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Abstract

It is shown—within a mathematical framework based on the suitably defined
scale of sparseness of the super-level sets of the positive and negative parts of the
vorticity components, and in the context of a blow-up-type argument—that the ever-
resisting ‘scaling gap’, that is, the scaling distance between a regularity criterion
and a corresponding a priori bound (shortly, a measure of the super-criticality
of the three dimensional Navier–Stokes regularity problem), can be reduced by
an algebraic factor; since (independent) fundamental works of Ladyzhenskaya,
Prodi and Serrin as well as Kato and Fujita in 1960s, all the reductions have been
logarithmic in nature, regardless of the functional set up utilized. More precisely,
it is shown that it is possible to obtain an a priori bound that is algebraically better
than the energy-level bound, while keeping the corresponding regularity criterion
at the same level as all the classical regularity criteria. The mathematics presented
was inspired by morphology of the regions of intense vorticity/velocity gradients
observed in computational simulations of turbulent flows, as well as by the physics
of turbulent cascades and turbulent dissipation.

1. Prologue

TheNavier–Stokes equations (NSE)describing themotionof three-dimensional
(3D) incompressible, viscous, Newtonian fluids read

∂t u + (u · ∇)u = ν�u − ∇ p + f, (1)

supplemented with the incompressibility condition∇ ·u = 0. Here, the vector field
u represents the velocity, the scalar field p the pressure, a positive constant ν is the
viscosity, and the vector field f an external force.

Henceforth, for simplicity of the exposition, ν will be normalized to 1, f taken to
be zero, and the spatial domain to be the whole spaceR

3 (since this is an irreversible
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system, the temporal variable lives in the interval (0,∞)). In this setting, the only
relevant piece of data is the initial velocity configuration u0.

Mathematical theory of the three dimensional NSE emerged from the ground-
breakingwork of Leray in the 1930s [24–26] in which he established global-in-time
existence of weak solutions emanating from the initial data with arbitrary large
energy and charted the paths for the study of local-in-time and global-in-time exis-
tence and uniqueness of strong solutions within the realms of arbitrary large and
appropriately small initial data.

A central problem in the theory ever since has been the possibility of singularity
formation in the system, and could be considered either from the point of view of
possible singularity formation in a weak solution or from the point of view of
possible finite time blow-up of a local-in-time strong solution. This problem is
usually referred to as the Navier–Stokes regularity problem.

The Navier–Stokes regularity problem is supercritical, that is, there is a ‘scal-
ing gap’—with respect to the unique scaling transformation realizing the scaling-
invariance of the equations—between any known regularity criterion and the cor-
responding a priori bound. (Note that if (u, p) is a solution to the three dimensional
NSE on R

3 × (0,∞), then for any λ > 0, the rescaled pair (uλ, pλ) given by
uλ(x, t) = λu(λx, λ2t) and pλ(x, t) = λ2 p(λx, λ2t) is also a solution; in addi-
tion, this is the only such transformation).

If we focus on L∞((0, T ), X)-type spaces, perhaps the most illustrative exam-
ple is in the L p-scale where the regularity class is L∞((0, T ), L3) ([10]; for gen-
eralizations see [13,29]), and the corresponding a priori bound the Leray bound
L∞((0, T ), L2). Moreover, since 1960s, the scaling gap has been of the fixed ‘size’
in the sense that all the regularity classes are (at best) scaling-invariant while—in
contrast—all the known a priori bounds are on the scaling level of the Leray bound.

Recall that arguably the most classical (scaling invariant) regularity criteria are

the Ladyzhenskaya–Prodi–Serrin conditions given by u ∈ L
2g

q−3 ((0, T ), Lq), for
3 < q � ∞, the other endpoint being the aforementioned Escauriaza, Seregin, and
Sverak class L∞((0, T ), L3). In the vorticity realm, this designation goes to the
Beale, Kato, and Majda (BKM)-criterion [2], ω ∈ L1((0, T ), L∞) where ω is
the vorticity of the fluid given by ω = curl u.

One might try to collect additional clues about possible singularity formation in
the three dimensional NSE from the geometry of turbulent flows. One of the most
prominent morphological signatures of this geometry—revealed in high-resolution
computational simulations of high (and evenmoderate; see [31]) Reynolds number-
flows—is spatial intermittency of the regions of intense vorticity and velocity gra-
dients.

In order to better understand geometry of theflowmathematically, it is beneficial
to study the vorticity–velocity formulation of the three dimensional NSE,

∂tω + (u · ∇)ω = �ω + (ω · ∇)u. (2)

The incompressibility implies that u can be reconstructed from ω by solving
�u = − curlω, leading to the Biot–Savart law, and closing the system.

Let us start by noting that conceivably a first work in mathematical analysis
of the three dimensional NSE that was motivated by geometry of the flow was a
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work by Giga andMiyakawa [14] establishing global-in-time existence of small,
measure-valued solutions modeling the vortex filaments (the space utilized is a
scaling-invariant Morrey–Campanato space).

Aconceptually related programaimedatmathematicalmodeling and analysis of
coherent structures in fluid flows via the study of oscillating and localized solutions
to theNSEwas initiated byMeyer and his students (Brandolese, Cannone, Lemarie-
Rieusset, Planchon,…); this brought in an array of scale-sensitive harmonic analysis
tools such as wavelets, atomic decomposition and Littlewood–Paley analysis. A
chapter in C.I.M.E. lecture notes byMeyer [28] provides insight into many of the
main ideas and results related to this program.

The vortex-stretching term, (ω · ∇)u, is responsible for a possibly unbounded
growth of the vorticitymagnitude in three dimensional;mechanically, the process of
vortex stretching in conjunctionwith incompressibility of the fluid and conservation
of the angular momentum amplifies the vorticity, formally, if we erase the vortex-
stretching term in the equations, and the only nonlinear term left is the advection
term (u ·∇)ω, an a priori bound on the L2-norm of the vorticity—which suffices to
bootstrap to infinite smoothness—follows in one line ((ω · ∇)u is identically zero
in 2D).

