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Abstract

We consider the existence of periodic traveling waves in a bidirectional
Whitham equation, combining the full two-way dispersion relation from the incom-
pressible Euler equations with a canonical shallowwater nonlinearity. Of particular
interest is the existence of a highest, cusped, traveling wave solution, which we
obtain as a limiting case at the end of the main bifurcation branch of 2π -periodic
traveling wave solutions continuing from the zero state. Unlike the unidirectional
Whitham equation, containing only one branch of the full Euler dispersion rela-
tion, where such a highest wave behaves like |x |1/2 near its crest, the cusped waves
obtained here behave like |x log |x ||. Although the linear operator involved in this
equation can be easily represented in terms of an integral operator, it maps con-
tinuous functions out of the Hölder and Lipschitz scales of function spaces by
introducing logarithmic singularities. Since the nonlinearity is also of higher order
than that of the unidirectional Whitham equation, several parts of our proofs and
results deviate from those of the corresponding unidirectional equation, with the
analysis of the logarithmic singularity being the most subtle component. This paper
is part of a longer research programme for understanding the interplay between
nonlinearities and dispersion in the formation of large-amplitude waves and their
singularities.

1. Introduction

Given the great complexity of the Euler equations, which fundamentally
describe the flow of an incompressible, inviscid fluid over an impenetrable bot-
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tom, it has long been considered advantageous to find simpler models that approx-
imate the dynamics of the free surface in particular asymptotic regimes. Arguably,
the most famous such approximation is the well-studied KdV equation which, in
dimensional form, can be written as
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where here x denotes the spatial variable, t denotes the temporal variable, and
u = u(x, t) is a real-valued function describing the fluid surface; further, g denotes
the constant due to gravitational acceleration and h0 denotes the undisturbed fluid
depth. The KdV equation is well known to describe the unidirectional propagation
of small amplitude, long wave phenomena in a channel of water, most notably
periodic and solitary waves, but is also known to lose relevance for short and
intermediate wavelength regimes where wave features such as wave breaking and
surface singularities may be observed in other equations.

Heuristically, this may be explained as follows: if one linearizes the KdV equa-
tion about the flat state u=0, a straightforward calculation implies that this lin-
earized equation admits plane wave solutions of the form eik(x−ct) provided that

cKdV(k) = √
gh0

(
1 − 1

6
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2
)

,

while performing the analogous calculations on the Euler equations one finds the
linearized system admits such plane wave solutions provided that c2Euler(k) =
g tanh(kh0)

k , that is

cEuler,±(k) = ±
√
g tanh(kh0)

k
. (1.2)

Note that while the KdV has only one phase speed, the Euler equations have two
branches of the phase speed c. This is a reflection of the fact that the Euler equation
generically supports bidirectional propagation of waves, while the KdV equations
is derived under the assumption of unidirectional wave propagation. Concentrating
on the positive branch of cEuler(k), the connection between these two phase speeds
is given through the expansion

cEuler,+(k) = cKdV(k) + O(|kh0|4),

so that the KdV equation can be seen to approximate to second order the positive
branch of the Euler phase speed in the long-wave regime |kh0| � 1. In fact,
solutions of (1.1) are known to exist and converge to those of the water wave
problemat the order ofO(h20k

2)during an appropriate time interval; see [24, Section
7.4.5] for details. Outside of this regime, however, it is clear that the KdV phase
speed is a poor approximation of that for the Euler equations and hence the KdV
equation should not be expected to describe short, or even intermediate, wavelength
phenomena.
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To better describe short wave phenomena, Whitham suggested replacing the
linear phase speed in the KdV equation with the exact, unidirectional phase speed
from the Euler equations. This leads to the nonlocal evolution equation

ut + Mux + 3

2

√
g

h0
uux = 0, (1.3)

where here M is a Fourier multiplier defined by its symbol via

̂M f (k) =
√
g tanh(h0k)

k
f̂ (k).

Denoting D = 1
i ∂x , we can thus formally write M =

√
g tanh(h0D)

D . As (1.3)
combines the full unidirectional phase speed from the Euler equations with the
canonical shallowwater nonlinearity,Whithamadvocated that (1.3), now referred to
as theWhithamequation, should admit periodic and solitarywaveswhile at the same
time allowing for wave breaking and surface singularities. Much recent activity has
verified these claims for the Whitham equation: equation (1.3) admits both solitary
[13] and periodic [14,15] waves, but also features wave breaking [10,20] and a
highest cusped traveling wave solution [17]. Notably, the cusped solutions in [17]
were shown to exist through a global bifurcation argument, continuing off a local
branch of small amplitude periodic traveling waves bifurcating from the zero state,
and were shown to be smooth away from their highest point (the crest) and behave
like |x |1/2 near the crest. It should also be noted that the Whitham equation (1.3)
features the same kind of Benjamin–Feir instability [19,30] as the Euler equations;
see also [18] where additional effects of constant vorticity and surface tension were
considered. We refer to [6] for a study on the symmetry and decay properties of
solitary wave solutions of (1.3), as well as [3,12] where the associated Cauchy
problem is studied.

Despite the success of the Whitham equation (1.3), there are still water wave
phenomena that it does not capture. For example, it is known that the Euler equa-
tions admits high-frequency (non-modulational) instabilities of small amplitude
periodic traveling waves: see [11,25] and references therein. In [11], however, it
was shown that the unidirectional nature of the Whitham equation prohibits such
instabilities from manifesting. Indeed, there it was argued that the bidirectionality
of the Euler equations was the key underlying feature allowing for the possibility of
such instabilities. Furthermore, the irrotational Euler equations are known to admit
peaked waves, that is, traveling wave solutions with bounded but discontinuous
derivatives at their highest point, with a corner at each crest with an interior angle
of 120◦ [2]. The Whitham equation (1.3) instead features cusped waves, having
exactly half1 the regularity of the highest waves of the Euler equations [17]. In
light of (1.2) it is tempting to expect that this is not due to some bad modeling
aspect of the Whitham equation, but to its unidirectionality. The goal of this paper

1 Indeed, the wave constructed in [17] was shown to have optimal global regularity
C1/2(R).
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is to analyze the steady periodic waves of the corresponding bidirectional Whitham
equation, and to see how this influences the existence and features of a possible
highest wave for such an equation. In particular, is it peaked as is the case for the
Euler equations? Answering that question is part of a longer research programme
for understanding the interplay between nonlinearities and (nonlocal) dispersion in
the formation of large-amplitude waves and their singularities.

In this paper, we consider the following full-dispersion shallow water wave
model, given here in dimensional form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηt = − 1√
gh0

Kux −
√

g

h0
(ηu)x
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√

g

h0
(ηx + uux ) ,

(1.4)

where the operator K is a Fourier multiplier defined by its symbol via

K̂ f (k) = g tanh(kh0)

k
f̂ (k),

that is, K := g tanh(h0D)
D , where as above D = 1

i ∂x . Here, η represents the free
surface, and u = ϕx where ϕ(x, t) = ϕ(x, η(x, t), t) is the trace of the velocity
potential at the surface interface. The dispersion relation for (1.4) agrees exactly
with that of the full Euler equation, so that this is a bidirectional equation with two
branches of the linear phase speed given in (1.2). The model (1.4) also appeared in
[31, Section 6.3], where it was described as a linearly well-posed regularization of
the linearly ill-posed, yet completely integrable, Kaup system

⎧
⎪⎪⎨

⎪⎪⎩

ηt = −√
gh0

(
1 + 1

3
h20∂

2
x

)
ux −

√
g

h0
(ηu)x = 0

ut = −
√

g

h0
(ηx + uux ) = 0.

Indeed, one can see that the phase speed for the Kaup system agrees to O(|kh0|2)
with that of (1.4). Other, and more involved, full-dispersion equations, are given in
[24] and [32]. The system (1.4) can be derived as an ad-hoc bidirectionalization of
theWhitham equation or, as in [1] and [26], via a formal expansion of the Dirichlet–
Neumann operator appearing in the free-surface water-wave equations. Although
the analytical existence theory for this equation is conditional [16,23], it displays
nice qualitative properties for solutions with strictly positive surface elevation: it
significantly outperforms the KdV equation in experimental settings [8,34], and
the steady periodic waves of supercritical wave speed are stable in the appropriate
regimes [9]. A proof of conditionally stable solitary waves in the spirit of [13] is in
preparation, too [27].

As we will see below, small amplitude periodic traveling wave solutions of
(1.4) can be shown, at particular wave speeds, to bifurcate from the trivial solution
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(η, u) = (0, 0) through the use of elementary bifurcation theory and a Lyapunov–
Schmidt reduction. By numerically continuing this local branch of solutions, we
observe that the waves approach a highest wave, which at lower resolutions does
indeed seem to be peaked. From a more detailed analysis, however, it appears
that unlike the full Euler equations the highest wave of (1.4) is still cusped at
its highest point. To understand this more rigorously, we justify the numerical
observations through the use of a global bifurcation argument in the spirit of [7,15].
By combining this global argument with a priori estimates on a wave of extreme
height we establish a highest, cusped, almost everywhere smooth, traveling wave
solution of (1.4), which behaves as |x log |x || near the crest. The introduction of
bidirectionality therefore has a twofold effect on the highest wave: it increases
(doubles) its regularity, but it also introduces a logarithmic factor such that the
derivative is not any more bounded but blows up logarithmically. The latter can
be explained by the functional analysis of Fourier multiplier operators of integer
order, see Section 2.3.

We remark that the present paper is an extension of the recent work [17], where
the authors performed an analogous study on the unidirectional Whitham equation.
The integral kernel associated with the Fourier multiplier K, however, introduces
novel difficulties in the analysis coming from its logarithmic blow-up at low fre-
quencies; see Lemma 2.2(iii) below. As a consequence, it is not possible to cap-
ture the global regularity of the highest wave in terms of classical Hölder, or even
Hölder–Zygmund, spaces. We believe our analysis sheds some light on a more gen-
eral existence theory of extreme waves associated to dispersive nonlocal equations,
and this is planned to be reported on in the future.

The outline for our investigation is as follows: inSection 2we lay out the analytic
preliminaries; most importantly, we perform a detailed study of the integral kernel
K associated to the Fourier multiplier K above, together with its 2π -periodic peri-
odization. Due to the fact that the integral kernel associated toK is known in closed
form we are able to easily describe the singular nature of the kernel K near zero-
frequency, together with its monotonicity properties. Mark that the corresponding
analysis in [17] for the unidirectional Whitham equation was significantly more
complicated, due to the fact that integral kernel associated to M is not known in
such a clean form2. In Section 3 we report on a numerical investigation of the
global bifurcation diagram, continuing from the zero state, for the profile equation
associated to (1.4). The numerics are then used to motivate the analytical theory
in the remainder of the paper. In Section 4 we prove some a priori estimates and
lemmas concerning periodic traveling wave solutions of (1.4) of maximum height.
Finally, the local and global bifurcation analysis for our solutions is performed
in Section 5, where it is shown that there is a sequence of waves converging to a
logarithmically cusped wave of greatest height, thus establishing our main result
Theorem 5.9.

2 Indeed, in [17], using the theory of completely monotone functions, the authors provide
the first closed form expression for the integral kernel associated to M, although their
expression is not as explicit as that for the integral kernel associated to K.



