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Abstract

The model of volumetric material growth is introduced in the framework of
finite elasticity. The new results obtained for the model are presented with complete
proofs. The state variables include the deformations, temperature and the growth
factor matrix function. The existence of global in time solutions for the quasistatic
deformations boundary value problem coupled with the energy balance and the
evolution of the growth factor is shown. The mathematical results can be applied
to a wide class of growth models in mechanics and biology.

1. Introduction

Growth (resp. atrophy) refers to physical processes in which the material of a
solid body increases (resp. decreases) its size by addition (resp. removal) of mass.
The advantages and drawbacks of the existing growth models are discussed in the
recent papers [24,30]. A first class of such models are kinematic models describing
the evolution of the material growth towards a homeostatic state. These rely on the
kinematic decomposition of the transformation gradient into a generally incompat-
ible mapping and an elastic mapping; they were historically introduced in [35] and
developed in [1,36,43,45]. Approaches analogous to elastoplasticity were then de-
veloped in a rational framework based on the second principle of thermodynamics
for open systems, in order to identify the evolution laws of growth [12,28,31,33]. It
is important to note the prominent role of Eshelby stress in relation to the material
driving forces for growth [9,12,19,20]. The mathematical aspects of volumetric
growth models are poorly investigated. The local existence and uniqueness results
were established in [17,18]. We refer the reader to TABER [41], CowIN [10], JONES
AND CHAPMAN, and AMBROSI ET AL. [3] for the state of the art in the domain. Some
additional references and comments will be given below.
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Mechanical background: thermoelastic material. Inthis Section we briefly discuss
basic facts from finite elasticity theory. Throughout, we shall assume that 2 C R¢,
d =2, 3,is abounded reference domain with boundary 92 of class C* in the space
of variable x. The state of an elastic material is characterized by a deformation field
u=(uj)i<i<qg: 2 x[0,T] - R4 and the Kelvin temperature 6 : 2 x [0, T] —
R™. The deformation gradient Du is the Jacobi matrix of the mapping u with entries

(Duw);j(x, 1) = Ox;ui(x, 1), (x,1) € 2 x[0,T]

The second derivative (Hessian) of the deformation field is the third order tensor
D?*u with entries

(D*w);ji(x, 1) = By, 0 u(x, 1), (x,1) € 2 x [0, T].

We will assume that the material is hyperelastic and its properties are described by a
specific free energy density ¥ (D*u, Du, 6). In this case the entropy v(D?u, Du, 0)
and internal energy e¢(D?u, Du, ) are defined by

v=—08pW(Du, Du, ), e=Ww(Du, Du,8) — 0¥ (D>, Du,b),
(1.1)

ie.,, e = ¥ + v6. The presence of the second gradient of the deformation in the
expression for the free energy density means that we deal with the strain gradi-
ent elasticity theory developed in the papers by ToupIN [44], KoITER [27], and
MINDLIN [32], see also FLECK AND HUTCHINSON [16]. The higher order effects are
important for the modeling of laminated materials or materials with microstructure.
Examples of such materials are the arterial walls and solid tumors containing cells
and extracellular matrices. Moreover, in the theory of volumetric growth the second
order terms are responsible for the mass diffusion. As was proved in [12], there can
be no mass-diffusive effects in a first-order material. To allow for such effects it is
necessary to include second-order gradients in the constitutive framework.

Typically, the free energy density can be represented as the sum of the strain-
gradient energy .A, the bulk stored elastic energy W, and terms depending on the
temperature only:

¥ = A(D*u) + 60W(Du) + ¢16 — c20 log6. (1.2)

In many applications the dependence of the free energy on D?u is quadratic, i.e.
2 2 2
A(D"u) = Z Aijmnpq ax,-xjup 0% x, Ug-
i,j,m,n,p,q
As was shown in [32,44], for isotropic material the quadratic form .4 depends on
five elastic constants ¢; and admits the representation
A = a1|Vdiv u> + axAu - Vdiv u + a3| Au|? + as| D*u)?

+as Y Og e gy Ui (1.3)
ijk
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Notice that for incompressible solids a; = a; = 0. The simplest case of the strain
gradient energy is the Falk model with a; = a» = a4 = a5 = 0. This model is
widely accepted in the theory of solid-solid phase transitions (see [14,34,40]). In
the Falk model the free energy density is

v = %IAu|2+9W(Du)+c10—czé?log@. (1.4)
Soft biological tissues experience large deformations, and their behavior is modeled
by the finite elasticity theory. In contrast to the linear case, in the finite elasticity
theory one can meet various forms of the stored elastic energy W. One impor-
tant example is the Ogden material with the elastic energy density defined by the
following relation:

d
W(Du) = co(Wa(Du) —d), Wo(Dw =3 3¢, a>1/2, (13
i=1

where A; are the eigenvalues of the matrix Du' Du. More general form of the
elastic energy of the Ogden material is the linear combination of the functions Wy,

N
W(Du) =Y co;(Wey —d), o > 1/2. (1.6)
i=1

The simplest case of the Ogden material is the Neo-Hookean material (N = o1 = 1)
with the stored elastic energy

W(Du) = ¢;(|Dul* — d). (1.7)

Remark 1. The expression for the Ogden material stored energy density is often
supplemented with an additional term J (det Du) which provides the positivity of
the Jacobian of deformation field, see CIARLET [8]. Here J is a convex function
such that J(s) — oo as s \( 0. We will not consider this case since it is poorly
investigated, and the only available results are related to the existence of a minimizer
of the stored energy functional BALL [6], CIARLET [8§].

