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Abstract

Consider the acoustic wave equation with unknown wave speed c, not neces-
sarily smooth. We propose and study an iterative control procedure that erases the
history of a wave field up to a given depth in a medium, without any knowledge of
c. In the context of seismic or ultrasound imaging, this can be viewed as removing
multiple reflections from normal-directed wavefronts.

1. Introduction

Consider the acoustic wave equation with an unknown wave speed c, not nec-
essarily smooth, on a finite or infinite domain � ⊂ R

n . Assume that we can probe
our domain � with arbitrary Cauchy data outside of �, and measure the reflected
waves outside� for sufficiently large time. The inverse problem is to deduce c from
these reflection data, and this is the basis for many wave-based imaging methods,
including seismic and ultrasound imaging.

Toward this goal, we will define and study a time reversal-type iterative pro-
cess, the scattering control series. We were inspired by the work of Rose [15] in
one dimension, who developed a “single-sided autofocusing” procedure and iden-
tified it as Volterra iteration for the classical Marchenko equation. The Marchenko
equation solves the inverse problem for the one-dimensional acoustic wave equa-
tion, recovering c on a half-line from measurements made on the boundary.1 In the
course of our research, it became evident that the new procedure is quite closely
linked to boundary control problems [2,10], and has similar properties to Bingham
et al.’s iterative time-reversal control procedure [3].

1 More precisely, the Marchenko equation treats the constant-speed wave equation with
potential, to which the one-dimensional acoustic wave equation can be reduced by a change
of coordinates.
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In essence, scattering control allows us to isolate the deepest portion of a wave
field generated by given Cauchy data—behavior we demonstrate with both an
exact and microlocal (asymptotically high-frequency) analysis. Along the way we
present several applications of scattering control, including the removal of multiple
reflections and the measurement of energy content of a wave field at a particular
depth in�. In a future paper, we anticipate illustrating how to locate discontinuities
in c and recover c itself.

In the mathematical literature, the inverse problem’s data are typically given on
the boundary of�, in terms of the Dirichlet-to-Neumannmap or its inverse.We find
that the Cauchy data-based reflection map allows us a much cleaner analysis. It is
not hard to see (cf. Proposition 2.10) that theDirichlet-to-Neumannmap determines
the Cauchy data reflection map, so no extra information is needed.

We start with an informal, graphical introduction to the problem. Section 2
defines the scattering control series rigorously and provides an exact analysis of
its behavior and convergence properties. Section 3 pursues the same questions
from a microlocal perspective. The discrepancy that arises between the exact and
microlocal analyses allows us to provide more insight on convergence in Section 4.
Section 5 concludes by connecting our work to that of Rose and Marchenko.

1.1. Motivation

Before defining the scattering control equation and series, we begin by motivat-
ing our problem with a graphical example. In Fig. 1, the domain is� = {x > 0} ⊂
R, with a piecewise constant wave speed c having two discontinuities. We extend c
to all of R, but assume it is known only outside�. Now consider the solution of the
acoustic wave equation onR for time t ∈ [0, 2T ], with rightward-traveling Cauchy
data h0 supported outside �. The initial wave scatters from the discontinuities in
c, producing an infinite sequence of reflections (Fig. 1a).

In imaging, one attempts to recover c or someproxy for it. Inmany imaging algo-
rithms currently in use, only waves having undergone a single reflection (so-called
primary reflections) are typically desired, while the remaining multiple reflections
only complicate the interpretation of the data. As a result, much research in seismic
imaging has been directed toward removing or attenuating multiple reflections.

For the problem at hand, it is plausible (and can be proven) that by adding
a proper control, or trailing pulse to the initial data, the multiple reflections may
be suppressed, at the cost of a harmless additional outgoing pulse (Fig. 1b). If c
were known inside the domain (cf. Section 3.4), an appropriate control may be
constructed microlocally under some geometric conditions. The issue, of course,
is to find the control knowing only the reflection response of �.

Rather than attacking the multiple reflection suppression problem, however,
we consider a related problem obtained by focusing on the interior, rather than
exterior, of �. Returning to Fig. 1b, we note that the wave field rightmost portion
of the medium contains a single, purely transmitted wave, which we call the direct
transmission of the initial data h0. Slightly more precisely, the wave field inside �
at time 2T is generated exactly by the direct transmission at time T . The control
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Fig. 1. a A domain � (shaded) with unknown wave speed c is probed by exterior Cauchy
data h0. Two discontinuities in c (dashed) scatter the incoming wave. b An appropriate
trailing pulse added to h0 eliminates the multiply reflected rays

Fig. 2. Almost direct transmission of initial data h0 at time T > 0

has therefore isolated the direct transmission; our problem is to find such a control
for a given h0 using only information available outside �.

1.2. Almost Direct Transmission

At its heart, the direct transmission is a geometric optics construction, and
is valid only in the high-frequency limit where geometric optics holds. Conse-
quently, the directly transmitted wave field can be isolated only microlocally (mod-
ulo smooth functions). We will consider the geometric optics viewpoint later, but
initially avoid a microlocal approach, as follows. Informally, suppose h0 creates
a wave that enters � at time 0, travelling normal to the boundary. At a later time
T , the directly transmitted wave may be singled out from all others by its distance
from the boundary: namely, T (as long as it has not crossed the cut locus). Here,
distance is the travel time distance, which for c smooth is Riemannian distance in
the metric c−2dx2.

With this in mind, given Cauchy data h0 supported just outside�we substitute
for the direct transmission the almost direct transmission, the part of the wave field
of h0 at time T of depth at least T . More precisely, let � be a domain containing
� and supp h0; then let �T ⊂ � be the set of points in � greater than distance T
from the boundary. The almost direct transmission of initial data h0 at time T is
the restriction to �T of its wave field at t = T (Fig. 2).
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Fig. 3. Shrinking the support of the initial data h0 to a point. The dashed line indicates the
normal geodesic from that point; the support of the almost direct transmission shrinks to a
point on the geodesic

The nonzero volume of�\�means that some multiply reflected rays may still
reach �T . Hence, we have in mind taking a limit as�→ � and the support of h0
approaches a point on ∂�. In this limit, the support of the almost direct transmission
converges to a point along the normal directly-transmitted ray, for sufficiently small
T (at least in the absence of caustics and before reaching the cut locus); see Fig. 3.

2. Exact Scattering Control

Weset up the problem and our notation in Section 2.1, then introduce the scatter-
ing control procedure in Section 2.2, where we study its behavior and convergence
properties. The final result, expressed in Corollary 2.7, is that scattering control
recovers the almost direct transmission’s wave field outside �, modulo harmonic
extensions. In Section 2.3, we apply this to recover the energy (with a harmonic
extension) and kinetic energy of this portion of the wave field. Proofs for the results
in these sections follow in Section 2.4.

2.1. Setup

2.1.1. Unique Continuation Let � ⊆ R
n be a Lipschitz domain, and let c be a

wave speed satisfying c, c−1 ∈ L∞(Rn).
Initially, the sole extra restriction we impose on c is that it satisfy a certain

form of unique continuation. More precisely, assume there is a Lipschitz distance
function d(x, y) such that any u ∈ C(R, H1(Rn)), satisfying either that:

– u, ∂t u = 0 for t = 0 and d(x, x0) < T (finite speed of propagation)
– u = 0 on a neighborhood of [−T, T ] × {x0} (unique continuation)

is also zero on the light diamond

D(x0, T ) =
{
(t, x)d(x, x0) < T − |t |

}
,

if (∂2t − c2�)u = 0 on a neighborhood of D(x0, T ), for any x0 ∈ R
n , T > 0.

While the set of wave speeds with this property has not been settled in gen-
eral, several large classes of c are eligible, stemming from the well-known work of
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Tataru [22]. Originally known for smooth sound speeds [17, Theorem 4], Stefanov
and Uhlmann later extended this to piecewise smooth speeds with conormal singu-
larities [18, Theorem 6.1], and Kirpichnikova and Kurylev to a class of piecewise
smooth speeds in a certain kind of polyhedral domain [12, §5.1]. The corresponding
travel time d(x, y) is the infimum of the lengths of all C1 curves γ (s) connecting
x and y, measured in the metric c−2dx2, such that γ−1(singsupp c) has measure
zero.

2.1.2. Geometric Setup Next, let us set up the geometry of our problem. We
will probe � with Cauchy data (an initial pulse) concentrated close to �, in some
Lipschitz domain � ⊃ �. We will add to this initial pulse a Cauchy data control
(a tail) supported outside �, whose role is to remove multiple reflections up to a
certain depth, controlled by a time parameter T ∈ (0, 12 diam�). This will require
us to consider controls supported in a Lipschitz neighborhood ϒ of� that satisfies
d(∂ϒ,�) > 2T and is otherwise arbitrary.

While we are interested in what occurs inside�, the initial pulse region� will
actually play a larger role in the analysis. First, define the depth d∗�(x) of a point x
inside �:

d∗�(x) =
{
+d(x, ∂�), x ∈ �,
−d(x, ∂�), x /∈ �. (2.1)

Larger values of d∗� are therefore deeper inside�. For each t , define the open sets

�t =
{
x ∈ ϒ ∣∣ d∗�(x) > t

}
,

��t =
{
x ∈ ϒ ∣∣ d∗�(x) < t

}
.2

(2.2)

As in (2.2) above, we use a superscript � to indicate sets and function spaces lying
outside, rather than inside, some region.

2.1.3. Acoustic Wave Equation Let C̃ be the space of Cauchy data of interest:

C̃ = H1
0 (ϒ)⊕ L2(ϒ), (2.3)

considered as a Hilbert space with the energy inner product

〈
( f0, f1), (g0, g1)

〉 =
∫

ϒ

(
∇ f0(x) · ∇g0(x)+ c−2 f1(x)g1(x)

)
dx . (2.4)

Within C̃ define the subspaces of Cauchy data supported inside and outside �t :

Ht = H1
0 (�t )⊕ L2(�t ), H = H0,

H̃�t = H1
0 (�

�
t )⊕ L2(��t ), H̃�= H̃�0.

(2.5)

2 We tacitly assume throughout that �t , ��t are Lipschitz.
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Define the energy and kinetic energy of Cauchy data h = (h0, h1) ∈ C̃ in a subset
W ⊆ R

n :

EW (h) =
∫

W

(
|∇h0|2 + c−2 |h1|2

)
dx, KEW (h) =

∫

W
c−2 |h1|2 dx . (2.6)

Next, define F to be the solution operator [14] for the acoustic wave initial value
problem:

F : H1(Rn)⊕ L2(Rn)→ C(R, H1(Rn)),

F(h0, h1) = u s.t.

⎧⎪⎨
⎪⎩

(∂2t − c2�)u = 0,

u
∣∣
t=0 = h0,

∂t u
∣∣
t=0 = h1.

(2.7)

Let Rs propagate Cauchy data at time t = 0 to Cauchy data at t = s:

Rs = (F, ∂t F)
∣∣∣
t=s
: H1(Rn)⊕ L2(Rn)→ H1(Rn)⊕ L2(Rn). (2.8)

Now combine Rs with a time-reversal operator ν : C̃ → C̃, defining for a given T

R = ν ◦ R2T , ν : ( f0, f1) �→ ( f0,− f1). (2.9)

In our problem, only waves interacting with (�, c) in time 2T are of interest.
Consequently, let us ignore Cauchy data not interacting with �, as follows.

Let G = H̃� ∩ (R2T (H1
0 (R

n\�) ⊕ L2(Rn\�))) be the space of Cauchy data
in C̃ whose wave fields vanish on � at t = 0 and t = 2T . Let C be its orthogonal
complement inside C̃, and H�t its orthogonal complement inside H̃�t . With this
definition, R maps C to itself isometrically.

2.1.4. Projections Inside and Outside �t The final ingredients needed for the
iterative scheme are restrictions of Cauchy data inside and outside�. While a hard
cutoff is natural, it is not a bounded operator in energy space: a jump at ∂� will
have infinite energy. The natural replacements are Hilbert space projections. More
generally, we consider projections inside and outside �t .

Let πt , π�t be the orthogonal projections of C onto Ht , H�t respectively; let
π t = 1 − π�t . As usual, write π = π0, π� = π�0 . The complementary projection
I − πt − π�t is the orthogonal projection onto It , the orthogonal complement to
Ht ⊕H�t inC. It may be described by the following lemma, which is in essence the
Dirichlet principle.

Lemma 2.1. It consists of all functions of the form (i0, 0), where i0 ∈ H1
0 (ϒ) is

harmonic in ϒ\∂�t .

Lemma 2.1 provides two useful pieces of information. First, I = I0 is independent
of c. Secondly, we can identify the behavior of the projections π t , π�t . Inside �t

the projection π t h equals h, while outside�t , it agrees with the It component of h,
which is the harmonic extension of h|∂�t to ϒ (with zero trace on ∂ϒ). Similarly,
π�t h is zero on�t , and outside�t equals h with this harmonic extension subtracted.

It will be useful to have a name for the behavior of π t h, and so we define the
notion of stationary harmonicity as follows:
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Definition 2.2. Cauchy data (h0, h1) are stationary harmonic on W ⊆ R
n if h0|W

is harmonic and h1|W = 0.

2.2. Scattering Control

Suppose we have Cauchy data h0 ∈ H. We can probe � with h0 and observe
Rh0 outside�. In particular, the reflected dataπ�R can bemeasured, and from these
data, we would like to procure information about c inside �. However, multiple
scattering as waves travel into and out of � makes π�Rh0 difficult to interpret.

In this section, we construct a control in H� that eliminates multiple scattering
in the wave field of h0 up to a depth T inside �. More specifically, consider the
almost direct transmission of h0 as follows:

Definition 2.3. The almost direct transmission of h0 ∈ H at time T is the restriction
RT h0|�T .

Ideally, we would like to recover (indirectly) this restricted wave field. If con-
sidered as Cauchy data on the ambient space ϒ , the almost direct transmission
has infinite energy in general due to the sharp cutoff at the boundary of �T . As a
workaround, consider the almost direct transmission’s minimal-energy extension
to ϒ . This involves a harmonic extension of the first component of Cauchy data,
so that we have

Definition 2.4. The harmonic almost direct transmission of h0 at time T is

hDT = hDT(h0, T ) = πT RT h0. (2.10)

By Lemma 2.1, hDT is equal to RT h0 inside�T ; outside�T , its first component
is extended harmonically from ∂�T , while the second component is extended by
zero.

2.2.1. Scattering Control Series Our major tool is a Neumann series, the scat-
tering control series

h∞ =
∞∑
i=0

(π�Rπ�R)i h0, (2.11)

formally solving the scattering control equation

(I − π�Rπ�R)h∞ = h0. (2.12)

The series in general does not converge inC; but it does converge in an appropriate
weighted space, as we show in Theorem 2.6. Applying π to (2.11), we see that h∞
consists of h0 plus a control in H�. Our first theorem characterizes the behavior of
the series.

Theorem 2.5. Let h0 ∈ H and T ∈ (0, 12 diam�). Then isolating the deepest part
of the wave field of h0 is equivalent to summing the scattering control series:

(I − π�Rπ�R)h∞ = h0 ⇐⇒ R−TπR2T h∞ = hDT and h∞ ∈ h0 +H�.
(2.13)

Above, R−TπR2T h∞ may also be replaced by R−sπT−s RT+sh∞ for any s ∈
[0, T ].
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Fig. 4. Illustration of the wave field generated by scattering control, as given by Theorem 2.5

Such an h∞, if it exists, is unique in C. As for the harmonic extension in hDT,
it is equal to πR2T h∞ outside �:

hDT
∣∣
��

= j0
∣∣
��
, where πR2T h∞ = ( j0, j1), (2.14)

and is bounded:

E��T (hDT) � C ‖h0‖ (2.15)

for some C = C(c, T ) independent of h0.

Equation (2.13) tells us that the wave field created by h∞ inside � at t = 2T
is entirely due to the harmonic almost direct transmission at t = T (Fig. 4). More
generally, the wave field of h∞ agrees with that of hDT on its domain of influence.
This is not true of h0’swave field, where otherwaves, includingmultiple reflections,
will pollute the wave field at time 2T . It follows that the tail h∞ − h0 enters� and
carries all of the scattered energy of h0 out with it. We will see this from an energy
standpoint in Section 2.3 and from a microlocal (geometric optics) standpoint in
Section 3.

The question now is to study whether the Neumann series (2.11) converges
at all. Since R is an isometry and π� a projection, we have ‖π�Rπ�R‖ � 1.
From our later spectral characterization, we know that ‖π�Rh‖ < ‖h‖, strictly,
for all h ∈ H�. This is also true for a completely trivial reason: we eliminated G
when constructing C. What hinders convergence is that ‖h‖ − ‖π�Rh‖ might be
arbitrarily small; in other words, almost all the energy could be reflected off �.
Note that if the series fails to converge, no other finite energy control in H� can
isolate the harmonic almost direct transmission of h0; see Proposition 2.8.

