ 


such that u(x) = λ. Since u is constant along any streamline, it follows then from
Lemma 2.6 that the level set

{
y ∈ R

2; u(y) = λ
}
is equal to the streamline �x and

thus has only one connected component. �
Proof. Consider any trajectory 
 of the gradient flow σ̇ = ∇u(σ ) and let X ∈ 
,
that is, 
 = 
X . Denote

E =
⋃
x∈


�x

and let us show that E = R
2. First of all, E is not empty and, with the same

arguments as for the set G defined in (2.12), one gets that E is open.
To conclude that E = R

2, it is then sufficient to show that E is closed. So, let
(yn)n∈N be a sequence in E and y ∈ R

2 such that yn → y as n → +∞. Owing
to the definition of E and given the parametrizations t �→ γx (t) of �x for every
x ∈ R

2, there are some sequences (xn)n∈N in 
 and (tn)n∈N in R such that

yn = γxn (tn) for all n ∈ N.

Furthermore, since σX (·) is a parametrization of 
, there is a sequence (τn)n∈N in
R such that

xn = σX (τn) for all n ∈ N.

Since u(σX (τn)) = u(xn) = u(yn) → u(y) as n → +∞ (by continuity of u
and definition of the streamlines �xn ) and |u(σX (τ ))| → +∞ as |τ | → +∞ by
Lemma 2.1, it follows that the sequence (τn)n∈N is bounded. Up to extraction of a
subsequence, there is τ ∈ R such that τn → τ as n → +∞, hence

xn = σX (τn) → x := σX (τ ) (∈ 
) as n → +∞.

Consider now any ε > 0. For n large enough, one has |xn − x | � ε. Moreover,
from Lemma 2.5, it holds that

dH(�yn , �y) � ε for n large enough,

that is, dH(�xn , �y) � ε (�xn = �yn by definition of xn). Therefore, d(xn, �y) � ε

for n large enough, hence d(x, �y) � 2ε. As a consequence, since ε > 0 can be



610 François Hamel & Nikolai Nadirashvili

arbitrarily small, d(x, �y) = 0. On the other hand, �y is a closed subset ofR2 from
its definition and from Lemma 2.3. Thus, x ∈ �y . In other words, �y = �x and
y ∈ �x . Finally, y ∈ E and E is closed. As a conclusion, E = R

2 and the proof of
Lemma 2.6 is thereby complete. �
Remark 2.7. As a immediate corollary of Lemma 2.6, it follows that the trajec-
tories of the gradient flow foliate the whole plane R2 in the sense that the family
of trajectories of the gradient flow can be parametrized by the points along any
streamline of the flow. More precisely, for any streamline � of the flow, there holds⋃

y∈�


y = R
2.

The property will actually not be used in the sequel, but we state it as an interesting
counterpart of (2.14).

From Lemma 2.6, the level curves of u foliate the planeR2 in the sense that the
family of streamlines can be parametrized by the points along any trajectory of the
gradient flow. Since �u turns out to be constant along any streamline, the function
u will then satisfy a simple semilinear elliptic equation in R2. Namely, we have

Lemma 2.8. There is a C1 function f : R → R such that u is a classical solution
of

�u + f (u) = 0 in R2. (2.15)

Proof. Let 
 = 
0 be the trajectory of the gradient flow going through the origin,
and let σ = σ0 : R → R

2 be its C1(R) parametrization defined by (2.4) with
x = 0 = (0, 0). As already underlined in the proof of Lemmas 2.1 and 2.2, the
C1(R) function g : R → R, t �→ g(t) := u(σ (t)) is increasing and g′(t) � η2 > 0
for all t ∈ R. Let g−1 ∈ C1(R) be the reciprocal function of g and let us now define

f : R→R

s �→ f (s) := −�u
(
σ(g−1(s))

)
,

that is,

f (g(t)) = −�u(σ (t))

for all t ∈ R. Since u is of class C3(R2) and both σ and g−1 are of class C1(R),
one infers that f is of class C1(R) too.

Let us then show that u is a classical solution of the elliptic equation (2.15).
Indeed, since

�u = ∂v2

∂x1
− ∂v1

∂x2
in R2,

and since this C1(R2) function satisfies

v · ∇(�u) = v · ∇
(

∂v2

∂x1
− ∂v1

∂x2

)
= 0 in R2
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by (1.1), one infers that the function �u is constant along any streamline of v, that
is, along any level curve of u.

Let finally x be any point in R2. From Lemma 2.6, the streamline �x intersects

. Therefore, since u is constant along �x and σ : R → 
 is one-to-one (as
g = u ◦ σ : R → R is one-to-one too), there is a unique tx ∈ R such that
σ(tx ) ∈ �x , and

g(tx ) = u(σ (tx )) = u(x).

As a conclusion, since the function�u is constant on the streamline �x (containing
both x and σ(tx )), one infers from the definitions of g and f that

�u(x) = �u(σ (tx )) = − f (g(tx )) = − f (u(x)).

The proof of Lemma 2.8 is thereby complete. �
Remark 2.9. If v is not assumed to be in L∞(R2) anymore, then v is still locally
bounded (since it is at least continuous). In that case, for every x ∈ R

2, the function
σx solving (2.4) would be defined in a maximal interval (t−x , t+x )with−∞ � t−x <

0 < t+x � +∞, and |σx (t)| → +∞ as t → t−x if t−x ∈ R (resp. as t → t+x if
t+x ∈ R). Furthermore, the arguments used in the proof of Lemma 2.1 still imply
that |σx (t)| → +∞ as t → t−x if t−x = −∞ (resp. as t → t+x if t+x = +∞). In
particular, any trajectory
 of the gradient flow is still unbounded. Property (2.6) in
Lemma 2.2 still holds as well, as soon as I = [

min(α, β),max(α, β)
] ⊂ (t−x , t+x ),

for any x ∈ 
 with σ = σx . For every x ∈ R
2, the arc length parametrization

t �→ ςx (t) of 
x solving

ς̇x (t) = ∇u(ςx (t))

|∇u(ςx (t))|
is defined in the whole interval R, and the function h : t �→ u(ςx (t)) satisfies
h′(t) = |∇u(ςx (t))| � η > 0, hence u(ςx (t)) → ±∞ as t → ±∞.

Similarly, still if v is not assumed to be in L∞(R2) anymore, for every x ∈ R
2,

the function γx solving (2.3) would be defined in a maximal interval (τ−
x , τ+

x ) with
−∞ � τ−

x < 0 < τ+
x � +∞, and |γx (t)| → +∞ as t → τ−

x if τ−
x ∈ R (resp.

as t → τ+
x if τ+

x ∈ R. Moreover, if τ−
x = −∞ (resp. τ+

x = +∞), the arguments
used in the proof of Lemma 2.3 still imply that |γx (t)| → +∞ as t → τ−

x = −∞
(resp. as t → τ+

x = +∞). Therefore, in all cases, whether τ±
x be finite or not, one

has |γx (t)| → +∞ as t → τ±
x and the streamline �x is unbounded. In particular,

for every x ∈ R
2, the arc length parametrization t �→ ζx (t) of �x solving

ζ̇x (t) = v(ζx (t))

|v(ζx (t))|
is defined in the whole interval R. With the unboundedness of each trajectory of
the gradient flow and with (2.6), the arguments used in the proof of Lemma 2.4
can be repeated with the parametrizations ζx instead of γx : in other words, for
every bounded set K , there holds |ζx (t)| → +∞ as |t | → +∞ uniformly in
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x ∈ K . Similarly, the proofs of Lemmas 2.5, 2.6 and 2.8 can be done with the
parametrizations ζx and ςx instead of γx and σx .

To sum up, the conclusions of the aforementioned lemmas still hold if v is
not assumed to be in L∞(R2). Actually, the purpose of this remark is to make a
connection with the beginning of the proof of [11, Theorem 1.1], where the flow v,
which was there defined in a two-dimensional strip, was indeed not assumed to be
a priori bounded. Namely, the beginnings of the proofs of [11, Theorem 1.1] and
of Theorem 1.1 of the present paper are similar, even if more details and additional
properties are proved here, such as the unboundedness of the trajectories of the
gradient flow and the uniform unboundedness of the streamlines emanating from
a bounded region. However, the remaining part of the proof of Theorem 1.1 of the
present paper, as well as the proof of Proposition 2.10 below, strongly uses the
boundedness of v (and, as emphasized in Section 1, the conclusion of Theorem 1.1
is not valid in general without the boundedness of v).

2.3. End of the Proof of Theorem 1.1 in the General Case

In order to complete the proof of Theorem 1.1, the following propositions
provide key estimates on the oscillations of the argument of the vector field v.
These estimates, which will be used for scaled or shifted fields, are thus established
for general solutions w of the Euler equations (1.1). To state these estimates, let us
first introduce a few more notations.

For any C2(R2) solution w of (1.1) (associated with a pressure p = pw) and
satisfying (2.1) for some η ∈ (0, 1], that is,

0 < η � |w(x)| � η−1 for all x ∈ R
2, (2.16)

there is a C2(R2) function φw such that

w(x)

|w(x)| = (cosφw(x), sin φw(x)) for all x ∈ R
2. (2.17)

This function, which is the argument of the flow w, is uniquely defined in R2 up to
an additive constant which is a multiple of 2π . Its oscillation

osc
E

φw = sup
E

φw − inf
E

φw

in any non-empty subset E ⊂ R
2 is uniquely defined (namely it does not depend on

the choice of this additive constant). Similarly, after denoting uw the unique stream
function of the flow w (uniquely defined by ∇⊥uw = w and uw(0) = 0), there is
a C2(R2) function ϕw : R2 → R such that

∇uw(x)

|∇uw(x)| = (cosϕw(x), sin ϕw(x)) (2.18)

for all x ∈ R
2. Lastly, there is an integer q ∈ Z such that

ϕw(x) = φw(x) − π/2 + 2πq for all x ∈ R
2. (2.19)
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In particular,
osc
E

ϕw = osc
E

φw (2.20)

for every non-empty subset E ⊂ R
2.

The key-estimate is the following logarithmic upper bound of the oscillations
of the arguments of the solutionsw of (1.1) and (2.16) in large balls, given an upper
bound in smaller balls.

Proposition 2.10. For any η ∈ (0, 1], there is a positive real number Cη such that,
for any C2(R2) solution w of (1.1) satisfying (2.16) and for any R � 2, if

osc
B(x,1)

φw <
π

4
for all x ∈ B(0, R),

then

osc
B(0,R)

φw � Cη ln R. (2.21)

In order not to loose the main thread of the proof of Theorem 1.1, the proof of
Proposition 2.10 is postponed in Section 3.

The second key-estimate in the proof of Theorem 1.1 is the following lower
bound of the oscillations of the arguments of the solutions w of (1.1) and (2.16) in
some balls of radius 1/2, given a lower bound in the unit ball:

Proposition 2.11. For any η ∈ (0, 1], there is a positive real number Rη such that,
for any C2(R2) solution w of (1.1) satisfying (2.16), if

osc
B(0,1)

φw � π

4
,

then there is a point x ∈ B(0, Rη) such that

osc
B(x,1/2)

φw � π

4
.