There are various forms of the stored elastic energy proposed for different biological
materials. We refer the reader to the paper by FUNG [15] for details. Following [15],
the elastic energy function for the vascular material for d = 3 can be taken in the
form

W(Du) = co(exp(Q) — QO — 1) +c1g +c2(I1Ic — d), (1.8)
where

0 =ai(Ic =3)+ar(Ilc —3) +az(I1c —3)°,
q = BiUc—3)+polc —3) + p3(I1c —3)%,

Ic, I1c, and I11¢ are the invariants of the matrix Du' Du.
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Mechanical backgrounds: growing material. It seems that the first application
of continuum mechanics to tissue growth is due to Hsu [23], who considered
homogeneous growth of linear viscoelastic materials. The fundamental contribution
to the modern theory of volumetric material growth was made by SKALAK ET AL.
[38] in the analytical description of the volumetrically distributed mass growth, and
the mass growth by deposition or resorption on the surface. The paper [38] describes
a kinematic model in which simultaneously occurring growth and deformation are
considered as a composition of two mappings, one representing stress-free growth
and the other representing the deformations of the tissue owing to forces acting
on the tissue. This may be the first statement of the separability hypothesis which,
following CowIN [10], can be formulated as follows: simultaneously occurring
growth and deformation may be decomposed into a growth deformation and an
elastic deformation associated with the instantaneous loading.

An important step toward the general analysis of finite volumetric growth of
pseudo-elastic soft tissues was made by RODRIGUEZ ET AL. [35], who decomposed
the total deformation gradient into its elastic and growth part. The hypothesis was
extended [35] to a general three-dimensional theory of mechanically modulated vol-
umetric growth for soft incompressible biological tissues. Rodriguez et al. rendered
the mapping composition idea described in [38] as a composition of deformation
gradient mappings. Notice that the overall growth deformation is represented by
the deformation gradient Du. Decomposition suggested by RODRIGUEZ ET AL. [35]
is represented by

Du = F,F,, (1.9)

where F, is a tensor representing the growth deformation named growth factor,
and F, represents an elastic deformation. Notice that the elastic timescale is much
shorter than the timescale associated with growth [22]. It follows that the elastic de-
formation due to accommodation occurs instantaneously in response to the growth.
Overall, the growth process can be written as a deformation gradient. Therefore,
from the mechanical point of view F, represents the true elastic deformation. From
the mathematical point of view F, is just the integrating factor which is necessary to
maintain compatibility of the gradient Du = F.F,. A general constitutive theory
of the stress-modulated growth of soft tissues was developed by LUBARDA AND
HOGER [29] and KLiscH ET AL. [26]. The work [29] provides an explicit repre-
sentation of F, for various material symmetries, and an incremental formulation
for stress-modulated growth process. In particular, they considered in many details
the case of the isotropic growth with F, = wl where w(x, t) is a scalar. A theory
of material growth (mass creation and resorption) was presented in EPSTEIN AND
MAUGIN [12]. The extension of the theory to second order materials was given by
CIARLETTA ET AL. [9]. The assumption that the tensor F, is responsible for the
elastic deformations along with the covariance principle leads to the following rep-
resentation for the Helmholtz free energy density ¥, of the second order growing
material, see [9],

W, (D*u, Du, 6, Fy) := detFy ¥(Q,. DuF,' 0)
= detF, ¥(Q,,F,,0). (1.10)



Nonconvex Model of Material Growth 843

Here ¥ is the basic Helmholtz free energy of the original thermoelastic material,
and Q. is the third order tensor with components

(Qe) jki = B, g i (Fy Dy Fg g (1.11)

The entropy of the growing material is defined by the relation
9 -1
Vg = —deth@ v (Q., Dqu , 0).

As shown in [9,12], the Clausius-Duhem inequality and the principle of inde-
pendence of motions imply the following expressions for the second order Piola-
Kirchhoff stress tensor T ¢, and the third order Piola-Kirchhoff hyperstress tensor
Ts:

0
T;)j = detFe———— w(Q,, DuF,', 9),
( f)l] g 3(Dll),'j (Qc g )
5 (1.12)
Ty)ijx = detFy ————w(Q,, DuF, ', 0).

( S)ljk clly a(Dzu)ijk (Qe, Du g )
In the isotropic case with F, = wI we have Q, = w~2D*u which implies the
following expression for the free energy density and the entropy of the growing
material:

Ye(u, 0, w) = w! A(w™2D*u) + 6w W (w ™' Du) + c;w?0 — cow?01og 6,
(1.13a)
Vg = wdv, where v = —c1 + c2(1 4+ logh) — W(w_lDu).
(1.13b)

In this case the stress tensors Ty and T are defined by the relations
Ty =6w'' Ww ' Dw), (Tijk = w' ajpqu 87, w. (1.13¢)

Governing equations. Furthermore, we will consider elastic materials with the free
energy density in the form (1.2). For such materials, the system of the governing
equations for the temperature and the elastic deformations includes the momentum
balance equation and the energy balance equation. Notice that the problem has three
characteristic times. The first is the characteristic time 7, of the elastic oscillations,
which is proportional to the inverse sound speed. For soft material, like a rubber,
7, ~ 1072 5. The second characteristic time 7y, is the characteristic time of the heat
transfer. For polymer materials, t;, ~ 40 s, see BoYARD [7]. The third characteristic
time T is the characteristic time of growth of biological materials; it is about days or
weeks. If we choose the basic time scale 7, = 1 day, then the ratio of characteristic
times becomes

rez ST Tg 10712:1073 . 1.

Therefore we can neglect the inertial forces and take the momentum balance equa-
tion in the quasi static form

div (Tf — divTy) +f =0, (1.14)
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where f is a given external force, the stress tensors are defined by relations (1.12).
The energy balance equation for the thermoelastic material reads

deg dDu .dDu
e—+divq=¢T;: — +¢T;: . 1.15
o +divgq Uy +eT; o1 +g (1.15)
Here e, = W, + 6v, is the internal energy of the growing material, g is an external
heat source, ¢ = 7. In view of the Fourier law we can take ¢ = —V . The energy

balance equation can be rewritten in the equivalent form
edu, =07'A0 +671g.

