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Abstract

This paper is concerned with the construction of a new exact solution to the
geophysical fluid dynamics governing equations for inviscid and incompressible
fluid in the equatorial region. This solution represents a steady purely-azimuthal
flow with a free-surface. The novel aspect of the solution we derive is that the flow
it prescribes accommodates a general fluid stratification: the density may vary both
with depth, and with latitude. The solution is presented in the terms of spherical
coordinates, hence at no stage do we invoke approximations by way of simplifying
the geometry in the governing equations. Following the construction of our explicit
solution, we employ functional analytic considerations to prove that the pressure
at the free-surface defines implicitly the shape of the free-surface distortion in a
unique way, exhibiting also the expected monotonicity properties. Finally, using a
short-wavelength stability analysis we prove that certain flows defined by our exact
solution are stable for a specific choice of the density distribution.

1. Introduction

This paper is concerned with the construction of a new exact solution to the
geophysical fluid dynamics (GFD) governing equations for inviscid, incompress-
ible and stratified fluid in the equatorial region, which represents a steady purely
azimuthal flow. The solution is presented in the terms of spherical coordinates,
hence at no stage do we invoke approximations through simplifying the geometry
in the governing equations. In this regime, theGFD equations ofmotion incorporate
Coriolis and centripetal forces in the Euler equation, and accordingly are strongly
nonlinear and intractable [7,12,17,35]. The remarkable aspect of the solution we
derive is that the flow it prescribes accommodates a general fluid stratification: the
density may vary both with depth, and with latitude.

Stratification plays a fundamental role in GFD and — particularly in the equa-
torial region — large scale oceanic processes exhibit and experience pronounced
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density variations, most commonly due to fluctuations in the fluid temperature
or salinity, cf. [4,6,11,14,29,34]. Achieving a detailed theoretical understand-
ing of stratified flows is therefore of the utmost practical importance. However,
counter to this, accommodating variable density in the fluid vastly complicates the
mathematical analysis of an already intractable problem. This assertion is illus-
trated by observing that even in the simpler setting of two-dimensional gravity
water waves (where the Coriolis and centripetal effects of the earth’s rotation are
neglected) stratified fluids remained impervious to rigorous mathematical analysis
approaches until recently— a selection of recent advances in this field is given by
[3,9,10,13,21,22,32,36,37].

Exact solutions in fluid dynamics are extremely rare and, while they are impor-
tant and useful in and of themselves, in an oceanographical context they are com-
monly regarded as robust and reliable starting points from which to generate more
physically realistic and observable flows by way of asymptotic, or multiple scale,
methods. The validity of this approach hinges on our ability to glean detailed infor-
mation regarding fine properties of the structure of such solutions. In this paper we
construct an exact solution which accommodates general stratification, and which
furthermore admits a velocity profile beneath the surface which is arbitrarily pre-
scribable with depth. The resulting fluid flow possesses a free-surface whose form
is intricately linked to the pressure distribution at the surface. Accordingly, the
resulting solution is very rich structurally from both the physical perspective, and
the viewpoint of mathematical analysis.

This work builds on a number of important recent developments. In [7,8] it was
first shown that exact solutions to the full GFD governing equations can be con-
structed in terms of spherical coordinates which represent purely-azimuthal, depth-
varying flows, and that these solutions can be chosen to model both the equatorial
undercurrent (EUC), and the Antarctic Circumpolar Current (ACC), respectively.
These solutions model purely homogeneous fluids with no stratification permit-
ted. Subsequently, exact equatorial flow solutions were constructed by the authors
[19,20] which do permit stratification, but are of a relatively simple form; namely,
the fluid density varies linearly with depth and is independent of the latitude. The
solution we construct below is remarkable mathematically, and exciting physically,
in its ability to accommodate a general fluid stratification that varies bothwith depth
and latitude. Furthermore, the form of the exact solution we construct possesses
quite a bit of flexibility and freedom in its prescription; in particular, it offers a
model which also captures the salient features of the EUC. Unsurprisingly, this
level of generality has the drawback of generating quite a number of technical
complications in the mathematical analysis that we must handle with some care.