In the next theorem, we investigate convergence via the spectral theorem. It
turns out that the only problem is outside�; inside� the partial sums’ wave fields
at t = 2T do converge, and their energies are in fact monotonically decreasing. We
will also demonstrate that the Neumann series converges inH for a dense set of h0,
and identify a larger space in which the Neumann series converges for any h0.
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For the statement of the theorem, define J to be the following space of Cauchy
data, which, roughly speaking, remains completely inside or completely outside�
in time 2T :

J = (H ∩ R(H)
)⊕ (H� ∩ R(H�)

)
. (2.16)

Let χ : C → J be the orthogonal projection onto J.

Theorem 2.6. With h0, T as in Theorem 2.5, define the partial sums

hk =
k∑

i=0

(π�Rπ�R)i h0. (2.17)

Then the deepest part of the wave field can be (indirectly) recovered from {hk}
regardless of convergence of the scattering control series:

lim
k→∞ R−TπR2T hk = RTχh0 = hDT, ‖πRhk‖ ↘ ‖hDT‖. (2.18)

The set of h0 for which the scattering control series converges in C,

Q =
{
h0 ∈ H

∣∣∣ (I − π�Rπ�R)−1h0 ∈ C
}
, (2.19)

is dense inH. For all h0 ∈ H, the partial sum tails hk − h0 converge in a weighted
space that can be formally written as

I√
I − N 2

(1− χ)C, N = πRπ + π�Rπ�. (2.20)

As an immediate corollary of (2.18), we recover in the limit the wave field gen-
erated by the harmonic almost direct transmission outside�, using only observable
data.

Corollary 2.7. Let FDT(t, x) = (FhDT)(t − T, x) be the harmonic almost direct
transmission’s wave field. Then

(Fhk)(t, x)− (Fπ�R2T hk)(t − 2T, x)→ FDT(t, x) as k → ∞, (2.21)

the convergence being H1 in space, uniformly in t .

We end this section with three small propositions. The first states that the scat-
tering control equation has no solution if the Neumann series diverges.

Proposition 2.8. Let h0, T beas inTheorem2.5, and suppose (I−π�Rπ�R)k = h0
for some k ∈ H∗. Then the scattering control series (2.11) converges.

The second proposition characterizes the spaceH� containing the Cauchy data
controls. Essentially, each control is supported in a 2T -neighborhood of � and
its wave field is contained in this neighborhood for t ∈ [0, 2T ], up to harmonic
functions.
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Proposition 2.9. The control space H� consists of Cauchy data supported outside
� whose wave fields are stationary harmonic outside a 2T -neighborhood of � at
t = 0, 2T :

H� =
{
h ∈ C̃

∣∣∣ π�−2T h = π�−2T R2T h = πh = 0
}
. (2.22)

The third proposition shows that our reflection data (the Cauchy solution oper-
ator F , restricted to the exterior of �) is determined by the Dirichlet-to-Neumann
map, which is the data usually assumed given in boundary control problems and
the inverse problem. As a result, our method requires no additional information,
from a theoretical standpoint.

Proposition 2.10. Let c1, c2 be L∞ wave speeds on a C1 domain� ⊆ R
n. Extend

c1, c2 to �� = R
n\� by setting them equal to some c0 ∈ C∞(Rn).

Define solutionoperators F1, F2 corresponding to c1, c2 as in (2.7), andDirichlet-
to-Neumann maps

�i : g �→ ∂νu
∣∣
R×∂� , where

⎧⎨
⎩
(∂2t − c2i �)u = 0,
u
∣∣
R×∂� = g,

u
∣∣
t=0 = ∂t u

∣∣
t=0 = 0.

(2.23)

If �1 = �2, then F1h
∣∣
R×�� = F2h

∣∣
R×�� for all h ∈ H1(��)⊕ L2(��).

2.3. Recovering Internal Energy

As a direct application of the results in Section 2.2, we show how scattering
control can recover the energy of the harmonic almost direct transmission using
only data outside�, assuming supp h0 ⊂ �\�. If the Neumann series converges to
some h∞ ∈ C, we can recover the energy directly from h∞, but if not, Theorem 2.6
allowsus to recover the samequantities as a convergent limit involving theNeumann
series’ partial sums. In a forthcoming paper we demonstrate how these energies
may be used in inverse boundary value problems for the wave equation that arise
in imaging.

Proposition 2.11. Let h0 ∈ H, T > 0, and suppose (I − π�Rπ�R)h∞ = h0.
Then we can recover the harmonic almost direct transmission’s energy from data
observable on �� ∪ supp h0:

ERn (hDT) = ERn
(
h∞
)− ERn

(
π�Rh∞

)
. (2.24)

We can also recover the kinetic energy of the almost direct transmission (with no
harmonic extension) from data observable on �� ∪ supp h0:

KE�T (RT h0) = 1

2
〈h0, h0 − Rπ�Rh∞ − Rh∞〉. (2.25)
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Proposition 2.12. Let h0 ∈ H and T > 0, and hk as before. We can recover the
energy of the harmonic almost direct transmission as a convergent limit involving
data observable on �� ∪ supp h0:

ERn (hDT) = lim
k→∞

[
ERn (hk)− ERn (π�Rhk)

]
. (2.26)

Similarly, for the kinetic energy of the almost direct transmission,

4KE�T (RT h0) = lim
k→∞

[
E(hk)+ E(h0)− E(π�Rπ�Rhk)

+ 2〈π�Rhk, hk − Rπ�Rhk〉 − 2〈h0, Rπ�Rhk + Rhk〉
]
.

(2.27)

2.4. Proofs

Proof of Theorem 2.5. The proof is mostly a simple application of unique contin-
uation and finite speed of propagation.

Equation (2.13) (⇒) Let v(t, x) = FR−2TπR2T h∞ be the solution of the wave
equation with Cauchy data πR2T h∞ at t = 2T . We will often consider Cauchy
data at a particular time, and so define v = (v, ∂tv).

Applying π̄ to the defining equation (I − π�Rπ�R)h∞ = h0 implies πh∞ =
h0; also (π�v)(0, ·) = 0, since

0 = π�h0 = π�(I − π�R−2Tπ
�R2T )h∞

= π�R−2TπR2T h∞
= (π�v)(0, ·).

(2.28)

Outside of �, then, v(0, ·) and v(2T, ·) are equal to their projections in I, and
therefore are stationary harmonic. Equivalently, ∂tv and ∂t tv are zero on �� for
t = 0, 2T .

Because c is time-independent, ∂tv is also a (distributional) solution to the
wave equation. If ∂tv ∈ C(R, H1(Rn)), then Lemma 2.13 applied to ∂tv gives
∂tv(T, ·) = ∂t tv(T, ·) = 0 on ��T ; it follows that v(T, ·) is stationary harmonic on
��T . For the general case, choose a sequence of mollifiers ρε → δ in E ′(R) and
apply Lemma 2.13 to ρ′ε(t) ∗ v to obtain the same conclusion.

Byfinite speed of propagation (FSP), π̄|s|Rs π̄ = π̄|s|Rs for any s ∈ R. Applying
this twice, we find that in�T at time T , the solution v is equal to h∞’s wave field,
which in turn is equal to h0’s wave field (Fig. 5):

πT v(T, ·) = πT R−TπR2T h∞
FSP= πT R−T R2T h∞

= πT RT h∞
FSP= πT RT π̄h∞ = πT RT h0

def= hDT. (2.29)

However, since v(T, ·) is stationary harmonic on��T , we can remove the projection
on the left-hand side: πT R−TπR2T h∞ = R−TπR2T h∞. This proves the forward
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Fig. 5. Finite speed of propagation applied twice to wave field v

direction of (2.13). More generally, it follows that πT−s RT+sh∞ = v(T + s, ·) =
RshDT for s ∈ [0, T ]. Indeed, v(T + s, ·) = RT+sh∞ on �T−s by finite speed
of propagation, and using Lemma 2.13 as above implies v(T + s, ·) is stationary
harmonic on ��T−s for s ∈ [0, T ].
Equation (2.14) As above, applyLemma2.13 to ∂tv. This implies that ∂tv|[0,2T ]×�� =
0. Hence v is constant in time in��. At time T , we have v(T, ·) = πT RT h0, and the
pressure field v(T, ·) is the harmonic extension of the first component of RT h0|∂�T .
At time 2T , v equals πR2T h∞ on �� by construction, proving (2.14).

Equation (2.13) (⇐) Conversely, suppose R−TπR2T h∞ = hDT. Denote by v
the wave field generated by the harmonic almost direct transmission: v(t, x) =
(FhDT)(t−T, x). Since v(T, ·) is stationary harmonic in��T we have (∂tv)(T, ·) =
0 there.Applyingfinite speedof propagation, (∂tv)(0, ·) = 0on��, so (π�v)(0, ·) =
0.

Because R−TπR2T h∞ = hDT, the solution v is equal to (FπR2T h∞)(t −
2T, x), the wave field generated by πR2T h∞. Hence π�R−2TπR2T h∞ = 0, and
we have

(I − π�Rπ�R)h∞ = (I − π�R(π� + π)R)h∞ = (I − π�)h∞ = πh∞. (2.30)
Therefore h∞ is a solution of the scattering control equation for some initial pulse
πh∞; by hypothesis, this initial pulse is h0.

Uniqueness of h∞ Since R is unitary and π is a projection, any g ∈ C satisfies
∥∥π�Rπ�Rg∥∥ �

∥∥π�Rg∥∥ � ‖g‖. (2.31)

Now, suppose that (I − π�Rπ�R)g = 0 for some g ∈ C. As g = π�Rπ�Rg no
energy can be lost in either application of π�, and both inequalities of (2.31) are
in fact equalities. Hence πg and πR2T g must be zero, implying g ∈ G. But by
construction G ∩ C = {0}, establishing uniqueness.

Conversely, any g ∈ G satisfies g = π�Rπ�Rg by finite speed of propagation,
so in fact G = ker(I − π�Rπ�R).
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Equation (2.15) Finally, since i = hDT|�� = πT RT h0|�� , it follows immediately
that

‖i‖ � ‖πT RT h0‖ � ‖RT h0‖ = ‖h0‖ . (2.32)

The proof is complete. ��
In the proof of Theorem 2.5, we used the following corollary of finite speed of
propagation and unique continuation:

Lemma 2.13. Let u ∈ C(R, H1(Rn)) be a solution of (∂2t − c2�)u = 0 such that
u(0, ·) = u(2T, ·) = ∂t u(0, ·) = ∂t u(2T, ·) = 0 on ��. Then u is zero on the set

D = {(t, x)d∗�(x) < T − |t − T |} .

Proof. By finite speed of propagation, u is zero on a neighborhood of [0, 2T ] ×
�−T−δ for all δ > 0, and thus by unique continuation, also zero on the union
of open light diamonds centered at points in [0, 2T ] × ∂�−T−δ . This includes
[0, 2T ] × �−T/2−δ , and repeating the argument, we find that u = 0 on all open
light diamonds centered at points in [0, 2T ] ×�−T/2n−δ for all n ∈ Z and δ > 0.
The union of these open light diamonds is D. ��
Proof of Theorem 2.6. The proof is via the spectral theorem, which will also shed
further light on the behavior of the Neumann series.

First, note R = ν◦R2T is self-adjoint as well as unitary, since R∗ = R∗
2T ◦ν∗ =

R−2T ◦ ν = ν ◦ R2T . Divide R into two self-adjoint parts, N and Z :

N = π�Rπ� + πRπ, Z = π�Rπ + πRπ�. (2.33)

In other words, thinking of im π� = H� and im π = H ⊕ I as two halves of
C, the operator N describes wave movement within one half, while Z describes
movement from one half to the other. For any f ∈ H the identity f = R2 f =
(N 2 + Z2) f + (N Z + ZN ) f holds. If f ∈ H� or f ∈ H⊕ I, then (N Z + ZN ) f
is in the opposite half from f , so N Z + ZN = 0, and N 2 + Z2 = I when the
domain is restricted to either half.

Applying the spectral theorem to N , identify C with L2(X, μ) for some set X
and measure μ, upon which N acts as a multiplication operator n(x). As Z and N
do not commute, Z has no special form with respect to this spectral representation.

Since ‖N‖ � ‖R‖ = 1, we have |n| � 1. Split X into two sets

X ′ = n−1({−1, 1}),
X ′′ = n−1((−1, 1)) = X\X ′.

(2.34)

For h ∈ L2(X ′, μ),

‖Nh‖ =
(∫

X
n2 |h| 2 dμ

)1/2

= ‖h‖ = ‖Rh‖, (2.35)
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implying Zh = 0. Conversely, if Zh = 0, then ‖Nh‖ = ‖h‖, implying n = ±1 on
supp h. In consequence, L2(X ′, μ) = ker Z = J, and hence χ is multiplication by
the characteristic function of X ′.

Returning to the Neumann series, since (π�)2 = π�, rewrite hk as

hk − h0 =
k−1∑
i=0

(π�Rπ�Rπ�)i (π�Rπ�)(π�Rπ̄ )h0

=
k−1∑
i=0

n2i+1Zh0 = n
1− n2k

1− n2
Zh0.

(2.36)

Turning to πRhk now, since Zn = −nZ on im π� � ni Zh0 and Z2 = 1− n2,

πRhk = Z(hk − h0)+ nh0 = Zn
1− n2k

1− n2
Zh0 + nh0

= −n
1− n2k

1− n2
Z2h0 + nh0

= n2k+1h0.

(2.37)

n2k+1h0 converges pointwise, monotonically, as a function in L2(X, μ):

(πRhk)(x) = n2k+1h0(x)→
{
nh0(x), |n(x)| = 1;
0, |n(x)| < 1.

∀x ∈ X. (2.38)

The convergence holds not only pointwise but also in L2(X, μ) by dominated
convergence. Its limit function is exactly nχh0 = Rχh0, the projection of Rh0
onto J, proving the first limit in (2.18). Also, as a consequence of the monotonicity,
‖πRhk‖ ↘ ‖Rχh0‖ = ‖χh0‖.

Hence, while the Neumann series {hk} may diverge, the component of Rhk in
H⊕ I (and therefore inside �) converges and is actually decreasing in energy.

Proof of (2.20) Starting from (2.36), we wish to commute Z and the powers of n.
In the weighted space L2(X ′′, (1− n2)2μ),

hk − h0 → n

1− n2
Zh0 = n

1− n2
Z(1− χ)h0 = −Z

n

1− n2
(1− χ)h0. (2.39)

The factor (1 − χ) is a projection away from the kernel of Z , where (1 − n2)−1

blows up. We may insert it because J = ker Z , and therefore Zχ = 0. After doing
so, the second equality holds because (1− χ)h0 lies in the inside half H⊕ I.

Any j ∈ H (or H�) satisfies ‖ j‖2 = ‖R j‖2 = ‖Z j‖2 + ‖N j‖2, so

‖Z j‖2 =
∫

X
(1− n2) | j | 2 dμ =

∥∥∥
√
1− n2 j

∥∥∥
2
. (2.40)

Applying this relation to hk − h0,

‖hk − h0‖ =
∥∥∥∥n

1− n2k√
1− n2

(1− χ)h0
∥∥∥∥ . (2.41)
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Therefore, hk−h0 lies in theweighted space L2(X ′′, (1−n2)μ), and, by dominated
convergence, converges to a function h∞ − h0 ∈ L2(X ′′, (1 − n2)μ). Formally,
this latter space can be written (I − N 2)−1/2(1− χ)C, establishing (2.20).

Density of Q Decompose X as the disjoint union of the family of sets

X−1 = n−1({−1, 0, 1});
Xi = n−1((−1+ 2−i−1,−1+ 2−i ) ∪ (1− 2−i , 1− 2−i−1)) i = 0, 1, · · · .

(2.42)
Let h(i)0 = h ·1X−1�···�Xi , where 1A denotes the indicator function of A ⊆ X . Then
h(i)0 → h0 in L2(X, μ). Using the fact that Zn = −nZ on H�, as before the kth

partial sum of the Neumann series for h(i)0 is

h(i)k = h(i)0 + n
1− n2k

1− n2
Zh(i)0 = h(i)0 − Zn

1− n2k

1− n2
(1− χ)h(i)0 . (2.43)

Since either n = ±1 (so that 1 − χ = 0) or |n| < 1 − 2−i−1, the multiplier

n 1−n2k

1−n2
(1 − χ) is bounded in k and the Neumann series converges in C. Hence

h(i)0 ∈ Q for all i , proving Q is dense.