Proof. The proof is based on Proposition 2.10, on some scaling arguments, on the
derivation of some uniformly elliptic linear equations satisfied by the arguments
φw of the C2(R2) solutions w of (1.1) satisfying (2.16), and on some results of
Moser [14] on the solutions of such elliptic equations.

Consider any C2(R2) solution w of (1.1) and (2.16), and let us first derive a
linear elliptic equation for its argument φw (see also [7,12] for the derivation of
such equations). Let x be any point in R2. Assume first that ∇uw(x) is not parallel
to the vector (0, 1), that is ∂uw

∂x1
(x) 
= 0. In other words, by continuity of∇uw, there

is k ∈ N such that

ϕw = arctan

(
∂uw

∂x2
/
∂uw

∂x1

)
+ kπ

in a neighborhood of x . Hence, a straightforward calculation leads to

|∇uw|2 ∇ϕw = ∂uw

∂x1
∇

(
∂uw

∂x2

)
− ∂uw

∂x2
∇

(
∂uw

∂x1

)
(2.22)
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in a neighborhood of x . Similarly, if ∇uw(x) is not parallel to the vector (1, 0),
then cot(ϕw) = ∂uw

∂x1
/∂uw

∂x2
in a neighborhood of x , and formula (2.22) still holds

in a neighborhood of x . Therefore, (2.22) holds in R
2. On the other hand, by

Lemma 2.8 and by differentiating with respect to both variables x1 and x2 the
elliptic Equation (2.15) satisfied by uw (formula (2.15) holds for some C1(R)

function f = fw depending on w), it follows that

�

(
∂uw

∂x1

)
+ f ′

w(uw)
∂uw

∂x1
= �

(
∂uw

∂x2

)
+ f ′

w(uw)
∂uw

∂x2
= 0 in R2. (2.23)

Together with (2.22), one obtains that div
(|∇uw|2∇ϕw

) = 0 inR2. In other words,
thanks to (2.19) and ∇⊥uw = w, there holds

div
(|w|2 ∇φw

) = 0 in R2. (2.24)

Since w satisfies the uniform bounds (2.16), it then follows from the proof of
[14, Theorem 4] that there are some positive real numbers Mη and αη, depending
on η only (and not on w and φw) such that

osc
B(0,R)

φw � Mη Rαη osc
B(0,1)

φw for all R � 1.

There exists then a positive real number Rη, depending on η only, such that

Rη � 1 and MηR
αη
η >

4Cη

π
ln(2Rη),

where Cη is the positive constant given in Proposition 2.10. The previous two
formulas yield

osc
B(0,Rη)

φw >
4Cη

π
ln(2Rη) osc

B(0,1)
φw. (2.25)

Let us now check that Proposition 2.11 holds with this value Rη. Consider any
C2(R2) solutionw of (1.1) (with pressure pw) satisfying (2.16) and oscB(0,1)φw �
π/4. Assume by way of contradiction that the conclusion does not hold, that is,

osc
B(x,1/2)

φw <
π

4
for all x ∈ B(0, Rη). (2.26)

Define now

w̃(x) = w
( x
2

)
for x ∈ R

2.

The C2(R2) function w̃ still satisfies (2.16), as well as (1.1) with pressure p̃(x) =
pw(x/2). The arguments φw̃ and φw of w̃ and w satisfy φw̃(x) = φw(x/2) + 2kπ
in R2, for some integer k ∈ Z, hence property (2.26) translates into

osc
B(x,1)

φw̃ <
π

4
for all x ∈ B(0, 2Rη).

Proposition 2.10 applied with w̃ and R := 2Rη � 2 then yields

osc
B(0,2Rη)

φw̃ � Cη ln(2Rη),
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that is, oscB(0,Rη)φw � Cη ln(2Rη). On the other hand, it follows from (2.25) and
the assumption oscB(0,1)φw � π/4 that

osc
B(0,Rη)

φw > Cη ln(2Rη).

One has then reached a contradiction, and the proof of Proposition 2.11 is thereby
complete. �
Remark 2.12. From the derivation of (2.24) in the proof of Proposition 2.11, we
point out that, for anyC2(�) floww solving (1.1) in a domain� ⊂ R

2, the equation

div
(|w|2 ∇φw

) = 0

holds in a neighborhood of any point x where |w(x)| 
= 0, where φw is a C2

argument of the flow w given by (2.17) in a neighborhood of x . That equation also
holds globally in � if � is simply connected and w has no stagnation point in the
whole domain �.

With Proposition 2.11 and its proof in hand, the proof of Theorem 1.1 can then
be carried out.

Proof of Theorem 1.1. Let v be a C2(R2) solution of (1.1) satisfying (2.1) with
0 < η � 1, and associated with a pressure p. Let φ = φv be the C2(R2) argument
of v, satisfying (2.17) with v instead of w. We want to show that φ is constant.
Assume by way of contradiction that φ is not constant. Then, since φ satisfies
the elliptic equation div(|v|2∇φ) = 0 in R

2 with 0 < η2 � |v|2 � η−2 in R
2,

it follows in particular from [14, Theorem 4] that oscB(0,ρ)φ → +∞ (and even
grows algebraically) as ρ → +∞. Therefore, there is ρ > 0 such that

osc
B(0,ρ)

φ � π

4
.

Define now

w1(x) = v(ρx) for x ∈ R
2.

The C2(R2) vector field w1 still solves (1.1) (with pressure pw1(x) = p(ρx))
and satisfies (2.16). Furthermore, its argument φw1 satisfies oscB(0,1)φw1 � π/4,
because φw1(x) = φ(ρx) + 2k1π in R

2 for some k1 ∈ Z. It then follows from
Proposition 2.11 that there is a point y1 ∈ B(0, Rη) such that

osc
B(y1,1/2)

φw1 � π

4
,

where Rη > 0 is given by Proposition 2.11 and depends on η only. The above
formula means that

osc
B(ρy1,ρ/2)

φ � π

4
.
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Define now

w2(x) = w1

(
y1 + x

2

)
.

The C2(R2) vector field w2 still solves (1.1) (with pressure pw2(x) = pw1(y1 +
x/2)) and satisfies (2.16). Furthermore, its argument φw2 satisfies oscB(0,1)φw2 �
π/4, because φw2(x) = φw1(y1 + x/2) + 2k2π in R

2 for some k2 ∈ Z. It
then follows from Proposition 2.11 that there is a point y2 ∈ B(0, Rη) such that
oscB(y2,1/2)φw2 � π/4. This means that oscB(y1+y2/2,1/4)φw1 � π/4, that is,

osc
B(ρy1+ρy2/2,ρ/4)

φ � π

4
.

By an immediate induction, there exists a sequence of points (yn)n∈N of the ball
B(0, Rη) such that

osc
B(ρy1+ρy2/2+···+ρyn/2n−1,ρ/2n)

φ � π

4
(2.27)

for every n ∈ N. There is then a point z ∈ R
2 such that zn := ρy1 + ρy2/2+ · · · +

ρyn/2n−1 → z as n → +∞. However, since φ is (at least) continuous at z, there
is ε > 0 such that oscB(z,ε)φ < π/4, hence oscB(zn ,ρ/2n)φ � oscB(z,ε) < π/4 for
all n large enough so that B(zn, ρ/2n) ⊂ B(z, ε). This contradicts (2.27).

As a conclusion, the argument φ of v is constant, which means that v(x) is
parallel to the constant vector e = (cosφ, sin φ) for all x ∈ R

2. In other words, v is
a shear flow and, since it is divergence free, it can then be written as in (1.2), namely
v(x) = V (x · e⊥) e. Lastly, by continuity and (1.3), the function V : R → R has a
constant strict sign. The proof of Theorem 1.1 is thereby complete. �

To complete this section, we point out two results which are immediate corol-
laries of Theorem 1.1. The first one is concerned with periodic flows. In the se-
quel, we say that a flow v is periodic if there is a basis (e1, e2) of R2 such that
v(x) = v(x + k1e1 + k2e2) in R2 for all x ∈ R

2 and (k1, k2) ∈ Z
2.

Corollary 2.13. Let v be a C2(R2) periodic flow solving (1.1). If |v(x)| 
= 0 for
all x ∈ R

2, then v is a shear flow.

The second corollary states that the class of bounded shear flows satisfying (1.3)
is stable under small L∞(R2) perturbations.

Corollary 2.14. Let v be a bounded shear flow solving (1.1) and satisfying (1.3).
There is ε > 0 such that, if v′ is a C2(R2) flow solving (1.1) and satisfying ‖v′ −
v‖L∞(R2) � ε, then v′ is a shear flow.

2.4. End of the Proof of Theorem 1.1 in the Monotone Case

The goal of this section is to provide an alternate proof of Theorem 1.1, with-
out making use of Proposition 2.10, but with the additional assumption that v(x)
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belongs to a fixed half-plane
{
x ∈ R

2; x · e > 0
}
for some unit vector e ∈ S

1, see
Remark 1.2. That is, we assume in this section that

v · e > 0 in R2. (2.28)

Of course, the assumption (2.28) implies that the C2(R2) argument φ of v

defined by (2.17) (with v instead of w) is bounded. As this solves the elliptic
equation div(|v|2∇φ) = 0 in R

2 with 0 < η2 � |v|2 � η−2 in R
2, it follows

immediately from [14, Theorem 4] that φ is constant, hence v is a shear flow.
Here, however with the assumption (2.28), wewould like to provide an alternate

proof of the main result without making use of the argument φ of v. To do this, up
to rotation of the frame, let us assume without loss of generality that e = (−1, 0).
In other words, we assume here that

∂u

∂x2
> 0 in R2.

From Lemma 2.8, both C2(R2) functions ∂u
∂x1

and ∂u
∂x2

satisfy the equation (2.23)

(here, uw = u and fw = f ), with f ′(u(·)) ∈ L∞
loc(R

2). Since |∇u| = |v| is
bounded and ∂u

∂x2
is positive, it follows directly from [3, Theorem 1.8] that ∂u

∂x1
and

∂u
∂x2

are proportional. Hence, ∇u is parallel to a constant vector, that is, v is parallel
to a constant vector, and the conclusion follows as in Section 2.3 above.

3. Proof of Proposition 2.10

As already emphasized in Section 2.3, the proof of Theorem 1.1 relies on
Proposition 2.10. The main underlying idea in the proof of Proposition 2.10 is the
fact that, if the arguments φw and ϕw of w and ∇uw given in (2.17) and (2.18)
oscillate too much in some large balls, then there would be some trajectories 
 of
the gradient flow σ̇ = ∇uw(σ) which would turn too many times. Since uw grows
at least (and at most too) linearly along the trajectories 
 while it grows at most
linearly in any direction, one would then get a contradiction.

The proof of Proposition 2.10 is itself divided into several lemmas and subsec-
tions. In Section 3.1, we show some estimates on the oscillation of the argument
of any C1 embedding between two points, in terms of its surrounding arcs. In Sec-
tions 3.2 and 3.3, we show the logarithmic growth of the argument ϕw of ∇uw

along the trajectories of the gradient flow and along the streamlines of the flow.
Lastly, we complete the proof of Proposition 2.10 in Section 3.4.

