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Abstract

We explore the local existence and properties of classical weak solutions to
the initial-boundary value problem for a class of quasilinear equations of elastody-
namics in one space dimension with a non-convex stored-energy function, a model
of phase transitions in elastic bars proposed by Ericksen (J Elast 5(3–4):191–
201,1975). The instantaneous phase separation and formation of microstructures
of such solutions are observed for all smooth initial data with initial strain having
its range that overlaps with the phase transition zone of the Piola–Kirchhoff stress.
Moreover, we can select those solutions in a way that their phase gauges are close to
a certain number inherited from amodified hyperbolic problem and thus give rise to
an internal strain–stress hysteresis loop. As a byproduct, we prove the existence of
a measure-valued solution to the problem that is generated by a sequence of weak
solutions but not a weak solution itself. It is also shown that the problem admits
a local weak solution for all smooth initial data and local weak solutions that are
smooth for a short period of time and exhibit microstructures thereafter for certain
smooth initial data.

1. Introduction

The evolution process of a one-dimensional continuous medium with elastic
response can be modeled by quasilinear wave equations of the form

utt = (σ (ux ))x , (1.1)

where u = u(x, t) denotes the displacement of a reference point x at time t and
σ = σ(s) the Piola–Kirchhoff stress, which is the derivative of a stored-energy
function W = W (s)� 0. With v = ux and w = ut , one may study equation (1.1)
as the system of conservation laws
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{
vt = wx ,

wt = (σ (v))x .
(1.2)

For the case of a strictly convex stored-energy function, the existence of weak
or classical solutions to equation (1.1) and to its vectorial case has been studied
extensively. Global weak solutions to system (1.2) and hence to equation (1.1) were
established in a classical work by DiPerna [19] via a vanishing viscosity method
in the framework of the compensated compactness of Tartar [52] for L∞ data and
later byLin [36] and Shearer [47] in an L p setup. This frameworkwas also used to
construct global weak solutions to (1.1) via relaxation methods by Serre [46] and
Tzavaras [54]. An alternative variational scheme was studied byDemoulini et al.
[16] via time discretization. However the existence of global weak solutions to the
vectorial case of (1.1) is still open. In regard to classical solutions to (1.1) and to its
vectorial case, one can refer to Dafermos and Hrusa [11] for the local existence
of smooth solutions, to Klainerman and Sideris [34] for the global existence of
smooth solutions for small initial data in dimension 3, and to Dafermos [13] for
the uniqueness of a smooth solution in the class of BVweak solutions whose shock
intensity is not too strong.

The convexity assumptionon the stored-energy functionhas often been regarded
as a severe restriction getting a good viewpoint on the actual behavior of elastic
materials (see, example, [24, Section 2] and [7, Section 8]). However there have
not been many analytic works dealing with the lack of convexity on the energy
function. For the vectorial case of equation (1.1) in dimension 3, measure-valued
solutions were constructed for polyconvex energy functions by Demoulini et al.
[17]. Also by the same authors [18], in an identical situation, it was shown that a
dissipative measure-valued solution coincides with a strong one provided the latter
exists. Assuming convexity on the energy function at infinity but not allowing
polyconvexity, measure-valued solutions were obtained by Rieger [45] for the
vectorial case of (1.1) in any dimension. Despite of all these existence results, there
has been no known example of a non-convex energy function with which (1.1)
admits classical weak solutions in general other than the measure-valued ones
above.

In this paper, we study the initial-boundary value problem of non-convex elas-
todynamics in one space dimension:⎧⎪⎨

⎪⎩
utt = (σ (ux ))x in �T := � × (0, T ),

u(0, t) = u(1, t) = 0 for t ∈ (0, T ),

u = g, ut = h on � × {t = 0},
(1.3)

where � := (0, 1) ⊂ R is the domain occupied by a reference configuration of
an elastic bar, T > 0 is a fixed number, g = g(x) is the initial displacement of
the bar, h = h(x) is the initial rate of change of the displacement, and the stress
σ : (−1,∞) → R is given as in Fig. 1. The zero boundary condition here amounts
to the physical situation of fixing the end-points of the bar; that is, in the context
of elasticity, the bar is held fixed at the left end-point and loaded in a hard device
with d(1, t) = 1, where d(x, t) = u(x, t) + x is the deformation of the bar. In
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Fig. 1. Non-monotone Piola–Kirchhoff stress σ

this case, the energy function W : (−1,∞) → [0,∞) may satisfy W (s) → ∞ as
s → −1+, but this is not required in this work.

Problem (1.3) with a non-monotone stress σ as in Fig. 1 was proposed by
Ericksen [21] as a model of the phenomena of phase transitions in elastic bars, and
the stability analysis for the corresponding elastostatics was thoroughly carried out
by James [25] (see also [51]). Beyond these works, there have beenmany studies on
this problem that usually fall into two types. One direction of study is to consider the
Riemann problem of the system of conservation laws of mixed type (1.2), initiated
by James [26] and followed by numerous works (see, example, Shearer [48],
Pego and Serre [42] andHattori [23]). Another path is to study the viscoelastic
version of equation (1.1). In this regard, Dafermos [12] considered the equation
utt = σ(ux , uxt )x + f (x, t) under certain parabolicity and growth conditions
and established the global existence and uniqueness of a smooth solution with its
asymptotic behavior as t → ∞. Following the work of Andrews [2], Andrews
and Ball [3] proved the global existence of weak solutions to the equation utt =
uxxt + σ(ux )x for non-smooth initial data and studied their large-time behaviors.
For the same equation, Pego [41] characterized the large-time convergence of weak
solutions in a strong sense to several different types of stationary state. Nonetheless,
to our best knowledge, the main theorem below may be the first general existence
result on weak solutions to (1.3), not in the stream of the Riemann problem nor that
of non-convex viscoelastodynamics. Moreover, we go beyond the simple existence
result to explore some interesting properties that obtained solutions can satisfy (see
below and Section 2).

Let σ be given as in Fig. 1 (see Subsection 2.1 for precise assumptions). We
adopt a natural definition of weak solutions to problem (1.3) as follows:

Definition 1.1. For an initial datum (g, h) ∈ W 1,∞
0 (�) × L∞(�), a function u ∈

W 1,∞(�T ) is called a weak solution to (1.3) provided that the strain ux � − 1+ θ

a.e. in �T , for some constant θ > 0, that for all ϕ ∈ C∞
c (� × [0, T )) one has
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∫
�T

(utϕt − σ(ux )ϕx ) dxdt = −
∫ 1

0
h(x)ϕ(x, 0) dx, (1.4)

and that {
u(0, t) = u(1, t) = 0 for t ∈ (0, T ),

u(x, 0) = g(x) for x ∈ �.
(1.5)

We may informally call such a weak solution a classical weak solution to mean
that it is not merely a generalized measure-valued solution as in the next definition,
but also truly a weak solution in the sense of distributions (see [15,37]).

Definition 1.2. Let (g, h) ∈ W 1,∞
0 (�) × L∞(�) be an initial datum. Let (u, ν) be

the pair of a function u ∈ W 1,∞(�T ) and a parametrized family ν = {ν(x,t)}(x,t)∈�T

of probability measures in R that are all supported in a compact interval J ⊂
(−1,∞) with the following property: for each f = f (s) ∈ C(R),

�T � (x, t) �→ 〈ν(x,t), f 〉 := ∫
R

f (s) dν(x,t)(s) is measurable.

Then the pair (u, ν) is called a measure-valued solution to (1.3), provided that
the strain ux � − 1 + θ a.e. in �T , for some constant θ > 0, that for all ϕ ∈
C∞

c (� × [0, T )) one has∫
�T

(utϕt − 〈ν, σ 〉ϕx ) dxdt = −
∫ 1

0
h(x)ϕ(x, 0) dx, (1.6)

and that (1.5) is satisfied.

We remark that if u ∈ W 1,∞(�T ) is a weak solution to problem (1.3), then
(u, ν) is a measure-valued solution to (1.3) by letting

ν(x,t) = δux (x,t) for a.e. (x, t) ∈ �T , (1.7)

where δs denotes the point mass at each s ∈ R. Motivated by this observation, we
shall say that a measure-valued solution (u, ν) to (1.3) is a weak solution to (1.3)
if (1.7) is satisfied.

We refer to the graph of the stress σ on the interval (−1, s1) as the α-branch and
that of σ on (s2,∞) as the β-branch (see Fig. 1). We also say that a weak solution
u to (1.3) is in the α-phase (β-phase, resp.) at a point (x, t) ∈ �T if ux (x, t) ∈
(−1, s1) (ux (x, t) ∈ (s2,∞), resp.) and that these twophases are a stable phase. The
graph of σ on [s1, s2] will be called the unstable branch because, in elastostatics,
displacements with values of their strain in [s1, s2] can never satisfy the so-called
Weierstrass condition, which serves as a necessary condition for metastability (see
[25]). For this reason, we will only look for weak solutions u to problem (1.3)
with strain–stress (ux , σ (ux )) lying in the α- or β-branch. Thus we introduce the
following terminology:

Definition 1.3. For an initial datum (g, h) ∈ W 1,∞
0 (�) × L∞(�), a weak solution

u to (1.3) is called a two-phase weak solution provided that for a.e. (x, t) ∈ �T , u
is in the α- or β-phase at (x, t) and that{ |{(x, t) ∈ �T | u is in the α-phase at (x, t)}| > 0,

|{(x, t) ∈ �T | u is in the β-phase at (x, t)}| > 0.
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The main existence result of the paper is Theorem 1.4 (below), which will be
further strengthened and elaborated under a suitable setup in Section 2. Roughly
speaking, obtained solutions behave like a hyperbolic evolution in some part of the
space-time domain�T and have a discontinuous strain in the other part of�T with a
sharp separation into the two stable phases. In the course of proving the existence of
such solutions, we quantify phase separation by introducing the concept of phase
gauge and show that the gauge of the solution to a certain modified hyperbolic
problem can be almost carried over to the solutions for existence. Moreover, this
notion of gauge plays a crucial role in extracting the formation of microstructures
in the obtained solutions.

The main result in a simplified form below is a direct consequence of the
elaboratedmain result, Theorem 2.1, so we do not include the proof of this theorem.

Theorem 1.4. (Main result: simplified) Let σ satisfy Hypothesis (A) in Subsection
2.1 (see Fig. 1), and let (g, h) ∈ W 3,2

0 (�)×W 2,2
0 (�) be such that s∗

1 < g′(x0) < s∗
2

for some x0 ∈ � and that g′(x) > −1 for all x ∈ �̄. Then there exist a finite
number T > 0, a function u∗ ∈ C2(�̄T ), a compact set D ⊂ (−1,∞) × R, three
disjoint open sets Q1, Q2, Q3 ⊂ �T with Q2 �= ∅, ∂ Q2 ∩ (� × {t = 0}) �= ∅,
u∗

x (Q̄2) ⊂ (s∗
1 , s∗

2 ) and ∂ Q1 ∩ ∂ Q3 = ∅, and a sequence {Qk
2}k∈N of disjoint open

subsets of Q2 with | ∪k∈N Qk
2| = |Q2|, Q1

2 �= ∅, and ∂ Q1
2 ∩ (� × {t = 0}) �= ∅

such that for each ε > 0, there are infinitely many two-phase weak solutions
u ∈ W 1,∞

u∗ (�T ) to problem (1.3) satisfying the following:

(1) u = u∗ on Q1 ∪ Q3,
(2) ‖u − u∗‖L∞(�T ) < ε,

(3) ∇u ∈ D a.e. in �T , where ∇ := (∂x , ∂t ),
(4) for each k ∈ N, there are four numbers sk

a,+, sk
b,+ ∈ (s2, s∗

2 ) and sk
a,−, sk

b,− ∈
(s∗

1 , s1), independent of ε and u, with

sk
a,− < sk

b,− < inf
Qk
2

u∗
x � sup

Qk
2

u∗
x < sk

a,+ < sk
b,+

such that |Qk,u
2,+| > 0, |Qk,u

2,−| > 0 and |Qk,u
2,+| + |Qk,u

2,−| = |Qk
2|, where

Qk,u
2,± :=

{
(x, t) ∈ Qk

2 | ux (x, t) ∈ [sk
a,±, sk

b,±]
}

.