Proof of Rχh0 = hDT When hk converges in C, by Theorem 2.5 we have

lim
k→∞ R−TπR2T hk = hDT. (2.44)

The left hand side is equal to Rχh0; hence for h0 ∈ Q,

Rχh0 = hDT. (2.45)

By the unitarity of R and (2.15), h0 �→ hDT is a continuous map fromH to C. The
left-hand side is likewise continuous in h0. So, sinceQ is dense in H, (2.45) holds
for all h0 ∈ H. This together with our earlier work establishes (2.18). By the same
argument, hDT = limk→∞ R−sπT−s RT+shk for any s ∈ [0, T ]. ��
Proof of Proposition 2.11. Equation (2.24) follows directly from (2.13):

E(hDT) = E(R−TπR2T h∞) = E(πRh∞)
= E(Rh∞)− E(π�Rh∞) = E(h∞)− E(π�Rh∞). (2.46)

For (2.25), letv(t, x) = (FπR2T h∞)(t−2T, x), as in the proof ofTheorem2.5.
Subtract its time-reversal to get the solution w(t, x) = v(t, x)− v(2T − t, x), and
as before write v = (v, ∂tv), w = (w, ∂tw). Consider the energy of w at t = T .
Now w(T, ·) = 0 everywhere and ∂tw = 2∂tv = 0 on ��T (as shown by the proof
of Theorem 2.5), so the only energy of w at time T is inside �T :

E(w(T, ·)) =
∫

Rn
c−2 |∂tw(T, ·)|2 dx =

∫

Rn
c−2 |2∂tv(T, ·)|2 dx

= 4KE�T (v(T, ·)) FSP= 4KE�T (RT h∞)
FSP= 4KE�T (RT h0). (2.47)
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The last two equalities are by finite speed of propagation, as in (2.29). By conser-
vation of energy,

E(w(T, ·)) = E(w(2T, ·)) = E(πRh∞ − πRπRh∞). (2.48)

Expanding out the energy norm on the right hand side,

4KE�T (RT h0) = ‖πRh∞‖2 + ‖πRπRh∞‖2 − 2〈πRh∞, πRπRh∞〉. (2.49)

Using πRπRh∞ + πRπ�Rh∞ = πh∞ = h0, and π�RπRh∞ = 0,

‖πRh∞‖2 = ‖Rh∞‖2 − ∥∥π�Rh∞
∥∥2

= ‖h∞‖2 − ∥∥π�Rh∞
∥∥2 ;

‖πRπRh∞‖2 = ∥∥h0 − πRπ�Rh∞
∥∥2

= ‖h0‖2 +
∥∥πRπ�Rh∞

∥∥2 − 2
〈
h0, πRπ

�Rh∞
〉

= ‖h0‖2 +
∥∥π�Rh∞

∥∥2 − ∥∥π�Rπ�Rh∞
∥∥2

− 2〈h0, Rπ�Rh∞〉;
〈πRh∞, πRπRh∞〉 = 〈Rh∞, RπRh∞〉 − 〈π�Rh∞, π�RπRh∞

〉

= 〈h∞, πRh∞〉
= 〈h0, Rh∞〉.

(2.50)

Recalling π�Rπ�Rh∞ = h0 − h∞ and simplifying yields (2.25). ��
Proof of Proposition 2.12. Proof of (2.26)

The energy recovery formula follows directly from Theorem 2.6:

lim
k→∞

[
E(hk)− E(π�Rhk)

] = lim
k→∞‖Rhk‖2 −

∥∥π�Rhk
∥∥2

= lim
k→∞‖πRhk‖2

= ‖hDT‖2 .
(2.51)

Proof of (2.27)
The proof is similar to (2.25), but with extra terms. By (2.47)–(2.50), h∞ sat-

isfies

4KE�T (RT h0) = E(πRh∞ − πRπRh∞) (2.52)

= E(h∞)+ E(h0)− E(π�Rπ�Rh∞)
− 2〈h0, Rπ�Rh∞ + Rh∞〉. (2.53)

For hk , wemustmodify the second equality asπ�RπRhk is no longer zero. Instead,
write π�RπRhk as π�hk − π�Rπ�Rhk to obtain

E(πRhk − πRπRhk) = E(hk)+ E(h0)− E(π�Rπ�Rhk)

+ 2〈π�Rhk, π�hk − π�Rπ�Rhk〉
− 2〈h0, Rπ�Rhk + Rhk〉.

(2.54)
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The right-hand side is the quantity in the limit in (2.27). As k → ∞, it converges
to (2.53) by continuity as long as h0 ∈ Q; hence its limit is 4KE�T (RT h0). This
proves (2.27) when h0 ∈ Q. Then, by continuity and the density ofQ, (2.27) must
hold for all h0 ∈ H.

Interestingly, to obtain kinetic energy we used initial data

lim
k→∞ [πRhk − πRπRhk] = Rχh0 − πχh0 = (n − 1)χh0, (2.55)

equal to −2 times the projection of h0 onto L2(n−1({−1}), μ). ��
Proof of Lemma 2.1. The proof is essentially that of the Dirichlet principle. First,
while H = H�t ⊕ It ⊕Ht , we note that also (with tildes)

H̃ = H̃�t ⊕ It ⊕Ht . (2.56)

This is true simply because It is orthogonal to G and hence to H̃�t = H�t ⊕G.
Now, for one direction of the proof, consider an arbitrary i = (i0, i1) ∈ It . Since

�t is Lipschitz, its boundary has measure zero, so L2(ϒ) = L2(��t ) ⊕ L2(�t ).
Hence i1 must be zero.

Let φ ∈ Ht be nonzero and a > 0. Then ‖i + aφ‖2 = ‖i‖2 + a2‖φ‖2 > ‖i‖2
by orthogonality. Hence a = 0 is a local minimum of ‖i +aφ‖2, and the derivative
of this quantity with respect to a is zero at a = 0:

0 = d

da
‖i + aφ‖2

∣∣∣∣
a=0

= 2 〈i, φ〉 = 2
∫

ϒ

∇i0 · ∇φ0 dx . (2.57)

Since i0 is weakly harmonic on �t , it is strongly harmonic; in the same way it
is harmonic on ��t .

Conversely, if i0 ∈ H1
0 (ϒ) is harmonic on ϒ\∂�t , it is weakly harmonic,

immediately implying (i0, 0) is orthogonal to Ht and H�t . ��
Proof of Proposition 2.8. First, we have the equivalence

(I − π�Rπ�R)h∞ = h0 ⇐⇒ (I − π�Rπ�Rπ�)(h∞ − h0) = π�Rπ�Rh0.
(2.58)

Since π�Rπ� is self-adjoint and ‖π�Rπ�‖ � 1 (cf. the proof of Theorem 2.6), it
suffices to apply the following lemma. ��
Lemma 2.14. Let A be a self-adjoint linear operator on a Hilbert space X with
‖A‖ � 1. If x, y ∈ X satisfy (I − A2)y = x, then the Neumann series

∑∞
k=0 A

2k x
converges to the minimal-norm solution y = y∗ to (I − A2)y = x.

Proof. By the spectral theorem, X can be identified with L2(W, μ) for some setW
and measure μ, upon which A acts as a (real-valued) multiplication operator a(w);
also ‖A‖ � 1 implies |a| ≤ 1 for allw ∈ W . If i(w) denotes the indicator function
of a−1(±1), then y = y∗ = iy is the minimal-norm solution of (I − A2)y = x .

Let yn = yn(w) = ∑n
k=0 a

2k x be the nth partial sum of the Neumann series;
then yn(w) converges monotonically away from zero to yi for each w. Hence
yn → y∗ in L2(W, μ). ��
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Proof of Proposition 2.9. Our first task is to characterizeG, the space of functions
staying outside � in time 2T . We make a guess G1 for G and show that the two
are equal by unique continuation, using Lemma 2.13. After identifying G, it will
be easy to identify H�, its complement in H̃�.

First, define
G0 = H1

0 (�
�−2T )⊕ L2(��−2T ),

G1 = G0 + R2T G0.
(2.59)

By finite speed of propagation,G0, R2TG0 ⊆ G, soG1 ⊆ G. We want to show
that in fact G = G1. Accordingly, suppose g ∈ G and g ⊥ G1.

Having g ⊥ G0 implies π�−2T g = 0; similarly g ⊥ R2TG0 implies π�−2T Rg =
0. That is, the wave field of g is stationary harmonic outside a 2T -neighborhood of
� at t = 0, 2T . As in the proof of Theorem 2.5, we can apply Lemma 2.13 to (a
smoothed version of) ∂t Fg to conclude that RT g is stationary harmonic outside a
T -neighborhood of � at time T ; that is

π�−T RT g = 0. (2.60)

On the other hand, g ∈ G implies that πg = πRg = 0; the wave field of g
is zero on � at t = 0, 2T . Applying Lemma 2.13, we can conclude that the wave
field of g is zero on a T -neighborhood of � at time T ; that is

π−T RT g = 0. (2.61)

Hence RT g = π�−T RT g+π−T RT g = 0;we conclude that g = 0, and therefore
G = G1.

Now, we can prove (2.22). H� is the complement of G in H̃�. For Cauchy data
h ∈ C̃,

h ∈ H̃� ⇐⇒ πh = 0, (2.62)

and since G = G1, Equations (2.60, 2.61) imply

h ⊥ G ⇐⇒ h ⊥ G0 and h ⊥ RG0 ⇐⇒ π�−2T h = 0 and π�−2T Rh = 0.
(2.63)

��
Proof of Proposition 2.10. Let h ∈ H1(��) ⊕ L2(��), and let u1 = F1h be the
solution with respect to c1. Define u2 to be the solution of the IBVP (2.23) with
boundary data u1

∣∣
R×∂�. Since c1 and c2 have identicalDirichlet-to-Neumannmaps,

it follows that ∂νu1
∣∣
R×∂� = ∂νu2

∣∣
R×∂�. Therefore, u2 may be extended to R×R

n

by setting it equal to u1 outside �, and both u2 and ∂νu2 will be continuous on
R× ∂�. Hence u2 satisfies the wave equation with respect to c2 inside and outside
�, and satisfies the interface conditions at ∂�. Therefore, it is a solution of the
c2 wave equation on all of R

n [19, Theorem 2.7.3]. By uniqueness of the Cauchy
problem, u2 = F2h, and by definition u2 = u1 = F1h on ��. ��
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3. Microlocal Analysis of Scattering Control

In this section, we turn from our exact analysis of scattering control to a study of
its microlocal (high-frequency limit) behavior, allowing us to study reflections and
transmissions of wavefronts naturally. To accomodate the microlocal analysis, we
first narrow the setup somewhat, and consider amicrolocally-friendly version of the
scattering control equation in Section 3.1. Section 3.2 introduces a natural analogue
of the almost direct transmission, based on depths of singularities (covectors), rather
than points.

Just as before, isolating the microlocal almost direct transmission is sufficient
for solving the microlocal scattering control equation (Section 3.3). If the wave
speed c is known, it is not hard, as Section 3.4 shows, to construct solutions as-
suming some natural geometric conditions. Our main result, Theorem 3.5, is that
the scattering control iteration converges to a similar solution, to leading order in
amplitude, under the same conditions. Finally, Section 3.6 discusses uniqueness
for the microlocal scattering control equation. Proofs of the key results follow
in Section 3.7.

Notation Throughout, “≡” denotes equality modulo smooth functions or smooth-
ing operators, and T̊ ∗M = T ∗M\0 (M a manifold). A graph FIO is a Fourier
integral operator associated with a canonical graph. Finally, for a set of covectors
W ⊆ T ∗M , let D′

W , E ′
W denote the spaces of distributions with wavefront set in

W .

3.1. Microlocal Scattering Control

In this section, we begin by restricting� and c suitably in order to study reflec-
tion and transmission of singularities.We also adjust the scattering control equation
slightly, replacing projections with smooth cutoffs, and employing a parametrix for
wave propagation.

Let � ⊆ R
n be a smooth open submanifold, and c a piecewise smooth3 wave

speed that is singular only on a set of disjoint, closed,4 connected, smooth hy-
persurfaces �i of �, called interfaces. Let � = ⋃

�i ; let {� j } be the connected
components of R

n\�. Also assume each smooth piece of c extends smoothly to
R
n .
The projections π , π� arose quite naturally in the exact setting, taking the roles

of cutoffs inside and outside �. Because they introduce singularities along ∂�, it
is natural to replace them by smooth cutoffs for a microlocal study. We will also
separate the initial data h0 from the cutoff region. To accommodate both aims,
choose nested open sets �′, �′′ between � and �:

� ⊆ �′ ⊆ �′ ⊆ �′′ ⊆ �′′ ⊆ �, (3.1)

3 As usual, “smooth” means C∞ throughout.
4 If c is singular on some non-closed hypersurface �i , we may be able to “close up” �i

in such a way that it does not intersect the other hypersurfaces.
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and smooth cutoffs σ, σ � : R
n → [0, 1] such that

σ(x) =
{
1, x ∈ �′′,
0, x /∈ �, supp σ = �, (3.2)

σ� = 1− σ, supp σ� = R
n\�′′. (3.3)

The sets �′, �′′ should be thought of as arbitrarily close to �; we will write
�′� = R

n\�′.
Finally, a standard parametrix R̃ accounting for reflections and refractions will

frequently replace the exact propagator R, discussed at greater length in Appendix
A. Most importantly, R̃ includes microlocal cutoffs along glancing rays, so that
Rh0 ≡ R̃h0 as long as WF(h0) is disjoint from a set of covectorsW ⊂ T ∗(Rn\�)
producing near-glancing broken bicharacteristics.

The object of study is now the microlocal scattering control equation

(I − σ�Rσ�R)h∞ ≡ h0, (3.4)

and accompanying formal Neumann series

h∞ ≡
∞∑
i=0

(σ �R)2i h0. (3.5)

In general, the operator (σ �R)2 preserves but does not improve Sobolev regularity,
preventing us from assigning any meaning to this infinite sum a priori.5 Instead,
we will consider the limiting behavior of its partial sums.

3.2. Microlocal Almost Direct Transmission

The almost direct transmission played a central role in the exact analysis of
scattering control.We begin by studying its naturalmicrolocal analogue. Intuitively,
the microlocal almost direct transmission hMDT is the microlocal restriction of the
solution at time T to singularities in T̊ ∗�whose distance from the surface ∂T ∗� is
at least T (Fig. 6). The distance here should be defined as the length of the shortest
broken bicharacteristic segment connecting a covector to the boundary (Fig. 7). In
general, our hMDT is not equivalent to the ideal direct transmission, which would
contains only transmitted waves, but it may still serve as a useful proxy.

In the remainder of the section, we briefly define distance in the cotangent
bundle, then use it to define the microlocal almost direct transmission hMDT.

5 Were (σ �R)2 to have negative Sobolev order, (3.5) may be interpreted as an asymptotic
series. This situation occurs, for example, for c with C1,α or weaker singularities [11], in
the absence of diving rays.
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Fig. 6. Microlocal almost direct transmission. a The wavefront set of the solution with point
source h0 includes reflected and refracted singularities due to an interface�.bThemicrolocal
almost direct transmission does not include the reflected singularities; their depth is less than
T . cWavefront set of the (non-microlocal) almost direct transmission, for comparison

Fig. 7. Depth of a singularity. The broken bicharacteristic segments joining covector ξ to
the boundary are shown, projected to R

n (solid); they reflect and refract at interfaces (dotted
lines). The depth of ξ in T ∗� is defined as the length of the shortest of these paths to the
boundary (bold)

Distance in the Cotangent Bundle Let V = R × (Rn\�). For brevity, we shall
simply say γ : (s−, s+)→ T̊ ∗V± is a bicharacteristic if it is a bicharacteristic for
∂2t − c2�; is unit speed, that is dt/ds = 1 on γ ; and is maximal, that is cannot be
extended. Here s± may be infinite.

A broken bicharacteristic γ : (s0, s1) ∪ (s1, s2) ∪ · · · ∪ (sk−1, sk) → T̊ ∗V is
a sequence of bicharacteristics connected by reflections and refractions obeying
Snell’s law: for i = 1, . . . , k − 1,

γ (s−i ), γ (s
+
i ) ∈ T̊ ∗([0, 2T ] × �), (di�)

∗γ (s−i ) = (di�)∗γ (s+i ), (3.6)

where i� : � ↪→ � is inclusion. Since any broken bicharacteristic may be parame-
terized by time, we will often abuse notation and consider γ as a map from t ∈ R

into T̊ ∗(Rn\�).
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Fig. 8. Example of a depth sublevel set (T ∗�)T , with wave speed c = 1. Each marked
circle describes the unit covectors based at its center point: those inside (T ∗�)T are marked
in black, those outside in white. Near the boundary, (T ∗�)T contains only nearly horizontal
covectors, while below �T it contains covectors in all directions, as the distance to the
surface in any direction is greater than T

The distance of a covector ξ ∈ T̊ ∗(Rn\�) from the boundary of M ⊆ R
n is

d(ξ, ∂T ∗M) = min
{|a − b| : γ (a) = ξ, γ (b) ∈ ∂T ∗M

}
, (3.7)

the minimum taken over broken bicharacteristics γ . Extend d(·, ∂T ∗M) to all ξ ∈
T̊ ∗

R
n by lower semicontinuity. In general, d will not be continuous at T̊ ∗(R×�).
Depth is the same as distance, but with a sign indicating whether ξ is inside or

outside M :

d∗T ∗M (ξ) =
{
+d(ξ, ∂T ∗M), ξ ∈ T ∗M,
−d(ξ, ∂T ∗M), otherwise.

