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Abstract

In this paper we study a class of solutions of the Boltzmann equation which
have the form f (x, v, t) = g (v − L (t) x, t) where L (t) = A (I + t A)−1 with
the matrix A describing a shear flow or a dilatation or a combination of both.
These solutions are known as homoenergetic solutions. We prove the existence of
homoenergetic solutions for a large class of initial data. For different choices for
the matrix A and for different homogeneities of the collision kernel, we charac-
terize the long time asymptotics of the velocity distribution for the corresponding
homoenergetic solutions. For a large class of choices of A we then prove rigor-
ously, in the case of Maxwell molecules, the existence of self-similar solutions
of the Boltzmann equation. The latter are non Maxwellian velocity distributions
and describe far-from-equilibrium flows. For Maxwell molecules we obtain exact
formulas for the H -function for some of these flows. These formulas show that
in some cases, despite being very far from equilibrium, the relationship between
density, temperature and entropy is exactly the same as in the equilibrium case.
We make conjectures about the asymptotics of homoenergetic solutions that do not
have self-similar profiles.
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1. Introduction

In this paper we study homoenergetic solutions of the Boltzmann equation.
Our approach is motivated by an invariant manifold of solutions of the equations
of classical molecular dynamics with certain symmetry properties ([10,11]).

Briefly and formally, this manifold can be described by choosing a matrix A ∈
M3×3 (R), letting e1, e2, e3 be linearly independent vectors in R3, and considering
a time interval [0, a) such that det(I + t A) > 0 for t ∈ [0, a) with a > 0. Consider
any number of atoms labeled 1, . . . , M with positive masses m1, . . . ,mM and any
initial conditions

yk(0) = y0k , ẏk(0) = v0k , k = 1, . . . , M. (1.1)

Call these M atoms the simulated atoms. The simulated atoms will be subject to the
equations of molecular dynamics (to be stated presently) with the initial conditions
(1.1), yielding solutions yk(t) ∈ R3, 0 ≤ t < a, k = 1, . . . , M . In addition there
will be non-simulated atoms with time-dependent positions yν,k(t), indexed by a
triple of integers ν = (ν1, ν2, ν3) ∈ Z3, ν �= (0, 0, 0) and k = 1, . . . , M . The
nonsimulated atom (ν, k) will have mass mk . The positions of the nonsimulated
atoms will be given by the following explicit formulas based on the positions of
the simulated atoms:

yν,k(t) = yk(t) + (I + t A)(ν1e1 + ν2e2 + ν3e3),

ν = (ν1, ν2, ν3) ∈ Z3, k = 1, . . . , M. (1.2)

For k = 1, . . . , M let fk : · · ·R3×R3×R3 · · · → R be the force on simulated atom
k. Naturally, the force on simulated atom k depends on the positions of all the atoms.
This force is required to satisfy the standard conditions of frame-indifference and
permutation invariance [10]. Formally, the equations of molecular dynamics for the
simulated atoms are:

mk ÿk = fk(. . . , yν1,1, . . . , yν1,M , . . . , yν2,1, . . . , yν2,M , . . . ), (1.3)

yk(0) = y0k , ẏk(0) = v0k , k = 1, . . . , M.

Note that these are ODEs in standard form for the motions of the simulated atoms
since, for the nonsimulated atoms, we assume that the formulas (1.2) have been
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substituted into the right hand side of (1.3). It is shown in [10] and [11] that, even
though the motions of the nonsimulated atoms are only given by formulas, the
equations of molecular dynamics are exactly satisfied for each nonsimulated atom.

While this is stated formally here, if conditions are given on the fk such that
the standard existence and uniqueness theorem holds for the initial value problem
(1.1), (1.3), then the result holds rigorously. The proof is a simple consequence
of the frame-indifference and permutation invariance of atomic forces. The result
can be rephrased as the existence of a certain family of time-dependent invariant
manifolds of molecular dynamics.

These results onmolecular dynamics have a simple interpretation in terms of the
molecular density function of the kinetic theory. Consider a molecular dynamics
simulation of the type described above. Consider a ball Br (x) of any radius r
centered at x = (I + t A)(ν1e1 + ν2e2 + ν3e3), (ν1, ν2, ν3) ∈ Z3. The ansatz (1.2)
implies that the velocities of all atoms in the ball Br (x) are completely determined
by those in the ball Br (0), but the molecular density function f (t, x, v) of the
kinetic theory is supposed to describe the probability density of finding velocities
in the small neighborhood of a point x at time t . Thus, the ansatz associated to this
observation about balls can be immediately written down based on (1.2) and its
time-derivative. It is

f (t, x, v) = g(t, v − A(I + t A)−1x). (1.4)

(The emergence of the quantity A(I + t A)−1 arises from conversion to the Eulerian
form of the kinetic theory.)

Besides the reasons mentioned below, the study of these solutions is interesting
from the general perspective of non-equilibrium statistical mechanics. Essentially,
we show for broad classes of choices of A that there exist solutions of theBoltzmann
equation satisfying (1.4). This means that, in a precise sense, this invariant manifold
of molecular dynamics is inherited by the Boltzmann equation. This is true despite
the fact that the Boltzmann equation is time irreversible, while molecular dynamics
is time reversible. It is then particularly interesting to look at the form of the entropy
(minus the H -function) in these cases. We give explicit relations satisfied by the
entropy in some cases, that can be considered as derived constitutive relations. It
would now be extremely interesting to study these relations in molecular dynamics.
Besides the entropy, our results give new insight into the relation between atomic
forces and nonequilibrium behavior.

An alternative viewpoint leading to the same result is presented in Section 2.
That derivation is based on the viewpoint of equidispersive solutions, i.e., an ansatz
of the form

f (t, x, v) = g (t, w) with w = v − ξ (t, x) . (1.5)

Under mild conditions of smoothness, this ansatz is found to reduce the Boltzmann
equation if and only if ξ(t, x) = A(I + t A)−1x .

We recall that the classical Boltzmann equation is given by

∂t f + v∂x f = C f (v) , f = f (t, x, v)

C f (v) =
∫
R3

dv∗
∫
S2
dωB (n · ω, |v − v∗|)

[
f ′ f ′∗ − f∗ f

]
, (1.6)
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whose precise meaning will be discussed in detail in Section 2. Then, if f is a
solution of the Boltzmann equation (1.6) of the form (1.4), the function g satisfies

∂t g − L (t)w · ∂wg = Cg (w) , (1.7)

where the collision operator C is defined as in (1.6) and L(t) = A(I + t A)−1.
These solutions are called homoenergetic solutions and were introduced by Galkin
[14] and Truesdell [29].

Homoenergetic solutions of the Boltzmann equation have been studied in [1–
3,6–8,14–16,18,26,27,29,30]. Details about the precise contents of these papers
will be given later in the corresponding sections where similar results appears. To
summarize this literature, we refer to interaction potentials of the form V (x) =

1
|x |ν−1 , which have homogeneity of the kernel γ = ν−5

ν−1 . The case of Maxwell

molecules corresponds to the case ν = 5, that is, homogeneity γ = 0. In this case
the moments Mj,k associated to the function g defined in (2.5) satisfy a system of
linear equations. As in the original work of Galkin [14] and Truesdell [29], most
previous work is concerned with the computation of the evolution of the moments
Mj,k = ∫

v jvkgdv, as well as higher order moments, in the case in which the
kernel B in (1.6) has homogeneity γ = 0. The evolution equation for the moments
yields a huge amount of information about quantities like the typical deviation of
the velocity and similar quantities ([4,18,30]).

Referring to these studies of the equations of the moments, Truesdell and
Muncaster [30] say: “To what extent the exact solutions in the class here exhibited
correspond to solutions of the Maxwell-Boltzmann equation is not yet established
. . . It is not clear whether [the moments] correspond to a molecular density”. In
this paper, although we will use at several places the information provided by the
moments, we will be mostly concerned with a detailed description of the distribu-
tion of velocities and other quantities such as the H -function that are not accessible
from the moment equations.

The initial value problem associated to (1.7) has been considered by Cercignani
[6] for a particular choice of L(t). More precisely, Cercignani in [6] (see also [7])
considered homoenergetic affine flows for the Boltzmann equation in the case of
simple shear (cf., Theorem 3.1, case 3.7) proving existence in L1 of the distribution
function for a large class of interaction potentials which include hard sphere and
angular cut-off interactions. These solutions are in general not self-similar.

In this paper we first prove the existence of a large class of homoenergetic solu-
tions and we study their long time asymptotics. Their behavior strongly depends
on the homogeneity of the collision kernel B and on the particular form of the
hyperbolic terms, namely L (t)w · ∂wg. We find that, depending on the homogene-
ity of the kernel, we have different behaviors of the solutions of the Boltzmann
equations for large times. Indeed, we prove the existence of self-similar profiles for
Maxwell molecules, when the hyperbolic part of the equation and the collision term
are of the same order of magnitude as t → ∞. The resulting self-similar solutions
are different from the Maxwellian distributions. Indeed, they reflect a nonequilib-
rium regime due to the balance between the hyperbolic part of the equation (which
reflects effects like shear, dilatation) and the collision term.
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We recall that the classical Boltzmann equation for Maxwell molecules is
a particular case for which the solution has a simpler structure than the Boltz-
mann equation for more general kernels. This fact is the main idea behind several
methods which allow one to obtain analytic information for the solutions in the
case of Maxwell molecules. For instance we mention the Maxwellian iteration
method already proposed by Maxwell and developed in detail by Ikenberry and
Truesdell (cf. [19,30]). Another method which exploits the simpler structure of
Maxwell molecules is the Fourier Transform method introduced by Bobylev (cf.
[1]). Although bothmethods allow one to obtain semi-explicit formulas for the solu-
tion of the Boltzmann equation, in this paper we do not rely on any of thesemethods
since it seems to be simpler to prove the existence of homoenergetic self-similar
profiles using fixed point arguments which, in particular, guarantee the positivity
of the solutions.

The plan of the paper is the following: in Section 2 we describe the main
properties of homoenergetic solutions of the Boltzmann equation. In Section 3 we
characterize the long time asymptotics of ξ (t, x) = L (t) x = (I + t A)−1 Ax ,
restricting ourselves to the case in which det(I + t A) > 0 holds for all t � 0.
In Section 4 we prove well-posedness for homoenergetic flows, and we prove the
existence of self-similar homoenergetic solutions in the case ofMaxwellmolecules.
In Section 5we apply the general theory of Section 4 to various homoenergetic flows
described in Section 3. In Section 6wepropose some conjectures on solutionswhich
cannot be described by self-similar profiles. These correspond to cases of L(t) and
homogeneity γ such that the collision term and the hyperbolic term do not balance.
Some of these conjectures were arrived at by careful study of the corresponding
formal Hilbert expansion, which is presented in a forthcoming paper [20].

An important comment on the solutions discussed in this paper concerns the
thermodynamic entropy. Indeed, as we point out in Section 7, there are many
analogies with the corresponding formulas for the entropy for equilibrium dis-
tributions, in spite of the fact that the distributions obtained in this paper concern
non-equilibrium situations. For example, if we identify the entropy density s with
minus the H -function, then our asymptotic formulas for self-similar solutions yield
the identity

s

ρ
= log

e3/2

ρ
+ CG . (1.8)

Despite the fact that s, ρ and e can be rapidly changing functions of time for self-
similar homoenergetic solutions, the relation between them is asymptotically the
same as in the equilibrium case (Maxwellian distribution), except for one important
fact. That is, the constantCG is not the same as the constant as in the equibrium case:
CG < CM where CM is the corresponding value for the Maxwellian distribution.

Another interesting consequence of our results is further insight into the possi-
bility (discussed in [30]) that our solutions for simple shear exhibit non-zero heat
flux despite having zero temperature gradient, in contradiction to most versions of
continuum thermodynamics. A conjectured scenario under which this could occur
is described in Section 5.1.2.

At the end of the paper we give a table which summarizes the rigorous results
and conjectures (see Section 6.3) and in Section 8 we conclude with a discussion
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to clarify the state-of-the-art of the analysis of homoenergetic solutions for the
Boltzmann equation and we give some further perspectives.

2. Homoenergetic Solutions of the Boltzmann Equation

As we recalled in (1.6) in Section 1, the classical Boltzmann equation reads as

∂t f + v∂x f = C f (v) , f = f (t, x, v)

C f (v) =
∫
R3

dv∗
∫
S2
dωB (n · ω, |v − v∗|)

[
f ′ f ′∗ − f∗ f

]
,

where S2 is the unit sphere in R3 and n = n (v, v∗) = (v−v∗)|v−v∗| . Here (v, v∗) is a
pair of velocities in incoming collision configuration (see Fig. 1) and (v′, v′∗) is the
corresponding pair of outgoing velocities defined by the collision rule

v′ = v + ((v∗ − v) · ω) ω, (2.1)

v′∗ = v∗ − ((v∗ − v) · ω) ω. (2.2)

The unit vector ω = ω(v, V ) bisects the angle between the incoming relative
velocity V = v∗ −v and the outgoing relative velocity V ′ = v′∗ −v′ as specified in
Fig. 1. The collision kernel B (n · ω, |v − v∗|) is proportional to the cross section for
the scattering problem associated to the collision between two particles. We use the
conventional notation in kinetic theory, f = f (t, x, v) , f∗ = f (t, x, v∗) , f ′ =
f
(
t, x, v′) , f ′∗ = f

(
t, x, v′∗

)
.

We will assume that the kernel B is homogeneous with respect to the variable
|v − v∗| and we will denote its homogeneity by γ, i.e.,

B

(
(v − v∗) · ω

|v − v∗| , λ |v − v∗|
)

= λγ B

(
(v − v∗) · ω

|v − v∗| , |v − v∗|
)

, λ > 0. (2.3)

Given f (t, x, v), we can compute the density ρ, the average velocity V and
the internal energy ε at each point x and time t by means of

ρ (t, x) =
∫
R3

f (t, x, v) dv, ρ (t, x) V (t, x) =
∫
R3

f (t, x, v) vdv. (2.4)

The internal energy ε (t, x) (or temperature) is given by

ρ (t, x) ε (t, x) =
∫
R3

f (t, x, v) (v − V (t, x))2 dv.

Homoenergetic solutions of (1.6) defined in [14] and [29] (cf., also [30]) are
solutions of the Boltzmann equation having the form

f (t, x, v) = g (t, w) with w = v − ξ (t, x) . (2.5)

Notice that, under suitable integrability conditions, every solution of (1.6) with
the form (2.5) yields only time-dependent internal energy and density

ε (t, x) = ε (t) , ρ (t, x) = ρ (t) . (2.6)
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Fig. 1. The two-body scattering. The solution of the two-body problem lies in a plane, which
is taken to be the plane of the page, and the motion of molecule ∗ is plotted relative to the
unstarred molecule. The scalar ρ is the impact parameter expressed in microscopic units,
ρ ∈ [−1, 1], and θ = θ(ρ, |V |) is the scattering angle. The scattering vector of (2.1), (2.2)
is the unit vector ω = ω(v, V )

However, we have V (t, x) = ξ (t, x) and therefore the average velocity depends
also on the position.

A direct computation shows that in order to have solutions of (1.6) with the
form (2.5) for a sufficiently large class of initial data we must have

∂ξk

∂x j
independent on x and ∂tξ + ξ · ∇ξ = 0. (2.7)

The first condition implies that ξ is an affine function on x . However, we will
restrict attention in this paper to the case in which ξ is a linear function of x, for
simplicity, whence

ξ (t, x) = L (t) x, (2.8)

where L (t) ∈ M3×3 (R) is a 3 × 3 real matrix. The second condition in (2.7) then
implies that

dL (t)

dt
+ (L (t))2 = 0, L(0) = A, (2.9)

where we have added an initial condition.
Classical ODE theory shows that there is a unique continuous solution of (2.9),

L (t) = (I + t A)−1 A = A (I + t A)−1 , (2.10)

definedonamaximal interval of existence [0, a).On the interval [0, a), det (I + t A) >

0.
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3. Characterization of Homoenergetic Solutions Defined for Arbitrary Large
Times

In this section we describe the long time asymptotics of the function ξ (t, x) =
L (t) x = (I + t A)−1 Ax (cf. (2.8) and (2.10)). There are interesting choices of
A ∈ M3×3 (R) for which L (t) blows up in finite time, but we will restrict attention
in this paper to the case in which the matrix det(I + t A) > 0 for all t ≥ 0. We will
use in the rest of the paper the following norm in M3×3 (R):

‖M‖ = max
i, j

∥∥mi, j
∥∥ with M = (

mi, j
)
i, j=1,2,3 . (3.1)

Theorem 3.1. Let A ∈ M3×3(R) satisfy det(I + t A) > 0 for t ≥ 0 and let L(t) =
(I + t A)−1A. Assume L does not vanish identically. Then, there is an orthonormal
basis (possibly different in each case) such that the matrix of L(t) in this basis has
one of the following forms:

Case (i) Homogeneous dilatation:

L(t) = 1

t
I + O

(
1

t2

)
as t → ∞. (3.2)

Case (ii) Cylindrical dilatation (K = 0), or Case (iii) Cylindrical dilatation and
shear (K �= 0):

L(t) = 1

t

⎛
⎝ 1 0 K
0 1 0
0 0 0

⎞
⎠+ O

(
1

t2

)
as t → ∞. (3.3)

Case (iv). Planar shear:

L(t) = 1

t

⎛
⎝0 0 0
0 0 K
0 0 1

⎞
⎠+ O

(
1

t2

)
as t → ∞. (3.4)

Case (v). Simple shear:

L(t) =
⎛
⎝ 0 K 0
0 0 0
0 0 0

⎞
⎠ , K �= 0. (3.5)

Case (vi). Simple shear with decaying planar dilatation/shear:

L(t) =
⎛
⎝0 K2 0
0 0 0
0 0 0

⎞
⎠+ 1

t

⎛
⎝0 K1K3 K1
0 0 0
0 K3 1

⎞
⎠+ O

(
1

t2

)
, K2 �= 0. (3.6)

Case (vii). Combined orthogonal shear:

L(t) =
⎛
⎝ 0 K3 K2 − t K1K3
0 0 K1
0 0 0

⎞
⎠ , K1K3 �= 0. (3.7)



Self-Similar Profiles for Homoenergetic Solutions 795

Proof of Theorem 3.1. The Jordan Canonical Form for real 3 × 3 matrices says
that there exists an orthonormal basis e1, e2, e3 and a real invertible matrix P such
that A = P J P−1, where the matrix J has one of the following forms in this basis:⎛

⎝ α β 0
−β α 0
0 0 γ

⎞
⎠ ,

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ ,

⎛
⎝ ξ 1 0
0 ξ 0
0 0 η

⎞
⎠ ,

⎛
⎝λ 1 0
0 λ 1
0 0 λ

⎞
⎠ . (3.8)

All entries are real and β �= 0. In these four cases, respectively, we have that
det(I + t A) is

((1+αt)2+t2β2)(1+tγ ), (1+tλ1)(1+tλ2)(1+tλ3), (1+tη)(1+tξ)2, (1+tλ)3.

