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Abstract

In this paper, we consider a confined physical scenario to prove the global
existence of smooth solutions with bounded density and finite energy for the in-
viscid incompressible porous media (IPM) equation. The result is proved using
the stability of stratified solutions, combined with an additional structure of our
initial perturbation, which allows us to get rid of the boundary terms in the energy
estimates.
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1. Introduction

In this paper we study the global in time existence of smooth solutions with
bounded density and finite energy of the (2D) Incompressible Porous Media equa-
tion in a strip domain �. That is, we consider the following active scalar equation:

∂t� + u · ∇� = 0,

with a velocity field u satisfying the momentum equation given by Darcy’s law:

μ

κ
u = −∇ p − g(0, �), (1)
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where (x, t) ∈ � × R
+, u = (u1, u2) is the incompressible velocity (that is,

∇ · u = 0), p is the pressure, μ is the dynamic viscosity, κ is the permeability of
the isotropic medium, g is the acceleration due to gravity and � corresponds to the
density transported without diffusion by the fluid.

Due to the direction of gravity, the horizontal and the vertical coordinates play
different roles. Here we assume spatial periodicity in the horizontal space variable,
says �(x + 2πk, y, t) = �(x, y, t) and similarly p(x + 2πk, y, t) = p(x, y, t).
Finally, as these equations are studied on a bounded domain, we assume that our
physical domain is impermeable, which is exactly satisfied if u satisfies the no-slip
boundary condition

u · n = 0 on ∂�, (2)

where n denotes the exterior normal vector.
In this work we will focus on the case in which the evolution problem is posed

on a porous strip with width 2l. That is, the domain is the two-dimensional flat strip
� := T × [− l, l] with 0 < l < ∞.

This problem is known as the confined IPM equation.Without loss of generality
we will assume from now on that μ = κ = g = l = 1. To summarize, we have the
following system of equations in �:

⎧
⎨

⎩

∂t� + u · ∇� = 0
u = −∇ p − (0, �),

∇ · u = 0
(3)

with the boundary condition u ·n = 0 on ∂� ≡ {y = ±1}. In our case, this implies
that u2|∂� = 0. In our physical system where there is gravity and stratification
(u = 0 and � ≡ �(y) is a stationary solution), vertical movement may be penalized
while horizontal movement is not. This opens up the possibility of treating the
corresponding initial value problem from a perturbative point of view. As in [13],
this paper studies the solutions of (3) in the perturbative regime near the stratified
state �(y) := −y for a specific type of perturbation:

�(x, y, t) = �(y) + ρ(x, y, t) (x, t) ∈ � × R
+. (4)

The main result is that small perturbations ρ in a suitable Sobolev space Xk(�),
which we define below in (5), converge to a shear and nearby stationary flow in the
sense that �(x, y, t) ≡ �(y)+ρ(x, y, t) → �(y)+ρ∞(y) and u(x, y, t) → 0 as
t → ∞. The main mechanism of decay can be seen from the linearized equation

∂tρ(x, y, t) = −�′(y) u2(x, y, t),

which, after solving the velocity u = (u1, u2) in terms of ρ yields

∂tρ(x, y, t) = �′(y)
(
ρ(x, y, t) + (−	�)−1∂2yρ(x, y, t)

)
.

Setting �(y) := −y, the previous equation clearly shows the frequency dependent
exponential decay over time of ρ, except the zero mode in x . The goal of the present
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paper is to show how to control the nonlinearity so that it does not destroy the decay
provided by the linearized equation.

To do this, controlling the boundary terms is the new additional difficulty. This
can be done byworkingwith perturbations in the appropriate Sobolev space Xk(�).
Using standard techniques, we will prove the local in time existence of solutions
for the perturbated problem in the space Xk(�). For the sake of completeness we
include the proof, where the cornerstone will be the properties of an orthonormal
basis adapted to Xk(�). The reason for working with initial perturbations with
that additional structure will be seen in the apriori energy estimates. There, all
the boundary terms that appear in the computations vanish thanks to periodicity
periodicity in the horizontal variable and by the additional structure of our initial
perturbations, which is preserved in time by the local existence result, as long as
the solution exists.

Namely, we will prove the following result:

Theorem. The stratified state � of the confined IPM equation is asymptotically
stable in Xκ(�) for κ � 10. In other words, there exists ε0 > 0 such that if we solve
(3) with initial data �(0) = � + ρ(0) and ρ(0) ∈ Xκ(�) with ||ρ||Hκ (�)(0) � ε0
then, the solution exists globally in time and satisfies the following:
(1) ||u||H3(�)(t) � ε0 (1 + t)− 5

4 ;
(2) ||�̄||H3(�)(t) � ε0 (1 + t)− 5

4 ;
(3) ||�̃ − �||Hκ (�)(t) � 2 ε,

where � := �̄ + �̃ such that �̄ ⊥ �̃ and �̄ is given by the projection operator onto
the subspace of functions with zero average in the horizontal variable.

Remark. If we perturb the stratified state by a function of y only then there should
be no decay. For this reason, the orthogonal decomposition � = �̄ + �̃ will be
considered.

Remark. The strategy used in our paper can be applied to a more general class of
monotone shear flows. The proof works for small perturbations in some sense of
our steady state with �′ < 0. However, a highly non-trivial problem is to extend
this to the case of possibly degenerate shear flows where �′ = 0 at some value.

A more precise statement of our result is presented as Theorem (5.1), where
we also illustrate its proof through a bootstrap argument. Despite the apparent
simplicity, understanding the stability of this flow is far from being trivial.

1.1. Motivation

The study of partial differential equations arising in fluid mechanics has been
an active field in the past century, but many important and physically relevant ques-
tions remain wide open from the point of view of mathematical analysis. Among
the problems that attracted recently renewed interest, active scalar equations that
arise in fluid dynamics present a challenging set of problems in PDE. Maybe the
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best example is the Surface Quasi-Geostrophic equation (SQG), introduced in the
mathematical literature in [5]. The inviscid SQG equation in R

2 takes the form
{

∂tθ + u · ∇θ = 0

u = R⊥θ,

whereR = (R1, R2) denote the 2DRiesz transforms. This problemhas beenwidely
investigated due to its mathematical analogies with the three dimensional Euler
equation, but little is known. Local well-posedness and regularity criteria in various
functional settings have been established, see [4] as a survey. The global regularity
problem for the Cauchy problem with a general smooth initial data remains open.
Besides radially symmetric solutions, which are all stationary, the first examples of
non-trivial global smooth solutions we are aware of were recently provided in [4].
An alternative construction of smooth families of global special solutions can be
found in [16], where the authors focus on travelling-wave solutions to the inviscid
SQG. On the other hand, whether finite time blow up can happen for smooth initial
data remains completely open.

It is important to note that, for both IPM and SQG, the operator relating the
velocity and the active scalar is a singular integral operator of zero order. Even
more, in the whole space, the velocity (1) can be rewritten in a more convenient
way as u = R⊥R1�. Despite the fact that there are great similarities between the
inviscid versions of SQG and IPM equations, there are also important differences.
This work appears to be the first to find a scenario to prove the global existence
of smooth solutions with bounded density and finite energy for the inviscid IPM
equation.

1.1.1. The Question of Long-Time Behavior A fundamental challenge in math-
ematical physics is to understand the dynamics of physical systems as they evolve
over long times. This is particularly true when it comes to the study of the long-time
behavior of such systemswithout dissipation. Depending upon the specific physical
situation that a given fluid equation models, we find vastly different mathematical
objects arising. In recent years, researchers have discovered numerous interesting
phenomena such as the existence of solutions whose long-time behavior is deter-
mined entirely by

• some linear or dispersive effect, for example in water waves [15,17,24];
• some linear mixing effect, for the Couette flow in Navier–Stokes and Euler
equations [1,2];

• some hypocoercive dissipative mechanisms, for kinetic theory [11,12].

The idea of taking a non-linear equation where global well-posedness is un-
known and to prove it for a perturbation “close” to a stationary solution of the equa-
tion is natural. For small enough initial data, one might conjecture that solutions to
the nonlinear problem behave asymptotically like solutions of the corresponding
linear problem.

As in [13], where the author gives in R
2 the first construction of a non-trivial

global smooth solution for the inviscid IPM equation, the main idea is that strati-
fication can be a stabilizing force. One can imagine that a fluid with density that
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is proportional to depth is in some sense “stable”. The mechanism behind the sta-
bility is that the linearized IPM equation around the stratified state exhibit certain
damping properties. This convergence back to equilibrium, despite the lack of dis-
sipativemechanisms, is known as inviscid damping and is a close relative of Landau
damping in plasma physics. It was proved that Landau damping provides a similar
stability for Vlasov–Poisson in Mouhot and Villani’s breakthrough work [21].

1.1.2. Previous Results for IPM with Smooth Initial Data In [10], the local
existence and uniqueness in Hölder space Cδ with 0 < δ < 1 was shown by the
particle-trajectory method for the whole space case. By a similar approach, the
local well-posedness in Besov and Triebel-Lizorkin spaces was proved in [25,26].

For the Lagrangian formulation, in [8], the authors show that as long as the
solution of this equation is in a class of regularity that assures Hölder continuous
gradients of the velocity, the corresponding Lagrangian paths are real analytic
functions of time.

In the class ofweaker solutions, the results of [9,23] establish thenon-uniqueness
of L∞

t,x weak solutions to the inviscid IPM equation starting from the zero solu-
tion. Recently, in [18], the authors were able to construct global weak solutions to
the inviscid IPM equation which are of class Cδ

t,x with δ < 1/9 starting from a
smooth initial data. All these works are based on a variant of the method of convex
integration.

In the direction of classical solutions, the only result known is due to El-
gindi [13] shows that solutions which are “close” to certain stable stratified solu-
tions exists globally in time, but since he works in the whole space, such solutions
have unbounded density. He considers perturbations in two settings which are fun-
damentally different:

• On the whole space R
2: In this case the stationary solution does not belong to

L2(R2). However, the author can perturb the stationary solution by a sufficiently
small Hs function, and to prove that the perturbation decay to equilibrium as
t → +∞.