3.1. Oscillations of the Argument of Any C1 Embedding

Let us first introduce a few useful notations. For any two points x 
= y in R
2,

let

Lx,y = {
(1 − t)x + t y; t ∈ R

}
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be the line containing both x and y. Let

[x, y] = {
(1 − t)x + t y; t ∈ [0, 1]}

be the segment joining x and y. Similarly, we denote (x, y] = {
(1− t)x + t y; t ∈

(0, 1]}, [x, y) = {
(1−t)x+t y; t ∈ [0, 1)} and (x, y) = {

(1−t)x+t y; t ∈ (0, 1)
}
.

We also say that a point z ∈ Lx,y is on the left (resp. right) of x with respect to y
if (z − x) · (y − x) < 0 (resp. > 0).

For any C1 embedding ξ : R → R
2 (one-to-one map such that |ξ̇ (t)| > 0 for

all t ∈ R), let θ be one of its continuous arguments, defined by

ξ̇ (t)

|ξ̇ (t)| = (
cos θ(t), sin θ(t)

)
(3.1)

for all t ∈ R. The continuous function θ is well defined, and it is unique up to
multiples of 2π (it is unique if it is normalized so that θ(0) ∈ [0, 2π)). The next
two lemmas provide some fundamental estimates of the oscillations of the argument
θ(t) between any two real numbers a and b, according to the number of times ξ(t)
turns around ξ(a) and ξ(b) for t ∈ [a, b].

First of all, for any a < b ∈ R, we say that the arc ξ([a, b]) is non-intersecting
if

ξ([a, b]) ∩ (ξ(a), ξ(b))=∅ or ξ([a, b]) ∩ (
Lξ(a),ξ(b)\[ξ(a), ξ(b)])=∅ (3.2)

(see Fig. 2).

Lemma 3.1. Let ξ : R → R
2 be any C1 embedding, let θ be one of its continuous

arguments, defined as in (3.1), and let a < b be any two real numbers. If the arc
ξ([a, b]) is non-intersecting, then |θ(a) − θ(b)| � 4π .

Fig. 2. Non-intersecting arcs ξ([a, b])with ξ([a, b])∩(ξ(a), ξ(b)) = ∅ (top) and ξ([a, b])∩(
Lξ(a),ξ(b)\[ξ(a), ξ(b)]) = ∅ (bottom)
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Proof. Let us first consider the case where ξ([a, b]) ∩ (ξ(a), ξ(b)) = ∅. There is
then a C1([b, b + 1]) embedding ς : [b, b + 1] → R

2 such that⎧⎪⎨
⎪⎩

ς(b) = ξ(b), ς(b + 1) = ξ(a),

ς̇(b) = ξ̇ (b), ς̇(b + 1) = ξ̇ (a),

ς([b, b + 1]) ∩ ξ([a, b]) = {ξ(a), ξ(b)}
(3.3)

and
|ϑ(b + 1) − ϑ(b)| � 2π, (3.4)

where ϑ : [b, b + 1] → R is the unique continuous function such that

ς̇ (t)

|ς̇ (t)| = (
cosϑ(t), sin ϑ(t)

)
for all t ∈ [b, b + 1] and ϑ(b) = θ(b) (3.5)

(see Figure 2). Let now ξ and θ be the functions defined by

ξ(t) =
{

ξ(t) if t ∈ [a, b],
ς(t) if t ∈ (b, b + 1], and θ(t) =

{
θ(t) if t ∈ [a, b],
ϑ(t) if t ∈ (b, b + 1].

These functions are respectively C1 and continuous in [a, b + 1]. Furthermore,

ξ̇ (t)

|ξ̇ (t)|
= (

cos θ(t), sin θ(t)
)
for all t ∈ [a, b + 1]

and the closed curve ξ([a, b+1]) is the boundary of a non-empty domain inR2 by
the third property in (3.3). Lastly, ξ is one-to-oneon [a, b+1),while ξ(b+1) = ξ(a)

and ξ̇ (b + 1) = ξ̇ (a). Therefore, the continuous argument θ of ξ̇ is such that

|θ(b + 1) − θ(a)| = 2π.

In other words, |ϑ(b + 1) − θ(a)| = 2π . Since |ϑ(b + 1) − ϑ(b)| � 2π and
ϑ(b) = θ(b) by (3.4) and (3.5), one concludes that

|θ(b) − θ(a)| � 4π. (3.6)

Let us finally consider the case where ξ([a, b])∩(
Lξ(a),ξ(b)\[ξ(a), ξ(b)]) = ∅.

It is immediate to see that there still exists a C1([b, b + 1]) embedding ς : [b, b +
1] → R

2 satisfying (3.3), (3.4) and (3.5). The remaining arguments are the same
as above and (3.6) still holds. The proof of Lemma 3.1 is thereby complete. �

Consider again any C1 embedding ξ : R → R
2 with continuous argument θ

defined by (3.1) in R. Let a and b be any real numbers such that a < b. Denote

E = {
t ∈ [a, b]; ξ(t) ∈ Lξ(a),ξ(b)

}
and F = [a, b]\E .

One has F = (a, b)\E and, by continuity of ξ , the set F is an open subset of (a, b).
It can then be written as

F =
⋃
k∈K

Ik,
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Fig. 3. Middle, left, right, double and exterior arcs, relatively to the segment [ξ(a), ξ(b)]

where K is an at most countable set and the sets Ik are pairwise disjoint open
intervals

Ik = (tk, t
′
k)

with a � tk < t ′k � b for every k ∈ K . For every k ∈ K , there holds

ξ(tk) ∈ Lξ(a),ξ(b) and ξ(t ′k) ∈ Lξ(a),ξ(b)

(while ξ(t) 
∈ Lξ(a),ξ(b) for any t ∈ (tk, t ′k)). In particular, the arcs ξ([tk, t ′k]) are all
non-intersecting, hence

|θ(tk) − θ(t ′k)| � 4π for all k ∈ K (3.7)

by Lemma 3.1. For k ∈ K , we say that, relatively to the segment [ξ(a), ξ(b)],
the arc ξ([tk, t ′k]) is

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a middle arc if [ξ(tk), ξ(t ′k)] ⊂ [ξ(a), ξ(b)],
a left arc if ξ(a) ∈ (ξ(tk), ξ(t ′k)) and ξ(b) 
∈ (ξ(tk), ξ(t ′k)),
a right arc if ξ(b) ∈ (ξ(tk), ξ(t ′k)) and ξ(a) 
∈ (ξ(tk), ξ(t ′k)),
a double arc if [ξ(a), ξ(b)] ⊂ (ξ(tk), ξ(t ′k)),
an exterior arc if [ξ(tk), ξ(t ′k)] ∩ (ξ(a), ξ(b)) = ∅

(see Fig. 3). Notice that these five possibilities are the only ones and that they are
pairwise distinct. Let Nl , Nr and Nd denote the numbers of left, right and double
arcs, respectively, that is,

Nl = #
{
k ∈ K ; ξ([tk, t ′k]) is a left arc

}
,

and similarly for Nr and Nd . These numbers are nonnegative integers or may a
priori be +∞.

The next lemma shows that these numbers are actually finite and that their sum
controls the difference of the argument θ of ξ̇ between a and b.

Lemma 3.2. Under the above notations, the numbers Nl , Nr and Nd are nonneg-
ative integers, and

|θ(a) − θ(b)| � 16π
(
Nl + Nr + Nd

) + 4π.
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Proof. Let us first show that the numbers Nl , Nr and Nd are finite. Assume by
contradiction that, say, Nl is infinite. Then there is a one-to-one map ρ : N → K
such that ξ([tρ(n), t ′ρ(n)]) is a left arc for each n ∈ N. Since the intervals (tρ(n), t ′ρ(n))

are pairwise disjoint and are all included in [a, b], it follows that their length con-
verges to 0 as n → +∞, that is, t ′ρ(n) − tρ(n) → 0 as n → +∞. Thus, up to
extraction of a subsequence, tρ(n) → T and t ′ρ(n) → T as n → +∞, for some
T ∈ [a, b]. Therefore, ξ(tρ(n)) → ξ(T ) and ξ(t ′ρ(n)) → ξ(T ) as n → +∞. Since
ξ(a) ∈ (ξ(tρ(n)), ξ(t ′ρ(n))) for each n ∈ N, one gets that ξ(a) = ξ(T ), hence T = a
since ξ is one-to-one. Notice also that all real numbers tρ(n) and t ′ρ(n) are different
from a, since ξ(a) ∈ (ξ(tρ(n)), ξ(t ′ρ(n))), and that

ξ(tρ(n)) − ξ(a)

tρ(n) − a
→ ξ̇ (a) and

ξ(t ′ρ(n)) − ξ(a)

t ′ρ(n) − a
→ ξ̇ (a) as n → +∞,

but the vectors ξ(tρ(n)) − ξ(a) and ξ(t ′ρ(n)) − ξ(a) point in opposite directions,

whereas a < min(tρ(n), t ′ρ(n)) for all n ∈ N and |ξ̇ (a)| > 0. One then gets a
contradiction. Therefore, Nl is finite. Similarly, one can show that the number Nr

of right arcs is finite.
As far as the double arcs are concerned, since the length of each of them is not

smaller than |ξ(b) − ξ(a)| and since ξ is one-to-one, one immediately infers that
the number Nd of double arcs is finite and

Nd � length(ξ([a, b]))
|ξ(b) − ξ(a)| .

As a consequence, the number

N = Nl + Nr + Nd

is a nonnegative integer.
If N = 0, then the family of arcs (ξ([tk, t ′k]))k∈K does not contain any left, right

or double arcs, and therefore does not contain any exterior arc either. Thus, all arcs
ξ([tk, t ′k]) are middle arcs and ξ(E) ⊂ [ξ(a), ξ(b)]. In particular, the arc ξ([a, b])
is non-intersecting (the second alternative of (3.2) is fulfilled) and

|θ(a) − θ(b)| � 4π (if N = 0), (3.8)

by Lemma 3.1.
Let us then assume in the remaining part of the proof that N � 1. There exist

then N non-empty and pairwise distinct intervals (τi , τ
′
i ) ⊂ (a, b) (for 1 � i � N )

such that, for each 1 � i � N , there is a unique k(i) ∈ K with

(τi , τ
′
i ) = Ik(i) = (tk(i), t

′
k(i)) (3.9)

and the arc ξ([τi , τ ′
i ]) is either a left, a right or a double arc. Up to reordering, one

can assume, without loss of generality, that

a � τ1 < τ ′
1 � τ2 < τ ′

2 � · · · � τN < τ ′
N � b.



622 François Hamel & Nikolai Nadirashvili

Notice that (3.7) and (3.9) imply that, for each 1 � i � N ,

|θ(τi ) − θ(τ ′
i )| � 4π. (3.10)

For each 1 � i � N − 1 (if N � 2), the arc ξ([τ ′
i , τi+1]) does not con-

tain any left, right or double arc and it does not contain ξ(a) or ξ(b) either since
[τ ′

i , τi+1] ⊂ (a, b). Hence ξ(a) 
∈ [ξ(τ ′
i ), ξ(τi+1)] and ξ(b) 
∈ [ξ(τ ′

i ), ξ(τi+1)]. As
a consequence,

either [ξ(τ ′
i ), ξ(τi+1)] ⊂ (ξ(a), ξ(b)) or [ξ(τ ′

i ), ξ(τi+1)] ∩ [ξ(a), ξ(b)] = ∅.