(3.8)

Microlocal Almost Direct Transmission Let (T ∗M)t be the set of covectors of
depth greater than t in a manifold M :

(T ∗M)t =
{
ξ ∈ T ∗M

∣∣ d∗T ∗M (ξ) > t
}
. (3.9)

Figure 8 illustrates (T ∗M)t in a simple case. Note (T ∗M)t � T ∗(Mt ) in general,
where Mt is defined as in (2.2).

A microlocal almost direct transmission of h0 at time T is a distribution hMDT
satisfying

hMDT ≡ RT h0 on (T ∗�′)T WF(hMDT) ⊆ (T ∗�′′)T . (3.10)

Essentially, hMDT is any sufficiently sharp microlocal cutoff of RT h0 outside
(T ∗�′)T . Note that there is a gap G = (T ∗�′′)T \(T ∗�′)T in which we do not
characterize hMDT; the gap is needed in caseWF(RT h0) intersects ∂(T ∗�′)T , since
then the cutoff may not be infinitely sharp. The solutions of (3.10) form an equiv-
alence class modulo D′

G +C∞(Rn), since any two choices of hMDT differ exactly
by a distribution with wavefront set in G. With this equivalence class in mind, we
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Fig. 9. Microlocal almost direct transmission: hMDT contains the singularities in RT h0 of
depth at least T in T ∗�′. aDepth diagram; interfacesmarkedwith small circles. b Projection
onto R

n ; interfaces dotted

Fig. 10. Depth discontinuity at interfaces. a Covectors α3, α4 are closer to the boundary
(via γ1) than α2, which cannot take this path. b Depths of the positive bicharacteristics γi
through these αi , meeting the interface at time t0. A jump occurs at the interface along either
broken bicharacteristic through α2

denote by hMDT any solution of (3.10) and refer to it simply as the microlocal
almost direct transmission. Note that

WF(hMDT) ⊂ (T ∗�)T

⊂

WF(hDT) ⊂ T ∗(�T ).

(3.11)

It is natural to visualize hMDT with a depth diagram plotting the depths of the
wave field’s singularities over time (Fig. 9). The depth of a singularity traveling
along any broken bicharacteristic γ is a piecewise linear function of time, with
derivative ±1 almost everywhere, so a depth diagram consists of line segments of
slope±1. Note that the depth of γ (t) is (up to sign) the shortest distance from γ (t)
to the surface along any broken bicharacteristic, not only along γ .

Remarks 3.1. – Along a broken bicharacteristic, d∗T ∗�′ is often discontinuous at
interfaces, as illustrated in Fig. 10.
To see why, consider a bicharacteristic γ1 encountering an interface; let γ3, γ4
be the reflected and transmitted bicharacteristics, and let γ2 be the opposite
incoming bicharacteristic. In general, one of the γi , say γ1, provides the shortest
route from the interface to the boundary. Singularities along γ3 or γ4 can reach
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Fig. 11. Isolating hMDT. A singularity from h0 travels inward, reflecting and refracting
from two interfaces (indicated by open circles). The multiply-reflected ray (dotted) will
enter the domain of influence of hMDT (shaded). To prevent this, h∞ must include an
appropriate singularity to eliminate the multiply-reflected ray. The horizontal axis is depth
in the cotangent bundle. aWave field of h0. bWave field of h∞

the boundary along γ1, while those along γ2 cannot andmust take a longer path.
Consequently, a jump in depth occurs when passing from γ2 to either γ3 or γ4.

– Along a singly reflected bicharacteristic, depth does not switch from increasing
to decreasing at the moment of reflection in general. Instead, depth will change
from increasing to decreasing halfway along; compare the broken bicharacter-
istic γ1 ∪ γ3 in Fig. 10.

– Depth (and hence hMDT) cannot intrinsically distinguish reflections from trans-
missions. This is possible only under geometric assumptions ensuring that re-
flected waves travel toward the boundary, and transmitted waves travel away
from it; for example, � = {xn > 0} a halfspace, and c a function of xn alone.

3.3. Isolating the Microlocal Almost Direct Transmission

One of our earlier key facts, expressed in Theorem 2.5, is that solving the (exact)
scattering control equation (I−π�Rπ�R)h∞ = h0 for h∞ is equivalent to isolating
the almost direct transmission: πR2T h∞ = RT hDT (assuming h∞ = h0 on�). In
other words, the wave field of h∞ at t = 2T inside the domain � is exactly the
almost direct transmission’s wave field, undisrupted by any waves from shallower
regions.

Our main goal now is to consider the microlocal version of this equivalence:
is solving the microlocal scattering control equation (3.4) equivalent to isolating
hMDT? As before, one direction is easy: if a tail h∞ is found that isolates hMDT (in
the sense that R2T h∞ ≡ RT hMDT on �) it is a solution of (3.4). The idea behind
crafting such an h∞ we have seen already in Fig. 1: h∞ should include appropriate
extra singularities that ensure singularities in the wave field of h0 at depth less than
T do not interfere with hMDT’s wave field. Fig. 11 illustrates the situation.
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Lemma 3.2. Let h0 ∈ E ′(�′\�)⊕E ′(�′\�). Suppose h∞ ∈ E ′(Rn\�)⊕E ′(Rn\�)
isolates the microlocal almost direct transmission, in the sense that

h∞
∣∣
�
≡ h0

∣∣
�

and R2T h∞
∣∣
�
≡ RT hMDT

∣∣
�
. (3.12)

Then h∞ satisfies the microlocal scattering control equation, (I −σ�Rσ�R)h∞ ≡
h0. The same holds true with R̃ replacing R.

Proof. Let v(t, x) = (Fσ R2T h∞)(t − 2T, x) be the wave field generated by
σ R2T h∞, and v = (v, ∂tv). Since WF(hMDT) ⊆ (T ∗�′′)T , propagation of sin-
gularities limits the wavefront set of RT hMDT to T ∗�′′, where the cutoff σ is
identity. Hence v at time 2T agrees with RT hMDT. Moving to time T , we have
v(T, ·) ≡ fMDT; by propagation of singularities again, WF(v(0, ·)) ⊆ T ∗�′′. In
particular, σ�Rσ Rh∞ = σ�v(0, ·) is smooth. We conclude that

σ�Rσ�Rh∞ = σ�R(1− σ)Rh∞ ≡ σ�h∞ − 0 ≡ h∞ − h0. (3.13)

The same argument holds with the parametrix R̃ in place of R. ��

Just like Theorem 2.5, Lemma 3.2 assures us that solving the microlocal scat-
tering control equation is necessary for producing a tail h∞−h0 that isolates hMDT.

The other direction of the problem (does a solution of the microlocal scattering
control equation isolate hMDT?) is a more subtle question, taken up in the following
sections. Our overarching goal is to show that hMDT, like its non-microlocal version
hDT, may be found by the Neumann-type iteration (3.5). We start by explicitly
constructing aFourier integral operator A that isolateshMDT, given c. ByLemma3.2
this FIO is a microlocal inverse for I − σ�Rσ�R. Now, Neumann iteration also
provides a (formal) microlocal inverse for this operator. The existence of A can be
used to show that Neumann iteration isolates hMDT as well, in a principal symbol
sense. This leads to the question of injectivity for I −σ�Rσ�R, explored in greater
depth in Section 3.6.

3.4. Constructive Parametrix for I − σ�Rσ�R

In this section, we lay out conditions on �, c, h0 under which we can show
the existence of an h∞ isolating hMDT, and thereby I − σ�Rσ�R. The motivation
for this relatively straightforward task is that it enables the study the convergence
behavior of the microlocal Neumann iteration in the following section.

We start by making a number of definitions; most of which are illustrated in
Fig. 12.6

6 Note that for simplicity Fig. 12 is not generic; in light of the remarks in Section 6, the
behavior of d∗T ∗�′ is typically much more complicated.
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Fig. 12. Terminology for constructing an inverse of I − σ�Rσ�R. Here � is a halfspace
{xn > 0} and c is piecewise constant with discontinuities along planes of constant xn
(dashed lines). The wavefront set of the initial pulse h0 is a single ray; to isolate hMDT three
additional singularities are added to h∞ as indicated. Returning, (+)-, and (−)-escapable
bicharacteristics are labeled r, +, and − respectively

Definition 3.3.

(a) The forward and backward microlocal domains of influence D+
MDT, D

−
MDT are

defined by:

D−
MDT = {(t, η) ∈ [0, T ] × T̊ ∗

R
n
∣∣ d∗T ∗�′(η) > t

}
,

D+
MDT = {(t, η) ∈ [T, 2T ] × T̊ ∗

R
n
∣∣ d∗T ∗�′(η) > 2T − t

}
.

(3.14)

By propagation of singularities, every η ∈ WF(hMDT) is connected to some
η′ ∈ WF(h0) by a broken bicharacteristic inside D−

MDT.
(b) A returning bicharacteristic γ : (t−, t+)→ T̊ ∗(Rn\�) is one that leavesD−

MDT
before t = T . More precisely, γ (t0) ∈ D−

MDT and limt→t1 γ (t) /∈ D−
MDT for

some t0, t1 ∈ (t−, t+], t0 < t1.
(c) Bicharacteristics γ1, γ2 are connected if their union γ1∪γ2 is a broken bicharac-

teristic. A bicharacteristic γ1 terminating in an interface may have one (totally
reflected), or two (reflected and transmitted) connecting bicharacteristics there.
If it has two, there exists an opposite bicharacteristic γ3 sharing γ1’s connecting
bicharacteristics.

(d) A bicharacteristic γ : (t−, t+)→ T̊ ∗(Rn\�) is (±)-escapable if either:
i. it has escaped: γ is defined at t = T ± T and γ (T ± T ) /∈ T ∗�,

or recursively, after only finitely many recursions, either
ii. all of its connecting bicharacteristics at t± are (±)-escapable;
iii. one of its connecting bicharacteristics at t± is (±)-escapable, and the op-

posite bicharacteristic is (∓)-escapable.
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In the final case, if the (±)-escapable connecting bicharacteristic is a reflection,
we also require c to be discontinuous at limt→t± γ (t) to ensure the reflection
operator has nonzero principal symbol there.

Roughly speaking, wemay ensure a singularity traveling along a (+)-escapable
bicharacteristic never creates a singularity inD+

MDT by choosing h∞ appropriately.
Similarly, we may produce a singularity along a (−)-escapable bicharacteristic
without introducing any extra singularities inside D+

MDT.
Now, if every returning bicharacteristic in WF(Fh0) is (+)-escapable, we can

find an h∞ isolating hMDT with an FIO construction, leading to amicrolocal inverse
of I − σ�Rσ�R. Accordingly, let S ⊂ T ∗�′ be the set of ξ /∈ W such that every
returning bicharacteristic belonging to a broken bicharacteristic through ξ is (+)-
escapable.7 We then have the following result:

Proposition 3.4. There is an FIO A : E ′(�′) ⊕ E ′(�′) → D′(Rn) ⊕ D′(Rn) of
order 0 satisfying

(I − σ�Rσ�R)A ≡ I on D′
S . (3.15)

Furthermore, R2T Ah0 ≡ RT hMDT for any WF(h0) ⊂ S.

Note that, because any broken ray intersects only finitely many interfaces in
the time interval t ∈ [0, 2T ], the condition of being (±)-escapable is open, and in
particular S is open.

3.5. Convergence of Microlocal Neumann Iteration

With themicrolocal inverse A constructed for I−σ�Rσ�R (knowing c),wemay
now examine the behavior of Neumann iteration (which does not require knowing
c). Recalling (3.5), define the Neumann iteration operators

Nk =
k∑

i=0

(σ ∗ R̃)2i . (3.16)

In this section we present our main microlocal theorem: the operators Nk isolate
hMDT in a particular leading order sense as k → ∞. Throughout, as in (3.16) we
substitute for R the parametrix R̃ having cutoffs near glancing rays.

Since lim Nk has nomicrolocal interpretation in generalwewill instead consider
the convergence of the partial sum operators’ principal symbols. Technically, of
course, these symbols belong to separate spaces, since each Nk is associated with
a different Lagrangian in general. Hence, we first define a suitable symbol space
containing the principal symbols of A and Nk , and any reasonable FIO parametrix
of (3.4). We then introduce a natural �2 norm, which acts as a microlocal energy
norm, on restrictions of the symbol space, and state the convergence theorem.

7 Recall from Section 3.1 that W is the set of covectors for which the parametrix R̃ is
valid.
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To describe the principal symbols of A and Nk , we split them into finite sums of
�DOs composedwith fixed unitary FIO, then record the�DOs’ principal symbols;
this is a kind of polar decomposition. As is well-known (see appendix A), after a
standard microlocal splitting of the wave equation into positive and negative wave
speeds, R̃ is a sum of graph FIO Rs , one for each finite sequence s ∈ {R,T} j , j � 0
of reflections and transmissions. For each s, let Cs be the canonical transformation
of Rs ; form the set of all possible compositions

C = {Cs(1) ◦ · · · ◦ Cs(m)
∣∣ m � 0

}
, (3.17)

and enumerate this resulting set with a single index i :

C = {Ci | i ∈ I} . (3.18)

Hence, each composition of reflections, transmissions, and time-reversals leads to
a canonical transformation Ci ; in general, a single Ci might be represented by
(infinitely many) different compositions Cs(1) ◦ · · · ◦ Cs(m) . We term an FIO C -
compatible if it is associated with a finite union of Ci .

Next, fix a set of elliptic FIO (Ji )i∈I associatedwith theCi that aremicrolocally
unitary, that is, J ∗i Ji ≡ I . Any C -compatible FIO Z may now be written in the
form Z =∑i∈I Pi Ji for appropriate �DOs Pi . Define the principal symbol of Z
with respect to (Ji )i∈I to be the tuple of principal symbols of the Pi , restricted to
the cosphere bundle

σ0 = σ0(Z) =
(
σ0(Pi )

)
i∈I ∈ C∞(S∗(RRRn\�)× I

)
, (3.19)

The boldface RRR
n\� denotes a doubled space containing two copies of R

n\�; due
to the microlocal splitting this is a natural space for Cauchy data. For convenience,
we consider the tuple σ0 as a function on a single domain having one copy of
S∗(RRRn\�) for each i ∈ I. Note that a full symbol for Z (not needed here) could
be defined analogously.

Now, for η ∈ S∗(RRRn\�) define
Gη = {(Ci (η), i) | i ∈ I, η ∈ D(Ci )} ⊂ S∗(RRRn\�)× I, (3.20)

whereD(Ci ) is the domain of Ci . That is, Gη contains all covectors reachable from
η, together with a knowledge of the paths i taken for each.

Consider the restriction of a principal symbol σ0(Z) to the space Gη. Here,
σ0(Z) may be viewed both as an element of Gη and the unique linear operator on
Gη defined by left-composition

σ0(Z) : σ0(Z ′)
∣∣Gη �→ σ0(ZZ ′)

∣∣Gη (3.21)

for C -compatible FIOs Z ′. The composition ZZ ′ is well-defined as an FIO since
all operators involved are sums of graph FIO.

The key idea is that the �2 norm on Gη provides a natural microlocal energy
operator norm forZ . In particular (see Lemma 3.10 in Section 3.7), just as ‖R‖ = 1
with respect to the exact operator norm, so composition with r̃ has operator norm
1 on the �2(Gη) principal symbol space, in the absence of glancing ray cutoffs.
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Combining this norm with existence of an �2-bounded microlocal inverse of I −
σ� R̃σ� R̃, we can prove principal symbol convergence for Neumann iteration. In
the limit, furthermore, the wave field produced by Neumann iteration at t = 2T
inside �′ agrees with that produced by the given microlocal inverse, modulo C∞.

Theorem 3.5. Suppose S̃ ⊂ T̊ ∗(RRRn\�) is a conic set on which I −σ� R̃σ� R̃ has a
C -compatible right parametrix Ã on S̃; that is, (I−σ� R̃σ� R̃) Ã ≡ I on S̃. Assume
that σ0( Ã) restricts to a bounded operator on �2(Gη) for each η ∈ S̃ ∩ S∗(RRRn\�).

Then, for every η ∈ S̃ ∩ S∗(RRRn\�), the Neumann series principal symbols
σ0(Nk) converge to some n∞ ∈ �2(Gη). Furthermore, σ0(R̃Nk) → σ0(R̃ Ã) in
�2(Gη ∩ S∗�′).

Of course, we have in mind for Ã the concrete parametrix A of Proposition 3.4.
This parametrix is C -compatible (cf. Section 3.7.2); it also has finitely many graph
FIO components, so it is a bounded operator on �2(Gη). Taking Ã = A we have
the following direct corollary of Proposition 3.4 and Theorem 3.5:

Corollary 3.6. For every η ∈ S∩S∗(RRRn\�), theNeumann series principal symbols
σ0(Nk) converge in �2(Gη). Furthermore, σ0(RNk)→ σ0(RA) in �2(Gη ∩ S∗�′).

According to Proposition 3.4, we have R2T Ah0 ≡ RT hMDT on T ∗�′. Hence,
the corollary implies that to leading order, the same is true of the Nk as k → ∞;
they also isolate hMDT.

