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Abstract

We study the general nonlinear diffusion equation ut = ∇ · (um−1∇(−�)−su)

that describes a flow through a porous medium which is driven by a nonlocal
pressure. We consider constant parameters m > 1 and 0 < s < 1, we assume that
the solutions are non-negative and that the problem is posed in the whole space. In
this paper we prove the existence of weak solutions for all integrable initial data
u0 ≥ 0 and for all exponents m > 1 by developing a new approximation method
that allows one to treat the range m � 3, which could not be covered by previous
works. We also extend the class of initial data to include any non-negative measure
μ with finite mass. In passing from bounded initial data to measure data we make
strong use of an L1-L∞ smoothing effect and other functional estimates. Finite
speed of propagation is established for all m � 2, and this property implies the
existence of free boundaries. The authors had already proved that finite propagation
does not hold for m < 2.
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1. Introduction

In this paper we study the following evolution equation of diffusive type with
nonlocal effects:{

∂t u = ∇ · (um−1∇(−�)−su) for x ∈ R
N , t > 0,

u(0, x) = u0(x) for x ∈ R
N ,

(1.1)

for u = u(x, t), exponents m > 1, 0 < s < 1, and space dimension N � 1. We
will only consider nonnegative data and solutions u0, u � 0 on physical grounds.
The problem will be posed in the whole space, with x ∈ R

N and t > 0. Here
(−�)−s denotes the inverse of the fractional Laplacian operator as defined in [45].

Our aim is to construct weak solutions for all nonnegative initial data u0 ∈
L1(RN ) and for all the stated range of parameters.Model (1.1) reduces to the Porous
Medium Equation ∂t u = ∇ · (um−1∇u) when s = 0, [47], but here we allow for a
new dependence via the inverse fractional Laplacian operator, ∂t u = ∇ ·(um−1∇ p)
with p = (−�)−su, which accounts for nonlocal effects in the diffusive process.
For convenience we will call this intermediate variable p the pressure, though it is
not in agreement with the usual PME convention unless m = 2.

Model (1.1) was studied for m = 2 by Caffarelli and Vázquez starting with
[12,13], followed by [10,11,14]. In these papers the existence of weak solutions,
the finite speed of propagation, local Hölder regularity, and asymptotic behaviour
were established for the particular model. This model and ours are particular cases
of the general equations proposed in [26,27] in statistical physics, that take the
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form ut = ∇ · (σ (u)∇L(u)). There is also a physical motivation in the theory
of dislocations proposed by Head, that has been investigated by Biler, Karch and
Monneau [5] for m = 2 in one space dimension. However, the extension of the
dislocation model to several dimensions leads to a more complicated system that
falls outside of the present investigation. Finally, we point out that the gradient
flow structure for (1.1) with m = 2 has been recently developed in [33] using
Wasserstein metrics in the style of [1]. Uniqueness of suitable solutions is still an
open problem for all these models in several space dimensions, but it holds for
N = 1 according to [5]. See more on this issue in Section 6.

The existence of a class of weak solutions for m ∈ (1, 3), obtained as limits
of approximations, was proved by the present authors in [41,43] under some extra
decay conditions on the initial data. In that paper we employed a rather standard
regularization of the singular operator by considering a suitable smooth kernel Kε

such that Kε � u → |x |−(N−2s) � u = (−�)−su. Energy estimates allowed us to
obtain compactness, but only in the stated range of m. New methods seemed to be
needed to tackle the more degenerate case m � 3; it is the purpose of the present
paper to address and solve that problem. A further discussion on this issue can be
found in Section 6. The main step we take here in order to prove existence of weak
solutions of (1.1) is a novel approximationmethod. It consists in interpretingmodel
(1.1) in the form

ut = ∇ · (um−1∇(−�)−1Lu).

Then, we approximate the operator L = (−�)1−s by

L1−s
ε [u](x) = CN ,1−s

∫
RN

u(x) − u(y)(|x − y|2 + ε2
) N+2−2s

2

dy.

This approach to model (1.1) allows us to prove some needed L p-estimates that
are an essential tool for deriving convergence of the solutions of the approximating
problems.

Westart by assuming initial datau0 ∈ L1(RN )∩L∞(RN ),u0 � 0, andweprove
the existence of a class of weak solutions constructed via an approximating method
that uses the preceding observation and proceeds via several approximation steps.
The paper combines a great variety of compactness techniques and the detailed
proofs show how the available energy estimates can be used step by step as we pass
to the limit in the approximating models. The main difficulties of the construction
are the nonlocal and nonlinear character of the equation, the absence of comparison
principle, and the absence of explicit self-similar solutions (except very particular
cases, c.f [42]).

A second contribution of the paper is the generality of the initial data. We
may take u0 = μ ∈ M+(RN ) , the space of nonnegative Radon measures on
R

N with finite mass. This covers, in particular, the case of merely integrable data
u0 ∈ L1(RN ). We cover that issue in Section 5 where we obtain the existence of
weak solutions for the whole range 1 < m < ∞, generalizing the results of [12]
and [43], where the cases m = 2 and m ∈ (1, 3) were covered respectively. This
rounds up the existence theory.
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Another positive property of this approach is that it can be successfully gener-
alized to more general equations of the form

ut (x, t) = ∇ · (G ′(u)∇(−�)−su),

where G : [0,+∞) → [0,+∞) is a regular function with at most linear growth
at the origin.

A remarkable property of many diffusive PDE’s of degenerate type is finite
speed of propagation, which means that the support of the solutions may spread but
only with finite speed. When we combine degenerate nonlinearities (powers with
m > 1) and nonlocal effects it is not clear whether finite propagation will hold or
not. The property was first observed by Caffarelli and Vázquez in [12] for the model
with m = 2, see also [5] for N = 1. In [43] we discovered that the nonlinearity has
a strong influence on the speed of propagation property of solutions independently
of s ∈ (0, 1). Indeed, we proved two different types of behaviour depending on
the exponent m: finite speed of propagation for m ∈ (2, 3) and infinite speed of
propagation for m ∈ (1, 2). A numerical simulation using [18] pointed us to this
change in the positivity property of the solution. We establish here the property of
finite propagation for all m � 2. (see Figure 2). Paper [44] by the present authors
contains a survey of results on this equation and its motivations, including the main
results of the present paper. Moreover, as a further contribution the asymptotic
behaviour of solutions with integrable data is established in N = 1. The problem
is still open in several dimensions.

Let us comment on some closely related literature. Indeed, another possible
extension of the model studied by Caffarelli and Vázquez in [12] for m = 2 has
been considered in [4,5,30]. They assume that p = (−�)−sum−1 and the resulting
equation is

∂t u = ∇ · (u∇(−�)−sum−1).

In that case there exists a weak solution with finite speed of propagation for the
range m > 1. Moreover, they find explicit Barenblatt self-similar profiles.1 It is
also proved that finite propagation holds for all m > 1, which implies a strong
qualitative difference with our model (1.1) where finite propagation happens only
form > 2.We can also consider models including nonlinearities on both terms like

∂t u = ∇ · (um∇(−�)−sun),

which are interesting for comparison purposes. Work on this last model is naturally
more incomplete; we refer to [24,42].

We finally recall that there is another model of nonlocal porous medium equa-
tion:

vt + (−�)s(vm) = 0, (1.2)

with m > 0 and s ∈ (0, 1) for which the theory has been quite developed in
[6,8,15,16,49]; see also the survey paper [48]. Infinite propagation holds for this

1 We note for comparison reasons that in their notation α = 2(1 − s).
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model even ifm > 1.Avery interesting result is the connection betweenmodel (1.1)
and model (1.2): we have found in [42] an exact transformation formula between
self-similar solutions of the two models, (1.2) and (1.1), but it only applies to the
rangem < 2 of our present model. We finally refer to [50] or a general presentation
of the state of the art in nonlinear diffusion including linear and nonlinear models
with local and nonlocal operators.

2. Precise Statement of the Main Results

We recall that all data and solutions are nonnegative and we will stress this fact
when convenient. In this section will only present the results for integrable and
bounded initial data since establishing the existence and main properties in this
case contains the main difficulties. For clarity of exposition, we delay to Section 5
the case of measure data since it is an independent contribution of the paper.

Definition 2.1. Let u0 ∈ L1
loc(R

N ) and nonnegative. We say that u � 0 is a weak
solution of Problem (1.1) if
(i)u ∈ L1

loc(R
N×(0, T )) , (ii)∇(−�)−su∈ L1

loc(R
N×(0, T )), (iii)um−1∇(−�)−s

u ∈ L1
loc(R

N × (0, T )) and

∫ T

0

∫
RN

uφt dxdt −
∫ T

0

∫
RN

um−1∇(−�)−su · ∇φ dxdt

+
∫
RN

u0(x)φ(x, 0)dx = 0

for all test functions φ ∈ C1
c (R

N × [0, T )).

We state ourmain results on the existence and qualitative properties of solutions.

Theorem 2.2. Let 1 < m < ∞, N � 1, and let u0 ∈ L1(RN ) ∩ L∞(RN ) and
nonnegative. Then there exists a weak solution u � 0 of Problem (1.1) such that

u ∈ L1(RN × (0, T )), u ∈ L∞(RN × (0, T )), and (−�)
1−s
2 ur ∈ L2(RN × (0, T ))

for all r > m/2. Moreover, u has the following properties:

1. (Conservation of mass) For all 0 < t < T we have
∫
RN

u(x, t)dx =
∫
RN

u0

(x)dx .
2. (L∞ estimate) For all 0 < t < T we have ||u(·, t)||∞ � ||u0||∞.
3. (L p energy estimate) For all 1 < p < ∞ and 0 < t < T we have

∫
RN

u p(x, t)dx + 4p(p − 1)

(m + p − 1)2

∫ t

0

∫
RN

∣∣∣(−�)
1−s
2 u

m+p−1
2

∣∣∣2 dxdt
�

∫
RN

u p
0 (x)dx . (2.1)
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4. (Second energy estimate) For all 0 < t < T we have

1

2

∫
RN

∣∣∣(−�)−
s
2 u(t)

∣∣∣2 dx +
∫ t

0

∫
RN

um−1
∣∣∇(−�)−su(t)

∣∣2 dxdt
� 1

2

∫
RN

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx . (2.2)

Remark 1. (a) The a priori estimates 1, 2, 3 and 4 for Problem (1.1) can be derived
in a formalway as in [43, Section 3]. A rigorous proof for 1, 2 and 4whenm ∈ (1, 3)
can be found in that paper. The approximation used there does not allow as to cover
the whole range m ∈ (1,+∞) because of the lack of an L p type energy estimate
like (2.1). However, 1 and 2 follow as in [43] and therefore theywill not be discussed
in detail here.
(b) We would like to note that estimates (2.1) and (2.2) do not present any special
form or extra difficulty when m = 2, m = 3 or m > 3, as happened with the First
Energy Estimate (6.1) used in [43] and [12]. See Section 6 for a more detailed
discussion about this fact.

Theorem 2.3. (Smoothing effect) Let u � 0 be a weak solution of Problem (1.1)
with nonnegative initial data u0 ∈ L1(RN ) ∩ L∞(RN ) as constructed in Theorem
2.2. Then,

‖u(·, t)‖L∞(RN ) � CN ,s,m,p t
−γp‖u0‖δp

L p(RN )
for all t > 0, (2.3)

where γp = N
(m−1)N+2p(1−s) , δp = 2p(1−s)

(m−1)N+2p(1−s) .

Proof. We combine (2.1) with the Nash-Gagliardo-Niremberg Inequality (7.2) ap-
plied to the function f = u(m+p−1)/2 to get a starting point for a Moser iteration.
Then we continue as in [16, Theorem 8.2] where the authors consider the model
ut + (−�)σ/2um = 0 for σ = 2− 2s. From here, the proof is straightforward. 
�
Remark 2. In the limit m → 1+, Theorems 2.2, 2.3 (and also Theorem 5.2) recover
some of the results of the linear Fractional Heat Equation (cf. [7]).

Theorem 2.4. Let m � 2, N � 1, s ∈ (0, 1). Let u be a weak solution of Problem
(1.1) as constructed in Theorem 5.2 with compactly supported initial data u0 ∈
L1(RN ). Then u(·, t) is compactly supported for all t > 0, that is the solution has
finite speed of propagation.

Proof. Once we construct a weak solution of Problem (1.1), we apply the results
from [43]. The proof is based on a careful construction of barrier functions, called
true supersolutions in [12]. 
�

3. Functional Setting

3.1. The Fractional Laplacian and the Inverse Operator

We remind readers of some definitions and basic notions for the functional
setting of the problem. We will work with the following functional spaces (see
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[23]): let F denote the Fourier transform. For given s ∈ (0, 1) we consider the
space

Hs(RN ) :=
{
u : L2(RN ) :

∫
RN

(1 + |ξ |2s)|Fu(ξ)|2dξ < +∞
}

,

with the norm

‖u‖2Hs (RN )
:= ‖u‖2L2(RN )

+
∫
RN

|ξ |2s |Fu(ξ)|2dξ.

For functions u ∈ Hs(RN ), the fractional Laplacian operator is defined by

(−�)su(x) = CN ,s P.V.
∫
RN

u(x) − u(y)

|x − y|N+2s dy = F−1(|ξ |2s(Fu))

for x ∈ R
N , where CN ,s = π−(2s+N/2)(N/2 + s)/(−s). Then,

‖u‖2Hs (RN )
= ‖u‖2L2(RN )

+ C‖(−�)s/2u‖2L2(RN )
.

For functions u that are defined on a subset � ⊂ R
N with u = 0 on the boundary

∂�, we will use the restricted version of the fractional Laplacian computed by
extending the function u to the whole RN with u = 0 in R

N\�. The same idea is
used to define the Hs(RN ) norm for functions defined in �.

