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Abstract

Califano and Chiuderi (Phys Rev E 60 (PartB):4701–4707, 1999) conjec-
tured that the energy of an incompressible Magnetic hydrodynamical system is
dissipated at a rate that is independent of the ohmic resistivity. The goal of this
paper is to mathematically justify this conjecture in three space dimensions pro-
vided that the initial magnetic field and velocity is a small perturbation of the
equilibrium state (e3, 0). In particular, we prove that for such data, a 3-D incom-
pressible MHD system without magnetic diffusion has a unique global solution.
Furthermore, the velocity field and the difference between the magnetic field and
e3 decay to zero in both L∞ and L2 norms with explicit rates. We point out that
the decay rate in the L2 norm is optimal in sense that this rate coincides with that
of the linear system. The main idea of the proof is to exploit Hörmander’s version
of the Nash–Moser iteration scheme, which is very much motivated by the seminar
papers byKlainerman (Commun Pure Appl Math 33:43–101, 1980, Arch Ration
Mech Anal 78:73–98, 1982, Long time behaviour of solutions to nonlinear wave
equations. PWN, Warsaw, pp 1209–1215, 1984) on the long time behavior to the
evolution equations.

1. Introduction

In this paper, we investigate the large time behavior of the global smooth solu-
tions to the following three-dimensional incompressible magnetic hydrodynamical
(orMHD in short) systemwith initial data being sufficiently close to the equilibrium
state (e3, 0) :

⎧
⎪⎪⎨

⎪⎪⎩

∂t b + u · ∇b = b · ∇u, (t, x) ∈ R
+ × R

3,

∂t u + u · ∇u − �u + ∇ p = b · ∇b,
div u = div b = 0,
(b, u)|t=0 = (b0, u0) with b0 = e3 + εφ,

(1.1)
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where b = (b1, b2, b3) denotes the magnetic field, u = (u1, u2, u3) and p stand
for the velocity and scalar pressure of the fluid respectively. This MHD system
(1.1) with zero diffusivity in the magnetic field equation can be applied to model
plasmas when the plasmas are strongly collisional, or the resistivity due to these
collisions being extremely small. One may check the references [5,12,14,23] for
more explanations of this system.

Whether or not there is dissipation for the magnetic field of (1.1) is a very
important problem in the physics of plasmas. The heating of high temperature
plasmas by MHD waves is one of the most interesting and challenging problems
of plasma physics especially when the energy is injected into the system at length
scaleswhich aremuch larger than the dissipative ones. It has been conjectured that in
the two-dimensional MHD system, energy is dissipated at a rate that is independent
of the ohmic resistivity [7]. In other words, the diffusivity for the magnetic field
equation can be zero yet the whole system may still be dissipative. The goal of this
paper is to rigorously justify this conjecture in three space dimensions provided
that the initial data of (1.1) is a small perturbation of the equilibrium state (e3, 0).

Concerning the well-posedness issue of the system (1.1), Chemin et al. [11]
proved the localwell-posedness of (1.1)with initial data in the criticalBesov spaces.
Lin and the second author [25] proved the globalwell-posedness to amodified three-
dimensionalMHD systemwith initial data sufficiently close to the equilibrium state
(see [26] for a simplified proof). Lin, Xu and the second author [24] established
the global well-posedness of (1.1) in 2-D provided that the initial data is near
the equilibrium state (ed , 0) and the initial magnetic field, b0, satisfies a sort of
admissible condition, namely

∫

R

(b0 − e3)(Z(t, α)) dt = 0 for all α ∈ R
d ×{0}, (1.2)

with Z(t, α) being determined by

{ dZ(t, α)

dt
= b0(Z(t, α)),

Z(t, α)|t=0 = α

Similar results in three space dimensions were proved by Xu and the second author
in [31].

In the 2-D case, the restriction (1.2) was removed by Ren, Wu, Xiang and
Zhang in [28] by carefully exploiting the divergence structure of the velocity field.
Moreover, the authors proved that

‖∂kx2b(t)‖L2 + ‖∂kx2u(t)‖L2

≤ C〈t〉− 1+2k
4 +ε for any ε ∈]0, 1/2[ and k = 0, 1, 2, (1.3)

where 〈t〉 def= (
1 + t2

) 1
2 . A more elementary existence proof was also given by

Zhang [32]. Very recently, Abidi and the second author removed the restriction
(1.2) in [1] for the 3-DMHD system. Moreover, if the initial magnetic field is equal
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to e3 and with other technical assumptions, this solution decays to zero according
to

‖u(t)‖H2 + ‖b(t) − e3‖H2 ≤ C〈t〉− 1
4 . (1.4)

Note that (1.4) corresponds to the critical case of (1.3), that is, ε = 0 in (1.3).
This idea of considering the global well-posedness of MHD system with initial

data close to the equilibrium state (ed , 0) goes back to the work of Bardos, Sulem
and Sulem [2] for the global well-posedness of an ideal incompressible MHD
system. In general, it is not known whether or not classical solutions of (1.1) can
develop finite time singularities even in two dimensions. In the case when there is
full magnetic diffusion in (1.1), one may check [16] for its local well-posedness in
the classical Sobolev spaces and [29] for the global well-posedness of such a system
in two space dimensions. With mixed partial dissipation and additional magnetic
diffusion in the two-dimensional MHD system, Cao and Wu [8] (see also [9])
proved that such a system is globally well-posed for any data in H2(R2). Lately,
He et al. [17] (see also [6] and [30]) justified the vanishing viscosity limit of the
full diffusive MHD system to the solution constructed by Bardos et al. [2] for the
ideal MHD system.

The main result of this paper is as follows:

Theorem 1.1. Let e3 = (0, 0, 1), b0 = e3 + εφ with φ = (φ1, φ2, φ3) ∈ C∞
c and

div φ = 0, let u0 ∈ WN0,1 ∩ HN0 for some integer N0 sufficiently large. Then there
exist sufficiently small positive constants ε0, c0 such that if

‖u0‖WN0,1 + ‖u0‖HN0 ≤ c0 and ε ≤ ε0, (1.5)

(1.1)has a unique global solution (b, u) so that for any T > 0,b ∈ C2([0, T ]×R
3),

u ∈ C2([0, T ] × R
3). Moreover, for some κ > 0, it holds that

‖u(t)‖W 2,∞ ≤ Cκ 〈t〉− 5
4+κ , ‖b(t) − e3‖W 2,∞ ≤ Cκ 〈t〉− 3

4+κ and

‖u(t)‖H2 + ‖b(t) − e3‖H2 ≤ C〈t〉− 1
2 , ‖∇u(t)‖L2 ≤ C〈t〉−1.

(1.6)

Let us remark that the above theorem recovers the global well-posedness result
of the system (1.1) in [1]. Moreover, the bigger the integer N0, the smaller the
positive constant κ. The main idea of the proof here works in both two and three
space dimensions. The L∞ decay rates of the solution in (1.6) are completely new.
The L2 decay rates of the solution are optimal in the sense that these decay rates
coincide with those of the linearized system (see Propositions 2.1 and 2.7 below),
which greatly improves the rate given by (1.4). We can also work on the decay rates
for the higher order derivatives of the solutions, but we choose not to pursue this
direction here.
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2. Structure and Strategies of the Proof

2.1. Lagrangian Formulation of (1.1)

As observed in the previous references [24,31], the linearized system of (1.1)
around the equilibrium state (e3, 0) reads

{
Ytt − �Yt − ∂23Y = f in R

+ × R
3,

Y |t=0 = Y (0), Yt |t=0 = Y (1).
(2.1)

It is easy to calculate that this system has two different eigenvalues:

λ1(ξ) = −|ξ |2
2

+
√

|ξ |4
4

− ξ23 and λ2(ξ) = −|ξ |2
2

−
√

|ξ |4
4

− ξ23 . (2.2)

The Fourier modes corresponding to λ2(ξ) decay like e−t |ξ |2 . By contrast, the decay
property of the Fourier modes corresponding to λ−(ξ) vary with the directions of
ξ as

λ1(ξ) = − 2ξ23

|ξ |2(1 +
√

1 − 4ξ23
|ξ |4
)

→ −1 as |ξ | → ∞

only in the ξ3 direction. This simple analysis shows that the dissipative properties
of system (2.1) may be more complicated than that for the linearized system of the
isentropic compressible Navier-Stokes system (see [13] for instance). Moreover, it
is well-known that it is in general impossible to propagate the anisotropic regulari-
ties for the transport equation. This motivates us to use the Lagrangian formulation
of the system (1.1).

Let us now recall the Lagrangian formulation of (1.1) from [1]. Letting (b, u)

be a smooth enough solution of (1.1), we define:

X (t, y) = y +
∫ t

0
u(t ′, X (t ′, y))dt ′ def= y + Y (t, y), u(t, y)

def= u(t, X (t, y)),

b(t, y)
def= b(t, X (t, y)), p(t, y)

def= p(t, X (t, y)), A def= (
I d + ∇yY

)−1 and

∇Y
def= At∇y .

(2.3)

Then (Y, b, u, p) solves
⎧
⎨

⎩

b(t, y) = ∂b0X (t, y), ∇Y · b = 0,
Ytt − �yYt − ∂2b0Y = ∂b0b0 + g,
Y|t=0 = Y (0) = 0, Yt |t=0 = Y (1) = u0(y),

(2.4)

where

g = divy
[
(AAt − I d)∇yYt

]− At∇y p, ∂b0
def= b0 · ∇y, and

(�x p)(t, X (t, y)) =
3∑

i, j=1

∇Y i∇Y j

(
∂b0X

i∂b0X
j − Y i

t Y
j
t
)
(t, y).

(2.5)
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In what follows, we assume that

supp(b0(xh, ·) − e3) ⊂ [0, K ] and b30 = 0. (2.6)

Due to the difficulty of the variable coefficients for the linearized system of
(2.4), we shall use a Frobenius Theorem type argument to find a new coordinate
system {z} so that ∂b0 = ∂z3 . Towards this, let us define

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy1
dy3

= b10
b30

(y1, y2, y3), y1|y3=0 = w1,

dy2
dy3

= b20
b30

(y1, y2, y3), y2|y3=0 = w2,

y3 = w3,

(2.7)

and

z1 = w1, z2 = w2, z3 = w3 +
∫ w3

0

( 1

b30(y(w))
− 1

)
dw′

3. (2.8)

Then we have

∂b0 f (y) = ∂ f (y(w(z)))

∂z3
, and ∇y = ∇Z = Bt (z)∇z with

B(z) =
(∂y(w(z))

∂z

)−1
.

(2.9)

It is easy to observe that

B(z) =
(∂y(w(z))

∂z

)−1 =
(∂y(w(z))

∂w
× ∂w(z)

∂z

)−1

=
(∂w(z)

∂z

)−1(∂y(w(z))

∂w

)−1 =
( ∂z

∂w

)(∂y(w(z))

∂w

)−1
,

yet it follows from (2.7) that

(∂y(w)

∂w

)
=

⎛

⎜
⎜
⎜
⎝

1 0
b10
b30

0 1
b20
b30

0 0 1

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

∫ w3
0

∂
∂y1

( b10
b30

)
dy′

3

∫ w3
0

∂
∂y2

( b10
b30

)
dy′

3 0

∫ w3
0

∂
∂y1

( b20
b30

)
dy′

3

∫ w3
0

∂
∂y2

( b20
b30

)
dy′

3 0

0 0 0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

∂y1
∂w1

∂y1
∂w2

∂y1
∂w3

∂y2
∂w1

∂y2
∂w2

∂y2
∂w3

∂y3
∂w1

∂y3
∂w2

∂y3
∂w3

⎞

⎟
⎟
⎠

def= A1(y(w)) + A2(y(w))
(∂y(w)

∂w

)
,

(2.10)

which gives
(∂y(w)

∂w

)
= (

I d − A2(y(w))
)−1

A1(y(w)). (2.11)
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It is easy to observe that

(∂z(w)

∂w

)
=
⎛

⎜
⎝

1 0 0
0 1 0

∫ w3
0

∂
∂w1

( 1
b30(y(w))

)
dw′

3

∫ w3
0

∂
∂w2

( 1
b30(y(w))

)
dy′

3
1
b30

⎞

⎟
⎠

def= A3(w).

(2.12)

As a consequence, we obtain

y(w) = (yh(wh, w3), w3), w(z) = (zh, w3(z)), and

y(w(z)) = (
yh(zh, w3(z)), w3(z)

)
,

B(z) = A3(w(z))A−1
1 (y(w(z))

(
I d − A2(w(z))

)
,

(2.13)

with the matrices A1, A2, A3 being determined by (2.10) and (2.12), respectively.
For simplicity, let us abuse the notation that Y (t, z) = Y (t, y(w(z))). Then the

system (2.4) becomes
{
Ytt − �zYt − ∂2z3Y = (∇Z · ∇Z − �z)Yt + ∂z3b0(y(w(z))) + g(y(w(z))),
Y|t=0 = Y0 = 0, Yt |t=0 = Y1(z) = u0(y(w(z))),

(2.14)

for g given by (2.4). Since ∂z3b0(y(w(z))) in the source term is a time indepen-
dent function, we now introduce a smooth cut-off function η(z3) with η(z3) =⎧
⎨

⎩

0, z3 ≥ 2 + K ,

1, −1 ≤ z3 ≤ 1 + K
0, z3 ≤ −2,

and a correction term Ỹ so that Y = Ỹ + Ȳ and

Ỹ (z) = η(z3)

(∫ z3

−1

(
e3 − b0(y(w(zh, z

′
3)))

)
dz′3

−
∫ K+1

−1

(
e3 − b0(y(w(zh, z

′
3)))

)
dz′3
)

,

(2.15)

which satisfies

∂z3 Ỹ (z) = e3 − b0(y(w(z))), and ∂z3
(
∂z3 Ỹ + b0(y(w(z)))

) = 0. (2.16)

Then in view of (2.23), (2.24) and (2.30) of [1], Ȳ solves
{
Ȳt t − �z Ȳt − ∂2z3 Ȳ = f,
Ȳ|t=0 = Ȳ (0) = −Ỹ , Ȳt |t=0 = Y (1),

(2.17)

with

A = (
I d + Bt∇z Ỹ + Bt∇z Ȳ

)−1
, and

f = Bt∇z · [(AAt − I d)Bt∇z Ȳt
]+ Bt∇z · (Bt∇z Ȳt

)− �z Ȳt − (BA)t∇z p,

∇z p = −∇z�
−1
z divz

(
det(B−1)(BAAtBt − I d)∇z p

)

− ∇z�
−1
z divz

(
(det(B−1)I d − I d)∇z p

)

+ ∇z�
−1
z divz

(
BAdivz

(
det(B−1)BA(∂3Ȳ ⊗ ∂3Ȳ − Ȳt ⊗ Ȳt

)))
.

(2.18)
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2.2. The Proof of Theorem 1.1

Before presenting the main result for the system (2.17–2.18), let us first intro-
duce notations of the norms: for f : R

3
y → R, u : R

+ × R
3
y → R, and

p ∈ [1,+∞], N ∈ N, we denote

‖ f ‖WN ,p
def=

∑

|α|≤N

‖Dα
y f ‖L p and ‖u‖L p;k,N

def= sup
t>0

(1 + t)k‖u(t)‖WN ,p .

In particular, when p = 1, p = 2 and p = ∞, we simplify the notations as

||| f |||N def= ‖ f ‖WN ,1 , ‖ f ‖N def= ‖ f ‖HN , | f |N def= ‖ f ‖WN ,∞

and ‖u‖k,N def= ‖u‖L2;k,N , |u|k,N def= ‖u‖L∞;k,N .

(2.19)

Theorem 2.1. There exist an integer L0 and small constants η, ε0 > 0 such that if

|||(Ȳ (0), Y (1))|||L0
+ ‖(Ȳ (0),Y (1))‖L0 ≤ η and ε ≤ ε0. (2.20)

Then the system (2.17) has a unique global solution Ȳ ∈ C2([0,∞);CN1−4(R3)),
where N1 = [(L0 − 12)/2]. Furthermore, for some κ > 0, there hold

|∂3Ȳ | 3
4−κ,2 + |Ȳt | 5

4−κ,2 + |Ȳ | 1
4−κ,2 ≤ Cκη, (2.21)

and

‖|D|−1(∂3Ȳ , Ȳt )‖0,N1+2 + ‖∇Ȳ‖0,N1+1 + ‖(Ȳt , ∂3Ȳ )‖ 1
2 ,N1+1 + ‖∇Ȳt‖1,N1−1

+‖Ȳt‖L2
t (H

N1+2) + ∥
∥(∂3Ȳ , 〈t〉 1

2 ∇Ȳt )
∥
∥
L2
t (H

N1+1)
+ ‖Ȳt t‖ 1

2 ,N1−2 ≤ C. (2.22)

Admitting Theorem 2.1 for the time being, let us now turn to the proof of
Theorem 1.1.

Proof of Theorem 1.1. Indeed, in view of (2.3), one has

Y1(z) = u0(yh(zh, w3(z)), w3(z)) and u(t, y) = Yt (t, y + Y (t, y)),

b(t, y) = b0(y) + b0(y) · ∇yY (t, y) with

Y (t, (yh(zh, w3(z)), w3(z))) = Ỹ (z) + Ȳ (t, z),

(2.23)

with Ỹ (z) and Ȳ (t, z) being determined by (2.15) and (2.17) respectively.
In view of (2.10), (2.12) and (2.13), we get, by a similar proof to Lemma 4.3

of [1], that for any N ∈ N,

|(B − I d)|N ≤ CN ε. (2.24)

Thus, under the assumptions of (1.5), there holds (2.20). Then Theorem 2.1
ensures that the system (2.17–2.18) has a unique global classical solution Ȳ ∈
C2([0,∞);CN1−4(R3)), which verifies (2.21) and (2.22). In particular, it follows
from (2.15) and (2.21) that

|∇zY |0,1 ≤ |∂z Ỹ |1 + |∇Ȳ |0,1 ≤ C(ε + η),
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which together with (2.23) ensures that u ∈ C2([0,∞)×R
3) and b ∈ C2([0,∞)×

R
3). Furthermore, due to

∣
∣∂X

∂y
− I d

∣
∣
0,1 = ∣

∣tB∇zY |0,1 ≤ C(ε + η),

we deduce from (2.3) that u ∈ C2([0,∞) × R
3) and b ∈ C2([0,∞) × R

3), which
verifies the system (1.1) thanks to the derivation at the beginning of Sect. 2.1.

On the other hand, by virtue of (2.16), we have

b(t, y(w(z))) = b0(y(w(z))) + ∂3Ỹ (z) + ∂3Ȳ (t, z) = e3 + ∂3Ȳ (t, z),

which together with (2.21), (2.22) and (2.23) implies that there holds (1.6). This
completes the proof of Theorem 1.1. ��

2.3. Strategies of the Proof to Theorem 2.1

Observing from the calculations in [1] that under the assumptions of Theorem
1.1, the matrix B given by (2.13) is sufficiently close to the identity matrix in the
norms of WN0,1 and HN0 as long as ε is sufficiently small. To avoid cumbersome
calculation, here we just prove Theorem 2.1 for the system (2.1) with

A = (I d + ∇yY )−1, f = ∇y · ((AAt − I d)∇yYt
)− At∇y p, and

p = −�−1
y divy

(
(AAt − I d)∇y p

)

+ �−1
y divy

(
Adivy

(A(∂y3Y ⊗ ∂y3Y − Yt ⊗ Yt
)))

,

(2.25)

which corresponds to B = I d in (2.17). The general case follows along the same
lines.

Let us remark that the system (2.1) is not scaling, rotation and Lorentz invariant,
so that Klainerman’s vector field method [22] cannot be applied here. However, the
ideas developed by Klainerman in the seminar papers [19–21] can be well adapted
for this system. We now recall the classical result on the global well-posedness to
some evolutionary system from [20]. Let us consider the following system:

{
ut − Lu = F(u, Du) with Du = (ut , ux1 , . . . , uxd ),
u|t=0 = u, Pu0 = 0,

(2.26)

where L def= ∑
|α|≤γ aαDα

x with aα being r × r matrices with constant entries. We
have the following assumptions:

(1) L satisfies a dissipative condition of the following type: there exists a positive
definite r × r matrix A such that

either
∫

R
d
�(AL f, f ) dx ≤ 0 or

∫

R
d
�(AL f, f ) dx ≤ −‖∇ f ‖2L2

for any f ∈ C∞
c ;
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(2) (t)u0 is the solution of

∂t u − Lu = 0 and u(0, x) = u0(x),

Such that there is a differential matrix P such that

|(t)u0|0 ≤ C〈t〉−k0 |||u0|||d
for any u0 ∈ Wd,1 ∩ L∞ that satisfies Pu0 = 0;

(3) AFut , AFuxi , i = 1, · · · , d, are symmetric matrices and Fut is independent of
ut . Moreover

|F(u, Du)| ≤ C(|u| + |Du|)p+1 for |u| + |Du| sufficiently small;

(2.27)

(4) p is an integer and F is a smooth function so that there holds

1

p

(

1 + 1

p

)

< k0. (2.28)

Klainerman proved in [20] the following celebrated theorem:

Theorem 2.2. (Theorem 1 of [20]). There exist an integer N0 > 0 and a small
constant η > 0 such that if

|||u0|||N0
+ ‖u0‖N0 ≤ η,

(2.26) has a unique solution u ∈ C1([0, T ];Cγ ) for any T > 0. Moreover, the
solution behaves, for t large, like

|u(t, x)| = O
(
t−

1+ε
p

)
as t → ∞ (2.29)

for some small ε > 0. Also,

‖u(t)‖L2 = O(1) as t → ∞. (2.30)

Let us remark that due to the appearance of the double Riesz transform in the
expression of f in (2.25), the source term f in (2.1) cannot satisfy the growth
condition (2.27); secondly, even if we can assume the source term f is in quadratic
growth of (Yt , ∂3Y ),which corresponds to p = 1 in (2.27), the growth rate obtained
in (3.2) below does not meet the requirement of (2.28). This makes it impossible to
apply Theorem 2.2 for the system (2.1), yet by considering the specific anisotropic
structure of the system (2.1), we can still succeed in applying the Nash–Moser
scheme to establish the global existence as well as the large time behavior of
solutions to (2.1–2.25).

Nowwe outline the proof of Theorem 2.1. According to the strategy in [19–21],
the first step is to study the decay properties of the linear system

{Yt t − �Yt − ∂23Y = 0,
Y|t=0 = Y0, Yt |t=0 = Y1.

(2.31)
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Proposition 2.1. LetY(t) be a smooth enough solution of (2.31). Given δ ∈ [0, 1],
N ∈ N, there exist Cδ,N ,CN > 0 such that:

|∂3Y|1,N + |∂tY| 3
2−δ,N + |Y| 1

2 ,N

≤ Cδ,N
(‖|D|2δ(Y0,Y1)‖L1 + ‖|D|N+4(�Y0,Y1)‖L1

);
(2.32)

‖(∂tY, ∂3Y)‖L∞
t (HN+1) + ‖�Y‖L∞

t (HN ) + ‖∇∂tY‖L2
t (HN+1)

+ ‖∇∂3Y‖L2
t (HN ) ≤ CN (‖(∂3Y0,Y1)‖N+1 + ‖�Y0‖N ) ; (2.33)

‖〈t〉 1
2 (∂tY, ∂3Y)‖L∞

t (HN ) + ‖〈t〉 1
2 ∇∂tY‖L2

t (HN )

≤ CN
(‖|D|−1(∂3Y0,Y1)‖N+1 + ‖∇Y0‖N

);
(2.34)

‖〈t〉�∂tY‖L∞
t (HN ) ≤ CN‖(�Y0,Y1)‖N+2. (2.35)

We emphasize here that the estimates of (2.32) and (2.33) are of anisotropic
type, which means that the decay rates of the partial derivatives of the solution
to (2.31) are different, which is consistent with the heuristic discussions at the
beginning of Sect. 2. Moreover, the estimate of (2.32) is valid for δ = 0. Similar
estimates such as (2.34) and (2.35) were not proved in [19–21]; they are purely due
to the special structure of the linearized system (2.31).

With the above proposition, we next turn to the decay estimates for the solutions
of the following inhomogeneous equation of (2.31):

{
Ytt − �Yt − ∂23Y = g,

Y |t=0 = Yt |t=0 = 0.
(2.36)

Proposition 2.2. Let δ ∈ [0, 1/4[ and θ ∈ [1,∞[. We assume that g(t) = 0 if
t ≥ θ . Then the solution Y to (2.36) verifies, for any N ≥ 0,

|∂3Y |1,N + |∂t Y | 3
2−δ,N + |Y | 1

2 ,N ≤ Cδ,N RN ,θ (g), (2.37)

where

RN ,θ (g)
def= |||g|||L1

t (δ,N ) + θ
1
2
∥
∥〈t〉 1

2 |D|−1g
∥
∥
L2
t (HN+3)

+ log〈θ〉∥∥|D|−1g
∥
∥ 3

2−δ,N+3,
(2.38)

where

|||g|||δ,N def= ‖|D|2δg‖L1 + ‖|D|N+4g‖L1 and |||g|||L p
t (δ,N )

=
(∫ t

0
|||g(t ′)|||pδ,N dt ′

) 1
p

. (2.39)

The proof of the above propositions will be presented in Sect. 3.
The goal of Sect. 4 is to calculate the linearized system of (2.1), which reads

{
Xtt − �Xt − ∂23 X = f ′(Y ; X) + g,

X |t=0 = Xt |t=0 = 0,
(2.40)
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where f ′(Y ; X) = f ′
0(Y ; X)+ f ′

1(Y ; X)+ f ′
2(Y ; X), and f ′

0(Y ; X), f ′
1(Y ; X) and

f ′
2(Y ; X) are determined respectively by (4.6) and (4.7). Furthermore, the second

derivative of f ′′(Y ; X,W ) will be presented in Sect. 4.2.
In Sect. 5, we shall derive the Ẇ 2δ,1 ∩ Ẇ N+4,1 and Ḣ N+1 estimates for the

source term f ′(Y ; X) in the linearized system (2.40), which will be used to derive
the decay estimates for the solutions of (2.40). The main result reads as follows:

Proposition 2.3. Let the functionals, f ′
0(Y ; X), f ′

1(Y ; X), f ′
2(Y ; X), be given by

(4.6) and (4.7) respectively, and the norm ||| · |||δ,N be given by (2.39). Then under
the assumptions that δ > 0, and

‖∇Y‖
Ḃ

3
2
2,1

≤ δ1 and ‖∇Y‖
Ḃ

5
2
2,1

≤ 1, (2.41)

for some δ1 > 0 sufficiently small, we have

||| f ′
0(Y ; X)|||δ,N ≤ ‖∇Y‖0‖∇Xt‖N+6 + ‖∇Y‖N+6‖∇Xt‖0

+ ‖∇Yt‖0‖∇X‖N+6

+ (‖∇Yt‖N+6 + ‖∇Y‖N+6|∇Yt |0
)‖∇X‖0,

(2.42)

and

||| f ′
1(Y ; X)|||δ,N � f1(∂3Y, ∂3X) and (2.43)

||| f ′
2(Y ; X)|||δ,N � f1(Yt , Xt ), (2.44)

where the functional f1(x, y) is given by

f1(x, y)
def= ‖x‖0

(‖y‖N+6 + |x|0‖∇X‖N+6
)+ ‖y‖1

(‖x‖N+6 + ‖∇Y‖N+6|x|1
)

+ (‖x‖N+6 + ‖∇Y‖N+6‖x‖3
)|x|1‖∇X‖1.

Proposition 2.4. Under the assumption of Proposition 2.3, we have

‖|D|−1 f ′
0(Y ; X)‖N+1 � |∇Y |0‖∇Xt‖N+1 + |∇Y |N+1‖∇Xt‖0

+ |Yt |1‖∇X‖N+1+
(|Yt |N+2 + |Yt |1|∇Y |N+1

)‖∇X‖0,
(2.45)

and

‖|D|−1 f ′
1(Y ; X)‖N+1 � f2(∂3Y, ∂3X) and (2.46)

‖|D|−1 f ′
2(Y ; X)‖N+1 � f2(Yt , Xt ), (2.47)

where the functional f2(x, y) is given by

f2(x, y)
def= (|x|

4
3
1 ‖x‖

2
3
0 + |x|21

)(‖∇X‖N+1 + |∇Y |N+1‖∇X‖1
)+ |x|0‖y‖N+1

+ (|x|N+1 + |∇Y |N+1|x|1
)‖y‖1 + (|x|

1
3
0 ‖x‖

2
3
0 + |x|0

)|x|N+1‖∇X‖1.
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Let us remark that the Riesz transform does not map continuously from L1 to
L1. Nevertheless due to (4.8) and (4.9), we cannot avoid estimates of this type.
To overcome this difficulty, a natural replacement of Ẇ s,1 will be the Besov space
Ḃs
1,1, which satisfies

‖∇(−�)−
1
2 |D|s( f )‖L1 � ‖ f ‖Ḃs

1,1
∀ s ∈ R .

We now recall the precise definition of the Besov norms from, for instance [3].

Definition 2.1. Let us consider a smooth function ϕ on R, the support of which is
included in [3/4, 8/3] such that

∀τ > 0 ,
∑

j∈Z
ϕ(2− jτ) = 1 and χ(τ)

def= 1 −
∑

j≥0

ϕ(2− jτ) ∈ D([0, 4/3]).

Let us define

� j a = F−1(ϕ(2− j |ξ |)̂a), and S ja = F−1(χ(2− j |ξ |)̂a).

Let (p, r) be in [1,+∞]2 and s in R. We define the Besov norm by

‖a‖Ḃs
p,r

def= ∥
∥
(
2 js‖� j a‖L p

)

j

∥
∥

�r (Z)
.

We remark that in the special case when p = r = 2, the Besov spaces Ḃs
p,r

coincides with the classical homogeneous Sobolev spaces Ḣ s . Moreover, we have
the following product laws (see Corollary 2.54 of [3]):

‖ab‖Ḃs
p,r

≤ C
(|a|L∞‖b‖Ḃs

p,r
+ ‖a‖Ḃs

p,r
|b|L∞

)
(2.48)

for s > 0, (p, r) ∈ [1,+∞]2. Due to the product law (2.48), we need the index δ

to be positive in Proposition 2.3.
The estimates of the second derivations of f0, f1 and f2 can be listed as follows:

Proposition 2.5. Let f ′′
0 , f ′′

1 , f ′′
2 be given by (4.13) and (4.14) respectively. Then

under the assumption of (2.41), we have

‖|D|−1 f ′′
0 (Y ; X,W )‖N � |Yt |1

(|∇X |N‖∇W‖0 + |∇X |0‖∇W‖N
)

+ (
(|Yt |N+1 + |∇Y |N |Yt |1)|∇X |0 + |Xt |N+1

)‖∇W‖0 + |∇X |N‖∇Wt‖0
+ |∇X |0‖∇Wt‖N + |∇Y |N

(|∇X |0‖∇Wt‖0 + |Xt |1‖∇W‖0
)+ |Xt |1‖∇W‖N ,

(2.49)

and

‖|D|−1 f ′′
1 (Y ; X,W )‖N � f3(∂3Y, ∂3X, ∂3W ) and (2.50)

‖|D|−1 f ′′
2 (Y ; X,W )‖N � f3(Yt , Xt ,Wt ), (2.51)
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where the functional f3(x, y, z) is given by

f3(x, y, z)
def= (|y|N + |∇Y |N |y|0) ‖z‖0 + |y|0‖z‖N

+
(

|x|0 + |x|
1
3
1 ‖x‖

2
3
1

)

(|∇X |N‖z‖0 + |∇X |0‖z‖N + |y|1‖∇W‖N
+(|y|N + |x|N |∇X |1)‖∇W‖1) + (|x|N + |∇Y |N |x|1) |∇X |1‖z‖1
+
(

|x|
4
3
1 ‖x‖

2
3
0 + |x|21

)
(
(|∇X |N + |∇Y |N |∇X |1)‖∇W‖1

+ |∇X |1‖∇W‖N
)

+
(

|x|N + |x|
1
3
N‖x‖

2
3
N + |∇Y |N

(

|x|1 + |x|
1
3
0 ‖x‖

2
3
0

))

|y|1‖∇W‖1.