Note that Theorem 3.5 does not claim that the principal symbol limit n∞ is
itself the principal symbol of some FIO. In particular, the support of n∞ on some
fiber Gη may be infinite, that is, n∞ maps η to infinitely many singularities. In this
case it is not obvious that n∞ corresponds to any FIO. Conversely, if n∞ is smooth
and its restriction to every Gη has finite support, an FIO N∞ with principal symbol
n∞ is easily constructed.

3.6. Microlocal Uniqueness

The previous two sections treated the solution of (I −σ�Rσ�R)h∞ ≡ h0, both
constructively and iteratively. In this section we turn to the question of uniqueness;
that is the solutions of g ≡ σ�Rσ�Rg. As we will see, the microlocal scattering
control equation displays two distinct kinds of nonuniqueness: a normal type, due
to diving rays and total reflections, and a pathological type, involving an infinite-
energy sequence of reinforcing singularities.

The first type is analogous to the nonuniqueness seen in the exact setting. In the
exact case, the kernel G of I − π�Rπ�R consists only of initial data whose wave
fields are supported outside�, due to unique continuation. In other words, nowaves
can enter�, completely reflect, and leave in finite time 2T . Microlocally, however,
there is a much richer space of completely reflecting wave fields, including totally
reflecting and diving rays. Note that these rays do not affect h∞

∣∣
�′ and in particular

do not interfere with the wave field of hMDT, up to smoothing.
The second type of nonuniqueness is unique to the microlocal setting. In this

case, the wave field produced by initial data g does include singularities inside �′
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Fig. 13. Regular nonuniqueness for microlocal scattering control; interfaces are marked
with discs. a An appropriate combination of singularities at a and b is smooth on the dashed
bicharacteristic and reflects from �. b A singularity from h0 can be cancelled at either a or
b

at time 2T , which σ� cuts off. The (microlocal) energy lost in this cutoff must
be replenished by a second singularity in the initial data, which in turn must be
replenished a third, and so on, necessitating an infinite chain of singularities. Since
Rg is not smooth in �′, the converse of Lemma 3.2 fails.

In the following examples, we illustrate these two nonuniqueness types at
length.

Example 3.7. Figure 13a displays an example of the first type of nonuniqueness: an
element in the microlocal kernel of I − σ�Rσ�R with a diving or totally reflecting
ray, and one interface. If g has singularities at a and b satisfying an appropriate
pseudodifferential relation, its wave field will be smooth along the dashed ray.
Thus the cutoffs σ� have no effect, and σ�Rσ�Rg ≡ RRg = g, implying (I −
σ�Rσ�R)g ≡ 0.

Figure 13b illustrates how this lack of injectivity leads tomultiple solutions h∞.
Here, a stray ray from the direct transmission can be cancelled by an appropriate
singularity at either a or b, or a linear combination of them. The proof of Theo-
rem 3.5 shows that Neumann iteration converges in principal symbol to a solution
operator having “least microlocal energy” in the sense of a weighted �2 norm on
its principal symbol.

Example 3.8. Figure 14 shows a one-dimensional setup exhibiting the second type
of nonuniqueness.While this example is contrived, Fig. 15 shows how an equivalent
and more realistic higher-dimensional version may be constructed. (Both examples
involve non-compact domains, and we conjecture noncompactness is required for
this type of nonuniqueness.)

Here� consists of an infinite series of disconnected open intervals (−∞, w0)∪
(v1, w1) ∪ (v2, w2) ∪ · · · . On each finite interval c has two jump discontinuities;
assume �′ is sufficiently close to � to contain these singularities. Two sequences
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Fig. 14. One-dimensional example of pathological nonuniqueness.� is a union of infinitely
many intervals; dotted lines are interfaces. The pattern continues indefinitely as x → +∞

Fig. 15. Two-dimensional version of Fig. 14. Thin lines represent interfaces; dashed rays
never reach the surface. Total internal reflection occurs at the upper interface

of unit covectors {ai }∞i=0, {bi }∞i=1 ⊂ S∗��\W are chosen so that the canonical
relation of σ� R̃ sends ai to {bi , bi+1} and bi to {ai−1, ai }.

We now construct a g in the microlocal kernel of I − σ�Rσ�R with an infinite
sequence of singularities at a0, a1, a2, . . . . First, note that the canonical relation of
σ� R̃σ� R̃ sends ai (i > 1) to {ai−1, ai , ai+1}. Suppose now that we choose some
initial data g with a singularity at a0. After applying σ�Rσ�R, some portion of this
singularity’s amplitude will be lost due to the σ� cutoffs. We may, however, restore
the lost amplitude by adding an appropriate singularity to g at a1. In turn, some of
this new singularity’s amplitude will be lost under σ�Rσ�R, which we make up
for with an appropriate singularity at a2, and so on.

Rigorously, decompose σ� R̃σ� R̃ near each ai as the sum of three graph FIO
A−1, A0, A1 whose canonical graphs map ai to ai−1, ai , and ai+1 respectively.
Modify A0, say, by a smooth operator so that σ�Rσ�R = A−1 + A0 + A1 exactly.
It can be shown (cf. (A.4)) that the Ak are elliptic.

Now, choosing any g0 ∈ L2(��) with WF(g0) = R
+a0, we look for gi ,

i = 1, 2, . . . with wavefront sets at R
+ai such that the sum g = ∑

gi satisfies
(I − σ�Rσ�R)g ≡ 0. This leads to the infinite matrix microlocal equation
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⎛
⎜⎜⎜⎜⎜⎝
I −

⎡
⎢⎢⎢⎢⎢⎣

A0 A−1

A1 A0 A−1

A1 A0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎣

g0

g1

g2
...

⎤
⎥⎥⎥⎥⎥⎦

≡ 0. (3.22)

By ellipticity, (3.22) has a solution, namely gi+1 ≡ (A−1)
−1
(
(I − A0)gi +

A1gi−1
)
. To construct an associated g, we use the fact that the {ai } are discrete in

S∗(��) (which implies � is unbounded).
Each gi is locally L2, so after multiplying by a smooth cutoff near the base point

of ai , we may assume gi ∈ L2. Applying radial cutoffs in the Fourier domain, we
may assume that ‖gi‖L2 � 2−i , so g =∑ gi converges in L2. Defining g−1 = 0,
consider

(I − σ�Rσ�R)g =
∞∑
i=0

−A1gi−1 + (I − A0)gi − A−1gi+1. (3.23)

Each summand is smooth by construction, and compactly supported near the base
point of ai . Because the {ai } are discrete, we can ensure only finitely many sum-
mands of (3.23) are nonzero at any given point. Hence the entire sum is smooth,
showing g is in the microlocal kernel of I − σ�Rσ�R. As expected, Rg is not
smooth in �′; it is not hard to see it must be singular at every bi . Hence, solving
(I − σ�Rσ�R)h∞ ≡ h0 is not sufficient for isolating hMDT.

Uniqueness and Isolating hMDT We now close the circle, and return to the question
of whether solving (I − σ�Rσ�R)h∞ ≡ h0 is equivalent to isolating hMDT. Of
our two types of nonuniqueness, only the second interferes with isolating hMDT.
We may rule it out, to leading order, by assuming the same kind of microlocal
energy boundedness seen earlier in Theorem 3.5; namely, �2 boundedness of the
parametrix’s principal symbol. Assuming this condition,we reach a partial converse
of Lemma3.2: a solution of themicrolocal scattering control equation isolates hMDT
to leading order as long as this is possible.We frame our proposition as a uniqueness
result.

Proposition 3.9. Suppose B1, B2 are C -compatible microlocal right inverses for
I − σ� R̃σ� R̃ on a conic subset S̃ ⊂ T̊ ∗(RRRn\�). If their principal symbols restrict
to elements of �2(Gη) for all η ∈ S̃ ,

R̃B1h0
∣∣
�′ ≡ R̃B2h0

∣∣
�′ mod Hs+1(RRRn\�) for all h0 ∈ Hs(RRRn\�) ∩D′

S̃ .
(3.24)

In particular, as long as there is some “finite microlocal energy” parametrix
isolating hMDT on a conic set S̃ ⊂ T̊ ∗(RRRn\�), all other finite microlocal energy
parametrices on S̃ also isolate hMDT.



Scattering Control for the Wave Equation with Unknown Wave Speed 441

3.7. Proofs

3.7.1. Microlocal Convergence (Section 3.5) The major task in proving Theo-
rem 3.5 is to show that composition with R̃ has operator norm at most 1 on �2(Gη)
for any η—a microlocal version of energy conservation. We begin with its proof.

To present the energy conservation lemma, note that composition with R̃ is
linear and well-defined onC -compatible FIO. It therefore induces a linear operator
r̃ on their principal symbols in the space C∞ (S∗(RRRn\�)× I). Since Gη is closed
under the canonical relation of R̃, operator r̃ restricts to a linear operator on �2(Gη)
for any η ∈ S∗(RRRn\�).

Lemma 3.10 (MicrolocalEnergyConservation).Letη ∈ S∗(RRRn\�). Then‖r̃‖ �
1 with respect to the operator norm on �2(Gη).

Proof. First, assume that there are no cutoffs in the parametrix R̃ due to glancing
rays originating inGη. In this case, R̃2 ≡ R2 = I , so r̃2 = I likewise. If r̃ were self-
adjoint, it would follow that ‖r̃‖�2 = 1. Certainly R̃ is microlocally self-adjoint,
since R̃∗ ≡ R∗ = R ≡ R̃. This property does not immediately carry over to r̃
due to the presence of Maslov factors; fortunately, it is still possible to show r̃ is
self-adjoint.

Let (α, i), (β, j) ∈ Gη, and let eα,i , eβ, j ∈ �2(Gη) be the vectors having 1 in
the (α, i) or (β, j) position respectively and zeros elsewhere. It suffices to show
that 〈

r̃ eα,i , eβ, j
〉 = 〈r̃ eβ, j , eα,i

〉
. (3.25)

To compute each side, we choose �DOs P, P ′ ∈ �0 with σ0(P) = σ0(P ′) = 1
near α, β respectively. Decompose

R̃P Ji ≡
∑
j∈I

Q j J j , R̃P ′ J j ≡
∑
i∈I

Q′
i Ji . (3.26)

The left- and right-hand sides of (3.25) then become σ0(Q j )(β) and σ0(Q′
i )(α).

If there is no Cs carrying (α, i) to (β, j) (that is, Cs(α) = β and Cs ◦Ci = C j

on their common domain of definition), there is also noCs′ carrying (β, j) to (α, i),
and vice versa. In this case, both sides of (3.25) are zero.Otherwise, there are unique
Cs and Cs′ satisfying the above; let Rs and Rs′ be the microlocal restrictions of R̃
to each of these canonical relations near α and β respectively. We may replace R̃ in
the first and second equations of (3.26) by Rs and Rs′ , respectively. Furthermore,
Rs′ ≡ R∗

s since R̃ is microlocally self-adjoint and Cs′ = (Cs)
−1.

Now we apply singular symbol calculus (see [5]) to both sides of the first
equation of (3.26) and evaluate at β and α. Let lowercase letters (rs , ji , etc.) denote
singular principal symbols (of Rs , Ji , etc.). This yields

rs(β) ji (η)i
κ(dCi (Vη), Vα, dC−1

s (Vβ))/2 = q j (β) j j (η),

rs′(α) j j (η)i
κ(dC j (Vη), Vβ , dCs (Vα))/2 = q ′i (α) ji (η),

(3.27)
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where Vγ denotes the vertical subspace in Tγ T ∗(RRRn\�), and κ is the Kashiwara
index [13,16]. Solving for q j (β) and q ′i (α) we obtain

〈
r̃ eα,i , eβ, j

〉 = q j (β) = rs(β)
ji (η)

j j (η)
i−κ(dCi (Vη), Vα, dC−1

s (Vβ))/2,

〈
r̃ eβ, j , eα,i

〉 = q ′i (α) = rs′(α)
j j (η)

ji (η)
iκ(dC j (Vη), Vβ , dCs (Vα))/2.

(3.28)

Comparing terms, rs(β) = rs′(α) since Rs′ = R∗
s .Next, ji (η)/ j j (η) = j j (η)/ji (η),

because Ji being unitary implies | ji | = 1. As for the Kashiwara indices, since κ is
coordinate-invariant and alternating,

κ(dCi (Vη), Vα, dC
−1
s (Vβ)) = κ(dC j (Vη), dCs(Vα), Vβ)

= −κ(dC j (Vη), Vβ, dCs(Vα)).
(3.29)

The conclusion is that r̃ is self-adjoint, and therefore ‖r̃‖ = 1, since ‖r̃2‖ = ‖I‖ =
1.

In the presence of near-glancing rays in Gη, the parametrix constructed in ap-
pendixA includes pseudodifferential cutoffs away from glancing rays (in construct-
ing ϕ+ and J∂�S). In a neighborhood of any α ∈ Gη for which some broken ray is at
least partially cut off, R̃ is microlocally equivalent to a composition of propagators
and pseudodifferential cutoffs

R̃ ≡ υ ◦ R̃tm ◦ Pm−1 ◦ R̃tm−1 ◦ · · · ◦ P1 ◦ R̃t1 , (3.30)

where t1 + · · · + tm = 2T and P1, . . . , Pm−1 ∈ �0 have principal symbols of
magnitude at most 1, and none of the intermediate propagators R̃tk involve glancing
ray cut offs when R̃ is restricted to the neighborhood of α.

For each k = 0, . . . ,m, we let C (k) = {C (k)s ◦Ci } be the set of compositions of
Ci ’s with canonical graphs C (k)s defined as in Section 3.5 but with 2T replaced by
t1 + · · · + tk . Naturally, C (0)= C (m)= C . Choose sets of corresponding unitary
operators {J (k)i } as before for each k. Then composition by each R̃tk sends C (k)-
to C (k+1)-compatible FIO, and as before induces a map between their principal
symbol spaces; the argument above shows it is an isometry with respect to the �2

norms.
Composition with the pseudodifferential cutoffs Pk acts by pointwise mul-

tiplication by pk on these �2 spaces, and hence has operator norm at most 1.
Since C (m) = C , operator r̃ is given by the composition of all these operators
r̃tm ◦ pm−1 ◦ r̃tm−1 ◦ · · · , and thus ‖r̃‖ � 1. ��
Proof of Theorem 3.5. We begin with the first statement of the theorem: conver-
gence of the Nk’s principal symbols in �2(Gη).

Since composition with σ� multiplies principal symbols pointwise by σ�, it is
a linear operator on �2(Gη) with norm at most 1. Therefore σ�r̃σ�r̃ , the operation
of principal symbol composition with σ� R̃σ� R̃, has norm at most 1 as an operator
on �2(Gη).
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Let nk , ã, and i denote the principal symbols of Nk , Ã, and the identity with
respect to the Ji . We will see that ã’s existence implies the convergence of nk by
the spectral theorem, applied to a symmetrization of σ�r̃ .

Restricting to Gη, suppose

(I − σ�r̃σ�r̃)u = i for some u ∈ �2(Gη). (3.31)

Then u = i + v for some v in the range of σ�. In particular, v is supported in
Gη ∩ T ∗�′�. Solving (3.31) for w = v/√σ� gives

(
I −√

σ�r̃σ�r̃
√
σ�
) v√
σ�

= √
σ�r̃σ�r̃ i. (3.32)

As the process is reversible, u is a solution of (3.31) if and only ifw = (u−i)/
√
σ�

solves (3.32) in theweighted space �2(Gη∩T ∗�′�, σ �). Now, if there is any solution
to (3.32), applying Lemma 2.14 to the self-adjoint operator

√
σ�r̃

√
σ� shows that

the Neumann series

w0 =
∞∑
k=0

[√
σ�r̃σ�r̃

√
σ�
]k√

σ�r̃σ�r̃ i (3.33)

converges in �2(Gη ∩ T ∗�′�, σ �) to the minimal-norm solution of (3.32). The
corresponding u0 = i +√

σ�w0 ∈ �2(Gη) is exactly lim nk .
In particular, u = ã is a solution of (3.31) and it is in �2(Gη) since its support in

Gη is finite. Hence, the Neumann series partial sum principal symbols converge in
�2(Gη). Theymay not converge to ã, as I−σ�r̃σ�r̃ may have a nontrivial nullspace.

Consider this nullspace. Suppose (I − σ�r̃σ�r̃)g = 0 for some g ∈ �2(Gη), so
that g = σ�r̃σ�r̃ g. But since the operator norms of σ� and r̃ are at most 1, we must
have

‖g‖ = ‖r̃ g‖ = ∥∥σ�r̃ g∥∥ = ∥∥r̃σ�r̃ g∥∥ = ∥∥σ�r̃σ�r̃ g∥∥ . (3.34)

The second equality implies that r̃ g is supported in T ∗�′�. Taking g = ã− lim nk ,
we conclude r̃a and r̃ ◦ lim nk are equivalent in T ∗�′�, finishing the proof. ��
3.7.2. Constructive Parametrix (Section 3.4)

Proof of Proposition 3.4. The proof is purely technical, specifying a recursive pro-
cedure for constructing a set of incoming singularities that ensure that only the
directly-transmitted singularity reaches D+

MDT. The notation of Appendix A will
be used throughout.