(3.9)
Therefore, necessary and sufficient conditions that det(I + t A) > 0 for t ≥ 0 are,
respectively,

γ � 0, λ1 � 0, λ2 � 0, λ3 � 0, η � 0, ξ � 0, λ � 0. (3.10)

Again on this basis we have that L(t) = P(I + t J )−1 J P−1 where, respectively,

(I + t J )−1 J =

⎛
⎜⎜⎝

α+t (α2+β2)

(1+tα)2+t2β2
β

(1+tα)2+t2β2 0
−β

(1+tα)2+t2β2
α+t (α2+β2)

(1+tα)2+t2β2 0

0 0 γ
1+tγ

⎞
⎟⎟⎠ ,

⎛
⎜⎝

λ1
1+tλ1

0 0

0 λ2
1+tλ2

0

0 0 λ3
1+tλ3

⎞
⎟⎠ ,

⎛
⎜⎝

ξ
1+tξ

1
(1+tξ)2

0

0 ξ
1+tξ 0

0 0 η
1+tη

⎞
⎟⎠ ,

⎛
⎜⎝

λ
1+tλ

1
(1+tλ)2

−t
(1+tλ)3

0 λ
1+tλ

1
(1+tλ)2

0 0 λ
1+tλ

⎞
⎟⎠ . (3.11)

The first matrix in (3.11) with γ > 0 gives (3.2), and with γ = 0 gives (3.3). To
see the latter, note first that

lim
t→∞ P

⎛
⎜⎝

tα+t2(α2+β2)

(1+tα)2+t2β2
tβ

(1+tα)2+t2β2 0
−tβ

(1+tα)2+t2β2
tα+t2(α2+β2)

(1+tα)2+t2β2 0

0 0 0

⎞
⎟⎠ P−1

= P(e1 ⊗ e1 + e2 ⊗ e2)P
−1 = I − Pe3 ⊗ P−T e3. (3.12)

Let a = Pe3 and n = P−T e3, so that a · n = 1. Note that any a and n satisfying
a ·n = 1 are possible by choosing (the invertible) P = a⊗e3+n⊥

1 ⊗e2+n⊥
2 ⊗e2,

where n⊥
1 , n⊥

2 are orthonormal and perpendicular to n. The required basis can be
taken as the orthonormal basis ê1, ê2, n/|n| where n · ê2 = a · ê2 = 0. On this basis
a = (−K/ν, 0, 1/ν) and n = (0, 0, ν), ν �= 0, K ∈ R, which gives (3.3).

Consider now the second matrix in (3.11). If λ1λ2λ3 > 0 then we get the right
hand expression in (3.2). If exactly one of λ1, λ2, λ3 vanishes, say λ3 = 0, we get
the expression on the right of (3.12) multiplying 1/t , and we recover case (3.3). If
exactly two of λ1, λ2, λ3 vanish, say λ1 = λ2 = 0, then

lim
t→∞ P

⎛
⎝
0 0 0
0 0 0
0 0 tλ3

1+tλ3

⎞
⎠ P−1 = Pe3 ⊗ e3P

−1 = Pe3 ⊗ P−T e3. (3.13)
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As above, we write a = Pe3, n = P−T e3, so a · n = 1, and, as above, choose an
orthonormal basis in which a = (0, Kν, ν), n = (0, 0, 1/ν), K ∈ R, ν �= 0. This
gives (3.4).

Consider now the third matrix in (3.11). If ξ = η = 0, we get immediately
(3.5). If ξ = 0 but η �= 0, we have

P(I + t J )−1 J P−1 = P

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ P−1 + 1

t
P

⎛
⎝0 0 0
0 0 0
0 0 tη

1+tη

⎞
⎠ P−1

= Pe1 ⊗ P−T e2 + 1

t
Pe3 ⊗ P−T e3 + O

(
1

t2

)
. (3.14)

Let a = Pe1, n = P−T e2, b = Pe3,m = P−T e3. These are restricted by the
necessary conditions

a · n = 0, b · m = 1, a · m = 0, b · n = 0, m ∦ n, a ∦ b. (3.15)

Choose the orthonormal basis ê1 = a/|a|, ê2 = n/|n|, ê3 = ê1 × ê2. By scaling,
we can assume without loss of generality that a · ê1 = 1 and m · ê3 = 1. On this
basis a = (1, 0, 0), n = (0, K2, 0), b = (K1, 0, 1),m = (0, K3, 1), K2 �= 0. The
conditions (3.15) are necessary and sufficient such that the first two terms on the
right hand side of (3.14) are a ⊗ n + (1/t)b ⊗ m, as can be verified by the choice
P = ê1 ⊗ e1 + (1/K2)(ê2 − K3ê3) ⊗ e2 + (K1ê1 + ê3) ⊗ e3, which is invertible.
The basis ê1, ê2, ê3 is the required basis, and the result is given in (3.6).

Still considering the third matrix in (3.11), assume ξ �= 0 and η �= 0. We have

lim
t→∞ P

⎛
⎜⎝

tξ
1+tξ

t
(1+tξ)2

0

0 tξ
1+tξ 0

0 0 tη
1+tη

⎞
⎟⎠ = I, (3.16)

and we recover case (3.2).
In cases (3.2)–(3.4) and (3.6) the error is clearly bounded by const/t2.
Finally, consider the last matrix in (3.11). If λ �= 0 we recover case (3.2). If

λ = 0, we have

P(I + t J )−1 J P−1 = P

⎛
⎝0 1 −t
0 0 1
0 0 0

⎞
⎠ P−1

= Pe1 ⊗ P−T e2 + (Pe2 − t Pe1) ⊗ P−T e3. (3.17)

Let a = Pe1, n = P−T e2, b = Pe2,m = P−T e3. We have the necessary condi-
tions

a · n = 0, b · m = 0, a · m = 0, b · n = 1, m ∦ n, a ∦ b. (3.18)

Choose the basis ê1 = a/|a|, ê3 = n/|n|, ê2 = ê3 × ê1. By scaling, assume that
n · ê2 = 1. In this basis a = (K3, 0, 0), n = (0, 1, K4), b = (K5, 1, 0),m =
(0, 0, K1), K1K3 �= 0. The corresponding P = K3ê1 ⊗ e1 + (K5ê1 + ê2) ⊗ e2 +
(1/K1)(ê3 − K4ê2) ⊗ e3 is invertible. Putting K2 = K3K4 − K1K5, we get case
(3.7). ��
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Remark 3.2. It is possible to obtain a more extensive classification of the homoen-
ergetic flows if det(I + t∗A) = 0 at some t∗ > 0. In that case L (t) blows-up at
t∗ and the behavior of L(t) can then be read off from (3.9), (3.11) in the proof of
Theorem 3.1. Nevertheless, in this paper we will restrict our analysis only to the
cases in which L (t) is globally defined in time.

4. General Properties of Homoenergetic Flows

4.1. Well Posedness Theory for Homoenergetic Flows of Maxwell Molecules

We first prove using standard arguments for the Boltzmann equation that the
homoenergetic flows with the form (2.5), (2.8), (2.9) exist for a large class of initial
data g0 (w) . This question has been considered in [6,7]. However, the approach
used in those papers is based on the L1 theory for Boltzmann equations (cf. [5]),
and it will be more convenient for the type of arguments used in this paper to
consider homoenergetic flows in the class of Radon measures. On the other hand,
the analysis in [6,7] is restricted to the case of simple shear (cf. (3.5)) and we will
study more general classes of homoenergetic flows. Moreover, in some cases we
will need to consider equations with additional terms which are due to rescalings
of the solutions. For this reason we formulate here a well-posedness theorem for a
family of Boltzmann equations with the degree of generality that we will require.
The class of equations that we will consider is the following one:

∂tG − ∂w · ([Q(t)w]G) = CG (w) (4.1)

CG (w) =
∫
R3

dw∗
∫
S2
dωB (n · ω, |w − w∗|)

[
G ′G ′∗ − G∗G

]
,

(4.2)

G (0, w) = G0 (w) , (4.3)

where

Q(·) ∈ C1 ([0,∞) ; M3×3 (R)) , ‖Q(t)‖ � c1+c2t, with c1 > 0, c2 > 0, (4.4)

with the norm ‖·‖ defined in (3.1). We will assume also in what follows that the
function

�(w,w∗) =
∫
S2

B (n · ω, |w − w∗|) dω, n = (w − w∗)
|w − w∗| (4.5)

satisfies
� is continuous and 0 � �(w,w∗) � c3 with c3 > 0. (4.6)

We will prove well posedness results for the collision kernel associated to
Maxwellmolecules (ormore generallyMaxwell pseudomolecules in the notation of
[30]). In this case, the kernel B is homogeneous of degree zero in |w − w∗| (e.g., the
homogeneity parameter γ = 0) andwe then have B (n · ω, |w − w∗|) = B (n · ω) .

This restriction toMaxwell molecules is the reason we assume the stringent bound-
edness condition (4.6).
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We now introduce some definitions and notation. We denote by M+
(
R3
c

)
the

set of nonnegative Radon measures in R3
c . We denote as R3

c the compactification of
R3 by means of a single point ∞. This is a technical issue that we need in order to
have convenient compactness properties for some subsets ofM+

(
R3
c

)
. The space

C
(
[0,∞) : M+

(
R3
c

))
is defined endowing M+

(
R3
c

)
with the measure norm

‖μ‖M = sup
ϕ∈C(R3

c):‖ϕ‖∞=1
|μ (ϕ)| =

∫
R3
c

|μ| (dw) . (4.7)

We remark that this definition implies that the total measure of R3
c is finite if μ ∈

M+
(
R3
c

)
. Moreover ϕ ∈ C

(
R3
c

)
implies that the limit value ϕ (∞) exists.

Given G ∈ C
(
[0,∞] : M+

(
R3
c

))
we define

A [G] (t, w) =
∫
R3

dw∗
∫
S2
dωB (n · ω, |w − w∗|)G∗ (t, ·) . (4.8)

Given h0 ∈ M+
(
R3
c

)
we will denote as SG (t; t0) , t � t0 � 0, the operator

SG (t; t0) : M+
(
R3
c

) → M+
(
R3
c

)
defined by means of

∂t h − ∂w · ([Q(t)w] h) = −A [G] (t, w) h, h (t0, ·) = h0 (4.9)

h (t, w) = SG (t; t0) h0. (4.10)

The operator SG (t; t0) is well defined, since (4.9) can be solved explicitly using the
method of characteristics taking into account (4.4). The solution is given below in
(4.22). A relevant point is that A [G] (w) � 0 and as a consequence no divergences
arise from large values of |w|. We will use the following concept of solutions of
(4.1)–(4.3):

Definition 4.1. We will say that G ∈ C
(
[0,∞] : M+

(
R3
c

))
is a mild solution of

(4.1)–(4.3) with initial value G (0, ·) = G0 ∈ M+
(
R3
c

)
if G satisfies the integral

equation

G (t, w) = SG (t; 0)G0 (w) +
∫ t

0
SG (t; s)C(+)G (s, w) ds, (4.11)

where the operator SG (t; s) is as in (4.10) and

C(+)G (w) =
∫
R3

dw∗
∫
S2
dωB (n · ω, |w − w∗|)G ′G ′∗, (4.12)

C(−)G (w) = G
∫
R3

dw∗
∫
S2
dωB (n · ω, |w − w∗|)G∗ = A [G]G. (4.13)

We emphasize that (4.11) must be understood as an identity in the sense of
measure, i.e., acting over an arbitrary test function ϕ ∈ C

(
R3
c

)
. Note also that all

the operators appearing in (4.11) are well defined for G ∈ C
(
[0,∞] : M+

(
R3
c

))
and that SG (t; s) is a bounded operator from M+

(
R3
c

)
to M+

(
R3
c

)
for 0 � s �

t � T < ∞.
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Theorem 4.2. Suppose that G0 ∈ M+
(
R3
)
satisfies∫

R3
G0 (dw) < ∞.

Then, there exists a unique mild solution G ∈ C
(
[0,∞) : M+

(
R3
c

))
in the sense

of Definition 4.1 to the initial value problem (4.1)–(4.3) with Q and B satisfying
(4.4), (4.6). Moreover, the problem (4.1)–(4.3) is satisfied in the sense of measures.

Remark 4.3. Notice that since B is continuous and it satisfies (4.6) we have that
C(+)G (w) and C(−)G (w) in (4.12), (4.13) define measures in M+

(
R3
c

)
and it

makes sense to say that the equation (4.1)–(4.3) is satisfied in the sense ofmeasures.
The term −∂w · ([Q(t)w]G) is understood integrating by parts and passing the
derivative to the test function ϕ. The only difference between solutions in the sense
of measures and the weak solutions defined in Definition 4.4 below is that in this
second case we write the collision kernel in a symmetrized form which will be
convenient in forthcoming computations.

We introduce now the concept of weak solution of (4.1)–(4.3) which will be
also needed later.

Definition 4.4. We will say that G ∈ C
(
[0,∞) : M+

(
R3
c

))
is a weak solution of

(4.1)–(4.3) with initial value G (0, ·) = G0 ∈ M+
(
R3
c

)
if for any T ∈ (0,∞) and

any test function ϕ ∈ C
(
[0, T ) : C1

(
R3
c

))
the following identity holds:∫

R3
ϕ (T, w)G (T, dw) −

∫
R3

ϕ (0, w)G0 (dw)

= −
∫ T

0
dt
∫
R3

∂tϕG (t, dw) −
∫ T

0
dt
∫
R3

[Q(t)w · ∂wϕ]G (t, dw)

+ 1

2

∫ T

0
dt
∫
R3

∫
R3

∫
S2
dωG (t, dw)G (t, dw∗) B (n · ω, |w − w∗|)

×
[
ϕ
(
t, w′)+ ϕ

(
t, w′∗

)− ϕ (t, w) − ϕ (t, w∗)
]
. (4.14)

We will use repeatedly the following norms:

‖G‖1,s =
∫
R3

(
1 + |w|s)G (dw) for G ∈ M+

(
R3
c

)
, s > 0. (4.15)

Theorem 4.5. Suppose that G ∈ C
(
[0,∞) : M+

(
R3
c

))
is a mild solution of (4.1)-

(4.3) with Q and B satisfying (4.4), (4.6) and initial value G (0, ·) = G0 ∈
M+

(
R3
c

)
. Then G is also a weak solution of (4.1)–(4.3) in the sense of Defini-

tion 4.2. Suppose that, in addition, G0 satisfies

‖G0‖1,s < ∞ (4.16)

for some s > 0. Then the mild solution of (4.1)-(4.3) satisfies

sup
0�t�T

‖G (t, ·)‖1,s < C (T, ‖G0‖M ) ‖G0‖1,s < ∞ (4.17)

for any T ∈ (0,∞). Moreover, if s > 2 the identity (4.14) is satisfied for any test
functionϕ ∈ C

(
[0, T ] : C1

(
R3
c

))
such that |ϕ (w)|+|w| |∇vϕ (w)| � C0

(
1 + |w|2).
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Proof of Theorem 4.2. GivenT ∈ (0,∞) ,wedefine anoperatorTT : C ([0, T ] :
M+

(
R3
c

)) → C
(
[0, T ] : M+

(
R3
c

))
by means of

TT [G] (t, w) = SG (t; 0)G0 (w) +
∫ t

0
SG (t; s)C(+)G (s, w) ds, 0 � t � T,

where SG (t; s) is as in (4.10). Then, due to (4.11), the proof of the Theorem reduces
to proving existence and uniqueness of solutions for the fixed point problem

G = TT [G] .