However, some caution is advised in labeling the vortex-stretching term as
a clear-cut ‘bad guy’. While the process of vortex-stretching does amplify the
vorticity, it also produces locally anisotropic small scales in the flow (diameter of
a vortex tube, thickness of a vortex sheet, etc.), and this gives a chance to some
form of a locally anisotropic diffusion to engage just on time to prevent the further
amplification of the vorticity magnitude and possible singularity formation. As a
matter of fact, Taylor [34] concluded his paper from the 1930s with the following
thought on turbulent dissipation:

“It seems that the stretching of vortex filamentsmust be regarded as the principal
mechanical cause of the high rate of dissipation which is associated with turbulent
motion.”

The stretching is also chiefly responsible for the phenomenon of local coher-
ence of the vorticity direction prominent in coherent vortex structures (for exam-
ple, in vortex tubes) which can be viewed as a local manifestation of the quasi
low-dimensionality of the regions of intense fluid activity. This observation led
to the rigorous mathematical study of locally anisotropic dissipation in the three
dimensional NSE originating in the pioneering work by Constantin [7], where
he presented a singular integral representation of the stretching factor in the evolu-
tion of the vorticity magnitude, featuring a geometric kernel depleted precisely by
local coherence of the vorticity direction. This has been referred to as ‘geometric
depletion of the nonlinearity’, and was a key in the proof of a fundamental result
by Constantin and Fefferman [8], stating that as long as the vorticity direction
(in the regions of intense vorticity) is Lipschitz-coherent, no finite time blow-up
can occur.

The Lipschitz-coherence was later scaled down to 1
2 -Hölder [9], followed up

by a complete spatiotemporal localization to an arbitrary small parabolic cylinder
B(x0, 2R) × (t0 − (2R)2, t0) [17], and the construction of scaling-invariant, local,
hybrid geometric-analytic regularity classes in which the coherence of the vorticity
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direction is balanced against the growth of the vorticity magnitude [18]. In particu-
lar, denoting the vorticity direction by ξ , the following scaling-invariant regularity
class is included:

∫ t0

t0−(2R)2

∫
B(x0,2R)

|ω(x, t)|2ρ2
1
2 ,2R

(x, t) dx dt < ∞,

where

ργ,r (x, t) = sup
y∈B(x,r),y �=x

∣∣∣sin∠
(
ξ(x, t), ξ(y, t)

)∣∣∣
|x − y|γ ;

this is to be contrasted to an a priori bound obtained in [6],

∫ T

0

∫
R3

|ω(x, t)||∇ξ(x, t)|2 dx dt � 1

2

∫
R3

|u0(x)|2 dx,

which exhibits the same scaling as the Leray class L∞((0, T ), L2); another mani-
festation of the scaling gap.

Let us return to the spatial intermittency of the regions of intense vorticity,
more specifically, to ‘sparseness’ of the vorticity super-level sets. This type of
morphology motivated a recent work [19] where it was shown that as long as the
vorticity super-level sets, cut at a fraction of the L∞-norm, exhibit a suitably defined
property of sparseness at the scale comparable to the radius of spatial analyticity
measured in L∞, no finite time blow-up can occur. (The proof was presented for the
velocity formulation, and the argument for the vorticity formulation is completely
analogous).

The concept of sparseness needed in the proof is essentially local existence
of a sparse direction (the direction is allowed to depend on the point) at the scale
of interest, and it will be referred to as ‘1D sparseness’. The precise definitions
of 1D sparseness and a related concept of ‘three dimensional sparseness’ can be
found at the beginning of Section 3, as well as a remark on their relationship. In the
rest of this section, sparseness will refer to three dimensional sparseness; we copy
the definition below for convenience of the reader (m3 denotes the 3-dimensional
Lebesgue measure).

Let S be an open subset of R
3, δ ∈ (0, 1), x0 a point in R

3, and r ∈ (0,∞). S
is three dimensional δ-sparse around x0 at scale r if

m3
(
S ∩ B(x0, r)

)
m3

(
B(x0, r)

) � δ.

Since we are interested in the super-level sets of a vector field cut at a fraction
of the L∞-norm, at the scale comparable to some inverse power of the L∞-norm,
there are several parameters floating around: the fraction at which we cut (call it λ),
the ratio of sparseness δ and a constant multiplying the inverse power of the L∞-
norm (call it 1

c ). More precisely, the class of functions of interest, Xα , is defined as
follows:
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Definition 1. For a positive exponent α, and a selection of parameters λ in (0, 1),
δ in (0, 1) and c0 > 1, the class of functions Xα(λ, δ; c0) consists of bounded,
continuous functions f : R

3 → R
3 subjected to the requirement that the super-

level set {
x ∈ R

3 : | f (x)| > λ‖ f ‖∞
}

(3)

is δ-sparse around any point x0 at scale 1
c

1
‖ f ‖α∞ , for some c, 1

c0
� c � c0.

It is instructive to make a brief comparison of the scale of classes Xα with
the scale of Lorentz L p,∞ spaces defined by the requirement that the distribution
function of f , the Lebesgue measure of the super-level set cut at level β, decays at
least as the inverse p-power of β. There are two key differences:

(i) the definition of Xα involves a specific type of the super-level sets, cut at a
fraction of the L∞-norm, while the definition of L p,∞ involves all levels β;

(ii) the L p,∞ spaces are blind to any geometric properties of the super-level sets,
and measure only the rate of decay of the volume, while the classes Xα can
detect the scale of sparseness of the super-level sets of the highest interest.

Remark 2. It is worth noting that the same phenomenon will occur in all
rearrangement-invariant (with respect to the Lebesgue measure) function classes,
that is, the classes that do not differentiate between the functions having identical
distribution functions. Typical examples are Lebesgue classes L p, general Lorentz
classes L p,q and Orlicz classes Lφ .

Taking a closer look, on one hand, it is plain that

f ∈ L p,∞ 
⇒ f ∈ Xα for α = p

3
(4)

(for a given selection of λ and δ, the tolerance parameter c0 will depend on the
L p,∞-norm of f ), on the other hand, in the geometrically worst case scenario
(from the point of view of sparseness), the whole super-level set being clumped
into a single ball, being in Xα is consistent with being in L3α,∞.

This provides a simple ‘conversion rule’ between the two scales, α = p
3 , deter-

mining the scaling signature of the classes Xα .
Let us decode the scaling distance between the regularity criterion established

in [19] (in the vorticity formulation), and any corresponding a priori bounds.
Recall that the scale of sparseness required is comparable to the lower bound

on the radius of spatial analyticity evaluated at a suitable time t prior to (possible)
blow-up, namely, 1

c
1

‖ω(t)‖
1
2∞
, that is, one needs ω in X 1

2
.