In the case of the isotropic growth the momentum and energy balance equations
can be equivalently rewritten in the form of the elliptic-parabolic system for u and
9’

L) — div (w'oW (w™'Du) =T, (1.16a)

3
85[11)”1(62 —c1+clogh — W(w™ ' Du)]

= A(log0) + |V(log )2 + g. (1.16b)

Here ¢; are the constants in expression (1.2), and the elliptic operator L,, is defined
by the equality

2 d—4 2
Ly (u)i = ax,lxm (w a"mpqijaxpxquj)’
the notation W' (&) stands for the matrix with entries

(W'(€))ij = 0, W (&). (1.17)

Mechanical background: Growth rate. In order to obtain a closed system of equa-
tions for the deformation field u, the temperature 6, and the growth factor Fy, the
momentum and energy balance equations should be supplemented with an extra
equation for F. The main idea is that the evolution of the growth factor is described
by a nonconservative model. This model is based on the assumption that 9,F, is a
function of the deformation gradient, the temperature, and the growth factor. The
specification of such a function is the most important question of the theory. Due
to the lack of experimental data, this question requires careful theoretical analysis.
It seems that the first step in this direction was taken by TABER AND EGGERS
[42]. They considered the principle stretches A; associated with the growth fac-
tor and proposed that d9;A; were proportional to the Cauchy stress in the artery
wall. A comparable model was proposed by RODRIGUEZ ET AL. [37]. AMBROSI
AND MoLLica [4] developed an original theory of the tumor growth. They pro-
posed that in the isotropic case with F, = wl, the rate of growth is given by
opw ~ exp(—(s/s0)2)(n — ng)w, where s is the trace of the stress tensor, and
n is the nutrient concentration. LUBARDA AND HOGER [29] proposed an isotropic
growth law which depends on whether the stress is tensile or compressive:

orw = k(w, T)trT.
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Here T is the stress tensor, the coefficient k is defined by the equalities

+ _

. t(w w
= const.( ——
wt —1

m* w w-\m-
) fortrT > 0,k = const.(m) fortrT < O,
where w* and m™ are some material constants.

The lack of biologically derived growth laws is the weak point of the current
theories. One of the possible ways to cope with this problem is to develop the
model consistent with the basic thermodynamical principles. The important step
in this direction was taken in the seminal works by EPSTEIN AND MAUGIN [12],
D1 CARLO AND QUILIGOTTI [11], and AMBROSI AND GUANA [5]. The extension of
the theory to the second order material was given by CIARLETTA ET AL. [9]. It was
showed by thermodynamical arguments that if the growth process is governed by
some external forces, then the growth law for F,; can be derived as a rate equation
involving those external forces. The process of growth in open systems leads to
the generation of inhomogeneities, since the material points within the body do
not grow at the same rate; these inhomogeneities lead in turn to residual stresses,
and the modeling of their development in time fits within the Eshelby theory; the
driving force for growth is identified as ESHELBY stress [13]. In living tissues ex-
periencing growth, the so-called material forces arising from Eshelby stress drive
the evolution of growth at locations where mechanical stimulus is high, in order
to promote a more homogeneous state. Notice that the Eshelby tensor arises in the
framework of configurational mechanics which follows the pioneering ideas pre-
sented in ESHELBY [13], who introduced the so-called Maxwell-tensor of elasticity
as the driving force for the motion of an inclusion in this famous Gedankenexper-
iment. For growing material with the free energy density ¥, given by (1.10), the
Eshelby tensor b is defined as follows, cf. [9],

¢ oF, 0Qe

Notice that the Eshelby tensor coincides, with the accuracy up to unessential mul-
tiplier, with the derivative of the free energy density with respect to F. By analogy
with definition (1.12) of stress tensors, b can be regarded as the stress tensor driven
by inhomogeneities or by a change of configuration. In papers [5,9,11,12] it was
observed that the Clausius-Duhem inequality yields the relation

b: (3,F,F,") 0. (1.19)

oY, v, T
b= wI-F £ —2{—g:Qe} . (1.18)

As noted in [9,12], inequality (1.19) and the covariance principle lead to the fol-
lowing evolution equation for the growth factor F,

OF, Fl = —cTubI—cf b, (1.20)

where c,j = c,j (1;, ) are nonnegative functions of the temperature and the invari-
ants I; of the Eshelby tensor. Notice that the right hand side of (1.20) is the only
isotropic tensor function satisfying (1.19). In the case of the isotropic growth with
F, = wl equation (1.20) becomes

ddqw=—wc (@, trb) trb. (1.21)
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It follows that the simplest version of the thermodynamically consistent evolution
equation for the growth factor is the ordinary differential equation

ow = —w H(trb), (1.22)

where H : R — R is a smooth function such that H (s)s = 0.

Simplified problem. Equations (1.16) and (1.22) form the closed system of differ-
ential equations for the deformation field u, the temperature 6, and the growth factor
w. The mathematical analysis of this system encounters the following problems:

(a) The nonconvexity of the free energy density. For majority of nonlinear materi-
als, the free energy density is a nonconvex function of the deformation gradient
Du. This leads to the multiplicity of solutions to the moment balance equations
and spontaneous jumps of solutions to full system (1.16), (1.22).

(b) Compactness problem. The growth factor w serves as the coefficient in the
principle part of the momentum balance equation (1.16a). On the other hand,
w is coupled with the deformation gradient in a complicated manner via the
evolution equation (1.22). In the general case only L°° estimates for w are
admissible. These estimates are insufficient for applying the methods of the
theory of elliptic equations to equation (1.16a).

(c) The high order nonlinearity |V (log 6) 12 in parabolic equation (1.16b) for log 6.