We prove that the operator TT is contractive if T > 0 is sufficiently small. To
this end we prove the estimates

∥∥∥C(+)G
∥∥∥
M

� C ‖G‖2M (4.18)∥∥∥C(+)G1 − C(+)G2

∥∥∥
M

� C (‖G1‖M + ‖G2‖M ) ‖G1 − G2‖M , (4.19)

where the norm ‖·‖M is as in (4.7) and we have used (4.6) as well as the fact
that the mapping (w,w∗) → (

w′, w′∗
)
is bijective and that the symplectic identity

dwdw∗ = dw′dw′∗ holds (cf., (2.1), (2.2)). We define A ⊂ C
(
[0, T ] : M+

(
R3
c

))
by

A =
{
G ∈ C

(
[0, T ] : M+

(
R3
c

))
: ‖G (·, t)‖M � 2 ‖G0‖M for t ∈ [0, T ]

}
.

On the other hand we have the following estimates:

‖SG (t; s)‖ � 1 for 0 � s � t < ∞, (4.20)

where we denote the norm on the spaceL
(
M+

(
R3
c

)
,M+

(
R3
c

))
by ‖·‖. Moreover

we have
∥∥SG1 (t; s) − SG2 (t; s)∥∥ � CT ‖G1 − G2‖T , 0 � s � t � T . (4.21)

Here we used the norm ‖·‖T given by

‖G‖T = sup
t∈[0,T ]

‖G (·, t)‖M .

The estimate (4.20) follows by integrating (4.9) and using A [G] (t, w) � 0.On
the other hand, (4.21) can be proved using the representation formula for SG (t; s):
SG (t; s) h0 (w)

= exp

(
−
∫ t

s
A [G] (ξ,U (t, ξ)w) dξ

)
exp

(∫ t

s
tr (Q (ξ)) dξ

)
h0 (U (t; s) w) ,

(4.22)

where

∂ [U (s; t) w]

∂t
= −Q(t)U (s; t) w, U (s; s) w = w ∈ R3.
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Then, (4.21) followsusing that
∣∣e−x1 − e−x2

∣∣ � |x1 − x2|, and supw∈R3 |A [G1] (w)

−A [G2] (w)| � C ‖G1 − G2‖M yields the estimate
∥∥[SG1 (t; s) − SG2 (t; s)] h0∥∥M

� CT ‖G1 − G2‖T
∫
R3

h0 (U (t, s) w) dw

� CT ‖G1 − G2‖T
∫
R3

h0 (w) Jac (U (s, t)) dw

� C̃T ‖G1 − G2‖T ‖h0‖M .

Combining (4.18), (4.19), (4.20) and (4.21) we obtain that

‖TT [G]‖T � ‖G0‖M + 4C ‖G0‖2M T (4.23)

for any G ∈ A . We also have

‖TT [G1] − TT [G2]‖T � C ‖G0‖M T ‖G1 − G2‖T .

Therefore, the operator TT [G] is contractive in the space A with a metric
given by the norm ‖·‖T if T is sufficiently small. This implies the existence of a
mild solution in the time interval [0, T ] for T sufficiently small. Notice that the
fact that G is nonnegative follows immediately due to the choice of the space of
functions A .

Applying the differential operator ∂t − ∂w · [Q(t)w] to (4.11) we obtain, using
(4.9) and (4.10), that the following identity holds in the sense of measures (i.e. the
whole expression is understood using a test function ϕ = ϕ (w)):

∂tG (t, w)−∂w ·[Q(t)wG (t, w)] = C(+)G (t, w)−A [G] (t, w)G (t, w) , (4.24)

whenceG satisfies (4.1)–(4.3) in the sense ofmeasures. Integrating (4.24)we obtain

‖G (·, t)‖M = ‖G0‖M for 0 � t � T . (4.25)

Therefore, using a similar argument we can extend the solution to an interval
[T, T + δ] and iterating we then obtain a global solution defined for 0 � t < ∞.

Notice that the constantsC above depend on the time T where we start the iteration
argument due to the fact that ‖Q (t)‖ can increase as t → ∞, but this norm is
bounded for any finite interval 0 � t � T and therefore we can prove global
existence. ��
Proof of Theorem 4.5. Multiplying (4.24) by a test function ϕ (t, w) integrating
by parts and using a standard symmetrization argument on the right-hand side of
(4.24) (cf. [9,30]) and integrating in t ∈ [0, T ] we obtain (4.14).

We now prove that under the assumption (4.16) the solution obtained in Theo-
rem 4.2 satisfies (4.17). Using the symplectic formula dw′dw′∗ = dwdw∗ (cf. (2.1),
(2.2)) and (4.12) we obtain

∥∥∥C(+)G
∥∥∥
1,s

� C ‖G‖1,s ‖G‖M , G ∈ M+
(
R3
c

)
, (4.26)
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where s > 0. On the other hand we claim that

‖SG (t; s)G‖1,s � Cs (T ) ‖G‖1,s , 0 � s � t � T < ∞, G ∈ M+
(
R3
c

)
.

(4.27)
This estimate followsbymultiplying (4.9) by the test functions 1 and |w|s ,using

that A [G] (t, w) � 0, integrating over R3 and using a Gronwall-type argument.
Then, estimating ‖G (t, ·)‖1,s in (4.11) and using (4.26) and (4.27), as well as the
mass conservation property (4.25), we obtain

‖G (t, ·)‖1,s � Cs (T ) ‖G0‖1,s + Cs (T ) ‖G0‖M
∫ t

0
‖G (s, ·)‖1,s ds, 0 � t � T,

whence (4.17) follows, using Gronwall’s Lemma.
The fact that the identity (4.14) in Definition 4.4 is satisfied for test functions

ϕ bounded by a quadratic function as stated in the statement of Theorem 4.5 then
follows by approximating the test function ϕ by a sequence of test functions ϕn ∈
C
(
R3
c

)
and using the fact that (4.17) implies that the contribution of the integrals

due to the sets with |w| � R tends to zero as R → ∞. ��
Remark 4.6. Suppose thatG0 satisfies ‖G0‖1,s < ∞, and letG be the correspond-
ing solution of (4.1)–(4.3) obtained in Theorem 4.5. We can then obtain a sequence
{Gm}m∈N of solutions of (4.1), (4.2) with initial data Gm,0 satisfying

∥∥Gm,0
∥∥
1,s̄ <

∞ for some s̄ > s and such that supt∈[0,T ] ‖Gm (t, ·) − G (t, ·)‖1,s → 0 as
m → ∞. Indeed, we define Gm,0 = G0χ{|w|�m}. Then

∥∥Gm,0
∥∥
1,s̄ < ∞ and

by dominated convergence
∥∥Gm,0 − G0

∥∥
1,s → 0 as m → ∞. Using (4.11) with

initial dataGm,0 andG0, taking the difference of the resulting equations and arguing
as in the proof of Theorem 4.5 we obtain

‖Gm (t, ·) − G (t, ·)‖1,s �
∥∥Gm,0 − G0

∥∥
1,s + C

∫ t

0

∥∥Gm
(
t̄, ·)− G

(
t̄, ·)∥∥1,s dt̄,

whence the stated convergence follows, using Gronwall.

Remark 4.7. Well posedness Theorems analogous to Theorems 4.2 and 4.5 for
more general collision kernels B (in particular for kernels with homogeneity γ

different from zero) can be proved adapting the theory of homogeneous Boltzmann
equations as described in [9]. We restrict things to kernels satisfying (4.6), since
the theory is simpler and these are the only ones needed in what follows.

4.2. Moment Equations for Maxwell Molecules

A crucial fact that we use repeatedly in this paper is the fact that for Maxwell
molecules the tensor of second moments Mj,k = ∫

R3 w jwkG (t, dw) satisfies a
linear system of equations ifG is a mild solution of (4.1)–(4.3). In order to compute
the evolution equations for Mj,k we will use (4.14) with the test functions ϕ =
w jwk . The resulting right-hand side can then be computed using suitable tensorial
properties of the Boltzmann equation acting over quadratic functions which shall
be collected in that which follows.
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We will assume in the rest of this subsection that the collision kernel B =
B (n · ω, |w − w∗|) in (4.1) is homogeneous of order zero in |w − w∗| . More
precisely, as we observed in Subsection 4.1, in the case of Maxwell molecules, we
have

B (n · ω, |w − w∗|) = B (n · ω) . (4.28)

We will denote by W = W (u, v) a bilinear form

W : R3 × R3 → R. (4.29)

In order to simplify the notation we will write the quadratic form associated to this
bilinear form by W (v) instead of W (v, v) . We first prove the following lemma
which allows us to transform dependence on two vectors to dependence on just one
vector:

Lemma 4.8. Suppose that B in (4.1) is as in (4.28) and W is any bilinear form as
in (4.29). Then

QW (w,w∗) = 1

2

∫
S2
dωB (n · ω)

[
W
(
w′)+ W

(
w′∗
)− W (w) − W (w∗)

]

= Q̃W (w − w∗)

:= −
∫
S2
dωB

(
ω · (w − w∗)

|w − w∗|
)[

W
(
P⊥

ω (w − w∗) , Pω (w − w∗)
)]

,

(4.30)

where for each ω ∈ S2 we denote as Pω and P⊥
ω the orthogonal projections in the

subspaces span {ω} and span {ω}⊥ respectively, i.e.,

Pωv = (v · ω) ω, P⊥
ω v = v − (v · ω) ω for v ∈ R3. (4.31)

Proof. Using the collision rule (2.1), (2.2) we can writew′ = w+η, w′∗ = w∗ −η

with η = ((w∗ − w) · ω) ω = Pω (w∗ − w) . Then

W
(
w′)+ W

(
w′∗
)− W (w) − W (w∗)

= W (w + η,w + η) + W (w∗ − η,w∗ − η) − W (w,w) − W (w∗, w∗)
= 2 [W (w, η) − W (w∗, η) + W (η, η)]

= 2 [−W (w∗ − w, η) + W (((w∗ − w) · ω)ω, η)]

= −2W
(
P⊥

ω (w∗ − w) , Pω (w∗ − w)
)

,

whence the Lemma follows. ��
To quantify the moment equations for Maxwell molecules, we introduce the

object

Z (v) =
∫
S2
dωB

(
ω · v

|v|
)[

P⊥
ω v ⊗ Pωv

]
, v ∈ R3, (4.32)
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where we will understand a ⊗ b as a bilinear functional acting on R3 × R3 in the
following manner: given two vectors w1, w2 ∈ R3, we define

(a ⊗ b) (w1, w2) = (a · w1) (b · w2) . (4.33)

Then Z (v) as defined in (4.32) is a bilinear functional in R3 × R3. We have the
following result:

Lemma 4.9. Suppose thatU ∈ SO (3) . Then, for any v ∈ R3 the following identity
holds:

Z (Uv) =
∫
S2
dωB

(
ω · v

|v|
)[(

U P⊥
ω v
)

⊗ (U Pωv)
]

= UZ(v)UT , (4.34)

where Z is as in (4.32).

Proof. Using the definition of Z we have

Z (Uv) =
∫
S2
dωB

(
ω ·Uv

|Uv|
)(

P⊥
ω Uv ⊗ PωUv

)
.

We now change variables as ω = U ω̂, with ω̂ ∈ S2. Then,

Z (Uv) =
∫
S2
dω̂B

(
U ω̂ ·Uv

|Uv|
)(

P⊥
U ω̂

Uv ⊗ PU ω̂Uv
)

.

An elementary geometrical argument, using the fact that orthogonal transfor-
mations commute with the projection operators, yields

PU ω̂Uv = U Pω̂v, P⊥
U ω̂

Uv = U P⊥
ω̂

v,

whence, using U ω̂ ·Uv = ω̂ · v as well,

Z (Uv) =
∫
S2
dω̂B

(
ω̂ · v

|v|
)[

U
(
P⊥

ω̂
v
)

⊗U (Pω̂v)
]
,

and the result follows. ��
Lemma 4.9 implies that Z defined by means of (4.32) is a second order tensor

under orthogonal transformations. We now compute a suitable tensorial expression
for Z (v) in a coordinate system where this computation is particularly simple.

Proposition 4.10. The tensor Z defined by means of (4.32) is given by

Z (v) = b

[
v ⊗ v − |v|2

3
I

]
, (4.35)

where

b = 3π
∫ 1

−1
B (x) x2

(
1 − x2

)
dx > 0. (4.36)
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Moreover, suppose that we define

Tj,k = 1

2

∫
S2
dωB (n · ω)

[
Wj,k

(
w′)+ Wj,k

(
w′∗
)− Wj,k (w) − Wj,k (w∗)

]
,

(4.37)
where Wj,k are the quadratic functions W j,k (w,w) = w jwk . Then

Tj,k = −b

[
(w − w∗) j (w − w∗)k − |w − w∗|2

3
δ j,k

]
, j, k = 1, 2, 3. (4.38)

Proof. Suppose that v �= 0, since otherwise Z (v) = 0. We then compute Z (v)

in a very particular system of spherical coordinates. More precisely, we take the
direction of the North Pole in the direction of v and we denote as θ the angle
of any vector with respect to this direction and φ the azymuthal angle in a plane
orthogonal to v with respect to any arbitrary direction in this plane. We construct
an orthonormal basis of R3 by means of e1 = v

|v| and choosing as e2, e3 two
orthonormal vectors contained in the plane orthogonal to e1. Using this coordinate
system we can parametrize the sphere S2 as

ω =
⎛
⎝ cos (θ)

sin (θ) cos (φ)

sin (θ) sin (φ)

⎞
⎠ , θ ∈ [0, π ] , φ ∈ [0, 2π) . (4.39)

Then

Pωv = cos (θ) ω =
⎛
⎝ cos2 (θ)

sin (θ) cos (θ) cos (φ)

sin (θ) cos (θ) sin (φ)

⎞
⎠ ,

and using (4.39) and (4.31) we get

P⊥
ω v =

⎛
⎝ sin2 (θ)

− sin (θ) cos (θ) cos (φ)

− sin (θ) cos (θ) sin (φ)

⎞
⎠ .

Then P⊥
ω v ⊗ Pωv can be represented by the matrix

Y (θ, φ) =
⎛
⎝ cos2 θ sin2 θ cos θ cosφ sin3 θ cos θ sin3 θ sin φ

− cos3 θ cosφ sin θ − cos2 θ cos2 φ sin2 θ − cos2 θ cosφ sin2 θ sin φ

− cos3 θ sin θ sin φ − cos2 θ cosφ sin2 θ sin φ − cos2 θ sin2 θ sin2 φ

⎞
⎠ .

Therefore the computation of Z (v) in (4.32) reduces to the computation of
∫ π

0
sin (θ) B (cos (θ))

[∫ 2π

0
Y (θ, φ) dφ

]
dθ.

In the integration in the φ variable all the elements outside the diagonal give
zero. Using this in the coordinate system under consideration, v = (1, 0, 0)T , we
then obtain

Z (v) = b

[
v ⊗ v − |v|2

3
I

]
,
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where

b = 3π
∫ π

0
B (cos (θ)) cos2 θ sin3 θdθ = 3π

∫ 1

−1
B (x) x2

(
1 − x2

)
dx .

Since both sides of (4.35) transform according to the law for the transformation
of second order tensors under orthogonal transformations (cf. Lemma 4.9), it then
follows that this formula is valid in any coordinate system.

Using the definition of Z (v) and Lemma 4.8 we can write the functions
QWj,k (w,w∗) with Wj,k (w,w) = w jwk as

Tj,k = QWj,k (w,w∗) = Q̃Wj,k (w − w∗)
= −Z (w − w∗)

(
e j , ek

)
, j, k = 1, 2, 3, (4.40)

where {e1, e2, e3} is the canonical orthonormal basis of R3. Finally (4.38) follows
using (4.40) as well as the fact that (v ⊗ v)

(
e j , ek

) = v jvk . ��
We now compute the evolution equation for the moments

(
Mj,k

)
j,k=1,2,3 .

Proposition 4.11. Suppose thatG0 ∈ M+
(
R3
c

)
satisfies and

∫
R3

(
1 + |w|s)G0 (dw) <

∞ for some s > 2 and that CG is as in (4.2) with B given by (4.28). Let us assume
also that ∫

R3
G0 (dw) = 1 and

∫
R3

w G0 (dw) = 0 . (4.41)

Suppose that G ∈ C
(
[0,∞] : M+

(
R3
c

))
is the unique mild solution of (4.1)-

(4.3) in Theorem 4.2. Then the tensor M = (
Mj,k

)
j,k=1,2,3 defined by means of

M j,k = ∫
R3 w jwkG (t, dw) is defined for t � 0 and it satisfies the system of ODEs

dMj,k

dt
+ Q j,� (t) Mk,� + Qk,� (t) Mj,�

= −2b
(
Mj,k − mδ j,k

)
, j, k = 1, 2, 3, Mj,k = Mk, j , (4.42)

where b is as in (4.36).

Remark 4.12. In (4.42)weuse the convention that the repeated indexes are summed.
We will use the same convention in the rest of the paper.