• On the two dimensional torus T
2: Similarly, the stationary solution is not pe-

riodic but the author may perturb it by a periodic function and once more the
perturbation will remain periodic. The result here is quite different for the main
reason that� itself does not decay. Even so, smooth perturbations of the stationary
solution are stable for all time in Sobolev spaces.

We now motivate our attack setting. We start with the observation that gravity term
in Darcy’s law (1) convert IPM in an anisotropic problem, which implies different
properties in different directions. In our case, the vertical direction pointing in the
direction of gravity will play a key role. By this anisotropic property, it seems
natural that T × [− 1, 1] might be an adequate scenario to set our equations.

In order to solve our problem in the bounded domain �, in certain Sobolev
spaces, we have to overcome the following new difficulties:

(i) To be able to handle the boundary terms that appear in the computations;
(ii) The lack of higher order boundary conditions at the boundaries, due to the fact

that we work in Sobolev spaces.
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Indeed, both difficulties (i) and (ii) can be bypassed if our initial perturbation has a
special structure. We introduce the following spaces to characterize our initial data:

Xk(�) :=
{
f ∈ Hk(�): ∂ny f |∂� = 0 for n = 0, 2, 4, . . . , k

}
, (5)

Y k(�) :=
{
f ∈ Hk(�): ∂ny f |∂� = 0 for n = 1, 3, 5, . . . , k

}
, (6)

where we define the auxiliary values of k and k as follows:

k :=
{
k − 2 k even

k − 1 k odd
and k :=

{
k − 1 k even

k − 2 k odd.

Lastly, we remember that the Trace operator T : H1(�) → L2(∂�) defined by
T [ f ] := f |∂� is bounded for all f ∈ H1(�). Consequently, both spaces are well
defined.

1.2. The Equations

In this section, we describe the equation that a perturbation of the stratified
solution (4) must satisfy. In order to prove our goal, we plug into the system (3) the
following ansatz:

�(x, y, t) = −y + ρ(x, y, t),

p(x, y, t) = �(x, y, t) − 1
2 y

2 +
∫ y

0
ρ̃(y′, t)dy′,

where, for a general function f : � × R
+ → R, we define

f̃ (y, t) := 1

2π

∫ π

−π

f (x ′, y, t)dx ′ and f̄ (x, y, t) := f (x, y, t) − f̃ (y, t).

Then, for the perturbation ρ, we obtain the system
⎧
⎨

⎩

∂tρ + u · ∇ρ = u2
u = −∇� − (0, ρ̄)

∇ · u = 0
(7)

alongside the boundary condition u ·n = 0 on ∂�. Note that in �, our perturbation
ρ does not have to decay in time. Indeed, if we perturb the stationary solution by a
function of y only there is no decay. More specifically, ρ ≡ ρ(y) and u = 0 is a
stationary solution of (7). To overcome this difficulty, the orthogonal decomposition
ρ = ρ̄ + ρ̃ will be considered.

The system (7) can be rewritten in terms of ρ̄ and ρ̃ as follows:
⎧
⎪⎪⎨

⎪⎪⎩

∂t ρ̄ + u · ∇ρ̄ + ∂y ρ̃ u2 = u2
∂t ρ̃ + ũ · ∇ρ̄ = 0

u = −∇� − (0, ρ̄)

∇ · u = 0.

(8)
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Notice that ρ̃ is always a function of y only and ρ̄ has zero average in the horizontal
variable. It is expected that ρ̄ will decay on time and ρ̃ will just remain bounded.
The systems (7) and (8) are the same, but depending on what we need, we will
work with one or the other.

1.3. Notation & Organization

We shall denote by ( f, g) the L2(�) inner product of f and g. As usual, we
use bold for vectors valued functions. Let u = (u1, u2) and v = (v1, v2), we define
〈u, v〉 = (u1, v1) + (u2, v2). Also, we remember that the natural norm in Sobolev
spaces is defined by

|| f ||2Hk(�)
:= || f ||2L2(�)

+ || f ||2
Ḣ k (�)

, || f ||2
Ḣ k (�)

:= ||∂k f ||2L2(�)
.

For convenience, in some places in this paper, we may use L2, Ḣ k and Hk to
stand for L2(�), Ḣ k(�) and Hk(�), respectively. Moreover, to avoid clutter in
computations, function arguments (time and space) will be omitted whenever they
are obvious from context. Finally, we use the notation f � g when there exists a
constant C > 0 independent of the parameters of interest such that f � Cg.

Organization of the Paper In Section 2, we introduce the functional spaces Xk(�)

and Y k(�)where we will work. The key point of working with initial perturbations
with the structure given by these spaces is showed in Section 3. Section 4 contains
the proof of the local existence in time for initial data in Xk(�) for the confined
problem, together with a blow-up criterion. The core of the article is the proof of
the main theorem in Section 5. We commence by the a priori energy estimates
given in Section 5.1. This is followed by an explanation of the decay given by the
linear semigroup of our system in Section 5.2. Finally, in Section 5.3 we exploit a
bootstrapping argument to prove our theorem.

2. Mathematical Setting and Preliminaries

In this section, we will see the importance of working with initial perturbations
belonging to Xk(�). We also consider an adapted orthonormal basis for working
with these perturbations, together with their eigenfunction expansion.

2.1. Motivation of the Spaces Xk(�) and Y k(�).

By the no-slip condition u2(t)|∂� = 0, the solution ρ(t) of (7) satisfies the
following transport equation on the boundary:

∂tρ(t)|∂� + u1(t)∂xρ(t)|∂� = 0. (9)

As our objective is to obtain global stability and decay to equilibrium of sufficiently
small perturbations, it seems natural to considerρ(0)|∂� = 0. Then, by the transport
character of (9) the initial condition is preserved in time ρ(t)|∂� = 0 as long
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as the solution exists. In addition, taking derivatives in Darcy’s law, using the
incompressibility condition, and restricting to the boundary we have

∂yu1(t)|∂� = 0 and ∂2y u2(t)|∂� = 0, (10)

given that ρ(t)|∂� = u2(t)|∂� = 0. Relations (10) give rise to the following
equation for the derivative in time of ∂2yρ(t) at the boundary:

∂t∂
2
yρ(t)|∂� = −u1(t)∂x (∂

2
yρ)(t)|∂� − ∂yu2(t)∂

2
yρ(t)|∂�.

Thus, we find that ∂2yρ(0)|∂� = 0 implies that ∂t∂2yρ(t)|∂� = 0, and consequently
the condition on the boundary is preserved in time.

Iterating this procedure we can check that the conditions ∂nyρ(0)|∂� = 0, for
n = 2, 4, . . . are preserved in time. This is the reason that we can look for solutions
ρ(t) in the space Xk(�) if the initial data belongs to it. Moreover u1(t) will belong
to Y k(�) and u2(t) will belong to Xk(�).

2.2. Biot–Savart Law and Stream Formulation

In the whole space R
2 we have a simple expression for ∇� in terms of ρ̄:

∇� = ∇(−	)−1∂y ρ̄,

so we can write the velocity in terms of ρ̄ as

u = −∇� − (0, ρ̄) = R⊥R1ρ̄,

where R⊥ = (−R2, R1), Ri being the Riesz’s transform.
In our setting � = T × [−1, 1], to obtain an analogous expression we proceed

as follows: due to the incompressibility of the flow, by taking the divergence of
Darcy’s law we find that

	� = −∂y ρ̄. (11)

Moreover, the no-slip condition (2) gives us the boundary condition

∂y�|∂� = −ρ̄|∂� = 0, (12)

which vanishes as ρ ∈ Xk(�). Then, putting together (11) and (12) (notice that we
look for a periodic in the x-variable �), we recover the velocity field, in terms of
ρ̄, by the expression u = −∇� − (0, ρ̄).

Another way to reach this expression is by following these steps: as ∇ · u = 0,
we can write the velocity as the gradient perpendicular of a stream function ψ , that
is,

u = ∇⊥ψ, (13)

with ∇⊥ ≡ (−∂y, ∂x ). Then, applying the curl operator on (1), we get the Poisson
equation for ψ :

	ψ = −∂x ρ̄.
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Taking into account (13) and the no-slip condition (2) we obtain the boundary
condition

∂xψ |∂� = 0.

Thus, we need to impose ψ |{y=±1} = c± where c+ could be, in principle, different
from c−. However, the periodicity in the x-variable of� forces us to take c+ = c−,
and since we are only interested in the derivatives of ψ we will take c± = 0.

To sum up, in order to close the system of equations, we first solve either
{

	� = −∂y ρ̄ in �,

∂y� = 0 on ∂�,

or
{

	ψ = −∂x ρ̄ in �,

ψ = 0 on ∂�,
(14)

and after that write

u = −∇� − (0, ρ̄) or u = ∇⊥ψ.

In the rest of the paper wewill use the stream formulation to recover the velocity
field. In the next section, we present an orthonormal basis of Xk(�) in order to solve
(14), which allows us towrite the velocity in terms of the “Fourier coefficients” of ρ̄.

2.3. An Orthonormal Basis for Xk(�)

Our goal is to solve (14). In order to do this, we define

ap(x) := 1√
2π

exp (i px) with x ∈ T for p ∈ Z

and

bq(y) :=
{
cos
(
qy π

2

)
q odd

sin
(
qy π

2

)
q even

with y ∈ [−1, 1] for q ∈ N,

where {ap}p∈Z and {bq}q∈N are orthonormal basis for L2(T) and L2([−1, 1]),
respectively. Indeed, {bq}q∈N consists of eigenfunctions of the operator S = (1−∂2y )

with domain D(S) = { f ∈ H2[−1, 1]: f (±1) = 0}. Consequently, the product
of ωp,q(x, y) := ap(x) bq(y) with (p, q) ∈ Z × N is an orthonormal basis for the
product space L2(T × [− 1, 1]) ≡ L2(�).

