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Abstract

This paper shows global-in-time existence and asymptotic decay of small solu-
tions to theNavier–Stokes–Fourier equations for a class of viscous, heat-conductive
relativistic fluids. As this second-order system is symmetric hyperbolic, existence
and uniqueness on a short time interval follow from the work of Hughes, Kato and
Marsden. In this paper it is proven that solutions which are close to a homogeneous
reference state can be extended globally and decay to the reference state. The proof
combines decay results for the linearizationwith refinedKawashima-type estimates
of the nonlinear terms.

1. Introduction

In relativistic fluid dynamics, stresses in perfect fluids are described by the
inviscid energy–momentum tensor

T αβ = (ρ + p)uαuβ + pgαβ, (1.1)

where ρ and p are the internal energy and the pressure of the fluid, uα is its 4-
velocity.1 In this paper we will exclusively consider causal barotropic fluids, a
class defined by the property that there exists a one-to-one relation between ρ and
p,

p = p̂(ρ), (1.2)

1 Greek indices run from 0 to 3 and are raised or lowered by contraction with gαβ, gαβ ,
where gαβ = diag(−1, 1, 1, 1) is the standard Minkowski metric; cf., for example [7],
Section 2.5.
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with a smooth function p̂ : (0,∞) → (0,∞) that satisfies 0 < p̂′ < 1. One way
to describe the dynamics of dissipative barotropic fluids is via a system

∂

∂xβ

(
T αβ + �T αβ

) = 0, α = 0, 1, 2, 3, (1.3)

of partial differential equations—the conservation laws of energy andmomentum—
inwhich the “dissipation tensor”�T αβ is linear in the gradients of the state variables
determined by coefficients η, ζ of viscosity and χ of heat conduction.2 Freistühler
and Temple have recently proposed a particular new way of choosing �T αβ such
that basic requirements, notably of causality, are met; see [3] for this and also for
a discussion of the interesting history of the causality problem. According to [3],
�T αβ is given as

−�T αβ = Bαβγ δ(ψ)
∂ψγ

∂xδ
,

where ψ denotes the so-called Godunov variables

ψγ = uγ

f
,

with f the Lichnerowicz index of the fluid. The key property of Godunov variables
is that in these, the first-order part of a system of conservation laws, here

∂

∂xβ
T αβ,

becomes symmetric hyperbolic [4].3 Now, the requirement that

− ∂

∂xβ

(
�T αβ

)

should also be symmetric hyberbolic whenwritten in the same variables determines
a set of coefficient fields Bαβγ δ(ψ) which make (1.3) an element of a class of
systems that was introduced by Hughes, Kato and Marsden and shown to be well-
posed in Sobolev spaces [5]. As established in [3], the requirements of equivariance
(isotropicity) and other physical necessities indeed make Bαβγ δ(ψ) determined by
the coefficients η, ζ, χ .

The purpose of this paper is to provide a global-in-time solution theory of
these relativistic Navier–Stokes–Fourier equations (1.3). To this end, we analyze
first the linearization of (1.3) at some homogeneous reference state and then the
nonlinear problem as a perturbation of the linear one, bothwith techniques that were
developed or are similar to techniques developed by Kawashima and co-authors,
notably in [1,6].

2 We use the Einstein summation convention.
3 See [2] for details and the history of the use of suchvariables in relativistic fluid dynamics.
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To have a clear setting, we carry out the whole argument under the additional
assumption that the fluid is indeed thermobarotropic, which means, in addition to
(1.2), that its internal energy is a function of temperature alone:

ρ = ρ̂(θ). (1.4)

In this case, the Lichnerowicz index is identical with the temperature,

f = θ, (1.5)

and actual heat conduction can be an integrated part of a four-field theory, see [2].
An important physical example of this is given by the case of the pure radiation fluid
[7], whose internal energy as a function of particle number, density and specific
entropy is given by

ρ(n, s) = kn
4
3 s

4
3 .

The results of this paper extend to barotropic fluids that do not satisfy (1.4), (1.5)—
one just has to replace θ by f everywhere—but then the “χ -terms” attain the role of
an “artificial heat conduction”. We plan to later use this hyperbolic regularization
for studying the “purely viscous” (χ = 0) case via the limit χ ↓ 0.

2. Preliminaries and Main Result

We begin by introducing some notation. For p ∈ [1,∞] and some m ∈ N just
write L p for L p(R3,Rm). For s ∈ N0 we denote by Hs the L2-Sobolev-space of
order s, namely

Hs :=
{

u ∈ L2 : ∀ α ∈ N
n
0 (|α| � s) : ‖∂α

x u‖L2 < ∞
}

with norm

‖u‖s =
⎛

⎝
∑

0�|α|�s

‖∂α
x u‖L2

⎞

⎠

1
2

.

We just write ‖u‖ instead of ‖u‖0. For s, k ∈ N0 and U = (u1, u2) ∈ Hs × Hk set

‖U‖s,k =
(
‖u1‖2s + ‖u2‖2k

) 1
2

and for U ∈ (Hs × Hk) ∩ (L p)2 set

‖U‖s,k,p = ‖U‖s,k + ‖U‖(L p)2 .

For u ∈ Hs and integers 0 � k � s, ∂k
x shall denote the vector inRN , N = m#{α ∈

N
n
0 : |α| = k}, whose entries are the partial derivatives of u of order k.
For u ∈ Hs , v ∈ Hl−1 (0 � l � s) and α ∈ N

n
0, |α| � s, set

[∂α
x , u]v = ∂α

x (uv) − u∂α
x v.
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For δ > 0 let φδ denote the Friedrichs mollifier and set

[φδ∗, u]v = φδ ∗ (uv) − u(φδ ∗ v).