Proof. Due to Theorem 4.5 with s > 2 the tensor M is well defined and G is a
weak solution of (4.1)–(4.3) in the sense of Definition 4.4. Moreover, Theorem 4.5
implies also that we can take as test functions in (4.14) ϕ = 1 and ϕ = w j

∫
R3

G (t, dw) = 1 and
∫
R3

w G (t, dw) = 0. (4.43)

Moreover, taking in (4.14) the test functions ϕ = Wj,k = w jwk , we obtain

dMj,k

dt
+
∫
R3

[
Q(t)w · ∂w

(
w jwk

)]
G (t, dw) = K j,k, (4.44)
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where we define K j,k as

K j,k =
∫
R3

∫
R3

Tj,kG (t, dw)G (t, dw∗) , (4.45)

with Tj,k as in (4.37) and where we have used that B (n · ω, |w − w∗|) = B (n · ω)

due to the fact that B is homogeneous of order zero. Using (4.38) we obtain

K j,k = −b
∫
R3

∫
R3

[
(w − w∗) j (w − w∗)k − |w − w∗|2

3
δ j,k

]

G (t, dw)G (t, dw∗) .

Expanding the products and using (4.43) as well as the symmetry properties of
the integrals, we obtain

K j,k = −2b
(
Mj,k − mδ j,k

)
, m = 1

3
tr (M) , (4.46)

where b is as in (4.36). Notice that the trace of K = (
K j,k

)
j,k=1,2,3 is zero,

something that might be seen directly from (4.45) using that
∣∣w′∣∣2 + ∣∣w′∗

∣∣2 =
|w|2 + |w∗|2 .

Computing the integral on the left hand side of (4.44) and using (4.46) we obtain
(4.42). ��

4.3. Self-Similar Profiles for Maxwell Molecules

We prove in this subsection a general theorem on the existence of self-similar
homoenergetic solutions for several choices of the matrix A in (2.10) for Maxwell
molecules, i.e. the collision kernel B is given by (4.28).

Two special cases are considered in detail in the sequel: 1) simple shear (cf.
(3.5) and Section 5.1) and 2) planar shear (cf. (3.4) and Section 5.2). Formally,
we begin from (1.7) and make self-similar ansatzes. In the case of simple shear we
make the ansatz

g (w, t) = e−3βtG (ξ) , ξ = w

eβt
, (4.47)

and reduce (1.7) to

−β∂ξ (ξG) − K∂ξ1 (ξ2G) = C [G] . (4.48)

In the case of planar shear we first make the change of variables

g (t, w) = 1

t
ḡ (τ, w) , τ = log (t) ,

which reduces (1.7) to

∂τ ḡ − Kw3∂w2 ḡ − ∂w3 (w3ḡ) = Cḡ (w) . (4.49)
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Then we further assume that

ḡ (τ, w) = e−3βτG (ξ) , ξ = w

eβτ
. (4.50)

Inserting (4.50) into (4.49) we get

−β∂ξ (ξ · G) − K∂ξ2 (ξ3G) − ∂ξ3 (ξ3G) = CG (w) . (4.51)

Detailed descriptions of these reductions are found in Sections 5.1 and 5.2.
A general equation that includes both of these cases is

−α∂w · (wG) − ∂w · (Lw G) = CG (w) , w ∈ R3, (4.52)

where L ∈ M3×3(R), α ∈ R,C [·] is the collision operator in (4.2) with the function
�(w,w∗) defined in (4.5) satisfying (4.6). We will assume also that the function
B (n · ω, |w − w∗|) is homogeneous of order zero on the variable |w − w∗| . In
that case �(w,w∗) is just a real number, which will be denoted as �0 ∈ R+. The
effect of the collision kernel C is nontrivial if �0 > 0.

The main result that we will prove in this subsection is

Theorem 4.13. Let B be as in (4.28). Suppose that b in (4.36) is strictly positive.
There exists a sufficiently small k0 > 0 such that, for any ζ � 0 and any L ∈
M3×3(R) satisfying ‖L‖ � k0b, there exists α ∈ R and G ∈ M+

(
R3
c

)
that solve

(4.52) in the sense of measures and satisfy

∫
R3

G (dw) = 1,
∫
R3

w j G (dw) = 0,
∫
R3

|w|2 G (dw) = ζ . (4.53)

Remark 4.14. Notice that if ζ = 0 the only solution of (4.52) satisfying (4.53) is
G = δw=0.Themain content of Theorem 4.13 is the existence of solutions of (4.52)
with arbitrary values of the velocity dispersion, something that can be thought also
as arbitrary values of the temperature.

Remark 4.15. Theorem 4.13 is a perturbative result, because we assume the small-
ness condition ‖L‖ � k0b. This will allow us to prove the existence of self-similar
solutions for several of the fluxes described in Section 3. However, this smallness
condition is probably not really needed, at least in the case of simple shear in (3.5).
We derive in Theorem 5.5 a sufficient condition for the existence of self-similar
solutions in the simple shear case for arbitrary values of the shear parameter. This
condition could be checked numerically for each choice of the kernel B. The deriva-
tion of this condition requires a more careful examination of the interplay between
the hyperbolic term and the collision term in (4.52).

Themain idea in the proof of Theorem4.13 is to prove the existence of nontrivial
steady states for the solutions of the evolution equation

Gt − α∂w · (wG) − ∂w · (Lw G) = CG (t, w) , t > 0, w ∈ R3. (4.54)
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The equation (4.54) is a particular case of the equation (4.1) where we take Q (t) =
L + α I . In this case the equations (4.42) for the second moments become

dMj,k

dt
+ 2αMj,k + L j,�Mk,� + Lk,�Mj,�

= −2b
(
Mj,k − mδ j,k

)
, j, k = 1, 2, 3, Mj,k = Mk, j . (4.55)

The equations (4.55) comprise a linear system of equations with constant coeffi-
cients. Therefore they have solutions of the form Mj,k = � j,ke2bλt . On the other
hand we can formulate an equivalent problem, namely to determine the values of α

for which there is a stationary solution of (4.55) with the form Mj,k = � j,k . Such
values of α solve the eigenvalue problem

α

b
� j,k + 1

2b

(
L j,��k,� + Lk,�� j,�

)

= − (� j,k − �δ j,k
)
, j, k = 1, 2, 3, � j,k = �k, j (4.56)

with

� = 1

3

(
�1,1 + �2,2 + �3,3

)
(4.57)

and b > 0 given by (4.36).
We prove the following result:

Lemma 4.16. There exists a sufficiently small k0 > 0 such that, for any L ∈
M3×3(R) satisfying ‖L‖ � k0b, there exists α ∈ R and a real symmetric, positive-
definite matrix

(
� j,k

)
j,k=1,2,3 such that (4.56), (4.57) hold. Moreover, α can be

chosen to be the complex number with largest real part for which (4.56), (4.57)
holds for a nonzero

(
� j,k

)
j,k=1,2,3 . This particular choice of α, denoted ᾱ, satisfies

|ᾱ| � Ck0b (4.58)

for some numerical constant C > 0.

Proof. Suppose first that L = 0. In that case the eigenvalue problem (4.56), (4.57)
can be solved explicitly. The problem is solved in a six-dimensional space due
to the symmetry condition � j,k = �k, j . In this case there are two eigenvalues,
namely α = −b and α = 0. In the case of the eigenvalue α = −b there is a
five-dimensional subspace of eigenvectors given by {� = 0} . On the other hand,
in the case of the eigenvalue α = 0 we obtain the one-dimensional subspace of
eigenvectors � j,k = K δ j,k where K ∈ R. Then if ‖L‖ � k0b the result follows
from standard continuity results for the eigenvalues. The corresponding matrix
� j,k is a perturbation of the identity and then it is positive definite. The fact that the
eigenvalue with the largest real part is real follows from the fact that the problem
(4.56), (4.57) has real coefficients and therefore the eigenvalues, if they have a
nonzero imaginary part appear in pairs of complex conjugate numbers. However,
there is only one eigenvalue close to α = 0 since the degeneracy of the eigenvalue
α = 0 if L = 0 is one. The estimate (4.58) follows from standard differentiability
properties for the simple eigenvalues of matricial eigenvalue problems (cf. [22]).

��
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Remark 4.17. We notice that the dimension of the space of eigenvectors of the
eigenvalue problem (4.56), (4.57) is not necessarily six, because the problem is not
self-adjoint. Actually, we will see in Subsection 5.1 that if the matrix L is chosen as
in the simple shear case (cf. (3.5)) the subspace of eigenvectors is five-dimensional.

As indicated in the Lemma we will use the notation ᾱ to denote the eigenvalue
of the problem (4.56), (4.57) with the largest real part obtained in Lemma 4.16 and
we will denote as N̄ j,k the corresponding eigenvector. Then

ᾱ

b
N̄ j,k + 1

2b

(
L j,� N̄k,� + Lk,� N̄ j,�

) = − (
N̄ j,k − N̄δ j,k

)
, N̄ j,k = N̄k, j

j, k = 1, 2, 3

N̄ =1

3

(
N̄1,1 + N̄2,2 + N̄3,3

)
, (4.59)

where in order to have uniqueness we normalize N̄ j,k as

∑
j,k

(
N̄ j,k

)2 = 1. (4.60)

Notice that ᾱ is bounded by Ck0b.
The following result is standard in Kinetic Theory (cf. [9,31]); we just write

here a version of the result convenient for the arguments made later:

Proposition 4.18. (Povzner Estimates) Let s > 2. There exists a continuous func-
tion κs : [0, 1] → R such that κs (y) > 0 if y ∈ [0, 1) , κs (0) = 0, and a constant
Cs > 0 such that, for any w,w∗ ∈ R3, the following inequality holds:

∣∣w′∣∣s + ∣∣w′∗
∣∣s − |w|s − |w∗|s � −κs (|n · ω|) (|w|s + |w∗|s

)
+Cs

[
|w|s−1 |w∗| + |w∗|s−1 |w|

]
, (4.61)

where n = (w−w∗)|w−w∗| .

Proof. Suppose first that 1
2 |w| � |w∗| � 2 |w| . Then, using the collision rule

(2.1), (2.2), we obtain, using that both norms are comparable,
∣∣w′∣∣s + ∣∣w′∗

∣∣s − |w|s − |w∗|s � C̄s
(|w|s + |w∗|s

)− |w|s − |w∗|s
� − (|w|s + |w∗|s

)
+ Cs

[
|w|s−1 |w∗| + |w∗|s−1 |w|

]
,

whence (4.61) follows. Let us assume then without loss of generality that |w| �
1
2 |w∗| , since the symmetric case |w∗| � 1

2 |w| can be studied analogously. We

have several possibilities. If
∣∣w′∣∣ � |w|

2 and
∣∣w′∗

∣∣ � |w|
2 , we obtain

∣∣w′∣∣s + ∣∣w′∗
∣∣s − |w|s − |w∗|s � Cs |w|s − |w|s − |w∗|s ,
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and (4.61) also follows. If max
{∣∣w′∣∣ , ∣∣w′∗

∣∣} >
|w|
2 we argue as follows: suppose

that both
∣∣w′∣∣ , ∣∣w′∗

∣∣ are larger than |w|, Then, using the triangular inequality as
well as (1 + x)s � 1 + Csx, for any x ∈ [0, 1] we obtain

∣∣w′∣∣s �
∣∣w′ − w

∣∣s + Cs |w| ∣∣w′ − w
∣∣s−1

,∣∣w′∗
∣∣s �

∣∣w′∗ − w
∣∣s + Cs |w| ∣∣w′∗ − w

∣∣s−1
.

On the other hand,

|w∗|s � |w∗ − w|s − Cs |w| |w∗ − w|s−1 ,

whence, using that
∣∣w′ − w

∣∣ � C |w∗| and
∣∣w′∗ − w

∣∣ � C |w∗|, we get
∣∣w′∣∣s+∣∣w′∗

∣∣s−|w|s−|w∗|s �
∣∣w′ − w

∣∣s+∣∣w′∗ − w
∣∣s−|w∗ − w|s+Cs |w∗|s−1 |w| .

(4.62)
Using (2.1), (2.2)weobtainw′−w = Pω (w∗ − w) andw′∗−w = P⊥

ω (w∗ − w)

(cf. (4.31)). Representing (w∗ − w) ,
(
w′ − w

)
and

(
w′∗ − w

)
in a spherical coor-

dinate system for which the North Pole is ω we obtain
∣∣w′ − w

∣∣s + ∣∣w′∗ − w
∣∣s − |w∗ − w|s

= −κs (n · ω) |w∗ − w|s [|cos (θ)|s + |sin (θ)|s − 1
]
, (4.63)

where

κs (n · ω) = 1 − |cos (θ)|s − |sin (θ)|s ,

and n = (w−w∗)|w−w∗| .
The function κs has all the properties stated in the Proposition if s > 2. Com-

bining (4.62) and (4.63) we obtain
∣∣w′∣∣s + ∣∣w′∗

∣∣s − |w|s − |w∗|s � −κs (n · ω) |w∗ − w|s + Cs |w∗|s−1 |w|
� −κs (n · ω) |w∗|s + Cs |w|s + Cs |w∗|s−1 |w|
� −κs (n · ω) |w∗|s + 2Cs |w∗|s−1 |w| ,

whence (4.61) follows in this case since |w| � 1
2 |w∗|. If

∣∣w′∣∣ � |w|
2 <

∣∣w′∗
∣∣ we

obtain, with similar arguments,
∣∣w′∣∣s + ∣∣w′∗

∣∣s − |w|s − |w∗|s �
∣∣w′∗ − w

∣∣s − |w∗ − w|s + Cs |w∗|s−1 |w|
�
∣∣w′ − w

∣∣s + ∣∣w′∗ − w
∣∣s − |w∗ − w|s

+ Cs |w∗|s−1 |w| ,

and we can the obtain (4.61) in the same way. The case
∣∣w′∗

∣∣ � |w|
2 <

∣∣w′∣∣ is
similar. ��

We now prove that the nonlinear evolution defined by means of Theorems 4.2,
4.5 is continuous in time in the weak topology of measures.
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Lemma 4.19. Suppose that G0 ∈ M+
(
R3
c

)
satisfies

∫
R3

G0 (dw) = 1,
∫
R3

|w|s G0 (dw) < ∞ (4.64)

for some s > 2.Wedenote asSα (t)G0 = G (t, ·) the uniquemild solution of (4.54)
given by Theorem 4.2. Then the family of operators Sα (t) define an evolution
semigroup. The mapping Sα : [0,∞) × M+

(
R3
c

) → M+
(
R3
c

)
is uniformly

continuous in the weak topology of M+
(
R3
c

)
on any set of the form [0, T ] ×

Ms,+
(
R3
c

)
, where T ∈ (0,∞) and Ms,+

(
R3
c

)
is the subset of measures G0 ∈

M+
(
R3
c

)
satisfying (4.64).

Proof. The semigroup property is just a consequence of the results inTheorems4.2,
4.5. In order to prove the weak continuity of the operator in t we prove first that the
functions t → ∫

R3
c
ϕ (w)G (t, dw) are continuous for any test functionϕ ∈ C

(
R3
c

)
.

To prove this we notice that for any functionϕ ∈ C1
(
R3
)
such thatϕ (w) is constant

for |w| � R with R large we have
∣∣∣∣
∫
R3

ϕ (w)G (dw, t1) −
∫
R3

ϕ (w)G (dw, t2)

∣∣∣∣ � C |t1 − t2| , (4.65)

with C depending on the derivatives of ϕ, but independent on G0 if
∫
R3 G0 (dw) =

1. This is a consequence of the weak formulation identity (4.14). Since

‖G (t, ·)‖1,σ � C (T ) , 0 � t � T,

we obtain that the contributions to the integrals due to the region
{|w| � R

}
can be

made arbitrarily small if R is large. Then the stated weak continuity in time follows
using the density of the chosen test functions in C

(
R3
c

)
.