The layout of this paper is as follows: following the presentation of the gov-
erning equations in Section 2, the velocity and pressure fields for our exact solu-
tion are constructed in Section 3.1. As a by-product of the derivation process we
obtain a Bernoulli-type relation at the free-surface, which is key to all further con-
siderations. This somewhat convoluted relation provides an implicit prescription
of the relationship between the imposed pressure, and the resulting surface dis-
tortion, at the free-surface. In Section 3.2 this Bernoulli relation is recast into a
functional operator formulation, which is then subjected to a careful implemen-
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tation of the implicit function theorem in order to establish that the relationship
between the imposed pressure at the free-surface and the resulting distortion of
the surface’s shape is well-defined. In Section 3.3 we prove that the imposed pres-
sure, and related surface–distortion, exhibit the desired monotonicity properties.
We conclude the analysis in Section 3.4 by subjecting our exact solution to a short-
wavelength stability analysis. Verifying the stability (or otherwise) of a given fluid
motion is a question of the utmost physical importance, which is typically incred-
ibly difficult to establish mathematically. Although the underlying mathematical
analysis is intractable in general for our solution, we prove in Theorem 3.3 that,
with a specified choice of density distribution, the exact solution is linearly stable
to short-wavelength perturbations.

2. Governing Equations

Anoteworthy, and important, aspect of theworkwe present here is that the exact
solution we derive satisfies the full governing equations expressed in a spherical
coordinate system which is fixed at a point of the Earth’s surface. At no stage do
we invoke standard simplification techniques– such as reverting to cylindrical, or
tangent plane, coordinates – and as a result the structure of our solution captures in
full detail the curvature of the Earth’s geometry. The one compromise we enforce in
order to achieve this goal is to assume an azimuthal invariance, and accordingly any
resulting flows will assume a jet-like structure. Guided by Maslowe’s observation
[33] that the Reynolds number is, in general, extremely large for oceanic flows
of the type we are interested in, we consider incompressible and inviscid flows.
Therefore the appropriate GFD governing equations comprise an Euler equation
complemented with free–surface and bottom boundary conditions.

We work in a system of right–handed coordinates (r, θ, ϕ) where r denotes
the distance to the centre of the sphere, θ ∈ [0, π ] is the polar angle (the
convention being that π/2 − θ is the angle of latitude) ϕ ∈ [0, 2π ] is the
azimuthal angle (the angle of longitude). In this coordinate system the North
and South poles are located at θ = 0, π , respectively, while the Equator sits on
θ = π/2. The unit vectors in this system are er = (sin θ cosϕ, sin θ sin ϕ, cos θ),
eθ = (cos θ cosϕ, cos θ sin ϕ,− sin θ), eϕ = (− sin ϕ, cosϕ, 0), with eϕ pointing
from West to East and eθ from North to South. Denoting by u = uer + veθ + weϕ

the velocity field we have that the governing equations in the (r, θ, ϕ) coordinate
system are Euler’s equations

ut + uur + v

r
uθ + w

r sin θ
uϕ − 1

r

(
v2 + w2

)
= − 1

ρ
pr + Fr

vt + uvr + v

r
vθ + w

r sin θ
vϕ + 1

r

(
uv − w2 cos θ

)
= − 1

ρ

1

r
pθ + Fθ

wt + uwr + v

r
wθ + w

r sin θ
wϕ + 1

r
(uw + vw cot θ) = − 1

ρ

1

r sin θ
pϕ + Fϕ,

(2.1a)



500 D. Henry & C. I. Martin

where p(r, θ, ϕ) is denotes the pressure in the fluid and (Fr , Fθ , Fϕ) is the body-
force vector, and the equation of mass conservation

1

r2
∂

∂r

(
ρr2u

)
+ 1

r sin θ

∂

∂θ
(ρv sin θ) + 1

r sin θ

∂(ρw)

∂ϕ
= 0. (2.1b)

The solution we construct in Section 3 below will incorporate a variable density
distribution of the form ρ = ρ(r, θ). To capture the effect of the Earth’s rotation
we associate (er , eθ , eϕ) with a fixed point on the sphere which is rotating about its
polar axis. Consequently, we introduce the Coriolis term 2� × u on the left-hand
side of (2.1a), where

� = Ω(er cos θ − eθ sin θ),

(with Ω ≈ 7.29 × 10−5 rad s−1 being the constant rotational speed of Earth) and
the centripetal acceleration � × (� × r), where r = rer . The latter two quantities
combine, with respect to the (er , eθ , eϕ) basis, to give

2Ω
[− w(sin θ)er − w(cos θ)eθ + (u sin θ + v cos θ)eϕ

]

− rΩ2[(sin2 θ)er + (sin θ cos θ)eθ

]
.