As stated in the introduction, the goal of this paper is to prove the existence and
asymptotic decay of global-in-time solutions of (1.3) near homogeneous reference
states. First, writing (1.3) in Godunov variables gives

− Bαβγ δ(ψ)
∂ψγ

∂xβ∂xδ
+ ∂

∂xβ
T αβ(ψ) − ∂

∂xβ

(
Bαβγ δ(ψ)

) ∂ψγ

∂xδ
= 0,

α = 0, 1, 2, 3. (2.1)

In our case of a thermobarotropic fluid the dissipation tensor and the inviscid
energy–momentum tensor are given by

Bαβγ δ(ψ) = χθ2uαuγ gβδ − σθuβuδ�αγ + ζ̃ θ�αβ�γδ

+ ηθ

(
�αγ �βδ + �αδ�βγ − 2

3
�αβ�γδ

)

+ σθ
(
uαuβgγ δ − uαuδgγ δ

) + χθ2
(
uβuγ gγ δ − uγ uδgγ δ

)
,

with σ = ( 43η+ζ )/(1−c2s )−c2s χθ , ζ̃ = ζ +c2s σ −c2s (1−c2s )χθ , where c2s = p̂′(ρ)

is the speed of sound (cf. [3]), and

∂

∂xβ
T αβ = snθ2

[
uαgβγ + uβgαγ + uγ gαβ + (3 + c−2

s )uαuβuγ
] ∂ψγ

∂xβ
,

with particle number n and specific entropy s.4 It was shown in [3] that (2.1) is
symmetric hyperbolic in the sense of Hughes–Kato–Marsden [5]. Thus, using

Bαβγ δ(ψ)
∂ψγ

∂xβ∂xδ
= B̃αβγ δ(ψ)

∂ψγ

∂xβ∂xδ

with

B̃αβγ δ(ψ) = 1

2

(
Bαβγ δ(ψ) + Bαδγβ(ψ)

)

= χθ2uαuγ gβδ − σθuβuδ�αγ + ζ̃ θ�αβγ δ + ηθ

(
�αγ �βδ + 1

3
�αβγ δ

)
,

where

�αβγ δ = 1

2
(�αβ�γδ + �αδ�βγ ),

we can write (2.1) as

A(ψ)ψt t −
3∑

i, j=1

Bi j (ψ)ψxi x j +
3∑

j=1

D j (ψ)ψt x j + f (ψ,ψt , ∂xψ) = 0, (2.2)

4 We use the standard projection �αβ = gαβ + uαuβ .
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where

A = (−B̃α0γ 0)0�α,γ�3, Bi j = (B̃αiγ j )0�α,γ�3,

D j = (−B̃α0γ j )0�α,γ�3

are symmetric 4 × 4 matrices, A(ψ) is positive definite,
∑3

i, j=1 ξi Bi j (ψ)ξ j is

positive definite for arbitrary ξ ∈ R
3\{0}, and

f α = ∂

∂xβ
T αβ(ψ) − ∂

∂xβ

(
Bαβγ δ(ψ)

) ∂ψγ

∂xδ
, α = 0, 1, 2, 3.

Throughout the paper we will consider the Cauchy problem associated with
(2.2):

Aψt t −
3∑

i, j=1

Bi jψxi x j +
3∑

j=1

D jψt x j + f = 0 on (0, T ] × R
3, (2.3)

ψ(0) = 0ψ on R
3, (2.4)

ψt (0) = 1ψ on R3. (2.5)

The main result is the following:

2.1 Theorem. Let s � 3 and ψ̄ = (θ̄−1, 0, 0, 0, )t with a constant temperature
θ̄ > 0. Then there exist δ0 > 0, C0 = C0(δ0) > 0 such that for all initial data
(0ψ, 1ψ1) ∈ (

Hs+1 × Hs
) ∩ (

L1 × L1
)

satisfying ‖(0ψ − ψ̄, 1ψ)‖2s+1,s,1 < δ0
there exists a unique solution ψ of the Cauchy problem (2.3)–(2.5) such that

ψ − ψ̄ ∈
s⋂

j=1

C j
(
[0,∞), Hs+1− j

)

ψ satisfies the decay estimates

‖(ψ(t) − ψ̄, ψt (t)‖2s+1,s +
∫ t

0
‖(ψ(τ) − ψ̄, ψt (τ ))‖2s+1,s dτ

� C0‖(0ψ − ψ̄, 1ψ)‖2s+1,s, (2.6)

‖(ψ(t) − ψ̄, ψt (t))‖s,s−1 � C0(1 + t)−
3
4 ‖(0ψ − ψ̄, 1ψ)‖s,s−1,1 (2.7)

for all t ∈ [0,∞).

3. Decay Estimates for the Linearized System

In this section we study the linearization of (2.2) about a quiescent, isothermal
reference state ψ̄ = u/θ̄ , u = (1, 0, 0, 0)t , θ̄ > 0. The resulting equations read

A(1)ψt t −
3∑

i, j=1

B(1)
i j ψxi x j + a(1)ψt +

3∑

j=1

b(1)
j ψx j = 0, (3.1)
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where

A(1) =
(

χθ̄2 0
0 σ θ̄ I3

)
,

B(1)
i j =

(
χθ̄2δi j 0

0 θ̄ηI3δi j + 1
2 θ̄ (ζ̃ + 1

3η)(ei ⊗ e j + e j ⊗ ei )

)
,

a(1) = nsθ̄2
(

c−2
s 0
0 I3

)
, b(1)

j = nsθ̄2(e j ⊗ e0 + e0 ⊗ e j ),

where n, s, χ, cs, η, ζ̃ are evaluated at the reference state. Note that no mixed
derivative ψt x j occurs here, as

B̃α0γ j = B̃α jγ 0 = 0

at the reference state. Multiplying (3.1) by (ns)−1θ̄−2 and setting χ̄ = χ(ns)−1,
η̄ = η(nsθ̄ )−1, ζ̄ = ζ̃ (nsθ̄ )−1, σ̄ = σ(nsθ̄ )−1, we arrive at the equivalent system

A(2)ψt t −
3∑

i, j=1

B(2)
i j ψxi x j + a(2)ψt +

3∑

j=1

b(2)
j ψx j = 0, (3.2)

where

A(2) =
(

χ̄ 0
0 σ̄ I3

)
, B(2)

i j =
(

χ̄δi j 0
0 η̄I3δi j + 1

2

(
ζ̄ + 1

3 η̄
)
(ei ⊗ e j + e j ⊗ ei )

)
,

a(2) =
(

c−2
s 0
0 I3

)
, b(2)

j = e j ⊗ e0 + e0 ⊗ e j .

Finally, multiplying (3.2) by (A(2))− 1
2 and writing it in variables (A(2))

1
2 ψ gives

ψt t −
3∑

i, j=1

B̄i jψxi x j + aψt +
3∑

j=1

b jψx j = 0, (3.3)

where

B̄i j =
(

δi j 0
0 σ̄−1

(
η̄I3δi j + 1

2

(
ζ̄ + 1

3 η̄
)
(ei ⊗ e j + e j ⊗ ei )

)
)

,

a =
(

c−2
s χ̄−1 0
0 σ̄−1 I3

)
, b j = (χ̄ σ̄ )−

1
2 (e j ⊗ e0 + e0 ⊗ e j ).