Remark 2.1. Wemention that in the above inequalities, it is crucial to estimate the
vector, X, by L∞-norm. In Sect. 9, we shall deal with the estimate of the error term

e′
p = −

∫ 1

0
f ′′(Yp + s(1 − Sp)Yp; (1 − Sp)Yp, X p

)
ds,

where the variable, (1− Sp)Yp, is “small” in the L∞-norm, but only “bounded” in
L2-norm.

Proposition 2.6. Let f ′′
m, m = 0, 1, 2 be given in (4.13) and (4.14) , the norm

||| · |||δ,N be given by (2.39). Then under the assumption of (2.41), we have

||| f ′′
0 (Y ; X,W )|||δ,N � |Yt |1

(‖∇X‖N+6‖∇W‖0 + ‖∇X‖0‖∇W‖N+6
)

+ (‖∇Yt‖N+6 + |Yt |1‖∇Y‖N+6
)(|∇X |0‖∇W‖0 + ‖∇X‖0|∇W |0

)

+ ‖∇X‖0‖∇Wt‖N+6 + (‖∇X‖N+6 + |∇X |0‖∇Y‖N+6
)‖∇Wt‖0

+ ‖∇W‖0‖∇Xt‖N+6 + (‖∇W‖N+6 + |∇W |0‖∇Y‖N+6
)‖∇Xt‖0,

(2.52)

and

||| f ′′
1 (Y ; X,W )|||δ,N � f4(∂3Y, ∂3X, ∂3W ) and (2.53)

||| f ′′
2 (Y ; X,W )|||δ,N � f4(Yt , Xt ,Wt ), (2.54)

where the functional f4(x, y, z) is given by

f4(x, y, z)
def= (‖z‖0 + |x|0‖∇W‖0 + ‖x‖0|∇W |0

)‖y‖N+6

+ (‖x‖0|∇X |0 + ‖y‖0
)‖z‖N+6

+ |y|0‖z‖0‖∇Y‖N+6 + |x|0
(‖z‖0‖∇X‖N+6 + ‖∇X‖0‖z‖N+6

+ ‖y‖0‖∇W‖N+6
)

+ (‖x‖N+6 + |x|0‖∇Y‖N+6
)(‖∇X‖0|z|0 + |∇X |1‖z‖1

)

+ (‖x‖N+6 + ‖x‖3‖∇Y‖N+6
)(|y|1‖∇W‖1 + ‖y‖1|∇W |0

)

+ |x|1‖x‖3
(‖∇X‖N+6(‖∇W‖0 + |∇W |0) + (‖∇X‖0
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+ |∇X |0)‖∇W‖N+6
)

+ (|x|1‖x‖N+6 + |x|1‖x‖3‖∇Y‖N+6
)(|∇X |0‖∇W‖1

+ ‖∇X‖1|∇W |0
)
.

The proofs of the above propositions are similar to those of Propositions 2.3
and 2.4. We skip the details here. Interested readers may check Sect. 9 of [15].

In Sect. 6, we investigate energy estimates for the solutions of the linearized
equation (2.40).

Theorem 2.3. Let Y be a smooth enough vector field and X be a smooth solution
to the linearized equation (2.40). We assume that Y satisfies (2.41) and

‖Yt‖0,0 ≤ 1, and |Yt |0,1 ≤ 1. (2.55)

Then for any ε > 0, we have

E0(t) ≤ Cε‖〈t〉 1+ε
2 |D|−1g‖L2

t (H1)Eε(Y ) and for N ≥ 1

EN (t) ≤ Cε,N

(
‖〈t〉 1+ε

2 g‖L2
t (HN ) + γε,N+1(Y )‖〈t〉 1+ε

2 |D|−1g‖L2
t (H1)

)
Eε(Y ),

(2.56)

where

EN (t)
def= ‖|D|−1(Xt , ∂3X)‖0,N+2 + ‖∇X‖0,N+1 + ‖Xt‖L2

t (HN+2)

+ ‖∂3X‖L2
t (HN+1);

Eε(Y )
def= exp

(
C
(|∂3Y |

4
3
1
2+ε,1

‖∂3Y‖
2
3

L2
t (L2)

+ |∂3Y |21
2+ε,1

+ |Yt |1+ε,2
))

,

(2.57)

and

γε,N+1(Y )
def= 1 + |∂3Y | 1

2+ε,N+1

(
1 + |∂3Y | 1

2+ε,1

)+ |Yt |1+ε,N+2

+ |∂3Y |
1
3
1
2+ε,1

‖∂3Y‖
2
3

L2
t (L2)

(|∂3Y | 1
2+ε,N+1 + |∇Y |0,N+1

)

+ |∇Y |0,N+1
(
1 + |∂3Y |21

2+ε,0
+ |∂3Y | 1

2+ε,0 + |Yt |1+ε,1
)
.

(2.58)

We notice that when we perform the energy estimates for the derivatives of the
solutions to (2.40), we are not able to treat the term ∇ · ((AAt − I d)∇Xt

)
, which

appears in f ′
0(Y ; X) (see (4.6)) as a source term. Instead, we need to rewrite (2.40)

as

Xtt − ∇ · ∂t
(AAt∇X

)− ∂23 X = f̃ ′(Y ; X) + g, (2.59)

where f̃ ′(Y ; X) = f̃ ′
0(Y ; X) + f ′

1(Y ; X) + f ′
2(Y ; X) with f ′

m(Y ; X),m = 1, 2,
given by (4.7), and f̃ ′

0(Y ; X) by

f̃ ′
0(Y ; X) = −∇ · (A(∇XA + At (∇X)t

)At∇Yt
)− ∇ · (∂t (AAt )∇X

)
. (2.60)

With the energy estimates obtained in Theorem 2.3, we can work on the time-
weighted energy estimate for the solutions of (2.40).
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Corollary 2.1. Under the assumptions of Theorem 2.3, we have

E0 + ‖(Xt , ∂3X)‖ 1
2 ,1 + ‖〈t〉 1

2 ∇Xt‖L2
t (H1) ≤ Cε‖〈t〉 1+ε

2 |D|−1g‖L2
t (H1)Eε(Y ),

(2.61)

and for N ≥ 1,

EN + ‖(Xt , ∂3X)‖ 1
2 ,N+1 + ‖〈t〉 1

2 ∇Xt‖L2
t (HN+1)

≤ Cε,N

(
‖〈t〉 1+ε

2 g‖L2
t (HN ) + γε,N+1(Y )‖〈t〉 1+ε

2 |D|−1g‖L2
t (H1)

)
Eε(Y ). (2.62)

Proposition 2.7. Under the assumptions of Theorem 2.3, we have for N ≥ 0,

‖∇Xt‖1,N ≤ Cε,N
(‖|D|−1g‖1+ε,N+2 + ‖∇Y‖N+2‖|D|−1g‖1+ε,2

)

+ Cε,N

(
‖〈t〉 1+ε

2 g‖L2
t (HN+1)

+ γε,N+2(Y )‖〈t〉 1+ε
2 |D|−1g‖L2

t (H1)

+ ‖∇Y‖0,N+2
(‖〈t〉 1+ε

2 g‖L2
t (H1)

+ γε,2(Y )‖〈t〉 1+ε
2 |D|−1g‖L2

t (H1)

))
Eε(Y ).

(2.63)

We emphasize that the decay estimates (2.63) cannot be obtained by energy
estimate. In fact, we will have to exploit anisotropic Littlewood-Paley analysis and
the dissipative properties of the linear system (2.1). The proof of Proposition 2.7
will be presented in Sect. 7, which is of independent interest.

Let us summarize that under the assumptions (2.41) and (2.55), and assuming

|∂3Y |
4
3
1
2+ε,1

‖∂3Y‖
2
3

L2
t (L2)

+ |∂3Y |21
2+ε,1

+ |Yt |1+ε,2 ≤ 1, (2.64)

we have the following energy estimates: for N ≥ 0, (we make the convention
‖u‖k,−1 = 0)

EN + ‖(Xt , ∂3X)‖ 1
2 ,N+1 + ‖〈t〉 1

2 ∇Xt‖L2
t (HN+1) + ‖∇Xt‖1,N−1

≤ Cε,N

(
‖|D|−1g‖1+ε,N+1 + ‖〈t〉 1+ε

2 g‖L2
t (HN ) + γ̃ε,N+1(Y )

(‖|D|−1g‖1+ε,2

+ ‖〈t〉 1+ε
2 |D|−1g‖L2

t (H1)

))
with

γ̃ε,N+1(Y ) ≤ C
(
1 + |∂3Y | 1

2+ε,N+1 + |Yt |1+ε,N+2 + |∇Y |0,N+1 + ‖∇Y‖0,N+1
)
.

(2.65)

In Sect. 8, we shall present the estimates to the nonlinear source term f (Y )

given by (2.25).
With the preparations of the previous sections, we can now exploit the Nash–

Moser iteration scheme to prove Theorem 2.1. In order to do so, we first recall some
basic properties of the smoothing operator from [19,20]. Let χ(t) ∈ C∞(R; [0, 1])
be such that

χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 1.
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Define for θ ≥ 1, the (cutoff-in-time) operator

S(1)(θ)Y (t, y)
def= χ

( t

θ

)
Y (t, y). (2.66)

Then we have

|S(1)(θ)Y |k,N ≤ Ck,sθ
k−s |Y |s,N , if k ≥ s ≥ 0

and

|(1 − S(1)(θ)
)
Y |s,N ≤ Ck,sθ

−(k−s)|Y |k,N if k ≥ s ≥ 0.

For θ ′ ≥ 1, we define the usual mollifying operator S(2)(θ ′) in the space vari-
ables by

S(2)(θ ′)Y (t, y)
def= ϕ̂

(Dy

θ ′
)
Y (t, y) = (θ ′)3

∫

R
3
ϕ(θ ′(y − z))Y (t, z)dz, (2.67)

where ϕ ∈ S(R3) satisfies

ϕ̂(ξ) = 1 for |ξ | ≤ 1

2
, ϕ̂(ξ) = 0 for |ξ | ≥ 1,

so that
∫

R
3
ϕ(y)dy = 1,

∫

R
3
yαϕ(y)dy = 0, ∀ |α| > 0.

We then have

|S(2)(θ ′)Y |k,N ≤ CN ,M (θ ′)N−M |Y |k,M if N ≥ M ≥ 0,

as well as

|(1 − S(2)(θ ′)
)
Y |k,M ≤ CN ,M (θ ′)−(N−M)|Y |k,N if N ≥ M ≥ 0.

Define the operator

S(θ, θ ′) def= S(1)(θ)S(2)(θ ′), for θ, θ ′ ≥ 1. (2.68)

Then it follows that

|S(θ, θ ′)Y |k,N ≤ Cθk−s(θ ′)N−M |Y |s,M ,

‖〈t〉k S(θ, θ ′)g‖L p
t (HN )

≤ Cθk−s(θ ′)N−M‖〈t〉sg‖L p
t (HM ) if k ≥ s ≥ 0, N ≥ M ≥ 0.

(2.69)

Moreover, due to

1 − S(θ, θ ′) = (
1 − S(1)(θ)

)+ S(1)(θ)
(
1 − S(2)(θ ′)

)
,
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one has

|(1 − S(θ, θ ′)
)
Y |s,M ≤ Cθ−(k−s)|Y |k,M + C(θ ′)−(N−M)|Y |s,N ,

‖〈t〉s(1 − S(θ, θ ′)
)
g‖L p

t (HM ) ≤ Cθ−(k−s)‖〈t〉kg‖L p
t (HM )

+ C(θ ′)−(N−M)‖〈t〉sg‖L p
t (HN ),

(2.70)

provided that k ≥ s ≥ 0, N ≥ M ≥ 0.
Let us denote

�(Y )
def= Ytt − �Yt − ∂23Y − f (Y )

for f given by (2.25). Then we can write (2.1) equivalently as

�(Y ) = 0, Y (0, y) = Y (0), Yt (0, y) = Y (1). (2.71)

We aim to solve (2.71) via a Nash–Moser iteration scheme in Sect. 9.
Let us define Y0 via

{
∂t t Y0 − �∂t Y0 − ∂23Y0 = 0,

Y0(0, y) = Y (0), ∂t Y0(0, y) = Y (1).
(2.72)

Inductively, assume that we already determine Yp. In order to define Yp+1, we
introduce a mollified version of �′(Yp) as follows:

L pX
def= �′(SpYp)X = Xtt − �Xt − ∂23 X − f ′(SpYp; X), (2.73)

where Sp is the smoothing operator defined by

Sp = S(θp, θ
′
p), with θp = 2p, θ ′

p = θ ε̄
p = 2ε̄p, and p ≥ 0, (2.74)

where S(θ, θ ′) is defined in (2.68) and ε̄ > 0 is a small constant to be chosen later
on. Then it follows from (2.69) and (2.70) that

|SpY |k,N ≤ Cθk−s
p θ ε̄(N−M)

p |Y |s,M
‖〈t〉k Spg‖L2

t (HN ) ≤ Cθk−s
p θ ε̄(N−M)

p ‖〈t〉sg‖L2
t (HM )

|||Spg|||L1
t (δ,N )

≤ Cθ ε̄(N−M)
p |||g|||L1

t (δ,M),

(S I)

and

|(1 − Sp)Y |0,0 ≤ Ck,N

(
θ−k
p |Y |k,0 + θ−ε̄N

p |Y |0,N
)

,

‖〈t〉s(1 − Sp)g‖L2
t (L2) ≤ Ck,N

(
θ−(k−s)
p ‖〈t〉kg‖L2

t (L2) + θ−ε̄N
p ‖〈t〉sg‖L2

t (HN )

)

(S II)

for k ≥ s ≥ 0, N ≥ M ≥ 0, where the norm ||| · |||L1
t (δ,N ) is given by (2.39).
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Remark 2.2. According to Remark 4.1 below, we can write

f ′(SpYp; X) = f ′
0(SpYp; X) + f ′

1(SpYp; X) + f ′
2(SpYp; X)

where

f ′
0(SpYp; X) = F ′

0,U (Sp∇∂t Yp, Sp∇Yp)∇Xt + F ′
0,V (Sp∇∂t Yp, Sp∇Yp)∇X,

f ′
1(SpYp; X) = F ′

U (Sp∂3Yp, Sp∇Yp)∂3X + F ′
V (Sp∂3Yp, Sp∇Yp)∇X,

f ′
2(SpYp; X) = F ′

U (Sp∂t Yp, Sp∇Yp)Xt + F ′
V (Sp∂t Yp, Sp∇Yp)∇X,

where the functionals F ′
0, F

′ will be presented in Remark 4.1.

Following Hörmander’s version of Nash–Moser Scheme [18] (see also Klain-
erman’s seminar papers [19,20]), we define

Yp+1 = Yp + X p, with X p = L−1
p gp, (2.75)

where L−1
p is a right inverse operator of L p with zero initial data, that is: X = L−1

p gp
solves

{
L pX = gp with L p given by (2.73),

X (0, y) = 0, Xt (0, y) = 0.
(2.76)

In order to prove the convergence of the scheme, we define

e′
p
def= (

�′(Yp) − L p
)
X p, e′′

p
def= �(Yp+1) − �(Yp) − �′(Yp)X p, and

ep
def= e′

p + e′′
p, (2.77)

from which we infer

�(Yp+1) − �(Yp) = �′(Yp)X p + e′′
p = �′(Yp)L

−1
p gp + e′′

p

= (
�′(Yp) − L p

)
L−1
p gp + gp + e′′

p = e′
p + e′′

p + gp.

As a result, it turns out that

�(Yp+1) − �(Yp) = ep + gp and �(Yp+1) − �(Y0) =
p∑

j=0

(e j + g j ). (2.78)

To achieve that the above limit is equal to −�(Y0) as p → ∞, we set

p∑

j=0

g j + SpEp = −Sp�(Y0) with Ep
def=

p−1∑

j=0

e j . (2.79)

The last relation defines gp as follows:

g0 = −S0�(Y0), and

gp = −(Sp − Sp−1)Ep−1 − Spep−1 − (Sp − Sp−1)�(Y0).
(2.80)
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Remark 2.3. By virtue of Remarks 2.2, 4.1 and 4.2, applying a Taylor formula to
(2.77), we have

e′
p = −

∫ 1

0
f ′′(sYp + (1 − s)SpYp; (1 − Sp)Yp, X p

)
ds, and

e′′
p = −

∫ 1

0
(1 − s) f ′′(sYp+1 + (1 − s)Yp; X p, X p

)
ds,

where f ′′ should be understood in the way explained in Remark 4.2. Then we have

ep = ep,0 + ep,1 + ep,2, with ep,m
def= e′

p,m + e′′
p,m and

e′
p,m

def= −
∫ 1

0
f ′′
m

(
sYp + (1 − s)SpYp; (1 − Sp)Yp, X p

)
ds,

e′′
p,m

def= −
∫ 1

0
(1 − s) f ′′

m

(
Yp + sX p; X p, X p

)
ds, m = 0, 1, 2.

(2.81)

Let us fix the small constants ε, ε̄ and δ > 0 so that

ε̄ ≤ 1

20
, δ + 5ε̄ ≤ 1

4
, δ + ε + 4ε̄ ≤ 1

4
. (2.82)

Let us take

γ = 1

4
− ε̄, β = 1

4
+ ε̄, (2.83)

and N0 ∈ N is chosen such that

ε̄N0 ≥ 1

2
= γ + β. (2.84)

In Sect. 9, we shall inductively prove the following statements:

Proposition 2.8. Let δ1 > 0 be determined by Propositions 2.3, 2.4, 8.1, 8.2, 2.5,
2.6 and Theorem 2.3. Then for the constants β, γ, N0, ε, ε̄ and δ given by (2.82–
2.84), for any 0 ≤ N ≤ N0, we have
∥
∥|D|−1(∂3X p, ∂t X p)

∥
∥
0,N+2 + ‖∇X p‖0,N+1 + ‖(∂t X p, ∂3X p)‖ 1

2 ,N+1

+ ‖∂t X p‖L2
t (HN+2) + ∥

∥(∂3X p, 〈t〉 1
2 ∇∂t X p)

∥
∥
L2
t (HN+1)

+ ‖∇∂t X p‖1,N−1 ≤ ηθ−β+ε̄N
p

(P1, p)

and

|∂3X p|k,N ≤ ηθ
k− 1

2−γ+ε̄N
p if

1

2
≤ k ≤ 1,

|∂t X p|k,N ≤ ηθ
k−(1−δ)−γ+ε̄N
p if 1 − δ ≤ k ≤ 3

2
− δ,

|X p|k,N ≤ ηθ
k−γ+ε̄N
p if 0 ≤ k ≤ 1

2

(P2, p)
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and

‖∇Yp‖
L∞
t

(

Ḃ
3
2
2,1

) ≤ δ1, ‖∇Yp‖
L∞
t

(

Ḃ
5
2
2,1

) ≤ 1, ‖∂t Yp‖0,0 ≤ 1, |∂t Yp|0,1 ≤ 1,

|∂3Yp|
4
3
1
2+ε,1

‖∂3Yp‖
2
3

L2
t (L2)

+ |∂3Yp|21
2+ε,1

+ |∂t Yp|1+ε,2 ≤ 1.

(P3, p)

Recall the convention that ‖u‖k,−1 = 0. We shall deduce the following propo-
sitions from Proposition 2.8:

Proposition 2.9. Under the assumptions of Proposition 2.8, we have, for N ≥ 0:

|Sp+1∂3Yp+1|k,N ≤ Ck,Nηθ
k− 1

2−γ+ε̄N
p+1 if k ≥ 1

2
, k − 1

2
− γ + ε̄N ≥ ε̄,

|Sp+1∂t Yp+1|k,N ≤ Ck,Nηθ
k−(1−δ)−γ+ε̄N
p+1 if k ≥ 1 − δ, k − (1 − δ) − γ +ε̄N ≥ ε̄,

|Sp+1Yp+1|k,N ≤ Ck,Nηθ
k−γ+ε̄N
p+1 if k ≥ 0, k − γ + ε̄N ≥ ε̄;

(I) (i)

�p+1
def= ∥

∥|D|−1Sp+1(∂3Yp+1, ∂t Yp+1)
∥
∥
0,N+2 + ‖Sp+1∇Yp+1‖0,N+1

+ ‖Sp+1(∂t Yp+1, ∂3Yp+1)‖ 1
2 ,N+1

+ ∥
∥(Sp+1∂3Yp+1, 〈t〉

1
2 Sp+1∇∂t Yp+1)

∥
∥
L2
t (HN+1)

+ ‖Sp+1∂t Yp+1‖L2
t (HN+2)

+ ‖Sp+1∇∂t Yp+1‖1,N−1

≤ CNηθ
−β+ε̄N
p+1 if − β + ε̄N ≥ ε̄;

(I) (ii)

|Sp+1∂3Yp+1|k,N ≤ Ck,Nη if k ≥ 1

2
, k − 1

2
− γ + ε̄N ≤ −ε̄,

|Sp+1∂t Yp+1|k,N ≤ Ck,Nη if k ≥ 1 − δ, k − (1 − δ) − γ + ε̄N ≤ −ε̄,

|Sp+1Yp+1|k,N ≤ Ck,Nη if k ≥ 0, k − γ + ε̄N ≤ −ε̄;
(II) (i)

�p+1 ≤ CNη if − β + ε̄N ≤ −ε̄; (II) (ii)

|(1 − Sp+1)∂3Yp+1|k,N ≤ Ck,Nηθ
k− 1

2−γ+ε̄N
p+1 if

1

2
≤ k ≤ 1, N ≤ N0,

|(1 − Sp+1)∂t Yp+1|k,N ≤ Ck,Nηθ
k−(1−δ)−γ+ε̄N
p+1 if 1 − δ ≤ k ≤ 3

2
− δ, N ≤ N0,

|(1 − Sp+1)Yp+1|k,N ≤ Ck,Nηθ
k−γ+ε̄N
p+1 if 0 ≤ k ≤ 1

2
, N ≤ N0.

(III)

Proposition 2.10. Let ep, gp and RN ,θ (g) be given by (2.77), (2.80) and (2.38)

respectively. Let α
def= 1

2 − δ − ε̄ > 0. Then there holds the following:
(1) Estimates for ep:

‖〈t〉k+ 1
2 |D|−1ep‖L2

t (HN+1)
� η2θ

k+δ−γ−β+ε̄(N+3)
p if 0 ≤ k ≤ α, 0 ≤ N ≤ N0 − 2,

(IV) (i)
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‖|D|−1ep‖1+k,N+1 � η2θ
k+δ−γ−β+ε̄(N+2)
p if 0 ≤ k ≤ 1

2
− δ, N ≤ N0 − 2,

(IV) (ii)

|||〈t〉 1
2 ep|||L2

t (δ,N )
� η2θ

−γ+ε̄(N+5)
p if 0 ≤ N ≤ N0 − 6; (IV) (iii)

(2) Estimates for gp+1:

‖〈t〉k+ 1
2 |D|−1gp+1‖L2

t (HN+1) ≤ Cη2θ
k+δ−γ−β+ε̄(N+3)
p+1 if k ≥ 0, N ≥ 0,

(V) (i)

‖|D|−1gp+1‖1+k,N+1 � η2θ
k+δ−γ−β+ε̄(N+2)
p+1 if k ≥ 0, N ≥ 0, (V) (ii)

|||gp+1|||L1
t (N )

≤ Cη2θ
−γ+ε̄(N+6)
p+1 if − γ + ε̄(N + 5) ≥ ε̄, (V) (iii)

|||gp+1|||L1
t (N )

≤ Cη2θ ε̄
p+1 if − γ + ε̄(N + 5) ≤ −ε̄; (V) (iv)

(3) Estimates for RN ,θp+1(gp+1):

RN ,θp+1(gp+1) ≤ Cη2θ
1
2−γ+ε̄N
p+1 if − γ + ε̄(N + 5) ≥ ε̄, (VI) (i)

R0,θp+1(gp+1) ≤ Cη2θ
1
2−γ

p+1 . (VI) (ii)

The following interpolation lemma will be crucial in the proof of the above
propositions, whose proof is exactly the same as that of Lemma 6.1 of [19], of
which we omit the details here:

Lemma 2.1. (Interpolation lemma). Let p ∈ [1,+∞], θ ≥ 1 and ε̄ > 0, which
satisfy

β > ε̄, k0 − β ≥ ε̄, −β + ε̄N0 ≥ ε̄.

Assume that u ∈ C∞([0,+∞) × R
n) satisfies

‖u‖L p
t (L2) ≤ Cθ−β,

‖〈t〉ku‖L p
t (HN ) ≤ Cθk−β+ε̄N , for 0 ≤ k ≤ k0, 0 ≤ N

≤ N0 s.t k − β + ε̄N ≥ ε̄.

(2.85)

Then for all 0 ≤ k ≤ k0, 0 ≤ N ≤ N0,

‖〈t〉ku‖L p
t (HN ) ≤ Ck0,N0θ

k−β+ε̄N .

Finally with the previous propositions, we shall prove the convergence of the
approximate solutions constructed by (2.75) in Sect. 9.4, and this completes the
proof of Theorem 2.1.
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3. Decay Estimates of the Linear Equation

3.1. Decay Estimates for the Solution Operator

Following the strategy in [19,20], we first investigate the decay properties of
the solutions to the linear equation (2.31) with Y0 = 0 and Y1 = Y1. By taking
Fourier transform to (2.31) with respect to y variables and solving the resulting
ODE, we write

Y(t, y) = (t, D)Y1 with (t, ξ)= 1

λ2(ξ) − λ1(ξ)

(
etλ2(ξ) − etλ1(ξ)

)
, (3.1)

where λ1(ξ) and λ2(ξ) are given by (2.2).

Proposition 3.1. Given δ ∈ [0, 1[ and N ∈ N, there exists Cδ,N > 0 such that
there holds

|∂3(t)Y1|1,N + |∂23(t)Y1| 3
2 ,N + |∂t(t)Y1| 3

2−δ,N + |(t)Y1| 1
2 ,N

≤ Cδ,N
∥
∥(|D|2δY1, |D|N+4Y1)

∥
∥
L1 . (3.2)

Proof. The estimate (3.2) for general N ∈ N follows from the case when N = 0.
Due to the anisotropic properties of the eigenvalues λ1(ξ), λ2(ξ), we shall split the
frequency space into two parts: {ξ ∈ R

3 : |ξ |2 ≥ 2|ξ3| } and {ξ ∈ R
3 : |ξ |2 <

2|ξ3| }. When |ξ |2 ≥ 2|ξ3|, let us denote α(ξ)
def=

√
|ξ |4
4 − ξ23 . Then we have

λ1(ξ) = −|ξ |2
2

+ α(ξ) and λ2(ξ) = −|ξ |2
2

− α(ξ),

and we write

(t, ξ)1|ξ |2≥2|ξ3| = e−t
( |ξ |2

2 −α(ξ)
)
1 − e−2tα(ξ)

2α(ξ)
1|ξ |2≥2|ξ3|. (3.3)

When |ξ |2 < 2|ξ3|, let us denote β(ξ)
def=

√

ξ23 − |ξ |4
4 . Then we have

λ1(ξ) = −|ξ |2
2

+ iβ(ξ) and λ2(ξ) = −|ξ |2
2

− iβ(ξ),

and we write

(t, ξ)1|ξ |2<2|ξ3| = e− t
2 |ξ |2 sin(tβ(ξ))

β(ξ)
1|ξ |2<2|ξ3|. (3.4)

Next we handle the estimate of (3.2) term by term, below.
•Estimates of ‖∂3Y(t)‖L∞ and ‖∂23Y(t)‖L∞ .

In view of (3.1), we deduce that

‖∂3Y(t)‖L∞ ≤ ‖(t, ·)ξ3Ŷ1(·)‖L1

=
∫

|ξ |2≥2|ξ3|
e−t
( |ξ |2

2 −α(ξ)
)
1 − e−2tα(ξ)

2α(ξ)
|ξ3Ŷ1(ξ)| dξ

+
∫

|ξ |2<2|ξ3|
e− t

2 |ξ |2 | sin(tβ(ξ))|
β(ξ)

|ξ3Ŷ1(ξ)| dξ def= I1 + I2.

(3.5)
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It is easy to observe that

I1 =
(∫

|ξ |≥3
+
∫

9>|ξ |2≥2|ξ3|

)

e−t
( |ξ |2

2 −α(ξ)
)
1 − e−2tα(ξ)

2α(ξ)
|ξ3Ŷ1(ξ)| dξ

and
∫

|ξ |≥3
e−t
( |ξ |2

2 −α(ξ)
)
1 − e−2tα(ξ)

2α(ξ)
|ξ3Ŷ1(ξ)| dξ

≤ ‖|ξ |3Ŷ1‖L∞
∫

|ξ |≥3
e
−t

ξ23
|ξ |2
2 +α(ξ)

|ξ3|
2α(ξ)|ξ |3 dξ

≤ 2‖|ξ |3Ŷ1‖L∞
∫ π

2

0

∫ ∞

3
e−t cos2 φ 1

r
√
r2 − 4 cos2 φ

sin φ cosφ dφ dr

≤ C‖|ξ |3Ŷ1‖L∞
∫ 1

0
e−tτ

∫ ∞

3

1

r
√
r2 − 4τ 2

dr dτ

≤ C〈t〉−1‖|D|3Y1‖L1 .

Exactly along the same lines, we have

∫

9>|ξ |2≥2|ξ3|
e−t
( |ξ |2

2 −α(ξ)
)
1 − e−2tα(ξ)

2α(ξ)
|ξ3Ŷ1(ξ)| dξ

≤ 2‖|ξ |Ŷ1‖L∞
∫ π

2

0

∫ 3

2 cosφ

e−t cos2 φ sin φ cosφ
√
r2 − 4 cos2 φ

r dr dφ

≤ C‖|ξ |Ŷ1‖L∞
∫ 1

0
e−tτ

∫ 3

2
√

τ

r√
r2 − 4τ

dr dτ

≤ C〈t〉−1‖|D|Y1‖L1 .