Weassume that the external body-force is due to gravity alone, hence the body-force
vector is given by −ger . The equations of motion are completed by the boundary
conditions as follows. On the free surface r = R + h(θ, ϕ) we have the dynamic
boundary condition

p = P(θ, ϕ), (2.1c)

and the kinematic boundary condition

u = v

r

∂h

∂θ
+ w

r sin θ

∂h

∂ϕ
. (2.1d)

At the bottom of the ocean, described by r = d(θ, ϕ), the kinematic boundary
condition is given by

u = v

r

∂d

∂θ
+ w

r sin θ

∂d

∂ϕ
, (2.1e)

which ensures that the sea-bed is an impermeable, and impenetrable, boundary.

3. Exact Solutions

This section has three primary aims. Firstly, in Section 3.1 we construct an
exact solution of the equations of motion and the boundary conditions presented
in (2.1). This solution prescribes the velocity field and the pressure distribution for
the flow and, due on the one hand to the complex fluid stratification, and on the
other to the usage of spherical coordinates, the elaborate expression for the pressure
function we obtain in (3.14) makes it impossible to obtain an explicit formula for
the function h representing the free surface. Nevertheless, an important by-product
of the derivation process is a complex Bernoulli-type relation at the free-surface



Free-Surface Equatorial Flows with General Stratification 501

which provides an implicit prescription of the relationship between the imposed
pressure, and the resulting surface distortion, at the free-surface. In Section 3.2
we subject this Bernoulli relation (3.15) to functional analytic considerations in
order to establish that the relationship between the imposed pressure at the free-
surface and the resulting distortion of the surface’s shape is well-defined (yielding
an existence and uniqueness result). Finally, in Section 3.3 we prove that the free-
surface distortion, and the pressure distribution, exhibit the desired monotonicity
properties.

In the quest to derive purely–azimuthal equatorial flow solutions, we seek solu-
tions that represent a steady flow which does not vary in the azimuthal direction;
hence, all components of the solution will be independent of ϕ. The resulting veloc-
ity field is characterised by u = v = 0 andw = w(r, θ), andmoreover p = p(r, θ),
h = h(θ), d = d(θ). Consequently, we observe that the two kinematic boundary
conditions (2.1d) and (2.1e) and the equation of mass conservation (2.1b) are sat-
isfied automatically, whereas the Euler equations (2.1a) reduce to the following
form: ⎧⎪⎨

⎪⎩

−w2

r − 2Ωw sin θ − rΩ2 sin2 θ = − 1
ρ
pr − g,

−w2

r cot θ − 2Ωw cos θ − rΩ2 sin θ cos θ = − 1
ρr pθ ,

0 = − 1
ρ

1
r sin θ

pϕ.

(3.1)

The solution we now derive represents a considerable advancement on previous
results in the GFD setting [7,8,20,31] in the sense that we incorporate a general
density stratification in the flow of the form ρ = ρ(r, θ). Note that this is the most
general density formulation we can aim for in our setting, since it follows from
the equation of mass conservation (2.1b) that a density depending on ϕ cannot be
accommodated by such azimuthal flows.

3.1. Explicit Solutions for the Velocity Field and the Pressure

Firstly, we observe from the third equation in (3.1) that p = p(r, θ). Note that
the system (3.1) can now be simplified as

ρ
(w + �r sin θ)2

r
= pr + gρ, ρr cot θ

(w + �r sin θ)2

r
= pθ .

Let us denote, for simplicity,

Z = Z(r, θ) := (w + �r sin θ)2

r
,

and obtain from the above system

ρZ = pr + gρ, (ρr cot θ)Z = pθ .

The elimination of the pressure p from the latter system leads to

(ρZ)θ − (ρr cot θ Z)r = gρθ ,
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which can be rewritten as

−r cos θ (ρr Z)r + sin θ (ρr Z)θ = (r sin θ) [gρθ (r, θ)] .