In contrast, the best a priori bound available isω in X 1
3
; this follows simply from

the a priori bound on the L1-normof the vorticity [6] andChebyshev’s inequality (an
L log L-bound on the vorticity is available under a very weak assumption that the
vorticity direction is in a local, logarithmically-weighted B M O space that allows
for discontinuities [3]).
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Applying the scaling conversion rule, X 1
2
corresponds to L

3
2 ,∞ and X 1

3
to L1,∞;

since these are precisely the endpoint classes within the L p,∞-scale in the vorticity
formulation, we arrive at yet another manifestation of the scaling gap (also, not
surprising as the derivation of the a priori bound, ω in X 1

3
, uses no geometric

tools).
Back to the drawing board. Recall that computational simulations of turbulent

flows indicate a high degree of local anisotropy present in the vorticity field, man-
ifested through the formation of various coherent vortex structures (for example,
vortex sheets and vortex tubes).

A simple but key observation is that a vector field exhibiting a high degree of
local anisotropy is more likely to allow for a considerable discrepancy in sparseness
between the full vectorial super-level sets and the super-level sets of the components.
As a matter of fact, it is easy to construct locally anisotropic smooth vector fields
for which the former are not sparse at any scale, while the latter can feature any
predetermined scale of sparseness.

This is our primary motivation for replacing the scale of classes Xα by the scale
of classes Zα based on sparseness of the super-level sets of the locally selected
positive and negative parts of the vectorial components fi , f ±

i , for i = 1, 2, 3.

Definition 3. For a positive exponent α, and a selection of parameters λ in (0, 1),
δ in (0, 1) and c0 > 1, the class of functions Zα(λ, δ; c0) consists of bounded,
continuous functions f : R

3 → R
3 subjected to the following local condition. For

x0 in R
3, select the/a component f ±

i such that f ±
i (x0) = | f (x0)| (henceforth, the

norm of a vector v = (a, b, c), |v|, will be computed as max{|a|, |b|, |c|}), and
require that the set

{
x ∈ R

3 : f ±
i (x) > λ‖ f ‖∞

}

is δ-sparse around x0 at scale 1
c

1
‖ f ‖α∞ , for some c, 1

c0
� c � c0. Enforce this for all

x0 in R
3.

Remark 4. Shortly, we require (local) sparseness of the/a locally maximal compo-
nent only.

(The scaling conversion rule remains the same, α = p
3 ).

Going back to the vorticity, since this is potentially a much weaker condition,
the two questions to examine are:

(a) is it possible to obtain an analogous regularity criterion at the same scale of
sparseness (compared to the full vectorial super-level sets), or at all?

(b) is it possible to establish an a priori bound at a smaller scale of sparseness
(compared to the full vectorial case), in particular, in the sense of modifying
the scaling exponent α by an algebraic factor?

Affirmative answers to (a) and (b) are presented in Sections 3 (Theorem 19)
and 4 (Theorem 26), respectively, yielding a regularity criterion in Z 1

2
and an priori

bound in Z 2
5
(with the identical selection of the parameters λ, δ and c0); since
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Table 1. The scaling distance between regularity and energy classes is consistent across the
table. Generally, a priori bounded quantities are in the energy class. Remarkably, Theorem 26
shows the a priori bound in the Zα class is algebraically better than the energy class (the a
priori bound in Zα is derived in the context of a blow-up argument)

Regularity class A priori bound Energy class

u ∈ L∞(0, T ; L3) u ∈ L∞(0, T ; L2) u ∈ L∞(0, T ; L2)

ω ∈ L∞(0, T ; L
3
2 ) ω ∈ L∞(0, T ; L1) ω ∈ L∞(0, T ; L1)

ω(τ) ∈ X 1
2
for a particular

τ < T

ω(τ) ∈ X 1
3
almost every-

where τ < T

ω(τ) ∈ X 1
3
almost every-

where τ < T
ω(τ) ∈ Z 1

2
for a particular

τ < T

ω(τ) ∈ Z 2
5

for τ <

T whenever ‖ω(τ)‖∞ is
large enough

ω(τ) ∈ Z 1
3
almost every-

where τ < T

1

3
<

2

5
<

1

2
,

this represents an algebraic reduction of the scaling gap in the Zα-framework.
For a quick scaling comparison, several pointwise-in-time classes and their

respective bounds are listed in Table 1.

Remark 5. Note that in the geometrically worst case scenario (for sparseness), ω

being in Z 2
5
is consistent with ω being in L

6
5 ,∞ which is—in turn—at the same

scaling level as L
6
5 . Hence, a ‘geometrically blind’ scaling counterpart of our a

priori bound in Z 2
5
would be the bound ω in L∞((0, T ), L

6
5 ) which is well beyond

state-of-the-art (ω in L∞((0, T ), L1) [6]).A counterpart in the velocity realmwould

be the bound u in L∞((0, T ), L
12
5 ), also well beyond state-of-the-art (this would

represent an algebraic improvement of the Leray bound u in L∞((0, T ), L2)).

Remark 6. One should remark that this is not the first time that the exponent
2
5 appeared in the study of formation of small scales in turbulent flows. In the
context of the three dimensional inviscid dynamics, the BKM-type criteria reveal
that the formation of infinite spatial gradients/infinitesimally-small spatial scales
is necessary for a finite time blow-up. In particular (see a discussion in [7]), if we
consider the case of approximately self-similar blow-up for the three dimensional
Euler in the form

ω(x, t) ≈ 1

T − t
�

(
x

L(t)

)
,

then the relevant BKM-type necessary condition for the blow-up reads
∫ T

0

(
L(t)

)− 5
2 dt = ∞,

and if we focus on the algebraic-type dependence

L(t) = L(0)
(
1 − t

T

)p
,
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then the blow-up can be sustained only when p � 2
5 . Furthermore, since by dimen-

sional analysis ω ≈ 1
T −t , this scaling is fully consistent with the vorticity being in

Z 2
5
near a possible singular time T , strongly hinting at the inviscid nature of Z 2

5
.