This proves

I1 ≤ C〈t〉−1(‖|D|Y1‖L1 + ‖|D|3Y1‖L1
)
. (3.6)

The estimate of I2 is much simpler. By virtue of (3.5), we have

I2 ≤ 2‖|ξ |Ŷ1‖L∞
∫ π

2

0

∫ 2 cosφ

0
e− t

2 r
2 1
√
4 cos2 φ − r2

sin φ cosφr dr dφ

≤ 2‖|ξ |Ŷ1‖L∞
∫ 1

0
e− t

2 r
2
r
∫ 1

r2
4

1√
4τ − r2

dτ dr

≤ C〈t〉−1‖|D|Y1‖L1 .

(3.7)

As a result, we achieve

‖∂3Y(t)‖L∞ ≤ C〈t〉−1(‖|D|Y1‖L1 + ‖|D|3Y1‖L1
)
. (3.8)
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Along the same lines as to the proof of (3.8), we infer

‖∂23Y(t)‖L∞

≤ 2‖|ξ |4Ŷ1‖L∞
∫ π

2

0

∫ ∞

3
e−t cos2 φ 1

r
√
r2 − 4 cos2 φ

sin φ cos2 φ dφ dr

+ 2‖|ξ |2Ŷ1‖L∞
∫ π

2

0

∫ 3

2 cosφ

e−t cos2 φ sin φ cos2 φ
√
r2 − 4 cos2 φ

r dr dφ

+ 2‖|ξ |Ŷ1‖L∞
∫ π

2

0

∫ 2 cosφ

0
e− t

2 r
2 1
√
4 cos2 φ − r2

sin φ cos2 φr2 dr dφ,

so that for t large enough, there holds

‖∂23Y(t)‖L∞

≤ Ct−
1
2

(
‖|ξ |4Ŷ1‖L∞

∫ π
2

0

∫ ∞

3
e− t cos2 φ

2
1

r
√
r2 − 4 cos2 φ

sin φ cosφ dφ dr

+ ‖|ξ |2Ŷ1‖L∞
∫ π

2

0

∫ 3

2 cosφ

e− t cos2 φ
2

sin φ cosφ
√
r2 − 4 cos2 φ

r dr dφ
)

+ ‖|ξ |Ŷ1‖L∞
∫ 1

0
e− t

2 r
2
r2
∫ 1

r2
4

1√
4τ − r2

dτ dr.

This gives rise to

‖∂23Y(t)‖L∞ ≤ C〈t〉− 3
2
(‖|D|Y1‖L1 + ‖|D|4Y1‖L1

)
. (3.9)

•Estimate of |∂tY(t)|L∞ .

It follows from (3.1) that

∂t(t, ξ) = 1

λ2(ξ) − λ1(ξ)

(
λ2(ξ)etλ2(ξ) − λ1(ξ)etλ1(ξ)

)
,

so that one has

∂t(t, ξ)1|ξ |2≥2|ξ3| = e−t
( |ξ |2

2 +α(ξ)
)

− e−t
( |ξ |2

2 −α(ξ)
)
( |ξ |2

2
− α(ξ)

)1 − e−2tα(ξ)

2α(ξ)
,

∂t(t, ξ)1|ξ |2<2|ξ3| = e− t
2 |ξ |2

(

−|ξ |2
2

sin(tβ(ξ))

β(ξ)
+ cos(tβ(ξ))

)

.

(3.10)

It is easy to observe that for any d ∈ [0, 1[,
∫

R
3
e− t

2 |ξ |2 |Ŷ1(ξ)| dξ ≤ ‖|ξ |2δŶ1‖L∞
∫

R
3
|ξ |−2δe− t

2 |ξ |2 dξ

≤ Ct
−
(
3
2−δ

)

‖|D|2δY1‖L1 ,
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and
∫

R
3
e− t

2 |ξ |2 |Ŷ1(ξ)| dξ

≤ ‖|ξ |2δŶ1‖L∞
∫

|ξ |≤1
|ξ |−2δ dξ + ‖|ξ |4Ŷ1‖L∞

∫

|ξ |>1
|ξ |−4 dξ

≤ C
(‖|D|2δY1‖L1 + ‖|D|4Y1‖L1

)
.

This leads to
∫

R
3
e− t

2 |ξ |2 |Ŷ1(ξ)| dξ ≤ C〈t〉−
(
3
2−δ

)
(‖|D|2δY1‖L1 + ‖|D|4Y1‖L1

)
.

While similar to estimates of (3.6) and (3.7), we infer

∫

|ξ |2≥2|ξ3|
e
−t

ξ23
|ξ |2
2 +α(ξ)

ξ23
|ξ |2
2 + α(ξ)

1 − e−2tα(ξ)

2α(ξ)
|Ŷ1(ξ)| dξ

≤ 2
∫ π

2

0

∫ 2π

0

∫ ∞

2 cosφ

e−t cos2 φ2 cos2 φ
|Ŷ1(ξ(r, θ, φ))|
√
r2 − 4 cos2 φ

sin φr dr dθ dφ

≤ 2‖|ξ |2δŶ1‖L∞
∫ 1

0
e−tτ√τ

∫ 3

2
√

τ

r1−2δ

√
r2 − 4τ

dr dτ

+ 2‖|ξ |2Ŷ1‖L∞
∫ 1

0
e−tτ√τ

∫ ∞

3

1

r
√
r2 − 4τ

dr dτ

≤ C〈t〉− 3
2
(‖|D|2δY1‖L1 + ‖|D|2Y1‖L1

)

and
∫

|ξ |2≤2|ξ3|
e− t

4 |ξ |2 |ξ3|
β(ξ)

|Ŷ1(ξ)| dξ

≤ 2‖|ξ |2δŶ1‖L∞
∫ π

2

0

2 sin φ cosφ
√
4 cos2 φ − r2

∫ 2 cosφ

0
e− t

4 r
2
r2(1−δ) dr dφ

≤ C〈t〉−
(
3
2−δ

)

‖|ξ |2δŶ1‖L∞ ≤ C〈t〉−
(
3
2−δ

)

‖|D|2δY1‖L1 .

Hence by virtue of (3.10), we obtain

‖∂tY(t)‖L∞ ≤ C〈t〉−
(
3
2−δ

)
(‖|D|2δY1‖L1 + ‖D4Y1‖L1

)
. (3.11)

•Estimate of ‖Y(t)‖L∞ .

Note that
∫ 1

0

∫ 3

2τ
e−tτ 2 r

1
2√

r2 − 4τ 2
dr dτ ≤

∫ 1

0
e−tτ 2

∫ 3

2τ
(r − 2τ)−

1
2 dr dτ ≤ C〈t〉− 1

2 .

We find
∫

|ξ |2≥2|ξ3|
e−t
( |ξ |2

2 −α(ξ)
)
1 − e−2tα(ξ)

2α(ξ)
|Ŷ1(ξ)|dξ
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≤
∫ π

2

0

∫ 2π

0

∫ ∞

2 cosφ

e−t cos2 φ |Ŷ1(ξ(r, θ, φ))|
1
2r
√
r2 − 4 cos2 φ

r2 sin φ dr dθ dφ

= C‖|ξ | 12 Ŷ1‖L∞
∫ 1

0

∫ 3

2τ
e−tτ 2 r

1
2√

r2 − 4τ 2
dr dτ

+ C‖|ξ |2Ŷ1‖L∞
∫ 1

0
e−tτ 2

∫ ∞

3

1

r
√
r2 − 4τ 2

dr dτ

≤ C〈t〉− 1
2
(‖|D| 12 Y1‖L1 + ‖|D|2Y1‖L1

)
.

Similarly, we have
∫

|ξ |2<2|ξ3|
e−t |ξ |2

2
sin(tβ(ξ))

2β(ξ)
|Ŷ1(ξ)|dξ

≤
∫ π

2

0

∫ 2 cosφ

0
e− t

2 r
2 |Ŷ1(ξ(r, θ, φ))|
r
√
4 cos2 φ − r2

r2 sin φdr dφ

≤ ‖|ξ | 12 Ŷ1‖L∞
∫ 2

0
e− t

2 r
2
∫ 1

r/2

r
1
2√

4τ 2 − r2
dτ dr

≤ C〈t〉− 1
2 ‖|D| 12 Y1‖L1 .

As a result, by virtue of (3.3) and (3.4), it turns out that

‖Y(t)‖L∞ ≤ C〈t〉− 1
2
(‖|D| 12 Y1‖L1 + ‖D2Y1‖L1

)
. (3.12)

Then (3.8), together with (3.9), (3.11) and (3.12), imply the estimate (3.2) for
N = 0. ��
Lemma 3.1. For N ∈ N, there exists CN > 0 such that for t > 0,

‖t�∂t(t)Y1‖L∞
t (HN ) ≤ CN‖Y1‖N

and ‖t∇∂23(t)Y1‖L∞
t (HN ) ≤ CN‖Y1‖N+1. (3.13)

Proof. The two inequalities of (3.13) follow from the claim that

t |ξ |2∂t(t, ξ) ∈ L∞
t (L∞

ξ ), and
t |ξ |

1 + |ξ | |ξ3|
2(t, ξ) ∈ L∞

t (L∞
ξ ). (3.14)

(1)When |ξ |2 ≥ 2|ξ3|, we separate the proof of (3.14) into the following two cases:
• If

√
3
4 |ξ |2 ≤ |ξ3| ≤ 1

2 |ξ |2, we deduce from (3.10) that

|∂t(t, ξ)1√
3
4 |ξ |2≤|ξ3|≤ 1

2 |ξ |2 | ≤ e−t |ξ |2
4 (1 + |ξ |2t),

|ξ23(t, ξ)1√
3
4 |ξ |2≤|ξ3|≤ 1

2 |ξ |2 ≤ tξ23 e
−t

ξ23
|ξ |2
2 +α(ξ) 1√

3
4 |ξ |2≤|ξ3|≤ 1

2 |ξ |2 | ≤ Ctξ23 e
−ct |ξ3|.
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As a result, we have

t |ξ |2|∂t(t, ξ)|1√
3
4 |ξ |2≤|ξ3|≤ 1

2 |ξ |2 ≤ C and

t |ξ |
1 + |ξ | |ξ3|

2(t, ξ)1√
3
4 |ξ |2≤|ξ3|≤ 1

2 |ξ |2 ≤ C.

• If |ξ3| ≤
√
3
4 |ξ |2, then |ξ |2

4 ≤ α(ξ) ≤ |ξ |2
2 , we deduce from (3.10) that

|∂t(t, ξ)|1|ξ3|≤
√
3
4 |ξ |2 ≤ e−t |ξ |2

2 + e
−t

ξ23
|ξ |2 ξ23

|ξ |4 ,

ξ23 |(t, ξ)|1|ξ3|≤
√
3
4 |ξ |2 ≤ ξ23

α(ξ)
e
−t

ξ23
|ξ |2
2 +α(ξ) ≤ C

ξ23
|ξ |2
2 + α(ξ)

e
−t

ξ23
|ξ |2
2 +α(ξ) ,

so that there holds

t |ξ |2|∂t(t, ξ)|ξ3|1|ξ3|≤
√
3
4 |ξ |2 ≤ t |ξ |2e−t |ξ |2

2 + te
−t

ξ23
|ξ |2 ξ23

|ξ |2 ≤ C,

t |ξ |
1 + |ξ | |ξ3|

2(t, ξ)1|ξ3|≤
√
3
4 |ξ |2 ≤ C.

(2) When |ξ |2 > 2|ξ3|, we infer from (3.10) that

|∂t(t, ξ)|1|ξ |2>2|ξ3| ≤ e−t |ξ |2
2 (|ξ |2t + 1),

which implies

t |ξ |2|∂t(t, ξ)1|ξ |2>2|ξ3|| ≤ C.

To prove the second estimate of (3.14), we further divide the region {|ξ |2 > 2|ξ3|}
into two parts:

• If |ξ |2 ≤ √
3|ξ3|, then we have |ξ3|

2 ≤ β(ξ) ≤ |ξ3|, and it follows from (3.4) that

ξ23 |(t, ξ)|1|ξ |2≤√
3|ξ3| ≤ C |ξ3|e−t |ξ |2

2 ≤ C

t |ξ | ;

• When
√
3|ξ3| < |ξ |2 ≤ 2|ξ3|, we have

ξ23 |(t, ξ)|1√
3|ξ3|<|ξ |2≤2|ξ3| ≤ Ct |ξ3|2e−ct |ξ3| ≤ C

t
.

By summarizing the above estimates, we obtain the second estimate of (3.14). This
completes the proof of Lemma 3.1. ��
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3.2. Energy Estimates for the Linear Equation

Lemma 3.2. Let Y(t) be a smooth enough solution of the linear equation (2.31)
with initial data (Y0,Y1). Then for any N ∈ N, there exists CN > 0 such that there
holds (2.33) and (2.34).

Proof. Taking the L2-inner product of the equation (2.31) withYt andYt − 1
4�Y−

�Yt , respectively, we get

1

2

d

dt
(‖Yt‖20 + ‖∂3Y‖20) + ‖∇Yt‖20 = 0

and

d

dt

(
1

2
‖Yt‖21 + ‖∂3Y‖21 + 1

4
‖�Y‖20 − 1

4
(Yt |�Y)L2

)

+ 3

4
‖∇Yt‖20 + ‖�Yt‖20 + 1

4
‖∇∂3Y‖20 = 0.

Integrating the above equalities with respect to t gives rise to

‖(Yt , ∂3Y)‖L∞
t (L2) + ‖∇∂tY‖L2

t (L2) ≤ ‖(∂3Y0,Y1)‖0 and

‖(Yt , ∂3Y)‖L∞
t (H1) + ‖�Y‖L∞

t (L2) + ‖∇Yt‖L2
t (H1) + ‖∇∂3Y‖L2

t (L2)

≤ C
(‖(∂3Y0,Y1)‖1 + ‖�Y0‖0

)
.

This proves (2.33) for N = 0. The general case with N > 0 follows similarly.
To show (2.34), we first get, by taking the HN -inner product of the equation

(2.31) with Yt , that

1

2

d

dt

(‖Yt‖2N + ‖∂3Y‖2N
)+ ‖∇Yt‖2N = 0,

so that for any nonegative f (t) ∈ C1([0,∞[), we have
d

dt

(
f (t)

(‖Yt‖2N + ‖∂3Y‖2N
))+ 2 f (t)‖∇Yt‖2N = f ′(t)

(‖Yt‖2N + ‖∂3Y‖2N
)
.

Taking f (t) = 〈t〉 and integrating the resulting equality over [0, t], we find

〈t〉(‖Yt (t)‖2N + ‖∂3Y(t)‖2N
)+ 2

∫ t

0
〈s〉‖∇Yt (s)‖2Nds ≤ ‖(∂3Y0,Y1)‖2N

+
∫ t

0

(‖Yt‖2N + ‖∂3Y‖2N
)
ds.

(3.15)

However we have from (2.33) that

‖Yt‖L2
t (HN+1) + ‖∂3Y‖L2

t (HN ) ≤ CN
(‖|D|−1(∂3Y0,Y1)‖N+1 + ‖∇Y0‖N

)
,

which together with (3.15) ensures (2.34). ��
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Recall that Y(t) = (t)Y1 is the solution to (2.31) with initial data (Y0,Y1) =
(0,Y1), so that one can deduce estimates for the operator  from the energy esti-
mates (2.33) and (2.34). Indeed, combining (3.13) with (2.33) gives

‖〈t〉�∂t(t)Y1‖L∞
t (HN ) + ‖〈t〉∂23(t)Y1‖L∞

t (HN ) ≤ CN‖Y1‖N+2. (3.16)

Let us remark that

‖Y‖L∞ ≤
∫

|Ŷ (ξ)|dξ ≤
∫

|ξ |≤1
|ξ |−1 · |ξ ||Ŷ (ξ)|dξ +

∫

|ξ |>1
|ξ |−2 · |ξ |2|Ŷ (ξ)|dξ

≤ C(‖|D|Y‖L2 + ‖|D|2Y‖L2) ≤ C‖|D|Y‖1. (3.17)

Summarizing (2.33), (3.16) and (3.17) then leads to

Corollary 3.1. For N ≥ 0, there exists CN > 0 such that

‖(t)Y1‖L∞
t (WN ,∞) ≤ CN‖|D|−1Y1‖N+2,

‖∂3(t)Y1‖L2
t (WN ,∞) ≤ CN‖Y1‖N+2,

‖〈t〉∂t(t)Y1‖L∞
t (WN ,∞) ≤ CN‖|D|−1Y1‖N+3,

(3.18)

where (t) is the solution operator given by (3.1).

Now we are in a position to complete the proof of Proposition 2.1.

Proof of Proposition 2.1. (2.33) and (2.34) are already proved by Lemma 3.2, so
it remains to deal with the estimates of (2.32) and (2.35). As a matter of fact,
according to the definition of the solution operator (t) given by (3.1), we have

Y(t) = ∂t(t)Y0 + (t)(Y1 − �Y0), (3.19)

from which, with (3.2), we infer that for any δ ∈]0, 1[ and for N ∈ N,

|∂3Y|1,N + |∂tY| 3
2−δ,N + |Y| 1

2 ,N ≤ |∂3∂t(t)Y0|1,N + |∂2t (t)Y0| 3
2−δ,N

+|∂t(t)Y0| 1
2 ,N + CN

(‖|D|2δ(�Y0,Y1)‖L1 + ‖|D|N+4(�Y0,Y1)‖L1
)
.

(3.20)

Notice that ∂2t (t)Y0 = �∂t(t)Y0+∂23(t)Y0, so we get, by applying (3.2) once
again, that

|∂3∂t(t)Y0|1,N = |∂t(t)∂3Y0|1,N ≤ CN
(‖|D|2δ∂3Y0‖L1 + ‖|D|N+4∂3Y0‖L1

)
,

|∂2t (t)Y0| 3
2−δ,N ≤ |�∂t(t)Y0| 3

2−δ,N + |∂23(t)Y0| 3
2 ,N

≤ CN

(
‖|D|2δY0‖L1 + ‖|D|N+6Y0‖L1

)
,

|∂t(t)Y0| 1
2 ,N ≤ CN

(
‖|D|2δY0‖L1 + ‖|D|N+4Y0‖L1

)
.

Inserting the above estimates into (3.20) leads to (2.32).
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Finally notice that �∂2t (t)Y0 = �2∂t(t)Y0 + �∂23(t)Y0. Then by virtue
of (3.16), we deduce

‖〈t〉�∂tY(t)‖L∞
t (HN ) ≤ ‖〈t〉�∂2t (t)Y0‖L∞

t (HN )

+ ‖〈t〉�∂t(t)(Y1 − �Y0)‖L∞
t (HN )

≤ CN (‖�Y0‖N+2 + ‖(�Y0,Y1)‖N+2) .

This proves (2.35), and thus we complete the proof of Proposition 2.1. ��

3.3. Decay Estimates for the Inhomogeneous Equation

Proof of Proposition 2.2. In view of (3.1), we get, by applying Duhamel’s prin-
ciple to (2.36), that

Y (t) =
∫ t

0
(t − s)g(s)ds. (3.21)

In what follows, we shall present the proof of (2.37) term by term.
•Decay estimate of ∂3Y.

We first separate the integral in (3.21) as

∂3Y (t, y) =
∫ t

0
∂3(t − s)g(s)ds

=
∫ t/2

0
∂3(t − s)g(s)ds +

∫ t

t/2
∂3(t − s)g(s)ds.

We deduce from (3.8) that

〈t〉
∫ t/2

0

∣
∣∂3(t − s)g(s)

∣
∣
N ds ≤ CN 〈t〉

∫ t/2

0
〈t − s〉−1||||D|g(s)|||N+2 ds

≤ CN

∫ t/2

0
||||D|g(s)|||N+2ds≤C‖|D|g‖L1

t (WN+2,1).

Meanwhile, it follows from the second inequality in (3.18) that

〈t〉
∫ t

t/2

∣
∣∂3(t − s)g(s)

∣
∣
Nds

≤ 〈t〉
( ∫ t

t/2
‖g(s)‖2N+2ds

) 1
2 ≤ Cθ

1
2 ‖〈t〉 1

2 g‖L2
t (HN+2).

Hence we achieve

|∂3Y |1,N ≤ CN

(
‖|D|g‖L1

t (WN+2,1) + θ
1
2 ‖〈t〉 1

2 g‖L2
t (HN+2)

)
. (3.22)

•Decay estimate of Yt .
Noticing that (0) = 0, we have

Yt (t) =
∫ t

0
∂t(t − s)g(s)ds =

∫ t/2

0
∂t(t − s)g(s)ds +

∫ t

t/2
∂t(t − s)g(s)ds.
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It follows from (3.11) that

〈t〉 3
2−δ

∫ t/2

0

∣
∣∂t(t − s)g(s)

∣
∣
Nds

≤ CN 〈t〉 3
2−δ

∫ t/2

0
〈t − s〉−

(
3
2−δ

)
(||||D|2δg(s)|||N + |||D4g(s)|||N

)
ds

≤ CN
(‖|D|2δg‖L1

t (WN ,1) + ‖D4g‖L2
t (WN ,1)

)
.

It follows from the third inequality in (3.18) that

〈t〉 3
2−δ

∫ t

t/2

∣
∣∂t(t − s)g(s)

∣
∣
Nds ≤

∫ t

t/2
〈t − s〉−1‖|D|−1g(s)‖N+3〈s〉 3

2−δds

≤ CN log〈θ〉‖〈t〉 3
2−δ|D|−1g‖L∞

t (HN+3)

≤ CN log〈θ〉∥∥|D|−1g
∥
∥ 3

2−δ,N+3.

As a result, it turs out that

|Yt | 3
2−δ,N ≤ CN

((‖|D|2δg‖L1
t (WN ,1) + ‖|D|4g‖L1

t (WN ,1)

)

+ log〈θ〉∥∥|D|−1g
∥
∥ 3

2−δ,N+3

)
.

(3.23)

•Decay estimate of Y.

As in the previous steps, we first split the integral (3.21) into two parts. For the
integral from 0 to t/2, we use (3.12) to deduce that

〈t〉 1
2

∫ t/2

0

∣
∣(t − s)g(s)

∣
∣
Nds

≤ 〈t〉 1
2

∫ t/2

0
CN 〈t − s〉− 1

2
(||||D| 12 g(s)|||N + ||||D|2g(s)|||N

)
ds

≤ CN

(
‖|D| 12 g‖L1

t (WN ,1) + ‖|D|2g‖L1
t (WN ,1)

)
.

For the integral from t/2 to t , we apply the first inequality of (3.18) to get

〈t〉 1
2

∫ t

t/2

∣
∣(t − s)g(s)

∣
∣
Nds

≤ CN 〈t〉 1
2

∫ t

t/2
‖|D|−1g(s)‖N+2ds

≤ CN 〈t〉
( ∫ t

t/2
‖|D|−1g(s)‖2N+2ds

) 1
2 ≤ CN θ

1
2 ‖〈t〉 1

2 |D|−1g‖L2
t (HN+2).

Hence we obtain

|Y | 1
2 ,N ≤ CN

((‖|D| 12 g‖L1
t (WN ,1) + ‖|D|2g‖L1

t (WN ,1)

)

+ θ
1
2 ‖〈t〉 1

2 |D|−1g‖L2
t (HN+2)

)
.

(3.24)

By summarizing the estimates (3.22), (3.23) and (3.24), we complete the proof of
(2.37). ��



1048 Wen Deng & Ping Zhang

4. The Derivatives of f Given by (2.25)

4.1. Computation of f ′(Y ; X)

The goal of this subsection is to derive the linearized equations of the system
(2.1-2.25). We first decompose the pressure function p given by (2.25) as p =
p1 + p2 with

p1
def= −�−1div

(
(AAt − I d)∇ p1

)+ �−1div
(
Adiv

(A(∂3Y ⊗ ∂3Y )
))

(4.1)

p2
def= −�−1div

(
(AAt − I d)∇ p2

)+ �−1div
(
Adiv

(A(Yt ⊗ Yt )
))

. (4.2)

Let us denote

f0
def= ∇y · ((AAt − I d)∇yYt

)
, f1

def= At∇y p1 and f2
def= At∇y p2. (4.3)

Then the functional f given by (2.25) can be decomposed as f0 − f1 + f2.
Before proceeding, let us recall that for a map f : U → Y , where U is an open

set of X and X def= C∞([0,∞[× R
3; R

3), the differentiation of f at Y ∈ U along
the direction X ∈ X is defined as

f ′(Y ; X)
def= lim

s→0

f (Y + sX) − f (Y )

s
= d

ds
f (Y + sX)|s=0.

For f ∈ C∞([0,+∞) × R
3; M3×3(R)), g ∈ C∞([0,+∞) × R

3; R
3), we have

( f g)′(Y ; X) = f ′(Y ; X)g(Y ) + f (Y )g′(Y ; X).

Then for A(Y ) = (I d + ∇Y )−1, we have

A′(Y ; X) = A(−∇X)A, and (At )′(Y ; X) = At (−∇X)tAt , (4.4)

and thus

(AAt − I d)′(Y ; X) = A(−∇X)AAt + AAt (−∇X)tAt . (4.5)

As a result, we deduce that

f ′
0(Y ; X) = ∇ ·

(
(AAt − I d)′(Y ; X)∇Yt

)
+ ∇ · ((AAt − I d)∇Xt

)

= ∇ ·
((A(−∇X)AAt + AAt (−∇X)tAt)∇Yt

)

+ ∇ · ((AAt − I d)∇Xt
)
.

(4.6)

For m = 1, 2, we have

f ′
m(Y ; X) = (At )′(Y ; X)∇ pm(Y ) + At∇ p′

m(Y ; X)

= −At (∇X)tAt (∇ pm)(Y ) + At∇ p′
m(Y ; X).

(4.7)
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Moreover, it follows from (4.1) that

p′
1(Y ; X) = �−1div

(
− (AAt − I d)∇ p′

1(Y ; X)

− (A(−∇X)AAt + AAt (−∇X)At)∇ p1(Y )

+ Adiv
(
(A(−∇X)A)(∂3Y ⊗ ∂3Y )

)

+ (A(−∇X)A)div
(A(∂3Y ⊗ ∂3Y )

)

+ Adiv
(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )

))
. (4.8)

Similarly, it follows from (4.2) that

p′
2(Y ; X) = �−1div

(
− (AAt − I d)∇ p′

2(Y ; X) − (A(−∇X)AAt

+ AAt (−∇X)At)∇ p2(Y )

+ Adiv
(
(A(−∇X)A)(Yt ⊗ Yt )

)+ (A(−∇X)A)div
(A(Yt ⊗ Yt )

)

+ Adiv
(A(Yt ⊗ Xt + Xt ⊗ Yt )

))
. (4.9)

The linearized equation of (2.1-2.25) then reads as (2.40).

Remark 4.1. Let V ∈ C∞([0,+∞) × R
3; M3×3(R)) and U ∈ C∞([0,+∞) ×

R
3; R

3), we denote h(V )
def= (I d + V )−1, and

F0(U, V )
def= ∇ ·

((
h(V )h(V )t − I d

)
U
)
, F(U, V )

def= h(V )tq(U, V ) with

q
def= −�−1div

(
(h(V )h(V )t − I d)∇q

)+ �−1div
(
h(V )div

(
h(V )(U ⊗U )

))
.

Then f0, f1, f2 defined by (4.3) can be written as

f0 = F0(∇Yt ,∇Y ), f1 = F(∂3Y,∇Y ) and f2 = F(Yt ,∇Y ),

and hence f ′
0, f ′

1 and f ′
2 read

f ′
0(Y ; X) = F ′

0,U (∇Yt ,∇Y )∇Xt + F ′
0,V (∇Yt ,∇Y )∇X,

f ′
1(Y ; X) = F ′

U (∂3Y,∇Y )∂3X + F ′
V (∂3Y,∇Y )∇X,

f ′
2(Y ; X) = F ′

U (Yt ,∇Y )Xt + F ′
V (Yt ,∇Y )∇X,

where the functionals F ′
0,U (U, V ), F ′

0,V (U, V ), F ′
U (U, V ) and F ′

V (U, V ) are given
by

F ′
0,U (U, V )U̇ = ∇ ·

((
h(V )h(V )t − I d

)
U̇
)
,

F ′
0,V (U, V )V̇ = ∇ · (((h′(V )V̇ )h(V )t + h(V )(h′(V )V̇ )t

)
U
)
,

F ′
U (U, V )U̇ = h(V )tq ′

U (U, V )U̇ and F ′
V (U, V )V̇ = (

h′(V )V̇
)tq(U, V )

+ h(V )tq ′
V (U, V )V̇ ,
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and

h′(V )V̇ = (I d + V )−1(−V̇ )(I d + V )−1,

q ′
U (U, V )U̇ = −�−1div

(
(h(V )h(V )t − I d)∇q ′

U (U, V )U̇

− h(V )div
(
h(V )(U ⊗ U̇ + U̇ ⊗U )

))

q ′
V (U, V )V̇ = −�−1div

(
(h(V )h(V )t − I d)∇q ′

V (U, V )V̇

− (h′(V )V̇ )div
(
h(V )(U ⊗U )

)

− h(V )div
(
(h′(V )V̇ )(U ⊗U )

)+ (
(h′(V )V̇ )h(V )t

+ h(V )(h′(V )V̇ )t
)∇q

)
.

4.2. Computation of f ′′(Y ; X,W )

In order to estimate the error that has arisen in theNash–Moser iteration scheme,
we need the second derivatives of f. Towards this, let us recall the product rule

( f g)′′(Y ; X,W ) = f ′′(Y ; X,W )g(Y ) + f (Y )g′′(Y ; X,W )

+ f ′(Y ; X)g′(Y ;W ) + f ′(Y ;W )g′(Y ; X).
(4.10)

It is easy to observe from (4.4) that

A′′(Y ; X,W ) = A(∇X)A(∇W )A + A(∇W )A(∇X)A. (4.11)

Then applying the product rule (4.10) as well as (4.4) gives

(AAt − I d)′′(Y ; X,W ) = A(∇X)A(∇W )AAt + A(∇W )A(∇X)AAt

+AAt (∇X)tAt (∇W )tAt + AAt (∇W )tAt (∇X)tAt

+A(∇X)AAt (∇W )tAt + A(∇W )AAt (∇X)tAt .

(4.12)

Recall that f0 is given by (4.3); we deduce from (4.10) that

f ′′
0 (Y ; X,W ) = ∇ ·

(
(AAt − I d)′′(Y ; X,W )∇Yt

)

+ ∇ · ((AAt − I d)′(Y ; X)∇Wt
)

+ ∇ · ((AAt − I d)′(Y ;W )∇Xt
)
.