Our key constructions will be order-0 FIO �i±, �o± : C∞(R × ∂Z) → D′(Z)
producing tails outside� for (±)-escapable bicharacteristics. FollowingSection3.4,
the �i/o+ -constructed tail for a singularity on a (+)-escapable bicharacteristic en-
sures this singularity escapes � at time 2T , without generating any singularities
in hMDT’s microlocal forward domain of influence, D+

MDT. The �
i/o− -constructed

tail generates a given singularity on a (−)-escapable bicharacteristic, again without
causing any singularities to enter D+

MDT. The�
o± are defined on outgoing boundary

data while the �i± are defined on incoming data, microlocally near the final, resp.,
initial covectors of (±)-escapable bicharacteristics.
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Let γ : (t−, t+)→ T ∗Z be a (±)-escapable bicharacteristic. Denote by βo the
pullback to the boundary of its final point: βo = (di�)∗γ (t±), where by abuse
of notation we consider γ (t±) as a space-time covector, in T̊ ∗(R × Z). Define
β i = (di�)∗γ (t∓) similarly. We now define �i/o± microlocally near β i/o, starting
with the incoming maps �i±.
– If t± ∈ (0, 2T ): We simply follow the bicharacteristic and apply �o± at the

other end. In the (+) case define �i+ ≡ �o+ J∂�∂ near β i. In the (−) case,
define �− ≡ �− J−∂�∂M near β i, where J−∂�∂ = υ J∂�∂υ is like J∂�∂ but
propagating backward in time.

– If γ escapes, t± /∈ [0, 2T ]: This is the terminal case. In the (+) case, there is
nothing to do: define �+ ≡ 0 near β i. For the (−) case, define �− ≡ J−1

C�∂

near β i to obtain the necessary Cauchy data.

We now turn to �o±, considering each case in the definition of (±)-escapability.
– If γ escapes: This case never arises: �i± is not defined in terms of �o± for such
γ .

– If all outgoing bicharacteristics are (±)-escapable: Recursively apply �i± to
the reflected and transmitted (if any) bicharacteristics, defining �o± ≡ �i±M
near βo.

– If one outgoing bicharacteristic is (±)-escapable, and the opposite incoming
ray is (∓)-escapable: This is the core case. In the (+) case, near βo let

�o+ ≡
{
−�i−M−1

R MT +�i+(MR − MTM
−1
R MT), case (R),

−�i−M−1
T MR +�i+(MT − MRM

−1
T MR), case (T),

(3.35)

according to whether the reflected (R) or transmitted (T) outgoing ray is (+)-
escapable. The inverses are all microlocal. The (−) case is slightly different:
near βo,

�o− ≡
{
�i−M−1

R +�i+MTM
−1
R , case (R),

�i−M−1
T +�i+MRM

−1
T , case (T).

(3.36)

For case (R), the requirement in the definition that c be discontinuous at β i/o

implies that MR’s principal symbol is nonzero there (cf. (A.4)), guaranteeing
the existence of a parametrix M−1

R near β i/o. For case (T), MT always has
positive principal symbol, regardless of c.

While �i/o± is defined recursively, by definition only finitely many recursions
are needed to reach the non-recursive case where γ escapes. Since all the cases are
open conditions on β, operators �i/o± are well-defined (assuming that in regions
where both the second and third cases hold, we decide between them consistently).
Furthermore, the �i/o± are order-0 FIO, since they are microlocally sums of com-
positions of order-0 FIO associated with invertible canonical graphs.

We now use �i/o± to define a parametrix A. Given η ∈ S ⊂ T̊ ∗�′, consider the
escaping bicharacteristics starting at η. Each is associated with a distinct sequence
of reflections and transmissions s = (s1, . . . , sk) ∈ {R, T }k for some k, and a
corresponding propagation operator

Ps = J∂�∂Msk · · · J∂�∂Ms2 J∂�∂Ms1 JC�∂ . (3.37)
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Let S be the set of escaping bicharacteristic sequences s, and define

Aη = I +�o+
∑
s∈S

Ps . (3.38)

Then define A by patching together the Aη with a microlocal partition of unity. As
�i/o± , Ps are FIO of order 0, so is A.

We now check that A isolates hMDT and is therefore a microlocal right in-
verse for I − σ�Rσ�R by Lemma 3.2. Let h0 be microsupported in a sufficiently
small neighborhood of η ∈ S and let h∞ = Ah0. Define the outgoing boundary
parametrix

B = J∂�S

∞∑
k=0

(MJ∂�∂ )
k . (3.39)

With Ps , S as before, define S⊥ to be the set of sequences s for which no s′ ∈ S
is a prefix. Then F̃h∞ splits into three components:

F̃h∞ = F̃(h∞ − h0)+BM
∑
s∈S

Psh0 +
∑

s∈S⊥
F̃s . (3.40)

For t ∈ [T, 2T ], the last term is the wave field of hMDT; accordingly, it suffices to
prove that the sum of first two terms are smooth in D+

MDT. Rewrite

F̃(h∞ − h0)+BM
∑
s∈S

Psh0 =
∑
s∈S
(F̃�o+ +BM)Psh0. (3.41)

By construction, F̃�o+ +BM is smoothing at the terminal end of (+)-escapable
bicharacteristics, and in particular onWF(Psh0) for each s ∈ S, as desired. Hence
R̃2T h0 ≡ R̃T hMDT. Applying Lemma 3.2, we conclude (I − σ� R̃σ� R̃)Ah0 ≡ h0.
The same result holds for all h0 ∈ D′

S by a microlocal partition of unity. ��

3.7.3. Uniqueness (Section 3.6)

Proof of Proposition 3.9. Let b1, b2, i be the principal symbols of B1, B2, and the
identity. Letting σ� and r̃ denote the operators on the space of principal symbols
induced by multiplication with σ� and composition with R̃, respectively, (I −
σ�r̃σ�r̃)(b1 − b2) = 0. As in the proof of Theorem 3.5, it follows that r̃(b1 − b2)
is supported in T ∗�′�. ��

4. Comparison of the Exact and Microlocal Analyses

Both the exact analysis of Section 2 and the microlocal analysis of Section 3
prove that scattering control isolates a certain portion of the wave field of h0 at
t = T , while effectively erasing the rest. Our two analyses, however, predict the
isolation of two different portions of the wave field. Surprising at first glance but in
fact quite reasonable, this disparity provides further insight on scattering control,
which we explore in this section.
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While the arguments are quite general, we consider for simplicity two particular
examples that illustrate the fundamental differences between dimensions n = 1 and
n > 1. In the one-dimensional example, the microlocal and exact analyses align as
hDT and hMDT are essentially equal; the result is unconditional convergence of the
Neumann iteration, both exactly and microlocally. In higher dimensions, however,
hDT and hMDT can be quite different, causing a loss of convergence in finite energy
space.

4.1. Convergence in n = 1 Dimension

Let� = (ε,∞) and� = (0,∞) for fixed ε > 0; let�′,�′′ be arbitrary. Let c
be piecewise smooth on R, and equal to 1 on��. In general, the distance of a point
from ∂� is the minimum distance of a singularity at that point from ∂�:

d(x, ∂�) = min
ξ∈T̊ ∗

xR

d(ξ, ∂T ∗�). (4.1)

In one dimension, this means d∗T ∗�(ξ) = d∗�(x) if ξ ∈ T̊ ∗
xR. Hence, hDT and

hMDT are essentially equivalent, differing only in their respective usage of harmonic
extensions and smooth cutoffs. We now discuss the microlocal and exact behaviors
that arise in scattering control.

On the microlocal side, (4.1) implies every returning bicharacteristic is trivially
(+)-escapable, as no glancing or totally reflected waves arise. Consequently, the
constructive parametrix A may be defined everywhere in T̊ ∗�′, and hence by
Theorem 3.5 microlocal Neumann iteration always converges in principal symbol.

On the exact side, the exactNeumann series converges to a finite energy solution
h∞ of (I − π�Rπ�R)h∞ = h0, thanks again to microlocal analysis. To see why
this is the case, first separate the initial data into rightward- and leftward-traveling
waves (possible since c = 1 there). The rightward-traveling portion has a directly
transmitted component inside �, which is its image under an elliptic graph FIO.
Due to the ellipticity this directly transmitted wave carries a positive fraction of the
initial energy, by Gårding’s inequality and unique continuation (compare Stefanov
and Uhlmann’s work [18]). Leftward-traveling waves, meanwhile, may be safely
ignored, since c is constant for x < 0. The full proof requires some care, and we
defer it to Section 4.3.

Proposition 4.1. Let �, �, c be as above, and ε < 2T . Then ‖π�Rπ�R‖ < 1 on
H1(��)⊕ L2(��); in particular

∑∞
k=0(π

�R)2kh0 always converges.

4.2. Convergence in n > 1 Dimensions

Consider a halfspace� = {xn � 0}, and let c(x) = 1.Anyη = (x ′, xn, ξ ′, ξn) ∈
T̊ ∗�with xn > T then belongs to T ∗(�T ). However, if ξ ′  = 0, then d∗T ∗�(η) > xn
and η /∈ (T ∗�)T if T is sufficiently close to xn (Fig. 16). This discrepancy, which
of course occurs for general �, c when n > 1, implies that hDT is fundamen-
tally smaller than hMDT. Furthermore, it prevents the exact Neumann series from
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Fig. 16. A singularity in hMDT but not hDT. Its distance along the slanted bicharacteristic
is greater than T , but its base point is less than distance T from the boundary. Hence η ∈
(T ∗�)T \T ∗(�T )

converging (in finite energy space) for any h0 producing singularities in the gap
(T ∗�)T \T ∗(�T ), as we now show.

Suppose η ∈ WF(RT h0) ∩
(
(T ∗�)T \T ∗(�T )

)
, and γ is the bicharacteristic

passing through η at t = T . If there were a finite energy solution h∞ ∈ C of the
scattering control equation (2.12), the proof of Theorem 2.5 implies (via unique
continuation) that the wave field v(t, x) = (FπRh∞)(2T − t, x) is stationary
harmonic at t = T on��

T , and in particular smooth atη. Propagation of singularities
makes this impossible, sinceγ ([0, 2T ]) lies completely inside�. Hence no h∞ ∈ C
exists, and the Neumann series for h0 must diverge, implying that ‖π�Rπ�R‖ = 1.

Using this argument, a divergent Neumann series may be constructed whenever
(T ∗�)T  = T ∗(�T ). Hence we expect ‖π�Rπ�R‖ = 1 in general for n > 1 di-
mensions, in opposition to Proposition 4.1 in 1D. It is worth noting that in numerical
tests the Neumann iteration appears to follow its microlocally predicted behavior
(isolation of hMDT) more closely than its exact behavior (isolation of hDT).

4.3. Proof of Convergence in One Dimension

Proof of Proposition 4.1. This proof is inspired in large part by a proof of Stefanov
and Uhlmann [18, Prop. 5.1]. Let x(t) be the inverse function of the travel time
t = ∫ x

0 c(x ′)−1 dx ′ = d∗�(x); then �t = (x(t),∞). Choose δ > 0 small enough
that |t1 − t2| > δ/2 for any distinct x(t1), x(t2) ∈ singsupp c.

In (−∞, ε) take the factorization ∂2t − � = (∂t + i∂x )(∂t − i∂x ) associated
with d’Alembert solutions u(t, x) = f (x − t) + g(x + t). Identifying h0 with
( f, g) ∈ H1 × H1,

‖h0‖2 =
∫ ε
0

c−2
∣∣g′ − f ′

∣∣2 + ∣∣ f ′ + g′
∣∣2 dx = 2

(∥∥ f ′∥∥2L2 +
∥∥g′∥∥2L2

)
. (4.2)

The leftward-traveling component g is trivially handled, since it is preserved by
Rπ�R: indeed, if f = 0, then supp Rh0 ⊂ (−2T,−2T + ε), and π�Rπ�Rh0 =
π�R2h0 = 0. Hence we restrict attention to rightward-traveling initial data h0 =
( f, 0).

Intuitively, the energy of the direct transmission of f , that is, its image under
the graph FIO components of R involving only transmissions, should be bounded
away from zero by Gårding’s inequality since these components are elliptic.

To start, assume supp h0 is contained in an interval (a, b) of width b − a ≤ δ,
so that no multiply-reflected rays enter the direct transmission region I = (x(a +
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2T ), x(b+2T )). Furthermore, assume c is constant on I , so that Rh0 again divides
into leftward- and rightward-travelling components F,G.

On I we have Rh0 ≡ (R+
DT + R−

DT)h0, where R±
DT are elliptic graph FIO

(one for each family of bicharacteristics) associated with propagation along purely
transmitted broken bicharacteristics; see Appendix A. Let π± = 1

2 (I ± i H) be
the projections onto positive and negative frequencies (where H is the Hilbert
transform), and define the elliptic FIO RDT = R+

DTπ+ + R−
DTπ−. Now on I we

have F ′ ≡ ψ∂x RDT∂
−1
x f ′. Applying Gårding’s inequality to the normal operator

of ∂x RDT∂
−1
x , with an appropriate spatial cutoff,

‖h0‖ = √
2
∥∥ f ′∥∥L2 � C1

√
2
∥∥F ′∥∥

L2(I ) +
∥∥K f ′

∥∥
L2

= C1 (EI (Rh0))
1/2 + ‖K̃ h0‖

� C1 ‖πRh0‖ + ‖K̃ h0‖,
(4.3)

where K , K̃ are compact operators. In fact, h0 = ( f, 0) ⊥ ker πR, so the compact
error term ‖K̃ h0‖ may be eliminated. To see this, by unique continuation h1 =
( f1, g1) ∈ ker πR implies Fh1 = 0 along R × ∂� and [ε, 2T ] × ∂�. Since
Fh1 = f1(x − t) + g1(x + t) outside �, we conclude f1 = 0. Conversely,
π(0, g1) = 0 so that ker πR = {(0, g1)} ⊥ h0.

Hence on the subspace g = 0, for some constant C2 > 0,

∥∥π�Rπ�R∥∥ �
∥∥π�R∥∥ � 1− 1

C2
, (4.4)

and as π�Rπ�R( f, g) = π�Rπ�R( f, 0) this proves the result for all h0.
The same is true even if c is not constant on I , since without affecting π�Rπ�R

we may modify c so as to be constant on some deeper interval (x(2T ′),∞), T ′ >
T+ε/2, and deduce an estimate analogous to (4.3), but at the later time t = 2T ′. By
finite speed of propagation and conservation of energy, we can move the estimate
back to t = 2T to establish (4.3).

Finally, if ε > δ, it is possible that the direct transmission of a shallower part of
h0 may be cancelled by that of a deeper part of h0, derailing the Gårding estimate.
However, if this occurs the shallower and deeper parts of h0 must be related by an
elliptic FIO; therefore, the shallower part’s energy is controlled by the deeper part’s
direct transmission.

To make a simpler version of this idea rigorous, cover (−2T, ε) with intervals
of width δ:

I j = (( j − 1)δ, jδ), j = !−2T/δ", . . . , #ε/δ$ = k. (4.5)

Choose f j ∈ H1
loc with f ′j = 1I j f

′, where 1I j denotes the characteristic function.
For each j , we have an estimate of the form (4.3) with h0 = (0, f j ). Let E j =√
2‖ f ′j‖L2 be the energy of f j . Now, let j0 be the smallest j for which E j �

2C−1
2

∑
i> j Ei ; this is true of j = k so such a j0 always exists. By finite speed of

propagation, the energy of Rh0 in I ′′ = (x(2T + ( j0−1)δ), x(2T + j0δ)) depends
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only on fi with i � j0. But the direct transmission of f j0 contributes at least energy
2
∑

i> j0 Ei , so by conservation of energy and Gårding’s inequality

∥∥ f ′j0
∥∥
L2 � EI ′′(Rh0)+ ‖K̃ h0‖. (4.6)

However, we may bound all of f ′ in terms of f ′j0 . For, if j > j0 certainly ‖ f ′j‖ �
‖ f ′j0‖; for j < j0, this is also true as E j  � 2C−1

2 E j0 . Hence

∥∥ f ′∥∥L2 < C3EI ′′(Rh0)+ ‖K̃ h0‖, (4.7)

with a constantC3 = C3(C2, ε, δ, T ). The remainder of the proof follows as before.
��

5. Connecting Scattering Control to the Marchenko Equation

In this section, we illustrate the connection betweenMarchenko’s integral equa-
tion and scattering control by first generalizing Rose’s focusing algorithm [15] to
higher dimensions. This will show how one can eliminate multiple scattering in
higher dimensions to eventually obtain a focused wave. We will start by summa-
rizing Rose’s approach in one space dimension to eliminate multiple scattering
and obtain a focused wave. We will then explain the drawbacks to his approach,
and provide our results that generalize his one-sided autofocusing results to higher
dimensions. In addition, the one dimensional case will provide an accurate illustra-
tion of the microlocal solution A constructed in Proposition 3.4. This will provide
a clear distinction between the scattering control process and Rose’s focusing al-
gorithm where the advantages of scattering control are readily apparent. Lastly, we
will connect our results with the 1D Marchenko equation used to solve the inverse
scattering problem.