It only remains to prove that for any T > 0 themappingSα (T ) : Ms,+
(
R3
c

) →
Ms,+

(
R3
c

)
is continuous in the weak topology. To this end, we first notice that

the function �(w,w∗) defined in (4.5), is a constant �0 in the case of Maxwell
molecules. We now use the following metric to characterize the weak topology:

W1 (G, H) = sup
|∂wϕ|�1

∫
ϕ (w) (G − H) (dw) . (4.66)

This metric is referred to as the 1-Wasserstein distance (see for instance [32]).
Suppose that G is a weak solution of (4.54). Using the weak formulation (4.14)

we obtain

∂t

(∫
R3

ϕ (t, w)G (t, dw)

)

=
∫
R3

∂tϕ (t, w)G (t, dw) −
∫
R3

[(αw + Lw) · ∂wϕ]G (t, dw)

+ 1

2

∫
R3

dw
∫
R3

dw∗
∫
S2
dωG (t, dw)G (t, dw∗) B (n · ω)

[
ϕ′ + ϕ′∗ − ϕ − ϕ∗

]
.
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We now consider a test function with the form ϕ (t, w) = ψ (U (t) w) , where
U (t) = e(α+L)t . Then the identity above becomes

∂t

(∫
R3

ψ (U (t)w)G (t, dw)

)

= 1

2

∫
R3

dw
∫
R3

dw∗
∫
S2
dωG (t, dw)G (t, dw∗) B (n · ω)

× [
ψ
(
U (t) w′)+ ψ

(
U (t) w′∗

)− ψ (U (t) w) − ψ (U (t) w∗)
]
. (4.67)

Suppose that we have two solutions of (4.54),G1,G2 with initial dataG1,0,G2,0 ∈
M+

(
R3
c

)
respectively. Integrating in time (4.67), writing the resulting equation for

both solutions G1,G2 and taking the difference we obtain

∫
R3

ψ (U (t)w) (G1 − G2) (t, dw)

=
∫
R3

ψ (w)
(
G1,0 − G2,0

)
(dw)

+ 1

2

∫ t

0
ds
∫
R3

dw
∫
R3

dw∗
∫
S2
dωG1 (s, dw) (G1 − G2) (s, dw∗) B (n · ω)

× [
ψ
(
U (s) w′)+ ψ

(
U (s) w′∗

)− ψ (U (s) w) − ψ (U (s) w∗)
]

+ 1

2

∫ t

0
ds
∫
R3

dw
∫
R3

dw∗
∫
S2
dω (G1 − G2) (s, dw)G2 (s, dw∗) B (n · ω)

× [
ψ
(
U (s) w′)+ ψ

(
U (s) w′∗

)− ψ (U (s) w) − ψ (U (s) w∗)
]
. (4.68)

We now takeψ (w) = ϕ (U (−t) w) for a test function ϕ (ξ) satisfying
∣∣∂ξϕ

∣∣ �
1. Then, using the chain rule as well as the fact |U (t)| + |U (−t)| � CT for
0 � t � T and the collision rule (2.1), (2.2), we obtain

|∂wψ (w)| = |∂wϕ (U (−t) w)| � CT ,∣∣∂wψ
(
U (s) w′)∣∣ = ∣∣∂wϕ

(
U (−t)U (s) w′)∣∣ � CT ,∣∣∂wψ

(
U (s) w′∗

)∣∣ = ∣∣∂wϕ
(
U (−t)U (s) w′∗

)∣∣ � CT ,

|∂wψ (U (s) w∗)| = |∂wϕ (U (−t)U (s) w∗)| � CT ,

|∂wψ (U (s) w)| = |∂wϕ (U (−t)U (s) w)| � CT .

Moreover, the second and third estimates as well as our assumptions (cf. (4.5),
(4.6)) in B imply

∣∣∣∣∂w

(∫
S2

B (n · ω) ψ
(
U (s) w′) dω

)∣∣∣∣+
∣∣∣∣∂w

(∫
S2

B (n · ω) ψ
(
U (s) w′∗

)
dω

)∣∣∣∣
� CT . (4.69)

To check this estimate we start by estimating the second term, since the first one
is similar. We then introduce a rotation matrix R (n) ∈ SO (3) which transforms
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one of the coordinate axes, say e1 into the vector n. We then change variables by
means of ω = R (n) ω̂, whence

∫
S2

B (n · ω) ψ
(
U (s) w′∗

)
dω

=
∫
S2

B
(
R (n) e1 · R (n) ω̂

)
ψ
(
U (s) w′∗

)
dω̂

=
∫
S2

B
(
e1 · ω̂

)
ψ
(
U (s) w′∗

)
dω̂,

where w′∗ = w∗ − ((w∗ − w) · ω)ω = w∗ − (
(w∗ − w) · R (n) ω̂

)
R (n) ω̂. We

then need to compute ∂wψ
(
U (s) w′∗

)
with w′∗ given by this formula. In particular

this requires to estimate ∂w

[(
(w∗ − w) · R (n) ω̂

)
R (n) ω̂

]
where n = (w−w∗)|w−w∗| .

Therefore, using that |∂wn| � C
|w−w∗| , we obtain∣∣∂w

[(
(w∗ − w) · R (n) ω̂

)
R (n) ω̂

]∣∣ � C.

Thus
∣∣∂wψ

(
U (s) w′∗

)∣∣ � CT , 0 � s � T,

and this implies (4.69).
Taking now the supremum in (4.68) over all the functionsϕ satisfying

∣∣∂ξϕ
∣∣ � 1

and using the definition of the 1-Wasserstein distance in (4.66), we obtain

W1 (G1,G2) (t) � CTW1
(
G1,0,G2,0

)+ CT

∫ t

0
W1 (G1,G2) (s) ds,

and using Gronwall’s Lemma we obtain

W1 (G1,G2) (t) � CTW1
(
G1,0,G2,0

)
,

and this implies the continuity ofSα (t) in the weak topology. ��
Proposition 4.20. Let2 < s < 3.Suppose that

∫
R3 G0 (dw) = 1

∫
R3 |w|s G0 (dw) <

∞ and that the following identities hold:
∫
R3

w j G0 (dw) = 0, j ∈ {1, 2, 3} ,

∫
R3

w jwkG0 (dw) = K N̄ j,k, j, k ∈ {1, 2, 3} , (4.70)

where
(
N̄ j,k

)
is as in (4.59), (4.60) and K � 0. Then

∫
R3

Sᾱ (t)G0 (dw) = 1,
∫
R3

w jSᾱ (t)G0 (dw) = 0,
∫
R3

w jwkSᾱ (t) (G0) (dw) = K N̄ j,k for any t � 0,
(4.71)
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where ᾱ is as in (4.59). Moreover, there exists k0 > 0 sufficiently small, which
depends on B, such that if ‖L‖ � k0b there exists a constant C∗ = C∗ (K ) > 0
such that if we assume that

∫
R3

|w|s G0 (dw) � C∗, (4.72)

then, for any t � 0, ∫
R3

|w|s S (t) (G0) (dw) � C∗ . (4.73)

Remark 4.21. Due to Lemma 4.16 the matrix
(
N̄ j,k

)
j,k=1,2,3 is positive definite.

Then, it might be readily seen, using a coordinate system in which
(
N̄ j,k

)
j,k=1,2,3

is diagonal that there exists measures G0 satisfying (4.70) and (4.72).

Remark 4.22. It will be seen in the proof that the constant k0 depends on a function
that characterizes the absolute continuity of the integrals of B. More precisely, we
define the function

�(δ) := sup
|A|�δ

∫
A
B (n · ω) dω, δ > 0, n ∈ S2,

where the supremum is taken over all the Borel sets A such that A ⊂ S2 and |A| is
itsmeasure in S2.Notice that the function� is independent of n due to its invariance
under rotations. Our assumptions on B (cf. (4.5), (4.6)) imply, due to the absolute
continuity property of the L1 functions, that limδ→0 �(δ) = 0. The constant k0 in
Proposition 4.20 depends only on the function �. Notice that if we had assumed
that B contains Dirac masses, we would not have limδ→0 �(δ) = 0 and it will be
seen in the proof of (4.73) below would fail.

Proof. Due to Proposition 4.11 the moments Mj,k satisfy (4.55). Then, choosing
α = ᾱ as well as (4.59) we obtain the second group of identities in (4.71). The
conservation of mass and linear momentum in (4.71) follows as in the proof of
Proposition 4.11.

It only remains to prove (4.73) assuming (4.72) with C∗ sufficiently large. To
this end we approximate G0 by the sequence G0,m described in the Remark 4.6.
Given that

∥∥G0,m
∥∥
1,s̄ < ∞, with s̄ > s we can use in the corresponding version of

(4.14) the test function ϕ (w) = |w|s with 2 < s < 3 we obtain that the function
M (m)

s (t) = ∫
R3 |w|s Gm (t, dw) satisfies

∂t M
(m)
s (t) = − sᾱM (m)

s (t) − s
∫
R3

|w|s−2 w(w · Lw)Gm (dw, t)

+ 1

2

∫
R3

∫
R3

∫
S2
dωGm (dw, t)Gm (dw∗, t) B (n · ω)

× [∣∣w′∣∣s + ∣∣w′∗
∣∣s − |w|s − |w∗|s

]
.
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We then estimate
∫
R3 |w|s−2 w(w · Lw)Gm (dw, t) by k0bM

(m)
s (t) . It then

follows using (4.58) as well as the Povzner estimates (cf., (4.61)) that

∂t M
(m)
s (t) �C k0bM

(m)
s (t)

+ 1

2

∫
R3

∫
R3

∫
S2
dωGm (t, dw)Gm (t, dw∗) B (n · ω)

×
[
−κs (|n · ω|) (|w|s + |w∗|s

)+ Cs

[
|w|s−1 |w∗| + |w∗|s−1 |w|

]]
,

where C is just a numerical constant. The function κs (y) is continuous and it
vanishes only for y = 0. Since B is also continuous we can prove that∫

S2
B (n · ω) κs (|n · ω|) dω � μb

for some μ > 0 which depends only on the modulus of continuity of B. Then

∂t M
(m)
s (t) � Ck0bM

(m)
s (t) − μb

2

∫
R3

∫
R3

(|w|s + |w∗|s
)
Gm (t, dw)Gm (t, dw∗)

+ Cs

∫
R3

∫
R3

[
|w|s−1 |w∗| + |w∗|s−1 |w|

]
Gm (t, dw)Gm (t, dw∗)

= (Ck0 − μ) bM (m)
s (t)

+ Cs

∫
R3

∫
R3

[
|w|s−1 |w∗| + |w∗|s−1 |w|

]
Gm (t, dw)Gm (t, dw∗) .

The estimates (4.71) imply that
∫
R3 |w|2 Gm (t, dw) � CK . Then, since s < 3,

∂t M
(m)
s (t) � (Ck0 − μ) bM (m)

s (t) + CsK .

Here C is just a numerical constant. Then, it follows that, choosing k0 � μ
2C ,

we have M (m)
s � C∗ = 2CCsK . Taking the limit m → ∞ we obtain M (m)

s →
Ms = ∫

R3 |w|s G (t, dw) � C∗ and the result follows. ��
With this Proposition is rather easy to prove now the existence of the desired

self-similar solution, as stated in the Theorem below which is the main result of
this section, using Schauder fixed point Theorem. A similar idea has been also used
with adaptations in [12,13,17,23–25].

Proof of Theorem 4.13. Suppose that ζ in (4.53) is strictly positive, since for
ζ = 0 we have G = δ (w) (see Remark 4.14). We define the subsetU ofM+

(
R3
c

)
such that∫

R3
G (dw) = 1,

∫
R3

w j G (dw) = 0,
∫
R3

w jwkG (dw) = K N̄ j,k (4.74)

holds, as well as the inequality
∫
R3
c
|w|s G (dw) � C∗ = C∗ (ζ ) . We choose K in

(4.74) in order to have

K
3∑
j=1

N̄ j, j = ζ.
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The setU is convex and closed in the ∗-weak topology ofmeasures.MoreoverU is
compact in this topology.Weconsider the semigroupSᾱ (t)defined inLemma4.19.
For any h > 0 (arbitrarily small) we have that the operator Sᾱ (h) transforms U
in itself. Given that Sᾱ (h) is compact, we can apply Schauder theorem to prove
the existence of G(h)∗ ∈ U such thatSᾱ (h)G(h)∗ = G(h)∗ . Moreover, sinceSᾱ (h)

defines a semigroup we have Sᾱ (mh)G(h)∗ = G(h)∗ for any integer m. We then
take a subsequence {hk} such that hk → 0 and the corresponding sequence of

fixed points
{
G(hk )∗

}
. This sequence is compact inU and, taking a subsequence if

needed (but denoted still as {hk}), we obtain that it converges to someG∗.Given any
t > 0 we can obtain integersmk such thatmkhk → t.We haveSᾱ (mkhk)G

(hk )∗ =
G(hk )∗ → G∗ and, on the other hand,

Sᾱ (mkhk)G
(hk )∗ = [Sᾱ (mkhk) − Sᾱ (t)]G(hk )∗ + Sᾱ (t)G(hk )∗ .

The last termconverges toSᾱ (t)G∗ using theweak continuity of the semigroup
Sᾱ (t) (cf. Lemma4.19).On theother handwehave that [Sᾱ (mkhk) − Sᾱ (t)]G(hk )∗
→ 0 as k → ∞ in the weak topology due to the uniformicity of the estimate (4.65).
Then Sᾱ (t)G∗ = G∗ for any t > 0. Then G∗ is a stationary point for the semi-
group. Notice that we can pass to the limit in (4.74). ��

4.4. Behavior of the Density and Internal Energy for Homoenergetic Solutions

In the next section we will apply the tools developed in the previous subsec-
tions to the different homoenergetic flows described in Section 3. For the reader’s
convenience we recall that the equation describing homoenergetic flows is

∂t g − L (t)w · ∂wg = Cg (w) . (4.75)

We also recall (cf. (2.3)) that the kernel B in (1.6) is homogeneous with homo-
geneity γ. We want to construct solutions of (1.7) with the different choices of
L (t) in Theorem 3.1. The solutions in which we are interested have some suitable
scaling properties, and two quantities which play a crucial role determining how
are these rescalings are the density ρ (t) and the internal energy ε (t) . These are
given by (cf. (2.4))

ρ (t) =
∫
R3

g (t, dw) , ε (t) =
∫
R3

|w|2 g (t, dw) , (4.76)

which will be assumed to be finite for each given t in all the solutions considered
in this paper. Integrating (1.7) and using the conservation of mass property of the
collision kernel, we obtain

∂tρ (t) + Tr (L (t)) ρ (t) = 0, (4.77)

whence

ρ (t) = ρ (0) exp

(
−
∫ t

0
Tr (L (s)) ds

)
. (4.78)
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Nevertheless it is not possible to derive a similarly simple equation for the
internal energy ε (t) , because the term−L (t) w ·∂wg on the left-hand side of (1.7)
yields in general terms which cannot be written neither in terms of ρ (t) , ε (t) .

Actually these terms have an interesting physical meaning, because they produce
heating or cooling of the system and therefore they contribute to the change of
ε (t) . To obtain the precise form of these terms we need to study the detailed form
of the solutions of (1.7). The rate of growth or decay of ε (t) would then typically
appear as an eigenvalue of the corresponding PDE problem.

5. Applications: Self-Similar Solutions of Homoenergetic Flows for Maxwell
Molecules

The self-similar solutions which we construct in this paper are characterized by
a balance between the terms −L (t) w · ∂wg and Cg (w) in (4.75). Such a balance
is only possible for specific choices of the homogeneity of the kernel γ. Actually
in all the cases in which we prove the existence of self-similar solutions in this
paper we have γ = 0, i.e. Maxwell molecules. We recall that, for this choice of
interactions, the collision kernel B is given by (4.28).

5.1. Simple Shear

In this case, combining (1.7) and (3.5), we obtain

∂t g − Kw2∂w1g = C [g] . (5.1)

Notice that in this case (4.78) reduces to

ρ (t) = ρ (0) = 1, (5.2)

where, without loss of generality, we can use the normalization ρ (0) = 1 rescaling
the time unit. Using (1.6), the definition of ρ (t) in (4.76) and (5.2), we obtain that
the physical dimensions of the three terms in (5.1) are

[g]

[t]
, [g] , [w]γ [g] . (5.3)

Notice that if |w| changes in time, we can have a balance of second and third
terms in (5.3) only if γ = 0, i.e. for Maxwell molecules. On the other hand (5.3)
indicates that we cannot obtain a balance between the first two terms of this equation
with power law behaviors for [w] , and the only way to obtain such a balance will be
assuming that [w] scales like an exponential of t. In the case of Maxwell molecules
we consider solutions with the following scaling:

g (w, t) = e−3βtG (ξ) , ξ = w

eβt
, (5.4)

where β ∈ R, which characterizes the behavior of the internal energy, is an eigen-
value to be determined. The factor e−3βt has been chosen in order to have the
density conservation condition (5.2).
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Plugging (5.4) into (5.1) we obtain

−β∂ξ (ξG) − K∂ξ1 (ξ2G) = C [G] , (5.5)

where (5.2) implies the normalization condition
∫
R3

G (ξ) dξ = 1. (5.6)

Notice that given that the homogeneity of the kernel is γ = 0, it is not possible
to eliminate the constant K in (5.5) bymeans of a scaling argument which preserves
the normalization (5.6). The equation (5.5) is a particular case of (4.52). We can
then apply Theorem 4.13 which yields immediately the following result:

Theorem 5.1. Suppose that B is as in (4.28) and that b in (4.36) is strictly positive.
There exists k0 > 0 small such that for any ζ � 0 and K ∈ R such that K

b � k0
there exists β ∈ R and G ∈ M+

(
R3
c

)
which solves (5.5) in the sense of measures

and satisfies the normalization condition (5.6) as well as
∫
R3

w j G (dw) = 0,
∫
R3

|w|2 G (dw) = ζ . (5.7)

Remark 5.2. Weobserve that in theTheoremabove the assumption
∫
R3 w j G (dw) =

0 is not restrictive. Indeed, if this assumption is not satisfied, we can compute the
evolution equation for the first order moments and we get ∂t

(∫
R3 wG (dw)

) +
L(t)

∫
R3 wG (dw) = 0. Furthermore, in the case of simple shear considere here, we

have L(t)
∫
R3 wG (dw) = (

K
∫
R3 w2 G (dw) , 0, 0

)T
. Therefore,

(∫
R3 wG (dw)

)
(t) = exp

(
− ∫ t

0 L(s)ds
) (∫

R3 wG (dw)
)
|t=0

. We now set
(∫

R3 wG (dw)
)
|t=0

=
(γ1, γ2, γ3)

T �= (0, 0, 0)T and introduce the propagated solution Ḡ such that
G(w1, w2, w3, t) = Ḡ(w1+γ1, w2+γ2+γ1t, w3+γ3, t). It is then straightforward
to show that Ḡ satisfies (5.1).