(4.13)

Similarly, for fm(Y ) = At∇ pm , m = 1, 2, we have

f ′′
m(Y ; X,W ) = (At )′′(Y ; X,W )∇ pm(Y ) + At∇( p′′

m(Y ; X,W )
)

+ (At )′(Y ; X)∇( p′
m(Y ;W )

)+ (At )′(Y ;W )∇( p′
m(Y ; X)

)
.

(4.14)
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Then in view of (4.8) and (4.9), to obtain the expression of f ′′
m(Y ; X,W ),m = 1, 2,

it remains to calculate p′′
m(Y ; X,W ), m = 1, 2. Indeed, it follows from (4.1), (4.2)

and (4.10) that

p′′
1(Y ; X,W ) = −�−1div

(
(AAt − I d)∇ p′′

1(Y ; X,W )

+ (AAt − I d)′′(Y ; X,W )∇ p1(Y )
)

+ (AAt − I d)′(Y ; X)∇ p′
1(Y ;W )

+ (AAt − I d)′(Y ;W )∇ p′
1(Y ; X)

− Adiv
[A(∂3X ⊗ ∂3W + ∂3W ⊗ ∂3X)

+ A′′(Y ; X,W )(∂3Y ⊗ ∂3Y )

+ A′(Y ; X)(∂3Y ⊗ ∂3W + ∂3W ⊗ ∂3Y )
)

+ A′(Y ;W )(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )
]

− A′(Y ; X)div
[A′(Y ;W )(∂3Y ⊗ ∂3Y )

+ A(∂3Y ⊗ ∂3W + ∂3W ⊗ ∂3Y )
]

− A′(Y ;W )div
[A′(Y ; X)(∂3Y ⊗ ∂3Y )

+ A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )
]

− A′′(Y ; X,W )div
(A(∂3Y ⊗ ∂3Y )

))
(4.15)

and

p′′
2(Y ; X,W ) = −�−1div

(
(AAt − I d)∇ p′′

2(Y ; X,W )

+ (AAt − I d)′′(Y ; X,W )∇ p2(Y )

+ (AAt − I d)′(Y ; X)∇ p′
2(Y ;W )

+ (AAt − I d)′(Y ;W )∇ p′
2(Y ; X)

− Adiv
[A(Xt ⊗ Wt + Wt ⊗ Xt ) + A′′(Y ; X,W )(Yt ⊗ Yt )

+ A′(Y ; X)(Yt ⊗ Wt + Wt ⊗ Yt )

+ A′(Y ;W )(Yt ⊗ Xt + Xt ⊗ Yt )
]

− A′(Y ; X)div
[A(Yt ⊗ Wt + Wt ⊗ Yt ) + A′(Y ;W )(Yt ⊗ Yt )

]

− A′(Y ;W )div
[A(Yt ⊗ Xt + Xt ⊗ Yt ) + A′(Y ; X)(Yt ⊗ Yt )

]

− A′′(Y ; X,W )div
(A(Yt ⊗ Yt )

)
. (4.16)

Remark 4.2. In view of Remark 4.1, f ′′
m can be written as

f ′′
0 (Y ; X,W ) = F ′′

0,UU (∇Yt ,∇Y )∇Xt · ∇Wt + F ′′
0,UV (∇Yt ,∇Y )∇Xt · ∇W

+ F ′′
0,VU (∇Yt ,∇Y )∇Wt · ∇X + F ′′

0,VV (∇Yt ,∇Y )∇X · ∇W,

f ′′
1 (Y ; X,W ) = F ′′

UU (∂3Y,∇Y )∂3X · ∂3W + F ′′
UV (∂3Y,∇Y )∂3X · ∇W

+ F ′′
VU (∂3Y,∇Y )∇X · ∂3W + F ′′

VV (∂3Y,∇Y )∇X · ∇W,

f ′′
2 (Y ; X,W ) = F ′′

UU (Yt ,∇Y )Xt · Wt + F ′′
UV (Yt ,∇Y )Xt · ∇W

+ F ′′
VU (Yt ,∇Y )∇X · Wt + F ′′

VV (Yt ,∇Y )∇X · ∇W,
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where F ′′
0,UU (U, V )U̇1 · U̇2 = 0, and

F ′′
0,UV (U, V )U̇ · V̇ = ∇ ·

((
(h′(V )V̇ )h(V )t + h(V )(h′(V )V̇ )t

)
U̇
)

= F ′′
0,VU (U, V )V̇ · U̇ ,

F ′′
0,VV (U, V )V̇1 · V̇2 = ∇ ·

((
(h′′(V )V̇1 · V̇2)h(V )t + h(V )(h′′(V )V̇1 · V̇2)t+

+ (
(h′(V )V̇1)(h

′(V )V̇2)
t + (h′(V )V̇2)(h

′(V )V̇1)
t )U

)
with

h′′(V )V̇1 · V̇2 = (I d + V )−1(−V̇1)(I d + V )−1(−V̇2)(I d + V )−1

+ (I d + V )−1(−V̇2)(I d + V )−1(−V̇1)(I d + V )−1;
and

F ′′
UU (U, V )U̇1 · U̇2 = h(V )tq ′′

UU (U, V )U̇1 · U̇2,

F ′′
UV (U, V )U̇ · V̇ = h(V )tq ′′

UV (U, V )U̇ · V̇ + (h′(V )V̇ )tq ′
U (U, V )U̇

= F ′′
VU (U, V )V̇ · U̇ ,

F ′′
VV (U, V )V̇1 · V̇2 = (

h′′(V )V̇1 · V̇2
)tq(U, V ) + h(V )tq ′′

VV (U, V )V̇1 · V̇2
+ (h′(V )V̇1)

tq ′
V (U, V )V̇2 + (h′(V )V̇2)

tq ′
V (U, V )V̇1,

where

q ′′
UU (U, V )U̇1 · U̇2 = −�−1div

(
(h(V )h(V )t − I d)∇q ′′

UU (U, V )U̇1 · U̇2

− h(V )div
(
h(V )(U̇1 ⊗ U̇2 + U̇2 ⊗ U̇1)

))
,

q ′′
UV (U, V )U̇ · V̇ = −�−1div

(
(h(V )h(V )t − I d)∇q ′′

UV (U, V )U̇ · V̇
+ (

(h′(V )V̇ )h(V )t + h(V )(h′(V )V̇ )t
)∇q ′

U (U, V )U̇

− (h′(V )V̇ )div
(
h(V )(U̇ ⊗U +U ⊗ U̇ )

)

− h(V )div
(
(h′(V )V̇ )(U̇ ⊗U +U ⊗ U̇ )

))

= q ′′
VU (U, V )V̇ · U̇ ,

and

q ′′
VV (U, V )V̇1 · V̇2 = −�−1div

((
(h′(V )V̇2)h(V )t

+ h(V )(h′(V )V̇2)
t)∇q ′

V (U, V )V̇1

+ (h(V )h(V )t − I d)∇q ′′
VV (U, V )V̇1 · V̇2

− (h′′(V )V̇1 · V̇2)div
(
h(V )(U ⊗U )

)

+ ((h′(V )V̇1)h(V )t + h(V )(h′(V )V̇1)
t)∇q ′

V (U, V )V̇2

− (h′(V )V̇1)div
(
(h′(V )V̇2)(U ⊗U )

)

+ ((h′′(V )V̇1 · V̇2)h(V )t + h(V )(h′′(V )V̇1 · V̇2)t
− (h′(V )V̇2)div

(
(h′(V )V̇1)(U ⊗U )

)
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+ (h′(V )V̇1)(h
′(V )V̇2)

t + (h′(V )V̇2)(h
′(V )V̇1)

t)∇q

− h(V )div
(
(h′′(V )V̇1 · V̇2)(U ⊗U )

))
.

5. The Estimates of f ′(Y ; X)

5.1. The Estimate of ||| f ′(Y ; X)|||δ,N
The main result of this subsection is listed in Proposition 2.3. As we explained

in Sect. 2, the main idea is to use the norm of the homogeneous Besov spaces Ḃs
1,1

to replace the norm of the classical Sobolev spaces Ẇ s,1. In order to do so, we need
not only the product law (2.48), but also the following one:

Lemma 5.1. For any s > 0, there holds

‖ab‖Ḃs
1,1

≤ C
(
min

(|a|0‖b‖Ḃs
1,1

, ‖a‖0‖b‖Ḃs
2,1

)+ ‖a‖Ḃs
2,1

‖b‖0
)

. (5.1)

Proof. We first get, by applying Bony’s decomposition [4], that

ab = Tab + R′(a, b) with

Tab =
∑

j∈Z
S j−1a� j b and R′(a, b) =

∑

j∈Z
� j aS j+2b.

Due to the support properties to the Fourier transform of the terms in Tab, we have

‖�̇ j (Tab)‖L1 ≤
∑

| j ′− j |≤4

|S j ′−1a|0‖�̇ j ′b‖L1 � d j2
− js |a|0‖b‖Ḃs

1,1
,

where (d j ) j∈Z is a non-negative generic element of �1(Z) so that
∑

j∈Z d j = 1.
Along the same lines, we also have

‖�̇ j (Tab)‖L1 ≤
∑

| j ′− j |≤4

‖S j ′−1a‖0‖�̇ j ′b‖0 � d j2
− js‖a‖0‖b‖Ḃs

2,1
,

and

‖�̇ j (R
′(a, b))‖L1 ≤

∑

j ′≥ j−N0

‖�̇ j ′a‖0‖S j ′+2b‖0

≤
∑

j ′≥ j−N0

d j ′2
− j ′s‖a‖Ḃs

2,1
‖b‖0 � d j2

− js‖a‖Ḃs
2,1

‖b‖0,

where in the last step, we used the fact that s > 0. By summing up the above
inequalities, we arrive at (5.1). ��
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Notice that A(∇Y ) = (I d + ∇Y )−1, so we write

AAt − I d = (A − I d)(A − I d)t + (A − I d) + (A − I d)t ,

A − I d =
∞∑

n=1

(−1)n(∇Y )n .

Thus, under the assumption of (2.41), for s > 0, we get, by applying (2.48), that

‖A f ‖Ḃs
p,r

� (1 + |A − I d|0)‖ f ‖Ḃs
p,r

+ ‖A − I d‖Ḃs
p,r

| f |0
� ‖ f ‖Ḃs

p,r
+ ‖∇Y‖Ḃs

p,r
| f |0.

(5.2)

Along the same lines, we get, by applying (5.1), that

‖A f ‖Ḃs
1,1

� ‖ f ‖Ḃs
1,1

+ ‖∇Y‖Ḃs
2,1

‖ f ‖0. (5.3)

5.1.1. Estimate of ‖ f ′
0(Y ; X)‖Ḃs

1,1
In view of (4.6), we have

‖ f ′
0(Y ; X)‖Ḃs

1,1
≤ ∥
∥A(∇XA + At (∇X)t

)At∇Yt
∥
∥
Ḃs+1
1,1

+ ‖(AAt − I d)∇Xt‖Ḃs+1
1,1

.

It follows from (2.41) and (5.1) that

‖(AAt − I d)∇Xt‖Ḃs+1
1,1

� ‖∇Y‖0‖∇Xt‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs+1
2,1

‖∇Xt‖0.

While applying (5.3) gives

‖A∇XAAt∇Yt‖Ḃs+1
1,1

� ‖∇XAAt∇Yt‖Ḃs+1
1,1

+ ‖∇Y‖Ḃs+1
2,1

‖∇XAAt∇Yt‖0,

it follows from (2.48) and (5.1) that

‖∇XAAt∇Yt‖Ḃs+1
1,1

� ‖∇X‖0‖AAt∇Yt‖Ḃs+1
2,1

+ ‖∇X‖Ḃs+1
2,1

‖AAt∇Yt‖0
� ‖∇X‖0

(‖∇Yt‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs+1
2,1

|∇Yt |0
)

+ ‖∇X‖Ḃs+1
2,1

‖∇Yt‖0,

so that it holds that

‖A∇XAAt∇Yt‖Ḃs+1
1,1

� ‖∇Yt‖0‖∇X‖Ḃs+1
2,1

+ (‖∇Yt‖Ḃs+1
2,1

+ |∇Yt |0‖∇Y‖Ḃs+1
2,1

)‖∇X‖0.

The same estimate holds for ‖AAt (−∇X)tAt∇Yt‖Ḃs+1
1,1

. As a result, we obtain

‖ f ′
0(Y ; X)‖Ḃs

1,1
≤ ‖∇Y‖0‖∇Xt‖Ḃs+1

2,1
+ ‖∇Y‖Ḃs+1

2,1
‖∇Xt‖0

+ ‖∇Yt‖0‖∇X‖Ḃs+1
2,1

+ (‖∇Yt‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs+1
2,1

|∇Yt |0
)‖∇X‖0.

(5.4)
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5.1.2. Estimate of ‖ f ′
m(Y ; X)‖Ḃs

1,1
, m = 1, 2 In view of (4.7), we have

‖ f ′
m(Y ; X)‖Ḃs

1,1
≤ ‖At (∇X)tAt∇ pm‖Ḃs

1,1
+ ‖At∇( p′

m(Y ; X))‖Ḃs
1,1

.

Applying (5.3) gives

‖At (∇X)tAt∇ pm‖Ḃs
1,1

� ‖(∇X)tAt∇ pm‖Ḃs
1,1

+ ‖∇Y‖Ḃs
2,1

‖(∇X)tAt∇ pm‖0,
‖At∇( p′

m(Y ; X))‖Ḃs
1,1

� ‖∇( p′
m(Y ; X)

)‖Ḃs
1,1

+ ‖∇Y‖Ḃs
2,1

‖∇( p′
m(Y ; X)

)‖0.
Applying (2.48) and (5.1) leads to

‖(∇X)tAt∇ pm‖Ḃs
1,1

� ‖∇X‖0(‖∇ pm‖Ḃs
2,1

+ ‖∇Y‖Ḃs
2,1

|∇ pm |0)
+ ‖∇X‖Ḃs

2,1
‖∇ pm‖0,

which yields

‖At (∇X)tAt∇ pm‖Ḃs
1,1

� ‖∇ pm‖0‖∇X‖Ḃs
2,1

+ (‖∇ pm‖Ḃs
2,1

+ ‖∇Y‖Ḃs
2,1

|∇ pm |0
)‖∇X‖0.

Hence we have

‖ f ′
m(Y ; X)‖Ḃs

1,1
� ‖∇ pm‖0‖∇X‖Ḃs

2,1
+ (‖∇ pm‖Ḃs

2,1
+ ‖∇Y‖Ḃs

2,1
|∇ pm |0

)‖∇X‖0
+ ‖∇( p′

m(Y ; X)
)‖Ḃs

1,1
+ ‖∇Y‖Ḃs

2,1
‖∇( p′

m(Y ; X)
)‖0. (5.5)

It remains to handle the estimates of

‖∇ pm‖0, ‖∇ pm‖Ḃs
2,1

, ‖∇( p′
m(Y ; X)

)‖Ḃs
1,1

and ‖∇( p′
m(Y ; X)

)‖0.
•Estimate of ‖∇ pm‖0.

We first deduce from (4.1) that

‖∇ p1‖0 ≤ |AAt − I d|0‖∇ p1‖0 + |A|0‖A(∂3Y ⊗ ∂3Y )‖Ḣ1

≤ |AAt − I d|0‖∇ p1‖0 + |A|0
(

1 + ‖A − I d‖
Ḃ

3
2
2,1

)

‖∂3Y ⊗ ∂3Y‖Ḣ1 .

Due to the assumption (2.41), one has

|AAt − I d|0 � |∇Y |0 � ‖∇Y‖
Ḃ

3
2
2,1

≤ δ1,

so we infer

‖∇ p1‖0 � ‖∂3Y ⊗ ∂3Y‖Ḣ1 � |∂3Y |0‖∂3Y‖1. (5.6)

Similarly, we have

‖∇ p2‖0 � |Yt |0‖Yt‖1. (5.7)
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•Estimates of ‖∇ pm‖Ḃs
2,1

for s > 0.

We start with the estimate of ‖∇ pm‖
Ḃ

3
2
2,1

. Indeed by (4.1), one has

‖∇ p1‖
Ḃ

3
2
2,1

� ‖AAt − I d‖
Ḃ

3
2
2,1

‖∇ p1‖
Ḃ

3
2
2,1

+ ‖Adiv
(A(∂3Y ⊗ ∂3Y )

)‖
Ḃ

3
2
2,1

,

from which (2.41) and the product law (2.48) infer

‖∇ p1‖
Ḃ

3
2
2,1

�
(
1 + ‖A − I d‖

Ḃ
3
2
2,1

)‖A(∂3Y ⊗ ∂3Y )‖
Ḃ

5
2
2,1

� (1 + |A − I d|0)‖∂3Y ⊗ ∂3Y‖
Ḃ

5
2
2,1

+ ‖A − I d‖
Ḃ

5
2
2,1

|∂3Y ⊗ ∂3Y |0.

As a result, by virtue of (2.41), it transpires that

‖∇ p1‖
Ḃ

3
2
2,1

� |∂3Y |0
(‖∂3Y‖

Ḃ
5
2
2,1

+ ‖∇Y‖
Ḃ

5
2
2,1

|∂3Y |0
)

� |∂3Y |0‖∂3Y‖3. (5.8)

In general, for s > 0, we deduce from (4.1) that

‖∇ p1‖Ḃs
2,1

� |AAt − I d|0‖∇ p1‖Ḃs
2,1

+ ‖AAt − I d‖Ḃs
2,1

|∇ p1|0
+ ‖Adiv

(A(∂3Y ⊗ ∂3Y )
)‖Ḃs

2,1
,

from which, with (2.41), we infer

‖∇ p1‖Ḃs
2,1

� ‖AAt − I d‖Ḃs
2,1

|∇ p1|0 + ‖Adiv
(A(∂3Y ⊗ ∂3Y )

)‖Ḃs
2,1

.

It follows however from the product law (5.2) that

‖Adiv
(A(∂3Y ⊗ ∂3Y )

)‖Ḃs
2,1

� ‖∂3Y ⊗ ∂3Y‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs+1
2,1

|∂3Y ⊗ ∂3Y |0
+ ‖∇Y‖Ḃs

2,1

(|∂3Y |1|∂3Y |0 + |∇Y |1|∂3Y |20
)
,

which together with (2.41) and (5.8) ensures that

‖∇ p1‖Ḃs
2,1

� |∂3Y |0
(
‖∂3Y‖Ḃs+1

2,1
+ (‖∇Y‖Ḃs

2,1
+ ‖∇Y‖Ḃs+1

2,1

)‖∂3Y‖3
)

. (5.9)

Along exactly the same lines, we have

‖∇ p2‖
Ḃ

3
2
2,1

� |Yt |0‖Yt‖3 and (5.10)

‖∇ p2‖Ḃs
2,1

� |Yt |0
(
‖Yt‖Ḃs+1

2,1
+ (‖∇Y‖Ḃs

2,1
+ ‖∇Y‖Ḃs+1

2,1

)‖Yt‖3
)

. (5.11)

•Estimate of ‖∇ p′
m(Y ; X)‖0.

We first deduce from (4.8) that

‖∇ p′
1(Y ; X)‖0 � δ1‖∇ p′

1(Y ; X)‖0 + ∥
∥A (∇XA + At∇X

)At∇ p1
∥
∥
0

+ ‖Adiv
(A∇XA(∂3Y ⊗ ∂3Y )

)‖0
+ ‖A∇XAdiv

(A(∂3Y ⊗ ∂3Y )
)‖0

+ ‖Adiv
(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )

)‖0. (5.12)
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We observe that

‖A∇XAAt∇ p1‖0 � ‖∇X‖L6‖∇ p1‖L3 ,

yet it follows by a similar derivation of (5.6) that

‖∇ p1‖L3 �‖A(∂3Y ⊗ ∂3Y )‖W 1,3 � |∂3Y |1‖∂3Y‖L3 � |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 , (5.13)

so that

‖A∇XAAt∇ p1‖0 ≤ ‖∇X‖L6‖∇ p1‖L3 � |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 ‖∇X‖1.

Let us handle the remaining terms in (5.12). Indeed with the assumption (2.41), a
direct calculation shows that

‖Adiv
(A∇XA(∂3Y ⊗ ∂3Y )

)‖0 � ‖A∇X‖1|A(∂3Y ⊗ ∂3Y )|1 � |∂3Y |21‖∇X‖1,
‖A∇XAdiv

(A(∂3Y ⊗ ∂3Y )
)‖0 � ‖∇X‖0|A(∂3Y ⊗ ∂3Y )|1 � |∂3Y |21‖∇X‖0,

‖Adiv
(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )

)‖0 � ‖∂3Y ⊗ ∂3X‖1 � |∂3Y |1‖∂3X‖1.
Substituting the above estimates into (5.12) leads to

‖∇ p′
1(Y ; X)‖0 �

(|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21

)‖∇X‖1 + |∂3Y |1‖∂3X‖1. (5.14)

The same procedure gives rise to

‖∇ p2‖L3 � |Yt |
4
3
1 ‖Yt‖

2
3
0 ; and (5.15)

‖∇ p′
2(Y ; X)‖0 �

(|Yt |
4
3
1 ‖Yt‖

2
3
0 + |Yt |21

)‖∇X‖1 + |Yt |1‖Xt‖1. (5.16)

•Estimate of ‖∇ p′
m(Y ; X)‖Ḃs

1,1
with s > 0.

For any s > 0, we deduce from (4.8) that

‖∇ p′
1(Y ; X)‖Ḃs

1,1

�
∥
∥(AAt − I d)∇ p′

1(Y ; X)
∥
∥
Ḃs
1,1

+∥∥A(∇XA+At∇X
)At∇ p1

∥
∥
Ḃs
1,1

+ ∥
∥Adiv

(A∇XA(∂3Y ⊗ ∂3Y )
)∥
∥
Ḃs
1,1

+∥∥A∇XAdiv
(A(∂3Y ⊗ ∂3Y )

)∥
∥
Ḃs
1,1

+ ∥
∥Adiv

(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )
)∥
∥
Ḃs
1,1

. (5.17)

It follows from (5.1) that
∥
∥(AAt − I d)∇ p′

1(Y ; X)
∥
∥
Ḃs
1,1

� δ1‖∇ p′
1(Y ; X)‖Ḃs

1,1
+ ‖∇Y‖Ḃs

2,1
‖∇ p′

1(Y ; X)‖0.
Applying (5.2) and (5.1) gives

∥
∥A(∇XA + At (∇X)t

)At∇ p1
∥
∥
Ḃs
1,1

� ‖∇ p1‖0‖∇X‖Ḃs
2,1

+ (‖∇ p1‖Ḃs
2,1

+ ‖∇Y‖Ḃs
2,1

|∇ p1|0
)‖∇X‖0,
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and
∥
∥Adiv

(A∇XA(∂3Y ⊗ ∂3Y )
)∥
∥
Ḃs
1,1

� ‖∇X‖Ḃs+1
2,1

‖A(∂3Y ⊗ ∂3Y )‖0 + ‖∇X‖0‖A(∂3Y ⊗ ∂3Y )‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs+1
2,1

‖∇X‖0|∂3Y |20 + ‖∇Y‖Ḃs
2,1

‖∇X‖1|∂3Y |1|∂3Y |0
� |∂3Y |0‖∂3Y‖0‖∇X‖Ḃs+1

2,1

+ |∂3Y |0
(
‖∂3Y‖Ḃs+1

2,1
+ (‖∇Y‖Ḃs+1

2,1
+ ‖∇Y‖Ḃs

2,1
)|∂3Y |1

)
‖∇X‖1.

Exactly along the same lines, we find that
∥
∥A∇XAdiv

(A(∂3Y ⊗ ∂3Y )
)∥
∥
Ḃs
1,1

� |∂3Y |0‖∂3Y‖Ḣ1‖∇X‖Ḃs
2,1

+ |∂3Y |0
(
‖∂3Y‖Ḃs+1

2,1
+ (‖∇Y‖Ḃs+1

2,1
+ ‖∇Y‖Ḃs

2,1
)|∂3Y |1

)
‖∇X‖0

and
∥
∥Adiv

(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )
)∥
∥
Ḃs
1,1

� ‖∂3Y‖0‖∂3X‖Ḃs+1
2,1

+ ‖∂3Y‖Ḃs+1
2,1

‖∂3X‖0
+ ‖∇Y‖Ḃs+1

2,1
|∂3Y |0‖∂3X‖0 + ‖∇Y‖Ḃs

2,1
|∂3Y |1‖∂3X‖1.

Substituting the above estimates into (5.17) and using the estimates (5.6), (5.8),
(5.9) and (5.14), we obtain

‖∇ p′
1(Y ; X)‖Ḃs

1,1
� g1(∂3Y, ∂3X) with

g1(x, y)
def= ‖x‖0‖y‖Ḃs+1

2,1
+ |x|0

(‖x‖0‖∇X‖Ḃs+1
2,1

+ ‖x‖1‖∇X‖Ḃs
2,1

)

+ (‖x‖Ḃs+1
2,1

+ (‖∇Y‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs
2,1

)|x|1
)‖y‖1

+ |x|1
(‖x‖Ḃs+1

2,1
+ (‖∇Y‖Ḃs+1

2,1
+ ‖∇Y‖Ḃs

2,1
)‖x‖3

)‖∇X‖1.
(5.18)

The same procedure gives rise to

‖∇ p′
2(Y ; X)‖Ḃs

1,1
�g1(Yt , Xt ). (5.19)

Inserting the estimates (5.6), (5.8), (5.9), (5.14) and (5.18) into (5.5) for m = 1
yields

‖ f ′
1(Y ; X)

)‖Ḃs
1,1

�g1(∂3Y, ∂3X). (5.20)

By inserting the estimates (5.7), (5.10), (5.11), (5.15), (5.16) and (5.19) into (5.5)
for m = 2, we obtain

‖ f ′
2(Y ; X)

)‖Ḃs
1,1

�g1(Yt , Xt ). (5.21)

Let us now complete the proof of Proposition 2.3.
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Proof of Proposition 2.3. Note that for s1 < s < s2 and α = s2−s
s2−s1

, one has

‖ f ‖Ḃs
2,1

≤ C

(
1

s − s1
+ 1

s2 − s

)

‖ f ‖α

Ḣ s1
‖ f ‖1−α

Ḣ s2
.

In particular, for s > 0, this yields

‖ f ‖Ḃs
2,1

≤ C
(‖ f ‖0 + ‖ f ‖Ḣ [s]+1

) ≤ C‖ f ‖[s]+1. (5.22)

On the other hand, recalling (2.39), we deduce from (5.4) that

||| f ′
0(Y ; X)|||δ,N � ‖∇Y‖0

(‖∇Xt‖Ḃ2δ+1
2,1

+ ‖∇Xt‖ḂN+5
2,1

)

+ (‖∇Y‖Ḃ2δ+1
2,1

+ |∇Y‖ḂN+5
2,1

)‖∇Xt‖0 + ‖∇Yt‖0
(‖∇X‖Ḃ2δ+1

2,1
+ ‖∇X‖ḂN+5

2,1

)

+ (‖∇Yt‖Ḃ2δ+1
2,1

+ ‖∇Yt‖ḂN+5
2,1

+ (‖∇Y‖Ḃ2δ+1
2,1

+ ‖∇Y‖ḂN+5
2,1

)|∇Yt |0
)‖∇X‖0,

which together with (5.22) ensures (2.42). Along the same lines, we deduce (2.43)
and (2.44) from (5.20) and (5.21), respectively. This completes the proof of Propo-
sition 2.3. ��

5.2. The Estimate of ‖|D|−1 f ′(Y ; X)‖N
The purpose of this subsection is to prove Proposition 2.4. We split its proof

into the following steps:

5.2.1. The Estimate of ‖|D|−1 f ′
0(Y ; X)‖N We first deduce from (4.6) that

‖|D|−1 f ′
0(Y ; X)‖N � ‖(AAt − I d)∇Xt‖N + ‖A(∇XA + At (∇X)t

)At∇Yt‖N .

(5.23)

Applying Moser-type inequality and using (2.41) gives

‖(AAt − I d)∇Xt‖N � |∇Y |0‖∇Xt‖N + |∇Y |N‖∇Xt‖0,
‖A∇XAAt∇Yt‖N � |∇Yt |0‖∇X‖N + (|∇Yt |N + |∇Yt |0|∇Y |N

)‖∇X‖0.
Substituting the above estimates into (5.23) leads to (2.45).

5.2.2. L2-estimates for f ′
m(Y ; X) We shall divide the proof of (2.46) and (2.47)

into the following steps:
(i) Estimates of ‖|D|−1 f ′

m(Y ; X)‖0.
By virtue of (4.7), we have

‖|D|−1 f ′
m(Y ; X)‖0 ≤ ∥

∥|D|−1At (∇X)tAt (∇ pm)(Y )
∥
∥
0 + ∥

∥At∇ p′
m(Y ; X)

∥
∥
0.

(5.24)

It follows from the law of products in Besov spaces and the imbedding L
6
5 (R3) ↪→

Ḣ−1(R3) that

‖|D|−1At (∇X)tAt∇ pm‖0 ≤ (
1 + ‖A − I d‖

Ḃ
3
2
2,1

)‖(∇X)tAt∇ pm‖Ḣ−1

≤ C‖∇X‖0‖∇ pm‖L3 ,

(5.25)
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from which, with (5.13) and (5.15), we infer

‖|D|−1At (∇X)tAt∇ p1‖0 ≤ C |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 ‖∇X‖0,

‖|D|−1At (∇X)tAt∇ p2‖0 ≤ C |Yt |
4
3
1 ‖Yt‖

2
3
0 ‖∇X‖0.

Similarly, we get, by applying the law of products in Besov spaces, that

‖|D|−1At∇ p′
m(Y ; X)‖0 �

(
1 + ‖A − I d‖

B
3
2
2,1

)‖∇ p′
m(Y ; X)‖Ḣ−1 .

To deal with the estimate of ‖∇ p′
m(Y ; X)‖Ḣ−1 ,we deduce from (4.8) and a similar

derivation of (5.25) that

‖ p′
1(Y ; X)‖0 � ‖AAt − I d‖

Ḃ
3
2
2,1

‖∇ p′
1(Y ; X)‖Ḣ−1

+ ‖∇X‖0‖∇ p1‖L3 +
(
1 + ‖A − I d‖

Ḃ
3
2
2,1

)

×
(
‖A∇XA(∂3Y ⊗ ∂3Y )‖0

+ ‖∇X‖0‖A div(A(∂3Y ⊗ ∂3Y ))‖L3

+ ‖A∂3Y ⊗ ∂3X‖0
)

� δ1‖ p′
1(Y ; X)‖0 + (|∂3Y |

4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |20

)‖∇X‖0
+ |∂3Y |0‖∂3X‖0,

which together with (2.41) ensures that

‖ p′
1(Y ; X)‖0 �

(

|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |20

)

‖∇X‖0 + |∂3Y |0‖∂3X‖0. (5.26)

Exactly along the same lines, we deduce from (4.9) that

‖ p′
2(Y ; X)‖0 �

(

|Yt |
4
3
1 ‖Yt‖

2
3
0 + |Yt |20

)

‖∇X‖0 + |Yt |0‖Xt‖0. (5.27)

Inserting the above estimates into (5.24) leads to

‖|D|−1 f ′
1(Y ; X)‖0 �

(

|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |20

)

‖∇X‖0 + |∂3Y |0‖∂3X‖0,
(5.28)

‖|D|−1 f ′
2(Y ; X)‖0 �

(

|Yt |
4
3
1 ‖Yt‖

2
3
0 + |Yt |20

)

‖∇X‖0 + |Yt |0‖Xt‖0. (5.29)

(ii) Estimates of ‖ f ′
m(Y ; X)‖Ḣ k for k ≥ 0. By (4.7) we have

‖ f ′
m(Y ; X)‖Ḣ k ≤ ‖At (∇X)tAt∇ pm‖Ḣ k + ‖At∇( p′

m(Y ; X)
)‖Ḣ k . (5.30)

• Estimates for ‖At (∇X)tAt∇ pm‖Ḣ k .