Remark 7. It is not inconceivable that—at least partially—thediscrepancybetween
the exponents 2

5 and 1
3 can be viewed as an indirect measure of the degree of local

anisotropy of the vorticity field in the regions of intense fluid activity. It is worth
noting that the same line of arguments, applied to the velocity itself, does not yield
any reduction of the scaling gap [11]; this is consistent with the picture painted
by computational simulations (and fluid mechanics) in which the regions of high
velocity magnitude tend to be more isotropic (recall that in a suitable statistical
sense, the K41 turbulence phenomenology—based on the velocity—is isotropic
and homogeneous, while one way to rationalize the phenomenon of intermittency
in turbulence is precisely via the coherent vortex structures).

2. Local-in-time Spatial Analyticity of the Vorticity in L∞

One of themost compellingmanifestations of diffusion in the three dimensional
NSE is the instantaneous spatially-analytic smoothing of the rough initial data. An
explicit, sharp lower bound on the radius of (spatial) analyticity of the solution
emanating from an initial datum in L p, for 3 < p < ∞, was given in [16]; the
method—inspired by the so-called Gevrey class-method introduced by Foias and
Temam [12]—was based on complexifying the equations and tracking the boundary
of the (locally-in-time expanding) domain of analyticity via solving a real system
of PDEs satisfied by the real and the imaginary parts of the complexified solutions.

Since the Riesz transforms are not bounded on L∞, to obtain an estimate in the
case p = ∞ without a logarithmic correction requires a different argument (on the
real level), see, for example, [15,20,23] in the real and the complex setting, respec-
tively, in the realm of the velocity-pressure formulation of the three dimensional
NSE.

The L∞-argument within the vorticity–velocity description requires a modifi-
cation, and we present a sketch here, including an estimate on the vortex-stretching
term, for completeness. What follows is a modification of the exposition given in
[23]. In addition to the initial vorticity ω0 being bounded, a suitable decay of ω0
at infinity will be required (we chose ω0 in L2 for convenience); however, it is
worth noting that this is a ‘soft assumption’, that is, there will be no quantitative
dependence on ‖ω0‖2 in the proof.
Theorem 8. (real setting) Let the initial datum ω0 be in L2 ∩ L∞. Then there exists
a unique mild solution ω in Cw

([0, T ], L∞)
where T � 1

c
1

‖ω0‖∞ for an absolute
constant c > 0.

Remark 9. Since L∞ is not separable, the continuity of the heat semigroup at the
initial time is guaranteed only in the weak sense; hence the appearance of the space
Cw

([0, T ], L∞)
in the statement of the theorem. Alternatively, one could replace

L∞ with its (closed) subspace of the uniformly continuous functions, and have the
strong continuity at the initial time.
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Sketch of the proof. The vorticity–velocity formulation of the three dimensional
NSE in the components is as follows:

∂tω j − �ω j + ui∂iω j = ωi∂i u j , j = 1, 2, 3, (5)

where u can be recovered from ω by the Biot–Savart law,

u j (x, t) = c
∫

ε j,k,l ∂yk

1

|x − y| ωl(y, t) dy

(ε j,k,l is the Levi–Civita symbol), making this a closed system forω. Differentiation
yields

∂i u j (x, t) = c P.V .

∫
ε j,k,l

∂2

∂xi ∂yk

1

|x − y|ωl(y, t) dy. (6)

A key observation is that the kernel

∂2

∂xi ∂yk

1

|x − y|
is a classical Calderon–Zygmund kernel; hence,

‖∇u(·, t)‖BMO � c ‖ω(·, t)‖BMO. (7)

Since we are interested in the mild solutions, we rewrite the Equation (5) via
the action of the heat semigroup,

ω j (x, t) =
∫

G(x − y, t)(ω0) j (y) dy

−
∫ t

0

∫
G(x − y, t − s) ui∂iω j (y, s) dy ds

+
∫ t

0

∫
G(x − y, t − s) ωi∂ j u j (y, s) dy ds, (8)

where G is the heat kernel.
Similarly as in the velocity-pressure description (see, for example, [16]), the

estimates are performed on the sequence of smooth (entire in the spatial variable)
global-in-time approximations.

ω
(n)
j (x, t) =

∫
G(x − y, t)(ω0) j (y) dy

−
∫ t

0

∫
G(x − y, t − s) u(n−1)

i ∂iω
(n−1)
j (y, s) dy ds

+
∫ t

0

∫
G(x − y, t − s) ω

(n−1)
i ∂ j u

(n−1)
j (y, s) dy ds, (9)

supplemented with

u(n)
j (x, t) = c

∫
ε j,k,l ∂yk

1

|x − y| ω
(n)
l (y, t) dy.
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The goal is to keep ω(n) in L∞ and ∇u(n) in BMO (uniformly in n, locally-in-
time), analogously to keeping u(n) in L∞ and p(n) in B M O in the velocity-pressure
formulation.

We present an estimate on the vortex-stretching term ω
(n−1)
i ∂ j u

(n−1)
j , the term

responsible for a potentially unrestricted growth of the vorticitymagnitude, in some
detail.

An estimate on the vortex-stretching term.
The main ingredients are: a pointwise estimate on the heat kernel G, G(x, t) �

c
√

t(
|x |+√

t
)4 (see, for example, [27]), a property of a scalar-valued BMO function f

featuring a suitable decay at infinity (for example, being in the closure of the test
functions in the uniformly-local L p for some p, 1 � p < ∞),

∫ | f (x)|
(|x |+1)4

dx �
c ‖ f ‖B M O (in general, one has to subtract a local average, for example, over a unit

ball B, in which case the inequality takes the form
∫ | f (x)− 1

|B|
∫

B f |
(|x |+1)4

dx � c ‖ f ‖BMO

[33]), and the Calderon–Zygmund relation (6).
Combining the above ingredients implies the following string of inequalities:

∣∣∣∣
∫ t

0

∫
G(x − y, t − s) ω

(n)
i (y, s) ∂i u

(n)
j (y, s) dy ds

∣∣∣∣
� sup

s∈(0,t)
‖ω(n)(s)‖∞

∫ t

0

∫ √
t − s(|x − y| + √

t − s
)4 |∂i u

(n)
j | dy ds

� sup
s∈(0,t)

‖ω(n)(s)‖∞
∫ t

0

∫
1(|z| + 1

)4 |∂i u
(n)
j | dz ds

� c t sup
s∈(0,t)

