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Abstract

First, we consider Kolmogorov flow (a shear flow with a sinusoidal velocity
profile) for 2DNavier–Stokes equation on a torus. Such flows, also called bar states,
have been numerically observed as one type of metastable state in the study of 2D
turbulence. For both rectangular and square tori, we prove that the non-shear part of
perturbations near Kolmogorov flow decays in a time scale much shorter than the
viscous time scale. The results are obtained for both the linearized NS equations
with any initial vorticity in L2, and the nonlinear NS equation with initial L2

norm of vorticity of the size of viscosity. In the proof, we use the Hamiltonian
structure of the linearized Euler equation and the RAGE theorem to control the low
frequency part of the perturbation. Second, we consider two classes of shear flows
for which a sharp stability criterion is known. We show the inviscid damping in a
time average sense for non-shear perturbations with initial vorticity in L2. For the
unstable case, the inviscid damping is proved on the center space. Our proof again
uses the Hamiltonian structure of the linearized Euler equation and an instability
index theory recently developed by Lin and Zeng for Hamiltonian PDEs.

1. Introduction

Consider a 2D Navier–Stokes (NS) equation

∂tU + U · �U − ν � U = − � P (1.1)

on a torus

Tα =
{
0 < y < 2π, 0 < x <

2π

α

}
, α > 0,

with the incompressible condition∇ ·U = 0, whereU = (u, v) is the fluid velocity
and ν > 0 is the viscosity. More precisely, we impose the periodic boundary
conditions
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U (0, y, t) = U (2π/α, y, t) , U (x, 0, t) = U (x, 2π, t) .

The vorticity form of NS equation (1.1) is

ωt + uωx + vωy − ν � ω = 0, ω = vx − uy . (1.2)

It is convenient to introduce the stream function ψ such that ω = − � ψ and
U = ∇⊥ψ = (

ψy,−ψx
)
.

In the numerical and experimental study of 2D turbulence, it was often observed
[6,18,23] that the solutions to the two-dimensional Navier–Stokes (NS) equation
with small viscosity rapidly approach certain long-lived coherent structures. Evi-
dence also suggested that these quasi-stationary, ormetastable, solutions are closely
related to stationary solutions of the inviscid Euler equations

ωt + uωx + vωy = 0, ω = vx − uy .

Since there is no forcing in (1.2), when t → ∞, ‖ω (t)‖L2 → 0 in the viscous
time scale O

( 1
ν

)
, where ω (t) is the solution of (1.2) with initial data ω (0) ∈

L2. We are interested in the dynamics of (1.2), particularly the appearance and
persistence of coherent states in the intermediate time scale (0, T ), where 1 

T 
 O

( 1
ν

)
. The first step is to prove that nearby solutions converge rapidly to

these coherent states in a time scale T 
 O
( 1

ν

)
. Such a metastability problem

is also called enhanced damping in the literature. Among the candidates of Euler
steady solutions to explain the coherent structures, some authors (e.g. [6,18,23])
suggested that certain maximal entrophy solutions of the inviscid Euler equation
are the most probable quasi-stationary states that one would observe. The simplest
of such maximal entrophy solutions is the Kolmogorov flow (also called bar states
in [23]), that is, u0 = (sin y, 0) or (cos y, 0). The solution to (NS) with initial data
u0 is uν (t, y) = e−νt (sin y, 0). The linearized (NS) equation near uν is

∂tω = ν�ω − e−νt
[
sin y∂x

(
1 + �−1

)]
ω = L (t) ω, (1.3)

where ν is the viscosity and ω is the vorticity perturbation. In [3], Beck and Wayne
studied the following approximation of the linearized problem:

∂tω = ν�ω − e−νt sin y∂xω = L̃ (t) ω, (1.4)

by dropping the nonlocal term e−νt sin y∂x�
−1ω in (1.3). Define the following

weighed H1 space for non-shear vorticity functions:

Z =
⎧⎨
⎩

∑
k �=0

ω = ωk (y) eikx ∈ L2, (1.5)

‖ω‖2Z :=
∑
k �=0

[
‖ωk‖22 +

√
ν

|k|
∥∥∂yωk

∥∥2
2 + 1

√
ν |k| 32

∥∥∥Ckωk

∥∥∥2
2

]
< ∞

⎫⎬
⎭ ,
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where Ckωk = −ikeνt (cos y) ωk . It was proved in [3] that for any τ > 0 and
T ∈ [

0, τ
ν

]
there exist constants K , M such that if ν is small enough, then the

solution to (1.4) with the initial data ω (0) ∈ Z satisfies the estimate

‖ω (t)‖2Z � K e−M
√

νt ‖ω (0)‖2Z , t ∈ [0, T ] .

The proof of this usedVillani’s hypocoercivitymethod ([22]). For the full linearized

NS equation, numerical evidence in [3] suggested the same decay rate O
(

e−√
νt
)
.

In this paper, we study the full linearized equation (1.3) and the nonlinear
equation (1.1) on a torus

Tα =
{
0 < y < 2π, 0 < x <

2π

α

}
,

with α � 1, which is the sharp stability condition of Kolmogorov flows for the 2D
Euler equation (see Lemma 4.1 of [14]). To simplify notation, we use ων (t) for
both solutions of the linearized Navier–Stokes equation (1.3) and the perturbation
solutions of the nonlinear Navier–Stokes equation (3.1) near Kolmogorov flows.
Our first result is about the enhanced damping for the linearized NS equation.

Theorem 1.1. Consider the linearized NS equation (1.3) on Tα with α � 1. Define
the non-shear vorticity space

X =
⎧⎨
⎩ω ∈ L2| ω =

∑
0 �=k∈Z

ωk (y) eikαx

⎫⎬
⎭ . (1.6)

(i) Then (Rectangular torus) Consider α > 1. For any τ > 0 and δ > 0,
if ν is small enough, then the solution ων (t) to (1.3) with non-shear initial data
ων (0) ∈ X satisfies

∥∥ων
(

τ
ν

)∥∥
L2 < δ ‖ων (0)‖L2 .

(ii) (Square torus) Consider α = 1. Let Pa be the orthogonal projection from
the non-shear space

X =
⎧⎨
⎩ω ∈ L2| ω =

∑
k �=0

ωk (y) eikx

⎫⎬
⎭

to the ‘anomalous’ space Wa spanned by {cos x, sin x}. For any τ > 0 and δ > 0,
if ν is small enough, then the solution ων (t) to (1.3) with initial data ων (0) ∈ X
satisfies ∥∥∥(I − Pa) ων

(τ

ν

)∥∥∥
L2

< δ
∥∥(I − Pa) ων (0)

∥∥
L2 . (1.7)

Since τ can be arbitrarily small, the above result implies a much enhanced
decay in the time scale O

(
τ
ν

)
compared with the viscous time scale O

( 1
ν

)
. For

shear initial data ω (0) = ω0 (y) , the linearized NS equation (1.3) is reduced to the
heat equation ∂tω = ν∂yyω and there is no enhanced decay. On the square torus,
there is a two-dimensional additional kernel space Wa of the operator 1 + �−1

spanned by {cos x, sin x}, which corresponds to exact solutions e−νt {cos x, sin x}
of the Navier–Stokes equations. These so called ‘anomalous modes’ (see [3]) need
to be removed for the enhanced damping to hold true.

For the nonlinear Navier–Stokes equation, we have
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Theorem 1.2. Consider the nonlinear NS equation (1.1) on Tα with α � 1. Denote
PK to be the projection of L2 (Tα) to the subspace of Kolmogorov flows WK =
span {cos y, sin y}. Then,

(i) (Rectangular torus) Suppose α > 1. There exist d > 0, such that for any
τ > 0 and δ > 0, if ν is small enough, then for any solution ων (t) to (1.1) with
initial data ων (0) ∈ L2 satisfying

∥∥(I − PK) ων (0)
∥∥

L2 � dν, (1.8)

we have ∥∥∥P�=0ω
ν
(τ

ν

)∥∥∥
L2

< δ
∥∥P�=0ω

ν (0)
∥∥

L2 .

Here, P�=0 is the projection of L2 to the non-shear space X, that is,

P�=0ω = ω − α

2π

∫ 2π
α

0
ωdx .

(ii) (Square torus) Suppose α = 1. There exist d > 0, such that: for any
M > 0, τ > 0 and δ > 0, if ν is small enough, then for any solution ων (t) to (1.1)
with initial data ων (0) ∈ L2 satisfying ‖(I − PK) ων (0)‖L2 � dν, either

max
0�t� τ

ν

∥∥Paων (t)
∥∥

L2 � M
∥∥P�=0ω

ν (0)
∥∥

L2 (1.9)

or

inf
0�t� τ

ν

∥∥(1 − Pa) P�=0ω
ν (t)

∥∥
L2 < δ

∥∥P�=0ω
ν (0)

∥∥
L2 (1.10)

must hold true.

In the above theorem, the metastability of Kolmogorov flow is studied for
perturbations of the size ν. On the rectangular torus, it is shown that the non-shear
part of the perturbation is reduced to a factor δ of the initial size before the time
scale τ

ν
, which is much smaller than the viscous time scale 1

ν
. Moreover, by taking

the constant d to be smaller, we can ensure that ‖(I − PK) ων (t)‖L2 � dν for all
t > 0, thus we can repeatedly use Theorem 1.2 i) to get the rapid decay of the
non-shear part before the viscous time scale.

The situation for the square torus is more subtle due to the existence of ‘anoma-
lous modes’. By taking M to be large and τ, δ to be small, Theorem 1.2 i) implies
that if the ‘anomalous modes’ do not get too amplified before the time scale τ

ν
,

then the non-shear part of the perturbation without ‘anomalous modes’ is rapidly
reduced. If the ‘anomalous modes’ are indeed much amplified (i.e. 1.9) before
the time scale τ

ν
, it suggests that the energy of the perturbation is transferred to

‘anomalous modes’. Intuitively, this might be considered as a hint that the non-
shear part without ‘anomalous modes’ should be reduced. A quantitative estimate
of the enhanced damping for such case is under investigation.
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Next, we discuss some key ideas in the proof of Theorems 1.1 and 1.2. Our
work is partly motivated by the work of Constantin et al. [9] for the linear reaction
diffusion equation

∂tφ + v0 · ∇φ − ν�φ = 0,

with an incompressible flow v0 (x). In [9], the enhanced damping in the sense
of Theorem 1.1 is proved under the assumption that the operator v0 · ∇ has no
non-constant eigenfunction in H1. Their proof is to consider the high and low
frequency parts of the solution φ (t) separately. For the high frequency part (i.e.
‖∇φ‖L2 ≈ N ‖φ‖L2 for N large), the enhanced damping is ensured by the energy
dissipation law

∂t ‖φ‖2L2 = −ν ‖∇φ‖2L2 . (1.11)

The lower frequency part is shown to converge to zero in the time average sense, by
using the following RAGE Theorem for the unitary group eit L with the self-adjoint
generator L = iv0 · ∇:

Theorem (RAGE) [7] Let L be a self-adjoint operator in a Hilbert space H ,
Pc is the projection to the continuous spectrum space of L and B is any compact
operator, then

1

T

∫ T

0

∥∥∥Beit L Pcψ

∥∥∥2
H
dt → 0, when T → ∞.

In the proof of enhanced damping, B is taken to be the projection to the low
frequency modes. Then the RAGE Theorem implies that the low frequency modes
decay in the time average sense.

To apply these ideas to prove the enhanced damping for the linearized Navier–
Stokes equation (1.3), there are a few difficulties to be overcome. First, for the
Eq. (1.3), there is no obvious dissipation law as (1.11). We derive the identity

d

dt

∫
Tα

(|ων |2 − | � ψν |2)dxdy = −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy, (1.12)

where ψν = (−�)−1 ων is the stream function. When α > 1, the quadratic forms
on both sides of (1.12) are positive definite for non-shear vorticity (i.e. ων ∈ X ).
When α = 1, the positivity is still true in the space X1 = (I − Pa) X0. This
provides a substitute of (1.11).