1640 Mats Ehrnström et al.

2. Preliminaries

We consider 2π -periodic solutions of the full-dispersion, bidirectional shallow
water system (1.4). In non-dimensional form, they read as

{
ηt = −Kux − (ηu)x

ut = −ηx − uux
(2.1)

and, with slight abuse of notation, the operatorK is now a Fourier multiplier defined
by its symbol via

K̂ f (k) = tanh(k)

k
f̂ (k), that is K := tanh(D)

D
. (2.2)

Precisely, (2.1) is obtained from (1.4) via the rescaling

t �→
√
h0
g

t, x �→ h0 x .

Our primary concern is the existence of traveling wave solutions of (2.1), which are
solutions of the form (ψ, ϕ)(x, t) = (η, u)(x − ct) where, again abusing notation,
the profiles ϕ and ψ satisfy the nonlocal system

Kϕx + (ψ(ϕ − c))x = 0

ψx = cϕx − ϕϕx .

Integrating both equations, one sees that localized solutions must satisfy the scalar
profile equation

Kϕ = ϕ

(
c − 1

2
ϕ

)
(c − ϕ). (2.3)

More generally, the Galilean transformation (ϕ, c) �→ (ϕ, c) + (λ, λ) can be used
to eliminate one of the constants of integration, although not both. We remark that
a theory for a class of general nonlinearities is planned in a future investigation.

Factoring the third-order polynomial in (2.3) near its critical point at ϕ = γ ,
our equation reads

Kϕ = N (ϕ) (2.4)
with

N (ϕ) = N (γ ) + 1
2 (ϕ − γ − √

3c) (ϕ − γ )2 , (2.5)
defined by the right-hand side of (2.3) and

γ := c
(
1 − 1√

3

)

being the smallest root of N ′(ϕ) = 0; see Fig. 1. In particular, observe that N (ϕ)

has no critical points for ϕ < γ , and is strictly increasing on the same half-line. It
increases through the origin to its local maximum at ϕ = γ . As the forthcoming
analysis will show, the number γ will be the maximum of the highest wave to be,
and the quadratic nature of N near ϕ = γ will cause the resulting singularity at the
peak.

We devote the remainder of this section to establishing key properties of the
Fourier multiplier K as well as to set up the functional framework used in our
analysis.
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Fig. 1. A plot of the cubic function N (ϕ) for a given c > 0. Of key importance is the locally
quadratic nature of N near its first positive critical point γ

2.1. The Integral Operator K
To make sense of the operatorK, we utilize the Fourier transform. Throughout,

the operator F will denote the extension to the space of tempered distributions
S ′(R) of the Fourier transform

F( f )(ξ) :=
∫

R

f (x) exp(−iξ x) dx

on the Schwartz space S(R), with inverse F−1( f )(ξ) = 1
2π F( f )(−ξ). The oper-

ator K on S(R) may then be understood via the inverse Fourier transform repre-
sentation

K f (x) = F−1
(
tanh(ξ)

ξ
f̂ (ξ)

)
(x).

By the convolution theorem, one can equivalently introduce the integral kernel

K (x) = F−1
(
tanh(ξ)

ξ

)
(x) (2.6)

and define the action of K on S(R) by convolution with K , that is,

K f (x) = K ∗ f (x) =
∫

R

K (x − y) f (y) dy.

By duality, this action can be extended to any f ∈ S ′(R).
In the forthcoming analysis, we will utilize several positivity, monotonicity,

and asymptotic properties of the kernel K . To aid in this description, we make the
following definition:

Definition 2.1. Let 0 � a < b � ∞. A function g : (a, b) → R is called
completely monotone if it is of class C∞ and

(−1)ng(n)(λ) ≥ 0 (2.7)

for all n ∈ Z0 and all λ ∈ (a, b).
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Aproof of that a general class of kernels, including K , are completelymonotone
on (0,∞) can be found in [17], and is due to E. Wahlén. In our case, K is explicitly
known, and the complete monotonicity follows directly. Before stating this result,
we make the following convention. Given any real-valued functions f and g, we
say that f � g, or f (x) � g(x), if there exists a constant C > 0 such that
f (x) � Cg(x) for all x in the domain of interest. If no specific domain is indicated,
the statement is understood to be globally valid. The opposite relation � is defined
analogously, and we write f � g when f � g � f . In any chain of inequalities,
we will also feel free to denote by C harmless constants with possibly different
values.

Lemma 2.2. The integral kernel K is given explicitly by

K (x) = 1

π
log

∣∣∣coth
(πx

4

)∣∣∣ ,

and is completely monotone on (0,∞). In particular,

(i) K is real-valued, even, strictly positive on R \ {0}, and satisfies

‖K‖L1(R) = F (K ) (0) = 1;
(ii) K ∈ C∞(R \ {0}), and for any s0 ∈ (0, π/2) and n � 0, one has

|∂nx K (x)| � exp(−s0|x |),
uniformly for all x � 1;

(iii) K has the canonical representation

K (x) = − 1

π
log

∣∣∣
πx

4

∣∣∣ + Kreg(x), (2.8)

with Kreg ∈ C∞(R) being the regular part of K . As x → 0, one has the
asymptotic expansion Kreg(x) = 1

48π π2x2 + O(x4), which is valid under
term-wise differentiation.

Proof. The explicit formula for the Fourier transform can be found, for instance, in
[4, Section 5.5.4]3 or [28, Section 1.7]. It immediately follows that K is completely
monotone on (0,∞), and specifically the properties given in (i) are immediate.
Concerning (ii), the function ξ �→ tanh ξ

ξ
is analytic in the strip R × (−π/2, π/2)

in the complex plane. By shifting contours and appealing to Cauchy’s integral
theorem, it can then be shown that

∫ ∞

−∞
tanh(x)

x
eiξ xdx =

∫ ∞

−∞
tanh(x + is0)

x + is0
eiξ(x+is0)dx

for all s0 ∈ (0, π/2), from which exponential decay follows from the integrability
of tanh(x+is0)

x+is0
eiξ x ; see [17] for details in a closely related context.

3 In [4], the author provides formulas only up to multiplicative constants. In this case, the
constant can be found by enforcing the requirement that

∫
R
K (x)dx = 1.
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To prove (iii), because K is smooth outside of the origin it is enough to establish
the representation (2.8) for |x | � 1. But there it follows from the analytic expan-
sions of cosh(x) and sinh(x) when combined with rudimentary properties of the
logarithm. The asymptotic formula for Kreg is obtained via the same expansion.


�

2.2. The Operator K on Periodic Functions

As our interest lies in periodic solutions of (2.4), we now describe how K
acts on periodic functions. Since K lies in L1(R), given any f ∈ L∞(R) that is
2π -periodic, we can write

K f (x) =
∫ π

−π

(
∑

k∈Z
K (x − y + 2πk)

)

f (y)dy =:
∫ π

−π

Kp(x − y) f (y)dy.

By Lemma 2.2, the periodized kernel Kp is readily seen to converge absolutely and
to admit the Fourier series expansion

Kp(x) =
∑

n∈Z

tanh(n)

n
exp(inx).

Consequently, the convolution theorem guarantees thatK acts on 2π -periodic func-
tions in the same way as on functions on the line, namely as

K f (x) =
∑

n∈N
f̂ (n)

(
tanh(n)

n

)
exp(inx)

for any 2π -periodic function or tempered distribution f .

Lemma 2.3. The periodic integral kernel K p is completely monotone on the half-
period (0, π). Moreover:

(i) Kp is even, strictly positive on R \ 2πZ, and satisfies

‖K p‖L1(−π,π) = 1;
(ii) Kp is smooth on R \ 2πZ;
(iii) Kp has the canonical representation

K p(x) = − 1

π
log

∣∣∣
πx

4

∣∣∣ + Kp,reg(x), (2.9)

with K p,reg ∈ C∞(−π, π) being the regular part of K p.

Remark 2.4. It follows from the strict positivity of Kp that any periodic solution
of (2.4) that attains ϕ(x0) = 0 for some x0 is either trivially zero, or must change
signs.
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Remark 2.5. The fact that Kp is completely monotone on (0, π) follows imme-
diately from [17, Proposition 3.2], where the authors used Bernstein’s theorem to
show that the periodization of an even, integrable function on R that is completely
monotone on (0,∞) is itself completely monotone on a half-period. Nevertheless,
here we provide a more direct proof relying simply on the complete monotonicity
of K and the decay of it and its derivatives.

Proof. We observe first that the periodized kernel Kp inherits its parity and posi-
tivity directly from the kernel K studied in the previous section. Recall also that,
with the origin as the sole exception, the kernel K and all its derivatives are smooth
with exponential decay. For Kp as in the proposition we then have for any fixed
x ∈ (0, π)

(−1)n∂nx K p(x) = (−1)n
∑

k∈Z
K (n)(x + 2kπ)

= (−1)n
∑

k�0

(
K (n)(x + 2kπ) + K (n)(x − 2(k + 1)π)

)
.

(2.10)
If n = 2m is even, it is clear from the positivity of K (2m), which is even, that K (2m)

p
is positive as well. Therefore assume that n = 2m+1 is odd, and let ak = x+2kπ ,
bk = x − 2(k + 1)π . Then K (2m+1)(ak) < 0, whereas K (2m+1)(bk) > 0, for all
x ∈ (0, π) and all integers k � 0, by the complete monotonicity of K . We thus
want

|K (2m+1)(ak)| > |K (2m+1)(bk)|.

By the evenness of K (2m), we have |K (2m+1)(ζ )| = |K (2m+1)(−ζ )| for any ζ �=
0, and since K (2m+2) is positive, |ζ | �→ |K (2m+1)(|ζ |)| is furthermore a strictly
decreasing function of |ζ |, so that

|ak | < (k + 1/2)2π < |bk |

guarantees that |K (2m+1)(ak)| > |K (2m+1)(bk)|. Hence, the sum in (2.10) is strictly
positive for all x ∈ (0, π), thus verifying complete monotonicity on the half-period
(0,∞).

Properties (i) and (ii) follow from the evenness, positivity, and decay of K
established in Lemma 2.2 above. Finally,

Kp(x) = K (x) +
∑

k �=0

K (x + 2kπ)

= − log(πx) + Kreg(x) +
∑

k �=0

K (x + 2kπ)

for x ∈ (0, π), which gives the representation formula for Kp. 
�
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2.3. Functional-Analytic Framework: Hölder and Zygmund Spaces

Beforewe address the existence of solutions of (2.4),wedescribe the functional-
analytic framework used throughout this work. In principle, we wish to work on a
space of functions capable of capturing an appropriate scale of smoothness, while
at the same time behaving well under the action of Fourier multipliers. It turns out
that such a space is given by the Hölder (more precisely, Zygmund) spaces, which
we now briefly describe.

For 0 < α < 1 we define the space Cα(S) of α-Hölder continuous functions
on the unit circle S to consist of all continuous, 2π -periodic functions u such that

|u(x) − u(y)| � |x − y|α

for all x, y ∈ R, and we equip Cα(S) with the norm

‖u‖Cα(S) := sup
x �=y

|u(x) − u(y)|
|x − y|α , α ∈ (0, 1).

For k = 0, 1, 2, . . . we take Ck(S) to denote all k-times continuously differentiable
functions on S, equipped with the norm

‖u‖Ck (S) :=
k∑

j=0

∥∥∥∂ j
x u

∥∥∥
L∞(S)

, k = 0, 1, 2, . . . .

If then s = k + α for some k = 0, 1, 2, . . . and α ∈ (0, 1) we define Cs(R) to be
the set of all functions u ∈ Ck(S) such that ∂kx u ∈ Cα(S), and we equip this space
with the norm

‖u‖Cs (S) := ‖u‖Ck (S) + ‖u‖Cα(S).