If N > 2s, the inverse operator (−�)−s coincides with the Riesz potential of
order 2s. This can be represented by convolution with the Riesz kernel Ks :

(−�)−su = Ks ∗ u, Ks(x) = 1

c(N , s)
|x |−(N−2s),

where c(N , s) = πN/2−2s(s)/((N−2s)/2).Notice that Ks ∈ L1
loc(R

N ).When
N = 1 and s ∈ [1/2, 1)we have to consider the composed operator∇(−�)−s . This
operator use to be called nonlocal gradient and is denoted by ∇1−2s (c.f. [4,43]).
See Section 4.6 for a more detailed discussion of this range.

3.2. Approximation of the Fractional Laplacian (−�)s

Let ε > 0 and u : RN → R. We define the operator

Ls
ε[u](x) := CN ,s

∫
RN

u(x) − u(y)(|x − y|2 + ε2
) N+2s

2

dy (3.1)

for x ∈ R
N . We will use the notation

J sε (z) := CN ,s(|z|2 + ε2
) N+2s

2

for z ∈ R
N .

It is clear that ‖J sε ‖L1(RN ) < ∞ since J sε is integrable at infinity and nonsingular
at the origin. Thus (3.1) is equivalent to

Ls
ε[u](x) = u(x)‖J sε ‖L1(RN ) − (u(t, ·) � J sε )(x). (3.2)
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This kind of zero-order operators has been considered in the literature, see e. g.
[2,29,37]. For any ε > 0, Ls

ε is an integral operator with non-singular kernel
and Ls

ε[u] → (−�)su pointwise in R
N as ε → 0 for suitable functions u. This

approximation can also be seen as a consequence of the fact that the fractional
Laplacian can be computed by passing to the limit in the representation of the
solution of an harmonic extension problem (using the explicit Poisson formula), as
proved by Caffarelli and Silvestre in [9].

We can define the bilinear form

Eε(u, v) = CN ,s

2

∫
RN

∫
RN

(u(x) − u(y)) (v(x) − v(y))

(|x − y|2 + ε2)
N+2s
2

dxdy for u, v ∈ D(Lε),

and the quadratic form

Eε(u) := Eε(u, u) = CN ,s

2

∫
RN

∫
RN

[u(x) − u(y)]2

(|x − y|2 + ε2)
N+2s
2

dxdy.

The bilinear form Eε is well defined for functions in L2(RN ) since the J sε is bounded
and integrable. We refer to [20] for a precise discussion of the natural spaces in a
more general framework.

Lemma 3.1. Let 0 < s < 1. Then, for every ε > 0, we have that

Ls
ε : L1(RN ) ∩ L∞(RN ) → L1(RN ) ∩ L∞(RN ).

Moreover,

‖Ls
ε[u]‖L1(RN ) ≤ 2‖u‖L1(RN )‖J sε ‖L1(RN ),

‖Ls
ε[u]‖L∞(RN ) ≤ 2‖u‖L∞(RN )‖J sε ‖L1(RN ).

Proof. Let u ∈ L1(RN ) ∩ L∞(RN ), then using (3.2) and the Young Inequality for
convolutions the stated estimates follow. 
�
The restricted operator. For smooth functions f : BR → R we extend f = 0 on
R

N\BR . In this way Ls
ε is well defined for f ∈ L2(BR) by (3.1).

Wewill also use the following result regarding the composedoperator∇(−�)−1

L1−s
ε , which we will treat in Section 3.3 as a natural approximation of ∇(−�)−s :

Lemma 3.2. Let 0 < s < 1. Then, for every ε, R > 0, we have that

∇(−�)−1L1−s
ε : L1(BR) ∩ L∞(BR) → L1(BR) ∩ L∞(BR).

Moreover,

‖∇(−�)−1L1−s
ε [ f ]‖L1(BR) � C(‖ f ‖L∞(BR) + ‖ f ‖L1(BR))

‖∇(−�)−1L1−s
ε [ f ]‖L∞(BR) � C(‖ f ‖L∞(BR) + ‖ f ‖L1(BR)).
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Proof. Wewillwrite∼ and� to represent identities and inequalities up to constants
depending on R, N and ε.

For N � 2 and p = {1,∞}, we use Lemma 3.1 with f extended by 0 outside
BR and the explicit form of the Newtonian potential to get

‖∇(−�)−1L1−s
ε [ f ]‖L p(BR) �

∥∥∥∥
∫
RN

1

|x − y|N−1 |L1−s
ε [ f (y)]|dy

∥∥∥∥
L p(BR)

� ‖L1−s
ε [ f ](y)‖L p(BR)

∫
BR

1

|x |N−1 dx � ‖ f ‖L p(BR).

When N = 1, we note that ∇(−�)−1g(x) = − ∫ x
−∞ g(y)dy, and thus

∇(−�)−1L1−s
ε [ f ](x) = −

∫ x

−∞
L1−s

ε [ f ](y)dy.

Then,

‖∇(−�)−1L1−s
ε [ f ](x)‖L p(BR) �

∥∥∥J 1−s
ε

∥∥∥
L1(RN )

∫ ∞

−∞
| f (y)|dy � ‖ f ‖L1(BR).


�
Square root. The operator Ls

ε has a square-root in the Fourier transform sense [19,

Lemma 3.7], that we denote by (Ls
ε)

1
2 . We have that

< u,Ls
ε[u] >L2(RN )= ‖(Ls

ε)
1
2 [u]‖2L2(RN )

.

This implies that

< Ls
ε[u], u >L2(RN ) = CN ,s

∫
RN

∫
RN

u(x)
u(x) − u(y)

(|x − y|2 + ε2)
N+2s
2

dxdy

= CN ,s

2

∫
RN

∫
RN

[u(x) − u(y)]2

(|x − y|2 + ε2)
N+2s
2

dxdy

= CN ,s

2

∫
RN

∫
RN

[
u(x) − u(y)

(|x − y|2 + ε2)
N+2s
4

]2

dxdy,

where the second identity is obtained by symmetry. We get the following charac-

terization of (Ls
ε)

1
2 :

∫
RN

(
(Ls

ε)
1
2 [u](x)

)2
dx= CN ,s

2

∫
RN

∫
RN

[
u(x) − u(y)

(|x − y|2 + ε2)
N+2s
4

]2

dxdy.

(3.3)

Theorem 3.3. (Generalized Stroock-Varopoulos Inequality for Ls
ε) Let u ∈

L2(RN ). Let ψ : R → R such that ψ ∈ C1(R) and ψ ′ � 0. Then∫
RN

ψ(u)Ls
ε[u]dx �

∫
RN

∣∣∣(Ls
ε)

1
2 [�(u)]

∣∣∣2 dx, (3.4)

where ψ ′ = (� ′)2.
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Proof. We have that∫
RN

ψ(u)Ls
ε[u]dx = CN ,s

∫
RN

∫
RN

ψ(u(x))
u(x) − u(y)

(|x − y|2 + ε2)
N+2s
2

dxdy

= CN ,s

2

∫
RN

∫
RN

[ψ(u(x)) − ψ(u(y))]

× u(x) − u(y)

(|x − y|2 + ε2)
N+2s
2

dxdy.

Now, we use that if ψ is such that ψ ′ � 0 and ψ ′ = (� ′)2, then

(ψ(a) − ψ(b)) (a − b) � (�(a) − �(b))2 , ∀a, b ∈ R
N .

For convenience, we give the proof of this pointwise inequality based on the Fun-
damental Theorem of Calculus and the Cauchy-Schwarz Inequality:

(�(a) − �(b))2 =
(∫ a

b
� ′(z)dz

)2

� (a − b)
∫ a

b

(
� ′(z)

)2
dz

= (a − b)
∫ a

b
ψ ′(z)dz = (a − b)(ψ(a) − ψ(b)).

We deduce, using (3.3), that∫
RN

ψ(u)Lε(u)dx � CN ,s

2

∫
RN

∫
RN

[�(u(x)) − �(u(y))]2

(|x − y|2 + ε2)
N+2s
2

dxdy

=
∫
RN

∣∣∣(Ls
ε)

1
2 �(u(x))

∣∣∣2 dx .

�

Remark 3. (i) We refer to [20] for a related result with more general nonlinearities
and nonlocal operators.
(ii) Note that we recover the classical Stroock-Varopoulos Inequality for Lε by
taking ψ(u) = |u|q−2u:∫

RN
|u|q−2u Ls

ε(u)dx � 4(q − 1)

q2

∫
RN

∣∣∣(Ls
ε)

1/2(uq/2)

∣∣∣2 dx .
We refer to Stroock [46], Liskevich and Semenov [32] where this kind of inequality
is proved for general sub-markovian operators.

3.3. Approximation of the Inverse Fractional Laplacian (−�)−s , s ∈ (0, 1)

By using (3.1) we introduce an approximation for the inverse fractional Lapla-
cian (−�)−s and the nonlocal gradient∇1−2s that will play an important role in the
sequel to solve the difficulties created by estimates like (6.1) in the range m � 3.
More precisely we propose to approximate (−�)−s by (−�)−1L1−s

ε and ∇1−2s

by ∇(−�)−1L1−s
ε .
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Lemma 3.4. a) Let N � 1, s ∈ (0, 1) and s < N
2 . Then for every f ∈ L1(RN )

such that (−�)−s f ∈ L2(RN ) we have that

Iε :=
∫
RN

(
(−�)−1L1−s

ε [ f ] − (−�)−s f
)

φ dx → 0 as ε → 0,

∀φ ∈ C∞
c (RN ).

b) Let N � 1, s ∈ (0, 1). Then for every f ∈ L1(RN ) such that ∇1−2s f ∈
L2(RN ) we have that

Iε :=
∫
RN

(
∇(−�)−1L1−s

ε [ f ] − ∇1−2s f
)

φ dx → 0 as ε → 0,

∀φ ∈ C∞
c (RN ).

Proof. a) Given any operator T , let ST (ξ) be the Fourier symbol associated to the
operator T whenever it is well defined. Now, we employ Plancherel’s Theorem to
obtain

Iε =
∫
RN

(
S(−�)−1(ξ)SL1−s

ε
(ξ) − S(−�)−s (ξ)

)
f̂ φ̂dξ =:

∫
RN

Fε(ξ)dξ.

We want to pass to the limit as ε → 0 in Iε. For that purpose we need to find an
L1 dominating function for Fε. We recall that for s ∈ (0, 1) we have that

SL1−s
ε

(ξ) =
∫

|z|>0

1 − cos(z · ξ)

(|z|2 + ε2)
N+2(1−s)

2

dz and

S(−�)1−s (ξ) =
∫

|z|>0

1 − cos(z · ξ)

|z|N+2(1−s)
dz ∼ |ξ |2(1−s). (3.5)

Moreover S(−�)−s (ξ) = S(−�)−1(ξ)S(−�)1−s (ξ). Note that 0 � SL1−s
ε

(ξ) ≤
qS(−�)1−s (ξ) for every ξ ∈ R

N . Then

|Fε(ξ)| �
∣∣∣S(−�)−1(ξ)SL1−s

ε
(ξ)

∣∣∣ ∣∣ f̂ ∣∣ ∣∣φ̂∣∣ + ∣∣S(−�)−s (ξ)
∣∣ ∣∣ f̂ ∣∣ ∣∣φ̂∣∣

�
∣∣S(−�)−1(ξ)S(−�)1−s (ξ)

∣∣ ∣∣ f̂ ∣∣ ∣∣φ̂∣∣ + ∣∣S(−�)−s (ξ)
∣∣ ∣∣ f̂ ∣∣ ∣∣φ̂∣∣

= 2
∣∣S(−�)−s (ξ) f̂ φ̂

∣∣ � C |ξ |−2s
∣∣ f̂ ∣∣ ∣∣φ̂∣∣ .

We conclude that |Fε(ξ)| � G(ξ, t) := C
∣∣|ξ |−2s f̂ φ̂

∣∣ ∈ L1(RN ) since f̂ ∈
L∞(RN ) and φ̂ ∈ S(RN ), the Schwartz space of rapidly decaying functions.More-
over, we can see from (3.5) that Fε(ξ) → 0 pointwise as ε → 0. Then we use the
Dominated Convergence Theorem to conclude that |Iε| → 0 as ε → 0.

b)The proof follows as above noting thatS∇ = iξ and |Fε(ξ)| � C
∣∣|ξ |1−2s f̂ φ̂

∣∣
∈ L1(RN ). 
�
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4. Existence of Weak Solutions Via Approximating Problems

In order to prove the existence of weak solutions of Problem (1.1) we proceed
by considering an approximating problem. We regularize the degeneracy of the
nonlinearity, the singularity of the fractional operator, we also add a vanishing
viscosity term to get more regularity and we restrict the problem to a bounded
domain. We write the equation in the form

ut = ∇ · (um−1∇(−�)−1(−�)1−su).

The idea is to consider the approximation of the (−�)1−s given by (3.1), that is,

L1−s
ε (u)(x) = CN ,1−s

∫
RN

u(x) − u(y)(|x − y|2 + ε2
) N+2−2s

2

dy,

defined for functions u in the natural space L2(RN ).We consider the approximating
problem⎧⎪⎪⎨

⎪⎪⎩
(U1)t = δ�U1 + ∇ · ((U1 + μ)m−1∇(−�)−1L1−s

ε [U1]) for (x, t) ∈ BR × (0, T ),

U1(x, 0) = û0(x) for x ∈ BR ,

U1(x, t) = 0 for x ∈ ∂BR , t ∈ (0, T ),

(PεδμR)

with parameters ε, δ, μ, R > 0. We use the notation BR := BR(0). The initial
data û0 is a smooth approximation of u0. We recall that the operator L1−s

ε [U1] is
definedby formula (3.1) extending the functionU1 by 0 onRN\BR as inSection 3.1.
Moreover, U1 ∈ L2(0, T : H1

0 (BR)) as we will prove in formula (4.5), therefore it
has the right decay at the boundary ∂BR that allows its extension by 0.