In this paper we focus on the problem (a). In order to cope with the other
difficulties we replace equations (1.16) with a physically reasonable simplified
system. First, we restrict our considerations by the Falk model with the strain
gradient energy density 2~ 'ew?~*| Au/?. As it will be shown in Section 2, in this
case the hyperstresses sw?~* Au have extra regularity properties which leads to
estimates for the gradient of the growth factor.

A further simplification is the linearization of problem with respect to tempera-
ture near some equilibrium value .. Without loss of generality we can assume that
6. = 1. This means that & = 1 4 ¢}. With this notation the temperature dependant
terms in the expression (1.2) for the free energy density and in the energy balance
equation (1.16b) become

16 — c2010g0 = (¢ — e2)(1 + ) — %2192 +o(®3),

—c1 4+ e+ ealogh = —(c1 — ) + O + o),
Alogh = AY + o(92), [V(Iog6)|* = o(9).

We assume that temperature deviation from the equilibrium is small and neglect
the terms of order o(1?) in the energy balance equation (1.16b). Without loss of
generality we may assume that c; = 1 and replace W by W + ¢1 — ¢;. After that
we obtain the simplified version of equation (1.16b)

£d, (w! (@ — W(DW))) = A® + (1 — 9)g. (1.23)

Repeating these arguments and recalling formula (1.4) for the Falk energy we
obtain the following simplified expression for the free energy density of the growing
material:
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wiH?

W, (u, v, w):%wd_4|Au|2+(1+ﬂ)de(w_lDu)— —. (124)

The corresponding entropy function is defined by equalities
vg = wdv, where v =9 — W(w_lDu). (1.25)

For simplicity we discard the external heat source g and take ¢ = 1. Next, recall that
for the Falk strain-gradient energy density the coefficients a;jnmpq in the principle
part of (1.16a) are equal to §; 8,8 p . Combining momentum equation (1.16a) and
energy balance equation (1.23) with the evolution equation (1.22) we arrive at the
following system of differential equations which describe the isotropic volumetric
growth of the thermoelastic material:

eAw!™* Aw) — div (w1 + )W (w ' 'Du)) =f in 2 x (0,T) (1.26a)

3 (wlv) = AY in 2 x (0, T), (1.26b)
ow = —w H(p) in2 x (0,7). (1.26¢)

Here ¢ is given by
9 =v+ W(w ' Du). (1.26d)

Formulae (1.18) and (1.24) imply the following expression for the trace of the
Eshelby tensor ¢ := trb:

0= 5= D'~ auf + (1 + ) (d W Dw
i (1.26¢)
— W ™ 'Du): (w™'Du)) - Tz‘}?

Obviously we have
o =w d,Y,. (1.26f)

Equations (1.26a)—(1.26¢) should be supplemented with boundary and initial con-
ditions. We take them in the form

Y
u=h, Au=0, 3—+19=Oon89><(0,T), (1.26g)
n

v =v9, w = wp in £2, (1.26h)
t=0 =0
where n is the outward normal to 2. The boundary condition for ¢ is the standard
radiation condition. The boundary condition for the displacement means that the
growing material is surrounded by the duct membrane whose shape is defined by
the function h.

Assumptions. The equations and the boundary and initial conditions (1.26) form a
closed boundary value problem for the deformation field u, entropy v, temperature
¥, and the growth factor w. Furthermore we assume that the stored elastic energy
W satisfies one of the following conditions:
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H.1a The function W is in Cz(Rdz) and
0SS WE) < e+ ED IWEI e+ 15D
W/ @©)] < el + )2, (1.27)
where k € [2,3) ford =3 and k € [2, 00) ford = 2.

The smoothness conditions are too restrictive for many real materials. In such
a case we replace (H.1a) with the following algebraic condition:

H.1b The function W admits the representation

N
W(Du) = > ¢y, W, (Du) + co. (1.28)

i=1

where W, are Lipschitz homogeneous functions such that

Wo, (wE) = (wD)% Wy, (€) forall we R, &eRT.  (1.29)
0= W, () S cl&, |W, ®)] = clel™!,  (1.30)

the exponents «; € [1,3/2) ford =3 and o; € [1, o0) ford = 2.

Remark 2. If W satisfies condition (H.1b), then the free energy density and the
trace of the Eshelby tensor depend algebraically on the growth factor w and admit
the representation

N
. |
Wy = Su' " AW 4+ (14 9) Y o™ We, (D)
= (131)

d
- U+ (1 4+ 9)cow”,

_ ed—4) w4
2

d d
_ %192 (1 + 9)codw?.

N
(Aw)? + (1 4+9) ) co,(d = 20)w? 2% Wy, (Du)
i=1 (1.32)

The following lemma shows that the Ogden material satisfies condition (H.1b)
for a suitable choice of the material constants «;:

Lemma 1.1. The stored elastic energy density of the Ogden material defined by
relation (1.6) with exponents «; € [1,3/2) ford = 3 and o; € [1,00) ford =2
satisfies condition (H.1b).