We further set U := ρr Z and appeal to the method of characteristics in order to
solve the equation

−(r cos θ)Ur + (sin θ)Uθ = (r sin θ) [gρθ (r, θ)] . (3.2)

Accordingly, we seek curves s → (r(s), θ(s)) satisfying

ṙ(s) = −r(s) cos θ(s), θ̇ (s) = sin θ(s). (3.3)

Note that any (r(s), θ(s)) that satisfy the previous system also obeys the equation

d

ds

(
r(s) sin θ(s)

)
= 0 for all s ∈ R. (3.4)

The choice (3.3) transforms equation (3.2) into

d

ds
(U (r(s), θ(s))) = (r(s) sin θ(s)) [gρθ (r(s), θ(s))] , (3.5)

whose resolution depends upon finding suitable solutions to the characteristic equa-
tions (3.3). The integration of (3.3) yields the general solution

r̃(s) = c1e
s + c2e

−s, c1, c2 ∈ R,

θ̃ (s) = arccos

(
1 − ce2s

1 + ce2s

)
, c ≥ 0,

where c, c1, c2 are constants of integration. To find U as a function of r and θ we
proceed as follows: for given (r, θ), we search for an s0 such that

θ̃ (s0) = θ, r̃(s0) = r. (3.6)

We choose now the constant c such that θ̃ (0) = π
2 . This gives c = 1, that is

θ̃ (s) = arccos

(
1 − e2s

1 + e2s

)
.

From the property (3.4) we observe that

r̃(0) sin
(
θ̃ (0)
) = r̃(s0) sin

(
θ̃ (s0)

) = r sin θ,

which, after using θ̃ (0) = π
2 , gives r̃(0) = r sin θ . It is easy to see that

s0 = 1

2
ln

1 − cos θ

1 + cos θ
=: f (θ)

is the unique element satisfying the first equation in (3.6). To determine c1 and c2
we solve
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r̃( f (θ)) = r, (3.7)

r̃(0) = r sin θ, (3.8)

which is equivalent to

c1 + c2 + (c2 − c1) cos θ = r sin θ, c1 + c2 = r sin θ,

whose unique solution (for θ �= π/2) is c1 = c2 = r sin θ
2 . Let us denote with

(r(s), θ(s)) the special characteristic solution to (3.3) that satisfies (3.6). That is,

r(s) = r sin θ

2
(es + e−s), θ(s) = arccos

(
1 − e2s

1 + e2s

)
. (3.9)

Inserting first (r(s), θ(s)) in the formula (3.5), then integrating with respect to s
from 0 to f (θ), and taking into account (3.7)–(3.8), we obtain

U (r, θ) −U (r sin θ, π/2) = gr sin θ

∫ f (θ)

0

[
ρθ (r(s), θ(s))

]
ds

where we have used the fact that d
ds

(
r(s) sin θ(s)

) = 0 for all s, which implies
that r(s) sin

(
θ(s)
) = r(0) sin

(
θ(0)
) = r sin θ for all s. From the definitions of the

functions U and Z we finally obtain that the azimuthal velocity w is given by the
formula

w(r, θ) = −�r sin θ +
√

F(r sin θ) + gr sin θ
∫ f (θ)

0

[
ρθ (r(s), θ(s))

]
ds

ρ(r, θ)
,

(3.10)

where t → F(t) denotes some arbitrary smooth function. To determine the pressure
we see first that

pr + gρ = U

r
= F(r sin θ) + gr sin θ

∫ f (θ)

0

[
ρθ (r(s), θ(s))

]
ds

r
(3.11)

and

pθ = U (r, θ) cot θ = cot θ

[
F(r sin θ) + r sin θ

∫ f (θ)

0

[
gρθ (r(s), θ(s))

]
ds

]
.

(3.12)

Integrating with respect to r in (3.11) we obtain

p(r, θ) = C(θ) − g
∫ r

a
ρ(r̃ , θ)dr̃ +

∫ r sin θ

a sin θ

[
F(y)

y
+ F(y, θ)

]
dy, (3.13)

where a is an arbitrary constant, θ → C(θ) is a function (to be determined) and

F(y, θ) :=
∫ f (θ)

0

[
gρθ

(
y · e

s + e−s

2
, θ(s)

)]
ds.
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Differentiating with respect to θ in (3.13) yields

pθ = C ′(θ) − g
∫ r

a
ρθ (r̃ , θ)dr̃ + cot θ [F(r sin θ) − F(a sin θ)]

+ F(r sin θ)r cos θ − F(a sin θ)a cos θ +
∫ r sin θ

a sin θ

Fθ (y, θ)dy.

Note that

Fθ (y, θ) =
[
gρθ

(
y · e

s + e−s

2
, θ(s)

)] ∣∣∣
s= f (θ)

f ′(θ)

= 1

sin θ

[
gρθ

( y

sin θ
, θ
)]

,

and consequently
∫ r sin θ

a sin θ

Fθ (y, θ)dy =
∫ r

a
[gρθ (r̃ , θ)]dr̃ ,

which implies that

pθ = C ′(θ) + cot θ [F(r sin θ) − F(a sin θ)] + F(r sin θ)r cos θ

− F(a sin θ)a cos θ.