Now, we define an auxiliary orthonormal basis for L2([−1, 1]) given by

cq(y) :=
{
sin
(
qy π

2

)
q odd

cos
(
qy π

2

)
q even

with y ∈ [−1, 1] for q ∈ N ∪ {0},

consisting of eigenfunctions of the operator S = 1−∂2y with domainD(S) = { f ∈
H2[−1, 1]: (∂y f )(±1) = 0}. In the sameway as before, the product�p,q(x, y) :=
ap(x) cq(y) with (p, q) ∈ Z × (N ∪ {0}) is again an orthonormal basis for L2(�).
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Remark. Let us describe the analogue of the Fourier expansion in terms of our
eigenfunctions expansion. This is, for f ∈ L2(�), we have the L2(�)-convergence
given by

f (x, y) =
∑

p∈Z

∑

q∈N
Fω[ f ](p, q) ωp,q(x, y) where

Fω[ f ](p, q) :=
∫

�

f (x ′, y′) ωp,q(x ′, y′) dx ′dy′ (15)

or

f (x, y) =
∑

p∈Z

∑

q∈N∪{0}
F� [ f ](p, q)�p,q(x, y) where

F� [ f ](p, q) :=
∫

�

f (x ′, y′)�p,q(x ′, y′) dx ′dy′. (16)

Themain result of this part is to see that {ωp,q}(p,q)∈Z×N is an orthonormal basis
not only for L2(�) but for Xk(�), and that {�p,q}(p,q)∈Z×(N∪{0}) is basis of Y k(�).
The sequence {ap}p∈Z is the standard Fourier basis in Hk(T). Then, we will focus
only on the convergence properties of span{b1, b2, b3, . . .} and span{c0, c1, c2, . . .}.

Aswewill see below, the relationbetweenderivatives of {bq }q∈N and {cq}q∈N∪{0}
plays a key role in the convergence properties. An easy computation gives us

(∂ybq)(y) = (−1)qq π
2 cq(y) for q ∈ N (17)

and

(∂ycq)(y) =
{

−(−1)qq π
2 bq(y) q ∈ N,

0 q = 0.
(18)

Then, as a consequence of (17) and (18), for q ∈ N we have

(∂2y bq)(y) = − (q π
2

)2
bq(y) and (∂2y cq)(y) = − (q π

2

)2
cq(y). (19)

Hence, for each f ∈ L2([−1, 1]), as {bq}q∈N and {cq}q∈N∪{0} are orthonormal
bases for L2([−1, 1]), we have

PM f
M→∞−−−−→ f and QM f

M→∞−−−−→ f in L2([−1, 1]), (20)

where the partial sums are given by

PM f (y) =
M∑

m=1

〈 f, bm〉 bm(y) and QM f (y) =
M∑

m=0

〈 f, cm〉 cm(y). (21)

Remark. Here, the notation 〈·, ·〉 refers to the inner product in L2([−1, 1]).
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We are now ready to present the main lemmas of this section. Let us recall first
definitions (5) and (6), which give us

Xk([−1, 1]) =
{
f ∈ Hk([−1, 1]): (∂ny f )(±1) = 0 for n = 0, 2, 4, . . . , k

}

and

Y k([−1, 1]) =
{
f ∈ Hk([−1, 1]): (∂ny f )(±1) = 0 for n = 1, 3, 4, . . . , k

}
.

Lemma 2.1. {bq}q∈N is an orthonormal base of Xk([−1, 1]).
Proof. Since the orthogonality is trivial,wewill give the details of the completeness
of the basis. For a function f ∈ Xk([−1, 1])we know that f ∈ Hk([−1, 1]). Then,
by (20), we have that

Pm∂ny f
M→∞−−−−→ ∂ny f in L2([−1, 1]) for n = 0, 2, 4, . . . , either k or k − 1.

By (21) we get

PM∂ny f =
M∑

m=1

〈
∂ny f, bm

〉
bm(y), (22)

where, by integration by parts and (19), we have

〈
∂ny f, bm

〉
=
∫ +1

−1
∂ny f (y

′)bm(y′) dy′ =
∫ +1

−1
f (y′)∂ny bq(y′) dy′

= (−1)n
(
q π

2

)n
∫ +1

−1
f (y′)bq(y′) dy′

= (−1)n
(
q π

2

)n 〈 f, bm〉 . (23)

We must note that, thanks to bq(±1) = 0 and the boundary conditions, the bound-
ary terms in the integration by parts vanish. Therefore, putting (23) into (22) and
applying (19) again, we arrive at PM∂ny f ≡ ∂ny PM f and we obtain

∂ny PM f
M→∞−−−−→ ∂ny f in L2([−1, 1]) for n = 0, 2, 4, . . . , either k or k − 1.

Moreover, by (20), we have

QM∂n+1
y f

M→∞−−−−→ ∂n+1
y f in L2([−1, 1]) for n = 0, 2, 4, . . . , k∗,

where, by (21), we get

QM∂n+1
y f =

M∑

m=0

〈
∂n+1
y f, cm

〉
cm(y). (24)
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We notice that
〈
∂n+1
y f, c0

〉
= 0 due to the fact that (∂ny f )(±1) = 0 by hypothesis.

In addition, by integration by parts and (18), for m � 1 we obtain

〈
∂n+1
y f, cm

〉
=
∫ +1

−1
∂n+1
y f (y′)cq(y′) dy′ = −

∫ +1

−1
∂ny f (y

′)(∂ycq)(y′) dy′

= (−1)q
(
q π

2

)
∫ +1

−1
∂ny f (y

′)bq(y′) dy′

= (−1)q
(
q π

2

) 〈
∂ny f, bm

〉
. (25)

Here, the boundary termvanishes because by hypothesiswe have that (∂ny f )(±1) =
0. Hence, putting (25) into (24) and applying (17) again we arrive at QM∂n+1

y f ≡
∂y PM∂ny f ≡ ∂n+1

y PM f . Therefore,

∂n+1
y PM f

M→∞−−−−→ ∂n+1
y f in L2([−1, 1]) for n = 0, 2, 4, . . . , k.

��
Lemma 2.2. {cq}q∈N∪{0} is an orthonormal base of Y k([−1, 1]).
Proof. This results follows from the same ideas as to the proof of the above Lemma
(2.1). ��

Because of Lemmas 2.1 and 2.2 one has the following expressions for both the
Xk(�) and Y k(�) norm:

Corollary 2.3. Let f ∈ Xk(�) and g ∈ Y k(�). For s1, s2 ∈ N ∪ {0} such that
s1 + s2 � k, we have

||∂s1x ∂s2y f ||2L2(�)
=
∑

p∈Z

∑

q∈N
|p|2s1 |q π

2 |2s2 |Fω[ f ](p, q)|2

||∂s1x ∂s2y g||2L2(�)
=
∑

p∈Z

∑

q∈N∪{0}
|p|2s1 |q π

2 |2s2 |F� [ f ](p, q)|2 ,

where Fω[ f ](p, q) and F� [ f ](p, q) are given by (15) and (16), respectively.

Introducing a threshold number m ∈ N, we define the projections Pm and Qm

of L2(�) onto the linear span of eigenfunctions generated by {ωp,q}(p,q)∈Z×N and
{�p,q}(p,q)∈Z×N∪{0} respectively, such that {|p|, q} � m. That is, we have that

Pm[ f ](x, y) :=
∑

|p|�m
p∈Z

∑

q�m
q∈N

Fω[ f ](p, q) wp,q(x, y) and

Qm[ f ](x, y) :=
∑

|p|�m
p∈Z

∑

q�m
q∈N∪{0}

F� [ f ](p, q)�p,q(x, y). (26)

These projections have the following properties:
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Lemma 2.4. For f ∈ L2(�), we have thatPm[ f ] andQm[ f ] areC∞(�) functions
such that:

• For f ∈ H1(�),

∂xPm[ f ] = Pm[∂x f ], ∂xQm[ f ] = Qm[∂x f ], ∂yPm[ f ] = Qm[∂y f ] and

∂yQm[ f ] = Pm[∂y f ].
As a consequence, for f ∈ H2(�), we have

∂2yPm[ f ] = Pm[∂2y f ] and ∂2yQm[ f ] = Qm[∂2y f ];
• The projectors are self-adjoint in L2(�):

(Pm[ f ], g) = ( f, Pm[g]) and (Qm[ f ], g) = ( f, Qm[g]) ∀ f, g ∈ L2(�);
• For f ∈ Xk(�) and g ∈ Y k(�),

||Pm[ f ]||Hk(�) � || f ||Hk(�), Pm[ f ] → f in Xk(�)

||Qm[g]||Hk(�) � ||g||Hk(�), Qm[ f ] → f in Y k(�).

Proof. The proof is based in the arguments of the proof of Lemma 2.1. ��

3. Poisson’s Problem in a Bounded Strip

With all this in mind, it is time to solve Poisson’s system with a homogeneous
Dirichlet condition (14).

Lemma 3.1. Let ρ ∈ Xk(�). The solution of Poisson’s problem
{

	ψ = −∂x ρ̄ in �

ψ = 0 on ∂�

satisfies that ψ ∈ Xk+1(�) with ||ψ ||Hk+1(�) � ||ρ̄||Hk(�) and its Fourier expan-
sion is given by

ψ(x, y) =
∑

p∈Z

∑

q∈N

(
i p

p2 + (q π
2

)2

)

Fω[ρ̄](p, q) ωp,q(x, y). (27)

Proof. We consider the sequence of problems
{

	ψ [m] = −Pm[∂x ρ̄] in �,

ψ [m] = 0 on ∂�.

Taking n-derivatives with n = 0, . . . , k, testing again ∂nψ [m], integrating by parts
and applying Young’s inequality yields ||ψ [m]||Hk+1(�) � C ||Pm[ρ̄]||Hk(�) �
||ρ̄||Hk(�), since ρ ∈ Xk(�) (the constant C does not depend on m). In addi-
tion, it is easy to check that ∂nyψ

[m]|∂� = 0 for any even number n (this is because
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of the definition of Pm and the boundary condition ψ [m]|∂� = 0). These two facts
allow us to pass to the limit in m to find ψ ∈ Xk+1(�), solving (14).