Proof. We begin with the observation that the stored elastic energy density for
the Ogden material admits representation (1.28) with the functions W, and the
constant ¢ defined by

d N
Wo, (Du) = Y 237, co=—d ) _ ca. (1.33)
k=1 i=1
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where Ay are the eigenvalues of the nonnegative matrix Du' Du. Obviously
Ax(wDu) = w?A; (Du) which implies identity (1.29). Notice that

x| < |Du' Du| < d?|Dul>. (1.34)

Next, consider the entries D;u; of the matrix Du as independent variables. Fix
an arbitrary (i, j) and the entries Dyu,, with (m,n) # (ij). In this setting the
matrix Du' Du becomes a quadratic function of the real variable D;u;, and the
eigenvalues of this matrix can be regarded as a functions of D ;u;. By the famous
Rellich Theorem, see KATO [25] ch.2 Thm. 6.8, there is a complete collection of
eigenvalues Az, 1 < k < d of the matrix Du' Du such that A; is continuously
differentiable function of D ;u;. Notice that the sequence of the eigenvalues Ak is
not ordered and their numeration depends on the choice of (i, j). It follows that each
element of the ordered sequence of eigenvalues Ax is a Lipschitz function of the
entries of the matrix Du. Hence the functions Wy, satisfy the Lipshitz conditions
for all ; = 1. The derivative dAx /(D ;u;) is defined by the equality, [25],

EYN d(Du' Du)
o(Djun) * T T a(Dun

(Du' Du— )¢ =

where 3, is the unit eigenvector corresponding to A, ¢ € RY. Multiplying both
sides of this equality by 5, we obtain

Ik d(Du' Du) d(Du' Du)
=| mem| £ | 55— < clbul
A(Dju;) 9(Dju;)
which along with (1.34) yields the estimate
o(hg)¥
—( 2 < c)% ' Du| < ¢|Duf% ! for o = 1. (1.35)
B(Dju,-)

Combining inequalities (1.34) and (1.35) we obtain the desired estimate (1.30).
O

Remark 3. Since the functions W, are invariant with respect to the permutations
of the eigenvalues, the stored elastic energy of the Ogden material is a function of
the class C'!. We will not use this fact.

Further we will assume that the function H in equation (1.26c) satisfies the follow-
ing growth and monotonicity conditions

H.2 The function H € C*°(R) satisfies the conditions
H'(s)20, HO0)=0, [H)|Zc, |H@|<cl+eh™". (1.36)

The boundedness of H prevents unlimited extension of the growing material and
its collapse to a point. The monotonicity condition is due to more complex reasons.
As it will be shown in Section 6, this condition prevents the fast oscillations in time
of solutions to equations (1.26).

Finally we impose the following restrictions on the given data:
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H.3 For simplicity we assume that 9;:h = 0, 9,f = 0, and |Q2| = 1. We also assume
that the given data satisfy the conditions

vo € Wh2(2), feL®R2), heC*R), 137
wo € Wl’z(.Q), 0<c!< wy < ¢ < 0. '

Notice that the only physically reliable mass forces are the gravity force and the
centrifugal force, which are independent of time.

Results. We are now in a position to formulate the main results of this paper. We
are looking for a weak solution to problem (1.26), which is defined as follows:

Definition 1.1. (Weak formulation) Denote by W>P, 1 < p < oo, the Banach
space which consists of all functions u € W(;’p (£2) such that

1/p
||u||W2,,,=( |Au|de) <00, u=0 ondQ.
2

The space W?>? is topologically and algebraically isomorphic to the space
W2P(£2)N W(} "P(£2). A tuple of functions (u, v, w, @) is said to be a weak solution
to problem (1.26) if the following apply:

(i) Fora.e.t € (0, T) the function u(r) — h belongs to the class W>2 N W26(£2),

v,w, ¥ € L¥0,T; W-2(2)), wrl e L®Q x (0, T))

(1.38)
v, € L®0, T; L*(2)).

(i) The function w satisfies equation (1.26¢c) and initial condition (1.26h). The
temperature ¢ and the trace of the Eshelby tensor ¢ are connected with the
growth factor w and the entropy v by the relation (1.26d).

(iii) The integral identity

T
/ /(wdva,g—Vﬁ-Vg)dxdr
0 2

T
—/ / ﬁgdsdt+f wgvog(x,O)dx =0 (1.39)
0 Q2 2

holds for all ¢ € C*°(§2 x (0, T)) vanishing on £2 x {t = T}.
(iv) The integral identity

/ <swd4Au(t) - AE
Q

+ (1 + 2w "W (w (1) Du(r)) : DE —f - .g) dx =0 (1.40)

holds for all £ € C%(£2) vanishing on 92 and for almost all ¢ € (0, T).
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Definition 1.1 does not determine a solution to problem (1.26) in a unique way.
Notice that there is a disparity between the unknown functions in equations (1.26).
These equations involve time derivatives of the entropy v and of the growth factor
w, i.e., v and w are evolutionary variables. The deformation vector field satisfies the
estatic equation (1.26a). The properties of solutions to this equations are completely
determined by the stored elastic energy density W. In nonlinear elasticity, W is
polyconvex but it is not convex. Moreover, if the free energy density is of the form
(1.24), then it is not convex and it is not bounded from below even if W is convex.
It follows that in the general case the momentum balance equations represented by
the integral identity (1.40) have multiple solutions. Hence, for given v and w there
are many temperatures ¥ and traces ¢ satisfying relations (1.26d)—(1.26e), and the
number of these quantities depends on the time variable which leads to spontaneous
jumps of solutions in time. Due to the time scaling, this means that long periods
of slow growth may alternate with the short inflation periods of the fast material
growth. Such behavior was observed for aortic growth in blood vessels, where
fast dynamics arises due to increased and decreased blood-flow rate, see [42,43].
In order to diminish this arbitrariness and to control the formation of jumps, it is
necessary to supplement equations and boundary conditions (1.26) with additional
selection rules. We intend to prove that such rules can be formulated as follows:
introduce the functions

ODu, v, w) =v+ Ww 'Du), V(Du,d, w)=1— Ww ' Du).
(1.41)

Denote by E = ¥, + Vw? the density of the internal energy as a function of the
temperature and growth factor, and denote by £ the density of the internal energy
as a function of the entropy and growth factor. Calculations show that
& d—4 2 d ~1 a9’
E=—-w'""Au|" +w*W((w™ " Du) + w*—,
2 2 (1.42)

1
E= %wd_“lAm2 + de(w_lDu) + Ewd@(Du, v, w)z.

We denote by E the total internal energy as a function of the displacements, tem-
perature, and growth factor, and denote by £ the total internal energy as a function
of the displacements, entropy, and growth factor, i.e.,

E(u, 9, w) =/ E(Dzu, Du, 9, w)dx, £(u, v, w):f E(DZu, Du, v, w) dx.
Q Q

(1.43)
Definition 1.2. (Work and marginal function) Introduce the functional
Hu, v, w) =E, v, w)—/ f udx. (1.44)
Q
We define the marginal function M of the functional 7 by the relation
M(v,w) = inf H(u,v, w, f). (1.45)
u—heW22

Notice that M(v, w) is well definedif v € L2(2),f € L®(£2),and wt! € L®(£2).