The goal is to prove a decay estimate for the Cauchy problem associated with (3.3):

ψt t −
3∑

i, j=1

B̄i jψxi x j + aψt +
3∑

j=1

b jψx j = 0 on (0, T ] × R
3, (3.4)

ψ(0) = 0ψ on R
3, (3.5)

ψt (0) = 1ψ on R
3. (3.6)
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3.1 Proposition. For some s ∈ N0 let (0ψ, 1ψ) ∈ (Hs+1 × Hs) ∩ (L1)2 and
(ψ(t), ψt (t)) ∈ Hs+1 × Hs be a solution of (3.4)–(3.6). Then there exist c, C > 0
such that for all integers 0 � k � s and all t ∈ [0, T ],

‖∂k
x ψ(t)‖1 + ‖∂k

x ψt (t)‖ � C(1 + t)−
3
4− k

2

(
‖0ψ‖L1 + ‖1ψ‖L1

)

+ Ce−ct
(
‖∂k

x (0ψ)‖1 + ‖∂k
x (1ψ)‖

)
. (3.7)

To prove Proposition 3.1 we consider (3.4)–(3.6) in Fourier space, that is

ψ̂t t + |ξ |2B(ξ̌ )ψ̂ + aψ̂t − i |ξ |b(ξ̌ )ψ̂ = 0 on (0, T ] × R
3, (3.8)

ψ̂(0) = 0ψ̂(ξ) on R
3, (3.9)

ψ̂t (0) = 1ψ̂(ξ) on R
3, (3.10)

where ξ̌ = ξ/|ξ |,

B(ω) =
3∑

i, j=1

ωi B̄i jω j =
(
1 0
0 σ̄−1

(
η̄I3 + (

ζ̄ + 1
3 η̄

)
(ω ⊗ ω)

)
)

,

b(ω) =
3∑

j=1

b jω j = (χ̄ σ̄ )−
1
2

(
0 ωt

ω 0

)
, ω ∈ S

2.

We get the following pointwise decay estimate:

3.2 Lemma. In the situation of Proposition 3.1 there exist c, C > 0 such that for
(t, ξ) ∈ [0, T ] × R

n

(1 + |ξ |2)|ψ̂(t, ξ)|2 + |ψ̂t (t, ξ)|2

� C exp(−cρ(ξ)t)
(
(1 + |ξ |2)|0ψ̂(ξ)|2 + |1ψ̂(ξ)|2

)
, (3.11)

where ρ(ξ) = |ξ |2/(1 + |ξ |2).
Proof. Our goal is to arrive at an expression of the form

1

2

d

dt
E(t, ξ) + F(t, ξ) � 0, (3.12)

where E(t, ξ) is uniformly equivalent to

E0(t, ξ) = (1 + |ξ |)2|ψ̂(t, ξ)|2 + |ψ̂t (t, ξ)|2,
and F � cρ(ξ)E0. Then (3.11) follows by Gronwall’s Lemma.

W.l.o.g. assume ξ = (|ξ |, 0, 0) (otherwise rotate the coordinate system). Since
(4/3)η̄ + ζ̄ = σ̄ , (3.8) decomposes into the two uncoupled systems

wt t + |ξ |2w + ãwt − i |ξ |b̃w = 0, (3.13)

vt t + η̄σ̄−1|ξ |2v + σ̄−1vt = 0, (3.14)



98 Matthias Sroczinski

where w = (ψ̂0, ψ̂1), v = (ψ̂2, ψ̂3),

ã =
(

χ̄−1c−2
s 0

0 σ̄−1

)
, b̃ = (χ̄ σ̄ )−

1
2

(
0 1
1 0

)
. (3.15)

Obviously, this allows us to prove estimate (3.11) for w and v independently.
First, consider (3.14), where the estimate is fairly easy to obtain. Take the scalar

product (in C2) of this equations with vt + 1/(2σ̄ )v. The real part reads

1

2

d

dt
E (2) + F (2) = 0,

where

E (2) = |vt |2 + η̄

σ̄
|ξ |2|v|2 + 1

2σ̄ 2 |v|2 + 1

σ̄
�〈vt , v〉, (3.16)

and

F (2) = 1

2σ̄
|vt |2 + η̄

2σ̄ 2 |ξ |2|v|2. (3.17)

Since

|σ̄−1�〈vt , v〉| � 1

3σ̄ 2 |v|2 + 3

4
|vt |2,

E (2) is uniformly equivalent to E (2)
0 = |vt |2 + (1 + |ξ |2)|v|2 and as

|ξ |2 ≥ 1

2
ρ(ξ)

(
1 + |ξ |2

)
,

we have F (2) ≥ c1ρ(ξ)E (2)
0 for some c1 > 0.

Next, we study system (3.13). For notational purposes set a1 = χ̄−1c−1
s , a2 =

σ̄−2 and b1 = (χ̄ σ̄ )− 1
2 . Now, take the scalar product of (3.13) with ãwt . The real

part of the resulting equation reads

1

2

d

dt

(
〈ãwt , wt 〉 + |ξ |2〈ãw,w〉

)
+ |ãwt |2 + �〈−i |ξ |b̃w, ãwt 〉 = 0. (3.18)

Taking the scalar product of (3.13) with −i |ξ |b̃w and considering the real part
gives

d

dt

(
�〈wt ,−i |ξ |b̃w〉

)
+ �〈ãwt ,−i |ξ |b̃w〉 + |ξ |2|b̃w|2 = 0. (3.19)

Then we take the scalar product of (3.13) with w. The real part is

1

2

d

dt
(〈ãw,w〉 + 2�〈wt , w〉) − |wt |2 + |ξ |2|w|2 = 0. (3.20)

Set

S = 1

2b1

(
0 a1 − a2

a2 − a1 0

)
.
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Since i S is Hermitian,

�〈i Sw,wt 〉 = 1

2

d

dt
〈i Sw,w〉

holds, and we can write (3.20) as

1

2

d

dt
(〈ãw,w〉 + 2�〈wt , w〉 + 2|ξ |〈i Sw,w〉)

− |wt |2 + |ξ |2|w|2 − 2�(|ξ |〈i Sw,wt 〉) = 0. (3.21)

Now, add (3.18)+(3.19)+α(3.21) (for some α > 0 to be determined later) to obtain

1

2

d

dt
E (1) + F (1) = 0, (3.22)

where

E (1) = 〈ãwt , wt 〉 + |ξ |2〈ãw,w〉 + 2�(〈wt ,−i |ξ |b̃w〉)
+ α (〈ãw,w〉 + 2�〈wt , w〉 + 2|ξ |〈i Sw,w〉)

and

F (1) = |ãwt |2 − α|wt |2 − 2�(i |ξ |〈(ãb̃ − S)w,wt 〉) + |ξ |2|b̃w|2 + α|ξ |2|w|2.
for Proposition 3.1 First, show that E (1) is uniformly equivalent to E (1)

0 = (1 +
|ξ |2)|w|2 + |wt |2. Obviously, there exists C1 > 0 such that

E (1) ≤ C1E (1)
0 .