As ρ̄ ∈ Xk(�) and ψ ∈ Xk+1(�) we can expand

ρ̄(x, y) =
∑

p∈Z

∑

q∈N
Fω[ρ̄](p, q) ωp,q(x, y) and

ψ(x, y) =
∑

p∈Z

∑

q∈N
Fω[ψ](p, q) ωp,q(x, y),

then

−∂x ρ̄(x, y) = −
∑

p∈Z

∑

q∈N
(i p)Fω[ρ̄](p, q) ωp,q(x, y),

	ψ(x, y) = −
∑

p∈Z

∑

q∈N

(
p2 + (q π

2

)2
)
Fω[ψ](p, q) ωp,q(x, y).

Consequently, the following relation between the coefficients must be verified:

F[ψ](p, q) = i p

p2 + (q π
2

)2 Fω[ρ̄](p, q). (28)

��
Corollary 3.2. The velocity u = (u1, u2) = ∇⊥ψ from (14) satisfies

u1 ∈ Y k(�), u2 ∈ Xk(�) and ||u||Hk(�) � ||ρ̄||Hk(�).

4. Local Solvability of Solutions in Xk(�)

To obtain a local existence result for general smooth initial data in a general
bounded domain for an active scalar is far from being trivial. The presence of
boundariesmakes thewell-posedness issues becomemore delicate (see for example
[6,7], in the case of SQG).

Here, we only focus on our setting �. Apart from working with the spaces
Xk(�) and as a consequence, being careful with the special boundary conditions
they impose, the proof in this section is a standard application of Galerkin approx-
imations. For the sake of completeness we write the details below.

We return to the equations for the perturbation of the confined IPM in �:

⎧
⎨

⎩

∂tρ + u · ∇ρ = u2
u = ∇⊥ψ

∇ · u = 0,
(29)

where ψ solves (14) together with the no-slip condition u · n = 0 on ∂� and initial
data ρ(0) ∈ Xk(�). Hence, we will prove the following result:
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Theorem 4.1. Let k ∈ N with k � 3 and an initial data ρ(0) ∈ Xk(�). Then, there
exists a time T > 0 and a constant C, both depending only on ||ρ||H3(�)(0) and a
unique solution ρ ∈ C

(
0, T ; Xk(�)

)
of the equations (29) such that

sup
0�t<T

||ρ||Hk(�)(t) � C ||ρ||Hk (�)(0).

Moreover, for all t ∈ [0, T ), the following estimate holds:

||ρ||Hk(�)(t)�||ρ||Hk(�)(0) exp

[

C̃
∫ t

0

(||∇ρ||L∞(�)(s)+||∇u||L∞(�)(s)
)
ds

]

.

(30)

The general method of the proof is similar to that for proving the existence of
solutions to the Navier–Stokes and Euler equations which can be found in [20].

The strategy of this section has two parts. First we find an approximate equation
and approximate solutions that have two properties: (1) the approximate solutions
exists for all time, (2) the solutions satisfy an analogous energy estimate. The second
part is the passage to a limit in the approximation scheme to obtain a solution to
the original equations.
Before embarking on the proof, we will need some basic properties of the Sobolev
spaces in bounded domains. In the next lemma, D ⊂ R

d is a bounded domain with
smooth boundary ∂D.

Lemma 4.2. For s ∈ N, the following estimates hold:

• If f, g ∈ Hs(D) ∩ C(D), then

|| f g||Hs(D) �
(|| f ||Hs(D) ||g||L∞(D) + || f ||L∞(D) ||g||Hs(D)

) ; (31)

• If f ∈ Hs(D)∩ C1(D) and g ∈ Hs−1(D)∩ C(D), then for |α| � s we have that

||∂α( f g) − f ∂αg||L2(D) � || f ||W 1,∞(D) ||g||Hs−1(D) + || f ||Hs (D) ||g||L∞(D).

(32)

Moreover, the following Sobolev embeddings hold:

• Ws,p(D) ⊆ Lq(D) continuously if s < n/p and p � q � np/(n − sp);
• Ws,p(D) ⊆ Ck(D) continuously is s > k + n/p.

Proof. See [14, p. 280] and references therein. ��
Proof of Theorem 4.1. We firstly construct approximate equations by using a
smoothing procedure called the Galerkin method. The mth-Galerkin approxima-
tion of (29) is the following system:

⎧
⎨

⎩

∂tρ
[m] + Pm

[
u[m] · ∇ρ[m]] = u[m]

2
u[m] = ∇⊥ψ [m]

ρ[m]|t=0 = Pm[ρ](0),
(33)
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where
{

	ψ [m] = −∂xρ
[m] in �

ψ [m] = 0 on ∂�,
(34)

and with ρ(0) ∈ Xk(�). Since the initial data in (33) belongs to PmL2(�) and
because of the structure of the equations, we look for solutions of the form

ρ[m](t) =
∑

|p|�m
p∈Z

∑

q�m
q∈N

c[m]
p,q(t)ωp,q(x, y).

Then, by Lemma (3.1), we get

ψ [m](t) =
∑

|p|�m
p∈Z

∑

q�m
q∈N

(
i p

p2 + (q π
2

)2

)

c[m]
p,q(t)ωp,q(x, y).

In this way, (33) is reduced to a finite dimensional ODE system for the coeffi-
cients c[m]

p,q(t) for {|p|, q} � m, and we can apply Picard’s theorem to find a solution
on a time of existence depending onm. Next, we will use energy estimates to prove
that there is a time of existence T , uniform in m, for every solution ρ[m](t) of (33)
and a limit ρ(t) which will solve (29). To do this, we recall that

ρ[m] = Pm

[
ρ[m]] and u[m] =

(
u[m]
1 , u[m]

2

)
=
(
Qm

[
u[m]
1

]
, Pm

[
u[m]
2

])
.

Taking derivatives ∂s , with |s| � k on the first equation of (33) and then taking the
L2(�) inner product with ∂sρ[m], we obtain

(
∂t∂

sρ[m], ∂sρ[m]) =
(
∂su[m]

2 , ∂sρ[m])

−
(
∂sPm

[
u[m] · ∇ρ[m]] , ∂sρ[m]) = I − I I.

For the first term, since ψ [m] solves Poisson’s problem (34), integrations by parts
gives us

I =
(
∂s∂xψ

[m], ∂sρ[m]) =
(
∂sψ [m], ∂s	ψ [m]) = −||∂su[m]||2L2(�)

, (35)

thanks to the fact that ∂nyψ
[m]|∂� = 0 for any even number n. For the second one,

we need to distinguish between an even or odd number of y-derivatives. In any
case, the properties of Pm, Qm given by Lemma (2.4) and the commutator estimate
(32) with f = u[m] and g = ∇ρ[m] give us the inequality

I I � ||∂sρ[m]||L2(�)

(
||∇u[m]||L∞(�)||ρ[m]||Hk(�)

+||u[m]||Hk(�)||∇ρ[m]||L∞(�)

)
. (36)
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Summing over |s| � k and putting together (35) and (36) we obtain

1
2∂t ||ρ[m]||2Hk(�)

� ||ρ[m]||Hk(�)

(
||∇u[m]||L∞(�)||ρ[m]||Hk(�)

+ ||u[m]||Hk (�)||∇ρ[m]||L∞(�)

)
,

and as u[m] = ∇⊥ψ [m] where ψ [m] solves (34) by Lemma (3.1) we get the bound
||u[m]||Hk(�) � ||ρ[m]||Hk(�). Therefore, we finally obtain that

1
2∂t ||ρ[m]||2Hk(�)

� ||ρ[m]||2Hk (�)

(
||∇u[m]||L∞(�) + ||∇ρ[m]||L∞(�)

)

� ||ρ[m]||2Hk (�)
||ρ[m]||H3(�), (37)

where the last inequality is true provided that k � 3 due to the Sobolev embedding

L∞(�) ↪→ H2(�). Hence, for all m and 0 � t < T �
(
c ||ρ||H3(�)(0)

)−1 we
have that

||ρ[m]||H3(�)(t) �
||Pm[ρ]||H3(�)(0)

1 − c t ||Pm[ρ]||H3(�)(0)
�

||ρ||H3(�)(0)

1 − c t ||ρ||H3(�)(0)
, (38)

and, in particular, that

sup
0�t<T

||ρ[m]||H3(�)(t) �
||ρ||H3(�)(0)

1 − c T ||ρ||H3(�)(0)
.

Applying (38) in the last term of (37), we obtain for all m and 0 � t < T by
Gronwall’s lemma that

||ρ[m]||Hk(�)(t) � ||Pm[ρ[m]]||Hk(�)(0) exp

[

c
∫ t

0

||ρ||H3(�)(0)

1 − c s ||ρ||H3(�)(0)
ds

]

� ||ρ||Hk(�)(0) exp

[

c
∫ t

0

||ρ||H3(�)(0)

1 − c s ||ρ||H3(�)(0)
ds

]

,

and, in particular, that

sup
0�t<T

||ρ[m]||Hk(�)(t) � C ||ρ||Hk(�)(0), (39)

where C is a constant depending only on ||ρ||H3(�)(0).

Therefore, the familyρ[m] is uniformly bounded,with respect tom, in L∞(0, T ;
Hk(�)). One consequence of the Banach–Alaoglu theorem (see [22]) is that a
bounded sequence ||ρ[m]||Hk (�) � K has a subsequence that converges weakly
to some limit in Hk(�), which is the dual of a separable Banach space. This is
ρ[m](t) ⇀ ρ(t) in Hk(�) for 0 � t < T .
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Moreover, the family ∂tρ
[m] is uniformly bounded in L∞ (0, T ; Hk−2(�)

)
. By

(33) we have that

sup
0�t<T

||∂tρ[m]||Hk−2(�)(t) = sup
0�t<T

||u[m]
2 − Pm

[
u[m] · ∇ρ[m]] ||Hk−2(�)(t)

� sup
0�t<T

||u[m]
2 ||Hk−2(�)(t)

+ sup
0�t<T

||Pm

[
u[m] · ∇ρ[m]] ||Hk−2(�)(t).