While the Hölder spaces provide a quantitative measurement of the modulus of
continuity of a function, it is not immediately clear how such spaces behave under
the action of Fourier multipliers. Thankfully, Hölder spaces have a particularly
nice characterization, similar to that of the Lebesgue or Sobolev spaces, in terms
of Littlewood–Paley theory. Indeed, if we consider the partition of unity

1 =
∞∑

j=0

ψ j (n)2

with ψ j supported on 2 j � |n| < 2 j+1 and ψ j (n) = ψ1(21− j n) for j � 1, and on
|n| � 2 when j = 0, then Littlewood-Paley theory gives the following.

Proposition 2.6. [33] If u ∈ Cs(S) for some s � 0, then

sup
j
2 js

∥∥∥ψ2
j (D)u

∥∥∥
L∞(S)

< ∞. (2.11)

Furthermore, (2.11) guarantees u ∈ Cs(S) for non-integer values of s.
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It follows that as long as s is not an integer, the Hölder spaces can be charac-
terized completely by Fourier series, and hence behave nicely under the action of
general Fourier multipliers (for more details on this and other statements in section,
we refer the reader to [33, Chap. 17]). To state this precisely, introduce periodic
Zygmund spaces Cs∗(S), s � 0, consisting of all continuous functions u on S such
that (2.11) holds. For each s � 0 we equip Cs∗(S) with the obvious norm

‖u‖Cs∗(S) := sup
j
2 js

∥∥∥ψ2
j (D)u

∥∥∥
L∞(S)

and note that, under this norm, the Zygmund spaces are Banach spaces and that

Cs(S) = Cs∗(S) if s ∈ (0,∞) \ N, Ck(S) ↪→ Ck∗(S) if s ∈ N0.

The next result asserts that Fourier multipliers act on the Zygmund spaces in much
the same way as they act on Sobolev spaces.

Proposition 2.7. [33] Suppose that f : R → R is a smooth function such that, for
some m ∈ R and any k ∈ N0,

∣∣∣∂kξ f (ξ)

∣∣∣ � (1 + |ξ |)m−k

for all ξ ∈ R. Then f (D) ∈ L (
Cs+m∗ (S),Cs∗(S)

)
for all s � 0.

Now, if f ∈ Cα(S) with α > 1/2 one has that

f (x) ≡
∑

k∈Z
f̂ (k) exp(ikx) with

∑

k∈Z
| f̂ (k)| < ∞;

in particular, the Fourier series of f converges absolutely for all x ∈ R. Since
ξ �→ tanh(ξ)/ξ is smooth with

∣∣∣∣∂
k
ξ

(
tanh(ξ)

ξ

)∣∣∣∣ � (1 + |ξ |)−1−k

for all k ∈ N0, it follows that

K : Cs∗(S) → Cs+1∗ (S) for all s � 0. (2.12)

The fact thatK has a negative integer order presents an interesting challenge in the
forthcoming analysis, especially in regard to the global regularity of solutions of
(2.4). Indeed, observe that if f ∈ C0(S) ⊂ C0∗(S) then the function K f is only
guaranteed to belong toC1∗(S), and hence may not be continuously differentiable or
even Lipschitz continuous on S. We will return to this point at the end of Section 4.
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Fig. 2. A numerical approximation of the bifurcation branch of even, one-sided monotone,
2π -periodic solutions of (2.4) with wave speed c. A zoom is provided near the turning point

3. Numerical Observations

Our aim is to establish the existence of a cusped traveling wave solution of the
nonlocal profile equation (2.4). Such a solution will be shown to exist through the
construction of a global bifurcation curve of traveling wave solutions with fixed
period, the end of which will be a logarithmically cusped wave. A similar analysis
was recently performed on the unidirectional Whitham equation (1.3). That series
of papers started as a theoretical and numerical investigation of the local [14] and
global [15] bifurcation of traveling wave solutions, and ended with the establishing
of a highest, cusped, wave in the recent investigation [17]. Just as the numerical
investigations in [14,15] served as a starting point for the rigorous search for cusped
solutions of (1.3), the purpose of this section is to provide analogous numerical
findings for the equation (2.4). We thereby hope to motivate the analytical theory
by pointing out some key features of solutions along the global bifurcation branch
that will be central to our later analysis, as well as some that are conjectures that
have not yet been proved analytically. (See also [9], where the authors numerically
investigate the global bifurcation and dynamic stability of periodic traveling wave
solutions of various bidirectional, full-dispersion water wave models.)

In Proposition 5.1 and Theorem 5.3 we prove the existence of a local and
global branch, respectively, of small-amplitude, 2π -periodic even and one-sided
monotone solutions ϕ(τ) of (2.4) with wave speed c(τ ). These bifurcate from the
trivial solution when c20 = tanh (1), and may be numerically approximated through
the use of a spectral cosine collocation method which will be outlined in Appendix
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Fig. 3. Four different numerical profiles are shown along the bifurcation branch from Fig. 2

A. By the discussion at the beginning of Section 2, we expect this bifurcation curve
to continue to a highest wave having maximum height at ϕ = γ . Here, we briefly
present some of the numerical calculations performed using the methods described
in Appendix A.

Figure 2 depicts the bifurcation branch starting at (c0, ϕ0), along with a close-
up of the turning point and the end of the bifurcation curve, which was found using
the condition that ϕ = γ . The wave speed decreases initially, indicating a subcrit-
ical pitchfork bifurcation that will be rigorously established in Proposition 5.1. A
further observation is that the wave speed c(τ ) along the global bifurcation curve
is contained in a compact subinterval (0, 1). This will be a key element in charac-
terizing the global structure of the bifurcation curve, in particular when showing
that it does not form a closed loop, as well as when demonstrating that the limiting
wave at the end of the bifurcation curve is nontrivial, see Lemmas 5.4 and 5.8. The
structure of the bifurcation curve itself, specifically the existence of a turning point,
is so far not understood.

Solutions ϕ of the profile equation (2.4) with wave speed c along the bifurcation
curve are depicted in Fig. 3. The increasing amplitude of the waves corresponds
to moving farther up the global bifurcation branch in Fig. 2. The small-amplitude
waves are perturbations of a multiple of cos (x), a fact that is consistent with the
bifurcation formulas derived in Proposition 5.1. As one continues along the curve,
however, the solutions become increasingly nonlinear and the local theory from
Proposition 5.1 does not yield any predictions. From the numerical calculations we
can nevertheless make some observations also for large amplitudes. First, it appears
that solutions along the global bifurcation curve depicted in Fig. 2 are smooth and
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strictly increasing on a half-period with unique critical points on [−π, π) given at
x = −π (minimum) and at x = 0 (maximum). That solutions along the bifurcation
curve indeed admit such a nodal pattern is established in Theorem 4.2 below.

Next, we observe from Fig. 3 that solutions become progressively steeper at
their global maximum as the end of the bifurcation branch in Fig. 2 is approached.
In particular, it appears that the derivative of the limiting wave blows up at x = 0,
corresponding to the limiting wave having a singularity at that point. While the
smoothness away from x = 0 will be established in Lemma 4.1, the behavior at
the crest is more subtle. Whitham reasoned in [35, p.479] that if Kp(x) were to
blow up like |x |−q at x = 0 for some q > 0, then a rudimentary scaling analysis
would suggest that the associated solution would behave like γ − ϕ(x)�|x |1+δ

with δ = −q. Since Kp has a logarithmic blowup at x = 0, however, such a
scaling analysis is inadequate and amore delicate investigation is needed.Adetailed
investigation of the singularity at x = 0 of the limiting wave is the subject of
Lemma 4.3 and the main regularity result, Theorem 4.4, below.

Althoughnot the point of our current investigation,wepoint out that the dynamic
stability of the periodicwaves numerically constructed above has been recently con-
sidered. In [29], the author rigorously derives, using spectral perturbation theory for
the linearized spectral problem, an analytical stability index whose sign determines
the modulational (spectral) stability of periodic traveling wave solutions of (2.1)
with asymptotically small amplitude to localized perturbations on the line. Outside
of this analysis of the asymptotically small waves, there is no rigorous analysis
concerning the stability of solutions of (2.1). We consider the stability of waves
in these and more general full-dispersion models outside of the small-amplitude
regime as an important open problem.We note, however, the recent work [9] where
the global global bifurcation and spectral stability of large amplitude waves of
(2.1), and other related bidirecitonal full-dispersion water wave models, have been
numerically investigated. The interested reader is referred to this paper for a number
of numerical observations concerning the stability of large amplitude waves that is
so far unproven.

Remark 3.1. An important observation is that the waves constructed in this paper
are not sign definite, which has important consequences relating to the local dynam-
ics about such waves in the evolutionary PDE (1.4). Indeed, (1.4) is known to be
locally well-posed in standard Sobolev spaces only provided that the Cauchy data
has strictly positive surface elevation. The work [9] provides numerical evidence
that this surface elevation restriction is sharp. This evolutionary perspective moti-
vates the search also for periodic traveling wave solutions of (1.4) with strictly
positive wave height. In [9], such waves with asymptotically small amplitude were
shown to bifurcate from a non-zero equilibrium state of (1.4) through a local bifur-
cation argument, and numerically continued through the global bifurcation branch
of waves with strictly positive waveheight, terminating (numerically) at the line
max(ϕ) = γ in a highest, cusped and elsewhere smooth traveling wave solution.
The extension of our theory to such waves is described in Appendix 5.
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4. A Priori Properties of Solutions ϕ � γ

We now study periodic solutions of (2.4) in an appropriate subspace of Cα(S)

with α ∈ (0, 1). By a solution of (2.4) we shall mean a 2π -periodic and continuous
function that satisfies the equation pointwise. In our search for a highest wave, we
will begin in Section 5 belowbyfirst constructing small amplitude periodic traveling
wave solutions of (2.4) via a local bifurcation argument. These small amplitude
solutions will then be continued into a global curve of large amplitude solutions,
eventually terminating into a highest wavewith a cusp. As a first step then, we begin
by studying a priori properties of solutions with ϕ < γ uniformly in x , including
in particular the small amplitude solutions constructed via the local theory. We
end with an a priori estimate on even, nondecreasing solutions which achieve the
maximum height γ at their crests, showing in particular that such solutions cannot
be continuously differentiable, or even Lipschitz at x = 0, and studying the global
regularity of such a wave.

We start by noting that there are exactly three curves of trivial solutions of (2.4),
namely,

c �→ 0 and c �→ �±(c) := 3c ± √
8 + c2

2
.

The latter two are reflections of each other around the diagonal ϕ = c, since
the map

(ϕ, c) �→ −(ϕ, c)

describes a bijection between solutions with positive and negative wave speed. For
that reason, it is enough to restrict our attention to c � 0. In particular, we shall
primarily be concernedwith pairs (ϕ, c) such that (sup ϕ, c) lies in the area enclosed
by c = 0, c = 1, supϕ = 0 and supϕ = γ . The curve �+ is outside of this domain
and will therefore not be relevant in our analysis. The curve �−, however, crosses
c = 0 at ϕ = −√

2 and the line of zero solutions at c = 1 (whereafter it reaches
ϕ = γ at c ≈ 3

2 ). We will have to deal with this fact in our limiting argument.

Lemma 4.1. For all solutions ϕ of (2.4), one has the uniform estimate

‖ϕ‖∞ � 1 + c.

Furthermore, solutions of (2.4) are smooth on any open set where ϕ(x) < γ .