Second, even if we ignore the factor e−νt in (1.3), the linearized Euler operator
A = − sin y∂x

(
1 + �−1

)
is not anti-self-adjoint and the RAGE theorem cannot

be applied directly to et A. An important observation is that A can be written in the
Hamiltonian form A = J L , where

J = − sin y∂x , L = 1 + �−1 (1.13)

are anti-selfadjoint and selfadjoint operators in L2 respectively. When α > 1, since
L = 1+�−1 > 0 on the non-shear space X , we can define a new inner product by
[·, ·] = 〈L·, ·〉 on X , which is equivalent to the L2 inner product. We observe that
the operator A is anti-selfadjoint in the space (X, [·, ·]). Moreover, on the space X,
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the operator A can be shown to have no embedded eigenvalues in the continuous
spectra. Thus RAGE theorem can be applied to the semigroup et A to show the decay
of the low frequency part in the time average sense. The linear enhanced damping
for (1.3) then follows similarly as in [9]. For the square torus (α = 1), there are
additional anomalous modes {cos x, sin x} lying in ker

(
1 + �−1

)
. For any initial

data ων (0) ∈ X , we note that ων
1 = (I − Pa) ων satisfies the equation

∂tω
ν
1 = ν�ων

1 − e−νt
[
(I − Pa) sin y∂x

(
1 + �−1

)]
ων
1 .

Let

A1 = − (I − Pa) sin y∂x

(
1 + �−1

)
= (I − Pa) J L ,

then it can be checked that A1 is anti-selfadjoint on the space X1 = (I − Pa) X in
the inner product [·, ·] = 〈L·, ·〉, where the positivity of L|X1 is used. Thus applying
the RAGE theorem to the semigroup et A1 on X1, we can again show that the low
frequency part of (I − Pa) et J Lων (0) decays in the time average sense.

For the nonlinear NS equation (1.2), the evolution of the shear and non-shear
parts are strongly coupled. For an initial perturbationων (0) of size O (ν) in L2, the
interaction terms are controllable and the nonlinear enhanced damping (metasta-
bility) still holds true. On the square torus, the analysis for the nonlinear problem
is more involved due to the anomalous modes. We decompose the perturbation into
four parts in: Wa = span {cos x, sin x} and its complementary subspace W ⊥

a in
the non-shear space, WK = span {cos y, sin y} and its complementary subspace
W ⊥

K in the shear space. By carefully analyzing the interaction of these four parts,
we can show that the interaction terms in the nonlinear term U ν · �ων are under
control when ‖ων (0)‖L2 = O (ν). As a result, we can still split the non-shear
vorticity into the low and high frequency parts and treat them separately as we do
for the linearized equation. Then the nonlinear metastability can be proved. On the
square torus, numerical evidences [5,6] suggested that the dipole states of the form
ω0 = cos x + cos y or sin x + sin y appear more often in the long time dynamics of
2D Turbulence. The dipole flows are nonparallel and the enhanced damping prob-
lem is much more subtle to study. At the end of Section 3, we discuss some partial
results and difficulties with the dipole states. In particular, in Proposition 3.1, we
give a RAGE type theorem for the linearized Euler equation at dipoles.

In our proof of linear and nonlinear enhanced damping for Navier–Stokes equa-
tion, the Hamiltonian structures of the linearized Euler operator play an important
role both in the derivation of the dissipation law (1.12) and in the control of the
low frequency part. As a further application of these Hamiltonian structures, we
consider the linear inviscid damping of more general shear flows (U (y) , 0). We
study two classes of shear flows. One class is the flows without inflection points,
which are spectrally stable by the classical Rayleigh criterion. The other class
(called class K+) is the flows U (y) with one inflection value Us and − U ′′

U−Us
> 0.

These two classes cover all the shear flows whose nonlinear stability in L2 vorticity
might be studied by the energy-Casimir method (see Remark 4.3). The flows in
the first class are nonlinearly stable for any x period 2π/α and are minimizers of
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the energy-Casimir functional. The flows in the second class are stable only when
α > αmax for some critical wave number αmax, and are maximizers of the energy-
Casimir functional. These shear flows often appear as long lived coherent states in
2D turbulence; for example, the Kolmogorov flows are in class K+.

In Theorem 4.1, we give a RAGE theorem on the non-shear subspace X of
L2 for stable shear flows in the first class and in class K+ with α > αmax. As a
consequence, the decay of velocity (in the time average sense) is proved for any
non-shear initial data with L2 vorticity. Another consequence is the decay of low
frequency modes in the L2 norm of vorticity, which gives a justification of the
dual cascade of 2D turbulence in a weak sense (see Remark 4.2). For the critical
case α = αmax, the linearized Euler operator J L (defined in (1.13)) has zero as
an embedded eigenvalue due to the nontrivial ker L . This case is very similar to
the case of bar states on the square torus and can be treated similarly. The linear
damping can be obtained by projecting out ker L .

The flows in classK+ are unstable when α < αmax [10]. Moreover, by using an
instability index theory recently developed in [15] for Hamiltonian PDEs, we give
an exact counting formula (Proposition 4.1) for the dimension of unstable modes of
the linearized Euler equation. A corollary of this formula is that L|Ec � 0, where
Ec is the center space corresponding to the spectra of the linearized Euler operator
J L (defined in (1.13)) on the imaginary axis. Then the RAGE theorem, and as a
consequence the damping of velocity, are obtained for the linearized Euler equation
on Ec.

The inviscid damping was first known for the Couette flow in the 1907 work
of Orr [19]. In recent years, the inviscid damping phenomena attracted new atten-
tion. In [13], it was showed that if we consider initial (vorticity) perturbation in
the Sobolev space Hs

(
s < 3

2

)
then the nonlinear damping is not true due to the

existence of nonparallel steady flows of the form of Kelvin’s cats eye near Couette.
In [4], nonlinear inviscid damping was proved for perturbations near Couette in the
Gevrey class (i.e. almost analytic).

The linear inviscid damping formore general shear flowswas also recently stud-
ied by someauthors.Monotone shearswere considered in [27] for the case nearCou-
ette, and in [24] for more general cases. The optimal decay rates O (1/t) , O

(
1/t2

)
for the horizontal and vertical velocities were obtained for initial vorticity in H1

and H2 respectively. In [25], general shear flows satisfying some nondegeneracy
conditions were considered, and certain space-time estimates for velocities of the
linearized Euler equation were obtained for initial vorticity in H1. The optimal
decay rates were also obtained in [25] for a special class of symmetric shear flows.
The non-existence of embedded eigenvalues was assumed in above works.

We comment on some differences of our results on inviscid damping with the
previous work. First, for the two classes of shear flows we considered, we do not
need to assume the non-existence of embedded eigenvalues. This assumption is
proved to be true for flows without inflection points and for flows in class K+ with
α > αmax, but for α = αmax and some α < αmax, zero is indeed an embedded
eigenvalue. For these cases, the inviscid damping can still be proved as in Corollary
4.1 ii) and Theorem 4.2 ii), as well as for the Kolmogorov flow on the square
torus. Second, the inviscid damping results we obtained are for the initial vorticity
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in L2. In [24,25], initial vorticity with higher regularity was considered and the
linear damping for L2 vorticity was not studied. In [24,25,27], the linearized Euler
equation was studied in a channel. Here, we treat the cases of the channel and tori in
a unified way. We note that RAGE theorem type results contain more information
than the damping of velocities, for example the decay of low frequency part of
the vorticity. Third, our approach, which exploits the Hamiltonian structures of the
Euler equation, does not rely on ODE techniques as in other papers. Therefore, it
could be used for nonparallel flows, see Proposition 3.1 for dipoles and Theorem
11.7 in [15] for general steady Euler flows. Moreover, more information on the
damping could be derived from the regularity properties of the spectral measure
of J L (see Remark 4.1). This might provide an alternative approach to study the
inviscid damping in other models.

This paper is organized as follows: in Section 2, we study the linear enhanced
damping for the linearized Navier–Stokes equation. In Section 3, the nonlinear
enhanced damping (i.e. metastability of Kolmogorov flows) is proved for the non-
linear Navier–Stokes equation. We discuss the cases of rectangular and square tori
separately in Sections 2 and 3. In Section 4, the linear inviscid damping is proved
for both stable and unstable shear flows. Throughout the paper, we use C to de-
note a generic constant in the estimates and the dependence on parameters will be
specified when necessary.

2. Linear Enhanced Damping

In this section, we prove Theorem 1.1 on the enhanced damping for the lin-
earized Navier–Stokes equation (1.3). We consider the cases of rectangular and
square tori separately.

2.1. Linearized Navier–Stokes on a Rectangular Torus

Consider the linearized equation (1.3) on a torus

Tα =
{
0 < y < 2π, 0 < x <

2π

α

}
, α > 1.

We divide the proof of Theorem 1.1 i) into several steps. In the proof, we shall use
C to denote a generic constant in the estimates. First, we prove the dissipation law
(1.12).

Lemma 2.1. Let ων (t) be a solution of (1.3) with the initial data ων (t) ∈ L2 (Tα).
Then

d

dt

∫
Tα

(|ων |2 − | � ψν |2)dxdy = −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy (2.1)

for any t > 0.
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Proof. The Eq. (1.3) can be written as

∂tω
ν = ν�ω + e−νt J Lω,

where J, L are defined in (1.13). Thus we have

d

dt

∫
Tα

(|ων |2 − | � ψν |2)dxdy = d

dt

〈
Lων, ων

〉 = 2
〈
Lων, ων

t

〉

= e−νt 〈Lων, J Lων
〉

+ 2
∫
Tα

ν�ων
(
ων − ψν

)
dxdy

= −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy.

In the last equality above, we use integration by parts and the fact that J is anti-
selfadjoint. ��

In the next lemma, we show that the quadratic forms on both sides of (2.1) are
positive definite for a non-shear vorticity.

Lemma 2.2. Let α > 1 and ω ∈ X ∩ H1 (Tα). Then there exists a constant c0 > 0
depending only on α such that∫

Tα

(|ω|2 − | � ψ |2)dxdy � c0 ‖ω‖2L2 , (2.2)

and ∫
Tα

(| � ω|2 − |ω|2)dxdy � c0 ‖ω‖2H1 . (2.3)

Proof. For any

ω =
∑
k �=0

ωk (y) eikαx ∈ H1 (Tα) ,

we have∫
Tα

(|ω|2 − | � ψ |2)dxdy =
∑

0 �=k∈Z

〈(
1 −

(
− d2

dy2
+ α2k2

)−1
)

ωk, ωk

〉

�
(
1 − α−2

) ∑
0 �=k∈Z

(ωk, ωk) =
(
1 − α−2

)
‖ω‖2L2 ,

and∫
Tα

(| � ω|2 − |ω|2)dxdy =
∑

0 �=k∈Z

〈(
− d2

dy2
+ α2k2 − 1

)
ωk, ωk

〉

�
∑

0 �=k∈Z

∫ ∣∣ω′
k (y)

∣∣2 dy +
(
α2 − 1

) ∫
|ωk (y)|2 dy

� min
{
1, α2 − 1

}
‖ω‖2H1 .

��
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Next, we study the linearized Euler equation at the Kolmogorov flow

∂tω = − sin y∂x

(
1 + �−1

)
ω = J Lω. (2.4)

Lemma 2.3. Let ω (t) be a solution of (2.4) with ω (0) ∈ X ∩ H1 (Tα). Then

‖ω (t)‖H1 � C (1 + t) ‖ω (0)‖H1

for some constant C.

Proof. First, we note that

〈Lω,ω〉 =
∫
Tα

(|ω|2 − | � ψ |2)dxdy

is conserved for (1.3). Therefore, by the positivity estimate (2.2) we have

‖ω (t)‖L2 =
∥∥∥et J Lω (0)

∥∥∥
L2

� C ‖ω (0)‖L2 (2.5)

for some constant C . Taking ∂x of (2.4), we have

∂t∂xω = − sin y∂x

(
1 + �−1

)
∂xω

and therefore

‖∂xω (t)‖L2 =
∥∥∥et J L∂xω (0)

∥∥∥
L2

� C ‖∂xω (0)‖L2 .

Taking ∂y of (2.4), we have

∂t∂yω = − sin y∂x

(
1 + �−1

)
∂yω − cos y∂x

(
1 + �−1

)
ω,

and

∂yω (t) = et J L∂yω (0) −
∫ t

0
e(t−s)J L cos y∂x

(
1 + �−1

)
ω (s) ds.

Therefore

∥∥∂yω (t)
∥∥

L2 � C

(∥∥∂yω (0)
∥∥

L2 +
∫ t

0

∥∥∥∂x

(
1 + �−1

)
ω (s)

∥∥∥
L2

ds

)

� C (1 + t) ‖∇ω (0)‖L2 .

This finishes the proof of the lemma. ��
In the next lemma, we study the spectral properties of the linearized Euler

operator A = J L .

Lemma 2.4. (i) The operator A : X → X is anti-selfadjoint in the inner product
[·, ·] = 〈L·, ·〉 .