To observe the formation of microstructures of such solutions u in Q2, fix a
decreasing sequence of positive reals ε j → 0. For each j ∈ N, let u j be a two-
phase weak solution to (1.3) corresponding to ε = ε j in the above theorem. Let k
be any positive integer such that Qk

2 �= ∅. For a.e. t ∈ (0, T ) with (Qk
2)

t := {x ∈
� | (x, t) ∈ Qk

2} �= ∅, we see from (4) that for all j ∈ N, (u j )x (·, t) is trapped in
the two disjoint intervals [sk

a,±, sk
b,±] a.e. in (Qk

2)
t , while u∗

x (·, t) smoothly varies

in the interval [infQk
2

u∗
x , supQk

2
u∗

x ] in (Qk
2)

t . On the other hand, thanks to (2),

sup
(Qk

2)
t

|u j (·, t) − u∗(·, t)| < ε j → 0 as j → ∞.
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Fig. 2. Microstructure of u j (·, t) and smooth u∗(·, t)

Thus as the index j ∈ N increases, the u j (·, t) become highly oscillatory near
u∗(·, t) and exhibit finer andfinermicrostructures in the nonempty open set (Qk

2)
t ⊂

� = (0, 1); see Fig. 2.
The previous argument applies to the case k = 1, since Q1

2 �= ∅. In this case, as
∂ Q1

2 ∩ (� × {t = 0}) �= ∅, we can certainly take a decreasing sequence of positive
times tn → 0 such that the argument applies to each time t = tn . We may say that
the formation of microstructures of the u j is instantaneous in this sense.

The existence and non-uniqueness of weak solutions to problem (1.3) have
been generally accepted (especially, in the context of the Riemann problem) and
actively studied in the field of solid mechanics. Such non-uniqueness has been
usually understood to be arising from a constitutive deficiency in the theory of
elastodynamics, reflecting the need to incorporate some additional relations (see,
example, Slemrod [50],Abeyaratne andKnowles [1] and Truskinovsky and
Zanzotto [53]).

Unfortunately, the existence of global weak solutions to problem (1.3) cannot
be obtained in the course of proving the main result, Theorem 2.1, as it would
require a global classical solution to some modified hyperbolic problem that serves
as a certain subsolution in our proof, but such a global one might not exist due to a
possible shock formation at a finite time. Thus it may be an interesting question to
study whether global weak solutions to (1.3) can be achieved by another method.

We now introduce a motivational approach to attack problem (1.3) with σ as
in Fig. 1. To solve equation (1.1) in the sense of distributions in �T , suppose there
exists a vector function w = (u, v) ∈ W 1,∞(�T ;R2) such that

vx = ut and vt = σ(ux ) a.e. in �T . (1.8)

We remark that this formulation is motivated by the approach in [57] and different
from the usual setup of conservation laws (1.2). For all ϕ ∈ C∞

c (�T ), we then have

∫
�T

utϕt dxdt =
∫

�T

vxϕt dxdt =
∫

�T

vtϕx dxdt =
∫

�T

σ(ux )ϕx dxdt;
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hence having (1.8) is sufficient to solve (1.1) in the sense of distributions in �T .
Equivalently, we can rewrite (1.8) as

∇w =
(

ux ut

vx vt

)
=
(

ux vx

vx σ(ux )

)
a.e. in �T ,

where ∇ denotes the space-time gradient operator. Set

�σ =
{(

s c
c σ(s)

)
∈ M

2×2
sym

∣∣∣ s, c ∈ R

}
.

We can now recast (1.8) as a homogeneous partial differential inclusion with a
linear constraint on the antidiagonal:

∇w(x, t) ∈ �σ , a.e. (x, t) ∈ �T .

We will solve this inclusion for a suitable subset K of �σ to incorporate some
detailed properties of weak solutions to (1.3).

Homogeneous differential inclusions of the form ∇w ∈ K ⊂ M
m×n were first

encountered and successfully understood in the study of crystal microstructure by
Ball and James [4], Chipot and Kinderlehrer [6] and with a constraint on
a minor of ∇w by Müller and Šverák [38]. General inhomogeneous differen-
tial inclusions were studied by Dacorogna and Marcellini [10] using Baire’s
category method and by Müller and Sychev [40] using the method of con-
vex integration; see also [33]. Moreover, the methods of differential inclusions
have been applied to other important problems concerning elliptic systems [39],
Euler equations [14], the porous media equation [8], active scalar equations [49],
the Monge-Ampere equation [35], non-parabolic diffusions [27–30,57], ferromag-
netism [56], and scalar conservation laws in 1-D [55].

The rest of the paper is organized as follows: Section 2 begins with precise
structural assumptions on the stress σ(s) corresponding to Fig. 1. Then the notion
of a subsolution of a certain partial differential inclusion and its phase gauge is
introduced and followed by the detailed statement of the main result, Theorem 2.1,
along with some interesting corollaries. In Section 3, Theorem 2.1 is proved under
the pivotal density result, Theorem 3.1. In Section 4, a major tool for proving the
density result is established in a general form. Lastly, Section 5 carries out the proof
of the density result, Theorem 3.1.

In closing this section, we fix some notation. Let m, n be positive integers. We
denote byMm×n the space of m × n real matrices and byMn×n

sym that of symmetric
n ×n real matrices. We use O(n) to denote the space of n ×n orthogonal matrices.
For a givenmatrix M ∈ M

m×n , we write Mi j for the component of M in the i th row
and j th column and MT for the transpose of M . For a bounded domain U ⊂ R

n

and a function w∗ ∈ W m,p(U ) (1� p � ∞), we use W m,p
w∗ (U ) to denote the space

of functions w ∈ W m,p(U ) with boundary trace w∗. If E ⊂ R
n is measurable, |E |

denotes its n-dimensional Lebesgue measure.
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2. Precise Statement of the Main Theorem

We begin this section with structural assumptions on the stress σ(s) corre-
sponding to Fig. 1. We then introduce the notion of a subsolution of a related
partial differential inclusion and define its phase gauge (see [31]). Based on such
assumptions and definitions, we give a detailed statement of the main result, The-
orem 2.1. Also, some interesting byproducts are presented as Corollaries 2.3, 2.4
and 2.5, along with their proofs.

2.1. Hypothesis on the Stress σ

We impose the following conditions on the stress σ : (−1,∞) → R (see
Fig. 1):

Hypothesis (A): There exist two numbers s2 > s1 > −1 with the following
properties:

(a) σ ∈ C3((−1, s1) ∪ (s2,∞)) ∩ C(−1,∞);
(b) lim

s→−1+ σ(s) = −∞;

(c) σ(s1) > σ(s2), and σ ′(s) > 0 for all s ∈ (−1, s1) ∪ (s2,∞);
(d) There exist two numbers c > 0 and s1 + 1 > ρ > 0 such that σ ′(s)� c for all

s ∈ (−1, s1 − ρ] ∪ [s2 + ρ,∞);
(e) Let s∗

1 ∈ (−1, s1) and s∗
2 ∈ (s2,∞) denote the unique numbers with σ(s∗

1 ) =
σ(s2) and σ(s∗

2 ) = σ(s1), respectively.

For each r ∈ (σ (s2), σ (s1)), let s−(r) ∈ (s∗
1 , s1) and s+(r) ∈ (s2, s∗

2 ) denote
the unique numbers with σ(s±(r)) = r. We may call the interval (s∗

1 , s∗
2 ) the

phase transition zone of problem (1.3) since the phase separation and formation
of microstructures of weak solutions to (1.3) are observed to occur whenever the
range of the initial strain g′ overlaps with the interval (s∗

1 , s∗
2 ) (see Theorem 2.1).

Note that this zone (s∗
1 , s∗

2 ) includes the interval [s1, s2] for the unstable branch
of σ .

2.2. Subsolution and Phase Gauge

Let ra and rb be any two numbers with σ(s2) < ra < rb < σ(s1). We define
some related sets (see Fig. 3):

K̃ ra ,rb± =
{
(s, σ (s)) ∈ R

2 | s±(ra)� s � s±(rb)
}

,

K̃ ra ,rb = K̃ ra ,rb+ ∪ K̃ ra ,rb− ,

Ũra ,rb =
{
(s, r) ∈ R

2
∣∣∣ ra < r < rb, 0 < λ < 1,

s = λs−(r) + (1 − λ)s+(r)

}
,

K = K ra ,rb =
{(

s c
c r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ K̃ ra ,rb , c ∈ R

}
,

U = Ura ,rb =
{(

s c
c r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ Ũra ,rb , c ∈ R

}
.

(2.1)
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Note that K̃ ra ,rb+ and K̃ ra ,rb− are the closed portion of the β- and α-branch of the
stress σ , respectively, that is cut by the constant stress values r = ra and r = rb.

Also, Ũra ,rb is the open region, surrounded by K̃ ra ,rb± , r = ra and r = rb.
We now consider the partial differential inclusion

∇w(x, t) ∈ K , a.e. (x, t) ∈ Q, (2.2)

where Q ⊂ R
2 is a bounded open set and w = (u, v) : Q → R

2 is a Lipschitz
function.

We say that a Lipschitz function w : Q → R
2 is a subsolution of differential

inclusion (2.2) in Q if

∇w(x, t) ∈ K ∪ U, a.e. (x, t) ∈ Q,

and that it is a strict subsolution of (2.2) in Q if

∇w(x, t) ∈ U, a.e. (x, t) ∈ Q.

Assume Q �= ∅, and let w = (u, v) : Q → R
2 be a subsolution of differential

inclusion (2.2). For a.e. (x, t) ∈ Q, we can define the quantity

Z Q
w (x, t) = ux (x, t) − s−(vt (x, t))

s+(vt (x, t)) − s−(vt (x, t))
∈ [0, 1].

We then define the phase gauge of w over Q by

�Q
w = 1

|Q|
∫

Q
Z Q

w (x, t) dxdt ∈ [0, 1].

This gauge measures the tendency of the diagonal (ux , vt ) of ∇w over Q towards
the portion K̃ ra ,rb+ of the β-branch; in particular,

�Q
w = 1 ⇐⇒ (ux , vt ) ∈ K̃ ra ,rb+ a.e. in Q,

and

�Q
w = 0 ⇐⇒ (ux , vt ) ∈ K̃ ra ,rb− a.e. in Q.

It is also easy to see that if w is a strict subsolution of (2.2), then 0 < �
Q
w < 1.

If u : Q → R is a Lipschitz solution of equation (1.1) in the sense of distribu-
tions in Q such that

ux (x, t) ∈ [s−(ra), s−(rb)] ∪ [s+(ra), s+(rb)], a.e. (x, t) ∈ Q,

then, with a stream function v : Q → R defined by

vx = ut a.e. in Q,

which is unique up to a constant in each connected component of Q, the pair
w = (u, v) becomes a solution and thus a subsolution of differential inclusion
(2.2). In this case, we define the phase gauge γ

Q
u of u over Q by

γ Q
u = �Q

w .
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σ(s2)
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r2
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s1s∗
1s−(r1) s∗

2s+(r2)s+(r1)

Fig. 3. The original σ(s) and modified σ∗(s)

It is then easy to see that the following relations hold:

|Qu+| = γ Q
u |Q| and |Qu−| = (1 − γ Q

u )|Q|,

where

Qu± := {(x, t) ∈ Q | ux (x, t) ∈ [s±(ra), s±(rb)]}.