The existence of a weak solution of Problem (1.1) is done by passing to the
limit step-by-step in the approximating problems as follows. We denote by U1
the solution of the approximating Problem (PεδμR) with parameters ε, δ, μ, R.
Afterwards, we obtain U2 = limε→0U1 and U2 solves an approximating Problem
(PδμR) with parameters δ, μ, R. Next, we take U3 = limR→∞ U2 that will be a
solution of Problem (Pδμ), U4 := limμ→0U3 solving Problem (Pδ). Finally we
obtain u = limδ→0U4 which solves Problem (1.1). Notice that the δ → 0 is the
last limit considered in the approximation process. This is because the δ�-term
gives H1

0 (BR) regularity forU1 andU2, respectively H1(RN ) forU3 andU4. Thus
U1 and U2 will be solutions to Dirichlet problems with homogenous boundary
conditions. The H1

0 (BR) regularity allows their extension by 0 to RN\BR and thus
the nonlocal operators involved in the equations are properly defined as in Sections
3.1 and 3.2.

Notations.Wewill often use
∫ t
0 f (t)dt to avoid introducing newvariables.Also,we

will use
∫
RN instead of

∫
BR

when integrating some expressions ofU1,U2, which are
supported in BR , by identifying these functions with 0 outside the domain BR . The
homogeneous Dirichlet boundary conditions ensures that the integrals coincide.

We will use → for strong convergence and ⇀ for weak convergence. We will
write ∼ and � when multiplying by constants depending on N , δ, R, ε and the
norms p, q that wewill use.Wewill keep explicit the constants relevant in the proof.
We will also avoid to write the variable x and write just v(t) when considering the
norms in x .
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4.1. Existence of Solutions of (PεδμR)

We will use a standard technique: first we will prove that there exists a unique
weak solution by the method of fixed point of a contraction mapping. Then we
show the regularity of the fixed point and prove that it is in fact a strong solution to
the problem. We give now the definitions of weak and strong solution for (PεδμR).

Definition 4.1. We say that U1 is a weak solution of Problem (PεδμR) if: (i) U1 ∈
L1(BR × (0, T )) , (ii) ∇(−�)−1L1−s

ε [U1] ∈ L1(BR × (0, T )), (iii) (U1 + μ)m−1

∇(−�)−1L1−s
ε [U1] ∈ L1(BR × (0, T )) and

∫ T

0

∫
BR

U1(φt + δ�φ)dxdt

−
∫ T

0

∫
BR

(U1 + μ)m−1∇(−�)−1L1−s
ε [U1] · ∇φdxdt

+
∫
BR

û0(x)φ(x, 0)dx = 0 (4.1)

for smooth test functions φ that vanish on the spatial boundary ∂BR and t = T .
We will say that U1 is a strong solution if additionally (U1)t ,�U1,∇ · ((U1 +
μ)m−1∇(−�)−1L1−s

ε [U1]) ∈ L p(BR × (0, T )) for some p � 1 and (PεδμR) is
satisfied pointwise almost everywhere.

4.1.1. Solution of aHeat Equationwith ForcingTerm Weconsider an arbitrary
value of the unknown U1 in the last term of (PεδμR) and solve the following heat
equation with a forcing term

ut = δ�u + ∇ · G(v) with G(v) = (v + μ)m−1∇(−�)−1L1−s
ε [v], (4.2)

with initial data u(x, 0) = û0(x) for x ∈ BR and lateral data u(x, t) = 0 for
(x, t) ∈ Bc

R × (0, T ). We recall that û0(x) is a smooth approximation of u0 but
we will only use the L p norms of û0 and ∇û0. In order to apply of the fixed point
theorem we will choose v in a convenient functional space and solve (4.2) to find
u. We want to define a mapping T : v �→ u and we will prove that T has a fixed
point.

Proposition 4.2. Let X = L1(BR) ∩ L∞(BR). Then T is well defined from XT :=
C([0, T ] : X) into XT for all T > 0. Moreover, for every v ∈ XT ∩ L2([0, T ], H1

0
(BR)), we have that u = T (v) is a strong solution of (4.2) with the given initial
and lateral data. We have also precise estimates for T .

Before proving the result above, we need the following lemma:

Lemma 4.3. For every v ∈ XT we have that G(v) ∈ XT with ‖G(v)‖XT �
C‖v‖XT where C = C(‖v‖L∞(QT )).
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Proof. Here T is arbitrary and we denote QT = BR ×[0, T ]. It is enough to prove
the result for fixed time, and the continuity in time follows easily. By Lemma 3.2
we have that

‖∇(−�)−1L1−s
ε v(·, t)‖X � ‖v(·, t)‖X .

Taking supremums in t ∈ [0, T ] in the above equationwe get ‖∇(−�)−1L1−s
ε v‖XT

� ‖v‖XT . From here we conclude that

‖G(v)‖XT � ‖v + μ‖m−1
L∞(QT )‖∇(−�)−1L1−s

ε v‖XT � C‖v‖XT .


�
Proof of Proposition 4.2. (i) The standard theory for the heat equation (see for
instance [35]) says that given such forcing term F := ∇ · G(v), there exists a
unique weak solution u ∈ XT of the above initial and boundary value problem.
Moreover, by the regularity theory, we also know that ∇u ∈ L p(QT ) for every
p ∈ [1,∞) since G(v) ∈ L p(QT ). We can express the weak solution by means of
the Duhamel formula:

u(x, t) = eδt�û0(x) +
∫ t

0
∇eδ(t−τ)� · G(v)(x, τ )dτ︸ ︷︷ ︸

T (v)

,

G(v) = (v + μ)m−1∇(−�)−1L1−s
ε [v],

where et� is the Heat Semigroup corresponding to the homogenous Dirichlet prob-
lem in the ball BR . This formula will be convenient to perform a priori estimates
needed for the fixed point argument. When v ∈ L2([0, T ], H1

0 (BR)) we can work
out the expression for F

F = ∇(v + μ)m−1 · ∇(−�)−1L1−s
ε [v] − (v + μ)m−1L1−s

ε [v].
It follows that F ∈ L2(QT ). The standard heat equation theory now implies that u
is a strong solution of the problem and ut ,�u ∈ L2(QT ).

(ii) We now prove that for v ∈ XT we have T (v(t)) ∈ X for all t ∈ [0, T ]
with precise estimates. We will need some decay properties of the Heat Semigroup
in BR . Using classical estimates on the Green function for the heat operator in a
bounded domain [31, p.413, Th. 16.3], we have that for 1 � p � ∞,

‖et�v‖L p(BR) � ‖v‖L p(BR) and ‖∇et�v‖L p(BR) � t−
1
2 ‖v‖L p(BR). (4.3)

Let now v ∈ C([0, T ] : X). Using the heat kernel estimates and Lemma 3.2

‖T (v(t))‖X � ‖û0‖X +
∫ t

0
(t − τ)−

1
2 ‖G(v(τ ))‖Xdτ � ‖û0‖X

+ t1/2 sup
0�τ�t

‖G(v(τ ))‖Xdτ

� ‖û0‖X + Ct1/2 sup
0�τ�t

(‖v(τ)‖L∞(BR) + μ)m−1‖v(τ)‖X < ∞.
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(iii) Moreover T (v) is continuous with respect to t . Indeed, we have that

T (v)(x, t + h) − T (v)(x, t) = eδ(t+h)�u0(x) − eδt�u0(x)

+
∫ t+h

t
∇eδ(t+h−τ)� · G(v)(x, τ )dτ

+
∫ t

0
∇eδ(t−τ)� · (eδh�G(v)(x, τ ) − G(v)(x, τ ))dτ = I + I I + I I I.

We want to prove that ‖T (v)(·, t + h) − T (v)(·, t)‖L1(BR)∩L∞(BR) → 0 as
h → 0. For p = {1,∞}, the L p norms of I and I I I go to 0 as h → 0 since the
Heat Semigroup is well defined in the space ‖eδh�( f ) − f ‖ → 0. For the second
term we should use the decay of the Heat kernel (4.3)

‖I I‖L p �
∫ t+h

t
(t + h − τ)−1/2‖G(v(τ ))‖L p(BR)dτ

� h1/2 sup
(0,T )

‖G(v)(·, t)‖L p(BR) → 0 as h → 0.


�
4.1.2. Local in Time Contraction and Existence of a Fixed Point

Proposition 4.4. Let K = 2‖û0‖X and denote by BK the closed ball of radius K
centered at 0 in the space XT = C([0, T ] : X). There exists T = T (‖û0‖L∞(BR))

small enough such that T is a contraction in BK ⊂ XT . Therefore, T has a fixed
point in BK ⊂ XT . More precisely, we can take T � C(K + μ)2(1−m).

Proof. First we prove that T maps BK into BK . Indeed, for v ∈ BK we have that

‖T (v(t))‖L1(BR) �‖u0‖L1(BR)+T 1/2 sup
0�τ�T

(‖v(τ)‖L∞(BR)+μ)m−1‖v(τ)‖X �K .

Indeed, if 6 T 1/2(K + μ)m−1 � 1 we have that T is a strict contraction mapping
in BK . The proof is as follows. Let u1, u2 ∈ BK . Then

(T (u2) − T (u1))(x, t)

=
∫ t

0
∇eδ(t−τ)� · (u2(τ ) + μ)m−1∇(−�)−1L1−s

ε [u2 − u1](τ )dτ

+
∫ t

0
∇eδ(t−τ)� ·

(
(u2(τ ) + μ)m−1 − (u1(τ ) + μ)m−1

)
∇(−�)−1L1−s

ε [u1](τ )dτ.

Then, for any 1 � p � ∞,

‖(T (u2) − T (u1))(x, t)‖L p(BR)

�
∫ t

0
‖∇eδ(t−τ)� · (u2(τ ) + μ)m−1∇(−�)−1L1−s

ε [u2 − u1](τ )‖L p(BR)dτ

+
∫ t

0
‖∇eδ(t−τ)� ·

(
(u2(τ ) + μ)m−1 − (u1(τ ) + μ)m−1

)
∇(−�)−1L1−s

ε [u1](τ )‖L p(BR)dτ.
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Using (4.3) again we get

‖(T (u2) − T (u))(·, t)‖L p(BR)

�
∫ t

0
(t − τ)−

1
2 ‖(u2 + μ)m−1∇(−�)−1L1−s

ε [u2 − u1]‖L p(BR)(τ )dτ

+
∫ t

0
(t − τ)−

1
2 ‖

(
(u2 + μ)m−1 − (u1 + μ)m−1

)
∇(−�)−1L1−s

ε [u1]‖L p(BR)(τ )dτ. (4.4)

For the first termwe use the estimates of Lemma 3.2, taking into account that u1, u2
are in fact supported in the ball, to show that for p ∈ {1,∞} we have

‖(u2 + μ)m−1∇(−�)−1L1−s
ε [u2 − u1]‖L p(BR)

� (‖u2‖L∞(BR) + μ)m−1‖∇(−�)−1L1−s
ε [u2 − u1]‖L p(BR)

� (‖u2‖L∞(BR) + μ)m−1‖u2 − u1‖X .

Similarly, for the second term in (4.4), we use Lemma 3.2 to get

‖
(
(u2 + μ)m−1 − (u1 + μ)m−1

)
∇(−�)−1L1−s

ε [u1]‖L1(RN )

� ‖(u2 + μ)m−1 − (u1 + μ)m−1‖L∞(RN )‖∇(−�)−1L1−s
ε [u1]‖L1(RN )

� ‖u2 − u1‖L∞(BR) · max(μm−2, (‖u1‖∞ + μ)m−2,

(‖u2‖∞ + μ)m−2)‖u1‖X .

Summing up, if 6T 1/2(K + μ)m−1 � 1, we have that

‖(T (u2) − T (u1))(x, t)‖L1(BR)

� t1/2 sup
0<τ<t

‖(u2 + μ)m−1∇(−�)−1L1−s
ε [u2 − u1](τ )‖L1(RN )

+ t1/2 sup
0<τ<t

‖
(
(u2 + μ)m−1 − (u1 + μ)m−1

)
∇(−�)−1L1−s

ε [u1](τ )‖L1(RN )

� 6T 1/2(K + μ)m−1‖u2 − u1‖X � ‖u2 − u1‖X .

The estimate of ‖(T (u2)−T (u1))(x, t)‖L∞(BR) follows similarly by taking p = ∞
in (4.4) and using Lemma 3.2. Thus, the mapping T is a strict contraction on BK

if 6T 1/2(K + μ)m−1 � 1:

‖(T (u2) − T (u1))‖C([0,T ]:X) <
1

2
‖u2 − u1‖C([0,T ]:X).


�

4.1.3. Local in Time Improved Regularity of the Fixed Point and Strong So-
lution Using the formulation of u = T (v) as a strong solution of the initial and
lateral data problem for (4.2), multiplying by u, and integrating, we get the identity
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1

2

∫
BR

|u(T )|2dx + δ

∫ T

0

∫
BR

|∇u(t)|2dxdt =
∫ T

0

∫
BR

G(v(t)) · ∇u(t)dxdt

+1

2

∫
BR

|û0|2dx .