Consider firstly the case where

[ξ(τ ′
i ), ξ(τi+1)] ⊂ (ξ(a), ξ(b))

(notice that the relative positions of ξ(τ ′
i ) and ξ(τi+1) between ξ(a) and ξ(b) will

not make any difference in the following arguments). Since the continuous curve
ξ([τ ′

i , τi+1])does not contain any left, right or double arc and it does not contain ξ(a)

or ξ(b), it follows that, for any Ik ⊂ (τ ′
i , τi+1), the arc ξ(Ik) is a middle arc (notice

that it may well happen that there is no such Ik , in which case ξ([τ ′
i , τi+1]) =

[ξ(τ ′
i ), ξ(τi+1)]). Furthermore, the arcs ξ([τi , τ ′

i ]) and ξ([τi+1, τ
′
i+1]) cannot be

double arcs, and hence they are either left or right arcs. There are four possibilities:
left-left, left-right, right-left or right-right. If both are left arcs or both right arcs,
then

ξ([τi , τ ′
i+1]) ∩ (ξ(τi ), ξ(τ ′

i+1)) = ∅
and ξ([τi , τ ′

i+1]) is non-intersecting (see Fig. 4, where both arcs ξ([τi , τ ′
i ]) and

ξ([τi+1, τ
′
i+1]) are left arcs). If one of the arcs ξ([τi , τ ′

i ]) and ξ([τi+1, τ
′
i+1]) is a

left arc and the other one a right arc, then

ξ([τi , τ ′
i+1]) ∩ (

Lξ(τi ),ξ(τ ′
i+1)

\[ξ(τi ), ξ(τ ′
i+1)]

) = ∅

and ξ([τi , τ ′
i+1]) is non-intersecting too. Hence, in all cases, |θ(τi )−θ(τ ′

i+1)| � 4π
by Lemma 3.1, but since |θ(τi ) − θ(τ ′

i )| � 4π and |θ(τi+1) − θ(τ ′
i+1)| � 4π

by (3.10), one infers that

|θ(τ ′
i ) − θ(τi+1)| � 12π. (3.11)

Fig. 4. The arcs ξ([τi , τ ′
i ]) and ξ([τi+1, τ

′
i+1]) are left arcs, the arc ξ([τi , τ ′

i+1]) is non-
intersecting
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Fig. 5. The arc ξ([τi , τ ′
i ]) is a left arc, the arc ξ([τi+1, τ

′
i+1]) is a double arc, the arc

ξ([τi , τ ′
i+1]) is non-intersecting

Consider secondly the case where

[ξ(τ ′
i ), ξ(τi+1)] ∩ [ξ(a), ξ(b)] = ∅.

Let us then assume without loss of generality that both ξ(τ ′
i ) and ξ(τi+1) are on

the left of ξ(a) with respect to ξ(b) (the other case, where ξ(b) ∈ (ξ(a), ξ(τ ′
i )) ∩

(ξ(a), ξ(τi+1)), can be handled similarly). As in the previous paragraph, since the
continuous curve ξ([τ ′

i , τi+1]) does not contain any left or double arc and it does
not contain ξ(a), it follows that, for any Ik = (tk, t ′k) ⊂ (τ ′

i , τi+1), the arc ξ(Ik) is
an exterior arc such that both ξ(tk) and ξ(t ′k) are on the left of ξ(a) with respect to
ξ(b). Furthermore, the arcs ξ([τi , τ ′

i ]) and ξ([τi+1, τ
′
i+1]) are either left or double

arcs (see Fig. 5 in the case where, say, ξ([τi , τ ′
i ]) is a left arc and ξ([τi+1, τ

′
i+1]) is

a double arc). It is immediate to check that, in all cases,

ξ([τi , τ ′
i+1]) ∩ (ξ(τi ), ξ(τ ′

i+1)) = ∅,

hence the arc ξ([τi , τ ′
i+1]) is non-intersecting. Therefore, |θ(τi ) − θ(τ ′

i+1)| � 4π
by Lemma 3.1 and one infers as in the previous paragraph that

|θ(τ ′
i ) − θ(τi+1)| � 12π. (3.12)

Let us now consider the arc ξ([a, τ1]), assuming for the moment that τ1 > a.
Three cases might occur: either ξ(τ1) is on the left of ξ(a) with respect to ξ(b),
or ξ(τ1) ∈ (ξ(a), ξ(b)], or ξ(b) ∈ (ξ(a), ξ(τ1)). Notice that the latter case is
impossible, otherwise ξ([a, τ1]) would contain a right or double arc, contradicting
the definition of τ1. Thus, either ξ(τ1) is on the left of ξ(a) with respect to ξ(b),
or ξ(τ1) ∈ (ξ(a), ξ(b)]. If ξ(τ1) is on the left of ξ(a), since the continuous curve
ξ([a, τ1]) does not contain any left, right or double arc, it follows that, for any
Ik = (tk, t ′k) ⊂ (a, τ1), the arc ξ(Ik) is an exterior arc such that ξ(t ′k) is on the left
of ξ(a) with respect to ξ(b), and either ξ(tk) is on the left of ξ(a) with respect to
ξ(b) or tk = a with ξ(tk) = ξ(a). Furthermore, the arc ξ([τ1, τ ′

1]) is either a left or
a double arc, hence ξ(τ ′

1) is on the right of ξ(a) with respect to ξ(b) and

ξ([a, τ ′
1]) ∩ (ξ(a), ξ(τ ′

1)) = ∅.

Therefore, the arc ξ([a, τ ′
1]) is non-intersecting and |θ(a) − θ(τ ′

1)| � 4π by
Lemma 3.1. One then infers from (3.10) with i = 1 that

|θ(a) − θ(τ1)| � 8π.
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Similarly, if ξ(τ1) ∈ (ξ(a), ξ(b)], since the continuous curve ξ([a, τ1]) does not
contain any left or right arc, it follows that, for any Ik ⊂ (a, τ1), the arc ξ(Ik) is a
middle arc. Furthermore, since τ1 < τ ′

1 � b (hence, ξ(τ1) actually belongs to the
interval (ξ(a), ξ(b))), the arc ξ([τ1, τ ′

1]) is either a left or a right arc. If it is a left
arc, then ξ(τ ′

1) is on the left of ξ(a) with respect to ξ(b) and

ξ([a, τ ′
1]) ∩ (ξ(a), ξ(τ ′

1)) = ∅,

hence the arc ξ([a, τ ′
1]) is non-intersecting. If the arc ξ([τ1, τ ′

1]) is a right arc, then
ξ(b) ∈ (ξ(a), ξ(τ ′

1)) and

ξ([a, τ ′
1]) ∩ (

Lξ(a),ξ(τ ′
1)

\[ξ(a), ξ(τ ′
1)]

) = ∅,

hence the arc ξ([a, τ ′
1]) is non-intersecting as well. As a consequence, in all cases,

Lemma 3.1 yields |θ(a) − θ(τ ′
1)| � 4π and |θ(τ1) − θ(τ ′

1)| � 4π . Together
with (3.10) with i = 1, one gets that

|θ(a) − θ(τ1)| � 8π.

Notice also that this inequality holds trivially if τ1 = a.
Similarly, one can show that

|θ(τ ′
N ) − θ(b)| � 8π.

Asa conclusion, the previous two inequalities togetherwith (3.10), (3.11) and (3.12)
imply that

|θ(a) − θ(b)|

� |θ(a) − θ(τ1)| +
N−1∑
i=1

(|θ(τi ) − θ(τ ′
i )| + |θ(τ ′

i ) − θ(τi+1)|
)

+|θ(τN ) − θ(τ ′
N )| + |θ(τ ′

N ) − θ(b)|
� 8π + (N − 1)(4π + 12π) + 4π + 8π = 16πN + 4π,

which is the desired result. Reminding (3.8), the proof of Lemma 3.2 is thereby
complete. �

3.2. Logarithmic Growth of the Argument of ∇u Along Its Trajectories

For any C2(R2) solution w of (1.1) satisfying (2.16) with 0 < η � 1, let us
remind the definitions (2.17) and (2.18) of the arguments φw and ϕw ofw and∇uw,
and that of the parametrizations σ : R → R

2, defined by σ̇ (t) = ∇uw(σ(t)), of
the trajectories 
 of the gradient flow. We also recall that oscE φw = oscE ϕw for
any non-empty subset E ⊂ R

2.
The present section is devoted to the proof of some estimates on the logarithmic

growth of the argument ϕw of∇uw along its trajectories. For the sake of simplicity,
we drop in the sequel the indicesw, that is, we write u = uw, φ = φw and ϕ = ϕw.
In order to state these estimates, we first show an auxiliary elementary lemma on
the local behavior of the trajectories of the gradient flow around any point.
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Lemma 3.3. Foranyη ∈ (0, 1], for anyC2(R2) solutionw of (1.1) satisfying (2.16)
and for any trajectory of the gradient flow, with parametrization σ̇ (t) = ∇u(σ (t))
for t ∈ R, there are no real numbers (τi )1�i�4 satisfying

τ1 < τ2 < τ3 � τ4 or τ1 > τ2 > τ3 � τ4, (3.13)

and such that

osc
B(σ (τ1),1)

φ <
π

2
, σ (τ1) ∈ (σ (τ2), σ (τ3)), and |σ(τ1) − σ(τ4)| < η4. (3.14)

Proof. Assume by way of contradiction that there exist a trajectory of the gradient
flow, with parametrization σ̇ (t) = ∇u(σ (t)) for t ∈ R, and some real numbers
(τi )1�i�4 satisfying (3.13) and (3.14). Let us only consider the first case

τ1 < τ2 < τ3 � τ4

in (3.13) (the second case τ1 > τ2 > τ3 � τ4 can be obtained from the first case by
replacing w by −w and u by −u). The mean value theorem together with (2.16)
and (3.14) then yields

|u(σ (τ1)) − u(σ (τ4))| < η3.

Actually, since the function t �→ g(t) := u(σ (t)) is increasing in R (g′(t) =
|∇u(σ (t))|2 � η2 > 0 in R), one gets that u(σ (τ1)) < u(σ (τ2)) < u(σ (τ3)) �
u(σ (τ4)), and finally

u(σ (τ1)) < u(σ (τ2)) < u(σ (τ3)) � u(σ (τ4)) < u(σ (τ1)) + η3.

Since g′(t) � η2 > 0 for all t ∈ R, this yields

τ1 < τ2 < τ3 � τ4 < τ1 + η.