2.3. The Main Result

Prior to stating the main result of the paper in an elaborated form under Hypoth-
esis (A), we set up suitable assumptions and definitions for the statement.

(Initial datum):We assume that the initial datum (g, h) to problem (1.3) satisfies

⎧⎨
⎩

(g, h) ∈ W 3,2
0 (�) × W 2,2

0 (�),

g′(x) > −1 for all x ∈ �̄,
s∗
1 < g′(x0) < s∗

2 for some x0 ∈ �.
(2.3)

(Modified hyperbolic problem): We fix any two numbers σ(s2) < r1 < r2 <

σ(s1) so that

s−(r1) < g′(x0) < s+(r2).

Using elementary calculus, from Hypothesis (A), we can find a function σ ∗ ∈
C3(−1,∞) (see Fig. 3) such that⎧⎪⎪⎨

⎪⎪⎩
σ ∗(s) = σ(s) for all s ∈ (−1, s−(r1)] ∪ [s+(r2),∞),
(σ ∗)′(s)� c∗ for all s ∈ (−1,∞), for some constant c∗ > 0,
σ ∗(s) < σ(s) for all s−(r1) < s � s−(r2), and
σ ∗(s) > σ(s) for all s+(r1)� s < s+(r2).

(2.4)
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(Function u∗): Thanks to [11, Theorem 5.2], there exists a finite number T > 0
such that the modified initial-boundary value problem⎧⎪⎨

⎪⎩
u∗

t t = (σ ∗(u∗
x ))x in �T ,

u∗(0, t) = u∗(1, t) = 0 for t ∈ (0, T ),

u∗ = g, u∗
t = h on � × {t = 0}

(2.5)

admits a unique solution u∗ ∈ ⋂3
k=0 Ck([0, T ]; W 3−k,2

0 (�)) with u∗
x > −1 on

�̄T , where W 0,2
0 (�) := L2(�); then by the Sobolev embedding theorem, we have

u∗ ∈ C2(�̄T ). Let⎧⎪⎨
⎪⎩

Q1 = {(x, t) ∈ �T | u∗
x (x, t) < s−(r1)},

Q2 = {(x, t) ∈ �T | s−(r1) < u∗
x (x, t) < s+(r2)},

Q3 = {(x, t) ∈ �T | u∗
x (x, t) > s+(r2)};

then ⎧⎨
⎩

∂ Q1 ∩ �0 ⊂ {(x, 0) | x ∈ �, g′(x)� s−(r1)},
∂ Q2 ∩ �0 ⊂ {(x, 0) | x ∈ �, s−(r1)� g′(x)� s+(r2)},
∂ Q3 ∩ �0 ⊂ {(x, 0) | x ∈ �, g′(x)� s+(r2)},

(2.6)

and ∂ Q1∩∂ Q3 = ∅, where�0 := �×{t = 0}. As s−(r1) < g′(x0) = u∗
x (x0, 0) <

s+(r2), we also have Q2 �= ∅ and ∂ Q2 ∩ (� × {t = 0}) �= ∅.
(Separation of domain Q2): Observe that

|{(x, t) ∈ Q2 | u∗
x (x, t) = s}| = 0

for all but at most countably many s ∈ (s−(r1), s+(r2)). Fix any point s0 ∈ (s1, s2)
so that

|{(x, t) ∈ Q2 | u∗
x (x, t) = s0}| = 0.

Let us write s20 = s20∗ = s0 and r20 = σ ∗(s20) = σ ∗(s20∗) = σ ∗(s0). Define
recursively that

s2k∗ = s+(σ ∗(s2(k−1)∗)) for each k ∈ N;
then s20∗ < s21∗ < s22∗ < · · · < s+(r2) and limk→∞ s2k∗ = s+(r2).

Choose a point s21 ∈ (s20∗, s21∗) so that
|{(x, t) ∈ Q2 | u∗

x (x, t) = s21}| = 0,

and write r21 = σ ∗(s21). Then

s20 = s20∗ < s21 < s21∗ = s+(σ ∗(s20∗)) = s+(r20) < s+(r21),

that is,

s20 < s21 < s+(r20) < s+(r21).

Note that s22∗ = s+(σ ∗(s21∗)) > s+(σ ∗(s21)) = s+(r21), and so

s21∗ < s+(r21) < s22∗.
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Next, choose a point s22 ∈ (s21∗, s+(r21)) (thus s21∗ < s22 < s22∗) so that

|{(x, t) ∈ Q2 | u∗
x (x, t) = s22}| = 0,

and write r22 = σ ∗(s22). Then

s21 < s21∗ < s22 < s+(r21) < s22∗ = s+(σ ∗(s21∗)) < s+(r22),

that is,

s21 < s22 < s+(r21) < s+(r22).

Note that s23∗ = s+(σ ∗(s22∗)) > s+(σ ∗(s22)) = s+(r22), and so

s22∗ < s+(r22) < s23∗.

Having chosen s21, . . . , s2k for some k � 2 so that, with r2 j := σ ∗(s2 j ) ( j =
1, . . . , k),⎧⎪⎪⎨

⎪⎪⎩
s2( j−1)∗ < s2 j < s2 j∗ for j = 1, . . . , k,

|{(x, t) ∈ Q2 | u∗
x (x, t) = s2 j }| = 0 for j = 1, . . . , k,

s2( j−1) < s2 j < s+(r2( j−1)) < s+(r2 j ) for j = 1, . . . , k,

s2k∗ < s+(r2k) < s2(k+1)∗,

choose a point s2(k+1) ∈ (s2k∗, s+(r2k)) (thus s2k∗ < s2(k+1) < s2(k+1)∗) so that

|{(x, t) ∈ Q2 | u∗
x (x, t) = s2(k+1)}| = 0,

and write r2(k+1) = σ ∗(s2(k+1)). Then

s2k < s2k∗ < s2(k+1) < s+(r2k) < s2(k+1)∗ = s+(σ ∗(s2k∗)) < s+(r2(k+1)),

that is,

s2k < s2(k+1) < s+(r2k) < s+(r2(k+1)).

Note that s2(k+2)∗ = s+(σ ∗(s2(k+1)∗)) > s+(σ ∗(s2(k+1))) = s+(r2(k+1)), and so

s2(k+1)∗ < s+(r2(k+1)) < s2(k+2)∗.

By induction, we have constructed a sequence {s2k}k∈N of reals such that⎧⎨
⎩

s0 = s20 < s21 < s22 < · · · < s+(r2), limk→∞ s2k = s+(r2),
|{(x, t) ∈ Q2 | u∗

x (x, t) = s2k}| = 0 ∀k ∈ N,

s−(r2(k−1)) < s−(r2k) < s2(k−1) < s2k < s+(r2(k−1)) < s+(r2k) ∀k ∈ N,

where r2k := σ ∗(s2k) for each k ∈ N. Similarly, we can construct a sequence
{s1k}k∈N of reals such that⎧⎨
⎩

s0 = s10 > s11 > s12 > · · · > s−(r1), limk→∞ s1k = s−(r1),
|{(x, t) ∈ Q2 | u∗

x (x, t) = s1k}| = 0 ∀k ∈ N,

s−(r1k) < s−(r1(k−1)) < s1k < s1(k−1) < s+(r1k) < s+(r1(k−1)) ∀k ∈ N,

where r1k := σ ∗(s1k) for each k ∈ N.
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Now, we define, for each k ∈ N,{
Q1k

2 = {(x, t) ∈ Q2 | s1k < u∗
x (x, t) < s1(k−1)},

Q2k
2 = {(x, t) ∈ Q2 | s2(k−1) < u∗

x (x, t) < s2k}.
Then, by the above construction, {Qik

2 | (i, k) ∈ {1, 2}×N} is a countable collection
of pairwise disjoint open subsets of Q2 whose union has measure |Q2|. Let us write

� = {(i, k) ∈ {1, 2} × N | Qik
2 �= ∅}.

Since |Q2| > 0, we can guarantee that at least one of the sets Qik
2 is nonempty;

that is, � �= ∅.

From the above construction, we check that ∃(i0, k0) ∈ � such that

∂ Qi0k0
2 ∩ (� × {t = 0}) �= ∅.

We only consider the case that s0 � g′(x0) < s+(r2). (The other case that s−(r1) <

g′(x0) < s0 can be handled similarly.) In this case, there is a unique k0 ∈ N such that
s2(k0−1) � g′(x0) = u∗

x (x0, 0) < s2k0 . If s2(k0−1) < g′(x0) = u∗
x (x0, 0) < s2k0 ,

we can take a small r0 > 0 so that u∗
x (�T ∩ Br0(x0, 0)) ⊂ (s2(k0−1), s2k0), and

so �T ∩ Br0(x0, 0) ⊂ Q2k0
2 , where Br0(x0, 0) is the open ball in R

2 with center
(x0, 0) and radius r0. Thus,

∅ �= (� ∩ (x0 − r0, x0 + r0)) × {t = 0} ⊂ ∂ Q2k0
2 ∩ (� × {t = 0}).

Next, assume s2(k0−1) = g′(x0) = u∗
x (x0, 0). If ∃r0 > 0 such that u∗

x (�T ∩
Br0(x0, 0)) = {s2(k0−1)}, then

|{(x, t) ∈ Q2 | u∗
x (x, t) = s2(k0−1)}| > 0,

which is a contradiction to the above construction. Thus we can choose a sequence
�T � (xn, tn) → (x0, 0) such that either s2(k0−2) < u∗

x (xn, tn) < s2(k0−1) ∀n ∈ N

or s2(k0−1) < u∗
x (xn, tn) < s2k0 ∀n ∈ N, and

either (x0, 0) ∈ ∂ Q2(k0−1)
2 or (x0, 0) ∈ ∂ Q2k0

2 .

(Here, if k0 = 1, then Q20
2 should be regarded as Q11

2 .)

(Strict subsolution w∗):We define

v∗(x, t) =
∫ x

0
h(z) dz +

∫ t

0
σ ∗(u∗

x (x, τ )) dτ ∀(x, t) ∈ �T .

From (2.5), we see that w∗ := (u∗, v∗) satisfies

v∗
x = u∗

t and v∗
t = σ ∗(u∗

x ) in �T . (2.7)

This implies that v∗ ∈ C2(�̄T ), hence w∗ ∈ C2(�̄T ;R2). From (2.4) and (2.7), it
also follows thatw∗ is a strict subsolution of differential inclusion (2.2) in Q2,where

ra and rb replaced by r1 and r2, respectively (see Fig. 3), so its phase gauge �
Qik
2

w∗
over Qik

2 lies in the interval (0, 1)whenever (i, k) ∈ �. In particular, the total phase

gauge �
Q2
w∗ belongs to (0, 1).