We now use Lemma 4.3 so that ‖G(v)‖XT � C(‖v‖L∞(QT ))‖v‖XT and since we
take ‖v‖XT � K then ‖G(v)‖XT � C(K ). Also the last term is bounded by C(K ).
Using Young’s inequality now on the first term of the right-hand side to absorb one
term into the term with |∇u(t)|2, we get∫ T

0

∫
BR

|∇u(t)|2dxdt � C(K , δ),

which means that in all the steps of this iteration ∇u ∈ L2(QT ) with a uniform
bound depending on K and δ since G(v) is uniformly bounded in XT . In the limit
of the iteration process that leads to the fixed point, we conclude that such a fixed
point u ∈ L2([0, T ] : H1

0 (BR)) with a uniform bound estimated by K . It is now
easy to see that u is indeed a strong solution of (PεδμR). This is what we take as
U1. Note that, for the moment,U1 is only defined locally in time. In order to prove
existence for all times, we need some properties that will be derived next.

4.1.4. Nonnegativity and L p Decay of the Local in Time Solution Standard
arguments shows that if û0 is nonnegative, then U1 is also nonnegative. Similarly,
we get that the L∞ norm of the solution is nonincreasing. Moreover, given T
prescribed by Proposition 4.4, we have for all 0 < t < T the following estimates
for the L p of the strong solution U1:

d

dt

∫
BR

U p
1 (x, t)dx = p

∫
BR

U p−1
1 (U1)tdx =

= −pδ
∫
BR

∇(U p−1
1 ) · ∇U1dx − p

∫
BR

∇U p−1
1 (U1 + μ)m−1

· ∇(−�)−1L1−s
ε [U1]dx

= −4(p − 1)δ

p

∫
BR

∣∣∣∇(U p/2
1 )

∣∣∣2 dx − p(p − 1)
∫
BR

U p−2
1 (U1 + μ)m−1∇U1

· ∇(−�)−1L1−s
ε [U1]dx .

The boundary terms are 0 since U1 = 0 on R
N\BR . We analyze the second term:∫

BR

U p−2
1 (U1 + μ)m−1∇U1 · ∇(−�)−1L1−s

ε [U1]dx

=
∫
BR

∇ψ(U1) · ∇(−�)−1L1−s
ε [U1]dx

=
∫
BR

ψ(U1)(−�)(−�)−1L1−s
ε [U1]dx =

∫
BR

ψ(U1)L1−s
ε [U1]dx

=
∫
RN

ψ(U1)L1−s
ε [U1]dx �

∫
RN

|(L1−s
ε )

1
2 [�(U1)]|2dx .
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We have used the generalized Stroock-Varopoulos Inequality (3.4) in the follow-
ing context: the functions ψ and � are such that ψ ′ = (� ′)2 and ∇ψ(U1) =
U p−2
1 (U1 + μ)m−1∇U1. The precise definition of these functions is given by

ψ(z) =
∫ z

0
ζ p−2(ζ + μ)m−1dζ, �(z) =

∫ z

0
ζ

p−2
2 (ζ + μ)

m−1
2 dζ.

We obtain the following L p-energy estimate:

∫
BR

u p
0 (x)dx −

∫
BR

U p
1 (x, t)dx = 4(p − 1)δ

p

∫ t

0

∫
BR

∣∣∣∇(U p/2
1 )

∣∣∣2 dxdt
+ p(p − 1)

∫ t

0

∫
BR

ψ(U1)L1−s
ε [U1]dxdt,

(4.5)

and then

∫
BR

u p
0 (x)dx �

∫
BR

U p
1 (x, t)dx+

+ 4(p − 1)δ

p

∫ t

0

∫
BR

∣∣∣∇(U p/2
1 )

∣∣∣2 dxdt + p(p − 1)

×
∫ t

0

∫
BR

|(L1−s
ε )

1
2 [�(U1)]|2dxdt.

As a consequence, we get that (L1−s
ε )

1
2 [�(U1)] ∈ L2(QT ) for u0 ∈ L p(RN ).

We also get the so-called second energy estimate:

1

2

d

dt

∫
BR

|
(
(−�)−1L1−s

ε

) 1
2 [U1]|2dx

=
∫
BR

(
(−�)−1L1−s

ε

) 1
2 [U1] ·

(
(−�)−1L1−s

ε

) 1
2 [(U1)t ]dx

=
∫
BR

(−�)−1L1−s
ε [U1] (U1)tdx

= δ

∫
BR

(−�)−1L1−s
ε [U1]�U1dx +

∫
BR

(−�)−1L1−s
ε [U1]∇ · ((U1 + μ)m−1

∇(−�)−1L1−s
ε [U1])dx

= −δ

∫
BR

∣∣∣(L1−s
ε )

1
2 [U1]

∣∣∣2 dx −
∫
BR

(U1 + μ)m−1|∇(−�)−1L1−s
ε [U1]|2dx .

Therefore, the quantity
∫
BR

|(−�)− 1
2 (L1−s

ε )
1
2 [U1](x, t)|2dx is non-increasing in t

and we have that



Existence of Weak Solutions for a General Porous 469

1

2

∫
BR

∣∣∣∣((−�)−1L1−s
ε

) 1
2 [u0]

∣∣∣∣
2

dx = 1

2

∫
BR

∣∣∣∣((−�)−1L1−s
ε

) 1
2 [U1(t)]

∣∣∣∣
2

dx

+ δ

∫ t

0

∫
BR

∣∣∣(L1−s
ε )

1
2 [U1]

∣∣∣2 dxdt
+

∫ t

0

∫
BR

(U1 + μ)m−1
∣∣∣∇(−�)−1L1−s

ε [U1]
∣∣∣2 dxdt. (4.6)

4.1.5. Global-in-Time Solution The preceding analysis shows that the L p norm
of the solution constructed in a finite time interval [0, T ] does not increase with
time for any p ∈ [1,∞] by (4.5). Therefore, we can continue the solution in a new
time interval of the same length with initial dataU1(x, T ), thus obtaining a solution
in [0, 2T ]. We iterate this process to get a global in time solution.

We conclude the results obtained so far in the following theorem:

Theorem 4.5. Let s ∈ (0, 1), 1 < m < ∞ and N � 1. There exists a weak
solution U1 of Problem (PεδμR) with initial data û0. Moreover, U1 is a strong
solution, satisfies the L p-energy estimate (4.5), the second energy estimate (4.6),
and also

1. (Decay of total mass)For all 0< t<T we have
∫
BR

U1(x, t)dx≤
∫
BR

u0(x)dx;

2. (L∞-estimate) For all 0 < t < T we have ||U1(·, t)||∞ � ||u0||∞.

Remark 4. In Sections 4.2, 4.3, 4.4 and 4.5 we will only consider s ∈ (0, 1
2 ) when

N = 1 since the operator (−�)−s is not well defined out of this range. We will
devote Section 4.6 to comment on how to deal with the case N = 1, s ∈ [ 12 , 1).

4.2. Limit as ε → 0

Let U1 be a weak solution of problem (PεδμR) with parameters δ, μ, R > 0
fixed from the beginning. We will prove that limε→0U1 = U2, whereU2 is a weak
solution of the problem⎧⎪⎨
⎪⎩

(U2)t = δ�U2 + ∇ · ((U2 + μ)m−1∇(−�)−sU2) for (x, t) ∈ BR × (0, T ),

U2(x, 0) = û0(x) for x ∈ BR,

U2(x, t) = 0 for x ∈ ∂BR, t � 0.
(PδμR)

Moreover, we will also prove that U2 inherits most of the properties of U1. In
particular, we will prove that U2 can be extended by 0 to R

N\BR , allowing the
definition of (−�)−sU2.

4.2.1. Existence of a Limit. Compactness Estimate I I. Using the energy esti-
mate (4.5) with p = 2 we obtain that U1 ∈ L2(0, T : H1

0 (BR)).
II. Estimates on the derivative (U1)t . We use the equation

(U1)t = δ�U1 + ∇ · ((U1 + μ)m−1∇(−�)−1L1−s
ε [U1]).
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The H1
0 estimate of (4.5) ensures that δ�U1 ∈ L2(0, T : H−1(BR)). The second

energy estimate (4.6) implies that

(U1 + μ)
m−1
2 ∇(−�)−1L1−s

ε [U1] ∈ L2(0, T : L2(BR)).

Since we also have that U1 ∈ L∞((0, T ) × BR), this implies that ∇ · ((U1 +
μ)m−1∇(−�)−1L1−s

ε [U1]) ∈ L2(0, T : H−1(BR)). We conclude that

(U1)t ∈ L2(0, T : H−1(BR)).

III. We apply the compactness criteria of Simon (see Lemma 7.5 in Section 7) in
the context of

H1
0 (BR) ⊂ L2(BR) ⊂ H−1(BR),

where the left hand side inclusion is compact. We conclude that the family of
approximate solutions {U1}ε>0 is relatively compact in L2(0, T : L2(BR)). There-
fore, there exists a limit (U1)ε,δ,μ,R → (U2)δ,μ,R as ε → 0 in L2(0, T : L2(BR)),

up to subsequences. Note that, since (U1)ε is a family of positive functions defined
on BR and extended to 0 in R

N\BR , then the limit U2 = 0 almost everywhere on
R

N\BR . We obtain that

U1
ε→0−→ U2 in L2(0, T : L2(BR)) = L2(BR × (0, T )). (4.7)

4.2.2. The Limit U2 is a Solution of the New Problem (PδμR) We pass to the
limit as ε → 0 in the definition (4.1) of a weak solution of Problem (PεδμR) and
we prove that the limit U2 found in (4.7) is a weak solution of Problem (PδμR).
The convergence of the first integral in (4.1) is justified by (4.7), since∣∣∣∣

∫ T

0

∫
BR

(U1 −U2)(φt + δ�φ)dxdt

∣∣∣∣
� ||U1 −U2||L2(BR×(0,T ))||φt + δ�φ||L2(BR×(0,T )). (4.8)

To prove the convergence of the second integral in (4.1) we argue as follows: using
(4.7) and the L∞-decay estimate from Theorem 4.5, we get that

(U1 + μ)m−1 → (U2 + μ)m−1 in L2(BR × (0, T )). (4.9)

The convergence of the nonlocal gradient term in (4.1) is proved in the following
lemma:

Lemma 4.6. We have that

∇(−�)−1L1−s
ε [U1] ε→0

⇀ ∇(−�)−sU2 in L2(BR × (0, T )).

Proof. I. There exists a weak limit. From the second energy estimate (4.6) we
note that
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∥∥∥∇(−�)−1L1−s
ε [U1]

∥∥∥
L2(BR×(0,T ))

=
∥∥∥∥∥ (U1 + μ)

m−1
2

(U1 + μ)
m−1
2

∇(−�)−1L1−s
ε [U1]

∥∥∥∥∥
L2(BR×(0,T ))

� μ−m−1
2

∥∥∥(U1 + μ)
m−1
2 ∇(−�)−1L1−s

ε [U1]
∥∥∥
L2(BR×(0,T ))

� C.

Then, Banach-Alaoglu Theorem ensures that there exists a subsequence such that

∇(−�)−1L1−s
ε [U1] ε→0

⇀ v in L2(BR × (0, T )).

II. Identifying the limit in the sense of distributions. Now, we will prove that

∇(−�)−1L1−s
ε [U1] ε→0−→ ∇(−�)−sU2

in distributions. More precisely, we will prove that∫ T

0

∫
BR

(−�)−1L1−s
ε [U1]∇φdxdt

ε→0−→
∫ T

0

∫
BR

(−�)−sU2∇φdxdt

for all φ ∈ C∞
c (BR × (0, T )). We estimate the difference of the two integrals above

as follows:

Iε =
∫ T

0

∫
BR

(
(−�)−1L1−s

ε [U1] − (−�)−sU1

)
∇φdxdt

+
∫ T

0

∫
BR

(
(−�)−sU1 − (−�)−sU2

) ∇φdxdt

= I1,ε + I2,ε.

The first integral converges to 0 as a consequence of the approximation of (−�)−s

in the sense derived in Lemma 3.4 a). Note thatU1 is changing with ε, but we have
the uniform bound ‖U1‖1 � ‖u0‖1 which ensures that Lemma 3.4 can still being
applied. For the second integral we write

I2,ε =
∫ T

0

∫
RN

(U1 −U2)∇(−�)−sφ dxdt

=
∫ T

0

∫
Bρ

(U1 −U2) ∇(−�)−sφ dxdt

+
∫ T

0

∫
RN \Bρ

(U1 −U2) ∇(−�)−sφ dxdt

for a ρ to be chosen later. Now fix η > 0. Then∫ T

0

∫
RN \Bρ

|U1 −U2| |∇(−�)−sφ| dxdt

� ‖U1 −U2‖L2(RN×(0,T ))‖∇(−�)−sφ‖L2((RN \Bρ)×(0,T ))

� 2T ‖u0‖L2(RN )‖∇(−�)−sφ‖L2((RN \Bρ)×(0,T )).

(4.10)
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Since ∇(−�)−sφ ∈ L2(RN × (0, T )) then we can choose ρ large enough such
that ‖∇(−�)−sφ‖L2((RN \Bρ)×(0,T )) � η/2. On the other hand,

∫ T

0

∫
Bρ

(U1 −U2)∇(−�)−sφ dxdt

� ‖U1 −U2‖L2(Bρ×(0,T ))‖∇(−�)−sφ‖L2(Bρ×(0,T )).

We choose ε small enough such that ‖U1 − U2‖L2(Bρ×(0,T )) � η/2. Therefore
I2,ε → 0 as ε → 0.

Note that we could have fixed ρ = R and then the first integral in (4.10)
is identically zero since U1 and U2 are supported in BR . We keep the splitting
here since it will be needed to estimate I2,ε in the limit as R → ∞ (see Section
4.3.2). 
�

To conclude this part, we use the following: given two sequences fε ⇀ f in

L2 and gε → g strongly in L2, then the scalar product converges
∫

fεgε dx →∫
f g dx . Then (4.9) together with Lemma 4.6 implies that

∫ T

0

∫
BR

(U1 + μ)m−1∇(−�)−1L1−s
ε [U1]∇φdxdt

ε→0−→
∫ T

0

∫
BR

(U2 + μ)m−1∇(−�)−sU2∇φdxdt.