We get, by applying Moser-type inequalities, that

‖At (∇X)tAt∇ pm‖Ḣ k
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� ‖At (∇X)t‖L6‖Dk(At∇ pm)‖L3 + ‖Dk(At (∇X)t )‖L6‖At∇ pm‖L3

� ‖Dk∇X‖L6‖∇ pm‖L3 + ‖∇X‖L6

(
‖Dk∇ pm‖L3 + |DkA|0‖∇ pm‖L3

)
.

Here and in all that follows, we always denote that Dk = ∑
|α|=k ∂α.

In view of (4.1), applying Moser-type inequalities yields

‖Dk∇ p1‖L3 ≤ |AAt − I d|0‖Dk∇ p1‖L3 + |AAt − I d|k‖∇ p1‖L3

+ ‖Dk+1(A(∂3Y ⊗ ∂3Y )
)‖L3 ,

from which, with (2.41), we infer

‖Dk∇ p1‖L3 � |∇Y |k‖∇ p1‖L3 + ‖Dk+1(A(∂3Y ⊗ ∂3Y )
)‖L3 .

It is easy to observe that

‖Dk+1(A(∂3Y ⊗ ∂3Y )
)‖L3 � ‖Dk+1(∂3Y ⊗ ∂3Y )‖L3+|Dk+1A|0‖∂3Y ⊗ ∂3Y‖L3

� |∂3Y |k+1‖∂3Y‖L3 + |∇Y |k+1|∂3Y |0‖∂3Y‖L3 ,

which together with (5.13) ensures that

‖Dk∇ p1‖L3 ≤
(

|∂3Y |k+1|∂3Y |
1
3
0 + |∇Y |k+1|∂3Y |

4
3
0

)

‖∂3Y‖
2
3
0 ,

and hence, we obtain

‖At (∇X)tAt∇ p1‖Ḣ k ≤ |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 ‖∇X‖Ḣ k+1

+
(

|∂3Y |k+1|∂3Y |
1
3
0 + |∇Y |k+1|∂3Y |

4
3
0

)

‖∂3Y‖
2
3
0 ‖∇X‖Ḣ1 .

(5.31)

By the same procedure, we can show that

‖Dk∇ p2‖L3 ≤
(

|Yt |k+1|Yt |
1
3
0 + |∇Y |k+1|Yt |

4
3
0

)

‖Yt‖
2
3
0

and

‖At (∇X)tAt∇ p2‖Ḣ k ≤ |Yt |
4
3
1 ‖Yt‖

2
3
0 ‖∇X‖Ḣ k+1

+
(

|Yt |k+1|Yt |
1
3
0 + |∇Y |k+1|Yt |

4
3
0

)

‖Yt‖
2
3
0 ‖∇X‖Ḣ1 .

(5.32)

Furthermore, it holds that

‖∇ p1‖WN ,3 ≤
(

|∂3Y |N+1|∂3Y |
1
3
0 + |∇Y |N+1|∂3Y |

4
3
0

)

‖∂3Y‖
2
3
0 , (5.33)

‖∇ p2‖WN ,3 ≤
(

|Yt |N+1|Yt |
1
3
0 + |∇Y |N+1|Yt |

4
3
0

)

‖Yt‖
2
3
0 . (5.34)

• Estimates of ‖At∇ ( p′
m(Y ; X)

) ‖Ḣ k .
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Applying Moser-type inequality gives

‖At∇ ( p′
m(Y ; X)

) ‖Ḣ k ≤ ‖∇( p′
m(Y ; X)

)‖Ḣ k + |At − I d|k‖∇
(
p′
m(Y ; X)

) ‖0,
(5.35)

yet in view of (4.8), we have

‖∇ p′
1(Y ; X)‖Ḣ k

� ‖(AAt − I d)∇ p′
1(Y ; X)‖Ḣ k + ‖A(∇XA + At∇X

)At∇ p1‖Ḣ k

+ ‖Adiv
(A∇XA(∂3Y ⊗ ∂3Y )

)‖Ḣ k + ‖A∇XAdiv
(A(∂3Y ⊗ ∂3Y )

)‖Ḣ k

+ ‖Adiv
(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )

)‖Ḣ k .

It follows from a similar derivation of (5.31) that

‖A∇XAAt∇ p1‖Ḣ k ≤ |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 ‖∇X‖Ḣ k+1

+ (|∂3Y |k+1|∂3Y |
1
3
0 + |∇Y |k+1|∂3Y |

4
3
0

)‖∂3Y‖
2
3
0 ‖∇X‖Ḣ1 ,

and we get, by applying Moser-type inequality, that

‖(AAt − I d)∇ p′
1(Y ; X)‖Ḣ k ≤ Cδ1‖∇ p′

1(Y ; X)‖Ḣ k + |∇Y |k‖∇ p′
1(Y ; X)‖0

and

‖Adiv
(A∇XA(∂3Y ⊗ ∂3Y )

)‖Ḣ k

� |∂3Y |20‖∇X‖Ḣ k+1 + (|∂3Y |k+1|∂3Y |0 + |∇Y |k+1|∂3Y |20
)‖∇X‖0

and

‖A∇XAdiv
(A(∂3Y ⊗ ∂3Y )

)‖Ḣ k � |∂3Y |1|∂3Y |0‖∇X‖Ḣ k

+ (|∂3Y |k+1|∂3Y |0 + |∇Y |k+1|∂3Y |20
)‖∇X‖0,

and finally,

‖Adiv
(A(∂3Y ⊗ ∂3X + ∂3X ⊗ ∂3Y )

)‖Ḣ k � |∂3Y |0‖∂3X‖Ḣ k+1

+ (|∂3Y |k+1 + |∇Y |k+1|∂3Y |0
)‖∂3X‖0.

As a result, by virtue of (5.14), we have

‖∇ p′
1(Y ; X)‖Ḣ k � g2(∂3Y, ∂3X) with

g2(x, y)
def= (|x|

4
3
1 ‖x‖

2
3
0 + |x|21

)(‖∇X‖Ḣ k+1 + |∇Y |k+1‖∇X‖1
)+ |x|0‖y‖Ḣ k+1

+(|x|k+1 + |∇Y |k+1|x|1
)‖y‖1 + |x|k+1

(|x|
1
3
0 ‖x‖

2
3
0 + |x|0

)‖∇X‖1. (5.36)

Substituting the above estimate and (5.14) into (5.35) for m = 1 shows that
‖At∇ ( p′

1(Y ; X)
) ‖Ḣ k shares the same estimate as above.

Similarly, we can show that

‖∇ p′
2(Y ; X)‖Ḣ k � g2(Yt , Xt ). (5.37)

Substituting the above estimate and (5.16) into (5.35) for m = 2 shows that
‖At∇ ( p′

2(Y ; X)
) ‖Ḣ k shares the same estimate as above.
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Let us now turn to the estimates of ‖ f ′
1(Y ; X)‖Ḣ k and ‖ f ′

2(Y ; X)‖Ḣ k . As a
matter of fact, by inserting (5.31) and (5.36) into (5.30) for m = 1, we achieve

‖ f ′
1(Y ; X)‖Ḣ k � g2(∂3Y, ∂3X). (5.38)

Similarly, by inserting (5.32) and (5.37) into (5.30) for m = 2, we obtain

‖ f ′
2(Y ; X)‖Ḣ k � g2(Yt , Xt ). (5.39)

Now we are in a position to complete the proof of Proposition 2.4.

Proof of Proposition 2.4. It remains to prove (2.46) and (2.47). Indeed, combining
(5.28) with (5.38), we obtain (2.46), while combining (5.29) with (5.39) leads to
(2.47). This completes the proof of Proposition 2.4. ��

6. Energy Estimates for the Linearized Equation

The goal of this section is to present the proof of Theorem 2.3.

6.1. First-Order Energy Estimates

Let us first carry out the estimate of E0(t) (2.56).
•Estimate of ‖∇X‖0.

We first get, by taking L2 as the inner product of (2.40) with X , that

d

dt

(
1

2
‖∇X‖20+(Xt |X)L2

)

+‖∂3X‖20 − ‖Xt‖20 = ( f ′(Y ; X)+g|X)L2 . (6.1)

It follows by taking as the L2 inner product of (2.40) with (−�)−1Xt that
1

2

d

dt

(
‖|D|−1Xt‖20 + ‖|D|−1∂3X‖20

)
+ ‖Xt‖20 = (

(−�)−1( f ′(Y ; X) + g)|Xt
)

L2 .

Summing up the above equality with 1
4×(6.1) yields

d

dt

(
1

2

(‖|D|−1Xt‖20 + ‖|D|−1∂3X‖20 + 1

4
‖∇X‖20

)+ 1

4
(Xt |X)L2

)

+ 3

4
‖Xt‖20 + 1

4
‖∂3X‖20 = (|D|−1( f ′(Y ; X) + g)|1

4
|D|X + |D|−1Xt

)

L2 .

(6.2)

It is easy to observe that
∣
∣
(|D|−1∇ · (A(∇XA + At (∇X)t )At)∇Yt

)|1
4
|D|X + |D|−1Xt

)

L2

∣
∣

≤ C |∇Yt |0‖∇X‖0
(‖∇X‖0 + ‖|D|−1Xt‖0

)

and
(|D|−1∇ · ((AAt − I d)∇Xt

)||D|X)L2 = −((AAt − I d)∇Xt |∇X
)

L2

= −1

2

d

dt

(
(AAt − I d)∇X |∇X

)

L2 +
∫

R
3
∂t (AAt )|∇X |2 dx
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and
∣
∣
(|D|−1∇ · ((AAt − I d)∇Xt

)∣
∣|D|−1Xt

)

L2

∣
∣

� ‖AAt − I d‖
Ḃ

3
2
2,1

‖∇Xt‖Ḣ−1‖Xt‖0 ≤ Cδ1‖Xt‖20.

Hence in view of (4.6), under the assumption of (2.41), by taking δ1 so small that
Cδ1 ≤ 1

4 , we obtain

∣
∣
(|D|−1 f ′

0(Y ; X)|1
4
|D|X + |D|−1Xt

)

L2 + 1

8

d

dt

(
(AAt − I d)∇X |∇X

)

L2

∣
∣

≤ C |∇Yt |0‖∇X‖0
(‖∇X‖0 + ‖|D|−1Xt‖0

)+ 1

4
‖Xt‖20. (6.3)

By virtue of (5.28) and (5.29), we have

∣
∣
(|D|−1( f ′

1(Y ; X) + f ′
2(Y ; X))|1

4
|D|X + |D|−1Xt

)

L2

∣
∣

≤ 1

8

(‖Xt‖20 + ‖∂3X‖20
)+ C

(
|∂3Y |

4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |20

+ |Yt |
4
3
1 ‖Yt‖

2
3
0 + |Yt |20

)(‖∇X‖20 + ‖|D|−1Xt‖20
)
. (6.4)

Inserting (6.3) and (6.4) into (6.2) gives rise to

d

dt

(
1

2

(‖|D|−1Xt‖20 + ‖|D|−1∂3X‖20 + 1

4

(AAt∇X |∇X
)

L2

)+ 1

4
(Xt |X)L2

)

+ 1

8

(‖Xt‖20 + ‖∂3X‖20
) ≤ ‖|D|−1g‖0

(‖∇X‖0 + ‖|D|−1Xt‖0
)

+ C
(
|∂3Y |

4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |20 + |Yt |1

)(‖∇X‖20 + ‖|D|−1Xt‖20
)
, (6.5)

by applying the assumption (2.55).
On the other hand, since AAt is a positive definite matrix (|AAt − I d|0 ≤

Cδ1 ≤ 1
4 ), it holds that

(AAt∇X |∇X
)

L2 ≥ (1 − Cδ1)‖∇X‖20 ≥ 3

4
‖∇X‖20,

so that one has

1

2

(‖|D|−1Xt‖20 + ‖|D|−1∂3X‖20 + 1

4

(AAt∇X |∇X
)

L2

)+ 1

4
(Xt |X)L2

≥ 1

4
‖|D|−1Xt‖20 + 1

2
‖|D|−1∂3X‖20 + 1

32
‖∇X‖20.

(6.6)

•Estimate of ‖Xt‖0.
Multiplying (2.40) by Xt and integrating the resulting equality over R

3, we get

1

2

d

dt

(‖Xt‖20 + ‖∂3X‖20
)+ ‖∇Xt‖20 = (

f ′(Y ; X) + g
∣
∣Xt

)

L2 .
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In view of (4.6), we infer

∣
∣
(
f ′
0(Y ; X)|Xt

)

L2

∣
∣ ≤C |∇Yt |20‖∇X‖20 + 1

4
‖∇Xt‖20,

while it follows from (5.28) to (5.29) that
∣
∣
(
f ′
1(Y ; X) + f ′

2(Y ; X)|Xt
)

L2

∣
∣

≤ C

(

(|∂3Y |0‖∂3X‖0 + |Yt |0‖Xt‖0) +
(

|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0

+|∂3Y |21 + |Yt |
4
3
1 ‖Yt‖

2
3
0 + |Yt |21

)

‖∇X‖0
)

‖∇Xt‖0.

As a result, thanks to the assumption (2.55), we have

d

dt

(‖Xt‖20 + ‖∂3X‖20
)+ ‖∇Xt‖20

≤ C
(|∂3Y |

8
3
1 ‖∂3Y‖

4
3
0 + |∂3Y |41 + |Yt |21

)‖∇X‖20
+ C

(|∂3Y |20‖∂3X‖20 + |Yt |20‖Xt‖20
)+ 4‖|D|−1g‖20.

(6.7)

•Estimate of ‖∇Xt‖0.
By taking L2 as the inner product of (2.40) with −�Xt gives

1

2

d

dt

(‖∇Xt‖2L2 + ‖∇∂3X‖20
)+ ‖�Xt‖20 = −( f ′(Y ; X) + g|�Xt

)

L2 . (6.8)

It is easy to observe from (2.41) and (4.6) that

‖ f ′
0(Y ; X)‖0 ≤ 1

4
‖�Xt‖0 + |∇Yt |1‖∇X‖1. (6.9)

Then by substituting the estimates (6.9), (5.38) and (5.39) into (6.8) and using the
assumptions (2.41) and (2.55), we obtain

1

2

d

dt

(‖∇Xt‖2L2 + ‖∇∂3X‖20
)+ ‖�Xt‖20

≤ C

((

|Yt |2 + |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21

)

‖∇X‖1
+|∂3Y |1‖∂3X‖1 + |Yt |1‖Xt‖1 + ‖g‖0) ‖�Xt‖0,

which implies

d

dt

(‖∇Xt‖2L2 + ‖∇∂3X‖20
)+ ‖�Xt‖20

≤ C

(

|Yt |22 + |∂3Y |
8
3
1 ‖∂3Y‖

4
3
0 + |∂3Y |41

)

‖∇X‖21
+ C

(
|∂3Y |21‖∂3X‖21 + |Yt |21‖Xt‖21

)
+ ‖g‖20.

(6.10)

• The estimate of ‖∇X‖Ḣ1 .
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In this step, we shall use the equivalent formulation, (2.59), of (2.40). We first
get, by taking L2 as the inner product of (2.59) with −∇ · (AAt∇X

)
, that

1

2

d

dt
‖∇ · (AAt∇X

)‖20 + (
∂23 X |∇ · (AAt∇X

))

L2 − (
Xtt |∇ · (AAt∇X

))

L2

= −( f̃ ′(Y ; X) + g|∇ · (AAt∇X
))

L2 .

By using integration by parts, one has

(
Xtt |∇ · (AAt∇X

))

L2 = − d

dt

(∇Xt |AAt∇X
)

L2 + (∇Xt |∂t (AAt∇X)
)

L2 ,

(
∂23 X |∇ · (AAt∇X

))

L2 = (∇∂3X |AAt∇∂3X
))

L2 + (∇∂3X |∂3
(AAt)∇X

)

L2 .

Since AAt is a positive definitive matrix, we infer

d

dt

(1

2
‖∇ · (AAt∇X

)‖20 + (∇Xt |AAt∇X
)

L2

)
+ 1

2
‖∇∂3X‖20

≤ 2‖∇Xt‖20 + 1

4
‖∇∂3X‖20 + C

(|∇Yt |20 + |∂3∇Y |20
)‖∇X‖20

− (
f̃ ′(Y ; X) + g|∇ · (AAt∇X

))

L2 ,

(6.11)

yet under the assumption of (2.41), it is easy to observe from (2.60) that

‖ f̃ ′
0(Y ; X)‖0 ≤ C |∇Yt |1‖∇X‖1,

whereas it follows from (5.38) and (5.39) that

∣
∣
(
f ′
1(Y ; X) + f ′

2(Y ; X)|∇ · (AAt∇X)
)

L2

∣
∣ �

(
|∂3Y |1‖∂3X‖1 + |Yt |1‖Xt‖1

+ (|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21 + |Yt |

4
3
1 ‖Yt‖

2
3
0 + |Yt |21

)‖∇X‖1
)
‖∇X‖1.

Inserting the above estimates into (6.11) yields

d

dt

(1

2
‖∇ · (AAt∇X

)‖20 + (∇Xt |AAt∇X
)

L2

)

+ 1

8
‖∇∂3X‖20 ≤ 3‖Xt‖21 + 1

20
‖∂3X‖20

+ ‖g‖0‖∇X‖1
+ C

(|∂3Y |21 + |Yt |21 + |∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |Yt |

4
3
1 ‖Yt‖

2
3
0

)‖∇X‖21.

(6.12)

Let us denote

E0(t)
def= 1

2

(
‖|D|−1Xt‖2H2 + ‖|D|−1∂3X‖22 + 1

4

(AAt∇X |∇X
)

L2

)

+ 1

4
(Xt |X)L2 + 1

48

(1

2
‖∇ · (AAt∇X

)‖20 + (∇Xt |AAt∇X
)

L2

)
.

(6.13)
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Then by summing up the inequalities (6.5), (6.7), (6.10) and 1
48×(6.12), we obtain

d

dt
E0(t) + 1

16
‖Xt‖22 + 1

384
‖∂3X‖21 ≤ +‖|D|−1g‖21

+ C
(|∂3Y |

4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21 + |Yt |2

)

× (‖∇X‖21 + ‖|D|−1Xt‖20 + ‖∂3X‖21 + ‖Xt‖21
)

+ ‖|D|−1g‖1
(‖∇X‖1 + ‖|D|−1Xt‖0

)

(6.14)

Notice that

(∇Xt |AAt∇X
)

L2 ≥ −‖Xt‖20 − 1

4
‖∇ · (AAt∇X

)‖20
and

‖∇ · (AAt∇X
)‖0 ≥ ‖∇X‖Ḣ1 − ‖(AAt − I d)∇X‖Ḣ1 ≥ (1 − Cδ1)‖∇X‖Ḣ1 ,

so we deduce from from (6.6) and (6.13) that

E0(t) ≥ 1

162

(
‖|D|−1Xt‖22 + ‖|D|−1∂3X‖22 + ‖∇X‖21

)
. (6.15)

Hence, for any ε > 0, we deduce from (6.14) that

d

dt
E0(t) + 1

16
‖Xt‖22 + 1

384
‖∂3X‖21 ≤ 〈t〉1+ε‖|D|−1g‖21

+ Cε

(
|∂3Y |

4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21 + |Yt |2 + 〈t〉−(1+ε)

)
E0(t).

(6.16)

Applying Gronwall’s inequality yields for any ε > 0 that

E0(t) + 1

16
‖Xt‖2L2

t (H2)
+ 1

384
‖∂3X‖2

L2
t (H1)

≤ Cε

( ∫ t

0
〈s〉1+ε‖|D|−1g(s)‖21ds

)

× expC
(|∂3Y |

4
3
1
2+ε,1

‖∂3Y‖
2
3

L2
t (L2)

+ |∂3Y |21
2+ε,1

+ |Yt |1+ε,2
)
,

which together with (6.15) ensures the first inequality of (2.56).

6.2. Higher-Order Energy Estimates

In this subsection, we shall derive the estimates for

Ėk+1(t)
def= ‖∂3X‖2

Ḣ k+1 + ‖Xt‖2Ḣ k+1 + ‖∇X‖2
Ḣ k+1 for k ≥ 0. (6.17)

We first get, by taking the Ḣ k+1-inner product of (2.40) with Xt , that

1

2

d

dt

(‖Xt‖2Ḣ k+1 + ‖∂3X‖2
Ḣ k+1

)+ ‖Xt‖2Ḣ k+2 = (
f ′(Y ; X) + g

∣
∣Xt

)

Ḣ k+1,
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which implies

d

dt

(‖Xt‖2Ḣ k+1 + ‖∂3X‖2
Ḣ k+1

)+ ‖Xt‖2Ḣ k+2 ≤ ‖ f ′(Y ; X)‖2
Ḣ k + ‖g‖2

Ḣ k . (6.18)

In view of (4.6), it follows from Moser-type inequality that

‖ f ′
0(Y ; X)‖Ḣ k � |∇Yt |0‖∇X‖Ḣ k+1 + (|∇Yt |k+1 + |∇Yt |0|∇Y |k+1

)‖∇X‖0
+ |∇Y |0‖∇Xt‖Ḣ k+1 + |∇Y |k+1‖∇Xt‖0,

(6.19)

from which, with (5.38), (5.39) and the assumption (2.55), we infer

‖ f ′(Y ; X)‖Ḣ k

� |∂3Y |0‖∂3X‖Ḣ k+1 + |Yt |0‖Xt‖Ḣ k+1 + |∇Y |0‖Xt‖Ḣ k+2

+ (|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21 + |Yt |1

)(‖∇X‖Ḣ k+1 + |∇Y |k+1‖∇X‖1
)

+ (|∂3Y |k+1 + |∇Y |k+1|∂3Y |1
)‖∂3X‖1 + (|Yt |k+1 + |∇Y |k+1|Yt |1

)‖Xt‖1
+ |∇Y |k+1‖∇Xt‖0 + (|∂3Y |k+1

(|∂3Y |
1
3
0 ‖∂3Y‖

2
3
0 + |∂3Y |1

)+ |Yt |k+2
)‖∇X‖1.

(6.20)

Inserting (6.20) into (6.18), and using assumption (2.41) so that |∇Y |0 ≤ δ1, we
deduce that

d

dt

(‖Xt‖2Ḣ k+1 + ‖∂3X‖2
Ḣ k+1

)+ 3

4
‖Xt‖2Ḣ k+2 � |∂3Y |20‖∂3X‖2

Ḣ k+1 + |Yt |20‖Xt‖2Ḣ k+1

+‖g‖2
Ḣ k + (|∂3Y |

8
3
1 ‖∂3Y‖

4
3
0 + |∂3Y |41 + |Yt |21

)(‖∇X‖2
Ḣ k+1 + |∇Y |2k+1‖∇X‖21

)

+ (|∂3Y |2k+1 + |∇Y |2k+1|∂3Y |21
)‖∂3Y‖21 + (|Yt |2k+1 + |∇Y |2k+1|Yt |21

)‖Xt‖21
+ |∇Y |2k+1‖∇Xt‖20 + (|∂3Y |2k+1

(|∂3Y |
2
3
0 ‖∂3Y‖

4
3
0 + |∂3Y |21

)+ |Yt |2k+2
)‖∇X‖21.

(6.21)

Secondly, by taking the Ḣ k-inner product of (2.59) with −∇ · (AAt∇X
)
, we

obtain

1

2

d

dt
‖∇ · (AAt∇X

)‖2
Ḣ k + (

∂23 X |∇ · (AAt∇X
))

Ḣ k

− (
Xtt |∇ · (AAt∇X

))

Ḣ k = −( f̃ ′(Y ; X) + g|∇ · (AAt∇X
))

Ḣ k .

(6.22)

By using integration by parts, one has

−(Xtt |∇ · (AAt∇X
))

Ḣ k = − d

dt

(
Xt |∇ · (AAt∇X)

)

Ḣ k − (∇Xt |∂t (AAt∇X)
)

Ḣ k

and

∣
∣
(∇Xt |∂t (AAt∇X)

)

Ḣ k

∣
∣ ≤ ‖Xt‖Ḣ k+1

(
3

2
‖∇Xt‖Ḣ k + |∇Y |k‖∇Xt‖0

+|∇Yt |0‖∇X‖Ḣ k + |∇Yt |k‖∇X‖0
)

,
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so that we arrive at

∣
∣
(
Xtt |∇ · (AAt∇X

))

Ḣ k − d

dt

(
Xt |∇ · (AAt∇X)

)

Ḣ k

∣
∣

≤ 2‖Xt‖2Ḣ k+1 + Ck
(|∇Yt |20‖∇X‖2

Ḣ k + |∇Y |2k‖∇Xt‖20 + |∇Yt |2k‖∇X‖20
)
.

Similarly, again by using integration by parts, one has

(
∂23 X |∇ · (AAt∇X

))

Ḣ k = (∇∂3X |AAt∇∂3X
)

Ḣ k + (∇∂3X |∂3
(AAt)∇X

)

Ḣ k .

Since |AAt − I d|0 ≤ Cδ1 ≤ 1
4 , due to (2.41), applying Moser-type inequality

gives

(∇∂3X |AAt∇∂3X
)

Ḣ k ≥ 1

2
‖∇∂3X‖2

Ḣ k − Ck |∇Y |2k‖∇∂3X‖20
and

∣
∣
(∇∂3X |∂3

(AAt)∇X
)

Ḣ k

∣
∣ ≤ 1

4
‖∇∂3X‖2

Ḣ k + Ck

(
|∂3Y |21‖∇X‖2

Ḣ k

+|∂3Y |2k+1‖∇X‖20
)

,

so that it holds that

(∇∂3X |AAt∇∂3X
)

Ḣ k ≥ 1

4
‖∇∂3X‖2

Ḣ k − Ck
(|∇Y |2k‖∇∂3X‖20

+ |∂3Y |21‖∇X‖2
Ḣ k + |∂3Y |2k+1‖∇X‖20

)
.

Inserting the above estimates into (6.22) gives rise to

d

dt

(1

2
‖∇ · (AAt∇X

)‖2
Ḣ k − (

Xt |∇ · (AAt∇X)
)

Ḣ k

)
+ 1

4
‖∂3X‖2

Ḣ k+1

≤ 2‖Xt‖2Ḣ k+1 + (|∂3Y |20 + |Yt |20
)‖∇X‖2

Ḣ k+1

+ Ck |∇Y |2k
(‖∇∂3X‖20 + ‖∇Xt‖20

)

+ Ck(|∂3Y |2k+1 + |Yt |2k+2)‖∇X‖20 + (‖ f̃ ′(Y ; X)‖Ḣ k

+ ‖g‖Ḣ k

)‖∇ · (AAt∇X
)‖Ḣ k .

(6.23)

We remark that

‖∇ · (AAt∇X
)− �X‖Ḣ k ≤ |AAt − I d|0‖∇X‖Ḣ k+1

+ Ck |AAt − I d|k+1‖∇X‖0
≤ 1

2
‖∇X‖Ḣ k+1 + Ck |∇Y |k+1‖∇X‖0.

(6.24)

Moreover, in view of (2.60), we have

‖ f̃ ′
0(Y ; X)‖Ḣ k � |Yt |1‖∇X‖Ḣ k+1 + (|Yt |k+2 + |Yt |1|∇Y |k+1

)‖∇X‖0, (6.25)
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which together with (5.38) and (5.39), ensures that

‖ f̃ ′(Y ; X)‖Ḣ k � |∂3Y |0‖∂3X‖Ḣ k+1 + |Yt |0‖Xt‖Ḣ k+1 + (|∂3Y |k+1

+ |∇Y |k+1|∂3Y |1
)‖∂3X‖1

+ (|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21 + |Yt |1

)(‖∇X‖Ḣ k+1

+ |∇Y |k+1‖∇X‖1
)+ ‖Xt‖1

(|Yt |k+1

+ |∇Y |k+1|Yt |1
)

+ (|∂3Y |k+1
(|∂3Y |

1
3
0 ‖∂3Y‖

2
3
0 + |∂3Y |1

)+ |Yt |k+2
)‖∇X‖1.

(6.26)

Inserting the above inequalities into (6.23) yields

d

dt

(1

2
‖∇ · (AAt∇X

)‖2
Ḣ k − (

Xt |∇ · (AAt∇X)
)

Ḣ k

)
+ 1

8
‖∂3X‖2

Ḣ k+1

≤ 3‖Xt‖2Ḣ k+1 + 〈t〉1+ε‖g‖2
Ḣ k + Ck

(|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |21 + |Yt |1

+ 〈t〉−(1+ε)
)‖∇X‖2

Ḣ k+1

+ Ck
((|∂3Y |2k+1 + |∇Y |2k+1|∂3Y |21

)〈t〉1+ε + |∇Y |2k
)‖∂3X‖21

+ Ck
((|Yt |2k+1 + |∇Y |2k+1|Yt |21

)〈t〉1+ε + |∇Y |2k
)‖Xt‖21

+ Ck

{
(|∂3Y |2k+1

(|∂3Y |
2
3
0 ‖∂3Y‖

4
3
0 + |∂3Y |21

)+ |Yt |2k+2

)〈t〉1+ε + |∂3Y |2k+1

+ |∇Y |2k+1

((|∂3Y |
8
3
1 ‖∂3Y‖

4
3
0 + |∂3Y |41 + |Yt |21

)〈t〉1+ε + 〈t〉−(1+ε)
))
}

‖∇X‖21.