For

M =
(

ã b̃
b̃ ã

)

and W = (wt ,−i |ξ |w),

〈ãwt , wt 〉 + |ξ |2〈ãw,w〉 + 2�(〈wt ,−i |ξ |b̃w〉) = 〈MW, W 〉C4 .

It is easy to show that σ(M) = σ(ã + b̃)∪σ(ã − b̃). Furthermore cs ∈ (0, 1) yields
ã + b̃ > 0, ã − b̃ > 0. Thus M is positive definite, that is

〈ãwt , wt 〉 + |ξ |2〈ãw,w〉 + 2�(〈wt ,−i |ξ |b̃w〉) ≥ C2(|wt |2 + |ξ |2|w|2)
for a C2 > 0. Furthermore, by Young’s inequality there exists C3 > 0 such that

|2�〈wt , w〉 + 2i |ξ |〈Sw,w〉| ≤ d

2
|w|2 + C3(|ξ |2|w|2 + |wt |2),

where d = min{a1, a2}. In conclusion

E (1) ≥ C2(|wt |2 + |ξ |2|w|2) − αC3(|ξ |2|w|2 + |wt |2) + α
d

2
|w|2.
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Hence, for α sufficiently small there exists C4 > 0 such that

E (1) ≥ C4E (1)
0 .

Finally show F (1) ≥ cρ(ξ)E (1)
0 for α sufficiently small. To this end write

F (1) = F (1)
1 + F (1)

2 , where

F (1)
1 = (a2

1 − α)|w1
t |2 + (b21 + α)|ξ |2|w2|2

− 2�
(

i |ξ |
(

a1b1 + α
a1 − a2
2b1

)
w2w̄1

t

)
,

F (1)
2 = (a2

2 − α)|w2
t |2 + (b21 + α)|ξ |2|w1|2

− 2�
(

i |ξ |
(

a2b1 + α
a2 − a1
2b1

)
w1w̄2

t

)
.

Since

(a2
1 − α)(b21 + α) −

(
a1b1 + α

a1 − a2
2b1

)2

= α(a1a2 − b21) + O(α2)

and a1a2 > b21 there exist c2 > 0 such that

F (1)
1 ≥ αc2(|w1

t |2 + |ξ |2|w2|2)

for α sufficiently small. In the same way we get

F (1)
2 ≥ αc2(|w2

t |2 + |ξ |2|w1|2).

Therefore

F (1) ≥ αc2(|wt |2 + |ξ |2|w|2) ≥ α
c1
2

ρ(ξ)E (1)
0 ,

which finishes the proof. ��
Based on Lemma 3.2 the proof for Proposition 3.1 goes as [1, Proof of Theo-

rem 3.1].
Next consider the inhomogeneous initial-value problem

ψt t −
3∑

i, j=1

B̄i jψxi x j + aψt +
n∑

j=1

b jψx j = h, on (0, T ] × R
3, (3.23)

ψ(0) = 0ψ, on R3, (3.24)

ψt (0) = 1ψ, on R
3, (3.25)

for some h : [0, T ] × R
3 → R

4. We get the following results:
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3.3 Proposition. Let s be a non-negative integer,
(0ψ, 1ψ) ∈ (Hs+1 × Hs) ∩ (L1)2 and h ∈ C([0, T ], Hs ∩ L1). Then the solution
ψ of (3.23)–(3.25) satisfies

‖∂k
x ψ(t)‖1 + ‖∂k

x ψt (t)‖ � C(1 + t)−
3
4− k

2 (‖0ψ‖L1 + ‖1ψ‖L1)

+ Ce−ct (‖∂k
x (0ψ)‖1 + ‖∂k

x (1ψ)‖)
+ C

∫ t

0
(1 + t − τ)−3/4−k/2‖h(τ )‖L1

+ C exp(−c(t − τ))‖∂k
x h(τ )‖ dτ (3.26)

for all t ∈ [0, T ] and 0 � k � s.

Proof. For t ∈ [0, T ] let T (t) be the linear operator which maps (0ψ, 1ψ) to the
solution (ψ(t)), ψt (t))of the homogeneous IVP (3.4)–(3.6) at time t . ByDuhamel’s
principle the solution of (3.23)–(3.25) is given by

(ψ(t), ψt (t)) = T (t)(0ψ, 1ψ) +
∫ t

0
T (t − τ)(0, h(τ )) dτ.

Hence the assertion is an immediate consequence of Proposition 3.1. ��
3.4 Proposition. Let s be a non-negative integer. There exist C1, C2 > 0 such
that for all (0ψ, 1ψ) ∈ Hs+1 × Hs and h ∈ C([0, T ], Hs) the solution ψ of
(3.23)–(3.25) satisfies

C1

(
‖∂α

x ψ(t)‖21 + ‖∂α
x ψt (t)‖2

)
+ C1

∫ t

0
‖∂α

x ∂xψ(τ)‖2 + ‖∂α
x ψt (τ )‖2 dτ

� C2

(
‖∂α

x (0ψ)‖21 + ‖∂α
x (1ψ)‖2

)

+
∫ t

0
C2‖∂α

x ψ(τ)‖2 +
(
∂α

x h(τ ),
a

2
∂α

x ψ(τ) + ∂α
x ψt (τ )

)

L2
dτ (3.27)

for all t ∈ [0, T ] and α ∈ N
3
0, |α| = s.

Proof. Consider (3.23) in Fourier space, that is

ψ̂t t + |ξ |2B(ξ̌ )ψ̂ + aψ̂t − i |ξ |b(ξ̌ )ψ̂ = ĥ.

We proceed similarly as in the Proof of Lemma 3.2. Again w.l.o.g. assume ξ =
(|ξ |, 0, 0), then (3.23) reads

wt t + |ξ |2w + ãwt − i |ξ |b̃w = (ĥ0, ĥ1)t , (3.28)

vt t + η̄σ̄−1|ξ |2v + σ̄−1vt = (ĥ2, ĥ3)t , (3.29)

where w = (ψ̂0, ψ̂1), v = (ψ̂2, ψ̂3), ã, b̃ are given by (3.15). First, take the scalar
product of (3.29) with vt + 1/(2σ̄ )v and consider the real part

1

2

d

dt
E (2) + F (2) = �

〈
(ĥ2, ĥ3)t , vt + 1

2σ̄
v

〉
, (3.30)
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where E (2), F (2) are given by (3.16), (3.17). Since E (2) is uniformly equivalent to
|vt |2 + (1 + |ξ |2)|v|2 and F2 ≥ c(|vt |2 + |ξ |2|v|2), integrating (3.30) leads to

C1

(
|vt |2 + (1 + |ξ |2)|v|2

)
+ C1

∫ t

0
|vt |2 + |ξ |2|v|2 dτ

≤ C2

(
|vt (0)|2 + (1 + |ξ |2)|v(0)|2

)
+

∫ t

0
�

〈
(ĥ2, ĥ3)t , vt + 1

2σ̄
v

〉
dτ.