Now, for every τ ∈ [τ1, τ4], there holds |σ̇ (τ )| = |∇u(σ (τ ))| � η−1, hence
|σ(τ) − σ(τ1)| � η−1(τ4 − τ1) < 1. Since oscB(σ (τ1),1)ϕ = oscB(σ (τ1),1)φ <

π/2 by assumption (3.14) and since ϕ is the argument of ∇u, one then gets that
∇u(σ (τ )) · ∇u(σ (τ1)) > 0 for all τ ∈ [τ1, τ4], that is, σ̇ (τ ) · σ̇ (τ1) > 0. This
implies that (σ (τ ) − σ(τ1)) · σ̇ (τ1) > 0 for all τ ∈ (τ1, τ4]. In particular,

(σ (τ2) − σ(τ1)) · σ̇ (τ1) > 0 and (σ (τ3) − σ(τ1)) · σ̇ (τ1) > 0.

The vectors σ(τ2)−σ(τ1) and σ(τ3)−σ(τ1), however, point in opposite directions,
since σ(τ1) ∈ (σ (τ2), σ (τ3)) by assumption (3.14). This leads to a contradiction
and the proof of Lemma 3.3 is thereby complete. �

In order to state the key Lemma 3.4 below on the logarithmic growth of the
argument ϕ of ∇u along its trajectories, let us introduce a few auxiliary notations.
For η ∈ (0, 1], denote

C1(η) := sup
t∈[1,+∞)

h1(t), where h1(t) = 288πη−2 × ln2(tη−4) + 2

ln(3 + t)
(3.15)
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and ln2 t = ln t/ ln 2 for any t > 0. Notice immediately that C1(η) ∈ R and

C1(η) � lim
t→+∞ h1(t) = 288πη−2

ln 2
> 96πη−2 � 96π >

π

2
. (3.16)

With this constant C1(η) > 0, the following estimate holds for the trajectories of
the gradient flow:

Lemma 3.4. Foranyη ∈ (0, 1], for anyC2(R2) solutionw of (1.1) satisfying (2.16)
and for any x ∈ R

2, there holds

osc
B(x,1)

ϕ = osc
B(x,1)

φ <
π

2

�⇒
(
∀ y ∈ 
x , |ϕ(x) − ϕ(y)| � C1(η) ln

(
3 + |x − y|)).

The general underlying idea of the proof is the following: if a trajectory of
the gradient flow turns many times around some points then the stream function
u would become large along it and the oscillations of u between some not-too-far
points would be large. This would lead to a contradiction, since u is Lipschitz con-
tinuous. The detailed proof of Lemma 3.4 is actually much more involved, since
one needs to treat the cases of left, right or double arcs around some segments.

Proof. Assume by contradiction that the conclusion of Lemma 3.4 does not hold
for some C2(R2) solution w of (1.1) satisfying (2.16) with 0 < η � 1. Then, there
exist x ∈ R

2 and y ∈ 
x such that oscB(x,1)ϕ < π/2 and

|ϕ(x) − ϕ(y)| > C1(η) ln
(
3 + |x − y|).

Let σ be a parametrization of
x solving σ̇ (t) = ∇u(σ (t)) for t ∈ R, and a, b ∈ R

be such that

x = σ(a) and y = σ(b).

One has |ϕ(x) − ϕ(y)| > C1(η) > π/2 (by (3.16)), and the property oscB(x,1)ϕ <

π/2 implies that
|σ(a) − σ(b)| = |x − y| � 1. (3.17)

Let us assume here that a < b (the case a > b can be handled similarly). Let θ

be the continuous argument of σ̇ , defined as in (3.1) with the embedding ξ := σ .
Since σ̇ (t) = ∇u(σ (t)) in R, it follows from (2.18) and the continuity of θ and
ϕ(σ(·)) in R that there is an integer q ∈ Z such that

θ(t) = ϕ(σ(t)) + 2πq for all t ∈ R.

In particular, θ(a) − θ(b) = ϕ(σ(a)) − ϕ(σ(b)) = ϕ(x) − ϕ(y), hence

|θ(a) − θ(b)| > C1(η) ln
(
3 + |x − y|)

= C1(η) ln
(
3 + |σ(a) − σ(b)|) > C1(η) > 96π (3.18)

by (3.16).



A Liouville Theorem for the Euler Equations in the Plane 627

With the same notations as in Section 3.1, let Nl , Nr and Nd be the (finite)
numbers of left, right and double arcs contained in the curve σ([a, b]), relatively to
the segment [σ(a), σ (b)]. It follows from the inequalities |θ(a) − θ(b)| > 96π >

8π and Lemma 3.2 that

|θ(a) − θ(b)|�16π(Nl+Nr +Nd)+4π <16π(Nl+Nr +Nd)+ |θ(a) − θ(b)|
2

,

(3.19)

hence |θ(a) − θ(b)| < 32π(Nl + Nr + Nd) and

max
(
Nl , Nr , Nd

)
>

|θ(a) − θ(b)|
96π

. (3.20)

Therefore, at least one of the three numbers Nl , Nr or Nd is larger than |θ(a) −
θ(b)|/(96π). The three cases will be treated separately.

Case 1: Nl > |θ(a) − θ(b)|/(96π). Notice that (3.18) yields Nl > 1, that is,
Nl � 2. By definition of Nl and of a left arc, there are some real numbers

a < ρ1 < ρ′
1 � ρ2 < ρ′

2 � · · · � ρNl < ρ′
Nl

� b

such that, for each 1 � i � Nl , there is k(i) ∈ K such that (ρi , ρ
′
i ) = Ik(i) =

(tk(i), t ′k(i)) and σ([ρi , ρ′
i ]) is a left arc (we still use the same notations E , F and

(Ik)k∈K for the arc σ([a, b]) as in Section 3.1 for ξ([a, b])). We also recall that,
for any left arc σ([ρi , ρ′

i ]), one has σ(a) ∈ (σ (ρi ), σ (ρ′
i )), hence ρi and ρ′

i are
(strictly) larger than a.

Define
m = [

ln2(|σ(a) − σ(b)| η−4)
] + 2, (3.21)

where, for any x ∈ R, [x] denotes the integer part of x . Notice that (3.17) together
with 0 < η � 1 implies that m is an integer such that

m � 2.

Divide now the segment [σ(a), σ (b)] intom segments [xp, yp] (for p = 1, . . . ,m)
defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 = σ(a) + σ(b)

2
, y1 = σ(b), x2 = σ(a) + x1

2
, y2 = x1,

. . .

xm−1 = σ(a) + xm−2

2
, ym−1 = xm−2, xm = σ(a) and ym = xm−1

(see Fig. 6). It is immediate to see that the sets (xp, yp] form a partition of (σ (a),

σ (b)], that
|xp − yp| = 2−p|σ(a) − σ(b)| for each 1 � p � m − 1, |xm − ym |

= 21−m |σ(a) − σ(b)|
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Fig. 6. The points σ(a) = xm , xm−1 = ym , . . . , x1 = y2, σ(b) = y1 in case m = 4

and that

|σ(a) − xp| = 2−p|σ(a) − σ(b)| and |σ(a) − yp| = 21−p|σ(a) − σ(b)|,
for each 1 � p � m − 1. (3.22)

By definition of m in (3.21), it also follows that

|σ(a) − ym | = |xm − ym | = 21−m |σ(a) − σ(b)| < η4. (3.23)

Coming back to the family of the left arcs (σ ([ρi , ρ′
i ]))1�i�Nl

, we remind
renders that, by definition of a left arc, eitherσ(ρi ) orσ(ρ′

i ) belongs to (σ (a), σ (b)],
for any 1 � i � Nl . Since the sets (xp, yp] with 1 � p � m are a partition of
(σ (a), σ (b)], it follows that, if we denote, for 1 � p � m,

Jp := {
i ∈ {1, . . . , Nl}; σ(ρi ) ∈ (xp, yp] or σ(ρ′

i ) ∈ (xp, yp]
}
,

then ⋃
1�p�m

Jp = {1, . . . , Nl}. (3.24)

We now claim that

#Jm � 1, (3.25)

that is, there is at most one left arc intersecting (xm, ym] = (σ (a), ym]. Assume by
contradiction that there are two integers i and j with 1 � i < j � Nl and such
that either σ(ρi ) or σ(ρ′

i ) belongs to (σ (a), ym] and either σ(ρ j ) or σ(ρ′
j ) belongs

to (σ (a), ym]. Since |σ(a) − ym | < η4 by (3.23), one infers in particular that

min
(|σ(ρ j ) − σ(a)|, |σ(ρ′

j ) − σ(a)|) < η4.

Furthermore, σ(a) ∈ (σ (ρi ), σ (ρ′
i )) since σ([ρi , ρ′

i ]) is a left arc. Since

osc
B(σ (a),1)

φ = osc
B(x,1)

φ = osc
B(x,1)

ϕ <
π

2
,

Lemma 3.3 applied with (τ1, τ2, τ3) = (a, ρi , ρ
′
i ) and τ4 = ρ j (� ρ′

i ) if |σ(ρ j ) −
σ(a)| < η4 (resp. τ4 = ρ′

j (> ρ′
i ) if |σ(ρ′

j )−σ(a)| < η4) leads to a contradiction.
Therefore, the claim (3.25) has been proved.
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Putting together (3.24) and (3.25), it follows that there is p ∈ {1, . . . ,m − 1}
such that

n := #Jp � Nl − 1

m − 1
(3.26)

(we also remind that Nl � 2 and m � 2, whence n is a positive integer). Write
Jp = {i1, . . . , in} with 1 � i1 < · · · < in � Nl . Thus,

a < ρi1 < ρ′
i1 � ρi2 < ρ′

i2 � · · · � ρin < ρ′
in � b. (3.27)

For each 1 � j � n, one has σ(a) ∈ (σ (ρi j ), σ (ρ′
i j
)) (because σ([ρi j , ρ′

i j
]) is a

left arc), while either σ(ρi j ) or σ(ρi j ) belongs to (xp, yp] (⊂ (σ (a), σ (b)]). Hence,
(σ (a), xp] ⊂ (σ (ρi j ), σ (ρ′

i j
)) and

length
(
σ([ρi j , ρ′

i j ])
)

� |σ(ρi j ) − σ(ρ′
i j )| � |σ(a) − xp| = 2−p|σ(a) − σ(b)|

by (3.22). Since σ is an embedding, one also infers from (3.27) that

length
(
σ([a, ρin ])

)
�

∑
1� j�n−1

length
(
σ([ρi j , ρ′

i j ])
)

� (n − 1) 2−p |σ(a) − σ(b)|.

Furthermore, Lemma 2.2 yields

u(σ (ρ′
in )) > u(σ (ρin )) � u(σ (a)) + η × length

(
σ([a, ρin ])

)
, (3.28)

hence

u(σ (ρ′
in )) > u(σ (ρin )) � u(σ (a)) + η (n − 1) 2−p|σ(a) − σ(b)|. (3.29)

On the other hand, one knows that either σ(ρin ) or σ(ρ′
in

) belongs to (xp, yp] (⊂
(σ (a), σ (b)]), since in ∈ Jp. Thus,

min
(|σ(ρin ) − σ(a)|, |σ(ρ′

in ) − σ(a)|) � |σ(a) − yp| = 21−p|σ(a) − σ(b)|
by (3.22). Since |∇u(x)| � η−1 for all x ∈ R

2, it follows that

min
(|u(σ (ρin )) − u(σ (a))|, |u(σ (ρ′

in )) − u(σ (a))|) � 21−pη−1|σ(a) − σ(b)|.
But, as already underlined, u(σ (a)) < u(σ (ρin )) < u(σ (ρ′

in
)). Consequently,

u(σ (ρin )) − u(σ (a)) � 21−pη−1|σ(a) − σ(b)|. (3.30)

From (3.29) and (3.30), one infers that

η (n − 1) 2−p|σ(a) − σ(b)| � 21−pη−1|σ(a) − σ(b)|,
and, since |σ(a) − σ(b)| � 1 > 0 by (3.17) and 0 < η � 1, it follows that

n � 2η−2 + 1 � 3η−2.