4.2.3. Passing to the Limit in the L p Energy Estimate (4.5) We have that∫
BR

ψ(U1)L1−s
ε [U1]dx =

∫
BR

∫
BR

ψ(U1(x))
U1(x) −U1(y)

(|x − y|2 + ε2)
N+2(1−s)

2

dxdy

= 1

2

∫
BR

∫
BR

(ψ(U1(x)) − ψ(U1(y)))
U1(x) −U1(y)

(|x − y|2 + ε2)
N+2(1−s)

2

dxdy.

Let

Gε(x, y) := 1

2
(ψ(U1(x)) − ψ(U1(y)))

U1(x) −U1(y)

(|x − y|2 + ε2)
N+2(1−s)

2

,

and

G(x, y) := 1

2
(ψ(U2(x)) − ψ(U2(y)))

U2(x) −U2(y)

|x − y|N+2(1−s)
.

Note that Gε(x, y) � 0 since ψ is a non-decreasing function. Also,
∫
RN

∫
RN Gε

(x, y) � C uniformly in ε > 0. Since U1 → U2 as ε → 0 pointwise almost
everywhere in x ∈ BR then Gε(x, y) → G(x, y) almost everywhere x, y ∈ R

N .



Existence of Weak Solutions for a General Porous 473

We can pass to the limit ε → 0 in the last term of the energy estimate (4.5) according
to the Fatou’s Lemma

lim
ε→0

∫ t

0

∫
BR

∫
BR

Gε(x, y)dxdydt �
∫ t

0

∫
BR

∫
BR

G(x, y)dxdy

=
∫ t

0

∫
BR

ψ(U2)(−�)1−sU2dxdt.

Now we pass to the limit in the H1 term. The L p energy estimate (4.5) shows
that U p/2

1 is uniformly bounded in L2(0, T : H1
0 (BR)), therefore there exists a

weak limit w in L2(0, T : H1
0 (BR)). Since H1

0 (BR) ⊂ L2(BR) with continuous

inclusion, then U p/2
1 → w in L2(BR × (0, T )). By (4.7) we know that U1 → U2

in L2(BR × (0, T )). For p > 2 we deduce thatU p/2
1 → U p/2

2 in L2(BR × (0, T ))

and then we identify the limit w = U p/2
2 . The weak lower semi-continuity of the

‖ · ‖H1
0 (BR) norm implies that

lim inf
ε→0

∫ t

0

∫
BR

∣∣∣∇(U p/2
1 )

∣∣∣2 dxdt �
∫ t

0

∫
BR

∣∣∣∇(U p/2
2 )

∣∣∣2 dxdt.
We used the fact that the norm of a Hilbert space is weakly semi-continuous. A
similar idea will be employed to pass to the limit also in the integrals in the second
energy estimate (4.6).

4.2.4. Passing to the Limit in the Second Energy Estimate (4.6) The first two
terms involve integral operators, so the continuous inclusion L2(BR) ⊂ H−s/2(BR)

together with (4.7) allow to pass to the limit. For the third one we use the argument
given in Section 4.2.3 in the particular case ψ(U1) = U1. For the last term we have
to prove the following inequality:

lim inf
ε→0

∫ t

0

∫
BR

(U1 + μ)m−1
∣∣∣∇(−�)−1L1−s

ε [U1]
∣∣∣2 dxdt

�
∫ t

0

∫
BR

(U2 + μ)m−1
∣∣∇(−�)−sU2

∣∣2 dxdt.
This is a consequence of the fact that the L2 norm is weakly lower semi-continuous

and (U1 + μ)
m−1
2 ∇(−�)−1L1−s

ε [U1] ⇀ (U2 + μ)
m−1
2 ∇(−�)−sU2 in L2(BR ×

(0, t)). Indeed, we have that∫ t

0

∫
BR

(U1 + μ)
m−1
2 ∇(−�)−1L1−s

ε [U1]φdxdt
ε→0−→

∫ t

0

∫
BR

(U2 + μ)
m−1
2 ∇(−�)−sU2φdxdt

for every φ ∈ L2(BR × (0, t)). This is because (U1+μ)
m−1
2 φ → (U2 +μ)

m−1
2 φ in

L2(BR × (0, t)) (using the Dominated Convergence Theorem) and∇(−�)−1L1−s
ε

[U1] ⇀ ∇(−�)−sU2 in L2(BR × (0, t)) by Lemma 4.6.
From now on, we do not need to consider a smooth initial data û0 ∼ u0. We

sum up the results of this section in the following theorem:
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Theorem 4.7. Let s ∈ (0, 1), 1 < m < ∞, N � 1. There exists a weak solution
U2 of Problem (PδμR) with initial data u0 ∈ L1(RN ) ∩ L∞(RN ). Moreover U2
has the following properties:

1. (Decayof totalmass)Forall0 < t < T wehave
∫
BR

U2(x, t)dx ≤
∫
BR

u0(x)dx .

2. (L∞ estimate) For all 0 < t < T we have ||U2(·, t)||∞ � ||u0||∞.
3. (L p energy estimate) For all 1 < p < ∞ and 0 < t < T we have∫

BR

U p
2 (x, t)dx + 4(p − 1)δ

p

∫ t

0

∫
BR

∣∣∣∇(U p/2
2 )

∣∣∣2 dxdt
+ p(p − 1)

∫ t

0

∫
BR

ψ(U2)(−�)1−sU2dxdt �
∫
BR

u p
0 (x)dx .

(4.11)

4. (Second energy estimate) For all 0 < t < T we have

1

2

∫
BR

∣∣∣(−�)−
s
2U2(t)

∣∣∣2 dx + δ

∫ t

0

∫
BR

∣∣∣(−�)
1−s
2 [U2]

∣∣∣2 dxdt
+

∫ t

0

∫
BR

(U2+μ)m−1
∣∣∇(−�)−sU2(t)

∣∣2 dxdt� 1

2

∫
BR

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx .
(4.12)

4.3. Limit as R → ∞
In this sectionwe argue for weak solutionsU2 = (U2)R of Problem (PδμR). The

energy estimates (4.11) and (4.12) will give us sufficient information to accomplish
the limits.

4.3.1. Existence of a Limit We remark that the integrals in BR can be interpreted
like integrals on whole RN since we have chosen U2 to be zero outside BR . More-
over, we can get, from the energy estimates (4.11) and (4.12), upper bounds which
are independent on R. Note that the compactness technique used (see Lemma 7.5)
requires compact embeddings, which motivates us to work on bounded domains.
I. Local existence of a limit. Let ρ > 0 and consider the ball Bρ ⊂ R

N . From
(4.11) with p = 2 we get that U2 ∈ L2(0, T : H1(Bρ)) uniformly in R > 0 and
then δ�U2 ∈ L2(0, T : H−1(RN )). Also, (4.12) givesU2 ∈ L2(0, T : H1−s(Bρ)).
From (4.12) we get that ∇ · ((U2 + μ)m−1∇(−�)−sU2) ∈ L2(0, T : H−1(RN )).
Applying Lemma 7.5 in the context

H1−s(Bρ) ⊂ L2(Bρ) ⊂ H−1(Bρ),

and noting that the left hand side inclusion is compact, we obtain that there exists
a limit function Vρ ∈ L2(Bρ × (0, T )) such that, up to sub-sequences,

U2 → Vρ as R → ∞ in L2(Bρ × (0, T )). (4.13)

II. Finding a global limit. In order to define a global limit in L2(RN × (0, T )) we
adapt the classical covering plus diagonal argument. Let

⋃∞
k=1 Bρk , with (ρk)

∞
k=1 ⊂
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R�0, be a countable covering ofR
N . By (4.13) we obtain there exists a subsequence

(R j )
∞
j=1 such thatU2|Bρ1

→ Vρ1 as R j → ∞ in L2(Bρ1×(0, T )) and Vρ1 : Bρ1 →
R. Next, we perform a similar argument starting from the subsequence (R j )

∞
j=1

and U2|Bρ2
to get that there exists a sub-subsequence (R jk )

∞
k=1 ⊂ (R j )

∞
j=1 such

that U2|ρ2 → Vρ2 as R jk → ∞ in L2(Bρ2 × (0, T )) and Vρ2 : Bρ2 → R. It is
clear that Vρ1 = Vρ2 in Bρ1 ∩ Bρ2 . The argument continues for the remaining balls
Bρ3, Bρ4 , .... In the end we define the function V : RN → R such that V |Bρk

= Vρk

for k ∈ N>0. We denote this limit U3 for better organization. Therefore, up to
subsequences,

U2 → U3 as R → ∞ in L2(0, T : L2
loc(R

N )).

In particular, this implies U2 → U3 as R → ∞ almost everywhere in R
N . We

recall that the functions U2 are extended by 0 in R
N\BR and then, by the energy

estimate (4.11), we have that
∫
RN U 2

2 dx is uniformly bounded in R > 0. Then, by
Fatou’s Lemma we get that U3 ∈ L2(RN × (0, T )) since

lim inf
R→∞

∫ T

0

∫
RN

(U2)
2dxdt �

∫ T

0

∫
RN

(U3)
2dxdt.

4.3.2. The LimitU3 is a Solution of the New Problem (Pδμ) Similarly, one can
prove that U3 is a weak solution of Problem (Pδμ):{

(U3)t = δ�U3 + ∇ · ((U3 + μ)m−1∇(−�)−sU3) for (x, t) ∈ R
N × (0, T ),

U3(x, 0) = û0(x) for x ∈ R
N .

(Pδμ)

The test functions used in Subsection 4.2.1 are compactly supported so the argu-
ments perfectly work here. Let φ be a suitable test function supported in a ball Bρ

for some ρ > 0. For the convergence of the nonlinear term we use that

(U2 + μ)m−1 → (U3 + μ)m−1 in L2(Bρ × (0, T )) as R → +∞,

and

∇(−�)−sU2 ⇀ ∇(−�)−sU3 in L2(Bρ × (0, T )) as R → +∞, (4.14)

where (4.14) is proved as in Lemma 4.6.

4.3.3. Energy Estimates All the energy estimates of U2 can be written with
integrals inRN and they provide upper bounds which independent on R. As before,
the existence of a pointwise limit plus Fatou’s Lemma allow us to pass to the limit
as R → +∞. We refer to [43] for the proof of mass conservation. However, in
Theorem5.2we prove this result in the general setting ofmeasure data.We conclude
with the following theorem:

Theorem 4.8. Let s ∈ (0, 1), 1 < m < ∞ and N � 1. There exists a weak solution
U3 of Problem (Pδμ) with initial data u0 ∈ L1(RN ) ∩ L∞(RN ). Moreover, U3 has
the following properties:
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1. (Conservation of total mass) For all 0 < t < T we have
∫
RN

U3(x, t)dx =∫
RN

u0(x)dx .

2. (L∞ estimate) For all 0 < t < T we have ||U3(·, t)||∞ ≤ ||u0||∞.
3. (L p energy estimate) For all 1 < p < ∞ and 0 < t < T we have∫

RN
U p
3 (x, t)dx + 4(p − 1)δ

p

∫ t

0

∫
RN

∣∣∣∇(U p/2
3 )

∣∣∣2 dxdt
+ p(p − 1)

∫ t

0

∫
RN

ψ(U3)(−�)1−sU3dxdt �
∫
RN

u p
0 (x)dx .

(4.15)

4. (Second energy estimate) For all 0 < t < T we have

1

2

∫
RN

∣∣∣(−�)−
s
2U3(t)

∣∣∣2 dx + δ

∫ t

0

∫
RN

∣∣∣(−�)
1−s
2 [U3]

∣∣∣2 dxdt
+

∫ t

0

∫
RN

(U3+μ)m−1
∣∣∇(−�)−sU3(t)

∣∣2 dxdt� 1

2

∫
RN

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx .
(4.16)

4.4. Limit as μ → 0

We remark that some of previous arguments can not be applied here since
(U3 + μ)−(m−1) may degenerate as μ → 0 close to the free boundary. Therefore
we adapt the proof to overcome this issue.

4.4.1. Existence of a Limit The energy estimates (4.15) and (4.16) gives us
uniform upper bounds in μ which allows us to prove the existence of a limit

U3 → U4 as μ → 0 in L2
loc(R

N × (0, T )), (4.17)

using the same covering plus diagonal argument of Section 4.3.

4.4.2. The Limit U4 is a Solution of the New Problem (Pδ) As before the
compact support of the test functions allows us to prove that U4 is in fact a weak
solution of the problem{

(U4)t = δ�U4 + ∇ · (Um−1
4 ∇(−�)−sU4) for (x, t) ∈ R

N × (0, T ),

U4(x, 0) = u0(x) for x ∈ R
N .

(Pδ)

The first integral of the weak formulation passes to the limit like in (4.8) as conse-
quence of (4.17). It remains to prove that∫ T

0

∫
RN

(U3 + μ)m−1∇(−�)−sU3 · ∇φdxdt

μ→0−→
∫ T

0

∫
RN

Um−1
4 ∇(−�)−sU4 · ∇φdxdt. (4.18)
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Let φ be supported in Bρ for some ρ > 0. It is clear that

(U3 + μ)m−1 → Um−1
4 as μ → 0 in L2(Bρ × (0, T )). (4.19)

Moreover, from the second energy estimate, we get that there exists a weak limit of
U3 in L2(0, T : H1−s(Bρ)). Furthermore, the limit can be identified in L2(Bρ ×
(0, T )) from (4.17), and then

U3 ⇀ U4 as μ → 0 in L2(0, T : H1−s(Bρ)).