(3.31)

Next, take the scalar product of (3.28) with wt + (ã/2)w. The real part reads

1

2

d

dt
E (1) + F (1) = �〈(ĥ0, ĥ1)t , wt + 1

2
ãw〉, (3.32)

where

E (1) = |wt |2 + |ξ |2|w|2 + 1

2
|ãw|2 + �〈ãwt , w〉

and

F (1) = 1

2
〈ãwt , wt 〉 + �〈−i |ξ |b̃w,wt 〉 + 1

2
|ξ |2〈ãw,w〉 − 1

2
�〈i |ξ |b̃w, ãw〉.

Using Young’s inequality it is easy to see that E (1) is uniformly equivalent to
|wt |2 + (1 + |ξ |2)|w|2. Furthermore,

F (1) = 1

2
〈MW, W 〉C4 − 1

2
�〈i |ξ |b̃w, ãw〉,

where

M =
(

ã b̃
b̃ ã

)

and W = (wt ,−i |ξ |w). As M is positive definite (see Proof of Lemma 3.2) there
exist c1, c2 > 0 such that

F (1) ≥ c1(|wt |2 + |ξ |2|w|2) − c2|ξ ||w||w| ≥ c1
2

(|wt |2 + |ξ |2|w|2) − c22
2c1

|w|2.

Thus integrating (3.32) leads to

C1

(
|wt |2 + (1 + |ξ |2)|w|2

)
+ C1

∫ t

0
|wt |2 + |ξ |2|w|2 dτ

≤ C2

(
|wt (0)|2 + (1 + |ξ |2)|w(0)|2

)

+
∫ t

0
C2|w|2 + �〈(ĥ0, ĥ1)t , wt + ã

2
w〉 dτ. (3.33)
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Adding (3.31) and (3.33) gives

C1

(
|ψ̂t |2 + (1 + |ξ |2)|ψ̂ |2

)
+ C1

∫ t

0
|ψ̂t |2 + |ξ |2|ψ̂ |2 dτ

≤ C2

(
|1ψ̂ |2 + (1 + |ξ |2)|0ψ̂ |2

)
+

∫ t

0
C2|ψ̂ |2 + �〈ĥ, ψ̂t + a

2
ψ̂〉 dτ. (3.34)

Finally the assertion follows by multiplying (3.34) with ξ2α for α ∈ N
n
0, |α| = s,

integrating with respect to ξ , and using Plancherel’s identity. ��

4. Global Existence and Asymptotic Decay

The goal of this section is to prove Theorem 2.1. We will proceed as follows:
First we show a decay estimate for all but the highest order derivatives of a solution,
Proposition 4.1, and then an energy estimate for the derivatives of highest order,
Proposition 4.3. Then Theorem 2.1 follows from combining the two, Proposition
4.4.

As in Section 3 fix θ̄ > 0, multiply (2.2) by (n(θ̄)s(θ̄))−1θ̄−2(A(2))− 1
2 and

change the variables to (A(2))
1
2 ψ such that the linearization at (θ̄−1, 0, 0, 0) is

given by (3.3). In addition, consider ψ − ψ̄ with ψ̄ = (θ̄−1, 0, 0, 0) instead of
ψ , 0ψ − ψ̄ instead of 0ψ , A(· + ψ̄) instead of A(·) and so on, such that the rest
state is shifted from (θ̄−1, 0, 0, 0) to (0, 0, 0, 0). In the following, when (2.2) or
(2.3)–(2.5) are mentioned, we actually mean these modified equations.

Write U = (ψ,ψt ) and U0 = (0ψ, 1ψ) for a solution to (2.3)–(2.5) and the
initial values, respectively. Let s � s0+1 (s0 = [3/2]+1), T > 0,U0 ∈ Hs+1×Hs ,
and ψ satisfy

ψ ∈
s⋂

j=0

C j
(
[0, T ], Hs+1− j

)
. (4.1)

For 0 � t � t1 � T define

Ns(t, t1)
2 = sup

τ∈[t,t1]
‖U (τ )‖2s+1,s +

∫ t1

t
‖U (τ )‖2s+1,s dτ.

We write Ns(t) instead of Ns(0, t). Furthermore assume that Ns(T ) � a0 for an
a0 > 0. Since s � s0, Hs ↪→ L∞ is a continuous embedding. Hence Ns(T ) � a0
implies that (ψ,ψt , ∂xψ) takes values in a closed ball B(0, r) ⊂ R

4 × R
4 × R

12

for some r > 0.
First we prove the decay estimate. To this end it is convenient to rewrite (2.3)

as—cf. (3.3)

ψt t −
3∑

i, j=1

B̄i jψxi x j + aψt +
3∑

j=1

b jψx j = h(ψ,ψt , ∂xψ, ∂2x ψ, ∂xψt ), (4.2)
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where

h(ψ,ψt , ∂xψ, ∂2x ψ, ∂xψt ) =
3∑

i, j=1

(
A(ψ)−1Bi j (ψ) − B̄i j

)
ψxi x j

−
3∑

j=1

A(ψ)−1D j (ψ)ψt x j

− A(ψ)−1 f (ψ,ψt , ∂xψ) + aψt +
3∑

j=1

b jψx j .