Comparing now the latter relation with (3.12) we obtain that

C ′(θ) = F(a sin θ) cot θ + F(a sin θ)a cos θ.

In summary, we have derived the following formula for the pressure distribution in
the fluid:

p(r, θ) = b − g
∫ r

a
ρ(r̃ , θ)dr̃ +

∫ r sin θ

a sin θ

[
F(y)

y
+ F(y, θ)

]
dy,

+
∫ θ

π/2
[F(a sin θ̃ ) cot θ̃ + F(a sin θ̃ )a cos θ̃ ]d θ̃ , (3.14)

where a and b are real constants, F is an arbitrary smooth function, and F is as
given previously.

Remark 3.1. Having derived themathematical formulation of the velocity field, we
remark that the flow prescribed by (3.10) is applicable for modelling any number
of depth-varying geophysical flows in the equatorial region: it follows from (3.10)
that the azimuthal flow velocity is determined by prescribing it at the equator by
settingw(r, π/2) = W (r), whereW (r) is a given depth-varying velocity profile. In
particular, it is possible to capture the salient features of the equatorial undercurrent
(EUC) by way of our solution (3.10). The EUC is a celebrated and remarkable
current which runs the entire extent of the Pacific equator. Owing to the prevailing
trade-winds, its surface flow is predominantly westward yet a flow reversal occurs
beneath the surface leading to an eastward-flowing jet, which is itself confined to
depths of 100–200m, cf. [6,7,26,27].



Free-Surface Equatorial Flows with General Stratification 505

3.2. Functional Analytical Considerations for the Bernoulli Relation

As a consequence of the rich physical structure we have incorporated into our
fluid model– specifically, the general fluid stratification and the usage of spherical
coordinates– the solutions formulated in (3.10) and (3.14) are relatively convoluted
and involved. A satisfactory treatment of the full GFD governing equations (2.1)
involves not only deriving a formulation for the velocity field and of the pressure
function but also elucidating, insofar as is possible, the nature of the resulting free
surface. As the flow prescribed by (3.10) and (3.14) is too complicated to achieve
an explicit description of the free-surface, to attain this goal we must appeal to
functional analytical considerations. The aim of this section is to invoke the implicit
function theorem to establish, for a given pressure distribution on the free surface,
the existence and uniqueness of the implicitly defined function h(θ) representing
the distortion of the free surface. We begin by addressing the surface boundary
condition (2.1c). Setting p = P(θ) on r = R + h(θ), gives

P(θ) = b − g
∫ R+h(θ)

a
ρ(r̃ , θ)dr̃ +

∫ [R+h(θ)] sin θ

a sin θ

[
F(y)

y
+ F(y, θ)

]
dy,

+
∫ θ

π/2
[F(a sin θ̃ ) cot θ̃ + F(a sin θ̃ )a cos θ̃ ]d θ̃ . (3.15)

Formula (3.15) is a Bernoulli-type condition, relating the imposed pressure at the
surface of the ocean to the resulting deformation of that surface. A rigorous analysis
of (3.15) can be performed by recasting it as a functional operator, but first we non-
dimensionalise (3.15) in order to compare the physical quantities involved in it in
a meaningful way. To this end we set h ≡ 0 in (3.15), which corresponds to an
undisturbed surface that follows the curvature of the Earth. The pressure required
to maintain this shape is given by

P0(θ) = P(h ≡ 0) = b − g
∫ R

a
ρ(r̃ , θ)dr̃ +

∫ R sin θ

a sin θ

[
F(y)

y
+ F(y, θ)

]
dy

+
∫ θ

π/2
[F(a sin θ̃ ) cot θ̃ + F(a sin θ̃ )a cos θ̃ ]d θ̃ .