Proof. Lemma2.2 implies thatK ∈ L(L∞(S)), with unit operator norm.Rewriting
(2.4) as

1
2ϕ

3 = Kϕ − c2ϕ + 3c
2 ϕ2,

we see that either ϕ ≡ 0 or else

1
2‖ϕ‖2L∞ − 3c

2 ‖ϕ‖L∞ − (1 + c2) � 0.
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R

maxϕ = γ

max
ϕ = γ +

2√ 3
c

(Th
m

4.2
)

c = 1

Γ+ Γ−

max ϕ

cc = cmin

(Lemma 5.8) (Remark 5.2)

Fig. 4. The global bifurcation diagram obtained in Theorem 5.3. The solid blue lines indicate
solutions, and the red upper bounds on ϕ. The solution curves �± and the horizontal axis
correspond to constant solutions, whereas R is the global bifurcation curve leading to the
highest wave. All solutions studied in this paper are confined to the region enclosed by the
lines max ϕ = 0, max ϕ = γ and c = 1. The transcritical bifurcation at c = 1 and the a
priori bound on the wavespeed (established in Remark 5.2 and Lemma 5.8, respectively)
exclude solutions branching off to zero as in the picture

In either case, it follows that

‖ϕ‖L∞ � 3c + √
8 + 17c2

2
� 1 + c,

as claimed.
To prove smoothness, assume first that maxx ϕ(x) < γ . Recall that γ is the

smallest root of N ′(z) = 0, whence the inverse function theorem guarantees the
existence of a smooth function N−1 such that

N−1N (ϕ) = ϕ for m1 � ϕ � m2 < γ.

Since K : Cs∗(S) → Cs+1∗ (S) for all s ∈ R, the Nemytskii operator

ϕ �→ N−1(Kϕ) (4.1)

maps Cs∗(S) into Cs+1∗ (S) for all s ∈ R. If ϕ ∈ C(S) ↪→ C0∗(S) is now a given
solution with maxx ϕ(x) < γ , it follows by induction that ϕ is in fact smooth.

Now, if ϕ(x) < γ in an open ball Bε0(x0), we write ϕ = ϕψ + ϕ(1 − ψ) for
a smooth function ψ with ψ(x) = 1 for x ∈ Bε′(x0) for a slightly smaller ε′ < ε,
and supp(ψ) � Bε(x0). The term ϕψ has the same regularity as ϕ|Bε , globally on
S. As what concerns the second term, we note that

Kp(x − y)ϕ(y)(1 − ψ(y)) = 0 for y ∈ Bε′(x0) + 2πZ.
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Since Kp(x−y) is smooth for x−y �∈ 2πZ, the convolutionKϕ(1−ψ)(x) is smooth
for x ∈ Bε′(x0). Taken together, if ϕ ∈ Cs∗(Bε), we haveKϕψ ∈ Cs+1∗ (Bε′). Since
ε′ < ε is arbitrary, we conclude that Kϕψ ∈ Cs+1∗ (Bε). Thus, if supx ϕ(x) < γ in
Bε(x0), wemay apply theNemytskii operator (4.1) repeatedly to obtain smoothness
of ϕ in the same set. 
�

Akey ingredient in our forthcoming global bifurcation theorywill be the preser-
vation of a particular nodal pattern for solutions of (2.4) that satisfy ϕ < γ uni-
formly in x . This is the content of the following technical result:

Theorem 4.2. Any non-constant and even solution ϕ ∈ C1(S) of (2.4) which is
non-decreasing on (−π, 0) and satisfies max ϕ � γ + 2√

3
c fulfills

ϕ′ > 0, ϕ < γ on (−π, 0).

If ϕ ∈ C2(S), then ϕ < γ everywhere, with

ϕ′′(0) < 0, ϕ′′(±π) > 0,

and ϕ′′(π) − ϕ′′(0) � ϕ(0) − ϕ(π).

Proof. Since ϕ is even and non-constant, we have that ϕ′ is odd, non-trivial, and
non-positive on (0, π). We claim that Kϕ′(x) < 0 for all x ∈ (0, π). To see this,
notice that the evenness of the periodic kernel Kp gives

Kϕ′(x) =
∫ π

−π

Kp(x − y)ϕ′(y)dy

=
∫ π

0

[
Kp(x − y) − Kp(x + y)

]
ϕ′(y)dy.

Furthermore, since

Kp(x − y) − Kp(x + y) > 0 for all x, y ∈ (0, π),

so as long as ϕ is non-constant, we haveKϕ′(x) < 0 for all x ∈ (0, π), as claimed.
Now note that, by (2.5),

3
2 (γ − ϕ)(γ − ϕ + 2√

3
c)ϕ′ = N ′(ϕ)ϕ′ = Kϕ′ < 0, (4.2)

on (0, π). Since by assumption ϕ′ � 0 on this interval, we first get the strict
inequality ϕ′ < 0 on (0, π). Then

[
γ − ϕ

] [(γ − ϕ) + 2√
3
c] > 0 on the same

interval, which holds exactly when ϕ < γ or ϕ > γ + 2√
3
c. The second alternative

is excluded by assumption, whence we conclude that ϕ < γ .
Now, if ϕ ∈ C2(S), one obtains from (4.2) that

N ′(ϕ(x))ϕ′′(x) =
∫ π

0

[
K ′

p(x − y) − K ′
p(x + y)

]
ϕ′(y) dy, x ∈ πZ, (4.3)
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where the integral is well defined for x ∈ πZ in view of (2.9) and the fact that
ϕ′(x + z) = O(z) for x ∈ πZ, |z| � 1. When x = 0, we get

N ′(ϕ(0))ϕ′′(0) = −2
∫ π

0
K ′

p(y)ϕ
′(y) dy < 0,

and for x = π ,

N ′(ϕ(π))ϕ′′(π) = −2
∫ π

0
K ′

p(π + y)ϕ′(y) dy > 0,

yielding ϕ′′(0) < 0 and ϕ′′(±π) > 0 (the strict inequality also yields that ϕ < γ

everywhere). Furthermore,

N ′(ϕ(π))(ϕ′′(π) − ϕ′′(0)) + ϕ′′(0)(N ′(ϕ(π)) − N ′(ϕ(0))

= 2
∫ π

0
(K ′

p(y) − K ′
p(π + y))ϕ′(y) dy

� K ′
p(−π

2 )(ϕ(0) − ϕ(π)),

by the concavity of Kp. Since N ′(ϕ(π)) is positive and bounded, ϕ′′(0) < 0 and
N ′(ϕ(π)) − N ′(ϕ(0) > 0, the estimate ϕ′′(π) − ϕ′′(0) � ϕ(0) − ϕ(π) follows.


�
By the above result, all even, 2π -periodic smooth solutions that are nondecreas-

ing on (−π, 0) with ϕ � γ on R are smooth on (0, π) and are strictly decreasing
on the same interval with ϕ(0) < γ . In the next result, we allow for the possibility
that ϕ(0) = γ and study the behavior of such a solution near x = 0.

Lemma 4.3. Let ϕ be an even, non-constant, 2π -periodic solution of (2.4) such
that ϕ is nondecreasing on (−π, 0) with ϕ � γ on (−π, π). Then ϕ is smooth and
strictly increasing on (−π, 0), and as x → 0 we have

γ − ϕ(x) � |x log |x ||
1 + c

. (4.4)

Proof. First, note by Lemma 4.1 and Theorem 4.2 that if ϕ(0) < γ then ϕ ∈
C∞(R) and is strictly increasing on (−π, 0). In the case when ϕ(0) = γ , however,
ϕ may not beC1 and hence we cannot establish smoothness nor strict monotonicity
as above.Nevertheless,wenowprove that, just as inTheorem4.2, one hasϕ′(x) > 0
for all x ∈ (−π, 0) even when ϕ is merely assumed to be continuous. This is a
technical variation of the argument used in the proof of Theorem 4.2, which starts
with the observation that

Kϕ(x + h) − Kϕ(x − h)

=
∫ 0

−π

[
Kp(y − x) − Kp(y + x)

]
[ϕ(y + h) − ϕ(y − h)] dy,

(4.5)

in view of evenness and periodicity of both ϕ and Kp. For x ∈ (−π, 0) and
h ∈ (0, π), both factors in the integrand are non-negative, and since ϕ is assumed
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to be non-constant, we conclude that Kϕ(x + h) > Kϕ(x − h) whenever x, h are
chosen as above. From (2.3) we have

Kϕ(x) − Kϕ(y)

= (ϕ(x) − ϕ(y))
(
c2 − 3c

2 (ϕ(x) + ϕ(y)) + 1
2

(
(ϕ(x))2 + ϕ(x)ϕ(y) + (ϕ(y))2

))
.

(4.6)
By letting ϕ̃ = cϕ, one sees that, up to a factor of c2/2, the long expression on the
right-hand side is non-negative because

2 − 3(ϕ̃(x) + ϕ̃(y)) + (ϕ̃(x))2 + ϕ̃(x)ϕ̃(y) + (ϕ̃(y))2 � 0

for ϕ̃ � 1− 1/
√
3, with equality only when ϕ̃(x) = ϕ̃(y) = 1− 1/

√
3 (recall here

that ϕ � γ ). Since we already proved that Kϕ is strictly increasing on (−π, 0),
the assumption that ϕ is nondecreasing together with (4.6) show that ϕ is indeed
strictly increasing on (−π, 0) (hence, ϕ(x) = γ is excluded except at x ∈ 2πZ).
Consequently, ϕ is smooth on (−π, 0) by Lemma 4.1, and to conclude that ϕ also
has a strictly positive derivative in the left half-period, onemay apply Fatou’s lemma
to (4.5). Via (4.6) this shows that ϕ′(x) > 0 for x ∈ (−π, 0).

To establish the lower bound (4.4), observe that by Lemma 4.1 we have

(1 + c)(γ − ϕ(x)) � 3

2
(γ − ϕ(x))(γ − ϕ(x) + 2√

3
c) = N ′(ϕ(x)) (4.7)

so that it is sufficient to study the behavior of N ′(ϕ(x)) for |x | � 1. From the
above, for each x ∈ [−π, 0) there exists a ξ ∈ (x, x/2) such that

ϕ′(ξ) = min
y∈[x,x/2] ϕ

′(y).

Since N ′(ϕ) is strictly decreasing in ϕ for all ϕ < γ , it follows from the mono-
tonicity of ϕ that N ′(ϕ(x)) � N ′(ϕ(ξ)) for all x ∈ [−π, 0). From (2.4) and the
fact that ϕ′(x) > 0 for x ∈ (−π, 0) we then see that

N ′(ϕ(x))ϕ′(ξ) � N ′(ϕ(ξ))ϕ′(ξ)

= Kϕ′(ξ)

=
∫ 0

−π

[
Kp(ξ − y) − Kp(ξ + y)

]
ϕ′(y) dy

� ϕ′(ξ)

∫ x
2

x

[
Kp(ξ − y) − Kp(ξ + y)

]
dy

where the last inequality follows by Kp(ξ − y)−Kp(ξ + y) > 0 for ξ, y ∈ (−π, 0),
and by the definition of ξ . Lemma 2.3(iii) now immediately provides the estimate

N ′(ϕ(x)) �
∫ x

2

x

[
Kp(ξ − y) − Kp(ξ + y)

]
dy

� max

(∫ ξ

x
,

∫ x
2

ξ

)
[
Kp(ξ − y) − Kp(ξ + y)

]
dy

� 2
∫

I

[
log |π(ξ + y)/4| − log |π(ξ − y)/4|] dy − O(x3).
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Here we take I = [ξ, x/2] when ξ � 3
4 x and I = [x, ξ ] when ξ > 3

4 x . It follows
that

N ′(ϕ(x)) � |(ξ − z) log |π(ξ − z)|| − |(ξ + z) log |π(ξ + z)|| − O(x) (4.8)

for all x ∈ (−π, 0), where z = x if ξ > 3
4 x and z = x

2 if ξ � 3
4 x . Considering|x | � 1 small enough for |x log |πx || to be monotone in x , we find that for such x

and z we have

|(ξ−z) log |π(ξ−z)||−|(ξ+z) log |π(ξ+z)|| � | x4 log |π x
4 |−|x log |πx ||, (4.9)

and we may further estimate

| x4 log |π x
4 | − |x log |πx || =

∣∣∣∣
x

4
log

∣∣∣∣
πx/4

(πx)4

∣∣∣∣

∣∣∣∣

=
∣∣∣∣
3x

4
log

∣∣∣41/3πx
∣∣∣
∣∣∣∣ � 3

4
|x log |x || − O(x).