Therefore, solutions of (5.1) with the form (5.4) exist, at least if the shear
parameter K is sufficiently small compared with the parameter b which measures
the strength of the collision term. Actually we can give a physical meaning to the
condition K

b in terms of a nondimensional parameter. The parameter K is, up to a
multiplicative constant, the inverse of the time scale τshear in which the effect of the
shear deformes a sphere into a ellipsoid for which the largest semiaxes has double
length than the shortest one. On the other hand b is the inverse of the average time
between collisions τcoll . Then K

b = τcoll
τshear

and, therefore, the smallness condition
in Theorem 5.1 just means

K

b
= τcoll

τshear
small. (5.8)

We remark that the value of β can be computed explicitly. Indeed, we have seen
in Subsection 4.3 that the eigenvalue β in Theorem 4.13 is the solution α of the
eigenvalue problem (4.56), (4.57) with the largest real part. In the particular case



820 Richard D. James, Alessia Nota & Juan J. L. Velázquez

of the equation (5.5) the problem (4.56), (4.57) with the normalization condition
(4.60) takes the form

(α

b
+ 1

)
�1,1 + K

b
�1,2 = �, � = 1

3

(
�1,1 + �2,2 + �3,3

)
(α

b
+ 1

)
�1,2 + K

2b
�2,2 = 0,

(α

b
+ 1

)
�1,3 + K

2b
�2,3 = 0

(α

b
+ 1

)
�2,2 = �,

(α

b
+ 1

)
�2,3 = 0,

(α

b
+ 1

)
�3,3 = �, (5.9)

with

� j,k = �k, j , j, k = 1, 2, 3. (5.10)

The eigenvalue problem (5.9) (or more precisely an equivalent formulation of
it) has been studied in detail in [30], Chapter XIV. We summarize some relevant
information about the solutions of (4.56), (4.57) which will be used later.

Proposition 5.3. The eigenvalues of the problem are α ∈ {−b, b (λ1 − 1) ,

b (λ2 − 1) , b (λ3 − 1)} where we denote as λ j , j = 1, 2, 3 the roots of

λ3 = λ2 + K 2

6b2
. (5.11)

The equation (5.11) has for any K �= 0 a real root λ1 > 1 and two complex
conjugates roots λ2, λ3 with Im (λ2) = − Im (λ3) > 0 andRe (λ2) = Re (λ3) < 0.

The subspace of eigenvectors associated to the eigenvalue α = −b is the two-
dimensional (complex) subspace

{
N1,1 = μ1, N3,3 = −μ1, N1,3 = μ2, N1,2 =

N2,2 = N2,3 = 0, μ1, μ2 ∈ C
}
.

We have the following asymptotic formulas for λ1:

λ1 ∼ 1 + K 2

6b2
+ ... as K → 0, λ1 ∼ K

2
3

(
6b2

) 1
3

as K → ∞. (5.12)

Remark 5.4. We assume that the vector spaces are complex, given that some of the
eigenvalues are complex. Notice that the subspace spanned by all the eigenvectors
has dimension five, in spite of the fact that the underlying space is six-dimensional
(see Remark 4.17).

Proof. The claim about the set of eigenvalues follows using the change of variables
λ = α

b +1 and distinguishing the cases λ = 0 and λ �= 0. In the first case we obtain
N1,2 = N2,2 = N2,3 = N1,1+N3,3 = 0 and this yields the structure of eigenvectors
in the case α = −b.

It is immediate to check, just plotting the function
(
λ3 − λ2

)
, that there is a

unique real solution λ1 of (5.11) which satisfies λ1 > 1. Then Re (λ2) = Re (λ3)

and using that λ1 +λ2 +λ3 = 1, we obtain λ1 + 2Re (λ2) = 1, whence Re (λ2) =
1
2 (1 − λ1) < 0.

The asymptotic formulas (5.12) follow from elementary arguments. ��
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Notice that Proposition 5.3 implies that the largest eigenvalue of the problem
(5.9) is ᾱ = b (λ1 − 1) > 0. Since β = ᾱ, we obtain that β > 0 in (5.4). This
implies that the average of |w|2 increases as t increases, something which might be
expected, since the effect of the shear in the gas yields an increase of the internal
energy of the system.

Theorem 5.1 requires a strong smallness condition on K
b (cf. (5.8)). Actually

this smallness assumption can be removed, but this requires to derive amore sophis-
ticated version of Povzner estimates which takes into account the effect of the shear.
This is the next point which we consider.

5.1.1. Sufficient Condition to have Self-Similar Solutions for Arbitrary Shear
Parameters We now formulate a sufficient condition for the existence of self-
similar solutions in the case of simple shear for arbitrary values of the shear param-
eter K . The stated condition depends on the collision kernel B in (4.28). In order
to formulate this condition we introduce the following quadratic form:

W0 (ξ, η) =
∑
j�k

u j,k (ξ ⊗ η)
(
e j , ek

)
, (5.13)

where the quadratic forms (ξ ⊗ η)
(
e j , ek

)
are as in (4.32), (4.33) (cf. also the

quadratic forms Wj,k in Proposition 4.10) and u j,k ∈ R are given by

u1,1 = 1, u2,2 = (3λ1 − 2) , u3,3 = 1, u1,2 = − K

bλ1
, u1,3 = u2,3 = 0, (5.14)

where λ1 is as in Proposition 5.3. The quadratic form W0 is positive definite. This
follows by writing W0 in matrix form as

W̄0 =
⎛
⎝

1 − K
2bλ1

0
− K

2bλ1
(3λ1 − 2) 0

0 0 1

⎞
⎠ .

Since λ1 > 0, in order to check that W0 is positive definite we only need to
check that the determinant of W̄0 is positive. We have

det
(
W̄0
) = (3λ1 − 2) − K 2

4b2
1

(λ1)
2 . (5.15)

Then, using (5.11),

det
(
W̄0
) = 3

(λ1)
2

[
(λ1)

3 − 2

3
(λ1)

2 − K 2

12b2

]
= 3

(λ1)
2

[
(λ1)

2

3
+ K 2

12b2

]
> 0.

Therefore

sup
|ξ |=1

W0 (ξ) � c1 > 0. (5.16)
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In order to formulate stability criteria which would yield the existence of self-
similar solutions for a given value of the shear, we define the following function:

H (ξ ; K ) =
∫
S2
dωB (ω · ξ)

(
W0

(
P⊥

ω ξ
)
log

(
W0

(
P⊥

ω ξ
)

W0 (ξ)

)

+W0 (Pωξ) log

(
W0 (Pωξ)

W0 (ξ)

))

−
∫
S2
dωB (ω · ξ)

(
W0

(
P⊥

ω ξ
)

+ W0 (Pωξ) − W0 (ξ)
)

,

ξ ∈ R3� {0} . (5.17)

and, for any quadratic form W we define

W (ξ ;W ; K ) =
∫
S2
deB (e · ξ)

(
W
(
P⊥
e ξ
)

+ W (Peξ) − W (ξ)
)

−K ξ2∂ξ1W (ξ) − 2βW (ξ) . (5.18)

We then have the following result:

Theorem 5.5. Suppose that B is as in (4.28) and that b in (4.36) is strictly positive.
LetH andW be as in (5.17) and (5.18) respectively. Suppose that K ∈ R satisfies
the following property:

inf
W

[
min|ξ |=1

[W (ξ ;W ; K ) + H (ξ ; K )]

]
< 0, (5.19)

where the infimum is taken over all the quadratic forms W. Then, for any ζ � 0,
there exists β ∈ R and G ∈ M+

(
R3
c

)
which solves (5.5) in the sense of measures

and satisfies the normalization condition (5.6) as well as (5.7).

Theorem 5.5 allows us to obtain quantitative estimates about the value of the
shear parameter K for which self-similar solutions exist. Notice that, in particular,
Theorem 5.5 implies Theorem 5.1. Indeed, if K = 0 we obtain that W0 is just the
identity. Then the last integral in (5.15) vanishes due to Pithagoras Theorem and

we have log

(
W0
(
P⊥

ω ξ
)

W0(ξ)

)
< 0, log

(
W0(Pωξ)
W0(ξ)

)
< 0 if |ξ | = 1. Then H (ξ ; 0) < 0.

Then the inequality (5.19) holds for |K | sufficiently small whence Theorem 5.1
follows.

The main difference between the proof of the Theorems 4.13 and 5.5 is the fact
that instead of using the classical Povzner estimates (cf. Proposition 4.18) in order
to control the dynamics of large particles, we will use a modified version which
takes into account not only the collisions between particles, but also the effect of
the shear term −K∂ξ1 (ξ2G) . The result is the following:

Proposition 5.6. Suppose that B is as in (4.28) and that b in (4.36) is strictly
positive. Suppose that for a given K ∈ R the condition (5.19) holds. Then there
exists a function ϕ : R3 → R, ϕ = ϕ (ξ) homogeneous in ξ with homogeneity
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s ∈ (2, 3) (depending on K ) and positive constants κ, C, depending also on K ,

such that, for any measure ξ, ξ∗ ∈ R3 satisfying (5.6) and
∫
R3 ξG (dξ) = 0 the

following inequality holds:

U [ϕ] (ξ, ξ∗) � −κϕ (ξ) + C |ξ | s2 |ξ∗| s2 for |ξ∗| � |ξ | , (5.20)

where

U [ϕ] (ξ, ξ∗) :=
∫
S2
dωB (ω · (ξ − ξ∗))

(
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)

−K
[
ξ2∂ξ1ϕ

]
(ξ) − βξ · ∂ξϕ (ξ) , (5.21)

and where β = b (λ1 − 1) with λ1 as in Proposition 5.3.
Moreover, there exists c0 > 0 such that ϕ (ξ) � c0 |ξ |s for any ξ ∈ R3.

Proof. If K = 0 we have β = b (λ1 − 1) = 0 and the result just follows from the
classical Povzner estimates (cf. Proposition 4.18). Therefore we will assume that
K �= 0 whence λ1 > 1. We will prove Proposition 5.6 in two steps.

Step 1: We first prove that the positive definite quadratic form W0 defined in
(5.13), (5.14) satisfies

�(ξ ;W0) = 0 for all ξ ∈ R3, (5.22)

where

�(ξ ;W0) = −2
∫
S2
dωB

(
ω · ξ

|ξ |
)[

W0

(
P⊥

ω ξ, Pωξ
)]

−K
[
ξ2∂ξ1W0

]
(ξ) − 2βW0 (ξ) . (5.23)

We look for W0 in the form. Using Proposition 4.10 and the definition (5.13),
(5.14) we obtain

�(ξ ;W0) = − 2
∫
S2
dωB

(
ω · ξ

|ξ |
)[

W0

(
P⊥

ω ξ, Pωξ
)]

− K
[
ξ2∂ξ1W0

]
(ξ)

− 2βW0 (ξ)

= − 2
∑
j�k

u j,k

∫
S2
dωB

(
ω · ξ

|ξ |
)(

P⊥
ω ξ ⊗ Pωξ

) (
e j , ek

)

− K
∑
j�k

u j,k
[
ξ2ξkδ1, j + ξ2ξ jδ1,k

]− 2β
∑
j�k

u j,kξ jξk

= − 2b
∑
j�k

u j,k

[
ξ jξk − |ξ |2

3
δ j,k

]
− K

∑
k

u1,kξ2ξk − Ku1,1ξ1ξ2

− 2β
∑
j�k

u j,kξ jξk .
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Then

�(ξ ;W0) = − (2b + 2β)
∑
j�k

u j,kξ jξk + 2b |ξ |2
3

∑
j

u j, j

− K
∑
k

u1,kξkξ2 − Ku1,1ξ1ξ2

= − (2b + 2β)
∑
j�k

u j,kW j,k + 2b

3

[∑
�

u�,�

]∑
j�k

δ j,kW j,k

− K
∑
j�k

u1,kδ j,2Wj,k − 2Ku1,1W1,2. (5.24)

Since the quadratic formsWj,k are linearly independent in the space of quadratic
forms we obtain that �(ξ ;W0) = 0 for any ξ ∈ R3 if

−
(

β

b
+ 1

)
u j,k+δ j,k

3

∑
�

u�,�− K

2b
u1,kδ j,2−K

b
δ1, jδ2,ku1,1 = 0, j � k. (5.25)

The eigenvalue problem is the adjoint problem (5.9), (5.10) assuming that in

space of quadratic forms we take the scalar product
∑

j
∑

k � j,k�̃ j,k =
〈
�, �̃

〉
.

Using that β = b (λ1 − 1) (cf. Proposition 5.3) we then readily obtain that u j,k in
(5.14) yield a nontrivial solution of (5.25). Therefore, the quadratic form given by
(5.13) with the coefficients u j,k in (5.14) satisfies (5.22).

Step 2. Suppose now that the stability condition (5.19) holds. Then, there exists
a quadratic form W1 such that

min|ξ |=1
[W (ξ ;W1; K ) + H (ξ ; K )] � −c0 < 0 (5.26)

for any ξ ∈ R3 satisfying |ξ | = 1. We define a function ϕ homogeneous with
homogeneity s = 2 (1 + ε) > 2 in the form

ϕ (ξ) = [W0 (ξ) + εW1 (ξ)]1+ε . (5.27)

Given a function ϕ : R3 → R we define

V (ξ ;ϕ) =
∫
S2
deB (e · ξ)

(
ϕ
(
P⊥
e ξ
)

+ ϕ (Peξ) − ϕ (ξ)
)

−K ξ2∂ξ1ϕ (ξ) − βξ · ∇ϕ (ξ) (5.28)

where β = b (λ1 − 1) . If ϕ is homogeneous with homogeneity s = 2 (1 + ε) we
can rewrite (5.28) as

V (ξ ;ϕ) =
∫
S2
deB (e · ξ)

(
ϕ
(
P⊥
e ξ
)

+ ϕ (Peξ) − ϕ (ξ)
)

−K ξ2∂ξ1ϕ (ξ) − 2 (1 + ε) βϕ (ξ) .
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Then using (5.16), (5.18), (5.27) and Taylor’s Theorem, we obtain the following
approximation of V (ξ ;ϕ):

V (ξ ;ϕ) = W (ξ ;W0; K ) + ε

∫
S2
deB (e · ξ)

(
W0

(
P⊥
e ξ
)
log

(
W0

(
P⊥
e ξ
))

+ W0 (Peξ) log (W0 (Peξ)) − W0 (ξ) log (W0 (ξ))
)

− K ξ2ε
[
1 + log (W0 (ξ))

]
∂ξ1W0 (ξ) − 2βεW0 (ξ) log (W0 (ξ))

− 2βεW0 (ξ)+
+ εW (ξ ;W1; K ) + O

(
ε2
)

as ε → 0.
We now use the fact that W (ξ ;W0; K ) = 0, and we rewrite K ξ2∂ξ1W0 (ξ) +

2βW0 (ξ) as an integral term to obtain, using (5.17),

V (ξ ;ϕ)

ε
= H (ξ ; K ) + W (ξ ;W1; K ) + O (ε) as ε → 0 (5.29)

uniformly in |ξ | = 1.
Using (5.26) we obtain

V (ξ ;ϕ) � −c0
2

< 0 in |ξ | = 1 (5.30)

if ε > 0 is sufficiently small. Moreover, using (5.16) we also obtain that, for |ξ | = 1
and ε sufficiently small, we have

ϕ (ξ) � c1
2

> 0 if |ξ | = 1. (5.31)

We can then prove (5.20). The right-hand side of (5.21) is homogeneous in
ξ, ξ∗.We can then assume without loss of generality that |ξ | = 1. Suppose first that
|ξ∗| � δ for some δ > 0 sufficiently small to be determined. Then, using (5.28) as
well, we have

U [ϕ] (ξ, ξ∗) = V (ξ ;ϕ) + R (ξ, ξ∗;ϕ) ,

where

R (ξ, ξ∗;ϕ) =
∫
S2
dωB (ω · (ξ − ξ∗))

(
ϕ′ + ϕ′∗ − ϕ − ϕ∗

)

−
∫
S2
deB (e · ξ)

(
ϕ
(
P⊥
e ξ
)

+ ϕ (Peξ) − ϕ (ξ)
)

.

Using the collision rule (2.1), (2.2) as well as the continuity of the function
R (ξ, ξ∗;ϕ) in ξ∗ it then follows that R (ξ, ξ∗;ϕ) can be made arbitrarily small if
|ξ | = 1 and δ is small enough. Then, using (5.30) we obtain

U [ϕ] (ξ, ξ∗) � −c0
2

if |ξ | = 1, |ξ∗| � δ,
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and using the homogeneity of U [ϕ] as well as (5.31) we set

U [ϕ] (ξ, ξ∗) � −κϕ (ξ) if ξ �= 0, |ξ∗| � δ |ξ | .
On the other hand, if δ |ξ | < |ξ∗| � |ξ |, we just use that U [ϕ] (ξ, ξ∗) can be

estimated as C
[|ξ |s + |ξ∗|s

]
� C |ξ | s2 |ξ∗| s2 . Therefore (5.20) follows. ��

We can now prove Theorem 5.5.