We need to show that u[m] · ∇ρ[m] ∈ Xk−1(�) in order to apply Lemma (2.4) for
k � 3 and to get

||Pm

[
u[m] · ∇ρ[m]] ||Hk−2(�)(t) � ||u[m] · ∇ρ[m]||Hk−2(�)(t)

�
[
||u[m]||Hk−2(�) ||∇ρ[m]||L∞(�)

+||u[m]||L∞(�) ||∇ρ[m]||Hk−2(�)

]
(t)

� ||u[m]||Hk (�)(t) ||ρ[m]||Hk (�)(t),

where in the last inequalities we used (31) and the Sobolev embedding L∞(�) ↪→
H2(�).

Checking thatu[m]·∇ρ[m] ∈ Xk−1(�) reduces,we see that ∂ny
(
u[m] · ∇ρ[m]) |∂�

= 0 for any even natural number n. We start with the observation that

u[m] · ∇ρ[m] = Qm

[
u[m]
1

]
Pm

[
∂xρ

[m]]+ Pm

[
u[m]
2

]
Qm

[
∂yρ

[m]] ,

and the fact that, due to (17) and (18),

∂2y (bq cq)(y) = (∂2y bq)(y) cq(y) + 2(∂ybq)(y) (∂ycq)(y) + bq(y) (∂2y cq)(y)

= (−1)(q π)2bq(y) cq(y).

Iterating this procedure and using that bq(±1) = 0, we prove the boundary condi-
tions for the derivatives of even order of the non-linear term.

Asbefore, byLemma (3.1)weobtain thebound ||u[m]||Hk(�)(t) � ||ρ[m]||Hk(�)

(t), and putting all together we obtain

sup
0�t<T

||∂tρ[m]||Hk−2(�)(t) � sup
0�t<T

||ρ[m]||Hk(�)(t)
[
1 + ||ρ[m]||Hk(�)(t)

]

� C ||ρ||Hk (�)(0)
[
1 + C ||ρ||Hk(�)(0)

]

thanks to (39). Hence, the family of time derivatives ∂tρ
[m](t) is uniformly bounded

in L∞ (0, T ; Hk−2(�)
)
.

Therefore, as we have seen above, the family of time derivatives ∂tρ
[m](t) is

uniformly bounded in L∞ (0, T ; Hk−2(�)
)
. Then, by the Banach–Alaoglu theo-

rem, ∂tρ[m](t) has a subsequence that converges weakly to some limit in Hk−2(�)

for 0 � t < T .
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Moreover, byvirtue ofAubin–Lions’s compactness lemma (see for instance [19])
applied with the triple Hk(�) ⊂⊂ Hk−1(�) ⊂ Hk−2(�) we obtain that the con-
vergence ρ[m] → ρ is strong in C(0, T ; Hk−1(�)). As u[m] = ∇⊥ψ [m] where
ψ [m] solves (34) and the convergence ρ[m] → ρ is strong in C(0, T ; Hk−1(�)),
we obtain the strong convergence u[m] → u in C(0, T ; Y k−1(�) × Xk−1(�)).
Using these facts, we may pass to the limit in the non-linear part of (33) to see that
Pm[u[m] · ∇ρ[m]] → u · ∇ρ in C(0, T ; Hk−2(�)) as follows:

||Pm[u[m] · ∇ρ[m]] − u · ∇ρ||Hk−2(�)

= ||Pm[u[m] · ∇ρ[m]] ± u[m] · ∇ρ[m] ± u[m] · ∇ρ − u · ∇ρ||Hk−2(�)

�
∣
∣
∣
∣(Pm − I)[u[m] · ∇ρ[m]]∣∣∣∣Hk−2(�)

+ ∣∣∣∣u[m] · ∇(ρ[m] − ρ)
∣
∣
∣
∣
Hk−2(�)

+ ∣∣∣∣(u[m] − u) · ∇ρ
∣
∣
∣
∣
Hk−2(�)

→ 0 as m → ∞.

In the limit, we use the fact that limm→∞ ||Pm[ f ] − f ||Hs(�) = 0 for f ∈ Xs(�),
together with the convergences of u[m] → u and ρ[m] → ρ and (31), for k � 3.

Now, from (33), we have that ∂tρ[m] = u[m]
2 −Pm

[
u[m] · ∇ρ[m]]→ u2−u ·∇ρ

inC(0, T ; Hk−2(�)). Since ρ[m] → ρ inC(0, T ; Hk−1(�)), the distribution limit
of ∂tρ

[m] must be ∂tρ for the Closed Graph theorem [3]. Thus it follows that ρ(t)
is the unique classical solution of (29) which lies in C(0, T ; Hk−1(�)). Then, to
show that ρ ∈ C(0, T ; Hk(�)), we follow [20, p. 110].

Firstly, we recall that ρ ∈ L∞(0, T ; Hk(�)) ⊂ L2(0, T ; Hk(�)) and we start
proving that ρ(t) is continuous on [0, T ) in the weak topology of Hk(�). To prove
that ρ ∈ CW (0, T ; Hk(�)), we define the dual pairing of (Hs)(�) and Hs(�) as
[·, ·]: (Hs(�))×Hs(�) → R given by [ϕ, f ] := ϕ[ f ]. Hence, becauseρ[m] → ρ

in C(0, T ; Hk−1(�)), it follows that [ϕ, ρ[m](t)] → [ϕ, ρ(t)] uniformly on [0, T )

for any ϕ ∈ (Hk−1(�)).
Using the fact that (Hk−1(�)) is dense in (Hk(�)) bymeans of an ε-argument

together with (39), we have [ϕ, ρ[m]] → [ϕ, ρ] uniformly on [0, T ) for any ϕ ∈
(Hk(�)). This fact implies that ρ ∈ CW (0, T ; Hk(�)).

By virtue of the fact that ρ ∈ CW (0, T ; Hk(�)), it suffices to show that the
norm ||ρ||Hk(�)(t) is a continuous function of time to get that ρ ∈ C(0, T ; Hk(�)).

Recall the relation for the uniform Hk(�) norm for the approximations

||ρ[m]||Hk(�)(t) �
||ρ||Hk(�)(0)

1 − C t ||ρ||Hk (�)(0)
= ||ρ||Hk(�)(0)

+
C t ||ρ||2

Hk(�)
(0)

1 − C t ||ρ||Hk (�)(0)
for all 0 � t < T .

For fixed time t ∈ [0, T ) we have ||ρ||Hk(�)(t) � lim infm→∞ ||ρ[m]||Hk (�)(t).
Using this in the above expression, we obtain

||ρ||Hk(�)(t) � ||ρ||Hk(�)(0) +
C t ||ρ||2

Hk(�)
(0)

1 − C t ||ρ||Hk(�)(0)
.
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Ononehand, from the fact thatρ ∈ CW (0, T ; Hk(�)),wehave that ||ρ||Hk (�)(0) �
lim inf t→0+ ||ρ||Hk(�)(t). On the other hand, the above expression gives us that
lim supt→0+ ||ρ||Hk(�)(t) � ||ρ||Hk(�)(0). Then, in particular, limt→0+ ||ρ||Hk(�)

(t) = ||ρ||Hk(�)(0). This gives us strong right continuity at t = 0.
It remains to prove continuity of the || · ||Hk (�)(t) norm of the solution at

times other than the initial time. Consider a time t ∈ (0, T ) and the solution
ρ(t) ∈ Hk(�). At this fixed time, we define ρ(0) := ρ(t), so we can take ρ(0)
as initial data and construct a solution as above by solving regularized equation (33).
Following the argument we used above to show that ||ρ||Hk(�)(t) is continuous at
t = 0, we also conclude that it is continuous as t = t. Because t ∈ (0, T ) is
arbitrary, we have just showed that ||ρ||Hk(�)(t) is a continuous function on [0, T ).
As a consequence, we have proved that ρ ∈ C(0, T ; Hk(�)).

Since for everym ∈ Nwe have ρ[m] = Pm[ρ[m]] ∈ Xk(�), that is ∂nyρ
[m]|∂� =

0 for any even number n and this property is closed, we obtain that the limiting
function also has the desired property, which concludes that the solution ρ lies in
C
(
0, T ; Xk(�)

)
.

Finally, applyingGronwall’s lemma on the above estimate (37) and the previous
convergence results, for all t ∈ [0, T ) we deduce that

||ρ[m]||Hk(�)(t)

� ||ρ[m]||Hk (�)(0) exp

[

C̃
∫ t

0

(
||∇ρ[m]||L∞(�)(s) + ||∇u[m]||L∞(�)(s)

)
ds

]

� ||ρ||Hk(�)(0) exp

[

C̃
∫ t

0

(||∇ρ||L∞(�)(s) + ||∇u||L∞(�)(s)
)
ds

]

,

and by lower semicontinuity we obtain (30). ��
Theorem 4.3. If ρ(t) is a solution of (29) in the class C

(
0, T, Xk(�)

)
with ρ(0) ∈

Xk(�), and if T = T  is the first time such that ρ(t) is not contained in this class,
then

∫ T 

0

(||∇u||L∞(�)(s) + ||∇ρ||L∞(�)(s)
)
ds = ∞.

Proof. This result follows from estimate (30). ��

5. Global Regularity for Small Initial Data

This section is devoted to proving the main result of this paper:

Theorem 5.1. Let �(y) := −y. There exists ε0 > 0 and a parameter γ ∈ N with
γ > 4 such that if we solve (3)with initial data�(0) = �+ρ(0) and ρ(0) ∈ Xκ(�)

with ||ρ||Hκ (�)(0) < ε � ε0 where κ � 5 + γ , then the solution exists globally in
time and satisfies the following:
(1) ||�̄||H3(�)(t) ≡ ||ρ̄||H3(�)(t) � ε

(1+t)
γ
4
;
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(2) ||�̃ − �||Hκ (�)(t) ≡ ||ρ̃||Hκ (�)(t) � 2 ε,

where � := �̄ + �̃ such that �̄ ⊥ �̃ and �̄ is given by the projection operator onto
the subspace of functions with zero average in the horizontal variable.

In the next three sections we give the proof of this result.

5.1. Energy Methods for the Confined IPM Equation

From what we have seen, we know that for ρ(0) ∈ Xk(�) there exits T > 0
such that ρ(t) ∈ Xk(�) is a solution of (7) for all t ∈ [0, T ). Moreover, if T  is
the first time such that ρ(t) is not contained in this class, then

∫ T 

0

(||∇u||L∞(�)(s) + ||∇ρ||L∞(�)(s)
)
ds = ∞.