(4.10)

Combining (4.8), (4.9) and (4.10), the result follows immediately by (4.7). 
�
The estimate (4.4) obviously holds for any solution ϕ ∈ C(S) than can be

approximated in C(S) by a sequence of solutions satisfying the assumptions of
the lemma. In particular, if ϕ(0) = γ for such a solution, Lemma 4.3 implies that
the solution cannot be continuously differentiable, or even Lipschitz continuous, at
x = 0. The next result explores the global regularity of such a wave, as well as the
singularity at x = 0 (we so far only have a lower bound on γ − ϕ(x)).

Theorem 4.4. Letϕ be an even, 2π -periodic solution of (2.4) that is nondecreasing
on (−π, 0) with ϕ(0) = γ . Then:

(i) ϕ is smooth and strictly increasing on (−π, 0);
(ii) ϕ ∈ Cα(S) for all α ∈ (0, 1), and the Cα-estimates are uniform in α over any

compact subset of (0, 1), and uniform in ϕ for wavespeeds c contained in any
compact subset of (0,∞);

(iii) The estimate
γ − ϕ(x) � |x log |x || , (4.11)

holds for all |x | � 1.

Proof. Part (i) and the lower bound in (4.11) have already been established in
Lemma 4.3. It thus remains to prove the global regularity result in (ii) and the
upper bound in (iii).

To establish (ii), let 0 � x < y � π and note that, by Taylor’s theorem,

N (ϕ(x)) − N (ϕ(y)) = (ϕ(x) − ϕ(y))N ′(ϕ(x)) − 1
2 (ϕ(x) − ϕ(y))2N ′′(ϕ(ξ1))

for some ξ1 ∈ (x, y). Further, using N ′(γ ) = 0, the mean value theorem implies

N ′(ϕ(x)) = N ′′(ϕ(ξ2)(ϕ(x) − γ )
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for some ξ2 ∈ (0, x), so that

N (ϕ(x)) − N (ϕ(y)) = −(ϕ(x) − ϕ(y))(γ − ϕ(x))N ′′(ϕ(ξ2))

− 1
2 (ϕ(x) − ϕ(y))2N ′′(ϕ(ξ1)).

Now note that

N ′′(ϕ(ξ)) � −√
3c for all ξ ∈ [0, π ],

in view of that N ′′(γ ) = −√
3c and that, for such ξ , we have d

dξ N
′′(ϕ(ξ)) < 0 and

ϕ(ξ) � γ . In particular,

N (ϕ(x)) − N (ϕ(y)) � (ϕ(x) − ϕ(y))(γ − ϕ(x)) + 1
2 (ϕ(x) − ϕ(y))2,

which holds uniformly for all solution pairs (ϕ, c)with c � 1. Since ϕ is monotone
decreasing on (0, π), it follows from (2.4) that the above estimate yields

Kϕ(x) − Kϕ(y) � (ϕ(x) − ϕ(y))(γ − ϕ(x)) (4.12)

and
Kϕ(x) − Kϕ(y) � (ϕ(x) − ϕ(y))2, (4.13)

uniformly for c � 1. Now, recall that if ϕ ∈ Cs∗(S) for some s � 0, then K(ϕ) ∈
Cs+1∗ (S). From (4.13) and the continuity of the embedding C1∗(S) ↪→ Cα(S) for
all α ∈ [0, 1), it is immediate that any solution ϕ ∈ C0(S) belongs to C1/2−(S).

To show that ϕ has better regularity than C1/2−(S) we observe that for any
f ∈ C1+α(S) with α ∈ (0, 1) and f ′(0) = 0, one has the estimate

| f (x) − f (y)| = |x − y|| f ′(ξ) − f ′(0)| � |x − y||ξ |α,

valid for some |ξ | ∈ (x, y). Applying this estimate to the function Kϕ, it follows
that if ϕ ∈ Cα(S) for some α ∈ (0, 1), then for 0 � x < y � π we have

Kϕ(x) − Kϕ(y) � |x − y|yα. (4.14)

Whenever ϕ ∈ Cα(S), α ∈ (0, 1), the estimates (4.13), (4.14) and the triangle
inequality together yield

ϕ(x) − ϕ(y) � |x − y| 1+α
2 , (4.15)

valid uniformly for all 0 � x < y � π with x < |x − y|, and all solutions ϕ with
c � 1. In particular, taking x = 0 above implies

γ − ϕ(y) � |y| 1+α
2 (4.16)

for all y ∈ S, when ϕ ∈ Cα(S) for α ∈ (0, 1). When, on the other hand, |x− y| � x
we have from (4.12), (4.14) and the triangle inequality that

(ϕ(x) − ϕ(y)) (γ − ϕ(x)) � |x − y|xα.
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Since γ − ϕ(x) � x/(1 + c) by Lemma 4.3, it follows that

ϕ(x) − ϕ(y) � |x − y|
x1−α

, (4.17)

whenever ϕ ∈ Cα(S) for some α ∈ (0, 1), and c � 1.
We now interpolate between (4.16) and (4.17), still for |x − y| � x . Namely,

using that y < 2x , for a given β ∈ (0, 1) we estimate

ϕ(x) − ϕ(y)

|x − y|β � (ϕ(x) − ϕ(y))β

|x − y|β (γ − ϕ(y))1−β

� x (α−1)β+ (1+α)(1−β)
2 ,

which is bounded for all 0 � x < y � π provided that β � 1+α
3−α

. In particular,

taking β = 1+α
3−α

above we have the estimate

ϕ(x) − ϕ(y) � |x − y|(1+α)/(3−α)

when |x − y| � x , valid uniformly for all solutions ϕ ∈ Cα(S) for which c � 1.
Here, α ∈ (0, 1) is still considered fixed. Combining with (4.15) and noting that
2 < 3 − α, we have established the estimate

ϕ(x) − ϕ(y) � |x − y|(1+α)/2 for all 0 � x < y � π

whenever ϕ ∈ Cα(S) with α ∈ (0, 1). It follows that if ϕ ∈ Cα(S) is a solution of
(2.4) for some α ∈ (0, 1), then ϕ ∈ C (1+α)/2(S). Fixing α0 ∈ (0, 1/2), we may
define the recurrence relation

a0 = α0, an+1 = 1 + an
2

, n � 0,

yielding thatϕ ∈ Can (S) for all n ∈ N. Since the sequence {an}∞n=1 is clearly strictly
increasing with an ↗ 1, ϕ belongs to C1−(S), as claimed. The Cα-estimates are
furthermore uniform for all α in any compact subinterval of (0, 1), and for all
solution pairs (ϕ, c) with c in a compact subinterval of (0,∞).

It remains to establish the upper bound in (4.11). This is the most technical part
of the paper. Observe that since ϕ ∈ Cα(S) for all α ∈ (0, 1), one has

cα := sup
y∈S

γ − ϕ(y)

|y|α(1 + | log |y||) < ∞ for all α ∈ (0, 1), (4.18)

and our goal is to show that one may let α ↗ 1 to obtain the desired bound
γ − ϕ(x) � |x log |x || for all x sufficiently small. To this end, let 0 < δ � 1 and
note for all x ∈ (0, δ) we have from (4.13) that

(γ − ϕ(x))2 � Kϕ(0) − Kϕ(x)

=
∫ π

−π

(
Kp(y) − Kp(x − y)

)
ϕ(y)dy

=
∫ π

−π

(
Kp(x − y) − Kp(y)

)
(γ − ϕ(y)) dy.
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Here we have used the fact that Kp is 2π -periodic. Taking y �→ −y above and
averaging gives the representation

Kϕ(0) − Kϕ(x) = 1

2

∫ π

−π

(
Kp(x + y) + Kp(x − y) − 2Kp(y)

)
(γ − ϕ(y)) dy

= −2
∫ π

0
(log

∣∣ x+y
4

∣∣ + log
∣∣ x−y

4

∣∣ − 2 log
∣∣ y
4

∣∣)(γ − ϕ(y)) dy

+
∫ π

0
(Kp,reg(x + y) + Kp,reg(x − y) − 2Kp,reg(y))(γ − ϕ(y)) dy,

where thefinal equality follows fromLemma4.1. Since K ′′
p,reg is uniformlybounded

on R, the estimate
∫ π

0
(Kp,reg(x + y) + Kp,reg(x − y) − 2Kp,reg(y))(γ − ϕ(y)) dy � x2 (4.19)

holds. To estimate also the principle part, observe that
∣∣∣∣

∫ π

0
(log

∣∣ x+y
4

∣∣ + log
∣∣ x−y

4

∣∣ − 2 log
∣∣ y
4

∣∣)(γ − ϕ(y)) dy

∣∣∣∣

� cα

∫ π

0

∣∣log
∣∣ x+y

4

∣∣ + log
∣∣ x−y

4

∣∣ − 2 log
∣∣ y
4

∣∣∣∣ |y|α(1 + | log |y||) dy.
(4.20)

Making the change of variables y = xs, we note that

log | x(1+s)
4 | + log | x(1−s)

4 | − 2 log | xs4 |
= log |1 + s| + log |1 − s| − 2 log s �

1

s2
as s → ∞,

(4.21)

whence the magnitude of this expression is independent of x , and is integrable
in s on (0,∞). The integral on the right-hand side in (4.20) can thus be further
estimated as

cαx
1+α

∫ π
x

0
|log |1 + s| + log |1 − s| − 2 log s| sα(1 + | log x + log s|) ds

� cαx
1+α

(

| log x | + | log x |
∫ π

x

1

sα

s2
ds +

∫ π
x

1

sα log s

s2
ds

)

� cαx
1+α

(

| log x | + | log x |
∫ π

x

1

ds

s
+

∫ π
x

1

log s

s
ds

)

� cαx
2α| log x |2, (4.22)

wherewe have used that
∫ π/x
1 log(s)/s ds = 1

2 (log(π/x))2 � (log(x))2 and that all
terms that are bounded in s areO(log(x)) for x ∈ (0, δ]. Specifically, the integrals
areO(| log(x)|) on any compact interval, so it does not matter which starting point
we choose for the integrals with end-point π

x .
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Finally, combining (4.19), (4.22) and (4.13) it follows that

(γ − ϕ(x))2 � (Kϕ)(0) − (Kϕ)(x) � cα(xα(1 + | log x |))2,
where the estimates are uniform for all (α, x) ∈ (0, 1) × (0, δ], and where cα is
defined in (4.18). Rearranging, the above yields the estimate

(
γ − ϕ(x)

xα(1 + | log x |)
)2

� cα,

valid for all x ∈ (0, δ] and α ∈ (0, 1). For x ∈ (δ, π ] we note that the left-hand
side in the above inequality is uniformly bounded for all α ∈ [0, 1), hence we find

(
γ − ϕ(x)

xα(1 + | log x |)
)2

� max (cα, 1) ,

valid for all x ∈ (0, π) and α ∈ (0, 1). Taking the supremum over x ∈ S now yields
c2α � max(cα, 1), hence cα � 1 uniformly in α ∈ (0, 1). With this uniform bound,
we may now take α ↗ 1 in (4.18) to get

γ − ϕ(x) � x (1 + | log x |) ,

valid for all x ∈ (0, π). Taking x → 0+ finally yields desired upper bound in
(4.11). 
�

Theorem 4.4 implies that if there exists an even, 2π -periodic continuous solu-
tion of (2.4) that is nondecreasing on (0, π) with ϕ(0) = γ , then the derivative
of such a solution blows up at x = 0 at a logarithmic rate, that is, the solution
is logarithmically cusped. This is in contrast to analogous highest solutions of
the unidirectional Whitham equation, where such solutions are cusped with their
derivatives at the highest point blowing up at an algebraic rate [17].