Under Hypothesis (A) and the above setup, we are now ready to state the main
result of the paper in a detailed fashion.
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Theorem 2.1. (Main result: detailed) For each ε > 0, there exist a number Tε ∈
(0, T ) and infinitely many two-phase weak solutions u ∈ W 1,∞

u∗ (�T ) to problem
(1.3) satisfying the following properties:

(a) Approximate initial rate of change:

‖ut − H‖L∞(�Tε ) < ε,

where �Tε := � × (0, Tε) and H(x, t) := h(x);
(b) Approximate properties:

(i) ‖u − u∗‖L∞(�T ) < ε,

(ii) ‖ut‖L∞(�T ) < ‖u∗
t ‖L∞(�T ) + ε;

(c) Classical part:
(i) u = u∗ on Q1 ∪ Q3,

(ii) ux (x, t)

{∈ (−1, s−(r1)) ∀(x, t) ∈ Q1,

> s+(r2) ∀(x, t) ∈ Q3;
(d) Phase separation in Qik

2 : if (i, k) ∈ �, then

(i) ux (x, t) ∈
{ [s−(r1k), s−(r1(k−1))] ∪ [s+(r1k), s+(r1(k−1))] if i = 1,

[s−(r2(k−1)), s−(r2k)] ∪ [s+(r2(k−1)), s+(r2k)] if i = 2,
for

a.e. (x, t) ∈ Qik
2 ,

(ii) |Qik,u
2,+ | > 0, |Qik,u

2,− | > 0 and |Qik,u
2,+ | + |Qik,u

2,− | = |Qik
2 |,

where

Qik,u
2,± :=

{ {(x, t) ∈ Q1k
2 | ux (x, t) ∈ [s±(r1k), s±(r1(k−1))]} if i = 1,

{(x, t) ∈ Q2k
2 | ux (x, t) ∈ [s±(r2(k−1)), s±(r2k)]} if i = 2;

(e) Total phase separation in Q2:
(i) ux (x, t) ∈ (s−(r1), s−(r2)) ∪ (s+(r1), s+(r2)), a.e. (x, t) ∈ Q2,
(ii) |Qu

2,+| = γ
Q2

u |Q2|, |Qu
2,−| = (1 − γ

Q2
u )|Q2|,

(iii) |γ Q2
u − �

Q2
w∗ | < ε,

where

Qu
2,± := {(x, t) ∈ Q2 | ux (x, t) ∈ (s±(r1), s±(r2))} ;

(f) Borderline: ux (x, t) ∈ {s−(r1), s+(r2)}, a.e. (x, t) ∈ �T \(∪3
i=1Qi ).

Here several remarks are in order. In (d), it is important to note that for (i, k) ∈ �,

s−(r1k) < s−(r1(k−1)) < s1k < s1(k−1) < s+(r1k) < s+(r1(k−1)) if i = 1,
s−(r2(k−1)) < s−(r2k) < s2(k−1) < s2k < s+(r2(k−1)) < s+(r2k) if i = 2.

Thus the (essential) ranges of ux and u∗
x are non-overlapping in Qik

2 . This and
(b)(i) are the key facts that allow us to observe microstructures of two-phase weak
solutions u if ε > 0 is small enough as carefully examined after the statement of
Theorem 1.4.

Note that deformations of the elastic bar corresponding to the solutions u,
d(x, t) = u(x, t) + x , satisfy

dx (x, t) = ux (x, t) + 1� min
�̄T

u∗
x + 1 > −1 + 1 = 0, a.e. (x, t) ∈ �T ;
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s0

σ(s)

r1

r2

s−(r1)s−(r2) s+(r2)s+(r1)

Fig. 4. Strain–stress hysteresis loop

this guarantees that for a.e. t ∈ (0, T ), the deformations d : [0, 1] × {t} → [0, 1]
are strictly increasing with d(0, t) = 0 and d(1, t) = 1. Moreover, for such a
t ∈ (0, T ), d(x, t) are smooth (as much as the initial displacement g) for the values
of x ∈ [0, 1] at which slope dx (x, t) ∈ (0, s−(r1) + 1) ∪ (s+(r2) + 1,∞) and
Lipschitz a.e. on [0, 1]. In particular, these dynamic deformations fulfill a natural
physical requirement of invertibility for the motion of an elastic bar not allowing
interpenetration.

By (c), in Q1, the solutions u are identical to u∗ and thus a hyperbolic evolution
in theα-phase below the threshold s−(r1). Likewise, in Q3, the u are equal to u∗ and
in the β-phase above s+(r2). According to (c), (e) and (f), the phase separation of u
into the two stable phases only occurs in Q2 �= ∅ with the proportion γ

Q2
u , which

can be arbitrarily close to the number�Q2
w∗ ∈ (0, 1). If 0 < ε < min{�Q2

w∗ , 1−�
Q2
w∗ },

we have 0 < γ
Q2

u < 1; that is, the phase of u in Q2 is indeed separated into the
α-phase on (s−(r1), s−(r2)) and the β-phase on (s+(r1), s+(r2)). Thus there is a
formation of fine-scale strain–stress hysteresis loop in Q2 (see Fig. 4).

2.4. Some Corollaries

In this subsection, we present some interesting byproducts of the main result,
Theorem 2.1, along with their proofs, respectively.

For the first corollary, we define some terminologies. Let C0(R) denote the
closure of the space Cc(R) of continuous functions f : R → R with compact
support by the uniform norm. By the Riesz Representation Theorem, the dual of
C0(R) can be identified with the spaceM(R) of signed Radon measures in R with
finite mass via the pairing

〈μ, f 〉 =
∫
R

f dμ (μ ∈ M(R), f ∈ C0(R)).
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Let U ⊂ R
2 be a bounded open set. A map μ = μ(x,t) : U → M(R) is called

weakly-� measurable if the function (x, t) �→ 〈μ(x,t), f 〉 is measurable for each
f ∈ C0(R). We denote by L∞

� (U ;M(R)) the space of weakly-� measurable maps
μ : U → M(R) that are essentially bounded. Then L∞

� (U ;M(R)) is the dual of
the separable Banach space L1(U ; C0(R)) via the pairing

〈μ, f 〉 =
∫

U
〈μ(x,t), f(x,t)〉 dxdt (μ ∈ L∞

� (U ;M(R)), f ∈ L1(U ; C0(R));

for a proof of this, see, example, [20, p. 588]. We say that a sequence {μ j } j∈N in
L∞

� (U ;M(R)) converges weakly-� to a map μ ∈ L∞
� (U ;M(R)) and write

μ j
�−⇀ μ in L∞

� (U ;M(R)),

provided that for each f ∈ L1(U ; C0(R)), 〈μ j , f 〉 → 〈μ, f 〉 in R.
Motivated by [37, p. 43], we introduce the following definition:

Definition 2.2. A map ν ∈ L∞
� (U ;M(R)) is called a W 1,∞ spatial-derivative

Young measure in R if there exist a sequence u j ∈ W 1,∞(U ) and a function
u ∈ W 1,∞(U ) such that{

u j
�−⇀ u and (u j )x

�−⇀ ux in L∞(U ),

δ(u j )x (·)
�−⇀ ν in L∞

� (U ;M(R)).

In this case, ν is said to be generated by the sequence of spatial derivatives (u j )x .

We now state and prove the existence of a measure-valued solution (u∗, ν) to
problem (1.3) with ν generated by a sequence of two-phase weak solutions u j to
(1.3) that develops finer and finer microstructures, where u∗ is as in Theorem 2.1.

Corollary 2.3. (Measure-valued solution)Assume all of the hypotheses of Theorem
2.1. Let {ε j } j∈N be any sequence of positive reals such that ε j → 0. For each j ∈ N,

let u j ∈ W 1,∞
u∗ (�T ) be a two-phase weak solution to (1.3) corresponding to ε = ε j

in Theorem 2.1. Then after passing to a subsequence if necessary, one has⎧⎪⎨
⎪⎩

u j → u∗ in L∞(�T ),

∇u j
�−⇀ ∇u∗ in L∞(�T ;R2),

δ(u j )x (·)
�−⇀ ν in L∞

� (�T ;M(R))

(2.8)

for some map ν ∈ L∞
� (�T ;M(R)) with the property that there exists a compact

interval J ⊂ (−1,∞) such that for a.e. (x, t) ∈ �T , ν(x,t) is a probability measure
in R that is supported in J . Moreover, (u∗, ν) is a measure-valued solution to (1.3)
that is not a weak solution itself. In particular, ν is a W 1,∞ spatial-derivative Young
measure in R, generated by the (sub)sequence {(u j )x } j∈N.

Proof. Note from Theorem 2.1 that there exists a compact set D ⊂ (−1,∞) × R

such that for all j ∈ N, ∇u j ∈ D a.e. in �T . In particular, for some compact
interval J ⊂ (−1,∞), for all j ∈ N, (u j )x ∈ J a.e. in �T . Appealing to (b)(i) of
Theorem 2.1 and to the Banach-Alaoglu Theorem, after passing to a subsequence
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if necessary, we obtain (2.8) for some map ν ∈ L∞
� (�T ;M(R)) such that for

a.e. (x, t) ∈ �T , ν(x,t) is a probability measure in R that is supported in J . Thus
ν is a W 1,∞ spatial-derivative Young measure in R, generated by the sequence
{(u j )x } j∈N.

It remains to check that (u∗, ν) is a measure-valued solution to (1.3) that is not
a weak solution. To do so, let ϕ ∈ C∞

c (� × [0, T )). Choose a function σ̄ ∈ Cc(R)

so that σ̄ = σ on the interval J ⊂ (−1,∞). Let f : �T → C0(R) be the map
given by

f(x,t)(s) = σ̄ (s)ϕx (x, t) for (x, t) ∈ �T , s ∈ R.

Then, clearly, f ∈ L1(�T ; C0(R)). Thus the weak-� convergence of δ(u j )x (·) to ν

implies that as j → ∞,

∫
�T

σ((u j )x )ϕx dxdt = 〈δ(u j )x (·), f 〉 → 〈ν, f 〉 =
∫

�T

〈ν, σ 〉ϕx dxdt.

Since (u j )t converges weakly-� to u∗
t , we also have

∫
�T

(u j )tϕt dxdt →
∫

�T

u∗
t ϕt dxdt.

On the other hand, since u j is a weak solution to (1.3), we have

∫
�T

((u j )tϕt − σ((u j )x )ϕx ) dxdt = −
∫ 1

0
h(x)ϕ(x, 0) dx .

Thus passing to the limit as j → ∞, we obtain

∫
�T

(u∗
t ϕt − 〈ν, σ 〉ϕx ) dxdt = −

∫ 1

0
h(x)ϕ(x, 0) dx .

Since u∗ satisfies (2.5), it now follows that (u∗, ν) is a measure-valued solution to
(1.3). Also, note from Theorem 2.1 that for each (i, k) ∈ � �= ∅,

(u j )x �→ u∗
x in measure in Qik

2 ,

so it is easily checked that ν(x,t) �= δ
u∗

x (x,t)
in a set of positive measure in Qik

2 .
Therefore, (u∗, ν) is not a weak solution to (1.3). ��

Secondly, we prove the local existence of weak solutions to problem (1.3) for
all smooth initial data.

Corollary 2.4. (Existence) For any initial datum (g, h) ∈ W 3,2
0 (�) × W 2,2

0 (�)

with g′ > −1 on �̄, there exists a finite number T > 0 for which problem (1.3) has
a weak solution.
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Proof. Let (g, h) ∈ W 3,2
0 (�) × W 2,2

0 (�) be any given initial datum such that
g′ > −1 on �̄. If g′(x0) ∈ (s∗

1 , s∗
2 ) for some x0 ∈ �, then the result follows

immediately from Theorem 2.1.
Next, let us assume g′(x) �∈ (s∗

1 , s∗
2 ) for all x ∈ �̄. We may only consider the

case that g′(x)� s∗
2 for all x ∈ �̄ as the other case can be shown similarly. Fix any

two σ(s2) < r1 < r2 < σ(s1), and choose a function σ ∗ ∈ C3(−1,∞) in such a
way that (2.4) is fulfilled. By [11, Theorem 5.2], there exists a finite number T̃ > 0
such that the modified initial-boundary value problem (2.5), with T replaced by T̃ ,
admits a unique solution u∗ ∈ ∩3

k=0Ck([0, T̃ ]; W 3−k,2
0 (�)) with u∗

x > −1 on �̄T̃ .
Now, choose a number 0 < T � T̃ so that u∗

x � s+(r2) on �̄T . Then u∗ itself is a
classical and thus weak solution to problem (1.3). ��

Lastly, we address the existence of local two-phase weak solutions to (1.3)
that are all identical and smooth for a short period of time and then exhibit phase
separation as well as microstructures for some smooth initial data.