5.1.1. A Priori Energy Estimate In what follows, we assume that ρ(t) ∈ Xk(�)

is a solution of (7) for any t � 0. Then, the following estimate holds for k � 6:

1
2∂t ||ρ||2Hk(�)

(t) � ||∂u2||L∞(�)(t) ||ρ||2Hk(�)
(t)

− (1 − ||ρ||Hk(�)(t)
) ||u||2Hk(�)

(t).

In this section we will perform the basic energy estimate for

∂tρ + u · ∇ρ = u2. (40)

L2(�)-estimate: We begin with the L2(�) bound. We multiply (40) by ρ and
integrate over �. Then,

1
2∂t ||ρ||2L2(�)

=
∫

�

ρ ∂tρ dxdy =
∫

�

ρ u2 dxdy −
∫

�

ρ (u · ∇) ρ dxdy.

By the incompressibility of the velocity and the boundary conditions, we have that
the second term vanishes, so by (13) we get

1
2∂t ||ρ||2L2(�)

=
∫

�

ρ u2 dxdy =
∫

�

ρ ∂xψ dxdy.

Finally, applying integration by parts and using that ψ solves (14) we achieve

1
2∂t ||ρ||2L2(�)

=
∫

�

	ψ ψ dxdy = −
∫

�

(∇ψ)2 dxdy +
∫

�

∂y[∂yψ ψ] dxdy.

As ψ |∂� = 0, it is clear that the boundary term vanishes, and consequently we
have that

1
2∂t ||ρ||2L2(�)

= − ||∇ψ ||2L2(�)
. (41)
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Ḣ k(�)-estimate We next take ∂k to (40), we multiply it by ∂kρ, and integrate over
�. Then,

1
2∂t ||ρ||2

Ḣ k (�)
=
∫

�

∂kρ ∂t∂
kρ dxdy =

∫

�

∂kρ ∂ku2dxdy

−
∫

�

∂kρ ∂k(u · ∇)ρ dxdy

= I1 + I2.

First of all, we study I1. By (13), (14) and integration by parts, we get

I1 =
∫

�

∂kρ ∂k∂xψdxdy = −
∫

�

∂k∂xρ ∂kψdxdy =
∫

�

	∂kψ ∂kψdxdy

= −
∫

�

(
∇∂kψ

)2
dxdy +

∫

�

∂y

[
∂y∂

kψ ∂kψ
]
dxdy.

As ψ ∈ Xk+1(�) due to Lemma (3.1), the boundary term vanishes and we have
proved that

I1 = − ||∇ψ ||2
Ḣ k (�)

. (42)

Secondly, we study I2. The most singular term vanishes by the incompressibility
and the boundary conditions

I2 = −
∫

�

∂kρ ∂k(u · ∇)ρ dxdy

= −
∫

�

∂kρ
(
∂u · ∇∂k−1ρ

)
dxdy

−
k−1∑

i=1

(
k

i

)∫

�

∂kρ
(
∂ i+1u · ∇∂k−i−1ρ

)
dxdy.

Now we want to distinguish between two kinds of terms, first for the case where
i = 0, and then the case where 1 � i � k − 1. The term for i = 0 is bounded
directly as

−
∫

�

∂kρ
(
∂u · ∇∂k−1ρ

)
dxdy � ||∂u||L∞(�) ||ρ||2Hk(�)

,

but working a little bit harder, we achieve

−
∫

�

∂kρ
(
∂u · ∇∂k−1ρ

)
dxdy

= −
∫

�

∂kρ
(
∂u1 ∂x∂

k−1ρ + ∂u2 ∂y∂
k−1ρ

)
dxdy

�
∫

�

∂kρ
(
∂u1 ∂x∂

k−1ρ
)
dxdy + ||∂u2||L∞(�) ||ρ||2Hk (�)

,

where, for the first integral, we consider two cases:
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•
�

�

�

�
∂u1 ≡ ∂xu1 By the incompressibility of the flow it is clear that

∫

�

∂kρ
(
∂xu1 ∂x∂

k−1ρ
)
dxdy = −

∫

�

∂kρ
(
∂yu2 ∂x∂

k−1ρ
)
dxdy

� ||∂u2||L∞(�) ||ρ||2Hk (�)
;

•
�

�

�

�

∂u1 ≡ ∂yu1 In this case, by (13), we have that

∫

�

∂kρ
(
∂yu1 ∂x∂

k−1ρ
)
dxdy =

∫

�

∂kρ
(
∂xu2 ∂x∂

k−1ρ
)
dxdy

+
∫

�

∂kρ
(
∂xρ ∂x∂

k−1ρ
)
dxdy

� ||∂u2||L∞(�) ||ρ||2Hk(�)
+||ρ||Hk(�) ||∇ψ ||2Hk .

To sum up, we have proved that

−
∫

�

∂kρ
(
∂u · ∇∂k−1ρ

)
dxdy � ||∂u2||L∞(�) ||ρ||2Hk(�)

+ ||ρ||Hk (�) ||∇ψ ||2Hk . (43)

Indeed, this is the only term that cannot be absorbed by the linear part. This term is
the reason why we need to have a integrable time decay of ||∂u2||L∞(�), and main
goal of the next section (5.2) is to obtain a time decay rate for it.

On the other hand, for i = 1, . . . , k − 1, we separate the other term as follows:

∫

�

∂kρ
(
∂ i+1u · ∇∂k−i−1ρ

)
dxdy =

∫

�

∂kρ ∂ i+1u1 ∂x∂
k−i−1ρ dxdy

+
∫

�

∂kρ ∂ i+1u2 ∂y∂
k−i−1ρ dxdy

= J1(i) + J2(i) i = 1, . . . , k − 1.

In view of (13) and (14), we have that J1(i) can be rewritten as

J1(i) =
∫

�

∂kρ ∂ i+1∂yψ ∂k−i−1	ψ dxdy,

and we clearly have

k−1∑

i=1

J1(i) � ||∂kρ||L2

[
k−3∑

i=1

||∂ i+1∂yψ ||L∞||∂k−i−1	ψ ||L2

+
k−1∑

i=k−2

||∂ i+1∂yψ ||L2 ||∂k−i−1	ψ ||L∞

]

� ||ρ||Hk(�) ||∇ψ ||2Hk(�)
for k � 4. (44)
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For J2(i), by (13) we obtain that

J2(i) =
∫

�

∂kρ ∂ i+1∂xψ ∂y∂
k−i−1ρ dxdy,

and for i = 1, . . . , k − 1 we need to distinguish two situations:
• We have at least one derivative in x . This is ∂k ≡ ∂k−1∂x . Then, by (14) we can

write J2(i) as follows:

J2(i) = −
∫

�

∂k−1	ψ ∂ i+1∂xψ ∂y∂
k−i−1ρ dxdy,

and as before, we clearly have

k−1∑

i=1

J2(i) � ||∂k−1	ψ ||L2

[
k−3∑

i=1

||∂ i+1∂xψ ||L∞||∂y∂k−i−1ρ||L2

+
k−1∑

i=k−2

||∂ i+1∂xψ ||L2 ||∂y∂k−i−1ρ||L∞

]

� ||ρ||Hk(�) ||∇ψ ||2Hk(�)
for k � 4; (45)

• All derivatives are in y. This is ∂k ≡ ∂ky . In this case, we have that

J2(i) =
∫

�

∂kyρ ∂ i+1
y ∂xψ ∂k−i

y ρ dxdy,

and by integration by parts we achieve

J2(i) =
∫

�

∂k−1
y ∂xρ ∂k−i+1

y ρ ∂ i+1
y ψ dxdy +

∫

�

∂k−1
y ∂xρ ∂k−i

y ρ ∂ i+2
y ψ dxdy

−
∫

�

∂kyρ ∂k−i
y ∂xρ ∂ i+1

y ψ dxdy

−
∫

�

∂y

[
∂k−1
y ∂xρ ∂k−i

y ρ ∂ i+1
y ψ

]
dxdy +

∫

�

∂x

[
∂kyρ ∂ i+1

y ψ ∂k−i
y ρ

]
dxdy.

By the periodicity in the horizontal variable, it is clear that the only boundary
term that needs to be studied carefully is the first one, which vanishes because
ρ ∈ Xk(�) and ψ ∈ Xk+1(�).

Therefore, we get

J2(i) =
∫

�

∂k−1
y ∂xρ ∂k−i+1

y ρ ∂ i+1
y ψ dxdy +

∫

�

∂k−1
y ∂xρ ∂k−i

y ρ ∂ i+2
y ψ dxdy

−
∫

�

∂kyρ ∂k−i
y ∂xρ ∂ i+1

y ψ dxdy

= −
∫

�

∂k−1
y 	ψ ∂k−i+1

y ρ ∂ i+1
y ψ dxdy −

∫

�

∂k−1
y 	ψ ∂k−i

y ρ ∂ i+2
y ψ dxdy

+
∫

�

∂kyρ ∂k−i
y 	ψ ∂ i+1

y ψ dxdy,
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where in the last equalitywe used (14). Repeatedly applyingHölder’s inequality
we obtain that

k−1∑

i=1

J2(i) � ||∂k−1
y 	ψ ||L2

[
k−2∑

i=1

||∂k−i+1
y ρ||L2 ||∂ i+1

y ψ ||L∞

+ ||∂2yρ||L∞ ||∂kyψ ||L2

]

+ ||∂k−1
y 	ψ ||L2

[
k−3∑

i=1

||∂k−i
y ρ||L2 ||∂ i+2

y ψ ||L∞

+
k−1∑

i=k−2

||∂k−i
y ρ||L∞ ||∂ i+2

y ψ ||L2

]

+ ||∂kyρ||L2

[
k−2∑

i=1

||∂k−i
y 	ψ ||L2 ||∂ i+1

y ψ ||L∞+||∂y	ψ ||L∞ ||∂kyψ ||L2

]

.