852 J. F. GANGHOFFER ET AL.

Definition 1.3. (Selection principle 1) Suppose a weak solution to problem (1.26)
satisfies all conditions of Definition 1.1. We say that the deformation field u satisfies
the first selection principle if H(u(?), v(¢), w(t)) = M(v(z), w(t)) for ae. t €
(0, T). In other words the deformation field u(z) is a minimizer of the functional

HE v(@0), w(D)).

Denote by I7 the total dissipation rate

i, <p)=/(|Vl9|2+H(g0)¢)dx+/ 92 ds. (1.46)
2 082

It is convenient to represent /7 as the sum of two forms

T =119, 9) + 11 (H(p), ¢),

ITy(9, v) = / ViVudx + / dvds, Ii(p, ) = / Yodx. (1.47)
Q 302 2

Definition 1.4. (Admissible set) For given v € W!2(£2) and strictly positive w €
L™ (82), denote by P (v, w) the set of all couples (9, ¢) with the following property:
There is u € YW>2 + h such that

v =v+ W(w_lDu), @ = (p(Dzu, Du, 9, w), Hu,v,w) =MW, w).
(1.48)

Definition 1.5. (Selection principle 2) Suppose a weak solution to problem (1.26)
satisfies all conditions of Definition 1.1. We say that the functions ¢ and ¢ satisfy
the second selection principle if the inequality

@ @), p(1) < M@, 9(1)) + M (H(p(1)), §) (1.49)
holds for every (19, @) € P(v(t), w(t)) and for a.e. t € (0, T).
The following theorem is the main result of this paper:

Theorem 1.1. Assume that the stored elastic energy density W satisfies condition
(H.1a) or condition (H.1b). Furthermore, assume that the function H and the
initial and boundary data satisfy conditions (H.2)—(H.4). Then problem (1.26)
has a weak solution which meets all requirements of Definition 1.1. For a. e. t
and v = v(t), w = w(t), the functions u(t), ¥ (t), and ¢(t) satisfy the selection
principles given by Definitions 1.3 and 1.5.

Mathematical background. The proof of Theorem 1.1 is based on compactness
and monotonicity arguments. There are three aspects of our method which deserve
brief mention. The first is the implicit time discretization scheme for problem
(1.26). Using this scheme we construct approximate solutions to this problem as
saddle points of the “action” functional. The second aspect is the formulation of
monotonicity inequalities for the sequence of the approximation solutions in terms
of the marginal function. These inequalities allow us to eliminate the displacements
from the further analysis and, by doing so, cope with the nonconvexity of the free
energy with respect to the displacement field. The third aspect is the systematic
application of the theory of sliced measures in Banach spaces to the problem of
compactness of approximate solutions.
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Organization of the paper. We now explain the organization of the paper. In Section
2 we employ the time discretization scheme in order to construct a sequence of
approximate solutions uy, vy, wy, ¥y, and gy to problem (1.26). We deduce
estimates for the approximate solutions. In particular, we show that the uy are
bounded in the space L*°(0, T'; W29(£2)) and that the strictly positive functions wy
are uniformly bounded from below and above. We also prove that the sequences 9y
and ¢ are bounded in the Lebesgue spaces L" (0, T'; LP(§2)) and L5 (0, T'; L1(£2))
for all exponents satisfying inequalities (2.20).

In Section 3 we investigate the compactness properties of the approximate
solutions. We show that the sequences vy, and wy contain subsequences, still
denoted by vy and wy, such that vy converges to some v in L" (0, T'; L?(£2)) and
wy converges to some w a.e. in §2 x (0, T'). Moreover, in Section 3 we show that
for every n > 0 there is a compact set 7, C (0, T') with meas((0, T)\7;;) < n such
that the totality of the functions (9x(¢), oy (¢)), t € 7T,, belongs to a compact set
Xy CLP(82) x L1(82).

Sections 4 and 5 are the heart of the paper. In Section 4 we derive the monotonic-
ity relations. We prove that for a.e. 0 < #; < f9 < T, the approximate solutions
satisfy the energy dissipation inequality

1o
M(v(to), w(to)) — M(v(t1), w(t)) + lim sup { / I (H(¢n), oN)
N—oo Jny+1/N

1 to to—T/N .
+—/' naﬂNnnods+-—/‘ M@y, Ty ds) 0. (150)
2 n+T/N 2 I3

where the auxiliary functions 51\1 satisfy the conditions Oy —0On — Oin L2(0, T;
L%(£2)) as N — oco. We also prove that the complementary inequality

1
tim inf —— M), w(t0)) — M(v(1), w(tr)}
n/ 1t ftop—t
+ M2, 9™ (10)) + My (9, H*(10)) 2 0 (151)

holds true for every (9, ¢) € P(v(ty), w(tp)). Here 9*, H* are weak limits of the
sequences ¥y and H (¢ ). Notice that the monotonicity relations (1.50) and (1.51)
do not involve the displacement field. In Section 5 we obtain a representation for
the weak limits of the sequences (¥, ¢n). We prove the existence of a measurable
family of probability measures 1, on the compact set X;) C L?(£§2) x L4(£2) such
that

lim / /F(t,ﬂN,goN)dxdt:[ {f F(t,ﬁ‘,(p)dut(z?,<p)}dt (1.52)
N—oo T, /2 7 Z,

for every continuous function F : [0, T] x X, — R. Here 7, is a compact set such
that meas (0, 7)\7, < n, where 7 is an arbitrary positive number. Representation
(1.52) has some advantages over the standard representation of weak limits via the
Young measure, since F in (1.52) is a general nonlinear functional. It may be an
integro-differential form like IT or a nonlinear integral operator. It is a remarkable
fact that the support of u; is contained in the set P (v(¢), w(t)) given by Definition
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1.5. This means that for u;-almost every (¥, ¢) there is a displacement field u such
that u, ¥, and ¢ satisfy relations (1.48).