5.1. Rose’s One-Sided Autofocusing

In [15], Rose tries to focus an acoustic wave (working in Rt × Rx ) inside a
medium occupying {x > 0}. On the left side, {x < 0}, the wave speed is known,
say 1 for simplicity. Inside x < 0, the total wave field umay directly be decomposed
into its incoming and outgoing components:

u(x, t) = uin(x, t)+ uout(x, t).

One is given the reflection response operator that we denote R(t) which relates
the incoming and outgoing waves at the boundary {x = 0}. By linearity, one has
exactly

uout(x = 0, t) =
∫

R(t − t ′) uin(0, t ′) dt ′.

The goal of Rose is to determine a boundary control uin(x = 0, t) such that the total
wave field u will be a distribution with support equal to {x = x f } at time t = 0 for
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some focusing point x f > 0 one is interested in. Letting t f denote the focusing time,
that is t f = dc(0, x f ), Rose uses the ansatz uin(x = 0, t) = δ(t+ t f )+�tail(t; t f ),
and then finds an equation that �tail must solve in order to obtain focusing.

Rose shows that �tail must solve (see [15, Equation (8)])

�tail(−t; t f )+R(�tail(−t; t f )) = −R(δ(−t + t f )) for t < t f , (5.1)

where the action of R applied to a test function φ is

Rφ =
∫ ∞

−∞
R(t + t ′)φ(t ′) dt ′. (5.2)

Equation (5.1) for �tail(−t; t f ) is the Marchenko equation encountered in 1D po-
tential scattering, which we will describe in more detail later. Also, if one denotes
r0 = δ(t − t f ) and K̃tail = �tail(−t; t f ), then this equation reads

K̃tail +RK̃tail = −Rr0 for t < t f ,

Note that this approach relies heavily on the directional decomposition of a
wave field into incoming and outgoing waves. In higher dimensions, such a de-
composition may only be done microlocally, and as such, the reflection response
operator RRose would only be defined microlocally (see [20] for a detailed account
on doing this direction decomposition). The seismic literature has avoided this issue
by ignoring the presence of evanescent and glancing waves, so a rigorous math-
ematical proof to obtain exact focusing in the presence of conormal singularities
in higher dimensions has never been done. The whole point of using Cauchy data
rather than boundary data is to avoid such microlocal considerations and obtain an
iteration method in an exact sense.

Thus, based on the above equations, if we wanted to generalize this to higher
dimensions in an exact sense using our Cauchy data setup, one may naively guess
that the appropriate equation should be

Ktail + π�RKtail = −π�Rr0
for r0, Ktail ∈ C, with r0 having support in � and Ktail having support outside
�. Notice that no directional wave decomposition is necessary to write down this
equation. This in fact turns out to be the correct equation, and we provide a rigorous
analysis in the next section.

5.2. Elimination of Multiple Scattering via a Generalized Marchenko Equation
Using Cauchy Data

We prove here a generalization to arbitrary dimension of Rose’s equation (5.1)
that allows one to eliminatemultiple scattering of the pressurewave field. This is the
key step that will allow one to focus a pressure field or velocity field at a given time.
However, to avoid difficultmicrolocal issueswith directional wave decompositions,
we prove a theorem using Cauchy data rather than boundary data. Afterwards, we
relate how this connects to Rose’s algorithm for focusing discussed in the previous
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section as well as the classical Marchenko equation, which use boundary control
rather than Cauchy data.

We now state the following general theorem about eliminating multiple scat-
tering above a certain depth level T (given in travel time coordinates) inside the
medium, that is within ��T .

Theorem 5.1. Let u be the solution to the wave equation with Cauchy data r∞ =
r0 + Ktail ∈ C, where r0 has support in �, and Ktail has support outside �. Let
T > 0. Then:

(i) (Necessity) If u(T ) has support in �T , then necessarily Ktail satisfies the
following equation:

Ktail + π�RKtail = −π�Rr0; (5.3)

(ii) (Partial converse) Suppose Ktail satisfies

Ktail + π�RKtail = −π�Rr0.
Then  �T u(T ) = 0 and u(T )|�T = RT r0|�T ;

(iii) (Uniqueness of the tail) Any two tails may only differ by Cauchy data that is
totally internally reflected, and does not penetrate � in time 2T . That is, if
Ktail + π�RKtail = 0, then Ktail = 0 in C;

(iv) (Almost Solvability) The set of r0 ∈ H forwhich one has a convergentNeumann
series solution for Ktail,

Q :=
{
r0 ∈ H : (I + π�R)−1r0 ∈ C

}

is dense in H.

(Note that  �T denotes the orthogonal projection from H1(�∗
T ) onto H1

0 (�
∗
T ).)

Remark 5.2. The main content of this theorem is that once r0 is given, then one has
a formula to construct Ktail that controls the multiple scattering inside ��T at time
T . The construction of Ktail gives no information on what happens inside �T at
time T since Ktail does not affect this region. What happens inside �T is entirely
determined by r0. Thus, for the purposes of focusing, one needs to construct r0
beforehand such that the associated pressure field restricted to �T at time T will
have a singular support at a single point. InWapenaar [24], the authors assume they
have an approximate velocity profile to construct an approximation to the direct
transmission (denoted T inv

d in equation (16) there), which is analogous to the r0
we have here. They then construct a tail (denoted by M) analogous to our Ktail to
control the multiple scattering.

Remark 5.3. Notice that this theorem never mentions a focusing point but rather
an inside region �T . This is because in order to make the theorem more general,
we did not specify any support conditions for r0. Typically however, one sends an
incident pulse r0 that is supported close to but outside �, which is meant to be the
direct transmission. Then the domain of influence of r0 inside�T at time T is only
a small region in a neighborhood of ∂�T containing the desired point of focus (see
Fig. 2). We relate the above theorem to focusing via a corollary at the end of this
section.
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Remark 5.4. As mentioned in [15] as well, this result only describes how to control
multiple scattering of the pressure field, but says nothing about the velocity field
at time T ; hence energy is not controlled and the wave field may still have a large
kinetic energy even at time T . Also, after the time t = T , the Cauchy data inside
��T generate waves that may and generally do enter the inner layer�T even before
time t = 2T . The main advantage of scattering control is that it controls both the
pressure and velocity field so that for T � t � 2T , the wave generated by the time
T Cauchy data inside �∗

T will not penetrate the domain of influence of the direct
transmission π̄T RT r0.

Proof. We start with (i). Suppose we found a wave field u such that u(T ) has
support in�T , and Cauchy data r∞ = r0+Ktail as in the statement of the theorem.
Let us denote

w(t) = u(T + t)+ u(T − t).

Observe that

w(0) = 0 outside �T , and wt (0) = 0.

By finite propagation speed, one also has w(t, x) = 0 when d(x,�T ) > t . Notice
that all points in �� are at least distance T away from �T so one has

π�w(T ) = 0

This precicely, means, that

u(2T ) = −u(0) on ��

and

−ut (2T ) = −ut (0) on �
�.

Written in operator form, this amounts to

π�ν ◦ R2T r∞ = −π�r∞,

where we recall that Rs does not just propagate s units of time, but also give the
Cauchy data at time t = s. Plugging in r∞ = r0 + Ktail above gives

π�R(r0 + Ktail) = −π�(r0 + Ktail)

⇔ π�Rr0 + π�RKtail = −π�r0 − π�Ktail = −Ktail

⇔ Ktail + π�RKtail = −π�Rr0. (5.4)

Proof of (ii) First, if one adds r0 to both side of (5.4), and brings −π∗Rr0 to the
the left hand side, one obtains
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(I + π∗R)r∞ = r0. (5.5)

Again denote u(t) = (Fr∞)(t), and letw(t) be a superposition of u(t) and its time
reversal; that is

w(t) = (Fr∞)(t)+ (Fr∞)(2T − t).

Then using (5.5) and recalling that r0 vanishes outside of �, we have

w(0) = r∞ + Rr∞ is harmonic in ��.

Similarly,

w(2T ) = R2T r∞ + ν ◦ r∞ = ν ◦ (Rr∞ + r∞) is harmonic in ��.

Note that wt (2T ) = 0 = wt (0) in ��. Since w also solves that wave equation,
then ∂2t w vanishes wherever w is harmonic. By translation invariance of the wave
operator, ∂tw (the mollification argument to make this precise is exactly as in the
proof of (2.13)) also solves the wave equation while also having Cauchy data at
times t = 0 and t = 2T vanishing in �∗. By Lemma 3, ∂tw(T ) = 0 inside ��T .
Looking at just the first component ofw(T ) this says exactly that u(T ) is harmonic
in ��T , which is equivalent to  �T u(T ) = 0. The second statement in the theorem
follows from finite propagation speed, as Ktail is supported in ��.

Proof of (iii) Suppose that Ktail + π�RKtail = 0. Since π� is a projection and R
is unitary, one has

∥∥π�RKtail
∥∥ � ‖Ktail‖ .

However, since Ktail = −π�RKtail, then the inequality above must in fact be an
equality and so ‖π�RKtail‖ = ‖Ktail‖. Since R is unitary, one has

‖Ktail‖ 2 = ‖RKtail‖ 2 = ∥∥π∗RKtail
∥∥ 2 + ‖π̄RKtail‖ 2 = ‖Ktail‖ 2 + ‖π̄RKtail‖ 2.

Thus, π̄RKtail = 0 and so Ktail = −π�RKtail = −RKtail, implying that Ktail ∈ G.

Proof of (iv) Denote Kl = ∑l
j=0(−π�R) j (−π�Rr0). The proof follows almost

verbatim as the proof showing the density of the set Q defined in (2.19). ��
In order to make Remark 5.2 more transparent on how this theorem relates to

focusing, we add the following corollary. First, we conjecture that following the
methods of boundary control in [10], one may extract certain travel times between
points on the boundary to points in the interior and use that to create an r0 supported
outside �, such that at a time T , the first component of RT (r0)|�T has singular
support equal to a single point. Thus we believe that it will be possible to satisfy
the assumption in the following corollary using boundary control methods.

Corollary 5.5. Suppose r0 ∈ C, a time t = T , and� ⊃ � are such that supp(r0) ⊂
� and the singular support of F(r0)(T )|�T is nontrivial, contained inside Bε(x f )

for some small ε > 0. Then if Ktail solves (5.4), then the singular support of u(T )
is nontrivial and contained in Bε(x f ).
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The corollary is stated using the energy spaces employed throughout the paper.
However, we believe it can be refined to encompass general distributions and in
particular a point singular support so that one has a focusing wave in the usual
sense.

Remark 5.6. We emphasize again that despite the attractiveness of the corollary, it
only gives focusing of the pressure field and says nothing about the velocity field.
Thus, once one goes past time t = T , one has lost all control and one has no
information on the wave field at such times, which is usually quite complex since
Ktail needs to be quite complicated in order to control the multiple scattering that
allows focusing. Thus, the scattering control procedure is much more useful in this
regard.

We close this section with an analogous theorem to Theorem 5.1 which controls
the multiple scattering of the velocity field instead. The proof is almost identical
excepting sign changes so we omit it.

Theorem 5.7. (Multiple scattering control of velocity field) Let u be the solution
to the wave equation with Cauchy data r∞ = r0 + Ktail ∈ C, where r0 has support
in �, and Ktail has support outside �. Let T > 0.

(i) (Necessity) If ut (T ) has support in �T , then necessarily Ktail satisfies the
following equation

Ktail − π�RKtail = −π�Rr0
(ii) (Partial converse) Suppose Ktail satisfies

Ktail − π�RKtail = −π�Rr0.
Then ut (T )|��T = 0 and u(T )|�T = RT r0|�T .

(iii) (Uniqueness of the tail) Any two tails may only differ by Cauchy data that is
totally internally reflected, and does not penetrate � in time 2T . That is, if
Ktail − π�RKtail = 0, then Ktail = 0 in C.

(iv) (Almost Solvability) The set of r0 ∈ H for which one has a convergent Neu-
mann series solution for Ktail,

Q :=
{
r0 ∈ H : (I − π�R)−1r0 ∈ C

}

is dense in H.

Remark 5.8. We note that an almost identical proof used to recover kinetic energy
of the almost direct transmission in Propositions 2.11 and 2.12 may be used here
to recover this energy from Ktail instead.

At this point, one might be led to believe that information may be lost or gained
by using our Cauchy data setup versus the boundary setup that is done in Rose.
This is actually not the case, and we show in the next section that in one dimension,
where one does not worry about glancing rays, both formulations are completely
equivalent.
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5.3. Equivalence Between Cauchy and Boundary Formulations in One Dimension

For simplicity, we assume here that � occupies x > 0 and � is exactly the
half-space {x > −ε} for some ε > 0. Without loss of generality, we assume that
the wave speed is constantly equal to 1 outside�, that is c|�� = 1. Then any wave
field inside �� is of the form

u|�� = f (t − x)+ g(x + t). (5.6)

We assume that supp( f (s)) ⊂ {−T < s < T + ε} (T is the focusing time; that
is we are focusing at a point xT which is distance T away from 0 using the metric
determined by c) and that the left going wave g is activated only after the right
going wave f hits the boundary {x = 0}. Precisely, this means that

supp(g(s)) ⊂ {s > −T }.
As described in the last section, one has

g(t) = R ∗ f =
∫ ∞

−∞
R(t − t ′) f (t ′) dt ′. (5.7)

This is well-defined in an exact sense precisely since there are no glancing rays in
1 space dimension. See for example [1] for details.

To avoid dealing with harmonic extensions, as they do not add anything es-
sential, we will assume that R applied to any of our Cauchy data has 0 trace on
∂�∗ = {x = 0}. This merely ensures that

π∗R = 1�∗R = 1{x<−ε}R

when applied to such Cauchy data.
Next, observe that since g(s) = 0 when s � 0 and using the support condition

of f , our Cauchy data (initially given at t = −T as opposed to t = 0) and its
time-2T propagation is

f̃(x) := u(−T ) =
(

f (−T − x)
f ′(−T − x)

)
,

π∗R(u(−T )) = π∗Rf̃ = 1{x<−ε}
(

g(T + x)
−g′(T + x)

)
.

(5.8)

Then by (5.7) we have

(π∗Rf̃)(t − T ) = 1{t<T−ε}νg(t) = 1{t<T−ε}ν(R � f)(t), (5.9)

where we get an equation for g′(t) by differentiating (5.7), and we use the notation
f, g to represent a column vector of f, g and their derivative. Let us denote JC�∂

as the Cauchy-to-boundary map, which maps Cauchy data at time t = −T to
boundary data on {x = 0}. In this simple setting, it is well-defined as a map
JC�∂ : D′(Rx )→ D′(Rt ) explicitly defined on smooth functions as

JC�∂v(t) = v(t − T ),
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with an obvious extension to elements inC. Since f̃ = J−1
C�∂ f(−·) andR�φ(−·) =

Rφ(·), we have a nice relationship between R2T and R given by

JC�∂ R2T J
−1
C�∂ (f(−·)) = R(f(−·)) for t < T . (5.10)

Proposition 5.9. (Equivalence of Rose and Cauchy–Marchenko in one dimension)
Let f (t) = Ktail(t) + r0(t) denote the incoming boundary data, and f̃(x) =
J−1
C�∂ (Ktail(t) + r0(t)) := K̃tail(x) + r̃0(x) be the corresponding Cauchy data

at time −T with all the assumptions described earlier. Then, K̃tail satisfies the
Cauchy–Marchenko equation with r̃0 iff Ktail satisfies the Rose equation with r0;
that is,

K̃tail(x)+ π∗RK̃tail(x) = −π∗Rr̃0
⇔
Ktail(−t)+R(Ktail(−·)) = −R(r0(−·)) for t < T − ε.

Proof. Suppose we start with the Cauchy–Marchenko equation in the form (5.5)
(translating everything by time T and using the notation of boldface letters to
represent a vector consisting of the funcion and its time derivative):

u(−T )+ π�R(u(−T )) = π̄u(−T )

⇔ f̃(x)+ π�Rf̃(x) = π̄ f̃(x) (5.11)

⇔ JC�∂ f̃ + JC�∂π
�Rf̃ = JC�∂ π̄ f̃ (5.12)

⇔ f(−t)+ 1{t<T−ε}ν(R � f)(t) = r0(−t).