‖ω(n)(s)‖∞ sup
s∈(0,t)

‖∂i u
(n)
j (s)‖BMO

� c t sup
s∈(0,t)

‖ω(n)(s)‖∞ sup
s∈(0,t)

‖ω(n)(s)‖BMO

� c t

(
sup

s∈(0,t)
‖ω(n)(s)‖∞

)2

. (10)

(Since ω(n)(s) is in L2, ∂i u
(n)
j (s) is in L2 as well (by Calderon–Zygmund), and the

first BMO-bound is available).
The estimate on the advection term can be absorbed in the above bound, and

we arrive at

sup
s∈(0,t)

‖ω(n+1)(s)‖∞ � c ‖ω0‖∞ + c t

(
sup

s∈(0,t)
‖ω(n)(s)‖∞

)2

,

which yields boundedness of the sequence on the time-interval of the desired length.
A similar argument implies the contraction property inCw

([0, T ], L∞)
, concluding

the proof.
The complexification argument is analogous to the complexification of the

velocity-pressure formulation; for details, see [16].
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The main idea is as follows. Recall that the functions in the sequence of approx-
imations (ω(n), u(n)) are entire functions in the spatial variable for any t > 0. Then,
denoting a point in C

3 by x + iy, introduce a related sequence (�(n), U (n)) by

�(n)(x, t) = ω(n)(x + iαt, t) and U (n)(x, t) = u(n)(x + iαt, t),

where α > 0 is an optimization parameter.
The real and the imaginary parts of each of the elements in the sequence

(�(n), U (n)) satisfy a real system in which the principal linear parts are decou-
pled, and the only new type of terms generated by the complexification procedure
are two lower-order (first order) linear terms coming from the chain rule and the
Cauchy–Riemann equations in C

3.
Local-in-time estimates on the system are then of the same type as the esti-

mates on the real three dimensional NSE, resulting in expansion of the domain of
analyticity—after the optimization in the parameter α—comparable to

√
t (the only

global-in-time property needed is for the real and imaginary parts of each �(n), on
each real-space ‘slice’, to be in L2; this is, as in the real case, guaranteed by the
assumption that ω0 in L2).

More precisely, we arrive at

Theorem 10. (complex setting) Let the initial datum ω0 be in L2 ∩ L∞, and M a
constant larger than 1. Then there is a constant c(M) > 1 such that there exists a
unique mild solution ω in Cw

([0, T ], L∞)
where T � 1

c(M)
1

‖ω0‖∞ , and for any t

in (0, T ] the solution ω is the R
3-restriction of a holomorphic function ω defined

in the domain

�t =
{

x + iy ∈ C
3 : |y| <

1√
c(M)

√
t

}
;

moreover, ‖ω(t)‖L∞(�t ) � M ‖ω0‖∞.

Remark 11. The above theorem can be localized in the spirit of [4]; this would
provide a (local) lower bound on the radius of spatial analyticity in terms of the
local quantities only (at the expense of a logarithmic correction).

3. Spatial Complexity of the Vorticity Components: A Regularity Criterion

Henceforth, mn will denote the n-dimensional Lebesgue measure. Let us start
with recalling the concepts of 1D and three dimensional sparseness suitable for our
purposes [11,19].

Let S be an open subset of R
3, δ ∈ (0, 1), x0 a point in R

3, and r ∈ (0,∞).

Definition 12. S is 1D δ-sparse around x0 at scale r if there exists a unit vector d
in S2 such that

m1
(
S ∩ (x0 − rd, x0 + rd)

)
2r

� δ.
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Definition 13. S is three dimensional δ-sparse around x0 at scale r if

m3
(
S ∩ B(x0, r)

)
m3

(
B(x0, r)

) � δ.

Remark 14. On one hand, it is straightforward to check that, for any S, three

dimensional δ-sparseness at scale r implies 1D (δ)
1
3 -sparseness at scale ρ, for

some ρ in (0, r ], at any given pair (x0, r). On the other hand, there are plenty of
simple examples in which any attempt at the converse fails. However, if one is
interested in sparseness of a set at scale r , uniformly in x0 (as we will be), the
difference is much less pronounced.

Wewill formulate our regularity criterion as a no-blow-up criterion for a solution
ω belonging to C

([0, T ∗), L∞)
where T ∗ is the first (possible) blow-up time. In

this setting, it is convenient to have the notion of an ‘escape time’.

Definition 15. Let ω be in C
([0, T ∗), L∞)

where T ∗ is the first possible blow-up
time. A time t in (0, T ∗) is an escape time if ‖ω(τ)‖∞ > ‖ω(t)‖∞ for any τ in
(t, T ∗).

Remark 16. It is a well-known fact that for any level L > 0, there exists a unique
escape time t (L); this follows from the local-in-timewell-posedness in a straightfor-
wardmanner. As a consequence, there are continuummany escape times in (0, T ∗).

As in the previous section, we assume that the initial datum ω0 is (in addition)
in L2.

Thenwecan solve the three dimensionalNSE locally-in-time, at any t in (0, T ∗),
and uniqueness in conjunction with Theorem 10 will yield a lower bound on the
radius of spatial analyticity near t . In particular, for an escape time t , we consider
a temporal point s = s(t) conforming to the requirement

s in

[
t + 1

4c(M)‖ω(t)‖∞
, t + 1

c(M)‖ω(t)‖∞

]
; (11)

then, a lower bound on the radius of spatial analyticity at s is given by

1

2c(M)‖ω(t)‖
1
2∞

.

Moreover, since t is an escape time, this lower bound can be replaced by

1

2c(M)‖ω(s)‖
1
2∞

,

that is, in this situation there is no need to worry about a time-lag—a lower bound
on the analyticity radius at s is given in terms of the L∞-norm of the solution at s.