(ii) The spectrum of A lies on the imaginary axis and is purely continuous.
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Proof. (i) By the positivity of L on X , [·, ·] = 〈L·, ·〉 defines an equivalent inner
product to the L2 inner product. For any ω1, ω2 ∈ X , we have

[Aω1, ω2] = 〈L J Lω1, ω2〉 = 〈J Lω1, Lω2〉 = − 〈Lω1, J Lω2〉
= − [ω1, Aω2] ,

and thus A is anti-selfadjoint on (X, [·, ·]).
(ii) By property i), the spectrum of A in L2 is on the imaginary axis. Since

A = − sin y∂x
(
1 + �−1

)
is a compact perturbation of D = − sin y∂x , by Weyl’s

Theorem the continuous spectrum of A is the same as that of D, which is clearly
the whole imaginary axis. It remains to show that there is no embedded eigenvalue
of A on the imaginary axis. Suppose Aω = λω, where λ ∈ iR and 0 �= ω ∈ X . Let

ω =
∑

0 �=k∈Z
ωk (y) eikαx , ψk =

(
− d2

dy2
+ α2k2

)−1

ωk .

Then if ωk �= 0, we have

ikα sin y (ωk − ψk) = λωk,

which is equivalent to the Rayleigh equation

(
− d2

dy2
+ α2k2 − sin y

sin y − c

)
ψk = 0,

with c = λ
ikα

∈ R. Since ωk ∈ L2 implies ψk ∈ H2, by Lemma 4.3 in the
Appendix, we must have c = 0 which is the only inflection value of sin y. Thus

(
− d2

dy2
+ α2k2 − 1

)
ψk = 0,

which implies that ψk = 0 since α > 1. This contradiction rules out the embedded
imaginary eigenvalues of A in X . ��

By the above Lemma and the RAGE theorem, we have

Corollary 2.1. Let B be any compact operator in L2 (Tα). Then

1

T

∫ T

0
‖Bω (t)‖2L2 dt → 0, when T → ∞

for any solution ω (t) of (2.4) with ω (0) ∈ X.

For the proof of the enhanced damping, we need a more quantitative version
of RAGE theorem. Let α2 � λ1 � λ2 � . . . be the eigenvalues of the operator
−� on X and e1, e2 . . . be the corresponding orthonormal eigenvectors. Denote
PN to be the L2 projection to the subspace spanned by the first N eigenvectors
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e1, e2, . . . , eN of −� and S = {ω ∈ X : ‖ω‖L2 = 1} be the unit sphere in X .
Denote the norms

‖ω‖2X =
〈(
1 + �−1

)
ω,ω

〉
=

∫
Tα

(|ω|2 − | � ψ |2)dxdy,

‖ω‖2X1 = 〈(−� − 1) ω, ω〉 =
∫
Tα

(| � ω|2 − |ω|2)dxdy,

which are equivalent to L2 and H1 norms on the non-shear space X. Let ω =∑
k�1 ckek , then

‖ω‖2X =
∑
k�1

(
1 − 1

λk

)
|ck |2 ,

and

‖ω‖2X1 =
∑
k�1

(λk − 1) |ck |2 .

The following version of the RAGE theorem can be obtained as in [9]:

Lemma 2.5. Let K ⊂ S be a compact set and J, L are defined in (1.13). For any
N , κ > 0, there exists Tc(N , κ, K ) such that for all T � Tc and any ω (0) ∈ K ,

1

T

∫ T

0
‖PN et J Lω (0) ‖2Xdt � κ‖ω (0) ‖2X .

Now we estimate the difference of the solutions of the linearized NS and Euler
equations.

Lemma 2.6. Let ων, ω0 be the solutions of the linearized NS equation (1.3) and
Euler equation (2.4)with the initial data in X ∩ H1. Then there exists some constant
C0 > 0 such that

d

dt

∥∥∥ων − ω0
∥∥∥2

X
� C0ν

(
1 + t2

) ∥∥∥ω0 (t)
∥∥∥2

H1
(2.6)

for all t ∈ (0,+∞).

Proof. Let ψν,ψ0 be the corresponding stream functions. Denote ω = ων − ω0

and ψ = ψν − ψ0, then

ωt + e−νt sin y∂x (ω − ψ) + (e−νt − 1) sin y∂x (ω
0 − ψ0) − ν � ων = 0.
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We have

d

dt

1

2

∥∥∥ων − ω0
∥∥∥2

X
= d

dt

1

2

∫
Tα

(|ω|2 − | � ψ |2)dxdy

=
∫
Tα

ωt (ω − ψ) dxdy

= −
∫
Tα

(e−νt − 1) sin y∂x (ω
0 − ψ0) (ω − ψ) dxdy

+ν

∫
Tα

�ων(ων − ψν)dxdy

−ν

∫
Tα

�ων(ω0 − ψ0)dxdy

= I + I I + I I I.

Since 0 � 1 − e−νt � νt when t > 0, we have

I = (
1 − e−νt) ∫

Tα

sin y∂x (ω
0 − ψ0)

(
ων − ψν

)
dxdy

= − (
1 − e−νt) ∫

Tα

sin y∂x (ω
ν − ψν)

(
ω0 − ψ0

)
dxdy

� Cνt
∥∥ων

∥∥
H1

∥∥∥ω0
∥∥∥

L2
.

By integration by parts and (2.3),

I I = −ν

∫
Tα

(| � ων |2 − |ων |2)dxdy � −c0ν
∥∥ων

∥∥2
H1 .

For the last term, we have

I I I = ν

∫
Tα

∇ων · ∇(ω0 − ψ0)dxdy � ν
∥∥ων

∥∥
H1

∥∥∥ω0
∥∥∥

H1
.

Combining the above, we get

d

dt

1

2

∫
Tα

(|ω|2 − | � ψ |2)dxdy

� ν
(
−c0

∥∥ων
∥∥2

H1 + ∥∥ων
∥∥

H1

(
Ct

∥∥∥ω0
∥∥∥

L2
+

∥∥∥ω0
∥∥∥

H1

))

� Cν
(
1 + t2

) ∥∥∥ω0 (t)
∥∥∥2

H1
.

This proves (2.6). ��
As a corollary, combining (2.6), Lemma 2.3 and (2.3), we have
∥∥∥ων (t) − ω0 (t)

∥∥∥2
X

�
∥∥∥ων (0) − ω0 (0)

∥∥∥2
X

+ C1ν
(
1 + t5

) ∥∥∥ω0 (0)
∥∥∥2

X1
(2.7)

for some constant C1 > 0.
We are now ready to prove the linear enhanced damping.
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Proof of Theorem 1.1 i). The proof follows the arguments in [9]. Fixing δ, τ > 0,
we choose N such that

exp (−2λN τ) < c0δ
2,

where c0 is the constant in (2.2). Define a compact set

K = span {e1, · · · , eN } = R (PN ) .

Denote t1 = Tc(N , 1
10 , K ) as in Lemma 2.5 and let ν (δ, τ ) be such that

ν (δ, τ ) C1

(
1 + t51

)
<

1

10λN
,

where C1 is the constant in the estimate (2.7). For 0 < ν < ν (δ, τ ), suppose that∥∥ων (t)
∥∥2

X1 > λN
∥∥ων (t)

∥∥2
X

is true for t in some interval (a, b) ⊂ (0, τ/ν). Then by (2.1), we have∥∥ων (b)
∥∥2

X � exp (−νλN (b − a))
∥∥ων (a)

∥∥2
X . (2.8)

Now consider any t0 ∈ (0, τ/ν) satisfying∥∥ων (t0)
∥∥2

X1 � λN
∥∥ων (t0)

∥∥2
X .

Denote ω0 = ων (t0) and let ω0 (t) (t ∈ [t0, t0 + t1]) be the solution of (2.4) with
ω0 (t0) = ω0. By the choice of t0, ν (δ, τ ) and (2.7), we have

∥∥∥ων (t) − ω0 (t)
∥∥∥2

X
� 1

10
‖ω0‖2X , ∀ t ∈ [t0, t0 + t1] . (2.9)

By the definition of t1, we have

1

t1

∫ t0+t1

t0

∥∥∥PN ω0 (t)
∥∥∥2

X
dt � 1

10
‖ω0‖2X .

Since
∥∥ω0 (t)

∥∥
X = ‖ω0‖X by the conservation of 〈Lω,ω〉 for the Eq. (2.4), it

follows that

1

t1

∫ t0+t1

t0

∥∥∥(1 − PN ) ω0 (t)
∥∥∥2

X
dt � 9

10
‖ω0‖2X .

Combined with (2.9), the above implies that

1

t1

∫ t0+t1

t0

∥∥(1 − PN ) ων (t)
∥∥2

X dt � 1

2
‖ω0‖2X .

For ων (t) = ∑
k�1 ckek , we have

∥∥ων (t)
∥∥2

X1 =
∑
k�1

(λk − 1) |ck |2 � 1

λN

∑
k�N+1

(
1 − 1

λk

)
|ck |2

= 1

λN

∥∥(1 − PN ) ων (t)
∥∥2

X ,
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and thus ∫ t0+t1

t0

∥∥ων (t)
∥∥2

X1 dt � λN t1
2

‖ω0‖2X = λN t1
2

∥∥ων (t0)
∥∥2

X .

Then (2.1) implies that

∥∥ων (t0 + t1)
∥∥2

X �
∥∥ων (t0)

∥∥2
X − 2ν

∫ t0+t1

t0

∥∥ων (t)
∥∥2

X1 dt

� (1 − λN νt1)
∥∥ων (t0)

∥∥2
X � e−λN νt1

∥∥ων (t0)
∥∥2

X . (2.10)

We can split the interval
[
0, τ

ν

]
into a union of intervals such that either (2.8) or

(2.10) holds true. Therefore we have
∥∥∥ων

(τ

ν

)∥∥∥2
X

� e−λN τ
∥∥ων (0)

∥∥2
X < c0δ

2
∥∥ων (0)

∥∥2
X ,

and by (2.2),
∥∥∥ων

(τ

ν

)∥∥∥2
L2

� 1

c0

∥∥∥ων
(τ

ν

)∥∥∥2
X

< δ2
∥∥ων (0)

∥∥2
X < δ2

∥∥ων (0)
∥∥2

L2 .

This finishes the proof of Theorem 1.1 i). ��

2.2. Linearized Navier–Stokes on a Square Torus

Now we consider the linearized equation (1.3) on the square torus

T1 = {0 < y < 2π, 0 < x < 2π} .

In this case, there is a two dimensional kernel space Wa spanned by {cos x, sin x}
of the operator L = 1+�−1 on the non-shear space X . We will sketch the changes
induced by these anomalous modes, in the proof of Theorem 1.1 ii).

First, we note that L is positive on the space X1 = (I − Pa) X , where Pa is
the projection of X to Wa . Let ων (t) be the solution of (1.3) with any initial data
ων (0) ∈ X . Then ων

1 = (I − Pa) ων satisfies the equation

∂tω
ν
1 = ν�ων

1 − e−νt
[
(I − Pa) sin y∂x

(
1 + �−1

)]
ων
1 . (2.11)

It is easy to check that the same dissipation law

d

dt

∫
T1

(|ων
1 |2 − | � ψν

1 |2)dxdy = −2ν
∫
T1

(| � ων
1 |2 − |ων

1 |2)dxdy,

holds true for (2.11). Moreover, there exists c0 > 0 such that∫
T1

(|ω|2 − | � ψ |2)dxdy � c0 ‖ω‖2L2 (2.12)

and ∫
T1

(| � ω|2 − |ω|2)dxdy � c0 ‖ω‖2H1
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for ω ∈ X1. Define the operator A1 : X1 → X1 by

A1 = − (I − Pa) sin y∂x

(
1 + �−1

)
= (I − Pa) J L .

Since L|X1 > 0, [·, ·] = 〈L·, ·〉 is again an equivalent inner product on X1 and A1
is anti-selfadjoint on (X1, [·, ·]). Indeed, for any w1, w2 ∈ X1

[A1w1, w2] = 〈L (I − Pa) J Lw1, w2〉 = 〈L J Lw1, w2〉 = − 〈Lw1, J Lw2〉
= − 〈Lw1, (I − Pa) J Lw2〉 = − [w1, A1w2] .

Therefore the spectrum of A1 lies on the imaginary axis. Next we show that A1 has
no embedded imaginary eigenvalues.

Lemma 2.7. The spectrum of A1 is purely continuous.

Proof. Suppose A1 has an eigenvalue λ ∈ iR and A1ω = λω,where 0 �= ω ∈ X1.
Then

Aω − λω = J Lω − λω = ω̃ ∈ Wa .