Corollary 2.5. (Microstructures after a finite time) Let (g, h) ∈ W 3,2
0 (�) ×

W 2,2
0 (�) satisfy g′ > −1 on �̄. Assume either max�̄ g′ ∈ (s∗

1 , s1) or min�̄ g′ ∈
(s2, s∗

2 ). Then there exist finite numbers T > T ′ > 0 such that problem
(1.3) admits infinitely many two-phase weak solutions that are all equal to
some u∗ ∈ ∩3

k=0Ck([0, T ′]; W 3−k,2
0 (�)) in �T ′ and exhibit phase separation and

microstructures from t = T ′ as in Theorem 2.1.

Proof. Let (g, h) ∈ W 3,2
0 (�) × W 2,2

0 (�) satisfy max�̄ g′ ∈ (s∗
1 , s1) or min�̄ g′ ∈

(s2, s∗
2 ). Assume also that g′ > −1 on �̄. We may only consider the case that

M := max�̄ g′ ∈ (s∗
1 , s1) as the other case can be handled in a similar way.

Fix any two numbers σ(s2) < r1 < r2 < σ(s1) so that s−(r1) > M. Then take
a function σ ∗(s) ∈ C3(−1,∞) satisfying (2.4). Using [11, Theorem 5.2], we can
find a finite number T̃ > 0 such that the modified problem (2.5), with T replaced
by T̃ , has a unique solution u∗ ∈ ∩3

k=0Ck([0, T̃ ]; W 3−k,2
0 (�)) with u∗

x > −1 on
�̄T̃ . Then choose a number 0 < T ′ � T̃ so small that u∗

x � s−(r1) on �̄T ′ and that
s∗
1 < u∗

x (x0, T ′) for some x0 ∈ �. With the initial datum (u∗(·, T ′), u∗
t (·, T ′)) ∈

W 3,2
0 (�) × W 2,2

0 (�) at t = T ′ such that u∗
x (·, T ′) > −1 on �̄, we can apply

Theorem 2.1 to obtain, for some finite number T > T ′, infinitely many two-phase
weak solutions ũ ∈ W 1,∞(� × (T ′, T )) to the initial-boundary value problem

⎧⎪⎨
⎪⎩

ũt t = σ(ũx )x in � × (T ′, T ),

ũ(0, t) = ũ(1, t) = 0 for t ∈ (T ′, T ),

ũ = u∗, ũt = u∗
t on � × {t = T ′}

satisfying the stated properties in the theorem. Then the glued functions u =
u∗χ�×(0,T ′) + ũχ�×[T ′,T ) are two-phase weak solutions to problem (1.3) fulfilling
the required properties. ��
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3. Proof of the Main Theorem

In this section, we prove the main result, Theorem 2.1, with the help of the
density result, Theorem 3.1, to be verified in Sections 4 and 5.

To start the proof, fix any ε > 0. For clarity, we divide the proof into several
steps.

(Related matrix sets): Following notation (2.1), let

Kβ =
{(

s b
b r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ K̃ r1,r2 , |b| � β

}
,

and for each k ∈ N, define the sets

K 1k
β =

{(
s b
b r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ K̃ r1k ,r1(k−1)
, |b| �β

}
,

K 2k
β =

{(
s b
b r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ K̃ r2(k−1),r2k
, |b| � β

}
,

U 1k
β =

{(
s b
b r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ Ũr1k ,r1(k−1)
, |b| < β

}
,

U 2k
β =

{(
s b
b r

)
∈ M

2×2
sym

∣∣∣ (s, r) ∈ Ũr2(k−1),r2k
, |b| < β

}
,

where ε′ := ε/2 and β := ‖u∗
t ‖L∞(�T ) + ε′ (irrelevant to the term “β-phase”).

(Admissible class):We can choose a number Tε ∈ (0, T ) so that

‖u∗
t − H‖L∞(�Tε ) < ε′.

For each (i, k) ∈ �, let

εik∗ = min

{
1

2
min{�Qik

2
w∗ , 1 − �

Qik
2

w∗ }, ε′
}

> 0.

The admissible class A is defined to be the set of all functions w = (u, v) ∈
W 1,∞

w∗ (�T ;R2) ∩ C2(�̄T ;R2) satisfying the following:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

there exists a finite set �w ⊂ � such that w = w∗ in �T \(∪(i,k)∈�w
Q̄ik

w )

for some open sets Qik
w ⊂⊂ Qik

2 with (i, k) ∈ �w and |∂ Qik
w | = 0,

∇w(x, t) ∈ Uik
β ∀(x, t) ∈ Qik

2 ,∀(i, k) ∈ �,

|�Qik
2

w − �
Qik
2

w∗ | < εik∗ ∀(i, k) ∈ �,
‖u − u∗‖L∞(�T ) < ε′, ‖ut − H‖L∞(�Tε ) < ε′.

It is then easy to see from the definition of w∗ that w∗ ∈ A �= ∅. For each δ > 0,
we also define the δ-subclass Aδ by

Aδ =
{
w ∈ A

∣∣∣ ∫
Q2

dist(∇w(x, t), Kβ) dxdt � δ|Q2|
}

.

(Density result): One crucial step for the proof of Theorem 2.1 is the following
density result whose proof appears in Section 5.
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Theorem 3.1. For each δ > 0,

Aδ is dense in A with respect to the L∞(�T ;R2)-norm.

(Baire’s category method): Let X denote the closure of A in the space
L∞(�T ;R2), so that (X , L∞) is a nonempty complete metric space. As the Uik

β

are uniformly bounded in M
2×2
sym , A is also bounded in W 1,∞

w∗ (�T ;R2); thus it is
easily checked that

X ⊂ W 1,∞
w∗ (�T ;R2).

Note that the space-time gradient operator∇ : X → L1(�T ;M2×2) is a Baire-one
map (see, example, [9, Proposition 10.17]), so by the Baire Category Theorem (see,
example, [9, Theorem 10.15]), the set of points of discontinuity of the operator ∇,
sayD∇ , is a set of the first category; thus the set of points at which∇ is continuous,
that is, C∇ := X \D∇ , is dense in X .

(Completion of proof): Let us now confirm that for any functionw = (u, v) ∈ C∇ ,
its first component u is a two-phase weak solution to problem (1.3) satisfying (a)–
(f). To this end, fix any w = (u, v) ∈ C∇ .

(1.4) & (1.5): To verify (1.4), let ϕ ∈ C∞
c (� × [0, T )). From Theorem 3.1 and

the density of A in X , we can choose a sequence w j = (u j , v j ) ∈ A1/j such that
w j → w inX as j → ∞. Asw ∈ C∇ , we have∇w j → ∇w in L1(�T ;M2×2) and
so pointwise a.e. in �T after passing to a subsequence if necessary. By (2.7) and
the definition of A, we have (v j )x = (u j )t in �T and (v j )x (x, 0) = v∗

x (x, 0) =
u∗

t (x, 0) = h(x) (x ∈ �), so from the choice of the test function ϕ,∫
�T

(u j )tϕt dxdt =
∫

�T

(v j )xϕt dxdt

= −
∫

�T

(v j )xtϕ dxdt −
∫ 1

0
(v j )x (x, 0)ϕ(x, 0) dx

=
∫

�T

(v j )tϕx dxdt −
∫ 1

0
h(x)ϕ(x, 0) dx,

that is, ∫
�T

((u j )tϕt − (v j )tϕx ) dxdt = −
∫ 1

0
h(x)ϕ(x, 0) dx .

On the other hand, by the Dominated Convergence Theorem, we have∫
�T

((u j )tϕt − (v j )tϕx ) dxdt →
∫

�T

(utϕt − vtϕx ) dxdt,

thus ∫
�T

(utϕt − vtϕx ) dxdt = −
∫ 1

0
h(x)ϕ(x, 0) dx . (3.1)
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Also, by the Dominated Convergence Theorem,∫
Q2

dist(∇w j (x, t), Kβ) dxdt →
∫

Q2

dist(∇w(x, t), Kβ) dxdt.

From the membership w j ∈ A1/j , we have∫
Q2

dist(∇w j (x, t), Kβ) dxdt � |Q2|
j

→ 0,

so ∫
Q2

dist(∇w(x, t), Kβ) dxdt = 0.

Since Kβ is closed, we must have

∇w(x, t) ∈ Kβ, a.e. (x, t) ∈ Q2. (3.2)

More specifically, if (i, k) ∈ �, then ∇w j ∈ Uik
β in Qik

2 for each j ∈ N, so that

∇w(x, t) ∈ K ik
β ⊂ Kβ, a.e. (x, t) ∈ Qik

2 . (3.3)

From the membership w j ∈ A1/j ⊂ A,{
there exists a finite set �w j ⊂ � such that w j = w∗ in �T \(∪(i,k)∈�w j

Q̄ik
w j

)

for some open sets Qik
w j

⊂⊂ Qik
2 with (i, k) ∈ �w j and |∂ Qik

w j
| = 0,

(3.4)
and so ∇w j = ∇w∗ in �T \(∪(i,k)∈�w j

Q̄ik
w j

); thus ∇w = ∇w∗ a.e. in �T \Q2. By
(2.4), (2.7) and the definition of Q2, we now have

vt = σ ∗(u∗
x ) = σ(ux ) a.e. in �T \Q2.

This together with (3.2) implies that vt = σ(ux ) a.e. in�T . Reflecting this to (3.1),
we have (1.4). With (2.5) and w = w∗ on ∂�T , we also have (1.5).

(a), (b), (c), (d), (e) & (f): From the membership w j ∈ A1/j ⊂ A, we have (3.4)
and the following:⎧⎪⎨

⎪⎩
∇w j (x, t) ∈ Uik

β ∀(x, t) ∈ Qik
2 ,∀(i, k) ∈ �,

|�Qik
2

w j − �
Qik
2

w∗ | < εik∗ ∀(i, k) ∈ �,
‖u j − u∗‖L∞(�T ) < ε′, ‖(u j )t − H‖L∞(�Tε ) < ε′.

Let j → ∞. It then follows that⎧⎪⎪⎨
⎪⎪⎩

w = w∗ and ∇w = ∇w∗ a.e. in �T \Q2,
‖ut‖L∞(Q) �β = ‖u∗

t ‖L∞(�T ) + ε′,
|�Qik

2
w − �

Qik
2

w∗ | � εik∗ ∀(i, k) ∈ �,

‖u − u∗‖L∞(�T ) � ε′, ‖ut − H‖L∞(�Tε ) � ε′.

(3.5)

Thus, with ε′ = ε/2 < ε, we see that (a), (b) and (c)(i) are satisfied. Since u∗
x > −1

on �̄T , it follows from (3.5) and the definition of Q1 and Q3 that (c)(ii) holds. Also,
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(f) follows from (3.5) and the definition of Q1, Q2 and Q3. Note that (d)(i) is an
immediate consequence of (3.3) from which (e)(i) follows. By the definition of the
phase gauge, (e)(ii) always holds. For each (i, k) ∈ �, it follows from the definition
of εik∗ and (3.5) that

0 < �
Qik
2

w < 1,

thus (d)(ii) holds. Finally, observe from (3.5) that

|γ Q2
u − �

Q2
w∗ | = |�Q2

w − �
Q2
w∗ | =

∣∣∣∣ ∑
(i,k)∈�

|Qik
2 |

|Q2|
(

�
Qik
2

w − �
Qik
2

w∗

) ∣∣∣∣
�

∑
(i,k)∈�

|Qik
2 |

|Q2| |�Qik
2

w − �
Qik
2

w∗ | �
∑

(i,k)∈�

|Qik
2 |

|Q2| εik∗ � ε′ = ε

2
< ε,

thus (e)(iii) is also true.

Infinitely many solutions: Having shown that the first component u of each pair
w = (u, v) in C∇ is a two-phase weak solution to problem (1.3) satisfying (a)–(f),
it remains to show that C∇ has infinitely many elements and that no two different
pairs in C∇ have the first components that are equal.