The property of 1D sparseness will be assumed on the super-level sets of the
positive and negative parts of the vorticity components ω j at s (recall that for a
scalar-valued function f , the positive and negative parts of f are given by f +(x) =
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Fig. 1. The blue and the red regions are precisely the sets V 1,±, that is, the super-level sets of
the positive and the negative parts ofω1, to be contrasted to the totality of the region visualized
which corresponds to the super-level set of the the full vectorial norm max{|ω1|, |ω2|, |ω3|}
(from a snapshot of a simulation initialized with the low frequency noise-type initial data
at the Reynolds number of approximately 104; courtesy of M. Mizstal, NBI) (colour figure
online)

max ( f (x), 0) and f −(x) = −min ( f (x), 0), respectively); more precisely, the
sets of interests will be the sets V j,±

s defined by

V j,±
s =

{
x ∈ R

3 : ω±
j (x, s) >

1

2M
‖ω(s)‖∞

}
(12)

(M is as in Theorem 10) (Fig. 1).
Since the proof of our regularity criterion is based on the harmonic measure

maximum principle, we recall a version suitable for our purposes. Here, as in [19],
we are concerned with the harmonic measure in the complex plane C; for a suitable
pair of sets

(
�, K

)
, the harmonic measure of K with respect to �, evaluated at a

point z, will be denoted by h(z,�, K ). (For the basic properties of the harmonic
measure in this setting, see, for example, [1,30]).

Proposition 17. [30] Let � be an open, connected set in C such that its boundary
has nonzero Hausdorff dimension, and let K be a Borel subset of the boundary.
Suppose that u is a subharmonic function on � satisfying

u(z) � M, for z ∈ �

lim sup
z→ζ

u(z) � m, for ζ ∈ K .

Then

u(z) � m h(z,�, K ) + M
(
1 − h(z,�, K )

)
for z ∈ �.
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The last ingredient needed is an extremal property of the harmonic measure in
the unit disk D.

Proposition 18. [32] Let λ be in (0, 1), K a closed subset of [−1, 1] such that
m1(K ) = 2λ, and suppose that the origin is in D \ K . Then

h(0, D, K ) � h(0, D, Kλ) = 2

π
arcsin

1 − (1 − λ)2

1 + (1 − λ)2

where Kλ = [−1,−1 + λ] ∪ [1 − λ, 1].
At this point, it is beneficial to set a specific set of constants: let M be the

solution to the equation 1
2h∗ + (1 − h∗)M = 1 where h∗ = 2

π
arcsin

1−( 34 )
2
3

1+( 34 )
2
3
, and

let c(M) be as in Theorem 10 (note that 1 < M < 3
2 ).

Theorem 19. Let ω be in C
([0, T ∗), L∞)

where T ∗ is the first possible blow-
up time, and assume, in addition, that ω0 is in L2 (then, ω is automatically in
L∞(

(0, T −), L2
)

for any 0 < T − < T ∗).
Let t be an escape time, and suppose that there exists a temporal point s = s(t)

as in (11) such that for any spatial point x0, there exists a scale ρ, 0 < ρ �
1

2c(M)‖ω(s)‖
1
2∞

and a direction d with the property that the super-level set V j,±
s

delineated in (12) is 1D ( 34 )
1
3 -sparse around x0 at scale ρ; here, the pair ( j,±) is

chosen according to the following selection criterion: |ω(x0, s)| = ω±
j (x0, s).

Then T ∗ is not a blow-up time.

Remark 20. Notice that—as far as the temporal intermittency goes—it is enough
that the condition on local 1D sparseness holds at some s(t) for a single escape
time t (recall that there are continuum-many escape times; in particular, there are
continuum-many escape times in any interval of the form (T ∗ − ε, T ∗)).

Proof. (The argument to be presented is a refinement of the argument introduced
in [19]).

Let t be an escape time and s = s(t) satisfy the condition (11). The idea is to
show that

‖ω(s)‖∞ � ‖ω(t)‖∞, (13)

utilizing the sparseness at s via the harmonic measure maximum principle; this
would contradict the assumption that t is an escape and in turn the assumption that
T ∗ is the first possible blow-up time.

Fix a spatial point x0 and let d be the direction of 1D sparseness around x0
postulated in the theorem. Since the three dimensional NSE are translationally and
rotationally invariant, and the coordinate transformations would change neither
the lower bound on the analyticity radius nor the L∞-bound on the complexified
solution (nor the sparseness), without loss of generality, assume that x0 = 0 and
d = (1, 0, 0). (The argument is completely local, that is, we are considering one
spatial point x0 at the time).
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Let us focus on the complexification of the real coordinate x1 (regarding the
other twovariables as parameters), and viewω(s) as an analytic,C3-valued function
on the symmetric strip around the x1-axis of the width of at least

1

c(M)‖ω(s)‖
1
2∞

.

Since ω is analytic, the real and the imaginary parts of the component functions
ω j are harmonic, and their positive and negative parts subharmonic in the strip;
in particular, the assumption on the scale of sparseness ρ implies that they are
subharmonic in the open disc

Dρ = {z ∈ C : |z| < ρ}.
Select a pair ( j,±) such that |ω(0, s)| = ω±

j (0, s). By the premise, the corre-

sponding set V j,±
s is 1D ( 34 )

1
3 -sparse around 0 at scale ρ (in the direction e1).

Define a set K by

K = V j,±
s ∩ (−ρ, ρ)

(the complement is taken within the interval [−ρ, ρ]), and note that m1(K ) �
2ρ

( 3
4

) 1
2 .

There are two disjoint scenarios to consider. In the first one, 0 is in K . Then,

|ω(0, s)| = ω±
j (0, s) � 1

2M
‖ω(s)‖∞ � 1

2
‖ω(t)‖∞;

that is, the contribution of this particular x0 is consistent with (13), and we can
move on. In the second scenario, we can estimate the harmonic measure of K with
respect to Dρ at 0 utilizing the sparseness in conjunction with Proposition 18.

Recall that the harmonicmeasure is invariantwith respect to any conformalmap,
and in particular with respect to the scaling map φ(z) = 1

ρ
z; hence, Proposition 18

yields

h(0, Dρ, K ) � 2

π
arcsin

1 − ( 3
4

) 2
3

1 + ( 3
4

) 2
3

= h∗.

The harmonic measure maximum principle (Proposition 17) applied to the sub-
harmonic function ω±

j then implies the following bound:

ω±
j (0, s) � h∗ 1

2
‖ω(t)‖∞ + (1 − h∗) M‖ω(t)‖∞

=
(
1

2
h∗ + (1 − h∗)M

)
‖ω(t)‖∞ = ‖ω(t)‖∞;

the estimate on ω±
j on the complement of K (within Dρ) comes from the estimate

on the complexified solution in Theorem 10, and the last equality from our choice
of the parameters.