From the proof of Theorem 4.4 and the mapping property (2.12), it is tempting
to expect that such a highest solution ϕ of (2.4) may belong to C1∗(S). However,
this is readily seen to be false due to the following characterization: a function
f ∈ C0(S) belongs to the Zygmund space f ∈ C1∗(S) if and only if

sup
h �=0

‖ f (· + h) + f (· − h) − 2 f ‖L∞(S)

|h| < ∞.

Indeed, taking f (x) = |x log |x || we find that

‖ f (· + h) − f (· − h) − 2 f ‖L∞(S) � | f (h) + f (−h) − 2 f (0)| = 2|h log |h||,
which immediately implies that f /∈ C1∗(S) by the above characterization. The
precise regularity of such a highest wave of (2.4) is thus an interesting question:
it is neither continuously differentiable, nor Lipschitz, nor does it belong to the
Zygmund space C1∗(S), nor does its derivative belong to the space of functions
of bounded mean oscillation BMO(R), due to its sign-changing property at the
singular crest. We settle here for the asymptotic property (4.11), but it is reasonable
to believe that the optimal regularity for the highest wave belongs is a dyadic space
(see, for example, [5]).

It now remains to prove that a symmetric, 2π -periodic, uni-modal solution of
(2.4) exists with ϕ(0) = γ . This is the goal of the next section.
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5. Bifurcation of Smooth Periodic Waves with a Single Crest in Each Period

In this section we develop a bifurcation theory for the profile equation (2.4).
We begin with local bifurcation theory, and then extend this to a global theory,
carefully characterizing the end of the bifurcation branch with the help of nonlocal
arguments (non-local here referring to x-space). In particular, we will see that the
bifurcation branch terminates in a highest wave that is even, monotone increasing
on (−π, 0), and satisfies ϕ(0) = γ . By Theorem 4.4 above, it follows that this
highest wave will be a cusped traveling wave solution of the bidirectional Whitham
model.

Our study starts with the existence of small-amplitude, nonlinear solutions to
(2.4). To this end, notice that for α ∈ ( 12 , 1) the space Cα

even(S) = Cα∗,even(S) of
even functions inCα(S) forms a Banach algebra. Further, since K is even it follows
that, for such α, Cα

even(S) is invariant under the action of K, in view of that

K : Cα
even(S) → Cα+1

even (S) ↪→ Cα
even(S).

Seeking solutions of (2.4) in Cα
even(S), we consider the function

F : Ck,α
even(S) × R → Ck,α

even(S)

defined by

F(ϕ, c) := Kϕ − N (ϕ; c),
with N as in (2.4). Then F is a real-analytic operator. Observing that F(0, c) = 0
for all c ∈ R and that

∂u F[(0, c)] = K − c2,

one readily sees that ker (∂u F[(0, c)]) is trivial unless

c2 = tanh(k)

k
(5.1)

for some k ∈ N0, in which case ker (∂u F[(0, c)]) = span{cos(kx)}. In particular,
such values of c2 are simple eigenvalues ofK. It follows from the analytic version
of the Crandall–Rabinowitz theorem [7] that near any point (0, c) for such values
of c there exists small-amplitude solutions (ϕ, c) in Ck,α

even(S) × R of the nonlocal
profile equation (2.4) (for details, see, for example, [15]). This result is summarized
in the next proposition. The asymptotic formulas could be obtained as in [15] by
using the general theory from [22], or as we have an analytic curve in Cα(S) × R,
α > 1

2 (for which ϕ ∈ Cα(S) has absolutely convergent Fourier series), by means
of direct expansions in the equation; see, for example, [21].

Proposition 5.1. Fix α ∈ ( 12 , 1). For each integer k � 1 there exists ck :=√
tanh(k)/k and a local, analytic curve

τ �→ (ϕ(τ), c(τ )) ∈ Cα
even(S) × (0, 1),
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defined in a (real) neighborhood of τ = 0, of non-trivial 2π /k-periodic solutions
of profile equation (2.4) that bifurcate from the trivial solution curve c �→ (0, c) at
(ϕ(0), c(0)) = (0, ck). For |τ | � 1, we have

ϕ(x; τ) = τ cos(kx) + 3ckτ 2

4

(
1

c2k − 1
+ cos(2kx)

c2k − c22k

)

+ O(τ 3)

and

c(τ ) = ck + 3τ 2

8

[

− 1

2ck
+ 3ck

(
1

c2k − 1
+ 1

2(c2k − c22k)

)]

+ O(τ 4).

In a neighborhood of the bifurcation point (0, ck) these comprise all non-trivial
solutions of F(ϕ, c) = 0 in Cα

even(S)×R, and there are no other bifurcation points
c > 0, c �= 1, in Cα

even(S).

There are a couple of comments to be given in connection to Proposition 5.1.
We list these together in the following remark:

Remark 5.2. (i) When k = 0, meaning c = 1, a bifurcating line c �→
( 3c−

√
8+c2
2 , c) of constant solutions intersects the trivial solution curve c �→

(0, c), resulting in a transcritical bifurcation. Together, these constitute all solu-
tions in Cα

even(S) in a neighborhood of (ϕ, c) = (0, 1).
(ii) There is nothing particular about the choice of α in this section. In fact, as

we shall show, all small enough solutions are smooth, and so all agree by
uniqueness. The choice α > 1

2 is by convenience. For the global argument,
however, the choice of α has some implications for the proof. In particular,
α < 1 makes it easier to rule out one alternative in Theorem 5.3 along the
curve of solutions.

(iii) In contrast to the corresponding unidirectional Whitham equation, we see
from (5.1) that the bidirectional equation (2.4) admits two families of small-
amplitude solutions; one for positive values of c, and one for negative. The
change of variables (ϕ, c) �→ −(ϕ, c) in (2.4) however guarantees that these
are in one-to-one correspondence to each other.

We shall now analyze the global structure of the local bifurcation curve con-
structed in Proposition 5.1. To begin with, we introduce the admissible set

U := {
(ϕ, c) ∈ Cα

even(S) × R : ϕ < γ
}
,

where γ = c(1 − 1√
3
), and the set of solutions

S := {(ϕ, c) ∈ U : F(ϕ, c) = 0} .

With these definitions, the following global bifurcation result is an easy adaptation
of [7, Theorem 9.1]:
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Theorem 5.3. The local bifurcation curve τ �→ (ϕ(τ), c(τ )) ∈ Cα
even(S) × R of

solutions of (2.4) constructed in Proposition 5.1 for k = 1 extend to a global
continuous curve of solutions

R = {(ϕ(τ), c(τ )) : τ ∈ [0,∞)} ⊂ S,

that allows for a local real-analytic reparametrization about each τ > 0. Further-
more, one of the following alternatives hold:

(i) ‖(ϕ(τ), c(τ ))‖Cα(S)×R → ∞ as τ → ∞;
(ii) dist (R, ∂U ) = 0;
(iii) The function τ �→ (ϕ(τ), c(τ )) is T -periodic for some finite T > 0.

Proof. By [7, Theorem 9.1], it is enough to verify that closed and bounded subsets
of S are compact in Cα

even(S) × (0, 1), and that c(τ ) is not identically constant for
0 < τ � 1. As for the former, let V ⊂ S be a closed and bounded set in S. By
closedness there exists δ > 0 such that

inf
V

{γ − max ϕ} > δ

for all pairs (ϕ, c) in V . One therefore has, similarly to (4.1), that the function

N−1(·, c)
is a well-defined and smooth on V . Since K maps Cα

even(S) continuously into
Cα+1
even (S), and Cα+1

even (S) is compactly embedded in Cα
even(S), it follows that the

composition N−1(·, c)◦Kmaps bounded sets into precompact sets, but for solutions
in S we have

ϕ = [N−1(·, c) ◦ K]ϕ,

so that V is indeed precompact. Since V is also closed, it is compact.
Now, for k = 1 in Proposition 5.1 one has c′′(0) < 0, whence the result is a

consequence of the global bifurcation result in [7]. 
�
We proceed to classify the limiting behavior of the solutions at the end of the

bifurcation curve.Wewill prove that both alternatives (i) and (iii) in Theorem5.3 are
excluded, whence (ii) happens by the curve approaching a “highest” wave, which
we shall show satisfies ϕ(0) = γ . As a first step, observe that Proposition 5.1
implies 0 < c(τ ) < 1 for all τ > 0 sufficiently small. The next result shows, in
combination with Remark 2.4, that the global bifurcation curve cannot pass c = 0
or c = 1 without crossing the curve of zero solutions.

Lemma 5.4. For c = 1 the zero solution is the unique solution of (2.4) satisfying
ϕ � γ ; for c = 0 one additionally has the solution ϕ ≡ −√

2.

Proof. When c = 1, ϕ solves the equation

(1 − K) ϕ = 1

2
ϕ2 (3c − ϕ) .
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Recalling that K̂ (0) = 1, we find by integrating over (−π, π) that

∫ π

−π

ϕ2 (3c − ϕ) dx = 0.

Since ϕ � γ < 3c, it follows that ϕ ≡ 0, as claimed.
Now, let ϕ be a solution of (2.4) with c = 0 satisfying maxx ϕ(x) � γ = 0.

Since Lemma 2.3 implies that K ∈ L(L∞(S) with unit operator norm, the profile
equation (2.4) implies that

1
2 (min

x
ϕ(x))3 � min

x
ϕ(x) and 1

2 (max
x

ϕ(x))3 � max
x

ϕ(x).

Either maxx ϕ(x) = 0, in which case it follows from Remark 2.4 that ϕ ≡ 0, or
maxx ϕ(x) < 0 with (maxx ϕ(x))2 � 2. Since (minx ϕ(x))2 � 2, we must have
ϕ ≡ −√

2 in the second case (else max ϕ would be strictly smaller than min ϕ).