Suppose on the contrary that C∇ has finitely many elements. Then w∗ ∈ A ⊂
X = C̄∇ = C∇ , and so u∗ itself is a weak solution to (1.3) satisfying (a)–(f); clearly,
this is a contradiction. Thus C∇ has infinitely many elements. Next, we check that
for any two w1 = (u1, v1), w2 = (u2, v2) ∈ C∇ ,

u1 = u2 ⇔ v1 = v2.

Suppose that u1 = u2 in �T . As (vi )x = (ui )t a.e. in �T (i = 1, 2), we have

(v1)x = (u1)t = (u2)t = (v2)x a.e. in �T .

Since both v1 and v2 share the same trace v∗ on ∂�T , it follows that v1 = v2 in�T .
The converse can be shown similarly. We can now conclude that there are infinitely
many weak solutions to (1.3) satisfying (a)–(f).

The proof of Theorem 2.1 is now complete under the density result, Theorem
3.1, to be proved through Sections 4 and 5.

4. Rank-One Smooth Approximation Under Linear Constraint

In this section, we prepare the main tool, Theorem 4.1, for proving the density
result, Theorem 3.1. Instead of presenting a special case that would be enough for
our purpose, we present the following result in a generalized and refined form of
[43, Lemma 2.1] that may be of independent interest (cf. [38, Lemma 6.2]):
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Theorem 4.1. Let m, n � 2be integers, and let A, B ∈ M
m×n be such that rank(A−

B) = 1, hence

A − B = a ⊗ b = (ai b j )

for some non-zero vectors a ∈ R
m and b ∈ R

n with |b| = 1. Let L ∈ M
m×n satisfy

Lb �= 0 in R
m, (4.1)

and let L : Mm×n → R be the linear map defined by

L(ξ) =
∑

1� i � m, 1� j � n

Li jξi j ∀ξ ∈ M
m×n .

Assume L(A) = L(B) and 0 < λ < 1 is any fixed number. Then there exists a
linear partial differential operator � : C1(Rn;Rm) → C0(Rn;Rm) satisfying the
following properties:

(1) For any open set U ⊂ R
n,

�v ∈ Ck−1(U ;Rm) whenever k ∈ N and v ∈ Ck(U ;Rm)

and

L(∇�v) = 0 in U ∀v ∈ C2(U ;Rm);
(2) Let U ⊂ R

n be any bounded domain. For each τ > 0, there exist a function
g = gτ ∈ C∞

c (U ;Rm) and two disjoint open sets UA, UB ⊂⊂ U such that

(a) �g ∈ C∞
c (U ;Rm),

(b) dist(∇�g, [−λ(A − B), (1 − λ)(A − B)]) < τ in U,

(c) ∇�g(x) =
{

(1 − λ)(A − B) ∀x ∈ UA,

−λ(A − B) ∀x ∈ UB,

(d) ||UA| − λ|U || < τ , ||UB | − (1 − λ)|U || < τ ,
(e) ‖�g‖L∞(U ) < τ ,

where [−λ(A − B), (1 − λ)(A − B)] is the closed line segment in kerL ⊂ M
m×n

joining −λ(A − B) and (1 − λ)(A − B).

Proof. Wemainly follow andmodify the proof of [43, Lemma2.1]which is divided
into three cases.

Set r = rank(L). By (4.1), we have 1� r � m ∧ n =: min{m, n}.
(Case 1): Assume that the matrix L satisfies

Li j = 0 for all 1� i � m, 1� j � n but possibly the pairs

(1, 1), (1, 2), . . . , (1, n), (2, 2), . . . , (r, r) of (i, j),

hence L is of the form

L =

⎛
⎜⎜⎜⎜⎜⎝

L11 L12 · · · L1r · · · L1n

L22
. . .

Lrr

⎞
⎟⎟⎟⎟⎟⎠ ∈ M

m×n (4.2)
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and that

A − B = a ⊗ e1 for some nonzero vector a = (a1, . . . , am) ∈ R
m,

where each blank component in (4.2) is zero. From (4.1) and rank(L) = r , it follows
that the product L11 · · · Lrr �= 0. Since 0 = L(A − B) = L(a ⊗ e1) = L11a1, we
have a1 = 0.

In this case, the linear map L : Mm×n → R is given by

L(ξ) =
n∑

j=1

L1 jξ1 j +
r∑

i=2

Liiξi i , ξ ∈ M
m×n .

We will find a linear differential operator � : C1(Rn;Rm) → C0(Rn;Rm) such
that

L(∇�v) ≡ 0 ∀v ∈ C2(Rn;Rm). (4.3)

Thus our candidate for such a � = (�1, . . . , �m) is of the form

�iv =
∑

1� k � m, 1� l � n

ai
klv

k
xl
, (4.4)

where 1� i � m, v ∈ C1(Rn;Rm), and ai
kl ’s are real constants to be determined;

then for v ∈ C2(Rn;Rm), 1� i � m, and 1� j � n,

∂x j �
iv =

∑
1� k � m, 1� l � n

ai
klv

k
xl x j

.

Rewriting (4.3) with this form of ∇�v for v ∈ C2(Rn;Rm), we have

0 ≡
∑

1� k � m, 1� j,l � n

L1 j a
1
klv

k
xl x j

+
r∑

i=2

∑
1� k � m, 1� l � n

Lii a
i
klv

k
xl xi

=
m∑

k=1

(
L11a1

k1v
k
x1x1 +

r∑
j=2

(L1 j a
1
k j + L j j a

j
k j )v

k
x j x j

+
n∑

j=r+1

L1 j a
1
k jv

k
x j x j

+
r∑

l=2

(L11a1
kl + L1la

1
k1 + Llla

l
k1)v

k
xl x1 +

n∑
l=r+1

(L11a1
kl + L1la

1
k1)v

k
xl x1

+
∑

2� j<l � r

(L1 j a
1
kl + L1la

1
k j + L j j a

j
kl + Llla

l
k j )v

k
xl x j

+
∑

2� j � r, r+1� l � n

(L1 j a
1
kl + L1la

1
k j + L j j a

j
kl)v

k
xl x j

+
∑

r+1� j<l � n

(L1 j a
1
kl + L1la

1
k j )v

k
xl x j

)
.
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Should (4.3) hold, it is thus sufficient to solve the following algebraic system
for each k = 1, . . . , m (after adjusting the letters for some indices):

L11a1
k1 = 0, (4.5)

L1 j a1
k j + L j j a

j
k j = 0 ∀ j = 2, . . . , r, (4.6)

L11a1
k j + L1 j a1

k1 + L j j a
j
k1 = 0 ∀ j = 2, . . . , r, (4.7)

L1la1
k j + L1 j a1

kl + Lllal
k j + L j j a

j
kl = 0

∀ j = 3, . . . , r,
∀l = 2, . . . , j − 1,

(4.8)

L1 j a1
k j = 0 ∀ j = r + 1, . . . , n, (4.9)

L11a1
k j + L1 j a1

k1 = 0 ∀ j = r + 1, . . . , n, (4.10)

L1la1
k j + L1 j a1

kl + Lllal
k j = 0

∀ j = r + 1, . . . , n,

∀l = 2, . . . , r,
(4.11)

L1la1
k j + L1 j a1

kl = 0
∀ j = r + 2, . . . , n,

∀l = r + 1, . . . , j − 1.
(4.12)

Although these systems have infinitely many solutions, we will solve those in a
way for a later purpose that the matrix (a j

k1)2� j,k � m ∈ M
(m−1)×(m−1) fulfills

a j
21 = a j ∀ j = 2, . . . , m, and a j

k1 = 0 otherwise. (4.13)

First, we let the coefficients ai
kl (1� i, k � m, 1� l � n) that do not appear in

systems (4.5)–(4.12) (k = 1, . . . , m) be zerowith an exception that we set a j
21 = a j

for j = r + 1, . . . , m to reflect (4.13). Secondly, for 1� k � m, k �= 2, let us take
the trivial (that is, zero) solution of system (4.5)–(4.12). Lastly, we take k = 2 and
solve system (4.5)–(4.12) as follows with (4.13) satisfied. Since L11 �= 0, we set
a1
21 = 0. Then (4.5) is satisfied. Thus we set

a j
21 = − L11

L j j
a1
2 j , a1

2 j = − L j j

L11
a j ∀ j = 2, . . . , r,

then (4.7) and (4.13) hold. Next, set

a j
2 j = − L1 j

L j j
a1
2 j = L1 j

L11
a j ∀ j = 2, . . . , r,

then (4.6) is fulfilled. Set

al
2 j = − L1la1

2 j + L1 j a1
2l

Lll
= L1l L j j a j + L1 j Lllal

Lll L11
, a j

2l = 0

for j = 3, . . . , r and l = 2, . . . , j − 1. Then (4.8) holds. Set

a1
2 j = 0 ∀ j = r + 1, . . . , n,
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then (4.9) and (4.10) are satisfied. Lastly, set

a1
2 j = 0, al

2 j = − L1 j

Lll
a1
2l = L1 j

L11
al ∀ j = r + 1, . . . , n, ∀l = 2, . . . , r,

so that (4.11) and (4.12) hold. In summary, we have determined the coefficients
ai

kl (1� i, k � m, 1� l � n) in such a way that system (4.5)–(4.12) holds for each
k = 1, . . . , m and that (4.13) is also satisfied. Therefore, (1) follows from (4.3) and
(4.4).

To prove (2), without loss of generality, we can assume U = (0, 1)n ⊂ R
n .

Let τ > 0 be given. Let u = (u1, . . . , um) ∈ C∞(U ;Rm) be a function to be
determined. Suppose that u depends only on the first variable x1 ∈ (0, 1). We wish
to have

∇�u(x) ∈ {−λa ⊗ e1, (1 − λ)a ⊗ e1}
for all x ∈ U except in a set of small measure. Since u(x) = u(x1), it follows from
(4.4) that for 1� i � m and 1� j � n,

�i u =
m∑

k=1

ai
k1uk

x1; thus ∂x j �
i u =

m∑
k=1

ai
k1uk

x1x j
.

As a1
k1 = 0 for k = 1, . . . , m, we have ∂x j �

1u = ∑m
k=1 a1

k1uk
x1x j

= 0 for j =
1, . . . , n.Wefirst setu1 ≡ 0 inU . Then from (4.13), it follows that for i = 2, . . . , m,

∂x j �
i u =

m∑
k=2

ai
k1uk

x1x j
= ai

21u2
x1x j

= ai u
2
x1x j

=
{

ai u2
x1x1 if j = 1,

0 if j = 2, . . . , n.

As a1 = 0, we thus have that for x ∈ U ,

∇�u(x) = (u2)′′(x1)a ⊗ e1.

For irrelevant components of u, we simply take u3 = · · · = um ≡ 0 inU . Lastly, for
a number δ > 0 to be chosen later, we choose a function u2(x1) ∈ C∞

c (0, 1) such
that there exist two disjoint open sets I1, I2 ⊂⊂ (0, 1) satisfying ||I1| − λ| < τ/2,
||I2|−(1−λ)| < τ/2, ‖u2‖L∞(0,1) < δ, ‖(u2)′‖L∞(0,1) < δ,−λ � (u2)′′(x1)� 1−
λ for x1 ∈ (0, 1), and

(u2)′′(x1) =
{
1 − λ if x1 ∈ I1,
−λ if x1 ∈ I2.

In particular,

∇�u(x) ∈ [−λa ⊗ e1, (1 − λ)a ⊗ e1] ∀x ∈ U. (4.14)

We now choose an open set U ′
τ ⊂⊂ U ′ := (0, 1)n−1 with |U ′\U ′

τ | < τ/2 and a
function η ∈ C∞

c (U ′) so that

0� η � 1 in U ′, η ≡ 1 in U ′
τ , and |∇ i

x ′η| <
C

τ i
(i = 1, 2) in U ′,
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where x ′ = (x2, . . . , xn) ∈ U ′ and the constantC > 0 is independent of τ . Now,we
define g(x) = η(x ′)u(x1) ∈ C∞

c (U ;Rm). Set UA = I1 × U ′
τ and UB = I2 × U ′

τ .