(6.27)

Let us introduce

Ḋk+1(t)
def= ‖Xt‖2Ḣ k+1 + ‖∂3X‖2

Ḣ k+1 + 1

2
‖∇ · (AAt∇X)‖2

Ḣ k

− (
Xt |∇ · (AAt∇X)

)

Ḣ k . (6.28)

Then it follows from (6.24) that

Ḋk+1(t) ≥ 1

8
Ėk+1(t) − Ck+1‖Xt‖20 − Ck+1|∇Y |2k+1‖∇X‖20, (6.29)

with Ėk+1(t) being given by (6.17).
Hence by summing up (6.21) and (6.27), and then integrating the resulting

inequality over [0, t] and using (6.29), we achieve

Ėk+1(t) +
∫ t

0

(1

2
‖Xt‖2Ḣ k+2 + 1

8
‖∂3X‖2

Ḣ k+1

)
ds

≤ 8Ḋk+1(t) + ‖Xt‖20,0 + |∇Y |20,k+1‖∇X‖20,0
+
∫ t

0

(1

2
‖Xt‖2Ḣ k+2 + 1

8
‖∂3X‖2

Ḣ k+1

)
ds

�
∫ t

0

(|∂3Y |
4
3
1 ‖∂3Y‖

2
3
0 + |∂3Y |20 + |Yt |1 + 〈s〉−(1+ε)

)
Ėk+1(s) ds

+ ‖〈t〉 1+ε
2 g‖2

L2
t (Ḣ k )

+ γε,k+1(Y )2E2
0 (t),

(6.30)
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where E0(t) is given by (2.56) and γε,k+1(Y ) by (2.58). Applying Gronwall’s
inequality to (6.30) and using (2.56), we obtain

Ėk+1(t) ≤ Cε,k

(
‖〈t〉 1+ε

2 g‖2
L2
t (Ḣ k )

+ γε,k+1(Y )2‖〈t〉 1+ε
2 |D|−1g‖2

L2
t (H1)

)
Eε(Y ),

from which, along with (6.30), we infer

‖(Xt , ∂3X,∇X)‖L∞
t (Ḣ k+1) + ‖Xt‖L2

t (Ḣ k+2) + ‖∂3X‖L2
t (Ḣ k+1)

≤ Cε,k
(‖〈t〉 1+ε

2 g‖L2
t (Ḣ k ) + γε,k+1(Y )‖〈t〉 1+ε

2 |D|−1g‖L2
t (H1)

)
Eε(Y ).

(6.31)

Summing up the above inequality with respect to k leads to (2.57). This completes
the proof of Theorem 2.3.

Now let us turn to the proof of Corollary 2.1.

Proof of Corollary 2.1. By summing up (6.7) and (6.10), and thenmultiplying the
resulting inequality by 〈t〉 and integrating the above inequality over [0, t], we find

〈t〉(‖Xt‖21 + ‖∂3X‖21
)+

∫ t

0
〈s〉‖∇Xt‖21ds ≤ ‖Xt‖2L2

t (H1)

+ (
1 + |∂3Y |21

2 ,1

)‖∂3X‖2
L2
t (H1)

+ C‖〈t〉 1
2 |D|−1g‖2

L2
t (H1)

+ C
(|∂3Y |

8
3
1
2+ε,1

‖∂3Y‖
4
3

L2
t (L2)

+ |∂3Y |41
2+ε,1

+ |Yt |21+ε,2

)E2
0 (t).

Then (2.61) follows from (2.56).
Similarly, we get, by multiplying (6.21) by 〈t〉 and integrating the inequality

over [0, t] and taking the square root of the resulting inequality, that

〈t〉 1
2
(‖(Xt , ∂3X)‖Ḣ k+1

)+
(3

4

∫ t

0
〈s〉‖Xt‖2Ḣ k+2ds

) 1
2 � ‖〈t〉 1

2 g‖L2
t (Ḣ k )

+ (
1 + |Yt | 1

2 ,0

)‖Xt‖L2
t (Ḣ k+1) + (

1 + |∂3Y | 1
2 ,0

)‖∂3X‖L2
t (Ḣ k+1)

+ |∇Y |0,k+1‖〈t〉 1
2 ∇Xt‖L2

t (L2)

+ (|∂3Y |
4
3
1
2+ε,1

‖∂3Y‖
2
3

L2
t (L2)

+ |∂3Y |21
2+ε,1

+ |Yt |1+ε,1
)(‖∇X‖L∞

t (Ḣ k+1)

+ |∇Y |0,k+1‖∇X‖L∞
t (H1)

)

+ ‖∂3Y‖L2
t (L2)

(|∇Y |0,k+1|∂3Y | 1
2 ,1 + |∂3Y | 1

2 ,k+1

)

+ (|Yt | 1
2 ,k+1 + |∇Y |0,k+1|Yt | 1

2 ,1

)‖Xt‖L2
t (L2)

+ (|∂3Y | 1
2+ε,k+1

(|∂3Y |
1
3
1
2+ε,0

‖∂3Y‖
2
3

L2
t (L2)

+ |∂3Y | 1
2+ε,1

)

+ |Yt |1+ε,k+2
)‖∇X‖L∞

t (H1).

Then (2.62) follows from (2.57) and (2.61), and this completes the proof of Corol-
lary 2.1. ��
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7. Energy Decay for ∇Xt

The main idea for proving Proposition 2.7 is to use the following proposition:

Proposition 7.1. Let X be a smooth enough solution of

{

Xtt − �Xt − ∂23 X = ∇ · ((AAt − I d)∇Xt
)+ �

def= f
X (0) = 0 and Xt (0) = 0,

(7.1)

on [0, T ]. Then under the assumption that

‖∇Y‖
L∞
t (Ḃ

3
2
2,1)

< δ1, (7.2)

we have, for any t ∈ [0, T ] and any ε > 0, that

t‖∇Xt (t)‖L2 ≤ Cε

(

sup
s∈[0,t]

‖s1+ε|D|−1
�‖L2 + sup

s∈[0,t]
‖s1+ε|D|�‖L2

)

≤ Cε‖|D|−1
�‖1+ε,2. (7.3)

Moreover, we have, for k ∈ N, that

t‖∇Xt (t)‖Ḣ k

≤ Cε,k

(
(
δ1 + ‖Dk∇Y‖

L∞
t

(
Ḃ

3
2
2,1

)
)‖|D|−1

�‖1+ε,2 + ‖|D|−1
�‖1+ε,k+2

)

. (7.4)

Admitting this proposition for the time being, we present the proof of Proposi-
tion 2.7.

Proof of Proposition 2.7. In our situation, (2.40),

� = ∇ ·
(
A((−∇X)A + At (−∇X)t

)At∇Yt
)

− f ′
1(Y ; X) + f ′

2(Y ; X) + g.

We infer from (5.23), (2.46) and (2.47) that for k ≥ 0,

‖|D|−1
�‖1+ε,k+2

� |∂3Y | 1
2+ε,0‖∂3X‖ 1

2 ,k+2 + |Yt | 1
2+ε,0‖Xt‖ 1

2 ,k+2 + ‖|D|−1g‖1+ε,k+2

+ (|∂3Y |
4
3
1
2+ε,1

‖∂3Y‖
2
3
1
2 ,0

+ |∂3Y |21
2+ε,1

+ |Yt |1+ε,1
)‖∇X‖0,k+2

+ γε,k+2(Y )(‖∂3X‖ 1
2 ,1 + ‖Xt‖ 1

2 ,1 + ‖∇X‖0,1),

(7.5)

where γε,k+2(Y ) is given in (2.58). Proposition 2.7 then follows from Proposition
7.1, (7.5), Corollary 2.1 and the fact that ‖Dk∇Y‖

L∞
t (Ḃ

3
2
2,1)

≤ ‖∇Y‖0,k+2. ��
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In order to prove Proposition 7.1 we need to exploit the tool of anisotropic
Littlewood-Paley analysis. Similar to the dyadic operators � j , and S j given by
Definition 2.1, let us recall the dyadic operators in the x3 variable:

�v
�a

def= F−1(ϕ(2−�|ξ3|)̂a), and Sv�a
def= F−1(χ(2−�|ξ3|)̂a). (7.6)

Let us also recall the following anisotropic type Besov norm from [24,25]:

Definition 7.1. Let s1, s2 ∈ R, r ∈ [1,∞] and a ∈ S ′
h(R

3), we define the norm

‖a‖Bs1,s2
r

def=
(
2 js12�s2‖� j�

v
�a‖L2

)

�r (Z2)
.

In particular, when r = 2,we denote ‖a‖Ḣ s1,s2
def= ‖a‖Bs1,s2

2
= ∥
∥|D|s1 |Dx3 |s2a

∥
∥
L2 .

In order to obtain a better description of the regularizing effect for the transport-
diffusion equation, we will use an anisotropic version of the Chemin-Lerner type
norm (see [3] for instance).

Definition 7.2. Let (r, q) ∈ [1,+∞]2 and T ∈ (0,+∞]. We define the norm
L̃q
T (Bs1,s2

r (R3)) by

‖u‖L̃q
T (Bs1,s2

r )

def=
( ∑

( j,�)∈Z2

(
2 js12�s2‖� j�

v
�u‖Lq

T (L2)

)r
) 1

r
,

with the usual change if r = ∞.

For the convenience of the readers, we recall the following Bernstein type
lemma from [3,10,27]:

Lemma 7.1. Let Bh (resp. Bv) be a ball of R
2 (resp. R), and Ch (resp. Cv) a ring

of R
2 (resp. R), and let 1 ≤ p2 ≤ p1 ≤ ∞ and 1 ≤ q2 ≤ q1 ≤ ∞. Then it holds

that:
if the support of â is included in 2kBh, then

‖∂α
h a‖L p1

h (L
q1
v )

� 2
k
(
|α|+2

(
1
p2

− 1
p1

))

‖a‖L p2
h (L

q1
v )

;

if the support of â is included in 2�Bv, then

‖∂β
3 a‖L p1

h (L
q1
v )

� 2
�
(
β+

(
1
q2

− 1
q1

))

‖a‖L p1
h (L

q2
v )

;

if the support of â is included in 2kCh, then
‖a‖L p1

h (L
q1
v )

� 2−kN max|α|=N
‖∂α

h a‖L p1
h (L

q1
v )

;

if the support of â is included in 2�Cv, then
‖a‖L p1

h (L
q1
v )

� 2−�N‖∂N
3 a‖L p1

h (L
q1
v )

.
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Let us now turn to the proof of Proposition 7.1.

Proof of Proposition 7.1. The proof of this lemma is motivated by the proof of
Proposition 4.1 of [24,31]. By applying the operator � j�

v
� to (7.1) and then taking

the L2 inner product of the resulting equation with � j�
v
�Xt , we write

1

2

d

dt

(‖� j�
v
�Xt‖2L2 + ‖� j�

v
�∂3X‖2L2

)+ ‖∇� j�
v
�Xt‖2L2

= (
� j�

v
� f |� j�

v
�Xt

)

L2 .

(7.7)

Along the same lines, one has

(� j�
v
�Xtt |�� j�

v
�X) − 1

2

d

dt
‖�� j�

v
�X‖2L2 − ‖∂3∇� j�

v
�X‖2L2

= (� j�
v
� f |�� j�

v
�X).

Notice that

(� j�
v
�Xtt |�� j�

v
�X) = d

dt
(� j�

v
�Xt |�� j�

v
�X) + ‖∇� j�

v
�Xt‖2L2 ,

so that we have

d

dt

(1

2
‖�� j�

v
�X‖2L2 − (� j�

v
�Xt |�� j�

v
�X)

)

− ‖∇� j�
v
�Xt‖2L2 + ‖∂3∇� j�

v
�X‖2L2 = −(� j�

v
� f |�� j�

v
�X).

(7.8)

By summing up (7.7) with 1
4 of (7.8), we obtain

d

dt
g2j,�(t) + 3

4
‖∇� j�

v
�Xt‖2L2 + 1

4
‖∂3∇� j�

v
�X‖2L2

= (
� j�

v
� f | � j�

v
�Xt − 1

4
�� j�

v
�X
)
,

(7.9)

where

g2j,�(t)
def= 1

2

(

‖� j�
v
�Xt (t)‖2L2 + ‖� j�

v
�∂3X (t)‖2L2 + 1

4
‖� j�

v
��X (t)‖2L2

)

−1

4

(
� j�

v
�Xt (t)|� j�

v
��X (t)

)

.

It is easy to observe that

g2j,�(t) ∼ ‖� j�
v
�Xt (t)‖2L2 + ‖� j�

v
�∂3X (t)‖2L2 + ‖� j�

v
��X (t)‖2L2 . (7.10)

Now, according to the heuristic analysis presented at the beginning of Section 2,
we split the frequency analysis into two case.
• When j ≤ �+1

2
In this case, one has

g2j,�(t) ∼ ‖� j�
v
�Xt (t)‖2L2 + ‖� j�

v
�∂3X (t)‖2L2 ,
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and Lemma 7.1 implies that

3

4
‖∇� j�

v
�Xt‖2L2 + 1

4
‖∂3∇� j�

v
�X‖2L2≥c22 j

(
‖� j�

v
�Xt‖2L2+‖� j�

v
�∂3X‖2L2

)
.

Hence it follows from (7.9) that

d

dt
g j,�(t) + c22 j g j,�(t) ≤ ‖� j�

v
� f (t)‖L2 ,

which, in particular, implies that

g j,�(t) ≤
∫ t

0
e−c(t−s)22 j ‖� j�

v
� f (s)‖L2 ds, (7.11)

and

2 j‖� j�
v
�Xt‖L1

t (L2) � 2− j‖� j�
v
� f ‖L1

t (L2). (7.12)

Now let us turn to the estimate of ‖� j�
v
� f ‖L1

t (L2). Indeed it follows by the law
of product in the anisotropic Besov spaces (see Lemma 3.3 of [31]) that
∥
∥(AAt − I d)∇Xt

∥
∥
L1
t (Ḣ0,0)

� ‖(AAt − I d)‖
L∞
t

(

B1, 12
1

)‖∇Xt‖L̃1
t (Ḣ0,0)

� ‖(AAt − I d)‖
L∞
t

(

Ḃ
3
2
2,1

)‖∇Xt‖L̃1
t (Ḣ0,0)

� δ1‖∇Xt‖L̃1
t (Ḣ0,0),

(7.13)

wherewe use the fact that Ḃ
3
2
2,1(R

3) ↪→ B1, 12
1 (onemay check Lemma 3.2 of [25,31]

for details). Hence we obtain

2− j‖� j�
v
� f ‖L1

t (L2) � c j,�δ1‖∇Xt‖L̃1
t (Ḣ0,0) + ‖� j�

v
�|D|−1

�‖L1
t (L2), (7.14)

where (c j,�) j,�∈Z2 is a generic element of �2(Z2) so that
∑

j,�∈Z2 c2j,� = 1.
It follows from Lemma 7.1 and (7.11) that

2 j t‖� j�
v
�Xt (t)‖L2

�
∫ t

0
22 j (t − s)e−c(t−s)22 j

∥
∥� j�

v
�

(
(AAt − I d)∇Xt

)
(s)
∥
∥
L2 ds

+
∫ t

0
22 j e−c(t−s)22 j

∥
∥� j�

v
�

(
(AAt − I d)s∇Xt

)
(s)
∥
∥
L2 ds

+ t
(∫ t

2

0
+
∫ t

t
2

)
2 j e−c(t−s)22 j ‖� j�

v
��(s)‖L2 ds.

(7.15)

By virtue of (7.13), we have
∫ t

0
22 j (t − s)e−c(t−s)22 j

∥
∥� j�

v
�

(
(AAt − I d)∇Xt

)
(s)
∥
∥
L2 ds
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�
∥
∥� j�

v
�

(
(AAt − I d)∇Xt

)∥
∥
L1
t (L2)

� c j,�δ1‖∇Xt‖L̃1
t (Ḣ0,0).

Along the same lines, we have
∫ t

0
22 j e−c(t−s)22 j

∥
∥� j�

v
�

(
(AAt − I d)s∇Xt

)
(s)
∥
∥
L2 ds

�
∥
∥� j�

v
�

(
(AAt − I d)s∇Xt

)∥
∥
L∞
t (L2)

� c j,�‖(AAt − I d)‖
L∞
t

(

B1, 12
1

)‖t∇Xt‖L̃∞
t (Ḣ0,0) � c j,�δ1‖t∇Xt‖L̃∞

t (Ḣ0,0).

(7.16)

Meanwhile, it is easy to observe from Lemma 7.1 that

t
∫ t

2

0
2 j e−c(t−s)22 j ‖� j�

v
��(s)‖L2 ds

�
∫ t

2

0
(t − s)22 j e−c(t−s)22 j ‖� j�

v
�|D|−1

�(s)‖L2 ds

� ‖� j�
v
�|D|−1

�‖L1
t (L2),

and

t
∫ t

t
2

2 j e−c(t−s)22 j ‖� j�
v
��(s)‖L2 ds

�
∫ t

t
2

〈t − s〉−1(2− j + 2 j )‖s� j�
v
��(s)‖L2 ds

�
∫ t

t
2

〈t − s〉−1
(
‖s� j�

v
�|D|−1

�(s)‖L2 + ‖s� j�
v
�|D|�(s)‖L2

)
ds.

Substituting the above estimates into (7.15) leads to

2 j t‖� j�
v
�Xt (t)‖L2

� c j,�δ1
(‖∇Xt‖L̃1

t (Ḣ0,0) + ‖t∇Xt‖L̃∞
t (Ḣ0,0)

)+ ‖� j�
v
�|D|−1

�‖L1
t (L2)

+
∫ t

t
2

〈t − s〉−1
(
‖s� j�

v
�|D|−1

�(s)‖L2 + ‖s� j�
v
�|D|�(s)‖L2

)
ds

(7.17)

for all ( j, �) satisfying j ≤ �+1
2 .

•When j > �+1
2

In this case, we have

g2j,�(t) ∼ ‖� j�
v
�Xt (t)‖2L2 + ‖� j�

v
��X (t)‖2L2 ,

and Lemma 7.1 implies that

3

4
‖∇� j�

v
�Xt‖2L2 + 1

4
‖∂3∇� j�

v
�X‖2L2

≥ c
(
22 j‖� j�

v
�Xt‖2L2 + 22 j22�‖� j�

v
�X‖2L2

)

≥ c
22�

22 j

(
‖� j�

v
�Xt‖2L2 + ‖� j�

v
��X‖2L2

)
.
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Then we deduce from (7.9) that

d

dt
g j,�(t) + c22(�− j)g j,�(t) ≤ ‖� j�

v
� f (t)‖L2 ,

which implies that

g j,�(t) ≤
∫ t

0
e−c(t−s)22(�− j)‖� j�

v
� f (s)‖L2 ds (7.18)

and

22�‖� j�
v
�X‖L1

t (L2) � ‖� j�
v
� f ‖L1

t (L2). (7.19)

On the other hand, we get, by taking L2 inner product of (7.1) with � j�
v
�Xt , that

1

2

d

dt
‖� j�

v
�Xt‖2L2 + ‖∇� j�

v
�Xt‖2L2 = (

∂23� j�
v
�X + � j�

v
� f | � j�

v
�Xt

)

L2 ,

from which, with Lemma 7.1, we infer

d

dt
‖� j�

v
�Xt (t)‖L2 + c22 j‖� j�

v
�Xt (t)‖L2

� 22�‖� j�
v
�X (t)‖L2 + ‖� j�

v
� f (t)‖L2 ,

so that it holds that

2 j‖� j�
v
�Xt (t)‖L2 � 22�+ j

∫ t

0
e−c(t−s)22 j ‖� j�

v
�X (s)‖L2 ds

+ 2 j
∫ t

0
e−c(t−s)22 j ‖� j�

v
� f (s)‖L2 ds.

(7.20)

Then we deduce from (7.19) that for j > �+1
2

2 j‖� j�
v
�Xt‖L1

t (L2) � 22�− j‖� j�
v
�X‖L1

t (L2) + 2− j‖� j�
v
� f ‖L1

t (L2)

� 2− j‖� j�
v
� f ‖L1

t (L2).
(7.21)

Moreover, in this case, it follows from Lemma 7.1 and (7.18) that

22�+ j t
∫ t

0
e−c22 j (t−s)‖� j�

v
�X (s)‖L2 ds

� 22�− j t‖� j�
v
�X‖L∞

t (L2)

� 22�−3 j t‖� j�
v
��X‖L∞

t (L2) � 22�−3 j t‖g j,�‖L∞
t

� 22�−3 j t
∫ t

0
e−c(t−s)22(�− j)‖� j�

v
� f (s)‖L2 ds,



1078 Wen Deng & Ping Zhang

from which, in a proof similar to that of (7.17), we infer

22�+ j t
∫ t

0
e−c22 j (t−s)‖� j�

v
�X (s)‖L2 ds

� c j,�δ1
(‖∇Xt‖L̃1

t (Ḣ0,0) + ‖t∇Xt‖L̃∞
t (Ḣ0,0)

)

+ ‖� j�
v
�|D|−1

�‖L1
t (L2)

+
∫ t

t
2

〈t − s〉−1(‖s� j�
v
�|D|−1

�(s)‖L2 + ‖s� j�
v
�|D|�(s)‖L2

)
ds.

(7.22)

Here we use the fact j ≥ � − N0 for some fixed integer N0 in the operator � j�
v
�.

By virtue of (7.20) and (7.22), we get, by a similar derivation of (7.17), that
(7.17) holds for all ( j, �) ∈ Z

2. Furthermore, in view of (7.12)-(7.21), we obtain
for all ( j, �) ∈ Z

2 that

2 j‖� j�
v
�Xt‖L1

t (L2) �2− j‖� j�
v
� f ‖L1

t (L2). (7.23)

Inserting (7.14) into (7.23) gives rise to

‖∇Xt‖L̃1
t (Ḣ0,0) =

⎛

⎝
∑

j,�∈Z2

22 j‖� j�
v
�Xt‖2L1

t (L2)

⎞

⎠

1
2

≤ Cδ1‖∇Xt‖L̃1
t (Ḣ0,0) + C

⎛

⎝
∑

j,�∈Z2

‖� j�
v
�|D|−1

�‖2
L1
t (L2)

⎞

⎠

1
2

≤ Cδ1‖∇Xt‖L̃1
t (Ḣ0,0)+C

∫ t

0

⎛

⎝
∑

j,�∈Z2

‖� j�
v
�|D|−1

�(s)‖2L2

⎞

⎠

1
2

ds

≤ C
(
δ1‖∇Xt‖L̃1

t (Ḣ0,0) + ‖|D|−1
�‖L1

t (L2)

)
.

In particular, by taking δ1 to be sufficiently small in (7.2), we conclude that

‖∇Xt‖L̃1
t (Ḣ0,0) ≤ C‖|D|−1

�‖L1
t (L2). (7.24)

Along the same lines, we deduce from (7.17) that

‖t∇Xt‖L̃∞
t (Ḣ0,0) =

⎛

⎝
∑

j,�∈Z2

22 j‖t� j�
v
�Xt‖2L∞

t (L2)

⎞

⎠

1
2

≤ C

(

δ1

(
‖∇Xt‖L̃1

t (Ḣ0,0)+‖t∇Xt‖L̃∞
t (Ḣ0,0)

)
+‖|D|−1

�‖L1
t (L2)

+
∫ t

t
2

〈t−s〉−1
(
‖s|D|−1

�(s)‖L2+‖s|D|�(s)‖L2

)
ds

)

.

(7.25)
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Thus, by taking that δ1 is small enough in (7.2), we obtain

t‖∇Xt (t)‖L2 ≤ ‖t∇Xt‖L̃∞
t (Ḣ0,0)

≤ C
(
‖|D|−1

�‖L1
t (L2)

+
∫ t

t
2

〈t − s〉−1(‖s|D|−1
�(s)‖L2 + ‖s|D|�(s)‖L2

)
ds
)

≤ Cε

(
sup

s∈[0,t]
‖s1+ε|D|−1

�‖L2 + sup
s∈[0,t]

‖s1+ε|D|�‖L2
)
, (7.26)

which leads to (7.3).
The proof of the general estimates in (7.4) follow along the same lines. Indeed

for any k ≥ 1, we have
∥
∥Dk((AAt − I d)∇Xt

)∥
∥
L̃1
t (Ḣ0,0)

� Ck

∑

k1+k2=k

‖Dk1(AAt − I d)‖
L∞
t

(

Ḃ
3
2
2,1

)‖Dk2∇Xt‖L̃1
t (Ḣ0,0)

� Ck

∑

k1+k2=k

‖Dk1∇Y‖
L∞
t

(

Ḃ
3
2
2,1

)‖Dk2∇Xt‖L̃1
t (Ḣ0,0),

from which, along with a similar derivation of (7.24), we inductively infer that

‖Dk∇Xt‖L̃1
t (Ḣ0,0) ≤ C‖|D|k−1

�‖L1
t (L2)

+ Ck

∑

k1+···+k�=k

‖Dk1∇Y‖
L∞
t

(

Ḃ
3
2
2,1

) · · · ‖Dk�∇Y‖
L∞
t

(

Ḃ
3
2
2,1

)‖|D|−1
�‖L1

t (L2).

Hence by applying the interpolation inequality, which says that

‖Dki ∇Y‖
L∞
t

(

Ḃ
3
2
2,1

) � ‖∇Y‖1−ki /k

L∞
t

(

Ḃ
3
2
2,1

)‖Dk∇Y‖ki /k
L∞
t

(

Ḃ
3
2
2,1

) for 0 ≤ ki ≤ k,

and assumption (7.2), we obtain

‖Dk∇Xt‖L̃1
t (Ḣ0,0)

≤ Ck

((
δ1 + ‖Dk∇Y‖

L∞
t

(
Ḃ

3
2
2,1

)
)‖|D|−1

�‖L1
t (L2) + ‖|D|k−1

�‖L1
t (L2)

)
.
(7.27)

It follows from a similar derivation of (7.25) that

‖t Dk∇Xt‖L̃∞
t (Ḣ0,0)

≤ Ck

(
‖|D|k−1

�‖L1
t (L2) + δ1

(‖Dk∇Xt‖L̃1
t (Ḣ0,0) + ‖t Dk∇Xt‖L̃∞

t (Ḣ0,0)

)

+ (
δ1 + ‖Dk∇Y‖

L∞
t

(
Ḃ

3
2
2,1

)
)(‖∇Xt‖L̃1

t (Ḣ0,0) + ‖t∇Xt‖L̃∞
t (Ḣ0,0)

)

+
∫ t

t
2

〈t − s〉−1(‖s|D|k−1
�(s)‖L2 + ‖s|D|k+1

�(s)‖L2
)
ds
)
.

Thus (7.4) follows from (7.27) and the argument in (7.26). This completes the proof
of Proposition 7.1. ��
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8. Estimates of the source term f (Y )

In this section, we shall present the estimates to the nonlinear source term f (Y )

determined by (2.25).
•The estimate of ||| f (Y )|||δ,N
Proposition 8.1. Let the functionals f0, f1, f2 be given in (4.3) and the norm ‖| ·
‖|δ,N by (2.39). Then under the assumption of (2.41), we have:

||| f0(Y )|||δ,N � ‖∇Y‖0‖∇Yt‖N+6 + ‖∇Y‖N+6‖∇Yt‖0; (8.1)

||| f1(Y )|||δ,N � ‖∂3Y‖0‖∂3Y‖N+6 + ‖∇Y‖N+6|∂3Y |0‖∂3Y‖1; (8.2)

||| f2(Y )|||δ,N � ‖Yt‖0‖Yt‖N+6 + ‖∇Y‖N+6|Yt |0‖Yt‖1. (8.3)

Proof. As in Sect. 4, we shall deal with the estimate of f (Y ) by the norm of the
homogeneous Besov space Ḃs

1,1 instead of the one in the homogeneous Sobolev

space Ẇ s,1. Indeed, in view of (4.3), we get, by applying the law of products (5.1),
that for s > 0,

‖ f0(Y )‖Ḃs
1,1

� ‖(AtA − I d)∇Yt‖Ḃs+1
1,1

� ‖∇Y‖0‖∇Yt‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs+1
2,1

‖∇Yt‖0.

We then have that (8.1) follows from the above inequality and the interpolation
inequality (5.22). Along the same lines, we deduce from (4.3) that

‖ fm(Y )‖Ḃs
1,1

� (1 + |At − I d|0)‖∇ pm‖Ḃs
1,1

+ ‖A − I d‖Ḃs
2,1

‖∇ pm‖0
� ‖∇ pm‖Ḃs

1,1
+ ‖∇Y‖Ḃs

2,1
‖∇ pm‖0.

However, it follows from (4.1) that

‖∇ p1‖Ḃs
1,1

� δ1‖∇ p1‖Ḃs
1,1

+ ‖∇Y‖Ḃs
2,1

‖∇ p1‖0 + ‖A(∂3Y ⊗ ∂3Y )‖Ḃs+1
1,1

+ ‖∇Y‖Ḃs
2,1

‖A(∂3Y ⊗ ∂3Y )‖Ḣ1 ,

which, together with (5.6), implies

‖∇ p1‖Ḃs
1,1

� ‖∂3Y‖0‖∂3Y‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs
2,1∩Ḃs+1

2,1
|∂3Y |0‖∂3Y‖1.

As a result, we have that

‖ f1(Y )‖Ḃs
1,1

� ‖∂3Y‖0‖∂3Y‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs
2,1∩Ḃs+1

2,1
|∂3Y |0‖∂3Y‖1.

Similarly, we have

‖ f2(Y )‖Ḃs
1,1

� ‖Yt‖0‖Yt‖Ḃs+1
2,1

+ ‖∇Y‖Ḃs
2,1∩Ḃs+1

2,1
|Yt |0‖Yt‖1.

Then (8.2) and (8.3) then follow from the above estimates and the interpolation
inequality (5.22). This completes the proof of Proposition 8.1. ��
•The estimate of ‖|D|−1 f (Y )‖N+1
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Proposition 8.2. Under the same assumptions of Proposition 8.1, we have

‖|D|−1 f0(Y )‖N+1 � |∇Y |0‖∇Yt‖N+1 + |∇Y |N+1‖∇Yt‖0; (8.4)

‖|D|−1 f1(Y )‖N+1 � |∂3Y |0‖∂3Y‖N+1 + |∇Y |N+1|∂3Y |0‖∂3Y‖1; (8.5)

‖|D|−1 f2(Y )‖N+1 � |Yt |0‖Yt‖N+1 + |∇Y |N+1|Yt |0‖Yt‖1. (8.6)

Proof. In view of (4.3), we get, by applying Moser type inequality, that

‖|D|−1 f0(Y )‖N ≤ ‖(AtA − I d)∇Yt‖N � |∇Y |0‖∇Yt‖N + |∇Y |N‖∇Yt‖0,
which gives (8.4). Meanwhile, again by (4.3) and the law of products in Besov
spaces, one has

‖|D|−1 fm(Y )‖0 �
(
1 + ‖At − I d‖

Ḃ
3
2
2,1

)‖∇ pm‖Ḣ−1 ,

yet it follows from (4.1) that

‖∇ p1‖Ḣ−1 � ‖∇Y‖
Ḃ

3
2
2,1

‖∇ p1‖Ḣ−1 + (1 + ‖A − I d‖
Ḃ

3
2
2,1

)‖A(∂3Y ⊗ ∂3Y )‖0,

from which, with the assumption (2.41), we infer

‖|D|−1 f1(Y )‖0 � ‖∇ p1‖Ḣ−1 � |∂3Y |0‖∂3Y‖0. (8.7)

Similarly, we have

‖|D|−1 f2(Y )‖0 � ‖∇ p2‖Ḣ−1 � |Yt |0‖Yt‖0. (8.8)

For N ≥ 0, we deduce from (4.3) that

‖ f1(Y )‖N � ‖∇ p1‖N + |∇Y |N‖∇ p1‖0,
and it follows from (4.1) that

‖∇ p1‖N � |∇Y |0‖∇ p1‖N + |∇Y |N‖∇ p1‖0 + ‖Adiv
(A(∂3Y ⊗ ∂3Y )

)‖N ,

which, together with (2.41) and (5.6), ensures that

‖∇ p1‖N � |∂3Y |0‖∂3Y‖N+1 + |∇Y |N+1|∂3Y |0‖∂3Y‖1.
As a result,

‖ f1(Y )‖N � |∂3Y |0‖∂3Y‖N+1 + |∇Y |N+1|∂3Y |0‖∂3Y‖1. (8.9)

The same procedure for f2(Y ) yields

‖ f2(Y )‖N � |Yt |0‖Yt‖N+1 + |∇Y |N+1|Yt |0‖Yt‖1. (8.10)

(8.5) and (8.6) follow from (8.7)-(8.10). This completes the proof of Proposition
8.2. ��
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9. The Proof of Theorem 2.1

The goal of this section is to prove Theorem 2.1 by using the Nash–Moser
scheme. The key ingredients are the uniform estimates of the approximate solutions
obtained in Propositions 2.8, 2.9 and 2.10, whichwewill prove by induction inwhat
follows.