If λ �= 0, by noting that Aω̃ = 0, we get

A

(
ω + 1

λ
ω̃

)
= λ

(
ω + 1

λ
ω̃

)
,

that is, λ is an eigenvalue of A. This is a contradiction, since by the proof of
Lemma 2.4, the operator A has no nonzero eigenvalues. If λ = 0, then we must
have Aω = ω̃ for some 0 �= ω̃ ∈ Wa , since ω ∈ X1 implies that Aω �= 0. Let
ω̃ = c1eix + c−1e−i x ∈ Wa and

ψ = �−1ω = a1 (y) eix + a−1 (y) e−i x .

From the equation Aω = sin y∂x (ω + ψ) = ω̃, we get

a′′
1 (y) = c1

i sin y
, a′′−1 (y) = c−1

−i sin y
,

and thus ψ /∈ H2. This shows that 0 is not an eigenvalue of A1 and the proof of the
lemma is finished. ��

By the above lemma, we can use RAGE theorem for the semigroup et A1 on X1,
which corresponds to solutions of the projected linearized Euler equation

∂tω = (I − Pa) sin y∂x

(
1 + �−1

)
ω. (2.13)

In particular, let PN be the projection of L2 to the space spanned by the first N
eigenfunction of −� on X1, then we have for any N , κ > 0 that there exists
Tc(N , κ, K ) such that for all T � Tc and any ω (0) ∈ R (PN ),

1

T

∫ T

0
‖PN et J Lω (0) ‖2Xdt � κ‖ω (0) ‖2X . (2.14)

In the next Lemma, we obtain the same estimates on the growth of solutions of
(2.13) as we did in Lemma 2.3.
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Lemma 2.8. Let ω (t) be a solution of (2.13) with ω (0) ∈ X1 ∩ H1 (T1). Then

‖ω (t)‖H1 � C (1 + t) ‖ω (0)‖H1

for some constant C.

Proof. The proof is very similar to that of Lemma 2.3. We only sketch it. By the
conservation of 〈Lω,ω〉 for the Eq. (2.13) and the positivity of L|X1 , the L2 norm of
ω (t) is bounded by ω (0). Since Pa is the projector of X to ker L = ker

(
1 + �−1

)
and ∇ is commutable with 1 + �−1, so Pa is also commutable with ∇. Then the
estimates of ∂ω (t) follow in the same way as in the proof of Lemma 2.3. ��

Similarly, we can estimate the difference of solutions of (2.13) and (2.11).

Lemma 2.9. Let ων, ω0 be the solutions of the projected linearized NS equation
(1.3) and Euler equation (2.4) with the initial data ων (0) ∈ X1 and ω0 ∈ X1∩ H1.

Then there exists constants C0 > 0 such that

d

dt

∥∥∥ων − ω0
∥∥∥2

X
� C0ν

(
1 + t2

) ∥∥∥ω0 (t)
∥∥∥2

H1

for t ∈ (0,+∞).

The proof is the same as that of Lemma 2.6 by using the fact that L|X1 > 0 and
〈L (I − Pa) ·, ·〉 = 〈L·, ·〉.

Then by the same proof of Theorem 1.1 i), we can show the enhanced damping
for the solution ων

1 (t) of the projected Eq. (2.11). More precisely, for any τ > 0
and δ > 0, if ν is small enough, then∥∥∥ων

1

(τ

ν

)∥∥∥
L2

< δ
∥∥ων

1 (0)
∥∥

L2 .

Since ων
1 (t) = (I − Pa) ων (t), this proves Theorem 1.1 ii).

3. Nonlinear Enhanced Damping

In this section, we prove the metastability and enhanced damping of Kol-
mogorovflows for thenonlinearNavier–Stokes equation (1.1) on a torusTα

(
α � 1

)
.

Let PK to be the projection of L2 (Tα) to the subspace WK = span {cos y, sin y}.
For any initial data ων (0) ∈ L2, let

PKων (0) = d1 cos y + d2 sin y = D sin (y + y1) ,

where D =
√

d2
1 + d2

2 and y1 = tan−1 (d1/d2). When ‖(I − PK) ων (0)‖L2 is
small, we can equivalently consider the perturbation near the shear flow U (y) =
D sin (y + y1) with initial data ων (0) satisfying PKων (0) = 0, for which the
analysis is almost the same as for the shear flowU (y) = sin y. For simplicity, in the
proof of Theorem 1.2, we only consider the perturbations near U (y) = sin y with
PKων (0) = 0. As in the proof of Theorem 1.1 for the linearized NS equation, we
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will treat the high and low frequency parts of the non-shear perturbation separately.
In particular, for the low frequency part, we will compare the solutions of the
nonlinear NS equation and the linearized Euler equation, and then use the RAGE
Theorem to control the time average. However, a significant difference with the
linearized NS equation is that the shear and non-shear parts are strongly coupled
for the nonlinear NS equation. Therefore, the main issue is to control the interaction
terms. We will consider the equations on rectangular and square tori separately. On
the square torus, the existence of anomalous modes makes the interactions terms
considerably more subtle to handle.

3.1. The Case of Rectangular Torus

Consider the nonlinear Navier–Stokes equation near the Kolmogorov flow

∂tω
ν = ν�ων − e−νt

[
sin y∂x

(
1 + �−1

)]
ων + U ν · ∇ων (3.1)

= L (t) ων + U ν · ∇ων,

on Tα (α > 1), where ων, U ν are the perturbations of vorticity and velocity. We
split ων, U ν into shear and non-shear components. More precisely, we write ων =
ων

s + ων
n, where the shear part is

ων
s (t, y) = α

2π

∫ 2π
α

0
ων (t, x, y) dx = P0ω

ν,

and the non-shear part is

ων
n (t, x, y) = (I − P0) ων = P�=0ω

ν ∈ X.

Correspondingly, U ν = U ν
s + U ν

n and ψν = ψν
s + ψν

n where ψν is the stream
function. We also denote

U ν = (
uν, vν

)
, U ν

s = (
uν

s (t, y) , 0
)
, U ν

n = (
uν

n, vν
n

)
.

Then the Eq. (3.1) can be written as

∂tω
ν
s = ν∂yyω

ν
s + P0

(
U ν

n · ∇ων
n

) = ν∂yyω
ν
s + ∂y P0

(
vν

nων
n

)
, (3.2)

and

∂tω
ν
n = L (t) ων

n + uν
s ∂xω

ν
n + vν

n∂yω
ν
s + P�=0

(
U ν

n · ∇ων
n

)
(3.3)

= L (t) ων
n + uν

s ∂xω
ν
n + vν

n∂yω
ν
s + ∂x

(
uν

nων
n

) + ∂y P�=0
(
vν

nων
n

)
.

First, we show that the dissipation law (1.12) also holds true for solutions of
the nonlinear equation (3.1).

Lemma 3.1. Let ων (t) be a solution of (3.1)with the initial data ων (0) ∈ L2 (Tα).
Then

d

dt

∫
Tα

(|ων |2 − | � ψν |2)dxdy = −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy (3.4)

for any t > 0.
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Proof. We have

d

dt

∫
Tα

(|ων |2 − | � ψν |2)dxdy =
∫
Tα

ων
t

(
ων − ψν

)
dxdy

= 〈
L (t) ων,

(
ων − ψν

)〉
+

∫
Tα

U ν · ∇ων
(
ων − ψν

)
dxdy

= −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy

+ 1

2

∫
Tα

U ν · ∇ 1

2
ων2dxdy

−
∫
Tα

(
U ν · ∇ψν

)
ωνdxdy

= −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy.

In the above, we used the fact that U ν · ∇ψν = 0 and

〈
L (t) ων,

(
ων − ψν

)〉 = −2ν
∫
Tα

(| � ων |2 − |ων |2)dxdy,

as in the proof of Lemma 2.1. ��
Denote Y to be the space of mean zero functions in L2 (Tα), depending only

on y. Denote Y1 = (I − PK) Y . Then the operator L = 1+ �−1 is positive on Y1.
There exists c0 > 0 such that

∫
Tα

(|ων |2 − |∂yψ
ν |2)dxdy � c0

∥∥ων
∥∥2

L2 (3.5)

and ∫
Tα

(|∂yω
ν |2 − |ων |2)dxdy � c0

∥∥ων
∥∥2

H1 (3.6)

for all ων ∈ Y1.
For a solution ων = ων

s + ων
n of the nonlinear NS equation (3.1), let ων

s =
ων

s1 + ων
s2, where ων

s1 = PKων
s = PKων and ων

s2 ∈ Y1. Then (3.4) implies that

d

dt

(∫
Tα

(|ων
s2|2 − |∂yψ

ν
s2|2)dxdy + ∥∥ων

n

∥∥2
X

)

= −2ν

(∫
Tα

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy + ∥∥ων
n

∥∥2
X1

)
. (3.7)

In particular, by the positivity estimates (2.2), (2.3), it follows from the above that
there exists C > 0 such that

∥∥ων
s2

∥∥
L2 (t) + ∥∥ων

n

∥∥
L2 (t) � C

(∥∥ων
s2

∥∥
L2 (0) + ∥∥ων

n

∥∥ (0)L2
)

� Cdν, (3.8)
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where we assume ‖ων‖L2 (0) � dν for a constant d > 0 to be determined later. To
estimate

ων
s1 = a1

√
α

2π
cos y + a2

√
α

2π
sin y,

we project (3.2) to
{ √

α√
2π

cos y,
√

α√
2π

sin y
}
to get

d

dt
a1 = −νa1 −

√
α√
2π

∫
Tα

vν
nων

n sin y dxdy, (3.9)

d

dt
a2 = −νa2 +

√
α√
2π

∫
Tα

vν
nων

n cos y dxdy.

Let

a (t) = ∥∥ων
s1

∥∥
L2 =

√
a2
1 + a2

2,

then, by (3.9), we have

da

dt
� −νa (t) +

√
α

2
√
2π

√∣∣∣∣
∫
Tα

vν
nων

n sin y dxdy

∣∣∣∣
2

+
∣∣∣∣
∫
Tα

vν
nων

n cos y dxdy

∣∣∣∣
2

� −νa (t) + C
∥∥vν

n

∥∥ (t)L2

∥∥ων
n

∥∥ (t)L2 .

Since a (0) = ‖PKων (0)‖L2 = 0, the above implies that

∥∥ων
s1

∥∥
L2 = a (t) � Cdν

∫ t

0
e−ν(t−s)

∥∥ων
n

∥∥ (s)L2 ds (3.10)

� C
∥∥ων

n

∥∥ (0)L2 � Cdν.

Combined with (3.8), it follows from the above that

∥∥ων
s

∥∥
L2 (t) � Cdν, for all t > 0. (3.11)

In the dissipation law (3.7),ων
s2 andων

n are coupled. In the next lemma, we show
that when d is small, the dissipation law for ων

n can be “separated” from (3.7).

Lemma 3.2. There exists a constant d depending only on α, such that when ‖ων‖L2

(0) � dν, then

d

dt

∫
Tα

∥∥ων
n

∥∥2
X � −ν

∥∥ων
n

∥∥2
X1 . (3.12)



Metastability of Kolmogorov Flows 1831

Proof. By (3.2), we have

d

dt

∫
Tα

(|ων
s2|2 − |∂yψ

ν
s2|2)dxdy

= 2
∫
Tα

∂tω
ν
s2

(
ων

s2 − ψν
s2

)
dxdy = 2

∫
Tα

∂tω
ν
s

(
ων

s2 − ψν
s2

)
dxdy

= −2ν
∫
Tα

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy + 2
∫
Tα

∂y
(
vν

nων
n

) (
ων

s2 − ψν
s2

)
dxdy

� −2ν
∫
Tα

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy − C
∥∥ων

n

∥∥2
X1

∥∥ων
s2

∥∥
L2

� −2ν
∫
Tα

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy − Cdν
∥∥ων

n

∥∥2
X1 .

In the first inequality above, we use the Sobolev embedding and (2.3). Combined
with (3.7), this gives

d

dt

∫
Tα

∥∥ων
n

∥∥2
X � −ν

∥∥ων
n

∥∥2
X1 (2 − Cd) � −ν

∥∥ων
n

∥∥2
X1

when d � 1/C . ��

To use the RAGE theorem to control the low frequency part of ων
n , we need to

estimate the difference of the solutions of the nonlinear NS equation (3.1) and the
linearized Euler equation (2.4).

Lemma 3.3. There exists d > 0 such that for any solution ων of Navier–Stokes
equation (3.1) with initial data satisfying ‖ων‖L2 (0) � dν, and any solution ω0

of the linearized Euler equation (2.4) with initial data in X ∩ H1, we have

d

dt

∥∥∥ων
n − ω0

∥∥∥2
X

� C0ν
(
1 + t2

) ∥∥∥ω0 (t)
∥∥∥2

H1
, ∀t > 0

for some constant C0 > 0. Here, ων
n = P�=0ω

ν is the non-shear part of ων .