In Section 6 we use inequalities (1.50)—(1.51) and representation (1.52) in order
to prove that i, is the Dirac measure concentrated at the point (9, ¢*) € L?(§2) x
L4(£2). This result yields the strong convergence of the sequences ¥y and ¢y . In
Section 7 we prove that the limits 9%, ¢*, v and w serve as a weak solution to
problem (1.26). This completes the proof of Theorem 1.1.

2. Approximate Solutions: Time Discretization

In this section we construct sequences ¥y, vy, Uy, wy, N = 1, of approxi-
mate solutions to problem (1.26) by using time discretization. For given bounded
functions w,_», w,—_1, v,—1, and a vector field f, we denote by S, (¢, u) the integral
functional

T
S0, u) =¥e(u, P, wy_1) — 51'[0(19, 0) +/ (wg_zvn_lﬁ —f. u) dx, (2.1)
2
where the free energy functional ¥ is given by (1.24) and the temperature energy

dissipation rate Iy is given by (1.47). We are looking for the approximate solution
to problem (1.26) in the form

In( ) = 9a(x), un(x, 1) = valx), 22)
uy(x, ) = u(x), wyx, 1) =ws(x,1)
for
te(m-Dr,ntl, 1=Sn<N, t=TN"
Set
Wy (X) = wy (x, Tn). (2.3)

The functions ¥, v,, and u,, are defined by the following recurrence relations. We
assume that vg, wo are given by the initial data (1.26h) and

6o = ©(vo, 0, wo), w-1 =0. (2.4)

If ¥,—1, vy—1, and w,—1 = wy(x, t(n — 1)) are already determined for some
n 2 1, we define ¥, and u, as solutions to the variational problem

S,(%,,u,) = min max S, (%, u). (2.5)
u—heW?22 5y 12

Then we define v, by

v = O — W(w, ! Du,) = V(Duy, 9, wy1). (2.6)
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Next, we define wy on the interval [t(n — 1), Tn] as a solution to the Cauchy
problem

dwy = —H(p(D*u,, Duy,, Oy, wy)wy, tn—1) <t < rn,(z -
wy(t(n — 1)) = w,—1. '

Then we define w, by (2.3) and repeat the process until » = N = T /7. Finally,
we define the approximation ¢y of the trace of the Eshelby tensor by

oy = ¢(D*uy, Duy, 9y, wy), (2.8)

where ¢ is given by (1.26e). Notice that uy, 9n and vy are piecewise constant
functions of the time variable. In contrast, wy is a Lipschitz continuous function of
t.Relations (2.4)—(2.7) form a closed system of recurrent equations for the definition
of approximate solution. The next theorem asserts the existence of solutions to this
system. In order to formulate this result, it is convenient to introduce the auxiliary
functions

WN({) = wp—1, On =0, for(n— Dt <t < nr, (2.9)
where 19, is a solution to the variational problem

Si+1(u,,9,) = max  S,41(u,, D). (2.10)
PeW2(2)
Theorem 2.1. Assume that the stored elastic energy density W satisfies condition
(H.1a) or condition (H.1b). Furthermore, assume that the function H and the
initial and boundary data satisfy conditions (H.2)-(H.4). Then there are 79 > 0
and a positive constant ¢ with the following properties. For every integer N > T / 1,
problem (2.4)—(2.6) has a solution satisfying

T
sup/ (lAuy|* + W(wy' Duy) + [9x1%) dx +/ Iy, ey)dt <c,
t 2 0

(2.11)

0<c '<Swnix,t)<e, |1Bwnx,t)| S caein 2 x[0,T], (2.12)
T—1

lwy — Wy < ct, / / |9y —OnI* et (2.13)
0 22

Moreover, for every 0 < 11 < tg < T, we have

fo

lim sup {'HN(H) — Hn(to) + I (H(¢N), oN)

N—o00 t1+t

1 1) 1 th—7 _ _
+ = o(Sy, On)ds + —/ oSy, z?N)ds} <0. (2.14)
2 "+t 2 Hn—+t
Here
Hy (1) = Euy (1), v (1), Wy (1)) —fgf-uzv(t)dx, (2.15)

the total internal energy € and the forms I1; are given by (1.47), and the trace of
the Eshelby tensor @y is given by (2.8).
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Proof. The proof is in Appendix A. O

Theorem 2.1 implies that the functions (w ~N)E are uniformly bounded and the
functions uy, ¥y satisfy the estimates

lun Lo 0. 722y + 10N 207w 22)) + 19Nl Lo 1:12¢2)) S €5 (2.16)

where c is independent of N. Now we use bootstrap arguments to obtain stronger
estimates. In particular we estimate uy in L>(0, T; W>°(£2)) and estimate the
derivatives of wy. The corresponding result is

Theorem 2.2. Under the assumptions of Theorem 2.1,

sup (luy () llw260) + 1Dy (=) < c. (2.17)
t€[0,T]

sup Wy ()~ Auy ()2 < e (2.18)
t€l0,T]

sup [lwy (D llwi2@) + 10w llz20,7: w12 (2)) =c, (2.19)
t€[0,T]

where the constant c is independent of N.