Then, by the Sobolev embedding, we clearly have

k−1∑

i=1

J2(i) � ||ρ||Hk(�) ||∇ψ ||2Hk(�)
for k � 6. (46)

Putting together (43), (44), (45) and (46) we have proved that

I2 � ||∂u2||L∞(�) ||ρ||2Hk(�)
+ ||ρ||Hk(�) ||∇ψ ||2Hk(�)

for k � 6. (47)

To sum up, we have obtained the next energy estimate.

Theorem 5.2. Let ρ(t) ∈ Xk(�) be a solution of (7) for any t � 0. Then, the
following estimate holds for k � 6:

1
2∂t ||ρ||2Hk(�)

(t) � C ||∂u2||L∞(�)(t) ||ρ||2Hk(�)
(t)

− (
1 − C ||ρ||Hk (�)(t)

) ||u||2Hk(�)
(t). (48)

Proof. First of all, we remember that u = ∇⊥ψ and

1
2∂t ||ρ||2L2(�)

= −||∇ψ ||2L2(�)
,

1
2∂t ||ρ||2

Ḣ k(�)
= −||∇ψ ||2

Ḣ k(�)
+ I2,

so summing and applying (47), we have achieved our target. ��
As we want to prove a global existence in time result for small data, this

is ||ρ||Hk(�)(t) � 1. Then, the second term in the energy estimate (48) is a
“good” one, because it has the right sign. In consequence, we fix our attention
in the first term. If we have a “good” time decay of the L∞(�)-norm of ∂u2,
then we will be able to prove that ||ρ||Hk(�)(t) remains small for all time by a
boostraping argument.
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5.2. Linear & Non-linear Estimates

Our goal for the rest of the paper is to obtain time decay estimates for
||∂u2||L∞(�)

(t). As we will see in the next Section 5.3, to close the energy estimate and
finish the proof is enough to get an integrable rate.

We approach the question of global well-posedness for small initial data
from a perturbative point of view, that is, we see (8) as a non-linear perturbation
of the linear problem. The linearized system of (8) around the trivial solution
(ρ, u) = (0, 0) reads

⎧
⎪⎪⎨

⎪⎪⎩

∂t ρ̄ = u2
∂t ρ̃ = 0

u = −∇� − (0, ρ̄)

∇ · u = 0

together with the no-slip condition u · n = 0 on ∂� and initial data ρ(0) ∈
Xk(�) such that ρ(0) = ρ̄(0) + ρ̃(0).

It is not difficult to prove that ρ̄ will decay in time and ρ̃ will just remain
bounded at linear order. Consequently, the linearized problem has a very large
set of stationary (undamped) modes.

Now, we return to our non-linear problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂t ρ̄ + u · ∇ρ̄ + ∂y ρ̃ u2 = u2
∂t ρ̃ + ũ · ∇ρ̄ = 0

u = −∇� − (0, ρ̄)

∇ · u = 0,

together with the no-slip condition u · n = 0 on ∂�. Since ρ̄ is decaying, the
term u · ∇ρ̄ should be small and controllable. The term ∂y ρ̃ u2, however, acts
like a second linear operator since ρ̃ is not decaying. It is conceivable that this
extra quasi-linear operator could compete with the damping coming from the
linear term. This makes the problem of long-time behavior more difficult.

As in [13]we solve this by,more or less, doing a second linearization around
the undamped modes and showing that the stationary modes can be controlled.
Then we wish to prove decay estimates for ρ̄ in the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂t ρ̄ = (1 − ∂y ρ̃) u2
∂t ρ̃ = 0

u = −∇� − (0, ρ̄)

∇ · u = 0,

assuming that the initial data ρ(0) = ρ̄(0) + ρ̃(0) is sufficiently small. By
showing this, we find the decay mechanism is “stable” with respect to the sort
of perturbations which this second linear operator introduces, and we are able
to keep the decay mechanism and close a decay estimate for ρ̄ and show that
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ρ̃, while not decaying, converges as t → ∞.

We notice that the second equation ∂t ρ̃(t) = 0 reduces to a condition at
time t = 0, that is ρ̃(y, t) = ρ̃(y, 0). As a consequence ρ̃ will just remain
bounded and our goal is to solve the following system in �:

⎧
⎨

⎩

∂t ρ̄ = (1 − ∂y ρ̃) u2
u = −∇� − (0, ρ̄)

∇ · u = 0,
(49)

alongside the no-slip condition u · n = 0 on ∂�. Using the stream formulation
(13), we can rewrite (49) in a more adequate way as

{
∂t ρ̄ = (1 − ∂y ρ̃) ∂xψ

ρ̄|t=0 = ρ̄(0),
(50)

where ψ is the solution of the Poisson problem (14) and ρ(0) ∈ Xk(�).

5.2.1. Quasi-Linear Decay In this subsection we prove L2(�) decay esti-
mates for the quasi-linear equation

∂t ρ̄ = (1 − G(y, t)) ∂xψ, (51)

where ψ is the solution of (14) given by (27) and G(y, t), which plays the role
of ∂y ρ̃(y, t), is sufficiently small.

Remark. We cannot extract an exact formula for the solution by taking the analog
of the Fourier transform given by the eigenfunction expansion, because the G(y, t)
term mixes the effects of all the Fourier coefficients.

Lemma 5.3. There exists ε > 0 small enough such that if ||G||H2([−1,1])(t) � ε

for all time, then the solution of equation (51) satisfies that

∂t ||ρ̄||2L2(�)
(t) � −||∇ψ ||2L2(�)

(t),

where ψ is the solution of (14).

Proof. Upon multiplying (51) by ρ̄ and integrating we see that

1
2∂t ||ρ̄||2L2(�)

=
∫

�

(1 − G(y)) ∂xψρ̄ dxdy.

After integrating by parts and using the stream function ψ , which is a solution of
Poisson’s problem (14), we arrive at

1
2∂t ||ρ̄||2L2(�)

=
∫

�

(1 − G(y)) ψ	ψ dxdy

= −
∫

�

(1 − G(y)) |∇ψ |2 dxdy +
∫

�

G ′(y) ψ ∂yψ dxdy.
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Now, applying the Sobolev embedding L∞([−1, 1]) ↪→ H1([−1, 1]) and the
Poincaré inequality, we get

1
2∂t ||ρ̄||2L2(�)

(t) � − [1 − C ||G||H2([−1,1])(t)
] ||∇ψ ||2L2(�)

(t).

Then, as ||G||H2([−1,1])(t) is small enough for all time, we get that ||ρ̄||L2(�)(t) is
bounded by its initial data. ��

As in [13], due to the fact that the Laplacian has a discrete spectrum on �,
we can actually deduce that ρ̄ decays in L2(�) so long as its higher derivatives
are controlled.

Lemma 5.4. Let α ∈ N and N : R
+ −→ R

+. The solution of (14) satisfies the
following lower bound:

||∇ψ ||2L2(�)
(t) � 1

N (t)
||ρ̄||2L2(�)

(t) − 1

N (t)1+α
||ρ̄||2Hα(�)(t). (52)

Proof. The solution of (14) is given by

ψ(x, y) =
∑

p∈Z

∑

q∈N

(
i p

p2 + (q π
2

)2

)

Fω[ρ̄](p, q) ωp,q(x, y).

Moreover, as ||∇ψ ||2
L2(�)

(t) = −(ψ,	ψ) = (ψ, ∂x ρ̄), it is clear that

||∇ψ ||2L2(�)
(t) =

∑

p∈Z

∑

q∈N

(
p2

p2 + (q π
2

)2

)2
∣
∣Fω[ρ̄](p, q)

∣
∣2.

Now, on one hand, we introduce the auxiliary function N : R+ −→ R
+ to obtain

that

||∇ψ ||2L2(�)
(t) � 1

N (t)
||ρ̄||2L2(�)

(t)

+
∑

(p,q)∈Z�=0×N

(
1

p2 + (q π
2

)2 − 1

N (t)

)
∣
∣Fω[ρ̄](p, q)

∣
∣2

� 1

N (t)

⎛

⎜
⎜
⎝||ρ̄||2L2(�)

(t) −
∑

p2+
(
q π
2

)2
�N (t)

∣
∣Fω[ρ̄](p, q)

∣
∣2

⎞

⎟
⎟
⎠ .

(53)
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On the other hand, by Corollary (2.3), we have that
∑

p2+
(
q π
2

)2
�N (t)

∣
∣Fω[ρ̄](p, q)

∣
∣2

� 1

N (t)α
∑

p2+
(
q π
2

)2
�N (t)

(
p2 + (q π

2

)2
)α ∣
∣Fω[ρ̄](p, q)

∣
∣2

� 1

N (t)α
||ρ̄||2Hα(�)(t). (54)

Combining the estimates (53) and (54) we arrive at (52). This gives that

∂t ||ρ̄||2L2(�)
(t) � − 1

N (t)
||ρ̄||2L2(�)

(t) + 1

N (t)1+α
||ρ̄||2Hα(�)(t),

and assuming that N : R+ −→ R
+ satisfies that N ′(t)N (t) � 1, we obtain

||ρ̄||2L2(�)
(t) � e−(N (t)−N (0))||ρ̄||2L2(�)

(0)

+
∫ t

0

e−(N (t)−N (s))

N (s)1+α
||ρ̄||2Hα(�)(s) ds. (55)

For simplicity, we take N (t) := 2
√
1 + t in (55), which gives us

||ρ̄||2L2(�)
(t) � e−2

√
1+t ||ρ̄||2L2(�)

(0)

+
⎛

⎝

∫ t

0

e−2(
√
1+t−√

1+s)

(1 + s)
1+α
2

ds

⎞

⎠ ||ρ̄||2L∞([0,t],Hα(�)).

��
Now, we use the following calculus lemma:

Lemma 5.5. Let α ∈ N, we have that

∫ t

0

e−2(
√
1+t−√

1+s)

(1 + s)
1+α
2

ds � 1

(1 + t)
α
2

.

Proof. The proof of this lemma is simple and basically follows after we split the
integral into two pieces: one from 0 to t/2 and the other from t/2 to t . The integral

from 0 to t/2 decays exponentially. The second integral decays like (1 + t)− 1+α
2

multiplied by the following factor:

∫ t

t/2
e−2(

√
1+t−√

1+s) ds =
∫ 2

(√
1+t−√

1+t/2
)

0
e−τ

(√
1 + t − τ

2

)
dτ �

√
1 + t .