Proof. Let ψν
n , ψ0 be the corresponding stream functions. Denote ω = ων

n − ω0

and ψ = ψν
n − ψ0, then

ωt = −e−νt sin y∂x (ω − ψ) − (e−νt − 1) sin y∂x (ω
0 − ψ0) + ν � ων

n

+ uν
s ∂xω

ν
n + vν

n∂yω
ν
s + P�=0

(
U ν

n · ∇ων
n

)
.
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Thus

d

dt

1

2

∥∥∥ων − ω0
∥∥∥2

X
=

∫
Tα

ωt (ω − ψ) dxdy

=
[
−

∫
Tα

(e−νt − 1) sin y∂x (ω
0 − ψ0) (ω − ψ) dxdy

+ν

∫
Tα

�ων
n(ω − ψ)dxdy

]

+
∫
Tα

uν
s ∂xω

ν
n (ω − ψ) dxdy

+
∫
Tα

vν
n∂yω

ν
s (ω − ψ) dxdy

+
∫
Tα

U ν
n · ∇ων

n (ω − ψ) dxdy

= I + I I + I I I + I V .

Similar to the proof of Lemma 2.6, the first term can be estimated by

I � ν
(
−c0

∥∥ων
n

∥∥2
H1 + C (1 + t)

∥∥ων
∥∥

H1

∥∥∥ω0
∥∥∥

H1

)
.

For the last term, noticing that, as in the proof of Lemma 3.1,
∫
Tα

U ν
n · ∇ων

n

(
ων

n − ψν
n

)
dxdy = 0,

we have

I V = −
∫
Tα

U ν
n · ∇ων

n

(
ω0 − ψ0

)
dxdy =

∫
Tα

U ν
n · ∇

(
ω0 − ψ0

)
ων

ndxdy

� C
∥∥U ν

n

∥∥
L4

∥∥∥ω0
∥∥∥

H1

∥∥ων
n

∥∥
L4 � C

∥∥ων
n

∥∥
L2

∥∥∥ω0
∥∥∥

H1

∥∥ων
n

∥∥
H1

� Cdν

∥∥∥ω0
∥∥∥

H1

∥∥ων
n

∥∥
H1 .

The second term is estimated by

I I =
∫
Tα

uν
s ∂xω

ν
n

(
ψν

n − ω0 + ψ0
)
dxdy

= −
∫
Tα

uν
s ω

ν
n

(
∂xψ

ν
n − ∂x

(
ω0 − ψ0

))
dxdy

�
∥∥uν

s

∥∥
L∞

∥∥ων
n

∥∥
L2

∥∥vν
n

∥∥
L2 + ∥∥uν

s

∥∥
L∞

∥∥ων
n

∥∥
L2

∥∥∥ω0
∥∥∥

H1

� C
(∥∥ων

s

∥∥
L2

∥∥ων
n

∥∥2
H1 + ∥∥ων

s

∥∥
L2

∥∥ων
n

∥∥
H1

∥∥∥ω0
∥∥∥

H1

)

� Cdν
(∥∥ων

n

∥∥2
H1 + ∥∥ων

n

∥∥
H1

∥∥∥ω0
∥∥∥

H1

)
,
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where we use (3.11) in the last inequality. Similarly,

I I I = −
∫
Tα

U ν
n · ∇ (ω − ψ)ων

s dxdy

� C
∥∥U ν

n

∥∥
L∞

(∥∥ων
n

∥∥
H1 +

∥∥∥ω0
∥∥∥

H1

) ∥∥ων
s

∥∥
L2

� Cdν
(∥∥ων

n

∥∥2
H1 +

∥∥∥ω0
∥∥∥

H1

∥∥ων
n

∥∥
H1

)
,

where the embedding
∥∥U ν

n

∥∥
L∞ � C

∥∥ων
n

∥∥
H1 and the bound (3.11) are used in the

last inequality above. Combining the above estimates, we get

d

dt

1

2

∥∥∥ων − ω0
∥∥∥2

X
� ν

(
− (c0 − Cd)

∥∥ων
n

∥∥2
H1 + C (1 + t)

∥∥ων
n

∥∥
H1

∥∥∥ω0
∥∥∥

H1

)

� ν

(
−1

2
c0

∥∥ων
n

∥∥2
H1 + C (1 + t)

∥∥ων
n

∥∥
H1

∥∥∥ω0
∥∥∥

H1

)

� Cν
(
1 + t2

) ∥∥∥ω0 (t)
∥∥∥2

H1
,

by choosing d � c0
2C . ��

By using Lemmas 3.1 and 3.3, Theorem 1.2 i) follows by the same arguments
as in the proof of Theorem 1.1.

Remark 3.1. By (3.8) and (3.10), we have the following Liapunov stability result:∥∥ων (t) − PKων (0)
∥∥

L2 � C
∥∥(I − PK) ων (0)

∥∥
L2 , ∀t > 0, (3.13)

for some constant C > 0 and any solution ων (t) of the NS equation (3.1). Thus
for initial data ων (0) satisfying

∥∥(I − PK) ων (0)
∥∥

L2 � 1

C
dν, (3.14)

we can repeatedly use Theorem 1.2 i) to get the rapid decay of the non-shear part,
before the dissipation term takes over.

3.2. The Case of Square Torus

In this subsection, we prove Theorem 1.2 ii) for the nonlinear Navier–Stokes
equation (3.1) on the square torus T1. As in the rectangular torus case, we consider
initial data satisfying PKω (0) = 0. Compared with the rectangular torus, the
new difficulty is the existence of anomalous modes {cos x, sin x} in the kernel of
L = 1 + �−1. We decompose the vorticity perturbation as

ων = ων
s + ων

n = ων
s1 + ων

s2 + ων
n1 + ων

n2, (3.15)

where the shear part ων
s is decomposed as in the rectangular case with ων

s1 =
PKων

s and ων
s2 ∈ Y1, and the non-shear part ων

n is decomposed as ων
n = ων

n1 +
ων

n2 with ων
n1 = Paων

n and ων
n2 ∈ X1. Here, we recall that Pa is the projection
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to the anomalous space Wa spanned by {cos x, sin x} and X1 is the orthogonal
complement of Wa in X . Correspondingly, the velocity U ν and stream functionψν

are decomposed into four parts. Then the nonlinear term can be written as

U ν · ∇ων = (
U ν

s1 + U ν
n1

) · ∇ (
ων

n2 − ψν
n2

) + U ν
n1 · ∇ (

ων
s2 − ψν

s2

)
(3.16)

+ U ν
s2 · ∇ων

n2 + U ν
n2 · ∇ων

s2 + U ν
n2 · ∇ων

n2,

where we use the observation

U ν
s1 · ∇ων

n + U ν
n · ∇ων

s1 = U ν
s1 · ∇ (

ων
n − ψν

n

) = U ν
s1 · ∇ (

ων
n2 − ψν

n2

) ;
we proceed similarly for other terms. The dissipation law (3.7) becomes

d

dt

(∫
T1

(|ων
s2|2 − |∂yψ

ν
s2|2)dxdy + ∥∥ων

n2

∥∥2
X

)
(3.17)

= −2ν

(∫
T1

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy + ∥∥ων
n2

∥∥2
X1

)
.

By using the positivity of the above functional on Y1 and X1, this implies that∥∥ων
s2

∥∥
L2 (t) + ∥∥ων

n2

∥∥
L2 � C

(∥∥ων
s2

∥∥
L2 (0) + ∥∥ων

n2

∥∥ (0)L2
)

� Cdν. (3.18)

In the following lemma, we separate the dissipation law for ων
n2 from (3.17):

Lemma 3.4. There exists a constant d > 0, such that when ‖ων‖L2 (0) � dν, then

d

dt

∥∥ων
n2

∥∥2
X � −ν

∥∥ων
n2

∥∥
X1

(∥∥ων
n2

∥∥
X1 − ∥∥ων

n1

∥∥
L2

)
. (3.19)

Proof. By (3.24), we have

d

dt

∫
T1

(|ων
s2|2 − |∂yψ

ν
s2|2)dxdy

= 2
∫
T1

∂tω
ν
s2

(
ων

s2 − ψν
s2

)
dxdy = 2

∫
T1

∂tω
ν
s

(
ων

s2 − ψν
s2

)
dxdy

= −2ν
∫
T1

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy

+ 2
∫
T1

(
U ν

n1 · ∇ (
ων

n2 − ψν
n2

) + U ν
n2 · ∇ων

n2

) (
ων

s2 − ψν
s2

)
dxdy

� −2ν
∫
T1

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy

− C
(∥∥ων

n1

∥∥
L2

∥∥ων
n2

∥∥
X1 + ∥∥ων

n2

∥∥2
X1

) ∥∥ων
s2

∥∥
L2

� −2ν
∫
T1

(|∂yω
ν
s2|2 − |ων

s2|2)dxdy

− Cdν
(∥∥ων

n1

∥∥
L2

∥∥ων
n2

∥∥
X1 + ∥∥ων

n2

∥∥2
X1

)
.

By choosing d such that Cd � 1, (3.19) follows from above and (3.17). ��
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Compared to the dissipation law (3.12) for the rectangular torus, from (3.19)
we cannot even infer that

∥∥ων
n2

∥∥2
X is decreasing due to the interaction of ων

n2 and
ων

n1.
To prove Theorem 1.2 ii), it suffices to show that when ‖ων (0)‖L2 � dν and

max
0�t� τ

ν

∥∥ων
n1 (t)

∥∥
L2 � M

∥∥ων
n (0)

∥∥
L2 , (3.20)

we have
inf

0�t� τ
ν

∥∥ων
n2 (t)

∥∥
L2 < δ

∥∥ων
n (0)

∥∥
L2 (3.21)

for ν small enough. In the next two lemmas, we derive some estimates to be used
later based on the assumption (3.20).

Lemma 3.5. Assume ‖ων (0)‖L2 � dν and (3.20), then

∥∥ων
s1

∥∥
L2 (t) � C ′ν, 0 � t � τ

ν
(3.22)

for some constant C ′ depending on d and M.

Proof. Denote

ων
s1 = a1

1√
2π

cos y + a2
1√
2π

sin y, ων
n1 = b1

1√
2π

cos x + b2
1√
2π

sin x,

and

a (t) = ∥∥ων
s1

∥∥
L2 (t) =

√
a2
1 + a2

2, b (t) = ∥∥ων
n1

∥∥
L2 (t) =

√
b21 + b22.

Then by (3.20),

b (t) � M
∥∥ων

n (0)
∥∥

L2 � Mdν, 0 � t � τ

ν
. (3.23)

By (3.16), we have

∂tω
ν
s = ν∂yyω

ν
s + P0

(
U ν

n · ∇ων
n

)
(3.24)

= ν∂yyω
ν
s + P0

(
U ν

n1 · ∇ (
ων

n2 − ψν
n2

) + U ν
n2 · ∇ων

n2

)
.

Projecting above to {cos y, sin y} and using (3.18), we get

dai

dt
� −νai (t) + Cdν

(
b (t) + ∥∥ων

n2

∥∥
L2

)
, i = 1, 2,

and thus
da

dt
� −νa (t) + Cdν

(
b (t) + ∥∥ων

n2

∥∥ (t)L2
)
. (3.25)

Since a (0) = ‖PKω (0)‖L2 = 0, we have

a (t) � Cdν

∫ t

0
e−ν(t−s) (b (s) + ∥∥ων

n2

∥∥
L2 (s)

)
ds � C ′ (d, M) ν,

by (3.18) and (3.23). ��
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Remark 3.2. In the rectangular torus case, ‖ων (0)‖L2 = O (ν) implies that∥∥ων
s1

∥∥
L2 (t) = O (ν) (see (3.10)). However, for the square torus case, it is not

clear that ‖ων (0)‖L2 = O (ν) can imply
∥∥ων

s1

∥∥
L2 (t) ,

∥∥ων
n1

∥∥
L2 (t) = O (ν) ,

due to the existence of anomalous modes. Indeed, projecting (3.1) to {cos x, sin x},
we get

db1
dt

= −νb1 − 1

2
√
2π

e−νt
∫
T1

ων
n2 sin y sin x dxdy

+ 1√
2π

∫
T1

(
U ν · ∇ων

)
cos x dxdy

� −νb1 + C
∥∥ων

n2

∥∥
L2 + Cdν

(
a (t) + ∥∥ων

n2

∥∥
L2

)
� −νb1 + C

∥∥ων
n2

∥∥
L2 + Cdνa (t) .