Next we observe that if the pressure at the Equator is set to be the constant atmo-
spheric pressure, Patm , then it follows from the latter formula that

Patm = b − g
∫ R

a
ρ
(
r̃ ,

π

2

)
dr̃ +

∫ R

a

[
F(y)

y
+ F

(
y,

π

2

)]
dy. (3.16)

We now non-dimensionalise by dividing (3.15) by Patm , resulting in

− P + b

Pa
− g

Pa

∫ [1+h(θ)]R
a

ρ(r̃ , θ)dr̃ + 1

Pa

∫ [1+h(θ)]R sin θ

a sin θ

[
F(y)

y
+ F(y, θ)

]
dy

+ 1

Pa

∫ θ

π/2
[F(a sin θ̃ ) cot θ̃ + F(a sin θ̃ )a cos θ̃ ]d θ̃ = 0, (3.17)
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where h(θ) := h(θ)
R and P(θ) := P(θ)

Pa
.Equation (3.17) can nowbe reformulated

as a functional operator equation by denoting its left-hand side asF(h,P), resulting
in the relation

F(h,P) = 0, (3.18)

where F operates from

F : B × C ([π/2, π/2 + ε]) → C ([π/2, π/2 + ε]) .

Here, B denotes the open ball of radius 10−2 from the Banach space

C
([π

2
,
π

2
+ ε
])

,

consisting of continuous functions f : [π/2, π/2 + ε] → R, equipped with the
supremum norm

|| f || = sup
t∈[π/2,π/2+ε]

{| f (t)|},

and the choice ε = 0.016 is appropriate for flows in the equatorial region, corre-
sponding to a strip of 100 km width about the Equator, cf. [7]. In order to apply the
implicit function theorem we need to find an elementary solution to (3.18). This is
given by the pressure required to keep an undisturbed free surface, that is, we set
h ≡ 0 in (3.17) and obtain

P0(θ) = b

Pa
− g

Pa

∫ R

a
ρ(r̃ , θ)dr̃ + 1

Pa

∫ R sin θ

a sin θ

[
F(y)

y
+ F(y, θ)

]
dy

+ 1

Pa

∫ θ

π/2
[F(a sin θ̃ ) cot θ̃ + F(a sin θ̃ )a cos θ̃ ]d θ̃ ,

which satisfies

F(0,P0) = 0.

We compute now the derivative

DhF(0,P0)(h) = lim
s→0

F(sh,P0) − F(0,P0)

s
,

obtaining that

DhF(0,P0)h = −gR

Pa
ρ(R)h + 1

Pa
[F(R sin θ) + R sin θF(R sin θ, θ)]h

= ρ(R)

Pa

[
−gR + (w(R, θ) + �R sin θ)2

]
h,

where the last equality follows by the formula (3.10) for the azimuthal velocity w.
Taking into account the sizes of g, R and w we see that there is a constant a < 0
such that−gR+(w(R, θ)+�R sin θ)2 ≤ a < 0. This fact implies that the operator
DhF(0,P0) : C ([π/2, π/2 + ε]) → C ([π/2, π/2 + ε]) is a linear homeomor-
phism. Invoking now the implicit function theorem [2],we conclude that for any suf-
ficiently small perturbation P of P0 there exists a unique h ∈ C ([π/2, π/2 + ε])
such that (3.17) holds true.
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3.3. Monotonicity Properties

We have proven above that the Bernoulli relation (3.15) uniquely prescribes a
relationship between variations in the imposed surface pressure and the resulting
distortion of the ocean’s free-surface. The aim of this section is to show that this
relationship exhibits the physically expected monotonicity properties, namely we
will establish that

P′(θ) < 0 if h′(θ) ≥ 0 for some θ ∈ (π/2, π/2 + ε), (3.19)

and
h′(θ) < 0 if P′(θ) ≥ 0 for some θ ∈ (π/2, π/2 + ε). (3.20)

We first observe that utilising an iterative bootstrapping procedure, cf. [2], smooth-
ness properties of P can be transfered to h. Therefore, we can differentiate with
respect to θ in (3.17) to obtain

P
′
(θ) = − g

Pa

∫ [1+h(θ)]R
a

ρθ (r̃ , θ)dr̃ − g

Pa
ρ((1 + h)R, θ)h′(θ)R

+ cot θ

Pa
F ((1 + h)R sin θ) + h′

Pa
· F ((1 + h)R sin θ)

1 + h
− cot θ

Pa
F(a sin θ)

+ 1

Pa
· F((1 + h)R sin θ)

(
(1 + h)R cos θ + h′R sin θ

)

− 1

Pa
· F(a sin θ)a cos θ

+ 1

Pa

∫ (1+h)R

a
[gρθ (r̃ , θ)]dr̃ + 1

Pa
·
(
F(a sin θ) cot θ + F(a sin θ)a cos θ

)

= h′
Pa

[
−gRρ((1 + h)R, θ) + R(sin θ)F((1 + h)R sin θ) + F((1 + h)R sin θ)