This completes the proof. ��



466 Ángel Castro, Diego Córdoba & Daniel Lear

Then, applying the previous lemma we see that

||ρ̄||2L2(�)
(t) �

||ρ̄||2L∞([0,t],Hα(�))

(1 + t)
α
2

. (56)

Now, we wish to prove a similar decay estimate for the higher derivatives.
The idea is then to show that ||ρ̄||2Hα(�)(t) is bounded by its initial data; this

would then give (56) with L2(�) replaced by Hk(�) and Hα(�) replaced by
Hk+α(�).

Lemma 5.6. Let k ∈ N ∪ {0} and fix an auxiliary parameter α ∈ N. There exists
ε > 0 small enough such that if ||G||Hk+α+2([−1,1])(t) � ε for all time and ρ̄(0) ∈
Hk+α(�), then the solution of equation (51) satisfies

||ρ̄||2Hk(�)
(t) �

||ρ̄||2
Hk+α(�)

(0)

(1 + t)
α
2

.

Proof. Fix n ∈ N∪{0} such that n � k+α. First, wewill prove that ||ρ̄||2Hn(�)(t) �
||ρ̄||2Hn(�)(0). Proceeding as before, after integrating by parts and using the stream
function ψ , we arrive at

1
2∂t ||ρ̄||2Hn(�) =

∫

�

∂n [(1 − G(y))ψ] ∂n	ψ dxdy.

By Leibniz’s rule we have that

1
2∂t ||ρ̄||2Hn(�) =

∫

�

(1 − G(y))∂nψ∂n	ψ dxdy

+
n∑

i=1

(
n

i

)∫

�

∂ i (1 − G(y))∂n−iψ ∂n	ψ dxdy.

As before, applying the Sobolev embedding L∞([− 1, 1]) ↪→ H1([−1, 1]) and the
Poincaré inequality, we get

1
2∂t ||ρ̄||2Hn(�)(t) � − [1 − C ||G||Hn+2([− 1,1])(t)

] ||∇ψ ||2Hn(�)(t).

Then, as ||G||Hn+2([− 1,1])(t) is small enough for all time, we get that ||ρ̄||Hn(�)(t)
is bounded by its initial data. Applying this in (56), we have proved our goal for
the case k = 0. Arguing as we did above when we proved the L2(�) ≡ H0(�)

decay, we can extend the result for general k ∈ N. ��
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5.2.2. Non-linear Decay Next, we will show how this decay of the quasi-
linear solutions can be used to establish the stability of the stationary solution
(ρ, u) = (0, 0) for the general problem (8). When perturbing around the sta-
tionary solution, we get the following system:

{
∂t ρ̄ − (1 − ∂y ρ̃)u2 = −u · ∇ρ̄

∂t ρ̃ = −ũ · ∇ρ̄,
(57)

where u = ∇⊥ψ and ψ is the solution of (14).
Using Duhamel’s formula, with G(y, t) ≡ ∂y ρ̃(y, t) small enough in the

adequate norm, we write the solution of (57) as

ρ̄(t) = eL (t,0)ρ̄(0) −
∫ t

0
eL (t,s) [u · ∇ρ̄

]
(s) ds and

ρ̃(t) = ρ̃(0) −
∫ t

0
ũ · ∇ρ̄(s) ds,

where eL (t,s) denotes the solution operator of the associated quasi-linear prob-
lem (50) from s to t . Therefore, we have

||ρ̄||Hn(�)(t) �
||ρ̄||Hn+α(�)(0)

(1 + t)
α
4

+
∫ t

0

1

(1 + (t − s))
α
4

||u · ∇ρ̄||Hn+α(�)(s) ds.

5.3. The Bootstraping

We now demonstrate the bootstrap argument used to prove our goal. The
general approach here is a typical continuity argument that has been used suc-
cessfully in a plethora of other cases. Theorem (5.2) tells us that the following
estimate holds for k � 6:

1
2∂t ||ρ||2Hk(�)

(t) � C ||∂u2||L∞(�)(t) ||ρ||2Hk(�)
(t)

− (
1 − C ||ρ||Hk (�)(t)

) ||u||2Hk(�)
(t). (58)

We need to prove

Lemma 5.7. If ||ρ||Hκ (�)(0) < ε and ||ρ||Hκ (�)(t) � 4 ε on the interval [0, T ]
with 0 < ε � ε0 small enough. Then ||ρ||Hκ (�)(t) remains uniformly bounded by
2 ε on the same interval [0, T ].

We will prove Lemma (5.7) through a bootstrap argument, where the main
ingredient is the estimate (58). We will work with a bootstrap hypothesis to
assume that ||ρ||Hκ (�)(t) � 4ε on the interval [0, T ], where κ is big enough
and 0 < ε � 1 such that

(
1 − C ||ρ||Hκ (�)(t)

)
� 0 on [0, T ].
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Then, by Grönwall’s inequality we have

||ρ||Hκ (�)(t) � ||ρ||Hκ (�)(0) exp

(

C
∫ t

0
||∂u2||L∞(�)(s) ds

)

t ∈ [0, T ].

Our goal is to prove that ||∂u2||L∞(�)(t) decays on time at an integrable rate.
As L∞(�) ↪→ H2(�) by the Sobolev embedding, it is enough to prove this
for ||u2||H3(�)(t). This will allow us to close the energy estimate and finish the
proof.

5.3.1. Integral Decay of ||u2||H3(�) In order to control ||u2||H3(�) in time it
is enough to control ||ρ̄||H3(�). We have the following result:

Lemma 5.8. Assume that ||ρ||Hκ (�)(t) � 4 ε for all t ∈ [0, T ] where κ � 5 + 2γ
with γ > 4. Then

||ρ̄||H3(�)(t) � ε

(1 + t)
γ
4

for all t ∈ [0, T ].

Proof. By assumption, ∂y ρ̃(t) is small in Hκ−1(�) for all t ∈ [0, T ]. This implies
that eL (t,s) has nice decay properties for s � t and t ∈ [0, T ] in H3(�) if κ � 6+γ .
Hence, Duhamel’s formula gives us

||ρ̄||H3(�)(t) �
||ρ̄||H3+γ (�)(0)

(1 + t)
γ
4

+
∫ t

0

1

(1 + (t − s))
γ
4

||u · ∇ρ̄||H3+γ (�)(s) ds,

and we have that

||u · ∇ρ̄||H3+γ � ||u · ∇ρ̄||H3+γ � ||u||H3+γ (�) ||ρ̄||H4+γ (�) � ||ρ̄||2H4+γ (�)
.

Hence,

||ρ̄||H3(�)(t) �
||ρ̄||H3+γ (�)(0)

(1 + t)
γ
4

+
∫ t

0

1

(1 + (t − s))
γ
4

||ρ̄||2H4+γ (�)
(s) ds,

and, in conclusion, we need a control in time of ||ρ̄||H4+γ (�).
However, due to the well-known Gagliardo–Nirenberg interpolation inequali-

ties

||D j f ||L2(�) � C ||D2 j f ||1/2
L2(�)

|| f ||1/2
L2(�)

+ C̃ || f ||L2(�),

we get

||ρ̄||H4+γ (�) � ||ρ̄||1/2
H3+2(1+γ )(�)

||ρ̄||1/2
H3(�)

. (59)

Therefore, if we apply (59) in the previous inequalities, we get

||ρ̄||H3(�)(t) �
||ρ̄||H3+γ (�)(0)

(1 + t)
γ
4

+
∫ t

0

||ρ̄||Hκ (�)(s)

(1 + (t − s))
γ
4

||ρ̄||H3(�)(s) ds,

where we have defined κ ∈ N so that κ � max{5 + 2γ, 6 + γ }.
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By hypothesis, we have that ||ρ||Hκ (�)(t) � 4ε on the interval [0, T ]. Then, we
obtain that

||ρ̄||H3(�)(t) � Cε

(1 + t)
γ
4

+
∫ t

0

Cε

(1 + (t − s))
γ
4

||ρ̄||H3(�)(s) ds.

In particular, there exist 0 < T (C) � T such that for t ∈ [0, T (C)] we have

||ρ̄||H3(t) � 4
C ε

(1 + t)
γ
4
.

The following basic lemma is stated without proof (for a proof see [13, p. 584]):

Lemma 5.9. Let δ, q > 0, then

∫ t

0

ds

(1 + (t − s))δ (1 + s)1+q
� Cδ,q

(1 + t)min{δ,1+q} .

If we restrict things to 0 � t � T (C) and we apply the previous Lemma (5.9), we
have

||ρ̄||H3(�)(t) � C ε

(1 + t)
γ
4

+
∫ t

0

C ε

(1 + (t − s))
γ
4

4C ε

(1 + s)
γ
4
ds

� C ε

(1 + t)
γ
4

+ 4 C̃ ε2

(1 + t)
γ
4
.

The last term in the expression above is quadratic in ε; it is enough to find 0 < ε � 1
small enough so that

||ρ̄||H3(�)(t) � 2
C ε

(1 + t)
γ
4

for all t ∈ [0, T (C)] and, by continuity, for all t ∈ [0, T ]. ��
Thus, with γ > 4 we have proved the integrable decay of u2, and we are able to
close our energy estimate.We are now in the position to show how the bootstrap
can be closed. This is merely a matter of collecting the conditions established
above and showing that they can indeed be satisfied.

In conclusion, if ||ρ||Hκ (�)(t) � 4 ε for all t ∈ [0, T ], we have that

||ρ||Hκ (�)(t) � ||ρ||Hκ (�)(0) exp

(

C
∫ t

0
||∂u2||L∞(�)(s) ds

)

� ε exp

(

C
∫ t

0

C̃ε

(1 + s)
γ
4
ds

)

� ε exp
(
Cε

)
,

and ||ρ||Hκ (�)(t) � 2 ε for all t ∈ [0, T ] if we consider ε small enough, which
allows us to prolong the solution and then repeat the argument for all time.
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