9.1. The Estimates of Y0

Recall that Y0 solves the linear equation (2.72). Let N̄0 = N0+6, for η ∈]0, 1[,
we choose the initial data (Y (0),Y (1)) such that (2.20) holds for L0 = N0 + 12.
Then we get, by applying (2.32) of Proposition 2.1, that

|∂3Y0|1,N̄0
+ |∂t Y0| 3

2−δ,N̄0
+ |Y0| 1

2 ,N̄0

≤ CN0

(‖|D|2δ(Y (0),Y (1))‖L1 + ‖|D|N̄0+4(|D|2Y (0),Y (1))‖L1
) ≤ η.

(9.1)

Note that

‖|D|−1h‖0 ≤
(∫

|ξ |≤1

1

|ξ |2 |ĥ(ξ)|2 dξ
) 1
2 + ‖h‖0 ≤ |ĥ|0 + ‖h‖0 ≤ ‖h‖L1 + ‖h‖0,

so that we get, by applying (2.33), (2.34) and (2.35) of Proposition 2.1, that

‖|D|−1(∂3Y0, ∂t Y0)‖0,N̄0+2 + ‖∇Y0‖0,N̄0+1 + ‖∇∂t Y0‖1,N̄0−1

+ ‖(∂t Y0, ∂3Y0)‖ 1
2 ,N̄0+1 + ‖∂t Y0‖L2

t (H
N̄0+2)

+ ∥
∥(∂3Y0, 〈t〉 1

2 ∇∂t Y0)
∥
∥
L2
t (H

N̄0+1)

≤ CN̄0
‖|D|−1(∂3Y

(0),Y (1),�Y (0))‖N̄0+2

≤ CN̄0

(‖(∂3Y (0),Y (1),�Y (0))‖L1 + ‖(∂3Y (0),Y (1),�Y (0))‖N̄0+1

) ≤ η.

(9.2)

By virtue of (9.1) and (9.2), we deduce from Proposition 8.2 that

‖〈t〉|D|−1 f (Y0)‖L2
t (H

N0+1) � |∂3Y0|1,0‖∂3Y0‖L2
t (H

N0+1)

+ |∂t Y0|1,0‖∂t Y0‖L2
t (H

N0+1)

+ |∇Y0| 1
2 ,0‖〈t〉

1
2 ∇∂t Y0‖L2

t (H
N0+1) + |∇Y0| 1

2 ,N0+1‖〈t〉
1
2 ∇∂t Y0‖L2

t (L2)

+ |∇Y0|0,N0+1
(|∂3Y0|1,0‖∂3Y0‖L2

t (H1) + |∂t Y0|1,0‖∂t Y0‖L2
t (H1)

)
� CN0η

2,

(9.3)

and

‖|D|−1 f (Y0)‖ 3
2 ,N0+1 � |∂3Y0|1,0‖∂3Y0‖ 1

2 ,N0+1 + |∂t Y0|1,0‖∂t Y0‖ 1
2 ,N0+1

+ |∇Y0| 1
2 ,0‖∇∂t Y0‖1,N0+1 + |∇Y0| 1

2 ,N0+1‖∇∂t Y0‖1,0
+ |∇Y0|0,N0+1

(|∂3Y0|1,0‖∂3Y0‖ 1
2 ,1 + |∂t Y0|1,0‖∂t Y0‖ 1

2 ,1

)
� CN0η

2.

(9.4)
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Similarly, we deduce from Proposition 8.1 and (9.1) and (9.2) that

|||〈t〉 1
2 f (Y0)|||L2

t (δ,N0)
� ‖∇Y0‖0,0‖〈t〉 1

2 ∇∂t Y0‖L2
t (H

N0+6)

+ ‖∇Y0‖0,N0+6‖〈t〉 1
2 ∇∂t Y0‖L2

t (L2)

+ ‖∂3Y0‖ 1
2 ,0‖∂3Y0‖L2

t (H
N0+6) + ‖∂t Y0‖ 1

2 ,0‖∂t Y0‖L2
t (H

N0+6)

+ ‖∇Y0‖0,N0+6
(|∂3Y0| 1

2 ,0‖∂3Y0‖L2
t (H1) + |∂t Y0| 1

2 ,0‖∂t Y0‖L2
t (H1)

)
� CN0η

2.

(9.5)

9.2. The Proof of Proposition 2.9 and Proposition 2.10 from Proposition 2.8

Let us assume that

(P1, j), (P2, j), (P3, j) of Proposition 2.8 hold for j ≤ p. (9.6)

We are going to prove Proposition 2.9 and Proposition 2.10.

Proof of Proposition 2.9. Notice from (2.75) that

|∂3Yp+1|k,N ≤ |∂3Y0|k,N +
p∑

j=0

|∂3X j |k,N ,

which, together with (9.1) and (P2, j) with j ≤ p, ensures that for 1
2 ≤ k ≤ 1,

0 ≤ N ≤ N0,

|∂3Yp+1|k,N ≤ Cηθ
k− 1

2−γ+ε̄N
p+1 , if k − 1

2
− γ + ε̄N ≥ ε̄,

|∂3Yp+1|k,N ≤ Cη, if k − 1

2
− γ + ε̄N ≤ −ε̄.

(9.7)

For k̂
def= min(k, 1), N̂

def= min(N , N0), we observe from the property (S I) of
smoothing operator Sp+1 that

|Sp+1∂3Yp+1|k,N ≤ C |∂3Yp+1|k,N for
1

2
≤ k ≤ 1, 0 ≤ N ≤ N0,

|Sp+1∂3Yp+1|k,N
≤ Ck,N θ

max(0,k−k̂)
p+1 θ

ε̄max(0,N−N̂ )
p+1 |∂3Yp+1|k̂,N̂ for k ≥ 1 or N ≥ N0;

the first inequalities of (I)(i) and (II)(i) of Proposition 2.9 then follow from (9.7).
Along the same lines as the proof of (9.7), we have:

• for 1 − δ ≤ k ≤ 3
2 − δ, 0 ≤ N ≤ N0,

|∂t Yp+1|k,N ≤ Cηθ
k−(1−δ)−γ+ε̄N
p+1 , if k − (1 − δ) − γ + ε̄N ≥ ε̄,

|∂t Yp+1|k,N ≤ Cη, if k − (1 − δ) − γ + ε̄N ≤ −ε̄;
(9.8)
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• for 0 ≤ k ≤ 1
2 , 0 ≤ N ≤ N0,

|Yp+1|k,N ≤ Cηθ
k−γ+ε̄N
p+1 , if k − γ + ε̄N ≥ ε̄,

|Yp+1|k,N ≤ Cη, if k − γ + ε̄N ≤ −ε̄.
(9.9)

Then other inequalities in (I)(i) and (II)(i) of Proposition 2.9 follow.
(I)(ii) and (II)(ii) of Proposition 2.9 follow from property (S I) of the mollifying

operator and the following fact:

∥
∥|D|−1(∂3Yp+1, ∂t Yp+1)

∥
∥
0,N+2 + ‖∇Yp+1‖0,N+1 + ‖∂t Yp+1‖L2

t (HN+2)

+ ‖(∂t Yp+1, ∂3Yp+1)‖ 1
2 ,N+1 + ‖∇∂t Yp+1‖1,N−1

+ ∥
∥(∂3Yp+1, 〈t〉 1

2 ∇∂t Yp+1)
∥
∥
L2
t (HN+1)

≤
{
Cηθ

−β+ε̄N
p+1 , for − β + ε̄N ≥ ε̄, N ≤ N0,

Cη, for − β + ε̄N ≤ −ε̄, N ≤ N0,

(9.10)

which is a direct consequence of (P1, j) of Proposition 2.8 for j ≤ p and (9.2).
Finally let us prove (III) of Proposition 2.9. Indeed it follows from property

(S II) of Sp+1 that

|(1 − Sp+1)∂3Yp+1| 1
2 ,0 ≤ C

(
θ

− 1
2

p+1|∂3Yp+1|1,0 + θ
−ε̄N0
p+1 |∂3Yp+1| 1

2 ,N0

)
.

Due to (2.83) and (2.84), there hold 1
2 − γ ≥ ε̄ and −γ + ε̄N0 ≥ ε̄, so that we can

apply (9.7) to deduce that

|(1 − Sp+1)∂3Yp+1| 1
2 ,0 ≤ Cη

(
θ

− 1
2

p+1θ
1
2−γ

p+1 + θ
−ε̄N0
p+1 θ

−γ+ε̄N0
p+1

) ≤ Cηθ
−γ
p+1. (9.11)

Using (9.7) once again gives rise to

|(1 − Sp+1)∂3Yp+1|1,N ≤ C |∂3Yp+1|1,N ≤ ηθ
1
2−γ+ε̄N
p+1 for 0 ≤ N ≤ N0,

(9.12)

|(1 − Sp+1)∂3Yp+1|k,N0 ≤ C |∂3Yp+1|k,N0 ≤ ηθ
k− 1

2−γ+ε̄N0

p+1 for
1

2
≤ k ≤ 1.

(9.13)

Interpolating between (9.11), (9.12) and (9.13) leads to

|(1 − Sp+1)∂3Yp+1|k,N ≤ Cηθ
k− 1

2−γ+ε̄N
p+1 , for all

1

2
≤ k ≤ 1, 0 ≤ N ≤ N0.

The other two inequalities in (III) of Proposition 2.9 can be proved by the same
procedure. This completes the proof of Proposition 2.9. ��

Let us now turn to the proof of Proposition 2.10.
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Proof of Proposition 2.10. We shall divide the proof of this proposition in a num-
ber of steps:
Step 1. The Proof of (IV) of Proposition 2.10. The proof of (IV) will be based on
the following lemmas:

Lemma 9.1. Let e′
p, j , e

′′
p, j , for j = 0, 1, 2, be given by (2.81). Then under the

assumption of (9.6), one has

‖〈t〉 1
2+k |D|−1(e′′

p,1 + e′′
p,2)‖L2

t (HN+1) � η2θ
k−γ−β+ε̄(N+1)
p

if 0 ≤ k ≤ 1

2
, 0 ≤ N ≤ N0 − 1; (9.14)

‖〈t〉 1
2+k |D|−1(e′

p,1 + e′
p,2)‖L2

t (HN+1) � η2θ
k−γ−β+ε̄(N+1)
p

if 0 ≤ k ≤ 1

2
, 0 ≤ N ≤ N0 − 1; (9.15)

‖〈t〉 1
2+k |D|−1e′′

p,0‖L2
t (HN+1) � η2θ

k+δ−γ−β+ε̄(N+3)
p

if 0 ≤ k ≤ α, 0 ≤ N ≤ N0 − 2; (9.16)

‖〈t〉k+ 1
2 |D|−1e′

p,0‖L2
t (HN+1) � η2θ

k+δ−γ−β+ε̄(N+3)
p

if 0 ≤ k ≤ α, 0 ≤ N ≤ N0 − 2. (9.17)

Lemma 9.2. Under the assumption of Lemma 9.1, one has

‖|D|−1(e′′
p,1 + e′′

p,2)‖1+k,N+1 � η2θ
k−γ−β+ε̄(N+1)
p

if 0 ≤ k ≤ 1

2
, 0 ≤ N ≤ N0 − 1; (9.18)

‖|D|−1(e′
p,1 + e′

p,2)‖1+k,N+1 � η2θ
k−γ−β+ε̄(N+1)
p

if 0 ≤ k ≤ 1

2
, 0 ≤ N ≤ N0 − 1; (9.19)

‖|D|−1e′′
p,0‖1+k,N+1 � η2θ

k+δ−γ−β+ε̄(N+2)
p

if 0 ≤ k ≤ 1

2
− δ, N ≤ N0 − 2; (9.20)

‖|D|−1e′
p,0‖1+k,N+1 � η2θ

k+δ−γ−β+ε̄(N+2)
p

if 0 ≤ k ≤ 1

2
− δ, N ≤ N0 − 2. (9.21)

Lemma 9.3. Under the assumption of Lemma 9.1, for 0 ≤ N ≤ N0 −6, there hold

|||(e′′
p,1 + e′′

p,2)|||L1
t (δ,N )

� η2θ
−β−γ+ε̄(N+5)
p ; (9.22)

|||(e′
p,1 + e′

p,2)|||L1
t (δ,N )

� η2θ
−γ+ε̄(N+5)
p ; (9.23)

|||〈t〉 1
2 e′′

p,0|||L2
t (δ,N )

� η2θ
−β−γ+ε̄(N+5)
p ; (9.24)

|||〈t〉 1
2 e′

p,0|||L2
t (δ,N )

� η2θ
−γ+ε̄(N+5)
p . (9.25)
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We shall postpone the proof of the above lemmas to Appendix 10. It is easy to
observe that (IV) (i) follows from Lemma 9.1, (IV) (ii) from Lemma 9.2, and (IV)
(iii) from Lemma 9.3.
Step 2. The proof of (V) of Proposition 2.10. Recall (2.80) that

gp+1 = −(Sp+1 − Sp)Ep − Sp+1ep + (Sp+1 − Sp) f (Y0).

In another paper, we shall handle the above term by term.
•Estimates of Sp+1ep

It follows from (IV) of Proposition 2.10 and property (S I) that for k ≥ 0 and
N ≥ 0,

‖〈t〉k+ 1
2 |D|−1Sp+1ep‖L2

t (HN+1) � η2θ
k+δ−γ−β+ε̄(N+3)
p+1 ;

‖|D|−1Sp+1ep‖1+k,N+1 � η2θ
k+δ−γ−β+ε̄(N+2)
p+1 ;

|||〈t〉 1
2 Sp+1ep|||L2

t (δ,N )
� η2θ

−γ+ε̄(N+5)
p+1 .

(9.26)

Notice that the operator Sp+1 contains a cutoff in the variable t of size θp+1, so that

|||Sp+1ep|||L1
t (δ,N )

� (log θp+1)
1
2 |||〈t〉 1

2 Sp+1ep|||L2
t (δ,N )

� η2θ
−γ+ε̄(N+6)
p+1 . (9.27)

•Estimates for (Sp+1 − Sp)Ep

We first deduce from (IV) (i) of Proposition 2.10 that for 0 ≤ k ≤ α and
0 ≤ N ≤ N0 − 2,

‖〈t〉k+ 1
2 |D|−1Ep‖L2

t (HN+1) ≤
p−1∑

j=0

‖〈t〉k+ 1
2 D|−1e j‖L2

t (HN+1)

�
{
Cη2θ

k+δ−γ−β+ε̄(N+3)
p if k + δ − γ − β + ε̄(N + 3) ≥ ε̄;

Cη2, if k + δ − γ − β + ε̄(N + 3) ≤ −ε̄.
.

(9.28)

In particular, due to the choice of parameters (2.83) and (2.84), it holds that

1

2
− γ − β + 2ε̄ ≥ ε̄, −γ − β + ε̄(N0 + 1) ≥ ε̄. (9.29)

We deduce from (9.28) and the property (S II) of 1 − Sp that

‖〈t〉 1
2 |D|−1(Sp+1 − Sp)Ep‖L2

t (H1)

� θ−α
p ‖〈t〉 1

2+α|D|−1Ep‖L2
t (H1) + θ−ε̄(N0−1)

p ‖〈t〉 1
2 |D|−1Ep‖L2

t (H
N0−1)

� η2
(
θ−α
p θ

α+δ−γ−β+3ε̄
p + θ−ε̄(N0−1)

p θ
δ−γ−β+ε̄(N0+1)
p

)
� η2θ

δ−γ−β+3ε̄
p+1 .

(9.30)

On the other hand, for k ≤ α, N ≤ N0 − 2 with k + δ − γ − β + ε̄(N + 3) ≥ ε̄,
we have

‖〈t〉k+ 1
2 |D|−1(Sp+1 − Sp)Ep‖L2

t (HN+1) � ‖〈t〉k+ 1
2 |D|−1Ep‖L2

t (HN+1)

� η2θ
k+δ−γ−β+ε̄(N+3)
p+1 .

(9.31)
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Interpolating between (9.30) and (9.31), we conclude that

‖〈t〉k+ 1
2 |D|−1(Sp+1 − Sp)Ep‖L2

t (HN+1) � η2θ
k+δ−γ−β+ε̄(N+3)
p+1 (9.32)

for 0 ≤ k ≤ α and 0 ≤ N ≤ N0 − 2. This, together with property (S I) of Sp,
ensures that (9.32) holds for any k ≥ 0, N ≥ 0.

Similarly we infer from (IV) (ii) of Proposition 2.10 that for 0 ≤ k ≤ 1
2 − δ,

0 ≤ N ≤ N0 − 2,

‖|D|−1Ep‖1+k,N+1

≤
p−1∑

j=0

‖|D|−1e j‖1+k,N+1

�
{
Cη2θ

k+δ−γ−β+ε̄(N+2)
p , if k + δ − γ − β + ε̄(N + 2) ≥ ε̄;

Cη2, if k + δ − γ − β + ε̄(N + 2) ≤ −ε̄.

(9.33)

Then due to (9.29), we deduce from (9.33) and the property (S II) of 1 − Sp that

‖|D|−1(Sp+1 − Sp)Ep‖1,1
� θ

− 1
2+δ

p ‖|D|−1Ep‖ 3
2−δ,1 + θ−ε̄(N0−1)

p ‖|D|−1Ep‖1,N0−1

� η2
(

θ
− 1

2+δ
p θ

1
2−γ−β+2ε̄
p + θ−ε̄(N0−1)

p θ
δ−γ−β+ε̄(N0+1)
p

)

� η2θ
δ−γ−β+2ε̄
p+1 .

(9.34)

On the other hand, for k ≤ 1
2−δ, N ≤ N0−2 such that k+δ−γ −β+ε̄(N+2) ≥ ε̄,

we get

‖|D|−1(Sp+1 − Sp)Ep‖1+k,N+1 � ‖|D|−1Ep‖1+k,N+1

� η2θ
k+δ−γ−β+ε̄(N+2)
p+1 . (9.35)

Interpolating between the inequalities (9.34) and (9.35), we achieve (9.35) for any
0 ≤ k ≤ 1

2 − δ, 0 ≤ N ≤ N0 − 2. This, together with the property (S I) of Sp,
ensures that (9.35) holds for any k ≥ 0 and N ≥ 0.

It follows from (IV) (iii) of Proposition 2.10 that for N ≤ N0 − 6,

|||〈t〉 1
2 Ep|||L2

t (δ,N )
≤

p−1∑

j=0

|||〈t〉 1
2 e j |||L2

t (δ,N )
� η2

p−1∑

j=0

θ
−γ+ε̄(N+5)
j

�
{

η2θ
−γ+ε̄(N+5)
p+1 if − γ + ε̄(N + 5) ≥ ε̄;

η2, if − γ + ε̄(N + 5) ≤ −ε̄,

which together with the property (S I) and compact support of mollifying operator
ensures that for any N ≥ 0,

|||(Sp+1 − Sp)Ep|||L1
t (δ,N )

�
{

η2θ
−γ+ε̄(N+6)
p+1 , if − γ + ε̄(N + 5) ≥ ε̄;

η2θ ε̄
p+1, if − γ + ε̄(N + 5) ≤ −ε̄.

(9.36)
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•Estimates for (Sp+1 − Sp) f (Y0)
Recalling (9.29), we get, by applying (S II) and (9.3), that

‖〈t〉 1
2 |D|−1(Sp+1 − Sp) f (Y0)‖L2

t (H1)

� θ
− 1

2
p+1‖〈t〉|D|−1(Sp+1 − Sp) f (Y0)‖L2

t (H1)

+ θ
−ε̄N0
p+1 ‖〈t〉 1

2 |D|−1(Sp+1 − Sp) f (Y0)‖L2
t (H

N0+1)

� η2
(
θ

− 1
2

p+1 + θ
−ε̄N0
p+1

)
� η2θ

−γ−β+ε̄
p+1 ,

whereas for k ≤ 1
2 and N ≤ N0 with k − γ − β + ε̄(N + 3) ≥ ε̄, we deduce from

(9.3) that

‖〈t〉k+ 1
2 |D|−1(Sp+1 − Sp) f (Y0)‖L2

t (HN+1) � ‖〈t〉|D|−1 f (Y0)‖L2
t (H

N0+1)

� η2 ≤ η2θ
k−γ−β+ε̄(N+3)
p+1 .

Interpolating the above two inequalities gives rise to

‖〈t〉k+ 1
2 |D|−1(Sp+1 − Sp) f (Y0)‖L2

t (HN+1) ≤ η2θ
k−γ−β+ε̄(N+3)
p+1

for all 0 ≤ k ≤ 1
2 , 0 ≤ N ≤ N0. This, together with the property (S I) of Sp+1,

ensures that

‖〈t〉k+ 1
2 |D|−1(Sp+1 − Sp) f (Y0)‖L2

t (HN+1) ≤ η2θ
k−γ−β+ε̄(N+3)
p+1 (9.37)

for all k ≥ 0 and N ≥ 0.
Along the same lines, it follows from (9.4) that for k ≥ 0, N ≥ 0,

‖|D|−1(Sp+1 − Sp) f (Y0)‖1+k,N+1 ≤ η2θ
k−γ−β+ε̄(N+3)
p+1 . (9.38)

It further follows from (9.5) that if −γ + ε̄(N + 5) ≤ −ε̄ (implying N ≤ N0),

|||(Sp+1 − Sp) f (Y0)|||L1
t (δ,N )

� (log θp+1)
1
2 |||〈t〉 1

2 f (Y0)|||L2
t (δ,N0)

� η2θ ε̄
p+1,

and if −γ + ε̄(N + 5) ≥ ε̄, one has

|||(Sp+1 − Sp) f (Y0)|||L1
t (δ,N )

� (log θp+1)
1
2 θ

ε̄max(N−N0,0)
p+1 |||〈t〉 1

2 f (Y0)|||L2
t (δ,N0)

� η2θ
−γ+ε̄(N+6)
p+1 ,

by using (S I) and the fact that ε̄(N0 + 5) ≥ γ . Along with (9.26), (9.27), (9.32),
(9.35), (9.36), (9.37) and (9.38), we complete the proof of (V).
Step 3. The proof of (VI) of Proposition 2.10.

In the case when −γ + ε̄(N + 5) ≥ ε̄, we deduce from (V)(i), (V)(ii) and
(V)(iii) of Proposition 2.10 that

RN ,θp+1(gp+1) = |||gp+1|||L1
t (δ,N )

+ θ
1
2
p+1

∥
∥〈t〉 1

2 |D|−1gp+1
∥
∥
L2
t (HN+3)



Decay of Solutions to 3-D MHD System 1089

+ log〈θp+1〉‖|D|−1gp+1‖ 3
2−δ,N+3

� η2
(

θ
−γ+ε̄(N+6)
p+1 + θ

1
2+δ−γ−β+ε̄(N+5)
p+1 + θ

1
2−γ−β+ε̄(N+5)
p+1

)

� η2θ
1
2−γ+ε̄N
p+1 ,

provided that

6ε̄ ≤ 1

2
and β ≥ δ + 5ε̄, (9.39)

which are satisfied due to (2.83) and (2.82).
On the other hand, since −γ + 6ε̄ ≤ −ε̄, we deduce from (V)(i), (V)(ii) and

(V)(iv) of Proposition 2.10 that

R0,θp+1(gp+1) = |||gp+1|||L1
t (δ,0)

+ θ
1
2
p+1

∥
∥〈t〉 1

2 |D|−1gp+1
∥
∥
L2
t (H3)

+ log〈θp+1〉‖|D|−1gp+1‖ 3
2−δ,3,

� η2
(
θ ε̄
p+1 + θ

1
2+δ−γ−β+5ε̄
p+1 + θ

1
2−γ−β+5ε̄
p+1

)
� η2θ

1
2−γ

p+1 ,

due to (9.39) and 1
2 − γ ≥ ε̄. This finishes the proof of (VI) of Proposition 2.10

and hence the whole of Proposition 2.10. ��

9.3. The Proof of Proposition 2.8 from Proposition 2.9 and Proposition 2.10

Let us assume in this subsection that

both Proposition 2.9 and Proposition 2.10 are valid. (9.40)

We are going to prove (P1, p+1), (P2, p+1) and (P3, p+1), that is, that Proposition
2.8 is valid for p + 1.

Proof of Proposition 2.8. We shall divide that proof into the several steps.
Step 1. The proof of (P3, p + 1) of Proposition 2.8.

(P3, p + 1) is a direct consequence of (9.7), (9.8), (9.9), (9.10) and the choice
of parameters (see (2.83) and (2.82)):

β ≥ 3ε̄, Cη ≤ δ1, γ ≥ δ + ε + 3ε̄.

Step 2. The proof of (P1, p + 1) of Proposition 2.8.
Recall that X = X p+1 solves

Xtt − �Xt − ∂23 X = f ′(Sp+1Yp+1; X) + gp+1. (9.41)

Due to (P3, p + 1), the hypotheses of Theorem 2.3 and (2.64) are satisfied, so
we can apply the energy estimate (2.65) to the system (9.41). When N ≥ 0 with
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−γ + ε̄(N + 1) ≥ ε̄ and −β + ε̄N ≥ ε̄, we deduce from (I) (i), (ii) of Proposition
2.9 that

γ̃ε,N+1(Sp+1Yp+1) � |Sp+1∂3Yp+1| 1
2+ε,N+1 + |Sp+1∂t Yp+1|1+ε,N+2

+ |Sp+1∇Yp+1|0,N+1

+ ‖Sp+1∇Yp+1‖0,N+1 + 1 � θ
−γ+ε+δ+ε̄(N+2)
p+1 + θ

−β+ε̄N
p+1 .

Then in this case, we get, by applying the energy estimate (2.65) to system (9.41)
and using (V) (i), (V) (ii) of Proposition 2.10, that

∥
∥|D|−1(∂3X p+1, ∂t X p+1)

∥
∥
0,N+2 + ‖∇X p+1‖0,N+1

+ ‖(∂t X p+1, ∂3X p+1)‖ 1
2 ,N+1

+ ‖∂t X p+1‖L2
t (HN+2) + ∥

∥(∂3X p+1, 〈t〉 1
2 ∇∂t X p+1)

∥
∥
L2
t (HN+1)

+ ‖∇∂t X p+1‖1,N−1

≤ Cε,N

(
‖|D|−1gp+1‖1+ε,N+1 + ‖〈t〉 1+ε

2 gp+1‖L2
t (HN )

+ γ̃ε,N+1(Sp+1Yp+1)
(‖|D|−1g‖1+ε,2 + ‖〈t〉 1+ε

2 |D|−1gp+1‖L2
t (H1)

))

� η2θ
δ−γ−β+ε̄N
p+1

(
θε+2ε̄
p+1 + θ

ε
2+3ε̄
p+1 + (θ

−γ+ε+δ+2ε̄
p+1 + θ

−β
p+1

)
θε+3ε̄
p+1

)
� ηθ

−β+ε̄N
p+1 ,

(9.42)

provided that γ ≥ δ + ε + 3ε̄ which is satisfied due to (2.83) and (2.82). Along the
same lines, we have

∥
∥|D|−1(∂t X p+1, ∂3X p+1)

∥
∥
0,2 + ‖∇X p+1‖0,1

+ ‖(∂t X p+1, ∂3X p+1)‖ 1
2 ,1 + ‖∂t X p+1‖L2

t (H2)

+ ∥
∥
(
∂3X p+1, 〈t〉 1

2 ∇∂t X p+1
)∥
∥
L2
t (H1)

≤ Cε‖〈t〉 1+ε
2 |D|−1gp+1‖L2

t (H1) � ηθ
−β
p+1 and

‖∇∂t X p+1‖1,0 ≤ Cε

(
‖|D|−1gp+1‖1+ε,2 + ‖〈t〉 1+ε

2 |D|−1gp+1‖L2
t (H2)

)

≤ ηθ
−β+ε̄
p+1 .

(9.43)

By interpolating the inequalities (9.42) and (9.43), we achieve (P1, p + 1) for
N ≥ 0.
Step 3. The proof of (P2, p + 1) of Proposition 2.8.

Notice that by definition Sp+1Yp+1 = 0 and gp+1 = 0 for t ≥ θp+1.
In order to apply Proposition 2.2 to the equation (9.41), it remains to estimate
RN ,θp+1

(
f ′(Sp+1Yp+1; X p+1)

)
given by (2.38).

•The estimate of ||| f ′(Sp+1Yp+1; X p+1)|||L1
t (δ,N )
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It follows from (2.43) that

||| f ′
1(Sp+1Yp+1; X p+1)|||L1

t (δ,N )
� ‖Sp+1∂3Yp+1‖L2

t (H1)

(‖∂3X p+1‖L2
t (HN+6)

+ |Sp+1∂3Yp+1| 1
2+ε̄,0‖∇X p+1‖0,N+6

)+ |Sp+1∂3Yp+1| 1
2+ε̄,1‖∇X p+1‖0,1

× (‖Sp+1∂3Yp+1‖L2
t (HN+6) + ‖Sp+1∇Yp+1‖0,N+6‖Sp+1∂3Yp+1‖L2

t (H3)

)

+ (‖Sp+1∂3Yp+1‖L2
t (HN+6)

+ ‖Sp+1∇Yp+1‖0,N+6|Sp+1∂3Yp+1| 1
2+ε̄,1

)‖∂3X p+1‖L2
t (H1),

from which, with (P1, p + 1), (II) of Proposition 2.9 and the fact that β ≥ 6ε̄, we
infer

||| f ′
1(Sp+1Yp+1; X p+1)|||L1

t (δ,0)
� ηθ

−β+5ε̄
p+1 .