In the above, the second term is due to the identity
∫
T1

[
sin y∂x

(
1 + �−1

)]
ων cos x dxdy

=
∫
T1

[
sin y∂x

(
1 + �−1

)]
ων

n2 cos x dxdy

=
∫
T1

ων
n2

[(
1 + �−1

)
(sin y sin x)

]
dxdy

= 1

2

∫
T1

ων
n2 sin y sin x dxdy,

and the third term is estimated as∣∣∣∣
∫
T1

(
U ν · ∇ων

)
cos x dxdy

∣∣∣∣ � Cdν
(
a (t) + ∥∥ων

n2

∥∥
L2

)
,

by using (3.16), integration by parts and the bound (3.18). Similarly,

db2
dt

� −νb2 + C
∥∥ων

n2

∥∥
L2 + Cdνa (t) ,

and thus

db

dt
� −νb + C

∥∥ων
n2

∥∥
L2 + Cdνa (t) .

Combining the above with (3.25) and choosing d to be small, we have

de

dt
� −1

2
νe (t) + C

∥∥ων
n2

∥∥
L2 , e (t) = a (t) + b (t) ,

from which only the bound e (t) � C can be derived. This also partly explains why
the assumption (3.20) is needed in the proof of the enhanced damping.
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Our next lemma is to estimate the difference of ων
n2 and the solution of the

linearized Euler equation.

Lemma 3.6. There exists d > 0 such that for any solution ων (t) of the Navier–
Stokes equation (3.3) on T1 satisfying ‖ων‖L2 (0) � dν and (3.20), and any solu-
tion ω0 (t) of the linearized Euler equation (2.4)with initial data ω0 (0) ∈ X1∩ H1,
we have

d

dt

∥∥∥ων
n2 − ω0

∥∥∥2
X

� C0ν

((
1 + t2

) ∥∥∥ω0 (t)
∥∥∥2

H1
+∥∥ων

n1

∥∥2
L2 +

∥∥ων
n1

∥∥
L2

∥∥∥ω0
∥∥∥

H1

)
,

(3.26)
∀t ∈ (

0, τ
ν

)
, for some constant C0 > 0 depending only on d and M. Here, the

notations in the decomposition (3.15) for ων is used.

Proof. Denote ω = ων
n2 − ω0 and ψ = ψν

n2 − ψ0, then

ωt = −e−νt (I − Pa) sin y∂x (ω − ψ) − (e−νt − 1) (I − Pa) sin y∂x (ω
0 − ψ0)

+ ν � ων
n2

+ (I − Pa) P�=0
((

U ν
s1 + U ν

n1

) · ∇ (
ων

n2 − ψν
n2

))
+ (I − Pa)

(
U ν

n1 · ∇ (
ων

s2 − ψν
s2

))
+ (I − Pa)

(
U ν

s2 · ∇ων
n2 + U ν

n2 · ∇ων
s2

)
+ (I − Pa) P�=0

(
U ν

n2 · ∇ων
n2

)
.

Thus we have

d

dt

1

2

∥∥∥ων
n2 − ω0

∥∥∥2
X

=
∫
T1

ωt (ω − ψ) dxdy

=
[
−

∫
T1

(e−νt − 1) sin y∂x (ω
0 − ψ0) (ω − ψ) dxdy

+ν

∫
T1

�ων
n2(ω − ψ)dxdy

]

+
[∫

T1

(
U ν

s2 · ∇ων
n2 + U ν

n2 · ∇ων
s2

)
(ω − ψ) dxdy

+
∫
T1

U ν
n2 · ∇ων

n2 (ω − ψ) dxdy

]

−
[∫

T1

(
U ν

s1 + U ν
n1

) · ∇ (
ων

n2 − ψν
n2

) (
ω0 − ψ0

)
dxdy

]

+
∫
T1

U ν
n1 · ∇ (

ων
s2 − ψν

s2

)
(ω − ψ) dxdy

= I + I I + I I I + I V .

For the first three terms, by using the bounds (3.20) and (3.22), as in the proof
of Lemma 3.3, we get

I + I I + I I I � −1

2
c0ν

∥∥ων
n2

∥∥2
H1 + Cν (1 + t)

∥∥ων
n2

∥∥
H1

∥∥∥ω0
∥∥∥

H1
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by choosing d > 0 small enough. The last term is estimated by

I V = −
∫
T1

U ν
n1 · ∇

[(
ων

n2 − ψν
n2

) −
(
ω0 − ψ0

)] (
ων

s2 − ψν
s2

)
dxdy

� Cν
∥∥ων

n1

∥∥
L2

(∥∥ων
n2

∥∥
H1 +

∥∥∥ω0
∥∥∥

H1

)
.

Combining the above, we have

d

dt

∥∥∥ων
n2 − ω0

∥∥∥2
X

� C0ν

((
1 + t2

) ∥∥∥ω0
∥∥∥2

H1
+ ∥∥ων

n1

∥∥2
L2 + ∥∥ων

n1

∥∥
L2

∥∥∥ω0
∥∥∥

H1

)

for some constant C0 depending on d and M . ��
We are now ready to prove Theorem 1.2 ii).

Proof of Theorem 1.2 ii). For any fixed M, δ, τ > 0, we will show that under
the assumption (3.20), there exists ν (M, δ, τ ) > 0 such that (3.21) holds when
0 < ν < ν (M, δ, τ ). Suppose that (3.21) is not true. Then

∥∥ων
n2 (t)

∥∥
L2 � δ

∥∥ων
n (0)

∥∥
L2 , ∀ 0 � t � τ

ν
, (3.27)

where ων (t) is the solution of (3.1) satisfying PKων (0) = 0, ‖ων (0)‖L2 � dν

and (3.20). Here, d is a constant chosen such that Lemmas 3.4 and 3.6 hold true.
Then by (3.20) and (3.27), for any t, t ′ ∈ (

0, τ
ν

)
, we have

∥∥ων
n1 (t)

∥∥
L2 � M

∥∥ων
n (0)

∥∥2
L2 � 1

δ
M

∥∥ων
n2

(
t ′
)∥∥

L2

� c0
δ

M
∥∥ων

n2

(
t ′
)∥∥

X . (3.28)

Choose λN big enough such that

exp

(
−

(
λN

2
−

√
λN

2

c0
δ

M

)
τ

)
< c0δ

2,

where c0 is the constant in (2.12). We consider two cases below.
Case 1: ων

n2 (t) ∈ R (I − PN ) is true for t in some interval (a, b) ⊂ (0, τ/ν).
That is,

∥∥ων
n2 (t)

∥∥2
X1 > λN

∥∥ων
n2 (t)

∥∥2
X , t ∈ (a, b) .

Then, by (3.19) and (3.28), we have

∥∥ων (b)
∥∥2

X � exp
(
−ν

√
λN

(√
λN − c0

δ
M

)
(b − a)

) ∥∥ων (a)
∥∥2

X . (3.29)

Case 2: Let t0 be any point in (0, τ/ν) satisfying

∥∥ων
n2 (t0)

∥∥2
X1 � λN

∥∥ων
n2 (t0)

∥∥2
X .
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Denote t1 = Tc(N , 1
10 ) to be such that the RAGE Lemma 2.14 is true for κ = 1/10

and all T � Tc. Let ω0 (t) (t ∈ [t0, t0 + t1]) be the solution of (2.4) with ω0 (t0) =
ων

n2 (t0). By (3.26), (3.28) and Lemma 2.8, we have
∥∥∥ων

n2 (t0 + t) − ω0 (t0 + t)
∥∥∥2

X
� C2ν

{ (
1 + t5

) ∥∥ων
n2 (t0)

∥∥2
X1

+
(c0

δ

)2
M2

∥∥ων
n2 (t0)

∥∥2
X

+ c0
δ

M
(
1 + t2

) ∥∥ων
n2 (t0)

∥∥
X

∥∥ων
n2 (t0)

∥∥
X1

}
(3.30)

for any t ∈ [0, t1] and some constant C2 > 0 independent of τ, ν. Let ν (M, δ, τ )

be such that

C2ν (δ, τ )

{(
1 + t51

)
λN +

(c0
δ

)2
M2 + c0

δ
M

(
1 + t21

)√
λN

}
<

1

10
.

By (3.30), when 0 < ν < ν (M, δ, τ ), we have∥∥∥ων
n2 (t) − ω0 (t)

∥∥∥2
X

� 1

10

∥∥ων
n2 (t0)

∥∥2
X , ∀ t ∈ [t0, t0 + t1] .

Then as in the proof of Theorem 1.1, by using the RAGE theorem for ω0 (t), we
obtain ∫ t0+t1

t0

∥∥ων
n2 (t)

∥∥2
X1 dt � λN t1

2

∥∥ων
n2 (t0)

∥∥2
X .

Thus by (3.19) and (3.28), we have

∥∥ων
n2 (t0 + t1)

∥∥2
X �

∥∥ων
n2 (t0)

∥∥2
X − ν

∫ t0+t1

t0

∥∥ων
n2

∥∥
X1

(∥∥ων
n2

∥∥
X1 − ∥∥ων

n1

∥∥
L2

)
dt

�
∥∥ων

n2 (t0)
∥∥2

X − ν

∫ t0+t1

t0

∥∥ων
n2

∥∥2
X1 dt

+ ν

(∫ t0+t1

t0

∥∥ων
n2

∥∥2
X1 dt

) 1
2 √

t1
c0
δ

M
∥∥ων

n2 (t0)
∥∥

X

�
∥∥ων

n2 (t0)
∥∥2

X

(
1 − λN

2
+

√
λN

2

c0
δ

M

)
νt1.

�
∥∥ων

n2 (t0)
∥∥2

X exp

(
−

(
λN

2
−

√
λN

2

c0
δ

M

)
νt1

)
. (3.31)

Splitting the interval
[
0, τ

ν

]
into a union of intervals such that either Case 1 or

Case 2 is true, then we have

∥∥∥ων
n2

(τ

ν

)∥∥∥2
X

� exp

(
−

(
λN

2
−

√
λN

2

c0
δ

M

)
τ

)∥∥ων
n2 (0)

∥∥2
X

< c0δ
2
∥∥ων

n2 (0)
∥∥2

X .
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This implies that∥∥∥ων
n2

(τ

ν

)∥∥∥
L2

< δ
∥∥ων

n2 (0)
∥∥

L2 � δ
∥∥ων

n (0)
∥∥

L2 ,

which is in contradiction to the assumption (3.27). This finishes the proof of The-
orem 1.2 ii). ��
Remark 3.3. In the statement (1.10) of Theorem 1.2 ii), the non-shear part remov-
ing anomalous modes is reduced to a factor δ of the initial norm of the whole
non-shear part. This is different from the result (1.7) for the linearized NS equation
on a square torus, where the anomalousmodes can be separated. The nonlinear cou-
pling due to the anomalous modes can be seen from the term U ν

n1 · ∇ (
ων

s2 − ψν
s2

)
in (3.16), which reflects the nonlinear interaction of the anomalous modes and
the shear part. For the rectangular torus, there is no such interaction term and the
nonlinear enhanced damping result is consistent with that for the linearized NS
equation.

3.3. Further Issues and Dipole States

We comment on some further issues. First, it would be interesting to enlarge
the metastability basin from O (ν) in Theorem 1.2 to be O (να) (0 < α < 1) or
independent of ν if possible. Also, it is desirable to improve the decay time scale
from O (τ/ν) to O

(
1/

√
ν
)
as given in [3] for the approximated linearized equation

(1.4). This might require us to work on initial data of higher regularity. We note
that the time scale O

(
1/

√
ν
)
in [3] was obtained for initial data in H1.

Numerical simulations ([6]) suggested that on the rectangular torus the bar states
(i.e. Kolmogorov flows) are usually observed. However, on the square torus [23],
the dipole states of the form ω0 = cos x + cos y or sin x + sin y appear more often
than the bar states. These dipole states are maximum entropy solutions of the 2D
Euler equation, and hence are likely candidates for relevant quasi-stationary states
according to the statistical approaches of 2D turbulence (e.g. [20]). The dipole states
represent nonparallel flows with saddle points on the stream lines and therefore
are more difficult to study. Consider the dipole with ω0 = cos x + cos y, then the
quasi-stationary Navier–Stokes solution isων (t, x, y) = e−νt (cos x + cos y). The
linearized NS equation around it becomes

∂tω = ν�ω + e−νt
[(
sin y∂x − sin x∂y

) (
1 + �−1

)]
ω. (3.32)

There are some similarities with the linearized equation (1.3) near bar states. First,
the same dissipation law (1.12) holds true for (3.32). The linearized Euler operator
is of the Hamiltonian form

(
sin y∂x − sin x∂y

) (
1 + �−1

)
= J L , (3.33)

with

J = sin y∂x − sin x∂y, L = 1 + �−1.
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Consider the energy space X to be the set of L2 functions with zero mean. Define
P to be the projection of L2 to ker J . It was shown in [11] that for any φ ∈ L2,

Pφ |γi (c) =
∮
γi (c)

φ(x,y)
|∇ψ0| dl∮

γi (c)
1

|∇ψ0|dl
, (3.34)

where c is in the range of ψ0 = cos x + cos y and γi (c) is a branch of {ψ0 = c}.
Define the operator A, A0 : H2 ∩ X → X by

A = −� − 1 + P, A0 = −� − 1.