Clearly, (a) follows from (1). As g(x) = u(x1) = u(x) for x ∈ UA ∪ UB , we have

∇�g(x) =
{

(1 − λ)a ⊗ e1 if x ∈ UA,

−λa ⊗ e1 if x ∈ UB,

hence (c) holds. Also,

||UA| − λ|U || = ||UA| − λ| = ||I1||U ′
τ | − λ| = ||I1| − |I1||U ′\U ′

τ | − λ| < τ,

and likewise

||UB | − (1 − λ)|U || < τ,

so (d) is satisfied. Note that for i = 1, . . . , m,

�i g = �i (ηu) =
∑

1� k � m, 1� l � n

ai
kl(ηuk)xl = η�i u +

∑
1� k � m, 1� l � n

ai
klηxl u

k

= η�i u + u2
n∑

l=1

ai
2lηxl = ηai

21u2
x1 + u2

n∑
l=1

ai
2lηxl ,

so

‖�g‖L∞(U ) � C max{δ, δτ−1} < τ

if δ > 0 is chosen small enough, and (e) holds. Next, for i = 1, . . . , m and
j = 1, . . . , n,

∂x j �
i g = ηx j a

i
21u2

x1 + η∂x j �
i u + u2

x j

n∑
l=1

ai
2lηxl + u2

n∑
l=1

ai
2lηxl x j ,

hence from (4.14),

dist(∇�g, [−λa ⊗ e1, (1 − λ)a ⊗ e1])� C max{δτ−1, δτ−2} < τ in U ,

if δ is sufficiently small. Thus (b) is fulfilled.

(Case 2): Assume that Li1 = 0 for all i = 2, . . . , m, that is,

L =

⎛
⎜⎜⎜⎝

L11 L12 · · · L1n

0 L22 · · · L2n
...

...
. . .

...

0 Lm2 · · · Lmn

⎞
⎟⎟⎟⎠ ∈ M

m×n (4.15)

and

A − B = a ⊗ e1 for some nonzero vector a ∈ R
m .

Then by (4.1), we have L11 �= 0.
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Set

L̂ =
⎛
⎜⎝

L22 · · · L2n
...

. . .
...

Lm2 · · · Lmn

⎞
⎟⎠ ∈ M

(m−1)×(n−1).

As L11 �= 0 and rank(L) = r , we must have rank(L̂) = r − 1. Using the singular
value decomposition theorem, there exist two matrices Ŵ ∈ O(m − 1) and V̂ ∈
O(n − 1) such that

Ŵ T L̂ V̂ = diag(σ2, . . . , σr , 0, . . . , 0) ∈ M
(m−1)×(n−1), (4.16)

where σ2, . . . , σr are the positive singular values of L̂. Define

W =
(
1 0
0 Ŵ

)
∈ O(m), V =

(
1 0
0 V̂

)
∈ O(n). (4.17)

Let L ′ = W T LV , A′ = W T AV , and B ′ = W T BV . Let L′ : Mm×n → R be the
linear map given by

L′(ξ ′) =
∑

1� i � m, 1� j � n

L ′
i jξ

′
i j ∀ξ ′ ∈ M

m×n .

Then from (4.15), (4.16) and (4.17), it is straightforward to check the following:⎧⎨
⎩

A′ − B ′ = a′ ⊗ e1 for some nonzero vector a′ ∈ R
m ,

L ′e1 �= 0, L′(A) = L′(B), and
L ′ is of the form (4.2) in Case 1 with rank(L ′) = r .

Thus we can apply the result of Case 1 to find a linear operator�′ : C1(Rn;Rm) →
C0(Rn;Rm) satisfying the following:

(1’) For any open set U ′ ⊂ R
n ,

�′v′ ∈ Ck−1(U ′;Rm) whenever k ∈ N and v′ ∈ Ck(U ′;Rm)

and

L′(∇�′v′) = 0 in U ′ for all v′ ∈ C2(U ′;Rm);
(2’) LetU ′ ⊂ R

n be any bounded domain. For each τ > 0, there exist a function
g′ = g′

τ ∈ C∞
c (U ′;Rm) and two disjoint open sets U ′

A′ , U ′
B′ ⊂⊂ U ′ such that

(a’) �′g′ ∈ C∞
c (U ′;Rm),

(b’) dist(∇�′g′, [−λ(A′ − B ′), (1 − λ)(A′ − B ′)]) < τ in U ′,
(c’) ∇�′g′(x) =

{
(1 − λ)(A′ − B ′) ∀x ∈ U ′

A′ ,
−λ(A′ − B ′) ∀x ∈ U ′

B′ ,
(d’) ||U ′

A′ | − λ|U ′|| < τ , ||U ′
B′ | − (1 − λ)|U ′|| < τ ,

(e’) ‖�′g′‖L∞(U ′) < τ .
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For v ∈ C1(Rn;Rm), let v′ ∈ C1(Rn;Rm) be defined by v′(y) = W T v(V y) for
y ∈ R

n . We define �v(x) = W�′v′(V T x) for x ∈ R
n , so that �v ∈ C0(Rn;Rm).

Then it is straightforward to check that properties (1’) and (2’) of�′ imply respective
properties (1) and (2) of the linear operator � : C1(Rn;Rm) → C0(Rn;Rm).

(Case 3):Finally,we consider the general case that A, B and L are as in the statement
of the theorem. As |b| = 1, there exists an R ∈ O(n) such that RT b = e1 ∈ R

n .
Also there exists a symmetric (Householder) matrix P ∈ O(m) such that thematrix
L ′ := P L R has the first column parallel to e1 ∈ R

m . Let

A′ = P AR and B ′ = P B R.

Then A′ − B ′ = a′ ⊗ e1, where a′ = Pa �= 0. Note also that L ′e1 = P L R Rt b =
P Lb �= 0. Define L′(ξ ′) = ∑

i, j L ′
i jξ

′
i j (ξ ′ ∈ M

m×n); then L′(A′) = L(A) =
L(B) = L′(B ′). Thus by the result of Case 2, there exists a linear operator �′ :
C1(Rn;Rm) → C0(Rn;Rm) satisfying (1’) and (2’) above.

For v ∈ C1(Rn;Rm), let v′ ∈ C1(Rn;Rm) be defined by v′(y) = Pv(Ry) for
y ∈ R

n , and define�v(x) = P�′v′(RT x) ∈ C0(Rn;Rm). Then it is easy to check
that the linear operator � : C1(Rn;Rm) → C0(Rn;Rm) satisfies (1) and (2) by
(1’) and (2’) in a manner similar as to Case 2. ��

5. Proof of the Density Result

In this final section, we prove Theorem 3.1, which plays a pivotal role in the
proof of the main result, Theorem 2.1.

To start the proof, fix any δ > 0 and choose any w = (u, v) ∈ A so that
w ∈ W 1,∞

w∗ (�T ;R2) ∩ C2(�̄T ;R2) satisfies the following:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

there exists a finite set �w ⊂ � such that w = w∗ in �T \(∪(i,k)∈�w
Q̄ik

w )

for some open sets Qik
w ⊂⊂ Qik

2 with (i, k) ∈ �w and |∂ Qik
w | = 0,

∇w(x, t) ∈ Uik
β ∀(x, t) ∈ Qik

2 ,∀(i, k) ∈ �,

|�Qik
2

w − �
Qik
2

w∗ | < εik∗ ∀(i, k) ∈ �,
‖u − u∗‖L∞(�T ) < ε′, ‖ut − H‖L∞(�Tε ) < ε′.

(5.1)
Let η > 0. Our goal is to construct a function wη = (uη, vη) ∈ Aδ with ‖w −
wη‖L∞(�T ) < η; that is, a function wη ∈ W 1,∞

w∗ (�T ;R2) ∩ C2(�̄T ;R2) with the
following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists a finite set �wη ⊂ � such that wη = w∗ in �T \(∪(i,k)∈�wη
Q̄ik

wη
)

for some open sets Qik
wη

⊂⊂ Qik
2 with (i, k) ∈ �wη and |∂ Qik

wη
| = 0,

∇wη(x, t) ∈ Uik
β ∀(x, t) ∈ Qik

2 ,∀(i, k) ∈ �,

|�Qik
2

wη − �
Qik
2

w∗ | < εik∗ ∀(i, k) ∈ �,
‖uη − u∗‖L∞(�T ) < ε′, ‖(uη)t − H‖L∞(�Tε ) < ε′, ‖w − wη‖L∞(�T ) < η,∫

Q2
dist(∇wη(x, t), Kβ) dxdt � δ|Q2|.

(5.2)
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For clarity, we divide the proof into several steps.

(Step 0): Choose a finite set �wη ⊂ � with �w ⊂ �wη so large that∑
(i,k)∈�\�wη

∫
Qik
2

dist(∇w(x, t), Kβ) dxdt � δ

n
|Q2|, (5.3)

where n ∈ N is a constant to be determined later. For each (i, k) ∈ �wη\�w, let us
take Qik

w = ∅.
(Step 1): Fix any (i, k) ∈ �wη. Choose a nonempty open set Gik

1 ⊂⊂ Qik
2 \∂ Qik

w

with |∂Gik
1 | = 0 so that∫

(Qik
2 \∂ Qik

w )\Gik
1

dist(∇w(x, t), K ik
β ) dxdt � δ

n
|Qik

2 |. (5.4)

Since ∇w ∈ Uik
β on Ḡik

1 , we have ‖ut‖L∞(Gik
1 ) < β; with this and (5.1), we can fix

a number θ ik > 0 such that

θ ik < min

{
εik∗ − |�Qik

2
w − �

Qik
2

w∗ |, ε′ − ‖u − u∗‖L∞(�T ),

ε′ − ‖ut − H‖L∞(�Tε ), β − ‖ut‖L∞(Gik
1 )

}
. (5.5)

Let us write

Sik
M = max

r ik
a � r � r ik

b

(s+(r) − s−(r)) and Sik
m = min

r ik
a � r � r ik

b

(s+(r) − s−(r)) > 0,

(5.6)
where {

r1k
a := r1k

r1k
b := r1(k−1) if i = 1 and

{
r2k

a := r2(k−1)

r2k
b := r2k if i = 2.

By the uniform continuity of s± on [r ik
a , r ik

b ], we can find a κ ik > 0 such that

|s±(r) − s±(r̃)| < min

{
θ ik Sik

m

n
,
θ ik(Sik

m )2

nSik
M

}
(5.7)

whenever r, r̃ ∈ [r ik
a , r ik

b ] and |r − r̃ | < κ ik . For each μ > 0, let

Gik,μ
2 = {(x, t) ∈ Gik

1 | dist((ux (x, t), vt (x, t)), ∂Ũrik
a ,r ik

b ) > μ},
Hik,μ
2 = {(x, t) ∈ Gik

1 | dist((ux (x, t), vt (x, t)), ∂Ũrik
a ,r ik

b ) < μ},
Fik,μ
2 = {(x, t) ∈ Gik

1 | dist((ux (x, t), vt (x, t)), ∂Ũrik
a ,r ik

b ) = μ}.
Since lim

μ→0+|Hik,μ
2 | = 0, we can find a number νik > 0 with

νik < min
{ δ

n
,
θ ik Sik

m

n
,
θ(Sik

m )2

nSik
M

,
s+(r ik

a ) − s−(r ik
b )

2

}
(5.8)
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such that∫
Hik,νik
2

dist(∇w(x, t), K ik
β ) dxdt � δ

n
|Qik

2 |, Gik,νik

2 �= ∅ and |Fik,νik

2 | = 0.