(4.3)

4.1 Proposition. There exist constants a1(� a0), δ1 = δ1(a1), C1 = C1(a1, δ1) >

0 such that the following holds: If ‖U0‖2s,s−1,1 � δ1 and Ns(T )2 � a1 for a solution
ψ of (2.3)–(2.5) satisfying (4.1), then

‖U (t)‖s,s−1 � C1(1 + t)−
3
4 ‖U0‖s,s−1,1 (t ∈ [0, T ]). (4.4)

Proof. Let t ∈ [0, T ] and ψ be a solution to (2.3)–(2.5). Since Bi j (0) = B̄i j ,
D j (0) = 0 and

aψt +
3∑

j=1

b jψx j = D f (0)(ψ,ψt , ∂xψ),

Lemmas A.1 and A.2 show that there exist C, c > 0 (c � a0) such that h(t) ∈
Hs−1 ∩ L1 and

‖h(t)‖s−1 � C‖ψ(t)‖s−1

(
‖∂2x ψ(t)‖s−1 + ‖∂xψt (t)‖s−1

)

+ C‖(ψ(t), ψt (t), ∂xψ(t))‖2s−1

� C‖U (t)‖s+1,s‖U (t)‖s,s−1,

‖h(t)‖L1 � C‖U (t)‖22,1,
if Ns(T ) � c, which we will assume throughout this proof. Proposition 3.3 yields

‖U (t)‖s,s−1 � C(1 + t)−
3
4 ‖U0‖s,s−1,1

+ C
∫ t

0
exp(−c(t − τ))‖h(τ )‖s−1 + (1 + t − τ)−

3
4 ‖h(τ )‖L1 dτ,

which leads to

‖U (t)‖s−1,s � C(1 + t)−
3
4 ‖U0‖s,s−1,1

+ C sup
τ∈[0,t]

‖U (τ )‖s+1,s

∫ t

0
exp(−c(t − τ))‖U (τ )‖s,s−1 dτ

+ C
∫ t

0
(1 + t − τ)−

3
4 ‖U (τ )‖2s,s−1 dτ.
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Multiplying with (1 + t)
3
4 gives

(1 + t)
3
4 ‖U (t)‖s,s−1 � C‖U0‖s,s−1,1

+ C Ns(t)μ1(t) sup
τ∈[0,t]

(1 + τ)
3
4 ‖U (τ )‖s,s−1

+ Cμ2(t) sup
τ∈[0,t]

(1 + τ)
3
2 ‖U (τ )‖2s,s−1,

where

μ1(t) = (1 + t)
3
4

∫ t

0
exp(−c(t − τ))(1 + τ)−

3
4 dτ

μ2(t) = (1 + t)
3
4

∫ t

0
(1 + t − τ)−

3
4 (1 + τ)−

3
2 dτ.

Since μ1, μ2 are bounded functions on [0,∞), we get

sup
τ∈[0,t]

(1 + τ)
3
4 ‖U (τ )‖s,s−1 � C‖U0‖s,s−1,1

+ C Ns(t) sup
τ∈[0,t]

(1 + τ)
3
4 ‖U (τ )‖s,s−1

+ C sup
τ∈[0,t]

(1 + τ)
3
2 ‖U (τ )‖2s,s−1.

We can deduce from this equation that there in fact exists a1 > 0 (a1 � c), δ1 > 0
and C1 > 0, such that

sup
τ∈[0,t]

(1 + τ)
3
4 ‖U (τ )‖s,s−1 � C1‖U0‖s,s−1,1

whenever Ns(T )2 � a1 and ‖U0‖2s,s−1,1 � δ1. ��
4.2 Corollary. In the situation of Proposition 4.1 there exists a C2 = C2(a1, δ1) >

0 such that

Ns−1(T )2 � C2‖U0‖2s,s−1,1 (4.5)

whenever Ns(T )2 � a1 and ‖U0‖2s,s−1,1 � δ1.

Proof. The function t �→ (1+ t)− 3
4 is square-integrable on [0,∞). Therefore the

assertion is a direct consequence of Proposition 4.1. ��
Now it is convenient to write (2.3) as

ψt t −
3∑

i, j=1

B̄i jψxi x j + aψt +
3∑

j=1

b jψx j = L(ψ)ψ + h2(ψ,ψt , ∂xψ), (4.6)
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where

L(ψ)ψ = (I − A(ψ))ψt t −
3∑

i, j=1

(B̄i j − Bi j (ψ))ψxi x j −
3∑

j=1

D j (ψ)ψt x j ,

h2(ψ,ψt , ∂xψ) = aψt +
3∑

j=1

b jψx j − f (ψ,ψt , ∂xψ).

4.3 Proposition. There exist constants a2(� a0) and c3, C3 = C3(a2) > 0 such
that the following holds: if Ns(T )2 � a2 for a solution ψ of (2.3)–(2.5) satisfying
(4.1), then

‖∂s
xψ(t)‖21 + ‖∂s

xψt (t)‖2 +
∫ t

0
‖∂s+1

x ψ(τ)‖2 + ‖∂s
xψt (τ )‖2 dτ

− c3

∫ t

0
‖∂s

xψ(τ)‖2 dτ � C3

(
‖U0‖2s,s+1 + Ns(t)

3
)

(t ∈ [0, T ]). (4.7)

Proof. We prove the result in two steps.
Step 1: Let U0 = (0ψ, 1ψ) ∈ Hs+1 × Hs and

ψ ∈
s⋂

j=0

C j
(
[0, T ], Hs+2− j

)
(4.8)

be a solution to (2.3)–(2.5). By Lemma A.2 there exists a c > 0 such that I −
A(ψ), B̄i j − Bi j (ψ), D j (ψ) ∈ Hs+1 provided Ns(T ) � c. We will assume this
throughout the proof. Then due to (4.8) and [6, Lemma 2.3] L(ψ)ψ ∈ Hs . Lemma
A.2 yields h2 ∈ Hs . Thus we can conclude by Proposition 3.4 that

C1

(
‖∂α

x ψ(t)‖21 + ‖∂α
x ψt (t)‖2

)
+ C1

∫ t

0
‖∂α

x ∂xψ(τ)‖2 + ‖∂α
x ψt (τ )‖2 dτ

� C2

(
‖∂α

x (0ψ)‖21 + ‖∂α
x (1ψ)‖2

)

+ C2

∫ t

0
‖∂α

x ψ(τ)‖2 dτ

+
∫ t

0

(
∂α

x (L(ψ(τ))ψ(τ) + h2(τ )), ∂α
x ψt (τ ) + a

2
∂α

x ψ(τ)
)

L2
dτ (4.9)

for all α ∈ N
3
0, |α| = s. First, obviously

∣∣
∣
(
∂α

x h2, ∂
α
x ψt + a

2
∂α

x ψ
)

L2

∣∣
∣ � C‖h2‖s‖U‖s, (4.10)
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and integrating by parts gives

∣∣∣
(
∂α

x (L(ψ)ψ),
a

2
∂α

x ψ
)

L2

∣∣∣ � C‖L(ψ)ψ‖s−1‖ψ‖s+1

� C‖I − A(ψ)‖s‖ψt t‖s−1‖ψ‖s+1

+ C
3∑

i, j=1

‖B̄i j − Bi j (ψ)‖s‖∂2x ψ‖s−1‖ψ‖s+1

+ C
3∑

j=1

‖D j (ψ)‖s‖∂xψt‖s−1‖ψ‖s+1.