We note that A � A0 � 0 and

ker A0 = ker L = {cos x, sin x, cos y, sin y} .

Therefore ker A ⊂ ker A0 and by Proposition 2.8 and Lemma 11.3 of [15], we have
the decomposition

L2 = ker (J L) + R (J ) . (3.35)

Here, ker (J L)∩ R (J ) ⊂ ker L and ker (J L) , R (J ) are both invariant under J L .
The space ker (J L) corresponds to the steady solution space of the linearized Euler
equation ∂tω = J Lω. Different from the case of bar states where ker (J L) is the
space of shear flows, for the dipole states the steady space ker (J L) has a more
complicated structure. We can restrict the Euler semigroup et J L on the invariant
subspace R (J ). Denote P3 to be the orthogonal projection of L2 (T1) to

ker L = {cos x, sin x, cos y, sin y} .

We have the following RAGE type result for J L on R (J ):

Proposition 3.1. Suppose that the operator J L defined in (3.33) has no nonzero
purely imaginary eigenvalues. Let B be any compact operator in L2 (T1). Then for
any ω (0) ∈ R (J ), we have

1

T

∫ T

0

∥∥∥B (I − P3) eit Lω (0)
∥∥∥2

L2
dt → 0, when T → ∞. (3.36)

Proof. The proof is similar to Lemma 2.7 for bar states. We only sketch it. For
any solution ω (t) of the equation ∂tω = J Lω with ω (0) ∈ R (J ), define ω1 (t) =
(I − P3) ω (t) and let X1 = (I − P3) R (J ). Then ω1 (t) satisfies the equation
∂tω1 = (I − P3) J Lω on the space X1. Since L|X1 > 0, the operator (I − P3) J L
is anti-selfadjoint on (X1, 〈L·, ·〉). Our assumption on the spectrum of J L implies
that (I − P3) J L has no nonzero purely imaginary eigenvalues. To show that the
operator (I − P3) J L has purely continuous spectrum on X1, it remains to show
that 0 is not an embedded eigenvalue of (I − P3) J L . Supposing otherwise, there
exists 0 �= ω ∈ X1 such that (I − P3) J Lω = 0. Let ψ1 = Lω, then Jψ1 =
P3 J Lω ∈ ker L . Denote

Jψ1 = a1 cos x + a2 cos y + b1 sin x + b2 sin y. (3.37)
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Since cos y + cos x ∈ ker J ⊥ Jψ1, we have a1 + a2 = 0. Let a1 = −a2 = a. It is
easy to see that for any c �= 0 in the range of ψ0 = cos x + cos y, each of the two
branches of {ψ0 = c} is symmetric to x, y in the sense that both (x, y) and (y, x)

are on the branch. Since any function φ in ker J takes the form (3.34), we conclude
that cos x −cos y ⊥ ker J , which implies that cos x −cos y ∈ R (J ), so there exists
a double periodic function ψ2 such that Jψ2 = cos x − cos y. By noting that J x =
sin y and J y = − sin x , it follows from (3.37) that J (ψ1 − aψ2 + b1y − b2x) = 0.
Then by (3.34), the function ψ1 − aψ2 + b1y − b2x must take constant on each
branch of the level set {ψ0 = c}. Since ψ0 is double periodic in x, y, this implies
that ψ1 − aψ2 + b1y − b2x is also double periodic. This contradiction shows that
0 is not an embedded eigenvalue of (I − P3) J Lω. Then (3.36) follows from the
standard RAGE theorem. ��

Even with the dissipation law (1.12) and above RAGE theorem, there are still
significant differences with the bar states to get the linear enhanced damping for
dipoles, besides the issue of proving the non-existence of imaginary eigenvalues
of J L . The most important difference is that the decomposition (3.35) is no longer
invariant when the viscosity is added. It is under investigation to find a subspace of
initial data such that the enhanced damping is true for dipoles.

4. Linear Inviscid Damping of Shear Flows

Consider a shear flow u0 = (U (y) , 0) in a channel
{

y1 � y � y2
}
or on a

torus. The linearized Euler equation can be written as

ωt + U (y) ∂xω + U ′′ (y) ∂xψ = 0, (4.1)

where ω and ψ = (−�)−1 ω are the vorticity and stream functions respectively.

4.1. Stable Case

We consider two classes of stable shear flows.
Class 1: U ′′ �= 0, that is, U has no inflection points. This case is restricted

to a channel, since such flows can not exist on a torus. By the classical Rayleigh
inflection point theorem, (U (y) , 0) is linearly stable. Suppose U ′′ > 0, choose a
constant Us < minU . Then in the frame (x − Ust, y, t), the Eq. (4.1) becomes

ωt + (U (y) − Us) ∂xω + U ′′ (y) ∂xψ = 0. (4.2)

Define

K1 (y) = U ′′ (y)

U (y) − Us
> 0.

Let the x period be 2π/α for any α > 0. Define the non-shear space on the periodic
channel S2π/α × [y1, y2] by

X =
⎧⎨
⎩ω =

∑
k∈Z, k �=0

eikαxωk (y) , ‖ω‖2X = ‖ 1√
K1 (y)

ω‖2L2 < ∞
⎫⎬
⎭ .
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Clearly, X ⊂ L2 and L2 = X if min K1 > 0. The Eq. (4.2) can be written in a
Hamiltonian form

ωt = −U ′′ (y) ∂x

(
ω

K1 (y)
+ ψ

)
= J Lω,

where

J = −U ′′ (y) ∂x : X∗ → X, L = 1

K1 (y)
+ (−�)−1 : X → X∗

are anti-selfadjoint and self-adjoint respectively. Moreover, L is uniformly positive
on X and thus J L is anti-selfadjoint in the equivalent inner product 〈L·, ·〉. Since
X ⊂ L2, by Lemma 4.3, J L has no purely imaginary eigenvalues in X and the
entire spectrum of J L is continuous.

Case 2: Assume that there exists Us in the range of U such that

K2 (y) = − U ′′

U − Us
> 0 (4.3)

is bounded. We call these flows to be in class K+, as used in [10]. The assumption
(4.3) implies that Us is the only inflection value of U . Examples include U (y) =
sin y, tanh y, and more generally any U (y) satisfying the ODE U ′′ = g (U ) with
a decreasing g. Then (4.3) is satisfied with Us = g−1 (0). Let the x period be
2π/α. We can consider the class K+ flows in a periodic channel S2π/α × [y1, y2]
or on a torus S2π/α × Sy2−y1 . The linearized Euler equation (4.2) with Us being the
inflection value can be written in the Hamiltonian form

ωt = U ′′ (y) ∂x

(
ω

K2 (y)
− ψ

)
= J Lω, (4.4)

where

J = U ′′ (y) ∂x , L = 1

K2 (y)
− (−�)−1 .

Define the non-shear space of vorticity

X =
⎧⎨
⎩ω =

∑
k∈Z, k �=0

eikαxωk (y) , ‖ω‖2X = ‖ 1√
K2 (y)

ω‖2L2 < ∞
⎫⎬
⎭ . (4.5)

Again, X ⊂ L2 and L2 = X if min K2 > 0. Denote n− (L)
(
n0 (L)

)
to be the

number of negative (zero) directions of L on X . Define the operator

A0 = −� − K2 (y) : H2 → L2 (4.6)

in the channel S2π/α × [y1, y2] or on the torus S2π/α × Sy2−y1 and

L0 = − d2

dy2
− K2 (y) : H2 (y1, y2) → L2 (y1, y2) , (4.7)
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with the Dirichlet boundary conditions for the channel and periodic boundary con-
ditions for the torus. Then, by Lemma 11.3 in [15], we have

n0 (L) = n0 (A0) = 2
∑
k�1

n0
(

L0 + k2α2
)

,

and

n− (L) = n− (A0) = 2
∑
k�1

n− (
L0 + k2α2

)
.

If n− (L0) �= 0, let −α2
max be the smallest eigenvalue of L0 and φ0 be an eigen-

function. When L0 � 0, let αmax = 0. Then by the above relations, L is positive
when α > αmax. Again, by Lemma 4.3, the spectrum of J L is purely continuous
in X . When α = αmax, we have n− (L) = 0 and

ker L =
{

e±iαxω0 (y)
}

, ω0 (y) =
(

− d2

dy2
+ α2

)
φ0.

Let P1 be the projection of X to ker L and X1 = (I − P1) X . Then L|X1 > 0 and
A1 = (I − P1) J L is anti-selfadjoint on (X1, 〈L·, ·〉).
Lemma 4.1. A1 has purely continuous spectrum on X1.

Proof. By Lemma 3.5 of [10], φ0 �= 0 at at least one of the points in the set
{U = Us}. By using this fact, the rest of the proof follows that of Lemma 2.7, so
we skip the details. ��

By the above spectral properties, the following is a direct consequence of the
RAGE Theorem:

Theorem 4.1. If i) U ′′ �= 0 or ii) U is in class K+ and α > αmax, then for any
compact operator B on X, we have

1

T

∫ T

0

∥∥∥Beit J Lω

∥∥∥2
X

dt → 0, when T → ∞ (4.8)

for any ω ∈ X. If U is in class K+ and α = αmax, then for any compact operator
B on X, we have

1

T

∫ T

0

∥∥∥B (I − P1) eit J Lω

∥∥∥2
X

dt → 0, when T → ∞

for any ω ∈ X.

By choosing

Bω = ∇⊥ (−�)−1 ω = u,

that is, the mapping from vorticity to velocity, we get
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Corollary 4.1. (i) If a) U ′′ �= 0 or b) U is in class K+ and α > αmax, then

1

T

∫ T

0
‖u (t)‖2L2 dt → 0, when T → ∞

for any solution ω (t) of (4.1) with ω (0) ∈ X.
(ii) If U is in class K+ and α = αmax, then

1

T

∫ T

0
‖u1 (t)‖2L2 dt → 0, when T → ∞,

where u1 (t) is the velocity corresponding to the vorticity (I − P1) ω (t) with
ω (0) ∈ X.

Remark 4.1. More information on the decay of ‖u (t)‖L2 could be obtained by
studying the regularity of the spectral measure of the anti-selfadjoint operator J L
on (X, 〈L·, ·〉). In particular, if the spectral measure of J L is absolutely continuous
(i.e. absence of singular continuous spectrum), then when t → ∞, ω (t) → 0
weakly in X . As a result, ‖u (t)‖L2 → 0 when t → ∞.

Remark 4.2. Let B = PN in (4.8), i.e., the projection operator to the first N Fourier
modes (in x), then

1

T

∫ T

0
‖PN ω (t)‖2L2 dt → 0, when T → ∞. (4.9)

This shows that in the time averaged sense, the low frequency part ofω tends to zero.
As can be seen in the proof of Theorems 1.1 and 1.2, this property plays an important
role in the proof of metastability of Kolmogorov flows. In the fluid literature (see
e.g. [5,21]), a dual cascade was known for 2D turbulence that energy moves to low
frequency end and the enstrophy (i.e. ‖ω‖2

L2 ) moves to the high frequency end. The
result (4.9) can be seen as a justification of such physical intuition in a weak sense.

Remark 4.3. The two classes of shear flows considered above are linearly stable
in the L2 norm of vorticity (assuming inf Ki > 0), in the Liapunov sense. This
follows directly from the conservation of 〈Lω,ω〉 for the linearized Euler equation
(4.2) and the positivity of L|X . Moreover, these two classes seem to exhaust all the
possible shear flows for which nonlinear stability could be proved by the energy-
Casimir method initiated by Arnold [1,2] in 1960s. We briefly discuss it below
and refer to [17] for more discussions on energy-Casimir method for 2D Euler
equations. The energy-Casimir functional is of the form

H (ω) =
∫ (

G (ω) + 1

2
|∇ψ |2

)
dxdy,

which is invariant for the nonlinear Euler equation. Suppose ψ0 = F (ω0), where
ψ0 = ∫

(U − Us) dy and ω0 = −U ′′. Choose G such that G ′ (ω0) = −F (ω0),
then H ′ (ω0) = 0 and the second order variation is given by

〈
H ′′ (ω) δω, δω

〉 = 1

2

∫
(δω)2

K1 (y)
+ 1

2
|∇δψ |2 = 1

2
〈Lδω, δω〉
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for U (y) in class 1 and

〈
H ′′ (ω) δω, δω

〉 = 1

2

∫
− (δω)2

K2 (y)
+ 1

2
|∇δψ |2 = −1

2
〈Lδω, δω〉

for U (y) in class 2. In the above, we use the relation

G ′′ (ω0) = −F ′ (ω0) = U − Us

U ′′ .