Proof of Theorem 5.5. We now argue as in the Proof of Theorem 4.13. The only
difference in the argument arises in the Proof of Proposition 4.20where the inequal-
ities (4.72), (4.73) must be replaced by

∫
R3

ϕ (w)G0 (dw) � C∗ (5.32)

and ∫
R3

ϕ (w)S (t)G0 (dw) � C∗, (5.33)

respectively. In order to prove that (5.32) implies (5.33) we estimate the derivative
of the functionMs (t) = ∫

R3 ϕ (w)G (t, dw). To this end,we use the approximation
argument described in Remark 4.6, as it was made in the proof of Proposition 4.20.
Therefore,wehave a sequenceof functions {Gm}m∈N satisfying sup0�t�T ‖Gm‖1,s̄ <

∞, s̄ > s for eachm and such that supt∈[0,T ] ‖Gm (t, ·) − G (t, ·)‖1,s → 0 holds as

m → ∞. We then define M (m)
s (t) = ∫

R3 |w|s Gm (t, dw). Using (4.14) we obtain

∂t M
(m)
s (t) =

∫
R3

Gm (t, dw)

∫
R3

Gm (t, dw∗)

×
∫
S2
dω
[ 1
2
B (n · ω)

[
ϕ
(
w′)+ ϕ

(
w′∗
)− ϕ (w) − ϕ (w∗)

]

− K
[
ξ2∂ξ1ϕ

]
(w) − βξ · ∂ξϕ (w)

]
. (5.34)

We decompose the integral on the right hand side in the regions {|w| > |w∗|},
{|w| < |w∗|} and {|w| = |w∗|} respectively. Notice that the measure of the set
{|w| = |w∗|} could be different from zero. Then, setting

Q(w,w∗) :=
∫
S2
dωB (n · ω)

[
ϕ
(
w′)+ ϕ

(
w′∗
)− ϕ (w) − ϕ (w∗)

]
,

and using a symmetrization argument in w, w∗, we obtain,∫
R3

∫
R3

Gm (t, dw)Gm (t, dw∗)
1

2
Q(w,w∗)

=
∫ ∫

{|w|>|w∗|}
Gm (t, dw)Gm (t, dw∗) Q(w,w∗)

+ 1

2

∫ ∫
{|w|=|w∗|}

Gm (t, dw)Gm (t, dw∗) Q(w,w∗).
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Therefore, (5.34) can be rewritten as

∂t M
(m)
s (t) =

∫ ∫
{|w|�|w∗|}

Gm (t, dw)Gm (t, dw∗) χ(w,w∗)

×
[
Q(w,w∗) − K

[
ξ2∂ξ1ϕ

]
(w) − βξ · ∂ξϕ (w)

]

+
∫ ∫

{|w|�|w∗|}
Gm (t, dw)Gm (t, dw∗) χ(w,w∗)

× [
Q(w,w∗) − K

[
ξ2∂ξ1ϕ

]
(w) − βξ · ∂ξϕ (w)

]
,

where the function χ(w,w∗) is given by

χ(w,w∗) =
⎧⎨
⎩

1, |w| �= |w∗| ,
1

2
, |w| = |w∗| .

The first integral on the right-hand side can be estimated using Proposition 5.6.
On theother hand, in the second integralweuse that

∣∣K [ξ2∂ξ1ϕ
]
(w) + βξ · ∂ξϕ (w)

∣∣
� C |w|s � C |w| s2 |w∗| s2 since we are integrating in the region

{|w| � |w∗|
}
. We

then obtain the estimate

∂t M
(m)
s (t) � − κ

2

∫ ∫
{|w|�|w∗|}

Gm (t, dw)Gm (t, dw∗) ϕ (w)

+ C
∫
R3

∫
R3

Gm (t, dw)Gm (t, dw∗) |w| s2 |w∗| s2

= − κ

2

∫
R3

∫
R3

Gm (t, dw)Gm (t, dw∗) ϕ (w)

+
∫ ∫

{|w|<|w∗|}
Gm (t, dw)Gm (t, dw∗) ϕ (w)+

+ C
∫
R3

∫
R3

Gm (t, dw)Gm (t, dw∗) |w| s2 |w∗| s2

� − κ

2
M (m)

s (t) + C
∫
R3

∫
R3

Gm (t, dw)Gm (t, dw∗) |w| s2 |w∗| s2 ,

where the positive constant C changes from line to line.
Since s

2 < 2 we can estimate the last integral in terms of the particle density
and the energy. Then

∂t M
(m)
s (t) � −κ

2
M (m)

s (t) + C0 (ζ ) ,

with κ > 0. It then follows that the set
{
M (m)

s (t) � C∗
}
withC∗ sufficiently large,

is invariant. Using that

|M (m)
s − Ms | � C‖Gm − G‖1,s,

it then follows that M (m)
s → Ms as m → ∞. Therefore, the set

{
Ms (t) � C∗

}
is

invariant. The rest of the proof can then be made applying the Schauder fixed point
Theorem, along the lines of the proof of Theorem 4.13. ��
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5.1.2. Heat Fluxes for Homoenergetic Flows for Simple Shear Solutions We
discuss in this section a phenomenon described in [30] concerning the onset of non-
trivial heat fluxes for homoenergetic solutions. Suppose that a self-similar solution
of (5.5) exists for K sufficiently large. The heat fluxes in gases described by means
of the Boltzmann equation are given by

q =
∫
R3

|w|2 wg (dw) . (5.35)

In the solutions obtained in Theorems 5.1 and 5.5 we can assume that they
satisfy the symmetry condition

G (w) = G (−w) (5.36)

This is due to the fact that the space of measures satisfying (5.36) is invari-
ant under the evolution semigroup S (t) . Therefore, for such self-similar solu-
tions the heat flux q given by (5.35) is zero. This is seemingly in contrast with
a computation made in [30] where the evolution of the third moments tensor
Mj,k,� = ∫

R3 w jwkw�g (dw) has been computed and it has been seen there that for
generic solutions the third moments tensor increases exponentially. In particular
the heat flux q in (5.35) can be computed in terms of the third moments tensor and
it also increases exponentially if |K | is sufficiently large.

It is not clear if the self-similar solutions constructed in this paper yield the
same distribution of velocities associated to the evolution of the moments in [30]
because we have not proved either the uniqueness of the self-similar solutions or
stability. However, the fact that the evolution of the secondmoments tensorMj,k for
the solutions obtained in this paper growth exponentially with the same exponent
obtained in [30] strongly suggests that the type of solutions considered in this
paper and those suggested in [30] are related. However, the exponential growth of
the third moments tensor obtained in [30] raises doubts about the stability of the
solutions obtained in this paper. We will argue now that the values of the exponents
obtained in [30] support the following scenario for large values of K : the self-similar
solutions in Theorem5.5, if they exist (i.e. if condition (5.19) holds) are stable under
small perturbations, but the eigenmode associated to the leading eigenvalue of the
problem obtained linearizing around the self-similar solutions does not satisfy the
symmetry condition (5.36).

In order to justify this scenario we will use the notation in [30]. The exponential
growth of the second moments tensor is eAt where A is the root of the following
equation with the largest real part (cf. (XIV.4) in [30]):

A (A + 1)2 = 2

3
T2. (5.37)

The parameter T plays a role equivalent to K
b in Theorem 5.5.

On the other hand, the exponential growth for the heat fluxes q is given by eRt

with R is the root with the largest part of one of one of the following equations (cf.
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(XIV.29), (XIV.31) in [30]):

(
R + 3

2

)2 (
R + 2

3

)
= 1

3
T2 (5.38)

(
R + 3

2

)2 (
R + 2

3

)2

= 2T2
(
R + 31

36

)
.

In order to study the stability of the self-similar solution G it is more conve-
nient to represent it using the variable ξ = w

eβt where e
βt yields the characteristic

velocity w of the particles for self-similar solutions. Since the second moments
tensor increases as eAt and in the simple shear case the total mass is preserved, we
would have β = A

2 . Therefore, the eigenvalues obtained by means of (5.38) would
be associated to small perturbations of the self-similar solution G (ξ) if the largest
root of the equations (5.38) satisfies

R < 3β = 3A

2
. (5.39)

In order to prove (5.39) we introduce a new variable R = 3χ. Then χ is the
solution with the largest real part of one of the equations

(
χ + 1

2

)2 (
χ + 2

9

)
= 1

81
T2 (5.40)

(
χ + 1

2

)2 (
χ + 2

9

)2

= 2T2

27

(
χ + 31

108

)
.

On the other hand we can rewrite (5.37) using that A = 2β as

β

(
β + 1

2

)2

= 1

12
T2. (5.41)

We need to prove that the root of (5.40) with the largest real part satisfiesχ < β,

where β is the root of (5.41) with the largest real part. This result would follow
proving the following inequalities for x > 0:

12x

(
x + 1

2

)2

< 81

(
x + 1

2

)2 (
x + 2

9

)

12x

(
x + 1

2

)2

<
27

2

(
x + 1

2

)2 (
x + 2

9

)2
(
x + 31

108

) ,

which reduce to

12x < 81

(
x + 2

9

)
for x � 0

12x <
27

2

(
x + 2

9

)2
(
x + 31

108

) for x � 0.
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The first of these inequalities is obviously satisfied, and the second one is equivalent
to

24x

(
x + 31

108

)
< 27

(
x + 2

9

)2

for x � 0,

or equivalently

27

(
x + 2

9

)2

− 24x

(
x + 31

108

)
= 3x2 + 46

9
x + 4

3
> 0,

which is obviously satisfied.
Therefore the desired instability follows. These inequalities suggest the scenario

mentioned above concerning the stability of G (ξ) . More precisely, the asymptotic
behavior of small perturbations of G would yield solutions with the form

Ḡ (t, ξ) = G (ξ) + eλtϕ (ξ) ,

where λ = R − 3A
2 < 0 and ϕ (ξ) �= ϕ (−ξ) . Nevertheless in order to prove this

scenario a more careful analysis of the linearized problem would be needed.

5.2. Planar Shear

In this subsectionwe consider the self-similar solutions for homoenergetic flows
(2.5), (2.8) with L (t) as in (3.4) with K �= 0. Then g solves (1.7). We first check
using dimensional analysis that the terms −L (t) w · ∂wg and Cg can be expected
to have the same order of magnitude as t → ∞ if the homogeneity of the collision
kernel B is γ = 0, i.e. for Maxwell molecules.

Using (3.4) in (1.7), we obtain that g solves

∂t g − K

t
w3∂w2g − 1

t
w3∂w3g = Cg (w) . (5.42)

We have ignored the term O
(

1
t2

)
in (3.4) because this term is integrable, and

it just produces a factor of order one in the evolution of the characteristic curves in
the space w as t → ∞.

In order to find a reformulation with a conserved mass we need to compute the
evolution of the density ρ (t) . We have tr (L (t)) = 1 and then (4.77) implies

ρ (t) = ρ (1)

t
. (5.43)

Suppose that the homogeneity of the kernel B is γ. Then, using (5.43), we can
see that the scaling properties of the four terms in (5.42) are given by

[g]

[t]
,
[g]

[t]
,
[g]

[t]
,
[w]γ [g]

[t]
.

Therefore, all the terms have the same order of magnitude even if the tempera-
ture increases if γ = 0, i.e. for Maxwell molecules. We will restrict to this case in
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this subsection. In order to transform (5.42) to a form with conserved density we
use the change of variables

g (t, w) = 1

t
ḡ (τ, w) , τ = log (t) ,

whence
∂τ ḡ − Kw3∂w2 ḡ − ∂w3 (w3ḡ) = Cḡ (w) . (5.44)

We remark that

∂τ

(∫
R3

ḡ (τ, dw)

)
= 0. (5.45)

We now look for self-similar solutions of (5.44). The conservation property
(5.45) suggests to look for self-similar solutions with the form

ḡ (τ, w) = e−3βτG (ξ) , ξ = w

eβτ
. (5.46)

Therefore
−β∂ξ (ξ · G) − K∂ξ2 (ξ3G) − ∂ξ3 (ξ3G) = CG (w) . (5.47)

This equation is a particular case of (4.52) with α = β

L =
⎛
⎝ 0 0 0
0 0 K
0 0 1

⎞
⎠ . (5.48)

Theorem 4.13 will then imply the existence of nontrivial solutions of (4.55). It
is worth to write in detail the eigenvalue problem yielding β. We recall that β is
the solution α of the eigenvalue problem (4.56), (4.57) with the largest real part.
We use (5.48) to write

L j,k = K δ j,2δk,3 + δ j,3δk,3.

Then, the eigenvalue problem (4.56), (4.57) becomes

α

b
� j,k + 1

2b

([
K δ j,2 + δ j,3

]
�k,3 + [

K δk,2 + δk,3
]
� j,3

)

= − (� j,k − �δ j,k
)
, j, k = 1, 2, 3,

� j,k = �k, j

� = 1

3

(
�1,1 + �2,2 + �3,3

)
,

or, in more detailed form,(α

b
+ 1

)
�1,1 = �,

(α

b
+ 1

)
�1,2 + K

2b
�1,3 = 0,

(α

b
+ 1

)
�1,3 + 1

2b
�1,3 = 0 (5.49)

(α

b
+ 1

)
�2,2 + K

b
�2,3 = �,

(α

b
+ 1

)
�2,3 + K

2b
�3,3 + 1

2b
�2,3 = 0,

(α

b
+ 1

)
�3,3 + 1

b
�3,3 = �. (5.50)

We then have



832 Richard D. James, Alessia Nota & Juan J. L. Velázquez

Theorem 5.7. Suppose that B is as in (4.28) and suppose that b is as in (4.36).
There exists b0 > 0 large and k0 > 0 small such that, for any ζ � 0 and any
b � b0 and any K ∈ R such that K

b � k0 there exists β ∈ R and G ∈ M+
(
R3
c

)
which solves (5.42) and satisfies the normalization conditions∫

R3
G (dw) = 1,

∫
R3

w j G (dw) = 0,
∫
R3

|w|2 G (dw) = ζ . (5.51)

Moreover, the following asymptotics hold for β:

β ∼ K 2 − 2b

6b
+ O

(
1

b

)
if K = O

(√
b
)
as b → ∞. (5.52)

Remark 5.8. Notice that the exponent β might have positive or negative values.
This depends on the value of K . In homoenergetic flows described by (3.4) (equiva-
lently (5.48)) there are two competing effects. The dilatation term tends to decrease
the average energy of themolecules (whichwewill think as a temperature in spite of
the fact that the velocity distribution is not close to a Maxwellian). On the contrary,
the shear term tends to increase the temperature of the system. The exponent β is
positive if the effect of the shear is more important than the one due to dilatation,
and as a consequence the temperature of the molecules increases. On the contrary,
if the effect of the shear is small compared with the one of dilatation, β is negative
and the temperature of the system decreases, as it might be expected.

Remark 5.9. In the original set of variables the self-similar solution has the form

g (t, w) = 1

t4
G
(w

t

)
,

with G as in Theorem 5.7.

Proof. The existence of a real number β and a measure G satisfying (5.51) and
solving (5.47), if b is sufficiently large and K

b is sufficiently small, is a straightfor-
ward consequence of Theorem 4.13 since, under these assumptions, ‖L‖ in (5.48)
is small.

It only remains to prove the asymptotics (5.52). To this end we describe in
detail the solutions of the eigenvalue problem (5.49), (5.50). We denote λ = α

b +1.
The problem (5.49), (5.50) has five eigenvalues, one of them with multiplicity two,
namely

λ = − 1

2b
, with eigenfunction �1,2 = K�1,3, �1,1 = �2,2 = �3,3 = �2,3 = 0

λ = 0 with 2d subspace of eigenfunctions �3,3 = �1,3 = �2,3 = �1,1 + �2,2 = 0.

The three roots of the equation give

−2

3
A2 + 2B2λ − 4

3
B2 + 3Bλ2 − 7

3
Bλ + λ3 − λ2 = 0, (5.53)

with A = K
2b and B = 1

2b . If A and B are small one of the roots of (5.53) would be
close to λ = 1 and the other two would be close to zero. Since we are interested in
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the root with the largest real part we compute the asymptotics of the root close to
one. Using the Implicit Function Theorem we obtain

λ − 1 = 2

3
A2 − 2

3
B + O

(
A4 + B2

)

as (A, B) → 0, whence (5.52) follows. ��

5.2.1. Planar Shear with K = 0. We now consider self-similar solutions for
homoenergetic flows (2.5), (2.8) with L (t) as in (3.4) with K = 0. Actually this
case can be considered a limit case of the one considered in the previous subsection
(namely K → 0), but we discuss it separately because the competition between
dilatation and shear effects does not take place. In this case g solves (1.7) which in

this case becomes, ignoring the term O
(

1
t2

)
as in the previous subsection,

∂t g − 1

t
w3∂w3g = Cg (w) . (5.54)

Using (4.77) we obtain

ρ (t) = ρ (1)

t
. (5.55)

A dimensional analysis argument similar to the one in the previous subsection
shows that the balance between the hyperbolic term − 1

t w3∂w3g and the collision
term Cg (w) takes place for kernels B with homogeneity γ = 0. We will restrict
our analysis to that case.

We change variables in order to obtain a problem with conserved “mass”. We
define

g (t, w) = 1

t
ḡ (τ, w) , τ = log (t) .