(5.9)

We write Gik
2 = Gik,νik

2 and Hik
2 = Hik,νik

2 . We also define

Ũ ik± =
{
(s, r) ∈ R

2
∣∣∣ r ik

a < r < r ik
b , 0 < λ < 1,

s = λ(s±(r) ∓ νik) + (1 − λ)s±(r)

}
⊂ Ũ rik

a ,r ik
b

and take

dik = min

{
min

r ik
a � r � r ik

b

dist
((

s+(r) − νik

2
, r
)
, K̃

rik
a ,r ik

b+
)
,

min
r ik

a � r � r ik
b

dist
((

s−(r) + νik

2
, r
)
, K̃

rik
a ,r ik

b−
)}

> 0; (5.10)

it is then easy to see that

dik � νik

2
. (5.11)

Choose finitely many disjoint open squares Dik
1 , . . . , Dik

Nik ⊂ Gik
2 , parallel to the

axes, such that ∫
Gik
2 \(∪Nik

j=1Dik
j )

dist(∇w(x, t), K ik
β ) dxdt � δ

n
|Qik

2 |. (5.12)

(Step 2): Dividing the squares Dik
1 , . . . , Dik

Nik into smaller disjoint sub-squares if
necessary, we can assume that

|∇w(x, t) − ∇w(x̃, t̃)| < min
{dik

n
, κ ik

}
=: cik (5.13)

whenever (x, t), (x̃, t̃) ∈ D̄ik
j and j ∈ {1, . . . , N ik}.

Now, fix an index j ∈ {1, . . . , N ik}. Let (xik
j , t ik

j ) denote the center of the

square Dik
j and write

(sik
j , r ik

j ) = (ux (xik
j , t ik

j ), vt (xik
j , t ik

j )) ∈ Ũrik
a ,r ik

b ;

then dist((sik
j , r ik

j ), ∂Ũrik
a ,r ik

b ) > νik , and so (sik
j , r ik

j ) �∈ Ũ ik± . Let αik
j > 0 and

β ik
j > 0 be the numbers given by

sik
j + β ik

j = s+(r ik
j ) − νik

2
, sik

j − αik
j = s−(r ik

j ) + νik

2
; (5.14)

then (sik
j + β ik

j , r ik
j ) ∈ Ũ ik+ and (sik

j − αik
j , r ik

j ) ∈ Ũ ik− .
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To apply Theorem 4.1 in the square Dik
j , let

Aik
j =

(
sik

j − αik
j bik

j
bik

j r ik
j

)
and Bik

j =
(

sik
j + β ik

j bik
j

bik
j r ik

j

)
,

where bik
j := ut (xik

j , t ik
j ); then |bik

j | � ‖ut‖L∞(Gik
1 ) and

Aik
j − Bik

j =
(−αik

j − β ik
j 0

0 0

)
=
(−αik

j − β ik
j

0

)
⊗
(
1
0

)
.

Let L : M2×2 → R be the linear map defined by

L(ξ) = −ξ21 + ξ12 ∀ξ ∈ M
2×2

with its associated matrix L =
(

0 1
−1 0

)
; then

L(Aik
j ) = L(Bik

j )(= 0) and Cik
j = λik

j Aik
j + (1 − λik

j )Bik
j

withCik
j := ∇w(xik

j , t ik
j ) and λik

j = βik
j

αik
j +βik

j
∈ (0, 1).By Theorem 4.1, there exists

a linear operator�ik
j : C1(R2;R2) → C0(R2;R2) satisfying properties (1) and (2)

in the statement of the theorem with A = Aik
j , B = Bik

j and λ = λik
j . In particular,

for the square Dik
j ⊂ R

2 and a number τ ik > 0 with

τ ik < min
{

cik, η,
θ ik

n
,
θ ik |Qik

2 |
nN ik

,
δ|Qik

2 |
nSik

M N ik

}
, (5.15)

we can find a function gik
j ∈ C∞

c (Dik
j ;R2) and two disjoint open sets

DAik
j
, DBik

j
⊂⊂ Dik

j such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (ϕik
j , ψ ik

j ) := �ik
j gik

j ∈ C∞
c (Dik

j ;R2), L(∇�ik
j gik

j ) = 0 in Dik
j ,

(b) dist(∇�ik
j gik

j , [−λik
j (Aik

j − Bik
j ), (1 − λik

j )(Aik
j − Bik

j )]) < τ ik in Dik
j ,

(c) ∇�ik
j gik

j (x) =
{

(1 − λik
j )(Aik

j − Bik
j ), x ∈ DAik

j
,

−λik
j (Aik

j − Bik
j ), x ∈ DBik

j
,

(d) ||DAik
j
| − λik

j |Dik
j || < τ ik , ||DBik

j
| − (1 − λik

j )|Dik
j || < τ ik,

(e) ‖�ik
j gik

j ‖L∞(Dik
j ) < τ ik .

(5.16)
We finally define

wη = w +
∑

(i,k)∈�wη

Nik∑
j=1

χDik
j
�ik

j gik
j in �T .
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(Step 3): In this final step, let us check that wη = (uη, vη) is indeed a desired
function satisfying (5.2). Since this step is rather long, we further divide it into
several substeps.

(Substep 3-1): We begin with some properties that are relatively easy to check.
It is clear from (5.1) and the construction above that

wη ∈ W 1,∞
w∗ (�T ;R2) ∩ C2(�̄T ;R2). (5.17)

For each (i, k) ∈ �wη , set Qik
wη

= Qik
w ∪ (∪Nik

j=1Dik
j ). Then we clearly have that

Qik
wη

⊂⊂ Qik
2 and |∂ Qik

wη
| = 0. (5.18)

By the definition of wη, we also have

wη = w = w∗ in �T \(∪(i,k)∈�wη
Q̄ik

wη
). (5.19)

Next, we check that for each (i, k) ∈ �,

∇wη ∈ Uik
β in Qik

2 . (5.20)

If (i, k) ∈ �\�wη, we have from the definition of wη and (5.1) that ∇wη = ∇w ∈
Uik

β in Qik
2 . Now, let (i, k) ∈ �wη. If we take

n � Sik
m

4
, (5.21)

then from (5.5), (5.8) and (5.11), we have dik

2 � νik

4 <
θ ik Sik

m
4n < β − ‖ut‖L∞(Gik

1 ).

Since |bik
j | � ‖ut‖L∞(Gik

1 ) and dist((sik
j , r ik

j ), ∂Ũrik
a ,r ik

b ) > νik ( j = 1, . . . , N ik),
it thus follows from (5.10), (5.14), and the definition of Ai and Bi that

[Aik
j , Bik

j ]dik/2 ⊂ Uik
β ,

where [Aik
j , Bik

j ]dik/2 is the
dik

2 -neighborhood of the closed line segment [Aik
j , Bik

j ]
in the space M2×2

sym . In turn, with (5.1), (5.13), (5.15) and (5.16)(a)(b), we have

∇wη = ∇w + ∇�ik
j gik

j ∈ [Aik
j , Bik

j ]dik/2 in Dik
j

if we let
n � 4; (5.22)

in this case, (5.20) holds.
For each (i, k) ∈ �wη , by (5.5), (5.15), (5.16)(b)(e) and the zero antidiagonal

of Aik
j − Bik

j ( j = 1, . . . , N ik), we have

‖uη − u∗‖L∞(�T ) � ‖u − u∗‖L∞(�T ) + τ ik < ‖u − u∗‖L∞(�T ) + θ ik

n
< ε′,

‖(uη)t − H‖L∞(�Tε ) � ‖ut − H‖L∞(�Tε ) + τ ik < ‖ut − H‖L∞(�Tε ) + θ ik

n
< ε′,

‖w − wη‖L∞(�T ) =
∥∥∥∥ ∑

(i,k)∈�wη

Nik∑
j=1

χDik
j
�ik

j gik
j

∥∥∥∥
L∞(�T )

< τ ik < η.

(5.23)
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(Substep 3-2): Here, we show that

|�Qik
2

wη − �
Qik
2

w∗ | < εik∗ ∀(i, k) ∈ �. (5.24)

If (i, k) ∈ �\�wη , then �
Qik
2

wη = �
Qik
2

w∗ , so we assume that (i, k) ∈ �wη.

Recalling the definition of the phase gauge operator �
Qik
2· over Qik

2 from Sub-
section 2.2, we have

�
Qik
2

wη − �
Qik
2

w = 1

|Qik
2 |

∫
Qik
2

(Z
Qik
2

wη (x, t) − Z
Qik
2

w (x, t)) dxdt

= 1

|Qik
2 |

Nik∑
j=1

∫
Dik

j

(Z
Qik
2

w+�ik
j gik

j
(x, t) − Z

Qik
2

w (x, t)) dxdt

= 1

|Qik
2 |

Nik∑
j=1

⎛
⎝∫

Dik
j \(D

Aik
j

∪D
Bik

j
)

+
∫

D
Aik

j

+
∫
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Here and below, let j ∈ {1, . . . , N ik}. First, we easily get from (5.16)(d) that
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Next, it follows from (5.6), (5.7), (5.8), (5.11), (5.13), (5.14) and (5.16)(c) that
in DAik

j
,

|Z Qik
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and so ∣∣∣∣
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j
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j |. (5.26)
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Lastly, we estimate the quantity∣∣∣∣
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From (5.6), (5.7), (5.8), (5.11), (5.13), (5.14) and (5.16)(c)(d), we have
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Next, we concern ourselves with∣∣∣∣
∫

D
Aik

j
∪D

Bik
j

Z
Qik
2

w (x, t) dxdt − αik
j

αik
j + β ik

j

|Dik
j |
∣∣∣∣

�
∣∣∣∣
∫

D
Aik

j
∪D

Bik
j

( ux − s−(vt )

s+(vt ) − s−(vt )
− αik

j

s+(vt ) − s−(vt )

)
dxdt

∣∣∣∣
+
∣∣∣∣
∫

D
Aik

j
∪D

Bik
j

( αik
j

s+(vt ) − s−(vt )
− αik

j

s+(r ik
j ) − s−(r ik

j )

)
dxdt

∣∣∣∣
+
∣∣∣∣ αik

j

s+(r ik
j ) − s−(r ik

j )
|DAik

j
∪ DBik

j
| − αik

j

αik
j + β ik

j

|Dik
j |
∣∣∣∣ =: I4 + I5 + I6.

From (5.6), (5.7), (5.8), (5.11), (5.13), (5.14) and (5.16)(d), it follows that
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Gathering the above estimates on I1, . . . , I6, we get∣∣∣∣
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Combining this with (5.25) and (5.26), we obtain from (5.15) that
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if we take
n � 17; (5.27)

in this case, (5.5) implies that
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Thus (5.24) is satisfied.

(Substep 3-3): In this final substep, we show that∫
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Observe from (5.6), (5.8), (5.11), (5.13), (5.14) and (5.16)(c)(d) that for (i, k) ∈
�wη and j ∈ {1, . . . , N ik},∫
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Thus

J5 � 1 + n

2n2 δ|Q2| + 2

n
δ|Q2| = 1 + 5n

2n2 δ|Q2|,

and with (5.3), (5.4), (5.9) and (5.12), we have

J1 + J2 + J3 + J4 + J5 �
(1

n
+ 1

n
+ 1

n
+ 1

n
+ 1 + 5n

2n2

)
δ|Q2|

= 1 + 13n

2n2 δ|Q2| � δ|Q2|

if we let

n � 7. (5.29)

In this case, (5.28) is fulfilled.
We now fix a constant n ∈ N so that n � max{ SM

4 , 17}, where
SM := max

r1 � r � r2
(s+(r) − s−(r)).

Then (5.21), (5.22), (5.27) and (5.29) hold. Thus (5.20), (5.24) and (5.28) are
satisfied. These facts, together with (5.17), (5.18) and (5.23), are precisely (5.2), as
desired.

The proof of the density result, Theorem 3.1, is now complete.
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