(4.11)

Next write

∂α
x (L(ψ)ψ) = L(ψ)∂α

x ψ + [∂α
x , (I − A(ψ))]ψt t

−
3∑

i, j=1

[∂α
x , (B̄i j − Bi j (ψ))]ψxi x j −

3∑

j=1

[∂α
x , D j (ψ)]ψt x j .

Since I − A(ψ), B̄i j − Bi j (ψ), D j (ψ) ∈ Hs [6, Lemma 2.5(i)] yields

‖[∂α
x , (I − A(ψ))]ψt t‖ � C‖∂x A(ψ)‖s−1‖ψt t‖s−1

‖[∂α
x , (B̄i j − Bi j (ψ))]ψxi x j ‖ � C‖∂x Bi j (ψ)‖s−1‖ψxi x j ‖s−1

‖[∂α
x , D j (ψ)]ψt x j ‖ � C‖∂x D j (ψ)‖s−1‖ψt x j ‖s−1.

(4.12)

Furthermore integration by parts and the symmetry of A, Bi j and D j give

∫ t

0

(
L(ψ)∂α

x ψ, ∂α
x ψt

)
L2 dτ

� C
∫ t

0
‖∂t A‖L∞‖∂α

x (∂xψ,ψt )‖2 dτ

+
⎛

⎝
3∑

i, j=1

‖∂t Bi j‖L∞ + ‖∂x Bi j‖L∞ +
3∑

j=1

‖∂x D j‖L∞

⎞

⎠ ‖∂α
x (∂xψ,ψt )‖2 dτ

+ C

⎛

⎝‖I − A‖L∞ +
3∑

i, j=1

‖B̄i j − Bi j‖L∞

⎞

⎠ ‖∂α
x (∂xψ,ψt )‖2

+ C‖∂α
x (∂x

0ψ, 1ψ)‖2. (4.13)
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In conclusion, (4.9) and the estimates (4.10), (4.11), (4.12) (4.13) lead to

‖∂α
x ψ(t)‖21 + ‖∂α

x ψt (t)‖2 +
∫ t

0
‖∂α

x ∂xψ(τ)‖2 + ‖∂α
x ψt (τ )‖2 dτ

− c
∫ t

0
‖∂α

x ψ(τ)‖2 dτ

� C‖U0‖2s+1,s + C
∫ t

0
‖h2(ψ)‖s‖U‖s+1,s + R1(ψ)‖U‖2s+1,s dτ

+ C
∫ t

0
‖I − A(ψ)‖s‖ψt t‖s−1‖U‖s+1,s dτ

+ C R2(ψ)‖U (t)‖2s+1,s, (4.14)

where

R1(ψ) = ‖∂t A(ψ)‖s + ‖I − A(ψ)‖s

+
3∑

i, j=1

‖∂t Bi j (ψ)‖s + ‖B̄i j − Bi j (ψ)‖s +
3∑

j=1

‖D j (ψ)‖s

and

R2(ψ) = ‖I − A(ψ)‖s +
3∑

i, j=1

‖B̄i j − Bi j (ψ)‖s .

Step 2: Now let ψ be a solution to (2.3)–(2.5) satisfying (4.1). For δ > 0 set
ψδ = φδ ∗ ψ . Applying φδ∗ to (4.6) yields

ψδ
t t −

3∑

i, j=1

B̄i jψ
δ
xi x j

+ aψδ
t +

3∑

j=1

b jψ
δ
x j

= L(ψ)ψδ + Rδ(ψ) + hδ
2,

where hδ = φδ ∗ h2 and

Rδ(ψ) = [φδ∗, (I − A(ψ))]ψt t −
n∑

i, j=1

[φδ∗, B̄i j − Bi j (ψ)]ψxi x j

−
3∑

j=1

[φδ∗, D j (ψ)]ψt x j .
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Due to [6, Lemma 2.5 (ii)] Rδ(ψ) ∈ Hs . Hence L(ψ)ψδ + Rδ(ψ) + hδ
2 ∈ Hs .

Thus proceeding as in step 1 yields

‖∂α
x ψδ(t)‖21 + ‖∂α

x ψδ
t (t)‖2 +

∫ t

0
‖∂α

x ∂xψ
δ(τ)‖2 + ‖∂α

x ψδ
t (τ )‖2 dτ

− c
∫ t

0
‖∂α

x ψδ(τ)‖2 dτ

� C‖U δ
0‖2s+1,s + C

∫ t

0
‖hδ

2‖s‖U δ‖s+1,s + R1(ψ)‖U δ‖2s+1,s

+ ‖I − A(ψ)‖s‖ψδ
t t‖s−1‖U δ‖s+1,s dτ

+ C
∫ t

0
‖Rδ(ψ)‖s‖U δ‖s+1,s dτ + C R2(ψ)‖U δ(t)‖2s+1,s .

It is easy to see that U δ → U and hδ
2 → h2 in L∞ ([0, T ], Hs+1 × Hs

)
and in

L2([0, T ], Hs), respectively, as δ → 0. Furthermore Rδ(ψ) → 0 in L2([0, T ], Hs)

as δ → 0 due to [6, Lemma 2.5(ii)]. Hence we get (4.14) for ψ satisfying (4.1).
Furthermore, by Lemma A.1 we have

‖h2‖s � C‖U‖2s+1,s,

and by Lemma A.2,

R1(ψ) + R2(ψ) � C‖U‖s+1,s,

for Ns(T ) sufficiently small. Finally, since ψ satisfies (2.3),

‖ψt t‖s−1 � C(‖∂2x ψ‖s−1 + ‖∂xψt‖s−1 + ‖ f (ψ,ψt , ∂xψ)‖s−1) � C‖U‖s+1,s

holds for Ns(T ) sufficiently small. Therefore we can deduce from (4.14) that

‖∂α
x ψ(t)‖21 + ‖∂α

x ψt (t)‖2 +
∫ t

0
‖∂α

x ∂xψ(τ)‖2 + ‖∂α
x ψt (τ )‖2 dτ

− c
∫ t

0
‖∂α

x ψ(τ)‖2 dτ

� C‖U0‖2s+1,s + C‖U (t)‖3s+1,s + C
∫ t

0
‖U (τ )‖3s+1,s dτ.

The assertion is an immediate consequence of this inequality. ��
4.4 Proposition. In the situation of Proposition 4.1 there exist constants a3(�
min{a2, a1}), C4 = C4(a3, δ1) > 0 (δ1 being the constant in Proposition 4.1)
such that the the following holds: If ‖U0‖2s,s−1,1 � δ1 and Ns(T )2 � a3 for a
solution ψ of (2.3)–(2.5) satisfying (4.1), then

Ns(t)
2 � C2

4‖U0‖2s+1,s,1 (t ∈ [0, T ]). (4.15)

Proof. This follows directly by adding (4.5)+ε(4.7) for ε sufficiently small. ��
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Finally we turn to the Proof of Theorem 2.1.