1 + h

]

+ cot θ

Pa
[F((1 + h)R sin θ) + (1 + h)R(sin θ)F((1 + h)R sin θ)] . (3.21)

Making use of the formula for the azimuthal velocity (3.10) we obtain

Pa
ρ((1 + h)R, θ)

P′(θ) =
⎡
⎢⎣−gR +

(
w((1 + h)R, θ) + �(1 + h)R sin θ

)2

1 + h

⎤
⎥⎦ h′(θ)

+ cot θ
(
w((1 + h)R, θ) + �(1 + h)R sin θ

)2
. (3.22)

We note that for realistic velocities w, the quantity

−gR +
(
w((1 + h)R, θ) + �(1 + h)R sin θ

)2

1 + h

is strictly negative. Combining this fact with relation (3.22) results in the mono-
tonicity properties (3.19) and (3.20) stated above.
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3.4. Short-Wavelength Perturbation Stability Analysis

The meaningfulness, and applicability, of the azimuthal flow solutions (3.10),
(3.14) that we constructed and analysed in the previous sections are considerably
enhanced ifwe can establish some stability properties that they fulfil. This is the task
that we undertake here by employing the short-wavelength perturbation method for
general three-dimensional flows developed by Bayly [1], Friedlander and Vishik
[15] andLifschitz andHameiri [30]. Thismethod investigates the time growth of the
amplitude of perturbations to basic flows having a velocity field which satisfies the
Euler equations (2.1a) and the equation ofmass conservation (2.1b). The stability of
the basic flow with respect to short-wavelength perturbations refers to the uniform
boundedness in time of the amplitude of the perturbation. The short-wavelength
stability method has turned out to be highly-applicable to the analysis of a number
of some recently derived exact solutions in theGFD setting, cf. [5,16,18,20,24,25];
see also the survey [23]. Whether a given fluid motion is stable, or unstable, is a
question of the utmost physical importance which is typically incredibly difficult
to establish mathematically. We will show in this section that this approach can
be implemented in the highly intricate setting of a stratified fluid with a density
that can vary with respect to both r and θ . Although the underlying mathematical
analysis is intractable in general for our solution, we prove in Theorem 3.3 that,
with a specified choice of density distribution, the exact solution is linearly stable
to short-wavelength perturbations.

To begin, we consider perturbations P of the pressure p andU = Uer +V eθ +
Weϕ along the streamlines of the azimuthal flow with velocity vector u = uer +
veθ + weϕ with w given by the formula (3.10) for a specific choice of the density
function (r, θ) → ρ(r, θ). More precisely, we consider ρ(r, θ) = (b − ar) sin θ ,
where a, b are positive constants such that b−ar > 0 for all r . Moreover, we make
the choice F(r sin θ) = cr sin θ for some constant c. Therefore, the azimuthal
component of the velocity is

w = −�r sin θ +
√√√√ r

b − ar

(
c + g

∫ f (θ)

0

(
b − ar(s)

)
cos θ(s) ds

)
, (3.23)

where r(s), θ(s) are as given in (3.9). The specific form of the perturbations U and
P are given by the WKB ansatz

U(t, r, θ, ϕ) = A(t, r, θ, ϕ)e
i
ε
f (t,r,θ,ϕ) + O(ε) (3.24a)

and
P(t, r, θ, ϕ) = εB(t, r, θ, ϕ)e

i
ε
f (t,r,θ,ϕ) + O(ε2), (3.24b)

where A = A1er + A2eθ + A3eϕ , f is a scalar function and ε plays the role of a
small parameter. The initial condition for the perturbation is

U0 := U(0, r, θ, ϕ) = A(0, r, θ, ϕ)e
i
ε
f (0,r,θ,ϕ) =: A0(r, θ, ϕ)e

i
ε
f0(r,θ,ϕ).

We say that the basic flow is stable if the amplitude A remains uniformly bounded
in time.
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Remark 3.2. That the remainder terms in (3.24) are as asserted (that is, uniformly
bounded with respect to the parameter ε in the sense of the L2-norm) is a fact that
was proved in [20] in the context of a general density distribution.