Since the term ∇(−�)−s is of order 1 − 2s, which is smaller than 1 − s, then

∇(−�)−sU3 ⇀ ∇(−�)−sU4 in L2(Bρ × (0, T )). (4.20)

Combining (4.19) and (4.20) the convergence (4.18) follows.

4.4.3. Energy Estimates We state the main properties of the solution of Problem
(Pδ).

Theorem 4.9. Let s ∈ (0, 1), 1 < m < ∞ and N � 1. There exists a weak solution
U4 of Problem (Pδ) with initial data u0 ∈ L1(RN ) ∩ L∞(RN ). Moreover, U4 has
the following properties:

1. (Conservation of total mass) For all 0 < t < T we have
∫
RN

U4(x, t)dx =∫
RN

u0(x)dx .

2. (L∞-estimate) For all 0 < t < T we have ||U4(·, t)||∞ � ||u0||∞.
3. (L p-decay energy estimate) For all 1 < p < ∞ and 0 < t < T

∫
RN

U p
4 (x, t)dx + 4(p − 1)δ

p

∫ t

0

∫
RN

∣∣∣∇(U p/2
4 )

∣∣∣2 dxdt
+ p(p − 1)

m + p − 2

∫ t

0

∫
RN

Um+p−2
4 (−�)1−sU4dxdt �

∫
RN

u p
0 (x)dx .

(4.21)

4. (Second energy estimate) For all 0 < t < T we have

1

2

∫
RN

∣∣∣(−�)−
s
2U4(t)

∣∣∣2 dx + δ

∫ t

0

∫
RN

∣∣∣(−�)
1−s
2 [U4]

∣∣∣2 dxdt
+

∫ t

0

∫
RN

Um−1
4

∣∣∇(−�)−sU4(t)
∣∣2 dxdt � 1

2

∫
RN

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx .
(4.22)

Theproof is as in the previous part. The term
∫ t

0

∫
RN

(U3+μ)m−1
∣∣∇(−�)−sU4(t)

∣∣2
dxdt passes to the limit by Fatou’s Lemma since (U3 +μ)m−1 → Um−1

4 asμ → 0
pointwise.
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4.5. Limit as δ → 0

This part is quite interesting and brings some novelty in the techniques we have
employed so far. Here we use a different compactness criteria in order to derive
the convergence as δ → 0. This is a consequence of the lack of regularity that was
given by the δ-term in the previous approximating problems.

Estimates (4.21) and (4.22) provide an upper bound independent of δ. The terms
with δ coefficient are positive and bounded and therefore U4 satisfies∫
RN

U p
4 (x, t)dx+ p(p − 1)

m + p − 2

∫ t

0

∫
RN

Um+p−2
4 (−�)1−sU4dxdt �

∫
RN

u p
0 (x)dx,

(4.23)
and

1

2

∫
RN

∣∣∣(−�)−
s
2U4(t)

∣∣∣2 dx +
∫ t

0

∫
RN

Um−1
4

∣∣∇(−�)−sU4(t)
∣∣2 dxdt

� 1

2

∫
RN

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx . (4.24)

4.5.1. Existence of a Limit. Compactness Estimate II We will prove compact-
ness for the following sequence:

Wδ :=
{
U4 if m � 2

Um
4 if m > 2.

The idea is to apply Theorem 7.8 for Wδ and in order to use this compactness
criteria we need to work on a bounded domain Bρ for ρ > 0. From (4.23), applying
Stroock-Varopoulos we obtain∫

RN
u p
0 (x)dx �

∫
RN

U p
4 (x, t)dx

+ 4p(p − 1)

(m + p − 1)2

∫ t

0

∫
RN

∣∣∣∣(−�)
1−s
2 U

m+p−1
2

4

∣∣∣∣
2

dxdt.

(4.25)

In this way we get a uniform bound forWδ in L2(0, T : H1−s(Bρ)) by using (4.25)
with p = 3 − m if m � 2 and p = m + 1 if m > 2. Note that the exponent 3 − m
is again critical in the proof of existence, as happened in the article [43]. In both
cases we get that there exists a weak limit

Wδ ⇀ W in L2(0, T : H1−s(Bρ)).

Then, hypothesis a) in Theorem 7.8 is satisfied in the context V = H1−s(Bρ) and
H = L2(Bρ). However, b) also holds due to the energy estimate (4.25) for p = 2q
where q = 1 if m � 2 and q = m if m > 2. Indeed we have the following estimate

sup
δ>0

‖Wδ(t)‖L2(Bρ) = sup
δ>0

‖Uq
4 (t)‖L2(Bρ) = sup

δ>0
‖U4(t)‖qL2q (Bρ)

� ‖u0‖qL2q (Bρ)
< +∞
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for every t ∈ (0, T ). It remains to prove assumption c) of Theorem 7.8. Since
L2(Bρ) is a separable Hilbert space, we can find a countable set D dense in L2(Bρ).
Moreover, we can assume that the elements ψ ∈ D are smooth and nonnegative.

We want to prove that the family of functions gδ
ψ(t) :=< U4(·, t), ψ >L2(Bρ)

is relatively compact in L1((0, T )). First, {gδ
ψ }δ>0 is equibounded in L1((0, T ))

since

‖gδ
ψ‖L1((0,T )) :=

∫ T

0

∫
Bρ

U4(x, t)ψ(x)dxdt

�
(∫ T

0

∫
Bρ

(U4)
2dxdt

)1/2 (∫ T

0

∫
Bρ

ψ2dxdt

)1/2

≤T ‖u0‖L2(Bρ)‖ψ‖L2(Bρ).

Moreover, we also have that gδ
ψ(t) is equicontinuous in L1((0, T )): using (Pδ) we

have ∫ T

0
(gδ

ψ)′(t)dt = δ

∫ T

0
< U4,�ψ > dt

+
∫ T

0
< (−�)−

s
2U4,∇(−�)−

s
2 (Um−1

4 ∇ψ) > dt

� δ‖U4‖L2(Bρ×(0,T ))T
1/2‖�ψ‖L2(Bρ)

+ ‖(−�)−
s
2U4‖L2(Bρ×(0,T ))‖∇(−�)−

s
2 (Um−1

4 ∇ψ)‖L2(Bρ×(0,T )),

where all the terms in the last inequality are absolutely bounded in δ due to the energy
estimates (4.23) and (4.24). We use the fact that for any smooth function ψ ∈ D
we have that ψUm−1

4 ∈ L2(0, T : H1−s(RN )) and then ∇(−�)− s
2 (Um−1

4 ∇ψ) ∈
L2(RN × (0, T )) uniformly on δ.

In this way, if m � 2, since U4 = Wδ , we have that hypothesis c) of Theorem
7.8 is satisfied by Wδ . If m � 2, then < Um

4 , ψ >L2(Bρ) is clearly equibounded in

L1((0, T )). Moreover, by the equicontinuity of gδ
ψ(t) and the estimate∫ t2

t1
< Um

4 , ψ >L2(Bρ) dt � ‖u0‖m−1
L∞(RN )

∫ t2

t1
< U4, ψ >L2(�) dt,

we have that < Um
4 , ψ >L2(Bρ) is also equicontinuous in L1((0, T )). We apply

Theorem 7.6 to obtain

Wδ → W in L2(Bρ × (0, T )).

Form ≤ 2 this meansU4 → W in L2(Bρ × (0, T )) and we are done. Now, letm >

2. We haveWδ = Um
4 → W in L2(Bρ × (0, T )). Since (U4)δ ∈ L∞(RN × (0, T ))

uniformly in δ then also the limit W (x, t) ∈ L∞(RN × (0, T )). In both cases, by
the covering plus diagonal argument and Fatou’s Lemma as in Section 4.3.1, we
obtain, up to a subsequence, that

U4 → u in L2
loc(R

N × (0, T )). (4.26)
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4.5.2. The Limit u is a Weak Solution of Problem (1.1) We pass to the limit as
δ → 0 in the weak formulation corresponding to Problem (Pδ). Let φ a compactly
supported test function with support in Bρ . Then by (4.26) we get

∫ T

0

∫
RN

U4φtdxdt →
∫ T

0

∫
RN

uφtdxdt as δ → 0.

Moreover,

δ

∫ T

0

∫
RN

U4�φdxdt → 0 as δ → 0.

It remains to prove that

∫ T

0

∫
RN

Um−1
4 ∇(−�)−sU4∇φdxdt →

∫ T

0

∫
RN

um−1∇(−�)−su∇φdxdt.

(4.27)
I. Case m � 2. From L p estimate (4.25) with p = 3 − m we have that U4 ∈
H1−s(Bρ) and then U4 ⇀ u in H1−s(�). As a consequence,

∇(−�)−sU4 ⇀ ∇(−�)−su in L2(Bρ × (0, T )). (4.28)

Moreover, we have that Um−1
4 → um−1 in L2(Bρ × (0, T )), which together with

(4.28) implies (4.27).

II.Casem > 2.Wewill use the fact that∇·(−�)−s(Um−1
4 ∇φ) ∈ L p(RN ×(0, T ))

uniformly on δ, for a certain p > 1. For the sake of a clean presentation, we present
the proof of this fact in “Appendix 7.3”. On the other hand, U4 ∈ Lq(RN ) for any
Lq(RN ) uniformly on δ > 0 and thus we integrate by parts the first integral of
(4.27) to get

I (U4) :=
∫ T

0

∫
RN

Um−1
4 ∇(−�)−sU4∇φdxdt

=
∫ T

0

∫
RN

U4∇ · (−�)−s(Um−1
4 ∇φ)dxdt.

Moreover, for every φ there exists a weak limit

∇ · (−�)−s(Um−1
4 ∇φ) ⇀ v as δ → 0 in L p(RN × (0, T )).

We identify the limit in the sense of distributions and show that v = ∇ · (−�)−s

(um−1∇φ): indeed we have that

∫ T

0

∫
RN

Um−1
4 ∇φ∇(−�)−sψdxdt

→
∫ T

0

∫
RN

um−1∇φ∇(−�)−sψdxdt for all ψ ∈ C∞
c (RN × (0, T )),
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since Um−1
4 → um−1 in L1

loc(R
N × (0, T )). Therefore

∇ · (−�)−s(Um−1
4 ∇φ) ⇀ ∇ · (−�)−s(um−1∇φ)

as δ → 0 in L p(RN × (0, T )), (4.29)

for every test function φ.
Let R > 0. Then

I (U4) =
∫ T

0

∫
BR

U4∇ · (−�)−s(Um−1
4 ∇φ)dxdt

+
∫ T

0

∫
RN \BR

U4∇ · (−�)−s(Um−1
4 ∇φ)dxdt

= I1(U4) + I2(U4).

Since the sequence Um−1
4 ∇φ has the same compact support for all δ then ∇ ·

(−�)−s(Um−1
4 ∇φ) uniformly decays for large |x | (see (4.30)). Thenwe can choose

R big enough such that I2(U4) < ε/3. In the same way I2(u) < ε/3. Now, with
this given R we use that U4 → u in Lq

loc(R
N × (0, T )) together with (4.29) and

we have I1(U4) → I1(u) as δ → 0. Thus, we choose δ > 0 such that

|I (U4) − I (u)| � |I1(U4) − I1(u)| + |I2(U4)| + |I2(u)| <
ε

3
+ ε

3
+ ε

3
= ε.

We integrate by parts to obtain the desired convergence (4.27).

4.5.3. Energy Estimates We pass to the limit in the energy estimates. From
(4.23)-(4.25) we get that∫
RN

u p(x, t)dx + p(p − 1)

m + p − 2

∫ t

0

∫
RN

um+p−2(−�)1−su dxdt �
∫
RN

u p
0 (x)dx .

From (4.24) we get

1

2

∫
RN

∣∣∣(−�)−
s
2 u(t)

∣∣∣2 dx +
∫ t

0

∫
RN

um−1
∣∣∇(−�)−su(t)

∣∣2 dxdt
� 1

2

∫
RN

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx .
Wehave obtained so far the existence of aweak solution of Problem (1.1) enjoy-

ing regularity properties and the corresponding energy estimates. This concludes
the proof of Theorem 2.2.

4.6. Dealing with the Case N = 1, s ∈ [ 12 , 1)

The operator (−�)−s is not well defined when N = 1 and 1
2 < s < 1 since the

convolution kernel Ks = 1

|x |1−2s does not decay at infinity. Therefore it does not
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make sense to think of equation (1.1) in terms of a pressure. This may not be very
convenient, but the issue can be avoided by writing the equation as

ut = ∇ · (um−1∇1−2su),

where ∇1−2s denotes formally the composition operator ∇(−�)−s . According to
[4], ∇1−2s can be written in the whole range 0 < s < 1 in terms of the singular
integral formula for smooth and bounded functions

∇1−2sψ(x) = CN ,s

∫
(ψ(x) − ψ(x + z))

sign(z)

|z|N+1−2s dz. (4.30)

Note that for 1
2 < s < 1, |z|−N−1+2s ∈ L1

loc(R
N ) and decays at infinity. Note

also that ∇1−2s has the Fourier symbol given by i sign(ξ)|ξ |1−2s . Moreover, the
operator (−�)− s

2 is well defined in the whole range 0 < s < 1 even in dimension
N = 1. In this way, we have the following property:

∇1−2s = (−�)−
s
2 ∇(−�)−

s
2 = (−�)−

s
2 ∇1−s .

The L p energy estimate (2.1) still has the same form, while the second energy
estimate (2.2) needs has to be reformulated as

1

2

∫
RN

∣∣∣(−�)−
s
2 u(t)

∣∣∣2 dx +
∫ t

0

∫
RN

um−1
∣∣∣∇1−2su(t)

∣∣∣2 dxdt
� 1

2

∫
RN

∣∣∣(−�)−
s
2 u0

∣∣∣2 dx .
The proofs of Section 4 follow similarly. For the ε → 0 limit, we shall use part b)
of Lemma 3.4.