Proof of Theorem 2.1. Let T1 > 0, δ2 > 0 such that for all U0 = (ψ0, ψ1) ∈
Hs+1 × Hs , where ‖U0‖2s+1,s < δ2, there exists a solution U = (ψ,ψt ) of the
Cauchy problem (2.3)–(2.5) with

ψ ∈
s⋂

j=1

C j
(
[0, T1], Hs+1− j

)
.

This is possible due to [5, Theorem III]. Furthermore let a3, δ1 and C4 be the
constants in Proposition 4.4. Choose 0 < ε < a3/(2(1 + T1)). Due to [5, Ibid.]
there exists δ3 > 0, (δ3 � δ2) such that for allU0 = (ψ0, ψ1) ∈ Hs+1× Hs , where
‖U0‖2s+1,s < δ3, the solution U of (2.3)–(2.5) satisfies

sup
t∈[0,T1]

‖U (t)‖2s+1,s < ε.

Now set δ0 = min{δ1, δ3, δ3/C4, a3/(2C4)} and choose any U0 ∈ (
Hs+1 × Hs

)∩(
L1 × L1

)
for which ‖U0‖2s+1,s,1 < δ0. Since δ0 � δ3, we have

Ns(T1)
2 < ε + T1ε <

a3
2

.

Hence by Proposition 4.4 and ‖U0‖2s+1,s,1 < δ1

Ns(T1)
2 � C4‖U0‖2s+1,s < C4δ0 � δ3. (4.16)

Furthermore due to Proposition 4.1, (2.7) holds for all t ∈ [0, T1]. In particular
(4.16) yields

‖U (T1)‖2s+1,s < δ3. (4.17)

Thus we can solve (2.3) on [T1, 2T1] with initial values (ψ(T1), ψt (T1)) and get

Ns(T1, 2T1)
2 � ε + T1ε <

a3
2

.

Now extend the solution (ψ,ψt ) continuously on [0, 2T1]. We can conclude

Ns(2T1)
2 � Ns(T1)

2 + Ns(T1, 2T1)
2 <

a3
2

+ a3
2

= a3.

Since we have already assumed ‖U0‖2s+1,s,1 < δ1, Propositions 4.1 and 4.4 yield

Ns(2T1) � C4δ0, (4.18)

and (2.7) holds for all t ∈ [0, 2T1]. Due to (4.18) we can repeat the former argument
to obtain a solution on [0, 3T1] and further repetition proves the assertion. ��
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A. Appendix

A.1 Lemma. Let n, N ∈ N, s � s0 := [ n
2 ] + 1 and F ∈ C∞(RN ), F(0) = 0.

Then there exist δ > 0, C = C(δ) > 0 such that for all u ∈ Hs with ‖u‖s � δ,
F(u) − ∂u F(0) ∈ Hs and

‖F(u) − ∂u F(0)u‖s � C‖u‖2s .
Proof. Since s � s0, there exists a C1 > 0 such that

‖u‖L∞ � C1‖u‖s

for all u ∈ Hs . Furthermore due to F(0) = 0 there exist δ1 > 0, C2 = C2(δ1) > 0
such that

|F(y) − ∂y F(0)y| � C2|y|2

for all y ∈ R
N with |y| � δ1. Now let u ∈ Hs such that ‖u‖s � δ1/C1 (that is

‖u‖L∞ � δ1). Then

‖F(u) − ∂u F(0)u‖ � C2‖u‖L∞‖u‖ � C1C2‖u‖2s . (A.1)

Furthermore for, α ∈ N
n
0 with 1 � |α| = j � s, we get

∂α
x F(u) = ∂u F(u)∂α

x u + R,

where

R =
∑

1�|β|< j

(
α

β

)
∂β

x u ∂α−β
x F(u).

Since ∂x u ∈ Hs−1 and ‖u‖L∞ � δ1, we get ∂x F(u) ∈ Hs−1 and

‖∂x F(u)‖s−1C3‖∂x u‖s−1

for a C3 = C3(δ2) > 0 by [6, Lemma 2.4 ]. Therefore [6, Lemma 2.3] yields

‖R‖ � C4‖∂x u‖s−1‖∂x F(u)‖s−1 � C3C4‖∂x u‖2s−1

for a C4 > 0. On the other hand there exist δ2 > 0, C5 = C5(δ2) > 0, such that

|∂y F(y) − ∂y F(0)| � C5|y|
for all y ∈ R

N with |y| � δ2. Assuming ‖u‖s � δ2/C1 entails

‖∂α
x (F(u) − ∂u F(0))‖ � ‖(∂u F(u) − ∂u F(0))∂α

x u‖ + ‖R‖
� ‖∂u F(u) − ∂u F(0)‖L∞‖u‖s + C3C4‖∂x u‖s−1

� max{C3C4, C5}‖u‖2s .
Since α was arbitrary, this estimate together with (A.1) yield the assertion for
δ = min{δ1, δ2}/C1. ��
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A.2 Lemma. Let n, N ∈ N, s � s0 and F ∈ C∞(RN ,RN×N ). Then there exist
δ > 0, C = C(δ) > 0 such that for all u ∈ Hs(Rn,RN ) with ‖u‖s � δ,
(F(u) − F(0))u ∈ Hs and

‖(F(u) − F(0))u‖s � C‖u‖2s .
Proof. First note that there exist δ1 > 0, C1 = C1(δ1) > 0 such that

|F(y) − F(0)| � C1|y|

for all y ∈ R
N , |y| � δ1 as well as C2 > 0 such that

‖v‖L∞ � C2‖v‖s

for all v ∈ Hs . Now let u ∈ Hs , ‖u‖s � δ1/C2. Then

‖F(u) − F(0)‖ � C1‖u‖s

holds. On the other hand by [6, Lemma 2.4] ∂x F(u) ∈ Hs−1 and

‖∂x F(u)‖s−1 � C3‖∂x u‖s−1

for a C3 = C3(δ1) > 0. Hence F(u) − F(0) ∈ Hs and

‖F(u) − F(0)‖s � C4‖u‖s

for ‖u‖s � δ = δ1/C2. Now the assertion follows from [6, Lemma 2.4]. ��
The results of this paper were obtained as part of the doctoral thesis the author

wrote at the University of Konstanz under the supervision of H. Freistühler.
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