�

We now show that alternative (iii) in Theorem 5.3 is excluded. Consider the set

� = {ϕ ∈ Cα(S) : ϕ is even and non-decreasing on (−π, 0)}, (5.2)

which is a closed cone in Cα(S). Observe that from Proposition 5.1 and Lemma
4.1, we have that the solutions ϕ(τ) for all 0 < τ � 1, and may be expanded as

ϕ(τ) = τ cos+O(τ 2)

in Cα(S). As τ �→ ϕ(τ) analytic, and the identity map ϕ �→ ϕ given in (4.1)
is smooth Cs∗(S) → Cs+1∗ (S), for all s � 0 and all solutions satisfying ϕ < γ ,
it follows in particular that τ �→ ϕ(τ) is smooth (−δ, δ) → C2(S) around a
neighbourhood of the origin. Taylor’s formula and uniqueness in the larger space
Cα(S) then implies that the above asymptotics hold inC2(S). It is then easy to check
that ϕ(τ) ∈ � \ {0} for all 0 < τ � 1. The next result shows that all solutions
{ϕ(τ)}τ>0 on the global bifurcation curve R belong to � \ {0}, and consequently
that alternative (iii) in Theorem 5.3 is excluded.

Lemma 5.5. One has ϕ(τ) ∈ � \ {0} for all τ > 0 along the global bifurcation
curve. In particular, alternative (iii) in Theorem 5.3 cannot occur.

Remark 5.6. The proof of Lemma 5.5 requires the nodal pattern of ϕ(τ) proved
in Theorem 4.2, combined with the properties of the curve �− of trivial solutions.
A detailed proof, based on the theory in [7], is carried out in [17]. However, in
[17] there exists a Galilean symmetry relating solutions with wave speed c > 1
to those with wave speed 0 � c < 1, and this fact was used in the proof. Since
the profile equation (2.4) in the present case does not admit such a symmetry, for
completeness we outline the main steps of the proof, providing full details only in
the necessary modifications.
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Proof. To begin, notice that if the lemma were false then the number

τ̄ := sup {η > 0 : ϕ(η) ∈ � \ {0}}
would be finite and strictly positive. Since � is a closed subset of Cα(S) it must be
that ϕ(τ̄ ) ∈ �. As in [17], one may use the nodal pattern in Theorem 4.2 to argue
that if ϕ(τ̄ ) is non-constant, then it is an interior point of R ∩ � with respect to
the Cα(S) metric relative to R, contradicting the definition of τ̄ . Therefore, by the
discussion at the beginning of Section 4, one of the following must be true:

ϕ(τ̄ ) ∈ �−, ϕ(τ̄ ) ∈ �+, or ϕ(τ̄ ) ≡ 0.

Since R ⊂ S, the possibility that ϕ(τ̄ ) ∈ �+ is clearly excluded. Further, if
c(τ̄ ) > 1 then there exists a 0 < τ1 < τ̄ such that c(τ1) = 1. In this case,
Lemma 5.4 implies that ϕ(τ1) ≡ 0, which contradicts the definition of τ̄ . Thus,
it must be that 0 � c(τ̄ ) � 1. Suppose now that ϕ(τ̄ ) ∈ �− with c(τ̄ ) ∈ [0, 1].
If c(τ̄ ) ∈ [0, 1) then since maxx

[
�−(c(τ̄ ))

]
(x) < 0 it follows by continuity that

there exists an τ2 ∈ (0, τ̄ ) such that maxx ϕ(τ2) = 0 which, by Remark 2.4, implies
that ϕ(τ2) ≡ 0, again contradicting the definition of τ̄ . Consequently, if ϕ(τ̄ ) ∈ �−
it must be that c(τ̄ ) = 1 and hence ϕ(τ̄ ) ≡ 0 by Lemma 5.4. Recalling that the
only solutions with 0 < c < 1 that connects to (ϕ, c) = (0, 1) are the constant
solutions, it follows that either ϕ(τ) = 0 for all 0 < τ̄ −τ � 1, again contradicting
the definition of τ̄ , or ϕ(τ) ∈ �− with 0 < c(τ ) < 1 for all 0 < τ̄ − τ � 1. The
latter case, however, has already been excluded.

In summary, ϕ(τ̄ ) ≡ 0 and c(τ ) ∈ (0, 1) uniformly for all τ ∈ [0, τ̄ ]. The
remainder of the proof goes as in [17], hence we just outline the details. By Propo-
sition 5.1we see that (ϕ(τ̄ ), c(τ̄ )) is a local bifurcation point and, since cos(kx) ∈ �

if and only if k = 1, we find thatR coincides with the primary branch, that is, with
itself, for 0 < τ̄ − τ � 1 (here we think of R as parametrized by τ ). Precisely,
there exists a countably infinite set of pairs {(τ1, j , τ2, j )}∞j=1 such that τ1, j ↘ 0 and
τ2, j ↗ τ̄ as j → ∞ with R(τ1, j ) = R(τ2, j ) for all j � 1. It follows that the
kernel of DF(R(τ1, j )) is nontrivial, having dimension at least one for each j � 1.
Since the values of τ for which the kernel of DF(R(τ )) is nontrivial are known to
be isolated, c.f. [7], this yields a contradiction. Therefore, such an τ̄ does not exist,
and ϕ(τ) ∈ � \ {0} for all τ > 0 as claimed. 
�

Combining Theorem 4.2 with Lemma 5.5, one obtains that all solutions ϕ(τ)

along themain bifurcation curveR are nontrivial, smooth, even, and strictly increas-
ing on (−π, 0).Wenowwish to pass to the limit τ → ∞ along the global bifurcation
branch, obtaining a nontrivial highest wave. To this end, the next result shows that
the solution set is relatively compact in the appropriate space.

Lemma 5.7. Given a sequence {(c(τn), ϕ(τn))}n of solution pairs along the global
bifurcation curve from Theorem 5.3 satisfying cn � 1, there exists a subsequence
converging uniformly to a solution pair (ϕ, c) ∈ C(S) × R.

Proof. Let {(cn, ϕn)}n = {(c(τn), ϕ(τn))}n . By Lemmas 5.4 and 5.5 we have cn >

0 for each n. By assumption, there thus exists a subsequence such that cn → c inR.
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Theorem 4.4(ii) then guarantees that {ϕn}n is uniformly bounded in Cα(S), where
we may pick α ∈ (0, 1) by convenience. In particular, {ϕn}n is an equicontinuous
family of solutions, and thus, by Arzela–Ascoli’s lemma and compactness of S,
has a subsequence converging uniformly to a function ϕ ∈ C(S). To see that (ϕ, c)
solves (2.4), it suffices to note that Kp ∈ L1(S), and that N is smooth in ϕ and c.
We may thus let (ϕn, cn) → (ϕ, c) in C(S) × R in (2.4) to conclude that (ϕ, c)
solves the same equation. 
�

Finally, to exclude the possibility of ending up with a trivial wave, we prove
the following a priori bound on the wavespeed along the main bifurcation branch:

Lemma 5.8. Along the global bifurcation curve in Theorem 5.3, the wavespeed
c(τ ) satisfies

0 < cmin � c(τ ) � cmax < 1.

In particular, alternative (i) in Theorem 5.3 is excluded.

Proof. From the proof of Lemma 5.5, we find that c(τ ) < 1 uniformly for all
τ > 0. Indeed, Proposition 5.1 implies c(τ ) < 1 for τ > 0 sufficiently small, and
Lemma 5.4 implies that the only way that c(τ ) can approach c = 1 along R is for
the solutions ϕ(τ) to approach the trivial solution ϕ = 0. However, Proposition 5.1
implies that the unique solutions in a neighborhood of (ϕ, c) = (0, 1) are the
constant solutions. Since the proof of Lemma 5.5 shows that the main bifurcation
curveR does not connect to the two lines of constant solutions, it follows that c(τ )

is uniformly bounded away from c = 1 for all τ > 0.
To verify that c(τ ) � 1 uniformly, suppose, on the contrary, that there exists a

sequence (ϕn, cn) = (ϕ(τn), c(τn)) ∈ S ∩ (� × R) such that cn ↘ 0 as n → ∞.
By Lemma 5.7, we know that ϕn → ϕ0 in C(S) for some solution ϕ0 � γ , non-
decreasing on (−π, 0). Since c = 0, ϕ0 must be constant by Lemma 5.4. There are
now two cases. If ϕ0 = 0 one immediately gets a contradiction to Lemma 4.3. If,
on the other hand, ϕ0 = −√

2, the solution curve must, by continuity, have passed
a point (c∗, ϕ∗) at which c∗ > 0 and maxx ϕ∗(x) = 0. (The asymptotic formula for
ϕ(τ) in Proposition 5.1 guarantees that maxx ϕ(τ) > 0 for small τ > 0.) According
to Remark 2.4, ϕ∗ ≡ 0, which contradicts the fact that ϕ(τ) is strictly monotone
on a half-period by Lemma 5.5, for any τ ∈ (0,∞).

Finally, since c(τ ) � 1 it follows from Theorem 4.4(ii) that the quantity
‖(ϕ(τ), c(τ ))‖Cα(S)×R is uniformly bounded for all τ > 0; recall here that
α ∈ ( 12 , 1) is fixed. This excludes alternative (i) in Theorem 5.3, as claimed. 
�

Combining the results of this section, we obtain the following: By Proposi-
tion 5.3, Lemmas 5.5 and 5.8 there exists a sequence {(ϕn, cn)}n = {ϕ(τn), c(τn)}n
that approaches the boundary of U as n → ∞, meaning that

lim
n→∞(γn − max ϕn) = 0,

with γn = (1− 1√
3
)cn . Lemma 5.8 guarantees that infn cn > 0, and it furthermore

follows from Lemmas 5.4 and 5.5 that supn cn<1. Hence, Lemma 5.7 yields the
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existence of a convergent subsequence, denoted again by {ϕn, cn}n , converging in
C(S)×R to a solution pair (ϕ, c). The solution ϕ is non-decreasing on [−π, 0] and
satisfies ϕ(0) = γ , with γ = limn→∞ γn . Theorem 4.4 now immediately yields
the following result:

Theorem 5.9. In Theorem 5.3, only alternative (ii) occurs. Given any sequence
of positive numbers τn with τn ↗ ∞, there exists a limiting wave ϕ obtained
as the uniform limit of a subsequence {ϕ(τnk )}k . The limiting wave is a solution
of (2.4) with c = limk→∞ c(τnk ) and is even, 2π -periodic, and satisfies ϕ(0) =(
1 − 1√

3

)
c =: γ . Further, it is strictly increasing on (−π, 0), smooth on R\2πZ,

and satisfies

γ − ϕ(x) � |x log |x ||
for all |x | � 1 sufficiently small.

Remark 5.10. As mentioned in Remark 3.1, the cusped traveling wave solution
ϕ in Theorem 5.9 is necessarily sign-changing. The existence of a highest cusped
wave that is sign-definite was suggested numerically to exist in the recent work [9].
We note that the theory presented in the previous sections may be used to prove the
existence of a positive, logarithmically-cusped, highest wave, occurring at the end
of the global bifurcating branch continuing from the trivial solution �− with c > 1
and terminating at max(ϕ) = γ . This extension is outlined in Appendix 5 below.

Acknowledgements. The authors would like to thank Sandra Pott andAtanas Stefanov
for useful conversations, in particular regarding appropriate function spaces for solutions of
the equation (2.4). We are also indebted to two of the referees for their proof-reading and
valuable comments that helped improve our paper.

Appendix A. Numerical Schemes

In this appendix, we turn to the numerical approximation of solutions of (2.4).
To numerically approximate the even, 2π -periodic solutions of (2.4), we employ a
cosine-collocation method as discussed in [15, Section 5] in conjunction with the
pseudo-arclength continuation method to achieve a curve of solutions bifurcating
from the solution of trivial amplitude. Here, we discuss some of the details of these
methods.