Consequently, the second scenario is also compatible with the inequality (13).
Since the point x0 was an arbitrary point in R

3, this concludes the proof. ��



1998 Z. Bradshaw, A. Farhat & Z. Grujić

Remark 21. Note that the argument utilizing the sparseness via the harmonic mea-
sure maximum principle per se is completely local. It is the application of The-
orem 10 that ascribes to Theorem 19 the uniformly local nature. To arrive to a
completely local result, it suffices to localize the result presented in Theorem 10;
c.f., Remark 11.

4. Spatial Complexity of the Vorticity Components: An A Priori Bound

Concepts of a set being r -mixed (or ‘mixed to scale r ’) and r -semi-mixed appear
in the study of mixing properties of incompressible (or nearly incompressible)
flows, and in particular in the study of the optimal mixing strategies for passive
scalars (for example, density of a tracer) advected by an incompressible velocity
field (see, for example, [5,21]).

Definition 22. Let r > 0. An open set S is r -semi-mixed if there exists δ in (0, 1)
such that

m3(S ∩ B(x, r))

m3(B(x, r))
� δ

for every x in R
3. If the complement of S is r -semi-mixed as well, then S is said

to be r -mixed.

Remark 23. Recalling the definitions from the previous section, note that if the set
S is r -semi-mixed (with the ratio δ), then it is three dimensional δ-sparse around
every point x0 in R

3 at scale r .

The next lemma is a vector-valued version of a positive scalar-valued lemma in
[21] where the application was to the density of a tracer; a vectorial Besov space
version was given in [11] in the context of the B−1∞,∞-regularity criterion on the
velocity. We present a detailed proof for completeness of the exposition.

Lemma 24. Let r ∈ (0, 1] and f a bounded, continuous vector-valued function on
R
3. Then, for any pair (λ, δ), λ in (0, 1) and δ in

( 1
1+λ

, 1
)
, there exists a constant

c∗(λ, δ) > 0 such that if

‖ f ‖H−1 � c∗(λ, δ) r
5
2 ‖ f ‖∞,

then each of the six super-level sets Si,±
λ = {

x ∈ R
3 : f ±

i (x) > λ‖ f ‖∞
}

is r-semi-
mixed with the ratio δ. (H−1 denotes the dual of the Sobolev space H1).

Remark 25. It is worth noting that there could be a significant discrepancy between
semi-mixedness of the full vectorial super-level sets and the super-level sets of the
components. As a matter of fact, the former may not be semi-mixed at all, while
the latter may be r -semi-mixed at any predetermined scale. In particular, a duality
argument of the type utilized in the lemma does not seem to lead to any quantifiable
semi-mixedness of the full vectorial super-level sets.
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Proof. Assume the opposite, that is, there exists an index i such that either Si,+
λ or

Si,−
λ is not r -semi-mixed with the ratio δ. Suppose that it is Si,+

λ (if it were Si,−
λ ,

the only modification would be to replace the function φ below with −φ).
Consequently, there exists a spatial point x0 such that

m3
(

Si,+
λ ∩ B(x0, r)

)
> δ V3 r3,

where V3 denotes the volume of the unit ball in R
3.

Let φ be an H1-optimal, smooth radial (monotone) function, equal to 1 in
B(x0, r), and vanishing outside B(x0, (1 + η)r) for some η > 0 (the value to be
determined). Then, by duality,

‖ f ‖H−1 � 1

‖φ‖H1

∣∣∣∣
∫
R3

fi (x)φ(x) dx

∣∣∣∣ . (14)

An explicit calculation of the H1-norm of φ yields

‖φ‖H1 � c(η) r
1
2 (15)

for a suitable c(η) > 0 (recall that r is in (0, 1]).
The objective is to obtain a lower bound on the numerator by performing a

suitable domain-decomposition of the integral, that is,
∣∣∣∣
∫
R3

fi (x)φ(x) dx

∣∣∣∣ �
∫
R3

fi (x)φ(x) dx � I − |II| − |III| ,

where

I =
∫

Si,+
λ ∩B(x0,r)

fi (x)φ(x) dx,

II =
∫

B(x0,r)\Si,+
λ

fi (x)φ(x) dx

and

III =
∫
(

B(x0,(1+η)r)\B(x0,r)
) fi (x)φ(x) dx .

It is transparent that

I =
∫

Si,+
λ ∩B(x0,r)

fi (x) dx =
∫

Si,+
λ ∩B(x0,r)

f +
i (x) dx

> λ ‖ f ‖∞ m3
(

Si,+
λ ∩ B(x0, r)

)
� λ δ V3 r3‖ f ‖∞, (16)

|II| =
∣∣∣∣∣
∫

B(x0,r)\Si,+
λ

fi (x), dx

∣∣∣∣∣ � ‖ f ‖∞
(

m3(B(x0, r) − m3
(

Si,+
λ ∩ B(x0, r)

))
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� ‖ f ‖∞
(

V3 r3 − δ V3 r3
)

= (1 − δ) V3 r3‖ f ‖∞ (17)

and

|III| �
∣∣∣∣
∫

(B(x0,(1+η)r)\B(x0,r))

fi (x) dx

∣∣∣∣
� ‖ f ‖∞

(
m3(B(x0, (1 + η)r) − m3(B(x0, r))

)

�
(
(1 + η)3 − 1

)
V3 r3 ‖ f ‖∞. (18)

Collecting the estimates (14), (15) and (16)–(18), it follows that

‖ f ‖H−1 > c∗(η) r
5
2 ‖ f ‖∞ (λδ + δ − (1 + η)3).

Since δ > 1
1+λ

is postulated, the equation (1 + η)3 = δ(1+λ)+1
2 has a unique

solution η = η(λ, δ); this choice of η yields

‖ f ‖H−1 > c∗(λ, δ) r
5
2 ‖ f ‖∞ (19)

with c∗(λ, δ) = c∗(η)
δ(1+λ)−1

2 (which is positive since δ > 1
1+λ

). This produces a
contradiction. ��

The next theorem is a simple consequence of the above lemma and a careful
choice of parameters throughout the paper; it is designated a theorem because of
its significance.