Together with (3.26), with our assumption Nl > |θ(a) − θ(b)|/(96π) and with
η−2 � 1, one gets, in particular, that

|θ(a) − θ(b)| < 96π × 3η−2 × (m − 1) + 96π < 288πη−2 × m.
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From (3.18) and the definition (3.21) of m, one infers that

C1(η) ln(3 + |σ(a) − σ(b)|) < |θ(a) − θ(b)| < 288πη−2

×([
ln2(|σ(a) − σ(b)| η−4)

] + 2
)
,

hence

C1(η) < 288πη−2 × ln2(|σ(a) − σ(b)| η−4) + 2

ln(3 + |σ(a) − σ(b)|) .

Since |σ(a) − σ(b)| � 1 by (3.17), the previous inequality contradicts the defini-
tion (3.15) of the constant C1(η).

Case 2: Nr > |θ(a)−θ(b)|/(96π).The study of this case is similar to that of Case 1
(one especially uses Lemma 3.3 with the second alternative in (3.13) to show that
the number of right arcs meeting a small portion of [σ(a), σ (b)] around the point
σ(b) is at most 1), and one similarly gets a contradiction with the definition of
C1(η).

Case 3: Nd > |θ(a) − θ(b)|/(96π). For each double arc σ([tk, t ′k]), one has by
definition [σ(a), σ (b)] ⊂ (σ (tk), σ (t ′k)), hence

length(σ ([tk, t ′k])) � |σ(a) − σ(b)|.
Since σ : [a, b] → R

2 is an embedding and σ([a, b]) contains Nd double arcs, it
follows that length(σ ([a, b])) � Nd |σ(a) − σ(b)|. Lemma 2.2 then yields

u(σ (b)) − u(σ (a)) � η × length(σ ([a, b])) � η Nd |σ(a) − σ(b)|.
On the other hand, u(σ (b)) − u(σ (a)) � η−1|σ(b) − σ(a)| by (2.16) and, since
σ(a) 
= σ(b), one infers that η Nd � η−1, hence

|θ(a) − θ(b)| < 96πNd � 96πη−2

from our assumption in Case 3. Since |θ(a) − θ(b)| > C1(η) ln
(
3 + |σ(a) −

σ(b)|) > C1(η) by (3.18), one finally gets that C1(η) < 96πη−2, contradict-
ing (3.16). Case 3 is thus ruled out too and the proof of Lemma 3.4 is thereby
complete. �

3.3. Logarithmic Growth of the Argument of ∇u Along the Streamlines

For any C2(R2) solution w of (1.1) satisfying (2.16) with 0 < η � 1, let
us remind the definition of the parametrizations γ : R → R

2, given by γ̇ (t) =
w(γ (t)), of the streamlines � of the flow w. The present section is devoted to the
proof of some estimates on the logarithmic growth of the argument ϕ = ϕw of
∇u = ∇uw along the streamlines. In order to state these estimates, we first show
an auxiliary elementary lemma, a bit similar to Lemma 3.3, on the local behavior
of a streamline around a point.
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Lemma 3.5. Foranyη ∈ (0, 1], for anyC2(R2) solutionw of (1.1) satisfying (2.16)
and for any streamline of the flow, with parametrization γ̇ (t) = w(γ (t)) for t ∈ R,
there are no real numbers (τi )1�i�4 satisfying

τ1 < τ2 < τ3 � τ4 or τ1 > τ2 > τ3 � τ4, (3.31)

and such that

osc
B(γ (τ1),1)

ϕ = osc
B(γ (τ1),1)

φ <
π

4
, γ (τ1) ∈ (γ (τ2), γ (τ3)), and |γ (τ1) − γ (τ4)|

<
η2

4
. (3.32)

Proof. The beginning of the proof is similar to that of Lemma 3.3, but the end
differs, due to the fact that the function u is not anymore strictly monotone, but
constant, along the streamlines. Assume by way of contradiction that there exist a
trajectory of the flow, with parametrization γ̇ (t) = w(γ (t)) for t ∈ R, and some
real numbers (τi )1�i�4 satisfying (3.31) and (3.32). Let us consider only the first
case

τ1 < τ2 < τ3 � τ4

in (3.31) (the second case τ1 > τ2 > τ3 � τ4 can be obtained from the first case
by replacing w by −w and u by −u). Up to shifting t and translating and rotating
the frame, one can assume without loss of generality that

τ1 = 0, γ (τ1) = γ (0) = (0, 0) = 0, and w(0) = (|w(0)|, 0).
In particular, γ = γ0 and

{
γ (t); t ∈ R

} = �0.
Let Q be the open rectangle centered at 0 and defined by

Q =
(

− η2

4
,
η2

4

)
×

(
− 1

2
,
1

2

)
.

Let us show in this paragraph that�0∩Q is a graph in thevariable x1 ∈ (−η2/4, η2/4).
First of all, by Lemma 2.3, there are some first exit times τ− and τ+ (from the rect-
angle Q) such that

τ− < 0 < τ+, γ (τ±) ∈ ∂Q, and γ (τ) ∈ Q for all τ ∈ (τ−, τ+).

Denote γ = (γ1, γ2) the two coordinates of γ . For all τ ∈ (τ−, τ+), there
holds γ (τ) ∈ Q ⊂ B(0, 1) and, since oscB(0,1)φ = oscB(γ (τ1),1)φ < π/4
by assumption (3.32), one has w1(γ (τ )) |w(0)| = w(γ (τ)) · w(0) > 0 and
|w2(γ (τ ))| < w1(γ (τ )). In other words,

γ̇1(τ ) > 0 and |γ̇2(τ )| < γ̇1(τ ) for all τ ∈ (τ−, τ+). (3.33)

Since η � |γ̇ (τ )| = |w(γ (τ))| � η−1, it follows that γ̇1(τ ) > η/
√
2 and |γ̇2(τ )| <

η−1/
√
2 for all τ ∈ (τ−, τ+). Remembering that γ (0) = (0, 0) and |γ1(τ±)| �

η2/4 (since γ (τ±) ∈ ∂Q), one then gets that

− η

2
√
2

� τ− < 0 < τ+ � η

2
√
2

and |γ2(τ )| <
η−1

√
2

× η

2
√
2

= 1

4
<

1

2
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for all τ ∈ (τ−, τ+). Therefore, the exit points γ (τ±) belong to the lateral sides of
the rectangle Q, namely |γ1(τ±)| = η2/4. Moreover, remembering that γ̇1(τ ) �
η/

√
2 > 0 for all τ ∈ (τ−, τ+), it follows that γ1(τ

±) = ±η2/4 and that, for
each x1 ∈ (−η2/4, η2/4), there is a unique real number τx1 ∈ (τ−, τ+) such that
γ1(τx1) = x1. The curve γ ((τ−, τ+)) = {

γ (τ); τ ∈ (τ−, τ+)
}
can then be written

as a graph

γ ((τ−, τ+)) =
{
(x1, γ2(τx1)); x1 ∈

(
− η2

4
,
η2

4

)}
.

On the other hand, there holds ∇u(0) = (0,−|∇u(0)|) (as ∇⊥u(0) = w(0) =
(|w(0)|, 0)) and oscQϕ � oscB(0,1)ϕ = oscB(γ (τ1),1)ϕ = oscB(γ (τ1),1)φ < π/4 <

π/2 by assumption (3.32). Hence,

∂u

∂x2
< 0 in Q.

Finally, since u is constant along �0 (that is, t �→ u(γ (t)) is constant in R), one
concludes that

�0 ∩ Q = γ ((τ−, τ+)) =
{
(x1, γ2(τx1)); x1 ∈

(
− η2

4
,
η2

4

)}
.

Remember now the assumption (3.32) (with τ1 = 0 and γ (0) = 0). The
inequality |γ (τ4)| = |γ (τ1) − γ (τ4)| < η2/4 (< 1/2) yields γ (τ4) ∈ �0 ∩ Q,
hence τ4 ∈ (τ−, τ+) and finally

τ− < 0 = τ1 < τ2 < τ3 � τ4 < τ+.

As a consequence, one has γ̇1(τ ) > 0 for all τ ∈ [0, τ4] by (3.33). In particular,
0 = γ1(0) = γ1(τ1) < γ1(τ2) < γ1(τ3), contradicting the property γ (0) =
γ (τ1) ∈ (γ (τ2), γ (τ3)) by assumption (3.32). The proof of Lemma 3.5 is thereby
complete. �

Lemma 3.6 below is the analogue of Lemma 3.4 above, but it is concerned with
the logarithmic growth of the argument ϕ of ∇u along the trajectories of the flow,
that is, along the streamlines. Together with Lemmas 2.6 and 3.4, it will easily lead
to the conclusion of Proposition 2.10 on the logarithmic growth of the oscillations
of the arguments φ and ϕ of w and ∇u in large balls.

To state Lemma 3.6, let us first introduce a few auxiliary constants. Denote

ω := η2

2
∈

(
0,

1

2

]
(3.34)

and

C2(η) := max

(
sup

t∈[1,+∞)

h2(t), 288π(2η−4 + 1)

)
, where h2(t)

= 384π × ln1+ω(4tη−2) + 1

ln(3 + t)
. (3.35)
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Notice immediately that

C2(η) � lim
t→+∞ h2(t) = 384π

ln(1 + ω)
� 384π

ln(3/2)
> 192π >

π

4
. (3.36)

With this constant C2(η) > 0, the following estimate holds for any streamline of
the flow:

Lemma 3.6. Foranyη ∈ (0, 1], for anyC2(R2) solutionw of (1.1) satisfying (2.16)
and for any x ∈ R

2, there holds

osc
B(x,1)

ϕ= osc
B(x,1)

φ<
π

4
�⇒

(
∀ y ∈ �x , |ϕ(x) − ϕ(y)| � C2(η) ln

(
3 + |x − y|)).

The scheme of the proof is similar to that of Lemma 3.4. However, since u is
constant along any streamline, one cannot conclude directly as in Lemma 3.4 that
if a streamline turns many times around some points then the stream function u
would become large. Nevertheless, roughly speaking, if on some streamline an arc
γ ([α, β]) contains either two left or two right or two double arcs and is such that
γ (α) and γ (β) are not too far, then γ ([α, β]) will almost surround a domain �

containing a long trajectory of the gradient flow. This will lead to a contradiction,
since the oscillations of u on the boundary of that domain � will be small, while
the oscillation of u along the long trajectory of the gradient flow will be large.