Asking that the perturbed system U + u, P + p satisfies the conservation of
mass and conservation of momentum equations (2.1b) and (2.1a) respectively, and
using theWKB ansatz (3.24), we obtain that the amplitudeA satisfies (with respect
to the basis er , eθ , eϕ) the vectorial equation

At + (u · ∇)A + (A · ∇)u + M(Ω, θ)A = − i
B

ρ
∇ f, (3.25)

with

M(Ω, θ) :=
⎛
⎝

0 0 −2Ω sin θ

0 0 −2Ω cos θ

2Ω sin θ 2Ω cos θ 0

⎞
⎠ ,

while the phase f verifies the scalar equation

ft + w(r, θ)

r sin θ
fϕ = 0. (3.26)

Clearly, the general solution of (3.26) is

f = G
(

ϕ −
∫ t

0

w(r(s), θ(s))

r(s) sin θ(s)
ds

)

for some function G.
A simple computation reveals now that the streamlines (t → r(t), t → θ(t), t → ϕ(t))
of the azimuthal flow with u = v = 0 and w as in (3.23), are given by

r(t) ≡ r0, θ(t) ≡ θ0, ϕ(t) =
∫ t

0

w(r(s), θ(s))

r(s) sin θ(s)
ds + ϕ0, (3.27)

where r0, θ0 and ϕ0 denote initial data. The latter conclusion entails that ∇ f = 0
along the streamlines (3.27).

Denoting with DAi
Dt (i ∈ {1, 2, 3}) the material derivatives of Ai along the

streamlines (3.27) we obtain (after some straightforward computations) that equa-
tion (3.25) is equivalent to the system

⎛
⎝

DA2
Dt

DA3
Dt

⎞
⎠ =

⎛
⎜⎜⎜⎝

0 2
(

w(r0,θ0)
r0

+ Ω sin θ0

)
cot θ0

α1 tan θ0 + β1 0

⎞
⎟⎟⎟⎠

⎛
⎝

A2

A3

⎞
⎠ +

⎛
⎝
0

c̃

⎞
⎠ ,

where

α1 = −
(

wr (r0, θ0) + w(r0, θ0)

r0
+ 2Ω sin θ0

)
,

β1 = −
(

wθ(r0, θ0)

r0
+ w(r0, θ0) cot θ0

r0
+ 2Ω cos θ0

)
,

and c̃ is a constant arising from the initial data. We state now the main result of this
section concerning the stability of the basic flow given in (3.23).
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Theorem 3.3. The flow with u = v = 0 and w given by (3.23) is linearly stable
under short-wavelength perturbations.

Proof. Each eigenvalue λ of A is a solution of the equation

λ2 − (α1 + β1 cot θ0)

(
2
w(r0, θ0)

r0
+ 2Ω sin θ0

)
= 0. (3.28)

It is clear from formula (3.23) that w(r0,θ0)
r0

+ Ω sin θ0 > 0. We are going to show
that −(α1 + β1 cot θ0) > 0, an inequality which, combined with the previous one,
leads to the conclusion that the eigenvalues of A are purely imaginary. The latter
fact implies that the amplitude of the perturbed velocity field remains bounded as
time progresses, that is, the given azimuthal flow is stable under short-wavelength
perturbations. To perform the computations we establish first some notation. We
set

I (r, θ) =
∫ f (θ)

0

(
b − ar(s)

)
cos θ(s) ds and

H(r, θ) =
√

r

b − ar
(c + gI (r, θ)).

We then have that

−α1 − β1 cot θ0 = Hr (r0, θ0) + Hθ (r0, θ0) cot θ0
r0

+ H(r0, θ0)(cot2 θ0 + 1)

r0
.

(3.29)

A computation reveals that

I (r, θ) = b log(sin θ) + ar(1 − sin θ),

and thus

Iθ (r, θ) = (b − ar sin θ) cot θ and Ir (r, θ) = a(1 − sin θ) > 0. (3.30)

Hence,

Hθ = g

√
r

b − ar
· Iθ (r, θ)

2
√
c + gI (r, θ)

, (3.31)

and

Hr = g

√
r

b − ar
· Ir (r, θ)

2
√
c + gI (r, θ)

+ b

2(b − ar)2
·
√
b − ar

r

√
c + gI (r, θ).

Since b − ar sin θ > 0 we have (via (3.30) and (3.31)) that Hθ (r0, θ0) cot θ0 > 0.
Clearly, Hr > 0 and from the above calculations in (3.29) we infer that −α1 −
β1 cot θ0 > 0. This shows that the eigenvalues of A are purely imaginary, as
asserted. Thus, the azimuthal flow given in the statement of the Theorem is linearly
stable under short-wavelength perturbations. �
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