Theorem 26. Let u be a Leray solution (a global-in-time weak solution satisfying
the global energy inequality), and assume that ω is in C

(
(0, T ∗), L∞)

for some
T ∗ > 0. Then for any τ in (0, T ∗) for which the scale r∗ defined below is less or
equal to one, the super-level sets

V j,±
τ =

{
x ∈ R

3 : ω±
j (x, τ ) >

1

2M
‖ω(τ)‖∞

}

are three dimensional 3
4 -sparse around any spatial point x0 at scale

r∗ = c(‖u0‖2) 1

‖ω(τ)‖
2
5∞

where c(‖u0‖2) is a constant depending only on the energy at time 0 (M is the
parameter set preceding the statement of Theorem 19; recall that 1 < M < 3

2 ).

Proof. Notice that our choice of parameters implies that

3

4
>

1

1 + 1
2M

,

and Lemma 24 is applicable.
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Since we are on the whole space, an efficient way to estimate ‖ω(τ)‖H−1 is by
switching to the Fourier space where one is required to estimate integrals of the
form

Ii, j =
∫

1

1 + |ξ |2 |̂∂i u j (ξ, τ )|2 dξ.

This is plain since

Ii, j �
∫ |ξi |2

1 + |ξ |2 |û j (ξ, τ )|2 dξ � ‖û(τ )‖22 = ‖u(τ )‖22 � ‖u0‖22
(by the energy inequality).

Consequently, in order to satisfy all the assumptions in the lemma, it suffices
to postulate

c ‖u0‖2 � c∗
(

1

1 + 1
2M

,
3

4

)
r

5
2 ‖ω(τ)‖∞,

which forces the choice of the scale of sparseness r∗ in the theorem. ��
Remark 27. For our purposes, the restriction r∗ � 1 in the theorem is irrelevant
since we are only interested in temporal points τ leading to a possible blow-up
time. It is also more of a feature than a bug since the formation of small scales is a
characteristic of the fully nonlinear regime.

Remark 28. Some effort has been made to assure that both the cut-off levels for
the super-level sets and the ratios of sparseness in Theorem 19 and Theorem 26
are identical, λ = 1

2M and δ = 3
4 . Moreover, since the constants featured in either

of the two scales of sparseness are either absolute (after our choice of parameters
was made) constants or the constant depending only on the initial energy of the
solution, the tolerance parameter c0 depends only on the initial energy. Shortly, the
regularity condition is given in the class Z 1

2

( 1
2M , 3

4 ; c0(‖u0‖2)
)
, and the a priori

bound in the class Z 2
5

( 1
2M , 3

4 ; c0(‖u0‖2)
)
.

5. Epilogue

The authors’ goal was to present a mathematical framework—the scale of
classes Zα—in which one could break the archetypal three dimensional NS scal-
ing barrier in the context of a blow-up-type argument. More precisely—in this
context—we showed that the a priori bound can be shifted by an algebraic factor,
from Z 1

3
, which corresponds to the classical energy-level a priori bounds, to Z 2

5
;

recall that the regularity class in this setting is Z 1
2
, which corresponds to the clas-

sical regularity criteria, and can be viewed as a statement that the radius of spatial
analyticity is a bona fide diffusion scale.

Parallel to the continued mathematical efforts, there is an effort directed at
gaining some insight into a ‘typical value’ of α by performing fully resolved com-
putational simulations of turbulent flows, as well as harvesting data from the Johns



2002 Z. Bradshaw, A. Farhat & Z. Grujić

Fig. 2. Log–log plot of the scale of three dimensional sparseness (of the vorticity compo-

nents) ri = ri (ti ) versus the diffusion scale di = ν
1
2

‖ω(ti )‖
1
2∞

from a simulation initialized

with the Kida vortex [22] initial condition at the Reynolds number of approximately 104.
Originating the flow at the Kida vortex initial condition causes ‖ω(t)‖∞ to increase sharply
before reaching the maximum and slumping, that is, it produces a burst of ‖ω(t)‖∞ which
is as close to ‘modeling a singularity’ in the three dimensional NS flows as feasible. In the
plot, the time runs from right to left; (approximately) the first third of the time-slices are
sourced from the initial time-interval in which the flow still has ‘too much memory’ of the
initial condition, and the last two thirds of the time slices are sourced from the time-interval
leading to the peak. As illustrated in the plot—in the time-interval leading to the peak—a
power-type relation of the form r ≈ dα settles in; after proper rescaling, it is revealed that the

slope of the line is approximately equal to 6
5 , that is, r ≈ d

6
5 . This implies that the solution

in view (leading to the peak) is approximately in Z 3
5
. Recall that the energy-level bound is

Z 1
3
, our a priori bound is Z 2

5
, and what is needed for our no blow-up criterion is at least Z 1

2
.

Hence, the plot indicates that further improvements of the Zα a priori bounds—even past
the critical class Z 1

2
—might indeed be possible (courtesy of M. Mizstal, NBI and J. Rafner,

NBI and Aarhus)

Hopkins Turbulence Databases (JHTDB), and trying to identify the scaling prop-
erties of the scale of sparseness of the super-level sets of the positive and negative

parts of the vorticity components with respect to the diffusion scale ν
1
2

‖ω‖
1
2∞
. This

has been a joint project with the complexity group of J. Mathiesen at the Niels
Bohr Institute (NBI) in Copenhagen, and in particular, with M. Mizstal, and the
ScienceAtHome group at Aarhus University led by J. Sherson; J. Rafner, of both
the NBI and Aarhus is the project coordinator.
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The simulations performed and the databases utilized cover both decaying
turbulence (for example, initialized with the Kida vortex or with the frequency-
localized noise) and forced isotropic turbulence; in all simulations/databases, the
spatial domain is a periodic box.

The data was collected and analyzed in three different regimes: deeply in the
inertial range, deeply in the dissipation range, and in the regime of the most interest
in the studies of possible singularity formation in the three dimensional NSE, the
regime of transition between the two.

The results will be detailed in a separate publication. Here, we would like to
report that there are indications of a statistically significant dependence between
the two scales (the geometric scale of sparseness and the analytic diffusion scale) in
all three regimes; however, the transitional regime has been the one signified by the
strong evidence of a power law dependence with the range of exponents implying
that the solution in view stabilizes in a class Zα , for some α > 1

2 , indicating no
obstruction to furthering the rigorous Zα-theory presented here. Figure 2 provides
an example of this phenomenon.
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