Proof. Assume by contradiction that the conclusion of Lemma 3.6 does not hold
for some C2(R2) solution w of (1.1) satisfying (2.16) with 0 < η � 1. Then, there
exist x ∈ R

2 and y ∈ �x such that oscB(x,1)ϕ < π/4 and

|ϕ(x) − ϕ(y)| > C2(η) ln
(
3 + |x − y|). (3.37)

Let γ be a parametrization of �x solving γ̇ (t) = w(γ (t)) for t ∈ R, and a, b ∈ R

be such that

x = γ (a) and y = γ (b).

One has |ϕ(x) − ϕ(y)| > C2(η) > π/4 (by (3.36)) and the property oscB(x,1)ϕ <

π/4 implies that
|γ (a) − γ (b)| = |x − y| � 1. (3.38)

Let us assume here that a < b (the case a > b can be handled similarly). Let θ be
the continuous argument of γ̇ , defined as in (3.1) with the embedding ξ := γ . Since
γ̇ (t) = w(γ (t)) in R, it follows from (2.18), from the continuity of θ and ϕ(γ (·))
in R and from the definition w = ∇⊥u that there is an integer q ∈ Z such that

θ(t) = ϕ(γ (t)) + π

2
+ 2πq for all t ∈ R.

In particular, θ(a) − θ(b) = ϕ(γ (a)) − ϕ(γ (b)) = ϕ(x) − ϕ(y), hence

|θ(a) − θ(b)| > C2(η) ln
(
3 + |x − y|)

= C2(η) ln
(
3 + |γ (a) − γ (b)|) > C2(η) > 192π (3.39)

by (3.36) and (3.37).
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With the same notations as in Section 3.1, let Nl , Nr and Nd be the (finite)
numbers of left, right and double arcs contained in the curve γ ([a, b]), relatively to
the segment [γ (a), γ (b)]. As for (3.19) and (3.20), it follows from the inequalities
|θ(a) − θ(b)| > 192π > 96π > 8π and from Lemma 3.2 that

max
(
Nl , Nr , Nd

)
>

|θ(a) − θ(b)|
96π

.

As in the proof of Lemma 3.4, three cases can then occur.

Case 1: Nl > |θ(a) − θ(b)|/(96π). Notice immediately that (3.39) yields Nl > 2,
that is, Nl � 3. By definition of Nl and of a left arc, there are some real numbers

a < ρ1 < ρ′
1 � ρ2 < ρ′

2 � · · · � ρNl < ρ′
Nl

� b

such that γ ([ρi , ρ′
i ]) is a left arc for every 1 � i � Nl .

Define
m = [

ln1+ω(4|γ (a) − γ (b)|η−2)
] + 2, (3.40)

where ω > 0 is defined in (3.34). Property (3.38) together with 0 < η � 1 implies
that m is an integer such that m � 2. Divide now the segment [γ (a), γ (b)] into m
segments [xp, yp] (for p = 1, · · · ,m) defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1=γ (a)+ γ (b) − γ (a)

1+ω
, y1=γ (b), x2=γ (a)+ γ (b) − γ (a)

(1+ω)2
, y2= x1,

. . .

xm−1 = γ (a) + γ (b) − γ (a)

(1 + ω)m−1 , ym−1 = xm−2, xm = γ (a) and ym = xm−1.

It is immediately apparent that the sets (xp, yp] (with p ∈ {1, . . . ,m}) form a
partition of (γ (a), γ (b)], that

|xp − yp| = ω(1 + ω)−p|γ (a) − γ (b)| for each 1 � p � m − 1 (3.41)

and that

|γ (a) − ym | = |xm − ym | = (1 + ω)−(m−1)|γ (a) − γ (b)| <
η2

4

by (3.40).
For each 1 � i � Nl , the arc γ ([ρi , ρ′

i ]) is a left arc, hence either γ (ρi )

or γ (ρ′
i ) belongs to (γ (a), γ (b)] = ⋃

1�p�m(xp, yp]. Therefore, by calling, for
1 � p � m,

Jp := {
i ∈ {1, . . . , Nl}; γ (ρi ) ∈ (xp, yp] or γ (ρ′

i ) ∈ (xp, yp]
}
,

it follows that ⋃
1�p�m

Jp = {1, . . . , Nl}. (3.42)

We now claim that

#Jm � 1, (3.43)
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that is, there is at most one left arc intersecting (xm, ym] = (γ (a), ym]. Assume by
contradiction that there are two integers i and j with 1 � i < j � Nl and such that
either γ (ρi ) or γ (ρ′

i ) belongs to (xm, ym] = (γ (a), ym] and either γ (ρ j ) or γ (ρ′
j )

belongs to (γ (a), ym]. Since |γ (a) − ym | < η2/4, one infers in particular that

min
(|γ (ρ j ) − γ (a)|, |γ (ρ′

j ) − γ (a)|) <
η2

4
.

Furthermore, γ (a) ∈ (γ (ρi ), γ (ρ′
i )) since γ ([ρi , ρ′

i ]) is a left arc. Since γ (a) = x
and oscB(x,1)ϕ < π/4, Lemma 3.5 applied with

(τ1, τ2, τ3) = (a, ρi , ρ
′
i ),

and τ4 = ρ j if |γ (ρ j ) − γ (a)| < η2/4 (resp. τ4 = ρ′
j if |γ (ρ′

j ) − γ (a)| < η2/4)
leads to a contradiction. Therefore, the claim (3.43) follows.

Putting together (3.42) and (3.43), it follows that there is p ∈ {1, . . . ,m − 1}
such that

#Jp � Nl − 1

m − 1
(3.44)

(we also remind readers that Nl � 3 and m � 2, whence #Jp is a positive integer).
We claim that #Jp � 3. Indeed, notice first that

Nl − 1 >
|θ(a) − θ(b)|

96π
− 1 >

|θ(a) − θ(b)|
192π

>
C2(η) ln(3 + |γ (a) − γ (b)|)

192π
,

by (3.39). From (3.44) and the definition of m in (3.40), one infers that

#Jp � Nl − 1

m − 1
>

C2(η)

192π
× ln(3 + |γ (a) − γ (b)|)

ln1+ω(4|γ (a) − γ (b)|η−2) + 1
.

Therefore, #Jp > 2C2(η)/h2(|γ (a) − γ (b)|) � 2 by (3.35) and (3.38). Thus,
#Jp > 2, that is, #Jp � 3.

As a consequence, there are three integers

i < j < k ∈ Jp,

with a < ρi < ρ′
i � ρ j < ρ′

j � ρk < ρ′
k � b. In particular, since j ∈ Jp, one has

either γ (ρ j ) ∈ (x,yp] or γ (ρ′
j ) ∈ (xp, yp]. These two cases will be considered in

succession.

Subcase 1.1: Consider first the case where

γ (ρ j ) ∈ (xp, yp].
Since γ ([ρ j , ρ

′
j ]) is a left arc and γ (ρ j ) ∈ (xp, yp] ⊂ (γ (a), γ (b)], it follows that

γ (t) 
∈ Lγ (a),γ (b) for all t ∈ (ρ j , ρ
′
j ), and γ (ρ′

j ) is on the left of γ (a)

with respect to γ (b)
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Fig. 7. The domain � and the curves γ ([ρ j , τ ]) and 


(hence, γ (ρ′
j ) 
∈ [xp, yp]). On the other hand, either γ (ρk) or γ (ρ′

k) belongs to the
segment [xp, yp], while ρ′

j � ρk < ρ′
k . Consequently, there is

τ ∈ (ρ′
j , ρ

′
k]

such that

γ (τ) ∈ [xp, yp] and γ (t) 
∈ [xp, yp] for all t ∈ (ρ j , τ )

(see Fig. 7). Thus, γ ([ρ j , τ ]) ∩ [xp, yp] = {γ (ρ j ), γ (τ )}. Let � be the non-empty
domain surrounded by the closed simple curve γ ([ρ j , τ ]) ∪ (γ (ρ j ), γ (τ )) (� is
the hatched region in Fig. 7) and let σ = σγ (ρ′

j )
be the solution of

{
σ̇ (t) = ∇u(σ (t)), t ∈ R,

σ (0) = γ (ρ′
j ).

Let 
 = 
γ(ρ′
j )

= {
σ(t); t ∈ R

}
be the trajectory of the gradient flow contain-

ing the point γ (ρ′
j ). Since ρ j < ρ′

j < τ and 
 is orthogonal to � at γ (ρ′
j ) with

ρ′
j ∈ (ρ j , τ ) and since |σ(t)| → +∞ as |t | → +∞ by Lemma 2.1, it follows that

there is a real number β 
= 0 such that

σ(β) ∈ ∂� and σ(t) ∈ � for all t ∈ I,

where I = (0, β) if β > 0 (resp. I = (β, 0) if β < 0). Since the function u(σ (·)) is
increasing inR and u is constant along the curve γ ([ρ j , τ ]) (� γ (ρ′

j ) = σ(0)), the
first exit point σ(β) must lie on the segment [γ (ρ j ), γ (τ )], owing to the definition
of �. In particular, σ(β) ∈ [xp, yp], but the points σ(0) = γ (ρ′

j ), γ (a), xp, σ(β)

and yp lie with this order on the line Lγ (a),γ (b). Therefore,

length(σ (I )) � |σ(0) − σ(β)| � |γ (a) − xp| = (1 + ω)−p|γ (a) − γ (b)|.
Thus, Lemma 2.2 yields

|u(σ (β)) − u(σ (0))|�η × length(σ (I )) � η (1+ω)−p|γ (a) − γ (b)|, (3.45)



A Liouville Theorem for the Euler Equations in the Plane 637

but σ(β) ∈ [γ (ρ j ), γ (τ )] ⊂ [xp, yp], hence (2.16) and (3.41) imply that

|u(σ (β)) − u(γ (ρ j ))| � η−1|σ(β) − γ (ρ j )| � η−1|xp − yp|
= η−1ω (1 + ω)−p|γ (a) − γ (b)|. (3.46)

Sinceσ(0) = γ (ρ′
j ) andu(σ (0)) = u(γ (ρ′

j )) = u(γ (ρ j )),wefinally get from (3.45)
and (3.46) that

η (1 + ω)−p|γ (a) − γ (b)| � η−1ω (1 + ω)−p|γ (a) − γ (b)|,
hence (0 <) η � η−1ω, contradicting the definition (3.34) of ω.

Subcase 1.2: consider now the case where

γ (ρ′
j ) ∈ (xp, yp].

In this case, γ (ρ j ) is on the left of γ (a) with respect to γ (b), while either γ (ρi )

or γ (ρ′
i ) belongs to (xp, yp] (⊂ (γ (a), γ (b)]). Similarly as in Subcase 1.1, there

is ν ∈ [ρi , ρ j ) such that

γ (ν) ∈ [xp, yp] and γ (t) 
∈ [xp, yp] for all t ∈ (ν, ρ′
j ).