5. Existence of Solutions with Measure Data

In this section we give the proof of the existence of weak solutions taking
as initial data any μ ∈ M+(RN ), the space of nonnegative Radon measures on
R

N with finite mass. In particular, this includes the case of only integrable data
u0 ∈ L1(RN ). Therefore, we improve the results from [12,43] to less restrictive
initial data. As precedent we mention [10] where the authors extend the existence
theory form = 2 to every u0 ∈ L1(RN ). The case of measures has been considered
for the case m = 2, s → 1 in [39], and for model (1.2) in [49].

Definition 5.1. Letμ ∈ M+(RN ).We say that u � 0 is aweak solution of Problem
(1.1) with initial data μ if
(i)u ∈ L1

loc(R
N×(0, T )) , (ii)∇(−�)−su∈ L1

loc(R
N×(0, T )), (iii)um−1∇(−�)−s

u ∈ L1
loc(R

N × (0, T )),∫ T

0

∫
RN

uφt dxdt−
∫ T

0

∫
RN

um−1∇(−�)−su ·∇φ dxdt+
∫
RN

φ(x, 0)dμ(x) = 0

for all test functions φ ∈ C1
c (R

N × [0, T )).
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Theorem 5.2. Let 1 < m < ∞, N � 1 and μ ∈ M+(RN ). Then there exists a
weak solution u � 0 (in the sense of Definition 5.1) of Problem (1.1) such that the
smoothing effect (2.3) holds for p = 1 in the following sense:

‖u(·, t)‖L∞(RN ) � CN ,s,m t−γ μ(RN )δ for all t > 0,

where γ = N
(m−1)N+2(1−s) , δ = 2(1−s)

(m−1)N+2(1−s) . Moreover,

u ∈ L∞((0,∞) : L1(RN )) ∩ L∞(RN × (τ,∞)) for all τ > 0,

and it has the following properties:

1. (Conservationofmass)Forall0 < t < T wehave
∫
RN

u(x, t)dx =
∫
RN

dμ(x).

2. (L p energy estimate) For all 1 < p < ∞ and 0 < τ < t < T we have∫
RN

u p(x, t)dx + 4p(p − 1)

(m + p − 1)2

∫ t

τ

∫
RN

∣∣∣(−�)
1−s
2 u

m+p−1
2

∣∣∣2 dxdt
�

∫
RN

u p(x, τ )dx .

3. (Second energy estimate) For all 0 < τ < t < T we have

1

2

∫
RN

∣∣∣(−�)−
s
2 u(t)

∣∣∣2 dx +
∫ t

τ

∫
RN

um−1
∣∣∇(−�)−su(t)

∣∣2 dxdt
� 1

2

∫
RN

∣∣∣(−�)−
s
2 u(τ )

∣∣∣2 dx .
Remark 5. If μ is an absolutely continuous with respect to the Lebesgue measure,
it has a density u0 ∈ L1(RN ) such that dμ(x) = u0(x)dx. In this case u0 is an
initial condition in the sense given in Definition 2.1.

Proof. I. Approximation with bounded solutions. Let {ρn}n>0 be a sequence of
standard mollifiers. We define the approximate initial data by convolution, that is,
for any n > 0 we consider the function (u0)n ∈ L1(RN ) ∩ L∞(RN ) defined by

(u0)n(x) :=
∫
RN

ρn(x − z)dμ(z).

Note that, by Fubini’s Theorem, we have that

‖(u0)n‖L1(RN ) =
∫
RN

dμ(z) = μ(RN ).

It is clear that (u0)n → μ as n → ∞ in the sense required by Definition 5.1, that
is, ∫

RN
(u0)n(x)ψ(x)dx →

∫
RN

ψ(x)dμ(x) as n → ∞ (5.1)
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for all ψ ∈ C1
c (R

N ). Now let un ∈ L1(RN ) ∩ L∞(RN ) be the solution of Problem
(1.1) with initial data (u0)n provided by Theorem 2.2. Moreover, thanks to the L1-
L∞ smoothing effect given by Theorem 2.3 we have the following estimates that
are independent of n:

i) For all 0 < t < T we have ‖un(·, t)‖L1(RN ) = ‖(u0)n‖L1(RN ) = μ(RN ).
ii) For all 0 < τ < t � T we have

‖un(·, t)‖L∞(RN ) � ‖un(·, τ )‖L∞(RN ) � CN ,s,m τ−γ ‖(u0)n‖δ
L1(RN )

= CN ,s,m τ−γ μ(RN )δ,

where γ = N
(m−1)N+2(1−s) , δ = 2(1−s)

(m−1)N+2(1−s) .

Furthermore, since i) and ii) show thatun ∈ L∞(RN×(τ, T ))∩L1(RN×(0, T ))

uniformly in n, we have the following energy estimates for which the right hand
side are absolutely bounded in n (the precise bounds will be given later):

iii) For all 1 < p < ∞ and 0 < τ < t � T ,∫
RN

u p
n (x, t)dx + 4p(p − 1)

(m + p − 1)2

∫ t

τ

∫
RN

∣∣∣∣(−�)
1−s
2 u

m+p−1
2

n

∣∣∣∣
2

dxdt

�
∫
RN

u p
n (x, τ )dx .

iv) For all 0 < τ < t � T ,

1

2

∫
RN

∣∣∣(−�)−
s
2 un(t)

∣∣∣2 dx +
∫ t

τ

∫
RN

um−1
n

∣∣∇(−�)−sun(t)
∣∣2 dxdt

� 1

2

∫
RN

∣∣∣(−�)−
s
2 un(τ )

∣∣∣2 dx .
II. Convergence away from t = 0. Given any τ > 0 we can use the compactness
criteria given by Theorem 7.8 as in Section 4.5.1 to show that

un −→ uτ as n → ∞ in L2
loc(R

N × (τ, T )). (5.2)

In the weak formulation, for any φ ∈ C∞
c (RN × [0, T )), un satisfies∫ T

τ

∫
RN

unφtdxdt −
∫ T

τ

∫
RN

um−1
n ∇(−�)−sun∇φdxdt

+
∫
RN

un(τ )φ(x, τ )dx = 0.

Moreover, we can proceed as in Section 4.5.2 to prove that for any test function φ

we have ∫ T

τ

∫
RN

unφtdxdt →
∫ T

τ

∫
RN

uτ φtdxdt as δ → 0.

and∫ T

τ

∫
RN

um−1
n ∇(−�)−sun∇φ dxdt →

∫ T

τ

∫
RN

(uτ )m−1∇(−�)−suτ∇ φdxdt.
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III. Uniform estimates at t = 0. In order to show that we can pass to the limit
as τ → 0 to obtain a weak solution of Problem (1.1) we need to prove that the
remaining terms converge to zero as τ → 0. First of all,∣∣∣∣

∫ τ

0

∫
RN

unφt dxdt

∣∣∣∣ � C
∫ τ

0
‖un(·, t)‖L1(RN )dt = Cτμ(RN ).

Now we use the classical Riesz embedding (c.f [45]) and that un(·, t) ∈ L1(RN ) ∩
L∞(RN ) for any t > 0 to get∫

RN

∣∣∣(−�)−
s
2 un(t)

∣∣∣2 dx � C‖un(t)‖2p with
1

2
= 1

p
− s

N
.

Also, from the smoothing effect, we have

‖un(t)‖p
p � ‖un(t)‖1‖un(t)‖p−1∞ � Cμ(RN )1+(p−1)δt−γ (p−1).

In this way, we get ∫
RN

∣∣∣(−�)−
s
2 un(t)

∣∣∣2 dx � Cμ(RN )σ t−λ

for some σ > 0, and

λ = 2γ (p − 1)

p
= 2N

(m − 1)N + 2 − 2s

N − 2s

2N
= N − 2s

(m − 1)N + 2 − 2s
.

Consider the strip Qk = R
N × (tk, tk−1) with tk = 2−k . Then∫ ∫

Qk

um−1
n |∇(−�)−sun|dxdt �

(∫ ∫
Qk

um−1
n dxdt

)1/2

×
(∫ ∫

Qk

um−1
n |∇(−�)−sun|2dxdt

)1/2

� ‖un(t)‖
m−2
2

L∞(Qk )

(
μ(RN )tk

)1/2 (
1

2

∫
RN

∣∣∣(−�)−
s
2 un(tk)

∣∣∣2 dx)1/2

� Cμ(RN )σ̂ t
−γ m−2

2
k t

1
2
k t

− λ
2

k

= Cμ(RN )σ̂ tαk

for some σ̂ > 0, and

α = 1

2

(
1 − γ (m − 2) − N − 2s

(m − 1)N + 2 − 2s

)
= 1

(m − 1)N + 2 − 2s
> 0.
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In this way, ∣∣∣∣
∫ τ

0

∫
RN

um−1
n ∇(−�)−sun∇φdxdt

∣∣∣∣
� ‖∇φ‖∞

∫ τ

0

∫
RN

um−1
n |∇(−�)−sun|dxdt � �(τ)

(5.3)

for some modulus of continuity �.
IV. Initial data. The only thing left is to prove that the initial data is taken. Let φ

be a C1
c (R

N ) test function. Then, using the estimate given by (5.3), we get∣∣∣∣
∫
RN

(un(τ ) − (u0)n)φdx

∣∣∣∣ =
∣∣∣∣
∫ τ

0

∫
RN

∂t unφ dxdt

∣∣∣∣
=

∣∣∣∣
∫ τ

0

∫
RN

um−1
n ∇(−�)−sun∇φ dxdt

∣∣∣∣ � �(τ).

(5.4)

A standard diagonal procedure in n and τ concludes the proof.
V. Conservation of mass.We can also conclude conservation of mass by taking a
sequence of test functions of the cutoff type, φR(x) = φ(x/R) with 0 � φ � 1
and φ1(x) = 1 for |x | � 1 and such that ‖∇φR‖L∞(RN ) = O(R−1) (see Appendix
A.2 in [43] for more details). Then, using (5.3) and (5.4), we get that for any τ > 0
we have ∣∣∣∣

∫
RN

un(τ )φRdx −
∫
RN

(u0)nφRdx

∣∣∣∣ � C
�(τ)

R
.

In particular, the previous estimate implies that∫
RN

un(τ )φRdx �
∫
RN

(u0)nφRdx − C�(τ)/R

=
∫
RN

(u0)nφRdx −
∫
RN

φR(x)dμ(x)

+
∫
RN

φR(x)dμ(x) − C�(τ)/R.

In view of (5.2) and (5.1) we can let n → ∞ in the previous estimate to get∫
RN

u(τ )φRdx �
∫
RN

φR(x)dμ(x) − C�(τ)/R.

Note that, since μ is measure with finite mass in RN , then∫
RN

φR(x)dμ(x) � μ(RN ) − ε(R),

with ε(R) → 0 as R → ∞. Therefore,∫
RN

u(τ )φRdx � μ(RN ) − ε(R) − C�(τ)/R.
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Now, letting R → ∞, we get∫
RN

u(τ ) dx � μ(RN ).

In this way we show that no mass is lost at infinity during the evolution. The other
inequality comes from the construction of solutions. 
�
Remark 6. The proof of mass conservation given in Theorem 5.2 is strongly based
on the estimates available from the L1 − L∞ smoothing effect. This is a more pow-
erful tool than the one presented in [43] where the assumption of the boundedness
on solution was unavoidable.

6. Comments and Open Problems

• First energy estimate. Let u be the solution of Problem (1.1). The following
formal estimates can be derived for any t > 0:

|(2 − m)(3 − m)|
∫ t

0

∫
RN

|∇(−�)
− s

2 u|2dxdt+
∫
RN

u(t)3−mdx�
∫
RN

u3−m
0 dx if m �=2, 3.

∫ t

0

∫
RN

|∇(−�)
− s

2 u|2dxdt+
∫
RN

(u(t)−log(u(t))) dx�
∫
RN

(u0−log(u0)) dx if m=3.

∫ t

0

∫
RN

|∇(−�)
− s

2 u|2dxdt +
∫
RN

u(t) log(u(t))dx �
∫
RN

u0 log(u0)dx if m=2.

(6.1)

This kind of energy estimates were a key tool to prove existence in the previous
paper [43]. When m ∈ (1, 2), they only require u0 ∈ L1(RN ) ∩ L∞(RN ) in
order to have uniform bounds on the L2(RN × (0, T )) norm of ∇(−�)− s

2 u. When
m ∈ [2, 3) they are still being useful energy estimates, but an additional decay has
to be imposed to u0. In [43] we proved that if u0 decays exponentially for large
|x |, then u(t) has a similar decay and (6.1) gives us meaningful information. For
m � 3, (6.1) is not valid anymore with a decay property. This has motivated us
to use a different approximation technique in the present paper which satisfies a
different energy estimate (2.1) without any additional conditions to be imposed on
the initial data.
• The L p-energy estimate (2.1) can be proved for a general nonlinearity ϕ(u):∫

RN
ϕ(u)(x, t)dx +

∫ t

0

∫
RN

∣∣∣(−�)
1−s
2 ψ(u)

∣∣∣2 dxdt �
∫
RN

ϕ(u0)(x)dx,

where (ψ ′)2(a) = ϕ′′(a)am−1. This kind of energy estimate is used in [4] and in
[20].
• More general equations and estimates. The techniques employed in this paper
can be used to prove existence results for more general equations of the form

ut (x, t) = ∇ · (G ′(u)∇(−�)−su), (6.2)
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(a) Solution for model (6.3) with s = 0.5 (b) Solution for model (6.4) with s = 0.5

Fig. 1. More general equations of type (6.2)

where G : [0,+∞) → [0,+∞) has at most linear growth at the origin or G ′ > 0.
The general Stroock-Varopoulos Inequality (7.1) allows us to obtain an energy
inequality in this case as well.