This is essentially the right equation for Rose, but we rewrite it in the more
familiar form:

f(−t)+ 1{t<T−ε}ν(R � f)(t) = r0(−t)

⇔ Ktail(−t)+ ν(R �Ktail)(t) = −ν(R � r0)(t) for t < T − ε
⇔ Ktail(−t)+ νR(Ktail(−·)) = −νR(r0(−·)) for t < T − ε,

⇔
{
Ktail(−t)+R(Ktail(−·)) = −R(r0(−·))
d
dt [Ktail(−t)+R(Ktail(−·))] = − d

dtR(r0(−·)) for t < T − ε

⇔ Ktail(−t)+R(Ktail(−·)) = −R(r0(−·)) for t < T − ε,

where the first equality is obtained be subtracted r0(−t) from both sides of the first
equation and writing f = r0 + Ktail. ��

Remark 5.10. The above result helps explain the truncation that Rose does in [15]
to obtain his autofocusing algorithm. The Corollary essentially shows that Ktail(t)
must satisfy

1{t<T−ε}Ktail(−t)+ 1{t<T−ε}R(Ktail(−·)) = −1{t<T−ε}R(r0(−·)).
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One naturally assumes that the tail come after the direct transmission r0, which
means Ktail(t) is supported in t > −T + ε and hence 1{t<T−ε}Ktail(−t) =
Ktail(−t). Thus, the Neumann series becomes

Ktail(−t) = −1{t<T−ε}R(r0(−·))+ (1{t<T−ε}R)2(r0(−·))
− (1{t<T−ε}R)3(r0(−·))+ . . . ,

and we may clearly see the truncation happening at each step of the algorithm. The
truncation is essential since we just proved the equivalence of Rose’s algorithm to
our Cauchy scheme, and we already proved that our Equation (5.4) is necessary
and sufficient to control multiple scattering. The proof shows that the truncation
essentially comes from (5.4) only holding within a certain region in space (that
is �� in that theorem) that was determined by finite speed of propagation and
unique continuation. In one dimension and after using the Cauchy-to-Boundary
map, this spatial region corresponds to the time-truncation appearing in Rose.

We will describe in the following sections the connection between the equations of
the previous theorems, the Marchenko equation, and scattering control.

5.4. Connection to the Marchenko Equation

Burridge [4] considers the 1-dimensional inverse scattering problem for the
plasma wave operator �q = � + q(x) where q = 0 in x < 0. (recall that in 1
dimension, the acoustic wave equation may be put into this form by a change of
variables as in [4]). Since it is not relevant for this part, we will avoid describing
the function spaces where all of our distributions here belong. One is interested in
solutions to�qu = 0 with certain boundary conditions at x = 0 that allow for only
left-going solutions inside x < 0 (see [4, Section 3] for details). It is shown in [4]
that there is a special Green’s function solution of the form G = δ(t− x)+K (x, t)
such that supp(K ) ⊂ {|t | � x, x � 0} and one may recover q from knowing K .

The given data are the reflected waves due to a right-going incidence wave in
the region x < 0. Analytically, there is a causal Green’s function

G1(x, t) = δ(t − x)+ K1(x, t),

with supp(K1) ⊂ {t � |x |, t > 0}. One is given the data M(t) = K1(x = 0, t)
(interpreted as a generalized trace), and the goal is to recover K fromR. Then it is
shown in [4, Section 3] that for each fixed x , K must satisfy the following integral
equation known as the Marchenko equation:

K (x, t)+
∫ x

−x
K (x, τ )M(t + τ) dτ = −M(t + x) for t < x . (5.13)

To relate this to (5.3), change variables to travel time coordinates

z =
∫ x

0
c(x ′)−1 dx ′.

Comparingwith (5.1), we see that t f = z(x f ) and K (z, t) = �tail(−t; z) solves the
Marchenko equation above withR as the given data in place ofM. The connection
to (5.3) is now readily apparent from the previous subsections.
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Fig. 17. These figures correspond to the incident pulse in Fig. 1a. In Rose’s setup, the tail
has extra waves to ensure the pressure field is quiescent exactly at t = T except for the direct
transmission. In a, the tail (constructed by the formula in (5.3)) consists of three (positive
amplitude) waves being sent in after the (positive amplitude) incident pulse. The first wave
cancels a returning wave which would create further scattering between the interfaces. The
other twowaves in the tail cancel the backscattered (negative amplitude) waves at t = T , and
only there. Thus, at t = T , the singular support of the pressure field is precisely one point
determined by the direct transmission. b The tail constructed using the scattering control
algorithm. For scattering control, we only care about the returning bicharacteristics, so the
tail consists of only one wave to eliminate the one returning wave. Thus, for t ∈ [T, 2T ]
the total wave field only consists of the direct transmission and two waves that will never go
deeper into the medium

5.5. Connection to Scattering Control

Notice that the proof of multiple scattering control in Theorem 5.1 and its
corollary essentially utilizes the operators I+π�R and I−π�R to control scattering
from the pressure field and the velocity field respectively. Our scattering control
series is a middle ground that allows one to control scattering in both the pressure
field and the velocity field such that after time t = 2T , the exterior data coming
from the direct transmission is distinguished. Indeed, the scattering control operator
is precisely

I − π∗Rπ∗R = (I − π∗R)(I + π∗R),

whose Neumann series solutions involve exactly the even terms in the Neumann
series of I − π�R. Figure 17 depicts the differences between Rose’s autofocusing
and scattering control in a simple one-dimensional example.
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AWave Equation Parametrix with Reflection and Transmission

We briefly review how a parametrix for the acoustic wave equation initial value
problem with piecewise smooth wave speed may be constructed in terms of reflec-
tions and transmissions, neglecting glancing rays. This is now-classical FIO theory,
drawing from the work of many authors, including Chazarain [6], Hansen [8], and
Taylor [23]. As nothing novel is developed here, we do not include proofs; our goal
is simply to provide a bookkeeping system for use in the paper.
Recalling Section 3.1, consider c(x) piecewise smooth with singular support con-
tained in disjoint closed smooth hypersurfaces �i , with � = ⋃�i . The interfaces
separateR

n\� into disjoint components� j . In order to distinguish the sides of each
hypersurface�i , consider an exploded space Z in which the connected components
of R

n\� are separate. It may be defined in terms of its closure, as a disjoint union

Z =
⊔
j

� j , Z =
⋃
j

� j ⊂ Z .

In this way, ∂Z contains two copies of each �i , one for each adjoining � j .
Before proceeding further, we perform a standard microlocal splitting in order to
separate forward- and backward-moving singularities. Recall that ∂2t −c2� factors
microlocally into half-wave operators (∂t+i Q)(∂t−i Q). The full solution operator
F is then equivalent microlocally to a sum of solution operators F± corresponding
to ∂t ± i Q, with initial data related by a microlocally invertible matrix �DO P:

F( f0, f1) ≡ F+g+ + F−g−,
[
g+
g−

]
≡ P

[
f0
f1

]
. (A.1)

The Cauchy data (g+, g−)may be interpreted as a single distribution g on a doubled
space Z = Z+ � Z− containing two copies of Z .
We now describe a parametrix R̃ for R = ν ◦ R2T as a sum of graph FIO on Z built
from sequences of reflections and transmissions, along with operators propagating
data from one boundary to another, or propagating the initial data to boundary
data. The key feature of the propagators is that waves reaching the boundary of a
subdomain � j simply leave � j rather than reflecting. To handle reflections and
refractions, we record the outgoing boundary data left by waves escaping � j and
convert them to appropriate incoming boundary data on each side of the interface,
which generate reflected and refracted waves.

CauchyPropagators: JC�S, JC�S+, JC�∂ Wefirst develop a reflectionless solution
operator JC�S for the Cauchy problem on Z. To begin, extend each restriction
c j = c

∣∣
� j to a smooth function on R

n . Let E±
j be the half-wave Lax parametrix

associated to ∂t ± i Q, Q = (−c2j�)
1/2. Each η ∈ T̊ ∗�±, j is associated with a

unique c j -bicharacteristic γη(t) in T̊ ∗
R
n passing through η at t = 0, which may

escape and possibly re-enter �±, j as t → ±∞.
To prevent re-entry of wavefronts, we introduce a pseudodifferential cutoff ϕ(t, ξ),
omitting some details for brevity. Let te±, tr± denote the first positive and neg-
ative escape and re-entry times; let ϕ(t, γη(t)) be identically one on [te−, te+]
and supported in (tr−, tr+). Modify ϕ on a small neighborhood of R × T̊ ∗∂�±, j
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(the glancing rays) to ensure it is smooth. Finally, let JC�S be the restriction of
ϕ(t, Dx ) ◦ E±

j to R ×�±, j ; this is the desired reflectionless propagator.
We also require a variant JC�S+ of JC�S in which waves travel only forward in
time. For this replace ϕ with some ϕ+ supported in (te−, tr+) and equal to 1 on
[0, te+]. Restricting JC�S+ to the boundary, we obtain the Cauchy-to-boundary
map JC�∂ = JC�S+

∣∣
R×∂Z.

It can be shown (cf. [6]) that JC�S, JC�S+ ∈ I−1/4(Z � R × Z), and JC�∂ ∈
I 0(Z � R×∂Z).Asdesired, JC�S and JC�S+ are parametrices: (∂t±i Q)JC�Sh, (∂t±
i Q)JC�S+h ≡ 0 for WF(h) lying in a set V ⊂ T̊ ∗Z whose bicharacteristics are
sufficiently far from glancing. By a direct argument with oscillatory integral rep-
resentations, it can also be shown that JC�∂ is elliptic at covectors in V whose
bicharacteristics intersect ∂Z. The near-glancing covector set W of Section 3 is
then T̊ ∗Z\V .
Boundary Propagators Outgoing solutions from boundary data f ∈ D′(R × Z)
may be obtained by microlocally converting boundary data to Cauchy data, then
applying JC�S. The boundary-to-Cauchy conversion can be achieved by applying
a microlocal inverse of JC�∂ , conjugated by the time-reflecting map Ss : t �→ s− t
for an appropriate s. More precisely, near any covector β = (t, x ′; τ, ξ ′) ∈ ∂�±, j
in the hyperbolic region |τ | > c j |ξ ′| there exists a unique bicharacteristic γ passing
through8 β and lying inside �±, j in some time interval [s, t), s < t . Then J∂�S

may be defined as Ss JC�S J
−1
C�∂ Ss microlocally near β.

On the elliptic region |τ | < c j |ξ ′| define J∂�S as a parametrix for the elliptic
boundaryvalueproblem; see for example [18, §4.8].Applying amicrolocal partition
of unity, we obtain a global definition of J∂�S away from a neighborhood of the
glancing region |τ | = c j |ξ ′|. It can be proven that J∂�S ∈ I−1/4(R×∂Z � R×Z).
Its restriction to the boundary r∂ ◦ J∂�S consists of a pseudodifferential operator
equal to the identity onW and an elliptic graph FIO J∂�∂ ∈ I 0(R×∂Z � R×∂Z)
describing waves traveling from one boundary to another.

Reflection and Transmission It is well known that transmitted and reflected waves
arise from requiring a weak solution to be C1 at interfaces. Given incoming bound-
ary data f ∈ E ′(R × ∂Z) (an image of JC�∂ or J∂�∂ ) microsupported near β, we
seek data fR, fT satisfying the C1 constraints

f + fR ≡ ι fT,
∂ν(υ J∂�Sυ f + J∂�S fR)

∣∣
R×∂Z ≡ ι∂ν J∂�S fT

∣∣
R×∂Z.

(A.2)

Here, υ is time-reversal, so υ J∂�Sυ is the outgoing solution that generated f . The
map ι : ∂Z → ∂Z reverses the copies of each boundary component within ∂Z,
and ∂ν denotes the normal derivative. The second equation in (A.2) simplifies to a
pseudodifferential equation

NI f + NR fR ≡ NT fT (A.3)

8 That is, (di)∗γ (t) = β, where i : ∂Z ↪→ Z.
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with operators NI, NR, NT ∈ �1(R × ∂Z) that may be explicitly computed. The
system (A.2–A.3) may be microlocally inverted to recover fR = MR f , fT = MT f
in terms of pseudodifferential reflection and transmission operators MR, ιMT ∈
�0(R × ∂Z). Let M = MR + MT.
The principal symbols of MR and ιMT have well-known geometric interpretations.
In the doubly hyperbolic region where |τ | < c|ξ ′| on both sides of the interface,

σ0(MR) = cot θR − cot θT
cot θR + cot θT

, σ0(ιMT) = 2 cot θR
cot θR + cot θT

, (A.4)

where θR, θT are the angles between the normal and the associated reflected and
transmitted bicharacteristics. Here cot θR = (c−2

R τ
2−|ξ ′|2)1/2/|ξ ′|, where cR is the

wave speed at β on the reflected side, and similarly for θT. From (A.4) we deduce
MT is elliptic in the doubly-hyperbolic region, while MR is elliptic as long as c is
discontinuous at the interface. Note that while the principal symbol of ιMT may
exceed 1, this does not violate energy conservation since MT operates on boundary
rather than Cauchy data.

Parametrix With all the necessary components defined, we now set

F̃ = JC�S + J∂�SM
∞∑
k=0

(J∂�∂M)
k JC�∂ ,

R̃ = r2T ◦ F̃,

(A.5)

where r2T is restriction to t = 2T , plus time-reversal. Again omitting the proof, it
can be shown that F̃ ≡ F and R̃ ≡ R away from glancing rays; that is, for initial
data h0 such that every broken bicharacteristic originating inWF(h0) is sufficiently
far from glancing. Recalling that M = MR + MT, we may write R̃ as a sum of
graph FIO indexed by sequences of reflections and transmissions:

R̃ =
∑

s∈{R,T }k
k≥0

R̃s, R̃() = r2T JC�S,

R̃(s1,...,sk ) = r2T J∂�SMsk J∂�∂ · · ·Ms2 J∂�∂Ms1 JC�∂ .

(A.6)
The solution operator F̃ likewise decomposes into analogous components F̃s .

Comparison with Layered Media Parametrices The above construction is in fact
the natural generalization from the flat interface case of a layered media. Indeed,
suppose our space � is only a small perturbation of the flat layered media case
(see [9] for notation and analysis in the flat case). This ensures that bicharacteristic
segments starting from �i hit �i−1 or �i+1 first before hitting another interface
(here, �i lies below �i and above �i+1). The full wave field may be microlocally
decomposed into upgoing and downgoing components at each interface �i de-
noted u(i)−, resp. u(i)+ as described in [21, proof of Theorem 3.1]. Then localizing
the construction of the boundary-to-boundary maps J∂�∂ , we obtain J i,i+1

∂�∂ (resp.

J i,i−1
∂�∂ ), which propagate ui,+ (resp. ui,−) to interface �i+1 (resp. �i−1).

Next, there are reflection and transmission operators, denoted Ri, j , T i, j ∈ �0(R×
�i ) which are essentially the MR,MT operators from before but microlocally re-
stricted to a particular “side” of a particular interface. The indexing is such that Ri, j
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denotes the reflection coefficient of a wave inside � j reflecting off of �i . While
T i, j denotes the transmission coefficient for a wave from �i into � j where the
constructions are made exactly as in the previous section. Under this simplified
geometry, the outgoing waves at interface �i are given by

u(i)+ = T i−1,i J i−1,i
∂�∂ u(i−1)+ + Ri,i J i+1,i

∂�∂ u(i+1)−

and

u(i)− = Ri,i−1 J i−1,i
∂�∂ u(i−1)+ + T i,i−1 J i+1,i

∂�∂ u(i+1)−.

This is all for i � 2, while for i = 1 we must take into account the source term
φ ∈ D′(�1) (assuming this is the only source) and only those incoming waves from
�2:

u(1)+ = R1,1 J 2,1∂�∂u
(2)− + φ+source

u(1)− = T 1,0 J 2,1∂�∂u
(2)− + φ−source.

Denote u± = [u(1)±, . . . , u(r)±]T . Thus, as done in [7], we may combine, the R, T
operators and the corresponding J∂�∂ occurring in the above formulas into one
operator (for example, Ri,i J i+1,i

∂�∂ becomes a single operator). Then we form T±
and R±, each a r × r matrix of FIO’s, to obtain the following recursive formula:

[
u+
u−
]
=
[
T+ R+
R− T−

] [
u+
u−
]
+
[
(φ+source, 0, . . . , 0)T
(φ−source, 0, . . . , 0)T

]
.

Hence, it is fitting to denote Ssc =
[
T+ R+
R− T−

]
as the scattering “matrix”, which

corresponds to J∂�∂M appearing in (A.5). To connect this construction to (A.5),
start with Cauchy data φCauchy ∈ C with microsupport close to a single covector,
whose corresponding geodesic hits �1 transversely. Then the solution restricted to
�1 near this first intersection is microlocally equal to

φ�1 = φincoming + φsource,

where φincoming = JC�∂φCauchy and φ+source = T 0,1 JC�∂φCauchy and φ−source =
R1,0 JC�∂φCauchy. So the upgoing and downgoing parts of the solution at the inter-
faces are given by

[
u+
u−
]
=
[
(φ+incoming, 0, . . . , 0)

T

(φ−incoming, 0, . . . , 0)
T

]
+

∞∑
k=0

Sksc

[
(φ+source, 0, . . . , 0)T
(φ−source, 0, . . . , 0)T

]
.

After applying the boundary to solution operator, we obtain a formula exactly
analogous to (A.5), and one can use the scattering matrix to track the principal
symbols of the wave field in each �i separately.
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