We then consider the non-empty domain �̃ surrounded by the closed simple curve
γ ([ν, ρ′

j ]) ∪ (γ (ν), γ (ρ′
j )), and the trajectory 
̃ of the gradient flow containing

γ (ρ j ). Then 
̃ ∩ �̃ contains a connected component having as end points the point
γ (ρ j ) and a point z belonging to the segment [γ (ν), γ (ρ′

j )] (⊂ [xp, yp]). As in
Subcase 1.1, we get a contradiction by estimating |u(z) − u(γ (ρ j ))| from below
and above.

Case 2: Nr > |θ(a)−θ(b)|/(96π).The study of this case is similar to that of Case 1
(one especially uses Lemma 3.5 with the second alternative in (3.31) to show that
the number of right arcs meeting a small portion of [γ (a), γ (b)] around the point
γ (b) is at most 1), and one similarly gets a contradiction with the definition of ω.

Case 3: Nd > |θ(a) − θ(b)|/(96π). As in Case 1, one then has Nd � 3. By
definition of Nd and of a double arc, there are some real numbers

a < μ1 < μ′
1 � μ2 < μ′

2 � · · · � μNd < μ′
Nd

� b

such that γ ([μi , μ
′
i ]) is a left arc for every 1 � i � Nd . For any such i , denote μ−

i
the one of the two real numbers μi and μ′

i such that γ (μ−
i ) lies on the left of γ (a)

with respect to γ (b), and let μ+
i be the other one, that is, γ (b) ∈ (γ (a), γ (μ+

i )).
We will argue a bit as in Case 1 above, by considering two subcases accord-
ing to the value of the leftmost position among the points γ (μ−

i ) (notice that
(γ (μ−

i ) − γ (a)) · (γ (b) − γ (a)) < 0 for all 1 � i � Nd , by definition of μ−
i ).

Subcase 3.1: consider first the case where

min
1�i�Nd

(γ (μ−
i ) − γ (a)) · (γ (b) − γ (a)) � −2 η−2|γ (a) − γ (b)|2.
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Fig. 8. The domain �′ and the curves γ ([λ, λ′]) and 
′

In other words, there is i ∈ {1, . . . , Nd} such that

|γ (μ−
i ) − γ (a)| � 2 η−2|γ (a) − γ (b)|. (3.47)

Since γ ([μi , μ
′
i ]) is a double arc, one has [γ (a), γ (b)] ⊂ (γ (μi ), γ (μ′

i )) and
γ ([μi , μ

′
i ]) ∩ [γ (a), γ (b)] = ∅. Therefore, there are some real numbers λ and λ′

such that

a � λ < μi < μ′
i < λ′ � b and γ ([λ, λ′]) ∩ [γ (a), γ (b)] = {γ (λ), γ (λ′)}

(see Fig. 8 (in case μ−
i = μi and μ+

i = μ′
i )). Let �′ be the non-empty domain

surrounded by the closed simple curve γ ([λ, λ′])∪ (γ (λ), γ (λ′)), let 
′ be the tra-
jectory of the gradient flow containing γ (μ−

i ) (which lies on the left of γ (a) with
respect to γ (b)), and let σ ′ = σγ (μ−

i ) be the solution of (2.4) with σ ′(0) = γ (μ−
i ).

Then
′∩�′ contains a connected component having as end points the point γ (μ−
i )

and a point z′ = σ ′(β ′) ∈ [γ (λ), γ (λ′)] (⊂ [γ (a), γ (b)]), for some β ′ 
= 0. As in
Case 1 above, using Lemma 2.2 and the fact that γ (μ−

i ) lies on left of γ (a) with
respect to γ (b), one infers from (3.47) that

|u(σ ′(β ′)) − u(σ ′(0))| � η |σ ′(β ′) − σ ′(0)| = η |σ ′(β ′) − γ (μ−
i )|

� η |γ (a) − γ (μ−
i )| � 2 η−1|γ (a) − γ (b)|,

but σ ′(β ′) ∈ [γ (a), γ (b)], and thus

|u(σ ′(β ′)) − u(γ (a))| � η−1|γ (a) − γ (b)|
by (2.16). Since u(σ ′(0)) = u(γ (μ−

i )) = u(γ (a)), one concludes from the previ-
ous two displayed inequalities that 2 η−1|γ (a)−γ (b)| � η−1|γ (a)−γ (b)|, which
is impossible since both η and |γ (a) − γ (b)| are positive.
Subcase 3.2: Consider now the case where

min
1�i�Nd

(γ (μ−
i ) − γ (a)) · (γ (b) − γ (a)) > −2 η−2|γ (a) − γ (b)|2.

Denote

ζ = γ (a) − 2 η−2(γ (b) − γ (a)).
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It follows that γ (μ−
i ) ∈ (ζ, γ (a)] for all 1 � i � Nd . Denote now

N = [
2 η−4 + 1

]
(� 3), (3.48)

and divide the segment [ζ, γ (a)] into N subsegments

[xp, yp] =
[
ζ + p − 1

N
(γ (a) − ζ ), ζ + p

N
(γ (a) − ζ )

]
(for 1 � p � N ) of the same length

|xp − yp| = |γ (a) − ζ |
N

= 2 η−2|γ (b) − γ (a)|
N

. (3.49)

Remember that Nd > |θ(a) − θ(b)|/(96π) in our studied Case 3, and that

|θ(a) − θ(b)| > C2(η) � 288π(2η−4 + 1) � 288π N ,

by (3.35), (3.39) and (3.48). Therefore, Nd > 3N . In particular, there are p ∈
{1, . . . , N } and three integers i < j < k in {1, . . . , Nd} such that

γ (μ−
i ), γ (μ−

j ), γ (μ−
k ) ∈ [xp, yp].

If μ−
j = μ j , then μ−

j = μ j < μ′
j � μk < μ′

k , while either γ (μk) or γ (μ′
k)

belongs to [xp, yp]. Since γ (μ j ) = γ (μ−
j ) ∈ [xp, yp] (lying on the left of γ (a)

with respect to γ (b)) and since γ ([μ j , μ
′
j ]) is a double arc, there is then

� ∈ (μ′
j , μ

′
k]

such that

γ (�) ∈ [xp, yp] and γ (t) 
∈ [xp, yp] for all t ∈ (μ j ,�)

(see Fig. 9). Thus, γ ([μ j ,� ]) ∩ [xp, yp] = {γ (μ j ), γ (�)}. Let �̃′ be the non-
empty domain surroundedby the closed simple curveγ ([μ j ,� ]) ∪ (γ (μ j ), γ (�))

and let σ̃ ′ = σγ (μ′
j )
be the solution of (2.4) with initial condition σ̃ ′(0) = γ (μ′

j ).

Fig. 9. The domain �̃′ and the curves γ ([μ j ,� ]) and 
̃′
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Let 
̃′ = 
γ(μ′
j )
be the trajectory of the gradient flow containing the point γ (μ′

j ).

There is then a real number β̃ ′ 
= 0 such that 
̃′ ∩ �̃′ contains a connected com-
ponent having as end points the point σ̃ ′(0) = γ (μ′

j ) and the point z̃′ = σ̃ ′(β̃ ′) ∈
[γ (μ j ), γ (�)| ⊂ [xp, yp], but the points xp, z̃′ = σ̃ ′(β̃ ′), yp, γ (a), γ (b) and
γ (μ′

j ) = σ̃ ′(0) lie in this order on the line Lγ (a),γ (b). Therefore, Lemma 2.2 yields

|u(̃σ ′(β̃ ′)) − u(̃σ ′(0))| � η |̃σ ′(β̃ ′) − σ̃ ′(0)| � η |γ (a) − γ (b)|,
but σ̃ ′(β̃ ′) and γ (μ j ) belong to the segment [xp, yp]. Hence,

|u(̃σ ′(β̃ ′)) − u(γ (μ j ))| � η−1 |̃σ ′(β̃ ′) − γ (μ j )| � η−1|xp − yp|
= 2 η−3|γ (a) − γ (b)|

N

by (2.16) and (3.49). Since u(̃σ ′(0)) = u(γ (μ′
j )) = u(γ (μ j )) and |γ (a)−γ (b)| >

0, the previous two inequalities imply that η � 2η−3/N , contradicting (3.48).
Finally, if μ−

j = μ′
j , then μi < μ′

i � μ j < μ′
j = μ−

j , while either γ (μi )

or γ (μ′
i ) belongs to [xp, yp]. Since γ (μ′

j ) = γ (μ−
j ) ∈ [xp, yp] (lying on the left

of γ (a) with respect to γ (b)) and since γ ([μ j , μ
′
j ]) is a double arc, there is then

� ′ ∈ [μi , μ j ) such that γ (� ′) ∈ [xp, yp] and γ (t) 
∈ [xp, yp] for all t ∈ (� ′, μ′
j ).

Thus, γ ([� ′, μ′
j ])∩ [xp, yp] = {γ (� ′), γ (μ′

j )} and one gets a contradiction with
similar arguments as in the previous paragraph.

To sum up, all possible cases have been considered; they all lead to a contradic-
tion; they a conclusion, (3.37) cannot hold and the proof of Lemma 3.6 is thereby
complete. �

3.4. End of the Proof of Proposition 2.10

With Lemmas 3.4 and 3.6 in hand, the proof of Proposition 2.10 follows easily.
To do so, consider any η ∈ (0, 1], any C2(R2) solutionw of (1.1) satisfying (2.16),
any real number R � 2, and assume that oscB(x,1)ϕw = oscB(x,1)φw < π/4 for
all x ∈ B(0, R), with the general notations of Section 2.3. Let 
 = 
0 be the
trajectory of the gradient flow containing the origin 0 = (0, 0).

Let now x be any point in B(0, R). Lemma 2.6 yields the existence of a point
yx ∈ 
 such that x ∈ �yx (that is, yx ∈ �x ). Since oscB(x,1)ϕw < π/4 and
oscB(0,1)ϕw < π/4 < π/2, Lemmas 3.4 and 3.6 imply that

|ϕw(x) − ϕw(0)| � |ϕw(x) − ϕw(yx )| + |ϕw(0) − ϕw(yx )|
� C2(η) ln(3 + |x − yx |) + C1(η) ln(3 + |yx |). (3.50)

Furthermore, on the one hand, Lemma 2.2 and the normalization u(0) = 0 yield

|u(yx )| = |u(yx ) − u(0)| � η |yx |.
On the other hand, u(yx ) = u(x) (since x ∈ �yx ), hence

|u(yx )| = |u(x) − u(0)| � η−1|x |,
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by (2.16). Therefore, |yx | � η−2|x |. Together with (3.50) and |x | < R, one finally
concludes that

|ϕw(x)−ϕw(0)| � C2(η) ln(3+|x |+η−2|x |)+C1(η) ln(3+η−2|x |) � Cη

2
ln R,

(3.51)
where

Cη = 2 sup
ρ∈[2,+∞)

C2(η) ln(3 + ρ + η−2ρ) + C1(η) ln(3 + η−2ρ)

ln ρ
.

Notice that the constant Cη is a positive real number depending on η only.
Since (3.51) holds for every x ∈ B(0, R), one concludes that

osc
B(0,R)

φw = osc
B(0,R)

ϕw � Cη ln R.

The proof of Proposition 2.10 is thereby complete. �
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