∫
RN

ϕ(u)(x, t)dx +
∫ t

0

∫
RN

∣∣∣(−�)
1−s
2 ψ(u)

∣∣∣2 dxdt �
∫
RN

ϕ(u0)(x)dx,

where (ψ ′)2(a) = ϕ′′(a)G ′(a). A few examples are as follows:
a) We consider G(u) = 1

m (u+ 1)m , then G ′(u) = (u+ 1)m−1 and the model is

ut (x, t) = ∇ ·
(
(u + 1)m−1∇(−�)−su

)
. (6.3)

This corresponds to the approximating problem (Pδμ) without viscosity μ = 1,
δ = 0. There is positive velocity and the solutions seem to have infinite speed of
propagation. See Figure 1a for the particular case m = 2.

b) Let G(u) = log(1 + u), then G ′(u) = 1
1+u , and the model is

ut (x, t) = ∇ ·
(

1

1 + u
∇(−�)−su

)
. (6.4)

We provide a numerical simulation in Figure 1b. This may correspond to m → 0,
m > 0. This nonlinearity has been considered for the Fractional Porous Medium
Equation ut + (−�)s log(1 + u) = 0 in [17].
• Finite/infinite speed of propagation depending on the nonlinearity. In [43]
some preliminary results have been obtained concerning the positivity properties
of the solution of Problem (1.1). Jointly with the existence theory developed in the
present work for all 1 < m < ∞ we have the following results so far:

a) Let N � 1,m ∈ [2,+∞), s ∈ (0, 1) and let u be a constructed weak solution
to Problem (1.1) with compactly supported initial data u0 ∈ L1(RN ) ∩ L∞(RN ).
Then, u(·, t) is also compactly supported for any t > 0, that is the solution has
finite speed of propagation. This causes the appearance of free boundaries.

b) Let N = 1,m ∈ (1, 2), s ∈ (0, 1). Then for any t > 0 and any R > 0, the set
MR,t = {x : |x | � R, u(x, t) > 0} has positive measure even if u0 is compactly
supported. This is a weak form of infinite speed of propagation. If moreover u0
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is radially symmetric and monotone non-increasing in |x |, then we get a clearer
result: u(x, t) > 0 for all x ∈ R and t > 0.
• The effect of the nonlocal operator on the diffusion. The parameter s ∈ (0, 1)
plays a crucial role in the the diffusion effects. We thus have that:

a) In the limit s → 1, we get ut = ∇ · (um−1∇(−�)−1u), which is no more a
diffusion equation. This is an interesting problem to be further investigated. When
m = 2, it has been proved in [39] that the model gives in the limit s → 1 a “mean
field” equation arising in superconductivity and superfluidity. For this equation, the
authors obtain uniqueness in the class of bounded solutions, universal bounds and
regularity results. Note that Hölder regularity is no more true for the standard class
of bounded integrable solutions.

b) When s → 0 we get ut = ∇ · (um−1∇u) which is the classical Porous
Medium Equation ut = 1

m�um with m > 1. It is known that solutions propagate
with finite speed and have Cα regularity.

Such limit processes have not been justified with analytical rigor for m �= 2.
We provide some numerical simulations which confirm the behaviour of solutions
for different values of m and s (see [18,22]). Figures 2a, 2c, 2e indicate the effect
of diffusion in the infinite speed of propagation case. Figures 2b, 2d, 2f indicate the
effect of diffusion in the finite speed of propagation case. Note that the larger the
s, the slower is the diffusion velocity.
• The question of uniqueness.

As mentioned in the introduction there is an open problem about uniqueness in
several space dimensions. There are recent uniqueness results if the initial data are
smooth; see Zhou et al. [52], who obtain unique local-in-time strong solutions in
Besov spaces; that is, for initial data in Bα

1,∞ if 1/2 � s < 1 and α > N + 1 with
N � 2 (see also [51]). On the other hand, Duerincks [25] proves uniqueness and
stability of solutions having a given regularity, based on previous work by Serfaty
in the Coulomb case [38]. These results need to be extended to our model.
• Other open problems.
− The problem in a bounded domain with Dirichlet or Neumann data has not
scarcely studied. See Nguyen and Vázquez [34] for Dirichlet data.
− We have considered only nonnegative solutions on physical grounds, but we
could have also considered signed solutions after writing the equation as ut =
∇ · (|u|m−1∇(−�)−su).
− Good numerical studies are needed. A rigorous study of convergent numerical
schemes is developed in [21] in dimension N = 1.

7. Appendix

7.1. Functional Inequalities Related to the Fractional Laplacian

We recall some functional inequalities related to the fractional Laplacian oper-
ator that we used throughout the paper. We refer to [16] for the proofs.

Lemma 7.1. (Stroock-Varopoulos Inequality) Let 0 < s < 1, q > 1. Then∫
RN

|v|q−2v(−�)svdx � 4(q − 1)

q2

∫
RN

∣∣∣(−�)s/2|v|q/2
∣∣∣2 dx
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(a) m = 1.5, s = 0.25 (b) m = 2, s = 0.25

(c) m = 1.5, s = 0.5 (d) m = 2, s = 0.5

(e) m = 1.5, s = 0.75 (f) m = 2,s = 0.75

Fig. 2. Infinite versus finite speed of propagation for different pressures

for all v ∈ Lq(RN ) such that (−�)sv ∈ Lq(RN ).

Lemma 7.2. (Generalized Stroock-Varopoulos Inequality) Let 0 < s < 1. Then∫
RN

ψ(v)(−�)svdx �
∫
RN

∣∣∣(−�)s/2�(v)

∣∣∣2 dx (7.1)

whenever ψ ′ = (� ′)2.

Theorem 7.3. (Sobolev Inequality) Let 0 < s < 1 (s < 1
2 if N = 1). Then

‖ f ‖ 2N
N−2s

� Ss

∥∥∥(−�)s/2 f
∥∥∥
2
,

where the best constant is given in [8] page 31.
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Theorem 7.4. (Nash-Gagliardo-Nirenberg type inequality) Let 0 < s < 1 (s <
1
2 if N = 1), p � 1, r > 1, 0 < s < min{N/2, 1}. Then there exists a constant
C = C(p, r, s, N ) > 0 such that for any f ∈ L p(RN ) with (−�)s f ∈ Lr (RN )

we have
‖ f ‖α+1

r2 � C
∥∥(−�)s f

∥∥
r ‖ f ‖α

p, (7.2)

where r2 = N (rp+r−p)
r(N−2s) , α = p(r−1)

r .

7.2. Compactness Criteria

Necessary and sufficient conditions of convergence in the spaces L p(0, T : B)

are given by Simon in [40]. We recall now their applications to evolution problems.
We consider the spaces X ⊂ B ⊂ Y with compact embedding X ⊂ B.

Lemma 7.5. Let F be a bounded family of functions in L p(0, T : X), where 1 �
p < ∞ and ∂F/∂t = {∂ f/∂t : f ∈ F} be bounded in L1(0, T : Y ). Then the
family F is relatively compact in L p(0, T : B).

We refer to Rakotoson and Temam [36] for proof of the following lemmas (7.6 and
7.7):

Lemma 7.6. Let (V, ‖ · ‖V ), (H, ‖ · ‖H ) two separable Hilbert spaces. Assume
that V ⊂ H with a compact and dense embedding. Consider a sequence (uδ)δ>0
converging weakly to a function u in L2(0, T : V ), T < +∞. Then uδ → u
strongly in L2(0, T : H) if and only if

(i) uδ(t) ⇀ u(t) in H for almost everywhere t;
(ii) limmeas(E)→0,E⊂[0,T ] supδ>0

∫
E ‖uδ(t)‖2Hdt = 0.

Lemma 7.7. Let H be a separable Hilbert space. Consider uδ a sequence of func-
tions satisfying the following:

1) For almost every t ⊂ (0, T ), supδ>0 ‖uδ(t)‖H is finite.
2) u ⇀ u in L2(0, T : H).
3) There exists a countable set D dense in H such that for allψ ∈ D, the sequence

gδ
ψ(t) =< uδ(t), ψ >H is relatively compact in L1(0, T ).

Then, there exists a subsequence (δ) = (δD) such that uδ(t) ⇀ u(t) in H-weak for
almost every t .

Combining both of the above lemmas, the following optimal compactness the-
orem holds:

Theorem 7.8. Let (V, ‖ · ‖V ), (H, ‖ · ‖H ) two separable Hilbert spaces. Assume
that V ⊂ H with a compact and dense embedding. Consider a sequence (uδ)δ>0
such that

a) uδ ⇀ u in L2(0, T : V ), T < +∞;
b) For almost every t ∈ (0, T ); supδ>0 ‖uδ(t)‖H is finite;
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c) There exists a countable set D dense in H such that for allψ ∈ D, the sequence
gδ
ψ(t) =< uδ(t), ψ >H is relatively compact in L1((0, T )).

Then, up to a subsequence, uδ → u strongly in L2(0, T : H).

Proof. Weak convergence in L2(0, T : V ) implies weak convergence in L2(0, T :
H), therefore a) implies assumption 2) in Lemma 7.7. By Lemma 7.7 we obtain
that, up to a subsequence, uδ(t) ⇀ u(t) in H -weak for almost every t . Moreover,
the upper bound given by 1) implies (ii) from Lemma 7.6. Then, using Lemma 7.6,
we obtain that uδ → u strongly in L2(0, T : H). 
�

7.3. A Technical Result Related to the Approximation Arguments

LetU4 be as given in Section 4.5.Wewant to show that∇·(−�)−s(Um−1
4 ∇φ) ∈

L p(RN×(0, T )) for some p > 1.Wewill express the operator∇·(−�)−s using the
Riesz transforms applied to the Riesz potential operator or to a fractional operator,
depending on the range of s.

First let s ∈ (0, 1/2). We have that

∇ · (−�)−s(Um−1
4 ∇φ) = ∇ · (−�)−1/2(−�)1/2−s(Um−1

4 ∇φ)

=
N∑
j=1

∂x j (−�)−1/2(−�)1/2−s(Um−1
4 ∂x j φ),

where R j := ∂x j (−�)−1/2 are the Riesz Transforms which are bounded linear

operators from L2 to L2. Notice that (−�)1/2−s(Um−1
4 ∇φ) ∈ L2 since

(−�)1/2−s(Um−1
4 ∂x j φ) = (−�)1/2−s(Um−1

4 ) ∂x j φ +Um−1
4 (−�)1/2−s(∂x j φ)

−H1/2−s(Um−1
4 , ∂x j φ),

where Hs is the remaining in the fractional Leibniz formula, also called Carré du
Champ operator [3, Ch. 1.4.2] :

Hs( f, g)(x) := P.V .

∫
RN

( f (x) − f (y))(g(x) − g(y))

|x − y|N+2s dy.

Note that, by Hölder’s Inequality,

‖H1/2−s(Um−1
4 , ∂x j φ)‖2L2 �

∫
|H1/2−s(Um−1

4 ,Um−1
4 )|dx

·
∫

|H1/2−s(∂x jφ, ∂x j φ)|dx

= ‖(−�)
1/2−s

2 (Um−1
4 )‖2L2 ‖(−�)

1/2−s
2 (∂x j φ)‖2L2 < ∞.

Thus, using the energy estimate (4.21) with p = m − 1, we get that

‖(−�)1/2−s(Um−1
4 ∂x j φ)‖L2 ≤‖(−�)1/2−s(Um−1

4 )‖L2 ‖∂x j φ‖L2

+ ‖Um−1
4 ‖L2 ‖(−�)1/2−s(∂x jφ)‖L2

+ ‖H1/2−s(Um−1
4 , ∂x j φ)‖L2 < ∞.
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We have used the energy estimate (4.24) for U4 with p = m − 1. We then obtain
that

∇ · (−�)−s(Um−1
4 ∇φ) ∈ L2(RN × (0, T )),

since

‖∇ · (−�)−s(Um−1
4 · ∇φ)‖L2 =

∥∥∥∥∥∥
N∑
j=1

∂x j (−�)−1/2(−�)1/2−s(Um−1
4 ∂x j φ)

∥∥∥∥∥∥
L2

�
N∑
j=1

‖R j (−�)1/2−s(Um−1
4 ∂x j φ)‖L2

�
N∑
j=1

‖(−�)1/2−s(Um−1
4 ∂x j φ)‖L2 < ∞.

Consider now s ∈ [1/2, 1). We interpret the term as follows:

∇ · (−�)−s(Um−1
4 ∇φ) = ∇(−�)−1/2(−�)−(s−1/2)(Um−1

4 ∇φ),

where the Riesz vector transformR j := ∂x j (−�)−1/2 is a bounded operator in L p

for 1 < p < ∞ [28, Cor. 4.2.8, pp. 274]. Then Um−1
4 ∇φ ∈ L p(RN × (0, T )) for

every p > 1, since

‖Um−1
4 ∇φ‖L p =

(∫
RN

U p(m−1)
4 |∇φ|pdx

)1/p

� ‖U4‖
p(m−2)

p∞
(∫

RN
U p
4 |∇φ|pdx

)1/p

< ∞.

It follows that for s ∈ [1/2, 1), the operator (−�)−(s−1/2) = I2s−1 is the Riesz
potential, and we have

‖(−�)−(s−1/2)(Um−1
4 ∇φ)‖Lq � ‖Um−1

4 ∇φ‖L p < ∞, ,
1

q
= 1

p
− 2s − 1

N

for all p < N/(2s − 1). Since N/(2s − 1) > 1 for all s ∈ [1/2, 1), we have that
∇ · (−�)−s(Um−1

4 ∇φ) ∈ Lq(RN × (0, T )) for some q > 1.
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