Then
∂τ ḡ − ∂w3 (w3ḡ) = Cḡ (w) . (5.56)

Thus ∂τ

(∫
R3 ḡ (τ, dw)

) = 0. Taking this into account we look for self-similar
solutions of (5.56) with the form

ḡ (τ, w) = e−3βτG (ξ) , ξ = w

eβτ
, (5.57)

where G solves
−β∂ξ (ξ · G) − ∂ξ3 (ξ3G) = CG (w) . (5.58)

This equation is a particular case of (4.52) with α = β and

L =
⎛
⎝ 0 0 0
0 0 0
0 0 1

⎞
⎠ . (5.59)

We also remark that (5.58) and (5.59) are analogous to (5.47) and (5.48) with
K = 0. We will prove the existence of nontrivial solutions of (5.58) for some
suitable β, using Theorem 4.13. We recall that β is obtained by means of the
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Fig. 2. Graphic of the function β = β (b)

solution of an eigenvalue problem (cf. (4.56), (4.57)). Actually, this eigenvalue
problem in the case of L given by (5.59) takes the form (5.49), (5.50) with K = 0:
(α

b
+ 1

)
�1,1 = �,

(α

b
+ 1

)
�1,2 = 0,

(α

b
+ 1

)
�1,3 + 1

2b
�1,3 = 0 (5.60)

(α

b
+ 1

)
�2,2 = �,

(α

b
+ 1

)
�2,3 + 1

2b
�2,3 = 0,

(α

b
+ 1

)
�3,3 + 1

b
�3,3 = �.

(5.61)

We then have the following result:

Theorem 5.10. Suppose that B is as in (4.28) and suppose that b is as in (4.36).
There exists b0 > 0 large such that, for any ζ � 0 and any b � b0 there existsβ ∈ R
and G ∈ M+

(
R3
c

)
which solves (5.42) and satisfies the normalization conditions

∫
R3

G (dw) = 1,
∫
R3

w j G (dw) = 0,
∫
R3

|w|2 G (dw) = ζ . (5.62)

Moreover,

β = b

⎡
⎣1

2

⎡
⎣−

(
1

b
+ 1

)
+
√(

1

b
− 1

)2

+ 8

3

1

b

⎤
⎦
⎤
⎦ . (5.63)

Remark 5.11. It might be readily seen that β < 0 for any b > 0. Moreover
β = β (b) is a decreasing function of b. (See Fig. 2). Therefore, the temperature
of this system decreases as t increases. Notice that this solution reduces to the one
obtained in Theorem 5.7 if we take K = 0. We obtain β → − 1

3 as b → ∞. Thus,
the temperature decreases faster as b increases.

Remark 5.12. In the original set of variables the self-similar solution has the form

g (t, w) = 1

t4
G
(w

t

)
,

with G as in Theorem 5.7.
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Proof. The existence of a real number β and a measure G satisfying (5.51) and
solving (5.47) if b is sufficiently large and K

b is sufficiently small is just a conse-
quence of Theorem 4.13 since under these assumptions ‖L‖ in (5.48) is small.

It only remains to prove the asymptotics (5.52). To this end we describe in detail
the solutions of the eigenvalue problem (5.49), (5.50). We denote λ = α

b + 1. The
problem (5.60), (5.61) has the following eigenvalues and eigenvectors:

λ = 0 : �1,3 = �2,3 = �3,3 = 0 ; �1,1 + �2,2 = 0, �1,2 arbitrary

λ = − 1

2b
: �1,2 = �3,3 = �1,1 = �2,2 = 0 ; �1,3, �2,3 arbitrary.

Notice that the subspaces of eigenvectors of each of these eigenvalues have
dimension two. The last remaining eigenvectors are

λ1 = 1

2

[
− (B − 1) +

√
(B − 1)2 + 8

3
B

]

λ2 = 1

2

[
− (B − 1) −

√
(B − 1)2 + 8

3
B

]
.

Since β is given by the eigenvalue of (5.60), (5.61) with the largest real part,
i.e. λ1 we obtain (5.63). ��

6. Conjectures on the Non-self-Similar Behavior

We recall that, the collision operator in (1.7) is quadratic. It rescales as follows:

ρ (t) [w]γ [g] , (6.1)

where [w] is the order of magnitude of w, γ is the homogeneity of the collision
kernel B (cf. (2.3)) and [g] the order of magnitude of g

The term L (t) can yield different behaviors as t → ∞. We denoted the term
L (t) w · ∂wg as hyperbolic term; it can be constant, or it can behave like a power
law (increasing or decreasing). As we pointed out in the introduction, the key idea
is that there are three possibilities depending on the value of the homogeneity γ

and the function yielding the scaling of [w] . Either the hyperbolic term is larger
than the collision term as t → ∞, either the collision term is larger or either the
hyperbolic term and the collision term have the same order of magnitude. Suppose
that L (t) scales like a function η (t) . The hyperbolic term scales then like η (t) [g]
and the collision term scales as in (6.1). Therefore, we need to compare the terms:
η (t) and ρ (t) [w]γ .

In order to present the expected picture for homoenergetic solutions of the
Boltzmann equation, in this section we give conjectures for the cases in which the
hyperbolic term and the collision term do not balance; more precisely, the cases for
which one or the other term dominates. We believe, based on formal calculations,
that the latter can be handled by the Hilbert expansion, but using as small parameter
1/t . These lengthy formal calculations are presented elsewhere [20], and here we
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give conjectures based on these calculations to completemost of the cases classified
in Section 3. See Table 6.3 for these conjectures.

The cases in which the hyperbolic terms dominate have two subcases. In one
subcase, according to a simplified model (presented in [21]), the collisions term is
formally very small as t → ∞, but has a huge effect on the particle distributions.We
do not make conjectures about this interesting subcase here. In the other subcase the
hyperbolic terms are so dominant that the collisions have no effect on the asymptotic
behavior of the solution (“frozen collisions”).

We describe a few details on these formal calculations below.

6.1. Collision-Dominated Behavior

Here we focus on the case in which, for some values of γ , the collision term
dominates the hyperbolic term. From now on, we refer to this case as the “collision-
dominated behavior” case.

For collision-dominated behavior we have computed the asymptotics of the
velocity dispersion using a suitable Hilbert expansion around theMaxwellian equi-
librium. To formulate our conjecture based on this expansion we define, for t > 0,

μ(t) =
{
1, simple shear,
1/t, planar shear, or 2d dilatation, or combined shear.

(6.2)

In the long time asymptotics, the solutions behave like a Maxwellian distribution
with increasing or decreasing temperature dependingon the sign of the homogeneity
parameter γ .

Conjecture. Let g (·) ∈ C
(
[0,∞] : M+

(
R3
c

))
be a mild solution in the sense of

Definition 4.1 of theBoltzmann equationwith cross-section B and letμ be defined in
the various cases by (6.2). Then, for t → ∞, the solution behaves like aMaxwellian
distribution, i.e.

g(w, t) → C̃β(t)
3
2 e−β(t)|w|2 in L2

(
R3; e−|w|2dw

)
, (6.3)

where C̃ = 1

(2π)
3
2
. More precisely, we have the following cases:

1 Assume that

Tr(L) �= 0 (6.4)

with L as in (2.10). We define a := 2
3 Tr(L). Ifμ(t)e− γ

2 at → ∞ the asymptotic
behavior is given by a Maxwellian distribution (6.3) with

β(t) = C eat as t → ∞, (6.5)

where C > 0 is a numerical constant.
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2 Let γ > 0 and assume that
∫ +∞

0

ds

μ(s)
= ∞ (6.6)

and
Tr(L) = 0, (6.7)

with L as in (2.10). Then the asymptotic behavior is given by a Maxwellian
distribution (6.3) with increasing temperature where β(t) satisfies

β(t) �
(

γ b
∫ t

0

ds

μ(s)

)− 2
γ

as t → ∞, (6.8)

with b = − 〈ξ · Lξ, (L)−1[(ξ · Lξ)])〉
w

(Green-Kubo formula).

Further details about this conjecture can be found in [20]. We emphasize that
in case 1), with μ(t) = 1, in order to obtain a dynamics dominated by collisions,
we must choose the homogeneity γ satisfying the condition a · γ < 0.

6.2. Hyperbolic-Dominated Behavior

As mentioned at the beginning of this section we focus on the case of frozen
collisions, i.e, that the collisions term becomes so small that the effect of collisions
is irrelevant as t → ∞. The formal argument underlying our conjecture is based
on control of collision rate (gain term) for molecular densities that satisfy the
asymptotic first order hyperbolic equation ∂t g+∂w · (L(t)wg) = 0. If the resulting
collision rate is decreasing in time, we refer to this case as hyperbolic-dominated
behavior. More precisely, our terminology frozen collisions refers to the case of
exponentially decreasing behavior of the collision rate as t → ∞. In this case we
conjecture that g(t, w) converges in the sense of measures to a limit distribution
that depends on the initial datum.

Note that these regimes are complementary to those given by the formal Hilbert
expansion and the self-similar profile, except for the case of simple shear, for which
there is a gap −1 ≤ γ < 0. In this gap the collision rate is small but it still plays
a significant role in the formal asymptotic behavior of the Boltzmann equation. A
detailed justification for these conjectures can be found in [21].

6.3. Table of Results

We collect here all the results obtained in this paper, the conjectures presented
above and discussed in [20,21].

– Simple shear.
The critical homogeneity corresponds to γ = 0, i.e. to Maxwell molecules.
Critical case (γ = 0) Supercritical case (γ > 0)
Self-similar solutions with increas-
ing temperature

Maxwellian distribution with time
dependent temperature (Hilbert
expansion)
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– Homogeneous dilatation.
The critical homogeneity corresponds to γ = −2.
Critical case (γ = −2) Subcritical case (γ < −2)
Maxwellian distribution with time
dependent temperature (Hilbert
expansion)

Maxwellian distribution with time
dependent temperature (Hilbert
expansion)

– Planar shear.
The critical homogeneity corresponds to γ = 0, i.e. to Maxwell molecules.
Critical case (γ = 0) Subcritical case (γ < 0)
Self-similar solutions Maxwellian distribution with time

dependent temperature (Hilbert
expansion)

– Planar shear with K = 0.
The critical homogeneity corresponds to γ = 0, i.e. to Maxwell molecules.
Critical case (γ = 0) Subcritical case (γ < 0)
Self-similar solutions Maxwellian distribution with time depen-

dent temperature (Hilbert expansion)
– Cylindrical dilatation.
In this case we have two critical homogeneities: γ = − 3

2 and γ = −2.
(γ > −2) (γ < − 3

2 )
Frozen collisions Maxwellian distribution with time depen-

dent temperature (Hilbert expansion)
– Combined shear in orthogonal directions (K1, K2, K3) with K1K3 �= 0.

The critical homogeneity corresponds to γ = 0, i.e. to Maxwell molecules.
Critical case (γ = 0) Supercritical case (γ > 0)
Non Maxwellian distribution Maxwellian distribution with time

dependent temperature (Hilbert expan-
sion)

7. Entropy Formulas

Homoenergetic solutions are characterized by constant values in space of the
particle density ρ = ρ (t) and internal energy ε = ε (t) . We now discuss the form
of another relevant thermodynamic magnitude, namely the entropy. We identify
for the Boltzmann equation the entropy with minus the H -function. Then if the
velocity distribution is given by f = f (t, x, v) , we obtain the following entropy
density for particle at a given point x :

s (x, t)

ρ (t)
= − 1

ρ (t)

∫
f (t, x, v) log ( f (t, x, v) .) d3v.

It then readily follows, using (2.5), that the entropy density for particle is inde-
pendent of x and given by

s (t)

ρ (t)
= − 1

ρ (t)

∫
R3

g (t, w) log (g (t, w)) d3w. (7.1)
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It is interesting to notice that in several of the solutions discussed above, the for-
mulas for entropy for particle havemany analogieswith the corresponding formulas
for equilibrium distributions, in spite of the fact that the distributions obtained in
this paper deal with nonequilibrium situations.

The case in which the analogy between the entropy formulas for the equilibrium
case and the considered solutions is the largest, not surprisingly, if the particle
distribution is given by a Hilbert expansion (see details in [20]). However, there
is also a large analogy between the entropy formulas of equilibrium distributions
and self-similar solutions. This is due to the fact that to a large extent, the entropy
formulas depend on the scaling properties of the distributions. Indeed, notice that
both in the cases of solutions given by Hilbert distributions or self-similar solutions
we can approximate g (t, w) as

g (w, t) ∼ 1

a (t)
G

(
w

λ (t)

)
as t → ∞ (7.2)

for suitable functions a (t) , λ (t) which are related to the particle density and the
average energy of the particles. In the case of solutions given by Hilbert expansions
the distribution G is a Maxwellian, which can be assumed to be normalized to have
density one and temperature one. Moreover, we will assume also that the mass of
the particles is normalized to m = 2 in order to get simpler formulas. This implies

that the Maxwellian distribution takes the form GM (ξ) = π− 3
2 e−|ξ |2 .

In the case of the self-similar solutions considered in this paper, G is a non
Maxwellian distribution.

We define the energy for particle e (t) as

ρ (t) e (t) = ε (t) =
∫
R3

|w|2 gdw.

Then, using the approximation (7.2), we get

ρ = λ3

a

∫
G (ξ) dξ, e = λ2

∫ |ξ |2 Gdξ∫
G (ξ) dξ

.

Therefore

e
3
2

ρ
= a

(∫ |ξ |2 Gdξ
) 3
2

(∫
G (ξ) dξ

) 5
2

and

log

(
e
3
2

ρ

)
= log (a) + log

⎡
⎣
(∫ |ξ |2 Gdξ

) 3
2

(∫
G (ξ) dξ

) 5
2

⎤
⎦ .

On the other hand, (7.1) yields

s

ρ
= log (a) −

∫
G log (G) dξ∫
G (ξ) dξ

.
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Then
s

ρ
= log

(
e
3
2

ρ

)
+ CG , (7.3)

where CG is

CG = −
∫
G log (G) dξ∫
G (ξ) dξ

− log

⎡
⎣
(∫ |ξ |2 Gdξ

) 3
2

(∫
G (ξ) dξ

) 5
2

⎤
⎦ . (7.4)

The formula (7.3) has the same form as the usual formula of the entropy for the
equilibrium case, except for the value of the constant CG . In the case of solutions
given by Hilbert expansions the value ofCG is the same as the one in the formula of
the entropy for the equilibrium case. Therefore, in the case of the solutions obtained
in this paper which can be approximated by Hilbert expansions, the asymptotic
formula for the entropy by particle is the same as the one for the equilibrium case.

In the case of the self-similar solutions the value of the constantCG differs from
the corresponding value for the one for the equilibrium case. Since the entropy tends
to a maximum for a given value of the particle density and energy, it follows that
GG < CM , where CM is the corresponding value of the constant for a Maxwellian
distribution with density one and temperature one and it takes the value CM =
3
2

[
1 − log

( 3
2

)]
.

In the case of hyperbolic-dominated behavior the formula of the entropy for the
corresponding solutions does not necessarily resemble the formula of the entropy
for the equilibrium case, because in general the scaling properties of the particle
distributions are very different from the ones taking place in the case of gases
described by Maxwellian distributions. For further discussions in this direction we
refer to [21].

8. Conclusions

We have obtained several examples of long time asymptotics for homoener-
getic flows of the Boltzmann equation. These flows yield a very rich class of possi-
ble behaviors. Homoenergetic flows can be characterized by a matrix L (t) which
describes the deformation taking place in the gas. The behavior of the solutions
obtained in this paper depends on the balance between the hyperbolic terms of
the equation, which are proportional to L (t) and the homogeneity of the collision
kernel. Roughly speaking the flows can be classified in three different types, which
correspond to the situations in which the hyperbolic terms are the largest ones as
t → ∞, the collision terms are the dominant ones and both of them have a similar
order of magnitude, respectively.

In this paper, we provided a rigorous proof of the existence of self-similar
solutions yielding a non-Maxwellian distribution of velocities in the case in which
the hyperbolic terms and the collisions balance. A distinctive feature of these self-
similar solutions is that the corresponding particle distribution does not satisfy a
detailed balance condition. In these solutions the particle velocities are given by a
subtle interplay between particle collisions and shear.
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The solutions obtained in this paper yield interesting insights about themechan-
ical properties of Boltzmann gases under shear. In addition the results of this paper
suggest many interesting mathematical questions which deserve further investiga-
tion. We have obtained in several cases critical exponents for the homogeneity of
the collision kernel. At the values of those critical exponents we expect to have
self-similar velocities distributions. This has been proved rigorously in the cases
in which the value of the critical homogeneity is zero, i.e. for Maxwell molecules.
New methods are needed to prove the existence of self-similar solutions for critical
homogeneities different from zero, as for instance we could expect in the case of
cylindrical dilatation for the critical value of the homogeneity, i.e. γ = −2.

In the case of collision-dominated behavior and in the case of hyperbolic-
dominated behavior we proposed some conjectures for asymptotic formulas for
the solutions based on formal computations presented in [20,21]. In the first case
we have obtained that the corresponding distribution of particle velocities for the
associated homoenergetic flows can be approximated by a family of Maxwellian
distributions with a changing temperature whose rate of change is obtained by
means of a Hilbert expansion. It would be relevant to prove rigorously the existence
of those solutions and to understand their stability properties.

In the case in which the hyperbolic terms are much larger than the collision
terms the resulting solutions yield much more complex behaviors than the ones
that we have obtained in the previous cases. The detailed understanding of the
particle distributions is largely open and challenging.

Moreover, there are also homoenergetic flows yielding divergent densities or
velocities at some finite time. These flows seem to also have interesting properties
but we have not considered them in this paper.
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