A.1. Cosine Collocation Method

Solutions ϕ of (2.4) that are even 2π -periodic may be naturally expanded in a
Fourier cosine basis as

ϕ(x) =
∞∑

n=0

ϕ̂(n) cos(nx), (A.1)
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where

ϕ̂(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2π

∫ π

−π

ϕ(x) dx if n = 0

1

π

∫ π

−π

ϕ(x) cos(nx) dx if n � 1.
(A.2)

To approximate ϕ, we first truncate the Fourier series (A.1) to N ∈ N terms:

ϕN (x) :=
N−1∑

n=0

ϕ̂(n) cos(nx).

Recalling that ϕ is to be even, for each n = 0, 1, . . . N − 1 the Fourier coefficients
ϕ̂(n) may be approximated by discretizing [0, π ] into N + 1 subintervals

0 < x1 < x2 < · · · < xN−1 < xN < π,

where xm = (2m − 1)π

2N
for m = 1, 2, . . . , N are the so-called collocation points,

and applying midpoint quadrature. This gives the approximation

ϕ̂(n) ≈ ϕ̂N (n) := w(n)

N∑

m=1

ϕN (xm) cos(nxm), (A.3)

with

w(n) =
{
1/N if n = 0

2/N if n = 1, 2, . . . , N − 1

yielding the discrete cosine representation of ϕN (x):

ϕN (x) =
N∑

m=1

(
N−1∑

n=0

w(n) cos(nxm) cos(nx)

)

ϕN (xm).

Moreover, the action of K on ϕ may be approximated via

Kϕ(x) ≈ KNϕN (x) :=
N−1∑

n=0

̂KϕN (n) cos(nx)

=
N∑

m=1

(
N−1∑

n=0

tanh(n)

n
w(n) cos(nxm) cos(nx)

)

ϕN (xm).

Enforcing the profile equation (2.3) at each of the collocation points xi for
i = 1, . . . , N and replacing ϕ andKϕ with their respective approximations ϕN and
KNϕN , we have

ϕN (xi )

(
c − 1

2
ϕN (xi )

)
(c − ϕN (xi )) − KNϕN (xi ) = 0,
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a nonlinear system of N equations in the N + 1 unknowns c, ϕN (x1), ϕN (x2), . . . ,
ϕN (xN ). For convenience, let

ϕi
N := ϕN (xi ), and KNϕi

N := KNϕN (xi ),

and for y := (c, ϕ1
N , ϕ2

N , . . . , ϕN
N ) ∈ R

N+1, define f (y) : R

N+1 → R

N by

f (y) := ( f1(y), . . . , fN (y)), fi (y) := ϕi
N

(
c − 1

2
ϕi
N

)(
c − ϕi

N

)
− KNϕi

N .

(A.4)
Using the local bifurcation formulas in Proposition 5.1 and a numerical continuation
algorithm, we will solve the nonlinear equation

f (y) = 0

to obtain wavespeeds c and points ϕi
N = ϕN (xi ) on the corresponding approximate

profile wave.

A.2. Continuation by the Pseudo-Arclength Method

For a given f : R

N+1 → R

N , consider the problem of finding points on the
curve defined by f (y) = 0. Given a point y0 ∈ R

N+1 such that f (y0) = 0 and
an initial unit tangent direction z0 ∈ R

N+1, one can find another point y1 such
that f (y1) = 0 via a predictor-corrector method known as the pseudo-arclength
method. This method is outlined in the following three steps:
(1) For a step size h, extrapolate from y0 along the tangent direction z0 to form the
predictor y p0 := y0 + hz0.
(2) From y p0 , correct the extrapolation by projecting onto the curve f (y) = 0 in the
direction orthogonal to z0. That is, solve for y1 ∈ R

N+1 in the following nonlinear
system of N + 1 equations in N + 1 unknowns:

{
f (y1) = 0

z0 · (y1 − y p0
) = 0.

This step may be accomplished, for example, by Newton’s method.
(3) Obtain a suitable tangent direction z1 at y1 by solving for z1 in the following
system of N + 1 equations and N + 1 unknowns:

{
Df (y1)z1 = 0

z0 · z1 = 1.

(A.5)

(A.6)

Here, the first equation ensures z1 is tangential to f (y) = 0 at y1, while the second
equation guarantees the angle between z0 and z1 is acute, ensuring a consistent
orientation of the tangent vectors. Note that the resulting z1 above will not be of
unit length and should be normalized before iterating the method.

The above algorithm can be iterated to continue from a point yk on the curve
to another point yk+1 such that f (yk+1) = 0. See Fig. 5 for a graphical illustration
of the method.
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Fig. 5. Illustration of the pseudo-arclength method: given yk such that f (yk) = 0, the
method computes a point yk+1 such that f (yk+1) = 0 and a consistently-oriented tangent
direction zk+1 at yk+1

To apply the pseudo-arclength method to our problem, we fix τ0 > 0 small and
use the local bifurcation formulas for c(τ ) and ϕ(x; τ) provided in Proposition 5.1
to form

y∗
0 := (c(τ0),ϕN (τ0)) ∈ R

N+1,

where ϕN = (ϕ1
N , . . . , ϕN

N ) := (ϕ(x1; τ0), . . . , ϕ(xN ; τ0)) and the xi =
(2i − 1)π

2N
, i = 1, . . . , N are the collocation points on [0, π ]. Moreover, since

the local bifurcation curve is parametrized by τ , we compute the tangent direction
to the local bifurcation curve at y∗

0 by differentiating with respect to τ at τ0 and
normalizing to unit length:

z̃0 :=
(
c′(τ0),

∂ϕN

∂τ
(τ0)

)
, z0 := z̃0

|̃z0| ,
where

c′(τ0) = 3τ0
4

[

− 1

ck
+ 3ck

(
1

c2k − 1
+ 1

2(c2k − c22k)

)]

∂ϕN

∂τ
(τ0) = (cos(x1), cos(x2), . . . , cos(xN )).

Now, y∗
0 does not necessarily satisfy f (y∗

0 ) = 0, hence we initially solve f (y) = 0
via Newton’s method using y∗

0 as an initial guess to obtain y0 such that f (y0) = 0.
For small τ0, this y0 will be close to y∗

0 with the tangent direction at y∗
0 being a

sufficiently adequate approximation of the tangent direction at y0. Thus we will use
these y0 and z0 to seed the pseudo-arclength method, with f : R

N+1 → R

N given
by (A.4).

The bifurcation diagram in Fig. 2 was generated taking N = 512. Note the
monotonicity of the wave profile, guaranteed by Lemma 4.3, allows us to approxi-
mate the waveheight as

waveheight = ϕ(0) − ϕ(π) ≈ ϕN (x1) − ϕN (xN ),



1670 Mats Ehrnström et al.

which is plotted against the corresponding wavespeed in Fig. 2. We continued to
run the pseudo-arclength method so long as φN (x1) ≈ φ(0), defined above, does
not exceed the value γ .

Though it requires more computation than a more-traditional parameter contin-
uation method, the pseudo-arclength method excels when generating bifurcation
diagrams containing a turning point, as occurs near the top of the curve plotted
in Fig. 2. In the parameter continuation, one continues the collocation method by
manually stepping the values of the parameter, which is problematic near turning
points where the parametrization fails to be a function of the wavespeed parameter.
This difficulty can sometimes be side-stepped by switching parametrizations near
the turning point. However, the pseudo-arclengthmethod ismore robust in the sense
that one does not have to manually decide how to step the parameter; the method
computes the parameter and collocation values simultaneously.

Ideally, for solutions computed by the above continuation algorithm, one would
run a time-evolution to ensure that the approximated profiles persist over multiples
of the temporal period. However, we believe our time-evolution analysis failed
due to the expected ill-posedness of the local dynamics about these sign-changing
waves. See Remark 3.1 and [9] for further discussion.

Appendix B. Extension to Waves with Sign-Definite Height Profiles

In this section we describe the extensions necessary to prove the existence of a
wave ϕ that is strictly positive and else satisfies the conditions of Theorem 5.9. As
mentioned in Remark 5.10, it was shown in [9, Section 3.1.3] that a one-parameter
family of strictly positive, 2π -periodic traveling waves ϕ of the nonlocal profile
equation (2.4) bifurcates from the curve �− of trivial solutions at some c1 ≈
1.11834. This local bifurcation curve can be continued into a global curve as in
Theorem 5.3 by using precisely the same argument as in Section 5 above. These
waves satisfy the same nodal and regularity properties as the ones for c ∈ (0, 1),
so that they are smooth wherever ϕ < γ , even and strictly rising on the half-period
(−π, 0). According to Lemma 5.4 this global bifurcation curve cannot pass c = 1
without crossing the curve of zero solutions. As the following Lemma shows, this
implies strict positivity of the solutions along it:

Lemma B.1. Solutions along the global bifurcation branch for c > 1 are strictly
positive .

Proof. As �−(c) > 0 for c > 1, the solutions ϕ bifurcating off �− at c1 > 1 are
strictly positive for sufficiently small values of the bifurcation parameter τ . Define
τ0 to be the smallest positive value of τ for which min ϕ(τ) = ϕ(τ)|x=π = 0
(if it exists; if not, all solutions along the global bifurcation branch are positive).
Evaluating the steady equation (2.4) at a point where ϕ = 0 shows that Kϕ = 0
at that point. Because ϕ(τ0) � 0, this implies that ϕ(τ0) must vanish identically,
but that is only possible if the global bifurcation branch has returned to the line
{(0, c) : c ∈ R} of zero solutions, and indeed for c > 1. That, in turn, would con-
tradict the uniqueness statement proved in Proposition 5.1: there are no bifurcation
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points (0, c) for c > 1. Hence, there does not exist a finite τ0 as above, and all
solutions ϕ(τ) along the global bifurcation branch starting from �− at c1 > 0 are
strictly positive. 
�

To classify the limiting behavior of solutions at the end of the global bifurcation
curve of strictly positive solutions one again proves that alternatives (i) and (iii) in
Theorem 5.3 are excluded. Observe first that the curve max(ϕ) = �− intersects the
curve max(ϕ) = γ at some cγ > c1 satisfying �−(cγ ) = γ (cγ ). The next result
shows the bifurcation curve cannot cross that value.

Lemma B.2. When c = cγ the unique solution of (2.4) satisfying ϕ � γ with
ϕ(0) = γ is the constant solution ϕ = γ .

Proof. At c = cγ the constant ϕ = γ is a solution of the profile equation (2.4).
In particular, N (γ ) = γ . Consequently, if ϕ(0) = γ it follows from the positivity
and normalization of the kernel K that

N (γ ) = N ◦ ϕ(0) = Kϕ(0) � ϕ(0) = γ,

where equality is only possible if ϕ is constant. Hence, ϕ = γ as claimed. 
�
Alternative (iii) in Theorem 5.3 can then be excluded by noting that Lemma 5.5

applies directly to the present case, the only modification being that now c(τ̄ ) ∈
(1, cγ ). Combining Theorem 4.2 and Lemma 5.5 it follows that all solutions ϕ(τ)

along the global bifurcation curve starting from�− at c = c1 are nontrivial, positive,
smooth, even, and strictly increasing on (−π, 0). Finally, Lemmas 5.7 and 5.8 can
be directly adapted to the present case, consequently excluding alternative (i) from
Theorem 5.3. Thus, only alternative (ii) can hold for the bifurcation branch under
consideration. As in Section 5 above this implies the existence of a highest, 2π -
periodic traveling wave solution of (2.4) that is strictly increasing on (−π, 0),
smooth on R \ 2πZ, and satisfies

γ − ϕ(x) � |x log |x ||
for all |x | � 1 sufficiently small. This highest wave is everywhere positive.
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