For −β + ε̄(N + 5) ≥ ε̄, it follows from (I) (II) of proposition 2.9 and (P1, p + 1)
that

||| f ′
1(Sp+1Yp+1; X p+1)|||L1

t (δ,N )
� ηθ

−β+ε̄(N+5)
p+1 .

We have that f ′
2(Sp+1Yp+1; X p+1) can be handled along the same lines.

For f ′
0(Sp+1Yp+1; X p+1), we deduce from (2.42) that

|||〈t〉 1
2 f ′

0(Sp+1Yp+1; X p+1)|||L2
t (δ,N )

≤ ‖Sp+1∇Yp+1‖0,0‖〈t〉 1
2 ∇∂t X p+1‖L2

t (HN+6)

+ ‖Sp+1∇Yp+1‖0,N+6‖〈t〉 1
2 ∇∂t X p+1‖L2

t (L2)

+ ‖〈t〉 1
2 Sp+1∇∂t Yp+1‖L2

t (L2)‖∇X p+1‖0,N+6

+ (‖〈t〉 1
2 Sp+1∇∂t Yp+1‖L2

t (HN+6)

+ ‖Sp+1∇Yp+1‖0,N+6|Sp+1∇∂t Yp+1|1+ε̄,0
)‖∇X p+1‖0,0.

Notice that f ′
0(Sp+1Yp+1; X p+1) is supported in {0 ≤ t ≤ θp+1} so that

||| f ′
0(Sp+1Yp+1; X p+1)|||L1

t (δ,N )

� (log θp+1)
1
2 |||〈t〉 1

2 f ′
0(Sp+1Yp+1; X p+1)|||L2

t (δ,N )
,

which together with (P1, p + 1) and (II) of Proposition 2.9, ensures that

||| f ′(Sp+1Yp+1; X p+1)|||L1
t (δ,0)

� ηθ
−β+6ε̄
p+1 and (9.44)

||| f ′(Sp+1Yp+1; X p+1)|||L1
t (δ,N )

� ηθ
−β+ε̄(N+6)
p+1 if − β + ε̄(N + 5) ≥ ε̄.

(9.45)

•The estimate of ‖〈t〉 1
2 |D|−1 f ′(Sp+1Yp+1; X p+1)‖L2

t (HN+1)
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It follows from (2.46) that

‖〈t〉 1
2 |D|−1 f ′

1(Sp+1Yp+1; X p+1)‖L2
t (HN+1)

≤ |Sp+1∂3Yp+1| 1
2 ,0

(‖∂3X p+1‖L2
t (HN+1)

+ |Sp+1∇Yp+1|0,N+1‖∂3X p+1‖L2
t (H1)

)

+ (‖∇X p+1‖0,N+1 + |Sp+1∇Yp+1|0,N+1‖∇X p+1‖0,1
)

×
(

|Sp+1∂3Yp+1|
4
3
1
2+ε̄,1

‖Sp+1∂3Yp+1‖
2
3

L2
t (L2)

+ |Sp+1∂3Yp+1|21
2+ε̄,1

)
+ |Sp+1∂3Yp+1| 1

2 ,N+1

×
(

‖∂3X p+1‖L2
t (H1) +

(

|Sp+1∂3Yp+1|
1
3
1
2+ε̄,0

‖Sp+1∂3Yp+1‖
2
3

L2
t (L2)

+ |Sp+1∂3Yp+1| 1
2+ε̄,0

)
‖∇X p+1‖0,1

)
,

which together with (II) of Proposition 2.9 and (P1, p + 1), ensures that

‖〈t〉 1
2 |D|−1 f ′

1(Sp+1Yp+1; X p+1)‖L2
t (H3) � ηθ

−β+2ε̄
p+1 .

For N satisfying −γ + ε̄(N + 1) ≥ ε̄, we deduce from (I) of Proposition 2.9 and
(P1, p + 1) that

‖〈t〉 1
2 |D|−1 f ′

1(Sp+1Yp+1; X p+1)‖L2
t (HN+1) � ηθ

−β+ε̄N
p+1 .

We note that f ′
2(Sp+1Yp+1; X p+1) can be treated similarly.

For f ′
0(Sp+1Yp+1; X p+1), by virtue of (2.45), we get

‖〈t〉 1
2 |D|−1 f ′

0(Sp+1Yp+1; X p+1)‖L2
t (HN+1)

� |Sp+1∇Yp+1|0,0‖〈t〉 1
2 ∇∂t X p+1‖L2

t (HN+1)

+ |Sp+1∇Yp+1|0,N+1‖〈t〉 1
2 ∇∂t X p+1‖L2

t (L2)

+ |Sp+1∂t Yp+1|1+ε̄,1‖∇X p+1‖0,N+1

+ (|Sp+1∂t Yp+1|1+ε̄,N+2

+ |Sp+1∂t Yp+1|1+ε̄,1|Sp+1∇Yp+1|0,N+1
)‖∇X p+1‖0,0.

As a result,

‖〈t〉 1
2 |D|−1 f ′(Sp+1Yp+1; X p+1)‖L2

t (H3) � ηθ
−β+2ε̄
p+1 and (9.46)

‖〈t〉 1
2 |D|−1 f ′(Sp+1Yp+1; X p+1)‖L2

t (HN+1) � ηθ
−β+ε̄N
p+1 if − γ + ε̄(N + 1) ≥ ε̄.

(9.47)

•The Estimate of ‖|D|−1 f ′(Sp+1Yp+1; X p+1)‖ 3
2−δ,N+1
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By virtue of (2.46), we have

‖|D|−1 f ′
1(Sp+1Yp+1; X p+1)‖ 3

2 ,N+1

≤ |Sp+1∂3Yp+1|1,0
(|Sp+1∇Yp+1|0,N+1‖∂3X p+1‖ 1

2 ,1

+ ‖∂3X p+1‖ 1
2 ,N+1

)

+ (|Sp+1∂3Yp+1|
4
3
7
8 ,1

‖Sp+1∂3Yp+1‖
2
3
1
2 ,0

+ |Sp+1∂3Yp+1|23
4 ,1

)

× (‖∇X p+1‖0,N+1

+ |Sp+1∇Yp+1|0,N+1‖∇X p+1‖0,1
)+ |Sp+1∂3Yp+1|1,N+1‖∂3X p+1‖ 1

2 ,1

+ (|Sp+1∂3Yp+1| 7
8 ,N+1|Sp+1∂3Yp+1|

1
3
7
8 ,0

‖Sp+1∂3Yp+1‖
2
3
1
2 ,0

+ |Sp+1∂3Yp+1| 3
4 ,N+1|Sp+1∂3Yp+1| 3

4 ,0

)‖∇X p+1‖0,1.
Noticing from (2.83) that 1

4 − γ ≥ ε̄, we get, by applying (II) (i) of Proposition
2.9, that

|Sp+1∂3Yp+1| 7
8 ,0 ≤ ηθ

3
8−γ

p+1 , |Sp+1∂3Yp+1|1,0 � ηθ
1
2−γ

p+1 ,

|Sp+1∂3Yp+1| 3
4 ,0 ≤ ηθ

1
4−γ

p+1 .

As a result,

‖|D|−1 f ′
1(Sp+1Yp+1; X p+1)‖ 3

2 ,3

� η2
(

θ
1
2−γ−β+3ε̄
p+1 + θ

1
2− 4

3 γ−β+ 10
3 ε̄

p+1 + θ
1
2−2γ−β+3ε̄
p+1

)

� η2θ
1
2−γ−β+3ε̄
p+1 ,

(9.48)

provided that 1
3γ + 2

3β ≥ 1
3 ε̄, which is the case due to (2.83) and (2.82).

For N with −γ + ε̄(N + 1) ≥ ε̄, we deduce from (I) (i) of Corollary 2.9 that

|Sp+1∂3Yp+1| 7
8 ,N+1 ≤ ηθ

3
8−γ+ε̄(N+1)
p+1 , |Sp+1∂3Yp+1|1,N+1 � ηθ

1
2−γ+ε̄(N+1)
p+1 ,

|Sp+1∂3Yp+1| 3
4 ,N+1 ≤ ηθ

1
4−γ+ε̄(N+1)
p+1 , |Sp+1∇Yp+1|0,N+1 � ηθ

−γ+ε̄(N+1)
p+1 ,

which, together with (P1, p + 1), ensures that

‖|D|−1 f ′
1(Sp+1Yp+1; X p+1)‖ 3

2 ,N+1 � η2θ
1
2−γ−β+ε̄(N+1)
p+1 . (9.49)

Similar estimates as to above hold for f ′
2.

To deal with the term f ′
0(Sp+1Yp+1; X p+1), we get, by applying (2.45), that

‖|D|−1 f ′
0(Sp+1Yp+1; X p+1)‖ 3

2−δ,N+1 � |Sp+1∇Yp+1| 1
2−δ,0‖∇∂t X p+1‖1,N+1

+ |Sp+1∇Yp+1| 1
2−δ,N+1‖∇∂t X p+1‖1,0 + |Sp+1∂t Yp+1| 3

2−δ,1‖∇X p+1‖0,N+1

+ (|Sp+1∂t Yp+1| 3
2−δ,N+2 + |Sp+1∂t Yp+1| 3

2−δ,1|Sp+1∇Yp+1|0,N+1
)‖∇X p+1‖0,0.
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Then along the same lines as to proof of (9.48) and (9.49), we can show that

‖|D|−1 f ′(Sp+1Yp+1; X p+1)‖ 3
2−δ,3 � η2θ

1
2−γ−β+4ε̄
p+1 , (9.50)

and for N with −γ + ε̄(N + 1) ≥ ε̄, it holds that

‖|D|−1 f ′(Sp+1Yp+1; X p+1)‖ 3
2−δ,N+1 � η2θ

1
2−γ−β+ε̄(N+2)
p+1 . (9.51)

Moreover, we can prove in the same way that

‖|D|−1 f ′(SpYp; X p)‖1,1 � η2θ−β+2ε̄
p ,

‖|D|−1 f ′(SpX p; X p)‖1,N+1 � η2θ−β+ε̄(N+2)
p for − γ + ε̄(N + 1) ≥ ε̄.

(9.52)

Recalling (2.38),we get, by summarizing the estimates (9.44), (9.46) and (9.50),
that

R0,θp+1

(
f ′(Sp+1Yp+1; X p+1)

)
� η2

(
θ

−β+6ε̄
p+1 + θ

1
2−β+2ε̄
p+1

+ (log θp+1)θ
1
2−γ−β+4ε̄
p+1

)
� η2θ

1
2−γ

p+1 ,

provided that

β + 1

2
≥ γ + 6ε̄, β ≥ γ + 2ε̄, β ≥ 5ε̄, (9.53)

which is the case here due to (2.83) and (2.82).
Due to (9.53), −β + ε̄(N0 +5) ≥ ε̄ and −γ + ε̄(N0 +2) ≥ ε̄, by summarizing

the estimates (9.45), (9.47) and (9.51), we achieve

RN0,θp+1

(
f ′(Sp+1Yp+1; X p+1)

)

� η2θ
ε̄(N0+2)
p+1

(
θ

−β+4ε̄
p+1 + θ

1
2−β

p+1 + (log θp+1)θ
1
2−γ−β+2ε̄
p+1

)
� η2θ

1
2−γ+ε̄N0

p+1 .

Now we apply Proposition 2.2 and (VI) of Proposition 2.10 to (9.41) to get

|∂3X p+1|1,0 + |X p+1,t | 3
2−δ,0 + |X p+1| 1

2 ,0

≤ R0,θp+1

(
f ′(Sp+1Yp+1; X p+1)

)+ R0,θp+1(gp+1) ≤ Cη2θ
1
2−γ

p+1

and

|∂3X p+1|1,N0 + |X p+1,t | 3
2−δ,N0

+ |X p+1| 1
2 ,N0

≤ RN0,θp+1

(
f ′(Sp+1Yp+1; X p+1)

)+ RN0,θp+1(gp+1) ≤ Cη2θ
1
2−γ+ε̄N0

p+1 .

Interpolating the above two inequalities gives, for all 0 ≤ N ≤ N0,

|∂3X p+1|1,N + |X p+1,t | 3
2−δ,N + |X p+1| 1

2 ,N � ηθ
1
2−γ+ε̄N
p+1 . (9.54)
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It follows from Sobolev embedding and (P1, p + 1) that for any 0 ≤ N ≤ N0,

|X p+1|0,N � ‖∇X p+1‖0,N+1 ≤ ηθ
−β+ε̄N
p+1 ≤ ηθ

−γ+ε̄N
p+1 ,

|∂3X p+1| 1
2 ,N � ‖∂3X p+1‖ 1

2 ,N+2 ≤ ηθ
−β+ε̄(N+1)
p+1 ≤ ηθ

−γ+ε̄N
p+1 ,

|∂t X p+1|1−δ,N � ‖∇∂t X p+1‖1,N+1 ≤ ηθ
−β+ε̄(N+2)
p+1 ≤ ηθ

−γ+ε̄N
p+1 ,

(9.55)

provided that β ≥ γ + 2ε̄, which is satisfied due to (2.83).
By interpolating the inequalities (9.54) and (9.55), we arrive at (P2, p + 1).

This completes the proof of Proposition 2.8 for p + 1. ��

9.4. The Proof of Theorem 2.1

The goal of this subsection is to prove the convergence of the approximate
solutions {Yp} constructed via (2.75) in some appropriate norms,which in particular
ensures Theorem 2.1.

Proof of Theorem 2.1. We infer from (2.76), (9.52), (P1) of Proposition 2.8 and
(V) of Proposition 2.10 that

‖∂t t X p‖ 1
2 ,0 ≤ ‖(�∂t X p, ∂

2
3 X p)‖ 1

2 ,0 + ‖ f ′(SpYp; X p)‖ 1
2 ,0 + ‖gp‖ 1

2 ,0

≤ Cηθ−β+2ε̄
p ,

‖∂t t X p‖ 1
2 ,N ≤ Cηθ−β+ε̄(N+2)

p , for −γ + ε̄(N + 1) ≥ ε̄.

(9.56)

Interpolating the above two inequalities leads to

‖∂t t X p‖ 1
2 ,N ≤ Cηθ−β+ε̄(N+2)

p , ∀ N ≥ 0. (9.57)

Due to the choices of the parameters in (2.83) and (2.82), it follows from (P2)
of Proposition 2.8 that

∞∑

p=0

|∂3Yp+1 − ∂3Yp| 3
4−4ε̄,2 =

∞∑

p=0

|∂3X p| 3
4−4ε̄,2 ≤ η

∞∑

p=0

θ−ε̄
p < +∞,

∞∑

p=0

|∂t Yp+1 − ∂t Yp| 5
4−δ−4ε̄,2 =

∞∑

p=0

|∂t X p| 5
4−δ−4ε̄,2 ≤ η

∞∑

p=0

θ−ε̄
p < +∞,

∞∑

p=0

|Yp+1 − Yp| 1
4−4ε̄,2 =

∞∑

p=0

|X p| 1
4−4ε̄,2 ≤ η

∞∑

p=0

θ−ε̄
p < +∞.

Similarly, taking N0 = [1/2ε̄] + 1 and N1
def= [N0/2], we deduce from (P2) of

Proposition 2.8 and (9.56) that

∞∑

p=0

(∥
∥|D|−1(∂3Yp+1 − ∂3Yp, ∂t Yp+1 − ∂t Yp

)∥
∥
0,N1+2 + ‖∇Yp+1 − ∇Yp‖0,N1+1
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+∥∥(∂3Yp+1 − ∂3Yp, 〈t〉 1
2 (∇∂t Yp+1 − ∇∂t Yp)

)∥
∥
L2
t (H

N1+1)

+‖∂t Yp+1 − ∂t Yp‖L2
t (H

N1+2)

+∥∥
(

∂t Yp+1 − ∂t Yp, ∂3Yp+1 − ∂3Yp

)
∥
∥ 1

2 ,N1+1 + ‖∇∂t Yp+1 − ∇∂t Yp‖1,N1−1

+‖∂t t Yp+1 − ∂t t Yp‖ 1
2 ,N1−2

)
≤ η

∞∑

p=0

θ−β+ε̄N1
p ≤ η

∞∑

p=0

θ−ε̄
p < +∞.

This ensures the existence of Y ∈ C2([0,+∞);CN1−4(R3)) such that

|∂3Y − ∂3Yp| 3
4−4ε̄,2 + |Yt − ∂t Yp| 5

4−δ−4ε̄,2 + |Y − Yp| 1
4−4ε̄,2 → 0 (9.58)

and

∥
∥|D|−1(∂3Y − ∂3Yp,Yt − ∂t Yp

)∥
∥
0,N1+2

+‖∇Y − ∇Yp‖0,N1+1 + ‖∂t Y − ∂t Yp‖L2
t (H

N1+2)

+∥∥(∂3Y − ∂3Yp, 〈t〉 1
2 (∇∂t Y − ∇∂t Yp)

)∥
∥
L2
t (H

N1+1)
+ ‖∇∂t Y − ∇∂t Yp‖1,N1−1

+∥∥(∂t Y − ∂t Yp, ∂3Y − ∂3Yp
)∥
∥ 1

2 ,N1+1

+‖∂t t Y − ∂t t Yp‖ 1
2 ,N1−2 → 0, as p → +∞, (9.59)

which ensures (2.21) and (2.22).
Next we show that Y is the solution to (2.71). As a matter of fact, we first

observe from (2.78) and (2.79) that

�(Yp+1) − �(Y0) =
p∑

j=0

e j +
p∑

j=0

g j = Ep + ep − SpEp − Sp�(Y0),

which implies

�(Yp+1) = ep + (1 − Sp)Ep + (1 − Sp)�(Y0),

from which, with (9.34), (9.38) and (IV) of Proposition 2.10, we infer

‖�(Yp+1)‖1,0 ≤ ‖ep‖1,0 + ‖(1 − Sp)Ep‖1,0 + ‖(1 − Sp) f (Y0)‖1,0
≤ Cθ

δ−γ−β+2ε̄
p+1 . (9.60)

Next, we show that�(Yp+1) → �(Y ) as p → +∞ in the norm ‖·‖1,0. Indeed
denoting �̃ def= ∂2t − �∂t − ∂23 , one has

‖�(Y ) − �(Yp+1)‖1,0 ≤ ‖�̃(Y − Yp+1)‖1,0 + ‖ f (Y ) − f (Yp+1)‖1,0. (9.61)
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Using a Taylor formula, applying (2.45), (2.46) and (2.47), and using (9.58) and
(9.59), we have

‖ f (Y ) − f (Yp+1)‖1,0 ≤
∫ 1

0
‖ f ′((1 − s)Yp+1 + sY ; Y − Yp+1

)‖1,0ds

� C
(
‖∂3Y − ∂3Yp+1‖ 1

2 ,1 + ‖Yt − ∂t Yp+1‖ 1
2 ,1

+ ‖∇Yt − ∇∂t Yp+1‖1,1
+ ‖∇Y − ∇Yp+1‖0,1

)
→ 0, as p → +∞.

On the other hand, recalling from (2.76) that

�̃X p = f ′(SpYp; X p) + gp,

we get, by applying (P1) of Proposition 2.8, (II) of Proposition 2.9 and (V)(ii) of
Proposition 2.10, that

‖�̃X p‖1,0 ≤ ‖ f ′(SpYp; X p)‖1,0 + ‖gp‖1,0
� C

(‖∂3X p‖ 1
2 ,1 + ‖∂t X p‖ 1

2 ,1 + ‖∇∂t X p‖1,1 + ‖∇X p‖0,1
)+ ‖gp‖1,0

� Cθ−β+2ε̄
p + θ

δ−γ−β+2ε̄
p .

Consequently, we achieve

‖�̃(Y − Yp+1)‖1,0 ≤
∞∑

j=p+1

‖�̃X j‖1,0 ≤ C
∞∑

j=p+1

θ
−β+2ε̄
j → 0, as p → ∞.

(9.62)

We then deduce from (9.61) and (9.62) that

‖�(Y ) − �(Yp+1)‖1,0 → 0 as p → ∞,

which together with (9.60) implies �(Y ) = 0. Finally, for each p, we have

Yp(0, y) = Y (0), ∂t Yp(0, y) = Y (1)(y),

therefore,

Y (0, y) = Y (0), Yt (0, y) = Y (1)(y),

and thus Y is the desired classical solution to (2.71). This ends the proof of Theorem
2.1. ��
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Appendix A: The Proof of Lemmas 9.1, 9.2 and 9.3

The goal of this appendix is to present the proof of Lemmas 9.1, 9.2 and 9.3. Notice
that the estimates for e′

p,2, e
′′
p,2 are the same as (or even better than) those for e′

p,1,
e′′
p,1, so that we only perform the estimates for the latter in what follows.

A.1: The Proof of Lemma 9.1

Since the proofs of (9.14-9.17) are very much similar, here we only present a
detailed estimate to (9.14). Interested readers may check Sect. A.1 of [15] for the
proof of the remaining inequalities.
In view of (2.81), we get, by applying (2.50) (with Y � Yp+Yp+1, X = W = X p),
that for N ≥ 0,

‖〈t〉 1
2 |D|−1e′′

p,1‖L2
t (HN+1) � |∂3X p| 1

2 ,N+1‖∂3X p‖L2
t (L2)

+ |∂3X p| 1
2 ,0‖∂3X p‖L2

t (HN+1)

+
p+1∑

j=p

{(
|∇Y j |0,N+1|∂3X p| 1

2 ,0

+ (|∂3Y j | 1
2 ,N+1 + |∇Y j |0,N+1|∂3Y j | 1

2 ,1

)|∇X p|0,1
)
‖∂3X p‖L2

t (H1)

+ (|∂3Y j | 1
2+ε̄,1 + |∂3Y j |

1
3
1
2+ε̄,1

‖∂3Y j‖
2
3
1
2 ,1

)(|∇X p|0,N+1‖∂3X p‖L2
t (L2)

+ |∇X p|0,0‖∂3X p‖L2
t (HN+1)

+ |∂3X p| 1
2 ,1‖∇X p‖0,N+1 + (|∂3X p| 1

2 ,N+1 + |∇Y j |0,N+1|∂3X p| 1
2 ,1

+ |∂3Y j | 1
2+ε̄,0|∇X p|0,1

)‖∇X p‖0,1
)

+ (|∂3Y j |
4
3
1
2+ε̄,1

‖∂3Y j‖
2
3
1
2 ,0

+ |∂3Y j |21
2+ε̄,1

)(|∇X p|0,1
(‖∇X p‖0,N+1

+ |∇Y j |0,N+1‖∇X p‖0,1
)+ |∇X p|0,N+1‖∇X p‖0,1

)

+ (|∂3Y j | 1
2+ε̄,N+1 + |∂3Y j |

1
3
1
2+ε̄,N+1

‖∂3Y j‖
2
3
1
2 ,N+1

)|∂3X p| 1
2 ,1‖∇X p‖0,1

}

.

A similar estimate holds for ‖〈t〉|D|−1e′′
p,1‖L2

t (HN+1), with |∂3X p| 1
2 ,l above being

replaced by |∂3X p|1,l and |∇X p|0,l by |∇X p| 1
2 ,l .

It follows from (9.7), (9.9) and (9.10) that

|∂3Yp+1| 1
2+ε̄,1 ≤ Cη, |∇Yp+1|0,1 ≤ Cη since γ ≥ 3ε̄; (A.1)

‖∂3Yp+1‖ 1
2 ,1 ≤ Cη since β ≥ ε̄. (A.2)

As a result, applying (P1, p) and (P2, p), it turns out that

‖〈t〉 1
2 |D|−1e′′

p,1‖L2
t (H1) � η2θ

−γ−β+ε̄
p , and

‖〈t〉|D|−1e′′
p,1‖L2

t (H1) � η2θ
1
2−γ−β+ε̄
p .
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Interpolating between the above two inequalities gives rise to

‖〈t〉 1
2+k |D|−1e′′

p,1‖L2
t (H1) � η2θ

k−γ−β+ε̄
p if 0 ≤ k ≤ 1

2
. (A.3)

For 0 ≤ N ≤ N0 − 1 such that −γ + ε̄(N + 1) ≥ ε̄ and −β + ε̄N ≥ ε̄, we deduce
from (9.7), (9.9) and (9.10) that

|∂3Yp+1| 1
2+ε̄,N+1 ≤ Cηθ

−γ+ε̄(N+2)
p+1 , |∇Yp+1|0,N+1 ≤ Cηθ

−γ+ε̄(N+1)
p+1

‖∂3Yp+1‖ 1
2 ,N+1 ≤ Cηθ

−β+ε̄N
p+1 .

(A.4)

Therefore, for such N , it holds that

‖〈t〉 1
2 |D|−1e′′

p,1‖L2
t (HN+1) � η2θ

−γ−β+ε̄(N+1)
p ,

‖〈t〉|D|−1e′′
p,1‖L2

t (HN+1) � η2θ
1
2−γ−β+ε̄(N+1)
p .

Interpolating the above two inequalities, we obtain for 0 ≤ k ≤ 1
2 and N ≤ N0 − 1

such that −γ + ε̄(N + 1) ≥ ε̄ and −β + ε̄N ≥ ε̄,

‖〈t〉 1
2+k |D|−1e′′

p,1‖L2
t (HN+1) � η2θ

k−γ−β+ε̄(N+1)
p . (A.5)

Interpolating between (A.3) and (A.5) leads to (9.14).

A.2: The Proof of Lemma 9.2

As in the previous lemma, here we present the detailed proof of (9.19). One may
check Sect. A.2 of [15] for the proofs of the remaining inequalities.
Applying (2.50) to e′

p,1 determined by (2.81) gives that for N ≥ 0,

‖|D|−1e′
p,1‖ 3

2 ,N+1 � |(1 − Sp)∂3Yp|1,0
(
‖∂3X p‖ 1

2 ,N+1 + |∇Yp|0,N+1‖∂3X p‖ 1
2 ,0

)

+ |(1 − Sp)∂3Yp|1,N+1‖∂3X p‖ 1
2 ,0 +

(

|∂3Yp| 1
2 ,1 + |∂3Yp|

1
3
1
2 ,1

‖∂3Yp‖
2
3
1
2 ,1

)

×
(
|(1 − Sp)∇Yp| 1

2 ,N+1‖∂3X p‖ 1
2 ,0

+ |(1 − Sp)∇Yp| 1
2 ,1

(‖∂3X p‖ 1
2 ,N+1 + |∂3Yp| 1

2 ,N+1‖∇X p‖0,1
)

+ |(1 − Sp)∂3Yp|1,N+1‖∇X p‖0,1 + |(1 − Sp)∂3Yp|1,1
(‖∇X p‖0,N+1

+ |∇Yp|0,N+1‖∇X p‖0,1
))

+ (|∂3Yp| 1
2 ,N+1 + |∇Yp|0,N+1|∂3Yp| 1

2 ,1

)|(1 − Sp)∇Yp| 1
2 ,1‖∂3X p‖ 1

2 ,1

+ (|∂3Yp| 1
2 ,N+1 + |∂3Yp|

1
3
1
2 ,N+1

‖∂3Yp‖
2
3
1
2 ,N+1

)|(1 − Sp)∂3Yp|1,1‖∇X p‖0,1

+ (|∂3Yp|
4
3
1
2 ,1

‖∂3Yp‖
2
3
1
2 ,0

+ |∂3Yp|21
2 ,1

)(|(1 − Sp)∇Yp| 1
2 ,N+1‖∇X p‖0,1

+ |(1 − Sp)∇Yp| 1
2 ,1

(‖∇X p‖0,N+1 + |∇Yp|0,N+1‖∇X p‖0,1
))

.
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A similar estimate holds for ‖|D|−1e′
p,1‖1,N+1, with |(1 − Sp)∂3X p|1,l and |(1 −

Sp)∇X p| 1
2 ,l above being replaced by |(1 − Sp)∂3Yp| 1

2 ,l and |(1 − Sp)∇X p|0,l ,
respectively.
Hence we deduce from (A.1) that

‖|D|−1e′
p,1‖1,1 � η2θ

−γ−β+ε̄
p , ‖|D|−1e′

p,1‖ 3
2 ,1 � η2θ

1
2−γ−β+ε̄
p .

Interpolating the above two inequalities yields

‖|D|−1e′
p,1‖1+k,1 � η2θ

k−γ−β+ε̄
p for 0 ≤ k ≤ 1

2
. (A.6)

For N ≤ N0 − 1 satisfying −β + ε̄N ≥ ε̄ and −γ + ε̄(N + 1) ≥ ε̄, (A.4) holds,
so we infer that

‖|D|−1e′
p,1‖1,N+1 � η2θ

−γ−β+ε̄(N+1)
p ,

‖|D|−1e′
p,1‖ 3

2 ,N+1 � η2θ
1
2−γ−β+ε̄(N+1)
p .

Interpolating the above inequalities leads to

‖|D|−1e′
p,1‖1+k,N+1 � η2θ

k−γ−β+ε̄(N+1)
p (A.7)

for 0 ≤ k ≤ 1
2 , N ≤ N0 − 1 such that −β + ε̄N ≥ ε̄ and −γ + ε̄(N + 1) ≥ ε̄.

We then conclude the proof of (9.19) by interpolating between (A.6) and (A.7).

A.3: The Proof of Lemma 9.3

Here we present the detailed proof of (9.24). Interested readers may check Sect.
A.3 for the proof of the remaining inequalities.
Applying (2.52) to e′′

p,0 gives

|||〈t〉 1
2 e′′

p,0|||L2
t (δ,N )

� ‖∇X p‖0,0‖〈t〉 1
2 ∇∂t X p‖L2

t (HN+6)

+ ‖∇X p‖0,N+6‖〈t〉 1
2 ∇∂t X p‖L2

t (L2)

+
p+1∑

j=p

⎛

⎝|∂t Y j |1+ε̄,1‖∇X p‖0,N+6‖∇X p‖0,0

+ ‖∇Y j‖0,N+6|∇X p|0,0‖〈t〉 1
2 ∇∂t X p‖L2

t (L2)

+(‖〈t〉 1
2 ∇∂t Y j‖L2

t (HN+6) + ‖∇Y j‖0,N+6|∂t Y j |1+ε̄,1
)|∇X p|0,0‖∇X p‖0,0

⎞

⎠ .

Again due to β ≥ 7ε̄, we deduce from (9.10) that

‖∇Yp+1‖0,6 + ‖〈t〉 1
2 ∇∂t Yp+1‖L2

t (H6) ≤ Cη. (A.8)
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As a result,

|||〈t〉 1
2 e′′

p,0|||L2
t (δ,0)

� η2θ
−β−γ+5ε̄
p .

In the case for when N ≤ N0 − 6 with −β + ε̄(N + 5) ≥ ε̄, it follows from (9.10)
that

‖∇Yp+1‖0,N+6 + ‖〈t〉 1
2 ∇∂t Yp+1‖L2

t (HN+6) ≤ Cηθ−β+ε̄(N+5)
p , (A.9)

so that in this case, we have

|||〈t〉 1
2 e′′

p,0|||L2
t (δ,N )

� η2θ
−β−γ+ε̄(N+5)
p .

Then (9.24) follows by interpolating the above inequalities.
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