Thus
〈
H ′′ (ω) δω, δω

〉
on X is positive definite for class 1 flows and negative definite

for class 2 flows when α > αmax. Then nonlinear stability (in L2 vorticity) could be
proved by properly handling the higher order terms.However, if U−Us

U ′′ (equivalently
K1, K2) changes sign, then the quadratic form

〈
H ′′ (ω) δω, δω

〉
is highly indefinite

and the energy-Casimirmethoddoes notwork.Despite above restrictions, the steady
flows whose stability can be studied by energy-Casimir method do appear often as
observable coherent states in 2D turbulence.

4.2. Unstable Case

The shear flows U (y) in class K+ are proved to be linearly unstable when the
horizontal wave number α < αmax, see Theorem 1.2 in [10]. In this subsection,
we will prove the inviscid damping on the center space which is complementary
to the stable and unstable subspaces. The proof of linear instability in [10] is by
studying the possible neutral limiting modes and the bifurcation of unstable modes
near them. By using the Hamiltonian structure of (4.2) and the instability index
formula in [15], we can recover this linear instability criterion. Moreover, we get
more detailed information about the number of unstable modes which is important
to study the inviscid damping on the center space.

Proposition 4.1. Consider U (y) in class K+ and α > 0, where 2π/α is the x
period. Let ku be the total algebraic multiplicities of unstable eigenvalues of the
operator J L defined in (4.4). Then ku = n− (A0), where A0 is defined in (4.6).

Proof. It is easy to see that the unstable eigenfunctions of J L are in the space X
defined in (4.5). Since on the energy space X , n− (L) = n− (A0) < ∞, we can use
Theorem 2.3 in [15] to get the index formula

kr + 2kc + 2k
�0
i + k

�0
0 = n− (L) . (4.10)

Here, kr and kc are the algebraic multiplicities of unstable eigenvalues of J L ly-

ing on the positive axis and the first quadrant respectively, k
�0
i is the number of

non-positive directions of L restricted to the generalized eigenspace of imaginary

eigenvalues on iR+, and k
�0
0 is the number of non-positive directions of L on

E0/ ker L where E0 is the generalized zero eigenspace of J L . Since J L has no

nonzero imaginary eigenvalue, k
�0
i = 0. As in the proof of Lemmas 2.7 and 4.1, it

can be shown that E0 = ker L and thus k
�0
0 = 0. Therefore (4.10) implies that
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ku = kr + 2kc = n− (L) = n− (A0) .

��
The space X has an invariant decomposition X = ∪l∈Z, l �=0Xl , where

Xl =
{

eiαlxωl (y) , ωl ∈ L2
1

K2(y)

(y1, y2) .

}
.

On the subspace Xl , the operator J L is reduced to an ODE operator Jl Ll on the
weighted space L2

1
K2(y)

(y1, y2) , where

Jl = U ′′ (y) iαl, Ll = 1

K2 (y)
−

(
− d2

dy2
+ α2l2

)−1

. (4.11)

We have a similar counting formula for unstable eigenvalues of Jl Ll .

Proposition 4.2. Consider U (y) in classK+ and α > αmax. Let ku,l be the total al-
gebraic multiplicities of the unstable eigenvalues of the operator Jl Ll (0 �= l ∈ Z)

defined in (4.11). Then

ku,l = n− (
L0 + l2α2

)
, (4.12)

where L0 is defined in (4.7).

Proof. Since Jl is not a real operator, we can not directly apply the index Theorem
2.3 in [15]. Define the space

Yl = Xl ⊕ X−l

=
{
cos (αlx) ω1 (y) + sin (αlx) ω2 (y) , ω1, ω2 ∈ L2

1
K2(y)

(y1, y2)

}
,

which is isomorphic to the space Y =
(

L2
1

K2(y)

(y1, y2)

)2

. For any

ω = cos (αlx) ω1 (y) + sin (αlx) ω2 (y) ∈ Yl ,

we have

J Lω = (cos (αlx) , sin (αlx)) J l Ll
(

ω1
ω2

)
,

where

J l =
(

0 αlU ′′
−αlU ′′ 0

)
, Ll =

(
Ll 0
0 Ll

)
.

In the above, the operator Ll is defined in (4.11). Thus to study J L on Yl , it is
equivalent to study J l Ll on Y . Let kl

u be the total algebraic multiplicities of the
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unstable eigenvalues of the operator J l Ll . Then by Theorem 2.3 in [15] and the
same proof of Proposition 4.2, we have

kl
u = n− (

Ll
)

= 2n− (Ll) = 2n− (
L0 + l2α2

)
.

Since the spectra of Jl Ll is complex conjugate of that of J−l L−l , so

kl
u = ku,l + ku,−l = 2ku,l ,

and this finishes the proof of the proposition. ��
Remark 4.4. Let λ = iαlc be an eigenvalue of Jl Ll and Jl Llω = λω for some
0 �= ω ∈ Xl . Then the stream function

ψ (y) =
(

− d2

dy2
+ α2l2

)−1

ω (y)

satisfies the classical Rayleigh equation
(

− d2

dy2
+ α2l2 + U ′′

U − c

)
ψ = 0 (4.13)

with Dirichlet or periodic boundary conditions. It was shown in [8] that for U (y)

in classK+, the total number (i.e. geometric multiplicities) of unstable eigenvalues
(i.e. Im c > 0) can not exceed n− (

L0 + l2α2
)
. In [10], it was shown that ku,l � 1

when n− (
L0 + l2α2

) �= 0. The precise index formula (4.12) not only gives an
improvement over previous results, but also is important for studying the dynamics
on the center space (see below).

Denote Es (Eu) ⊂ X to be the stable (unstable) eigenspace of J L , then

dim Es = dim Eu = ku = n− (L) .

Moreover, by Corollary 6.1 in [15], L|Es⊕Eu is non-degenerate and

n− (
Es ⊕ Eu) = dim Eu = n− (L) . (4.14)

Define the center space Ec to be the orthogonal (in the inner product 〈L·, ·〉) com-
plement of Es ⊕ Eu in X , that is,

Ec = {
ω ∈ X | 〈Lω,ω1〉 = 0, ∀ω1 ∈ Es ⊕ Eu} . (4.15)

Then we have

Lemma 4.2. The decomposition X = Es ⊕ Eu ⊕ Ec is invariant under J L. More-
over, n− (L|Ec) = 0 and as a consequence L|Ec/ ker L > 0.

Proof. The invariance of the decomposition follows from the invariance of 〈L·, ·〉
under J L . By (4.14), we have

n− (L|Ec) = n− (L) − n− (
Es ⊕ Eu) = 0,

and thus L|Ec/ ker L > 0. ��
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Since Ec is invariant under J L , we can restrict the linearized Euler equation on
Ec. The linear inviscid damping still holds true for initial data in Ec. Denote P1 to
be the projection of X to ker L . By the same proof of Theorem 4.1 and Corollary
4.1, we have the following:

Theorem 4.2. Suppose U (y) is in class K+ and α < αmax. Then :
(i) If ker L = {0}, then

1

T

∫ T

0
‖u (t)‖2L2 dt → 0, when T → ∞,

for any solution ω (t) of (4.1) with ω (0) ∈ Ec. Here, Ec is the center space defined
in (4.15).

(ii) If ker L �= {0}, then

1

T

∫ T

0
‖u1 (t)‖2L2 dt → 0, when T → ∞,

where u1 (t) is the velocity corresponding to the vorticity (I − P1) ω (t) with
ω (0) ∈ Ec.

Remark 4.5. Above theorem suggests that the dynamics of solutions of the lin-
earized Euler equation on the center space Ec is similar to the stable case.

The invariant decomposition X = Es ⊕ Eu ⊕ Ec can be used to prove the
exponential trichotomy of the semigroup et J L . We refer to Theorem 2.2 in [15]
for the precise statement. The next natural step is to construct invariant manifolds
(stable, unstable and center) for the nonlinear Euler equation, which will give a
complete description of the local dynamics near u0 = (U (y) , 0). The stable and
unstable manifolds near any unstable shear flow were constructed in [14]. The
construction of center manifold is under investigation. Once constructed, on such
centermanifold, the positivity of L|Ec (Lemma4.2) could be used to prove nonlinear
stability of solutions on the center manifold.

Remark 4.6. Recently, in [16], the stability of class K+ shear flows under Cori-
olis forces was studied. By using the Hamiltonian formulation and the instability
index formula, the sharp stability condition can be obtained for some shear flows.
Moreover, the linear damping as in Theorems 4.1 and 4.2 was proved for non-shear
initial data.

Appendix

Lemma 4.3. Let U (y) ∈ C2 (y1, y2), where −∞ < y1 < y2 < ∞. Consider the
Rayleigh equation (

− d2

dy2
+ α2 + U ′′

U − c

)
ψ = 0, (4.16)

with the periodic boundary condition

ψ (y1) = ψ (y2) , ψ ′ (y1) = ψ ′ (y2) ,
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or the Dirichlet boundary condition

ψ (y1) = ψ (y2) = 0.

If (4.16) has a neutral solution with α > 0, c ∈ R and ψ ∈ H2 (y1, y2), then c
must be an inflection value of U.

Proof. First, we show that c must be in the range of U (y). Suppose otherwise c >

maxU or c < minU . Assume c > maxU . For the Dirichlet boundary condition,
since U − c < 0 in [y1, y2], by the proof of Lemma 3.5 of [10], ψ ≡ 0 in [y1, y2],
which is a contradiction. For the periodic boundary condition, (4.16) implies that
the operator L0 = − d2

dy2
− U ′′

U−c has a negative eigenvalue −α2. Let λ0 � −α2 < 0
be the smallest eigenvalue of L0, then the corresponding eigenfunction φ can be
taken to be positive. The equation L0φ = λ0φ can be written as(

(U − c) φ′ − U ′φ
)′ = −λ0 (U − c) φ.

Integrating above from y1 to y2 and using the periodic boundary condition, we have∫ y2

y1
(U − c) φdy = 0,

which is a contradiction again. Therefore c must be in the range of U .
Let z1 < z2 < · · · < zkc

(
kc � 1

)
be the zeros of U (y) − c in [y1, y2]. We

claim that there exists 1 � k � kc such thatψ (zk) �= 0. For the Dirichlet boundary
condition, this follows by Lemma 3.5 of [10]. For the periodic boundary condition,
suppose otherwise ψ (zk) = 0 for all k = 1, 2, . . . , kc. Let zkc+1 = z1 + y2 − y1
which is the translation of z1 by one period. Then U − c takes the same sign on
each interval

[
zi , zi+1

]
, i = 1, 2, . . . , kc, and ψ = 0 at the end points. By the

proof of Lemma 3.5 of [10], it follows that ψ ≡ 0 in all the intervals
[
zi , zi+1

]
.

Thus ψ ≡ 0 in [y1, y2], which is a contradiction. Let 1 � k0 � kc be such that
ψ

(
zk0

) �= 0. Then we must have U ′′ (zk0

) = 0, that is, c = U
(
zk0

)
is an inflection

value. Suppose otherwise, then U ′′ (zk0

) �= 0 and thus U ′′
U−c ψ is not in L2

loc near
zk0 , which is in contradiction to the Rayleigh equation (4.16) and the assumption
that ψ ∈ H2. This finishes the proof of the Lemma. ��
Remark 4.7. The above lemma shows that for general shear flows U (y), any H2

neutral modemust have its phase speed c to be one of the inflection values. This fact
is used in section 4 to exclude embedded eigenvalues and to obtain the instability
index formula (4.12) and the positivity of L|Ec . In [10,12], it was shown for a
class of shear flows (called class F in [10]) that any neutral limiting mode (i.e.
the limit of a sequence of unstable modes) must be in H2 and therefore the phase
speed must be inflection values. These neutral limiting modes are important for
finding linear stability/instability criteria since they give the transition points for
stability/instability.

The flows U (y) in classF (see [10] for definition) include any monotone flow,
classK+ flows, andmore generally, anyU (y) satisfying an ODEU ′′ = k (y) g(U )

for some k > 0 and any g. However, for shear flows not in class F , the limiting
neutral modesmight be singular (i.e. not in H2). Such singular neutral modesmight
have their phase speeds as c other than the inflection values.
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