The following proposition gives estimates of the approximate solutions in
Lebesgue spaces (it is a straightforward consequence of Theorem 2.2): introduce
the exponent (r, p) and (s, ¢) satisfying the relations

l<s<oo, |l<q<6s/(6s—4),

(2.20)
r=2s, p=24q.
It follows that
2<r<oo, l<p<o6r/(Gr—4).
Proposition 2.1. Under the assumptions of Theorem 2.1,
lonllze.7:22(2) + 1N 20,7 wi2(2) = ¢ (2.21)
19N NLr0.7;02) + lvn llLro.1;L0(2) = €, (2.22)
lenllzso,7:La(2)) = c, (2.23)

where c is independent of N.

The rest of this section is devoted to the proof of Theorem 2.2 and Proposition
2.1.

Proof of Theorem 2.2. The proof falls into two steps.

Step 1. First we prove estimates (2.17)—(2.18). We begin with the proof of these
estimate in more complicated case d = 3. It follows from Conditions (H.1a) and
(H.1b) that the matrix values function W’ admits the estimates

WE+WE :E=cl+1ED", xel2,3).
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The proof is based on the fact that the growth exponent s¢ € [2, 3) in (1.27) is less
than 3. Since the case s = 2 is trivial, we assume s € (2, 3). By the definition of
the approximate solution, we have

Sp(u,, 9,) = min  S(u, v,).
u—heW22

It follows that

lim 571 (S, (w, = 64, 2,) = S, (u,, 2,)) = 0

for every q € YW>?2. This relation can be rewritten in the form

€
/ ( Au, Aq+ w2 (1 + 29n)W/(w,;_11Dun) :Dq—f- q) dx =0.
I?)

Wn—1

Now choose £ € L?(£2) and set q = A~'&, where the inverse A™! is defined as
the solution to the Dirichlet problem

A(A7'E) =& in2, A'E=0 onien.

Thus we get

/ ( * Au, — A div (w2_ (1 +9) W (w, !, Du,)) — A’1f> “Edx =0,
2

Wn—1

which yields the equation

S Au, = A7\ div {w,%_](l T ﬁ,,)W’(wn__llDu,,)} + AR (224)
Wp—1

Since u, — h € W22, we also have
u, =h onof2. (2.25)

It follows from the general theory of elliptic equations [21] that for all q €
Wk=Lr(2),k > 1, p € (1, 00), we have

1A= divg llyerce) < cld i), (2.26)
where c is independent of . Since the functions wﬁl
follows from the growth condition (1.27) that

are uniformly bounded, it

[w2_ (1 + 9) W (w, ', Duy)| < c(1+ [9,)(1 + [Du,)?,  (2.27)

where y = » — 1 € (1,2). Now set Bg = 2, a9 = 6. The energy estimate (2.16)
implies

1AW, | 500y S € I1Duyllze0(e) < c.
It follows from this, estimate (2.16), and the Holder inequality that

(1 + 19D + [Dug ) [ Lro 2
= c(1+ [10nll22) (1 + 1Dusll 16(2)) = c, (2.28)
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where po~! =271 4+ y67! < 5/6. Combining this estimate with (2.26) we arrive
at the inequality

A= diviwy_ (1 + %) W' (w, ! D)}y 1so ) < c-

Since the embedding W70 (§2) — L3P0/3=P0)(§2) is bounded, we conclude from
this and (2.24)—(2.25) that

[ Aunll 61 (o) < ¢, where i =3po/(3 = po).

Since the embedding W2 A1 (£2) < W13k1/G=BD(02) is bounded, we have
[ Du, ey < ¢, where oy =381/(3 — B1).

Applying the Holder inequality we arrive at

(14 19,D + [Du, )Y || Lr1 (@)
< c(L+ 10l 22) (1 + [[Duy |l o1 (2)” = ¢,

'=271 4 ya;~!. Arguing as before we conclude that

where p;~
| Ay |l 8 (2) <ec¢, |Du, | Lok (2) Sc. (2.29)
Here the sequences ay, px, and S are defined by the recurrent relations

ak =3Bk-13 = Be) L B =3pm1 G — i) pt =27 v

Estimates (2.29) hold provided 1 < B;_; < 3 or equivalently 1 < p; < 3/2.
Notice that the quantities py are defined by the recurrent relations pk_1 =y pk__l1 +
1/2 — 2y /3, which lead to the equality

yk—-1 1 (
6y =1) 6y = 1)

il =vEpyt =@y =3) Yy —2) + 4y - 3)).

Since y € (1, 2), the sequence pk_l decreases and tends to —oo as k — oo. Hence
there is a minimal k such that py_; < 3/2 and pg > 3/2. It follows that B¢y > 3.
In this case the embedding WA+ < L%°(£2) is bounded, which yields

[DuyllLe@) = ¢, (1 + 19D + Dy} | 12¢0) = c. (2.30)
We thus get
1A= diviwy_ (1 + 90 W' (w, ! Dullyi2gg) < c.
From this and (2.24) we conclude that
lw, Ly Augllwizgg) < e, (231)
and hence that

s llw2s o) = c. (2.32)
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It remains to note that estimates (2.17) and (2.18) for d = 3 obviously follow from
(2.30)—(2.32).
Let us consider the case d = 2. Arguing as before we conclude that

&
2
n—

Au, = A7 div fw, i (1 4+ 20 Wy Dup )+ 47 233)

Wy

Recall that u, — h € W22, which yields
u, =h ond£. (2.34)

Since the embedding W22 (£2) — L%(£2) is continuous for every « € [1, 00), the
sequence Du,, is uniformly bounded in L% (2). It follows from this and conditions
(H.1a), (H.1b) that the sequence W’ (wy,_ Du,) is bounded in L¥(£2) for all a €
[1, 00). From this and the energy estimate (2.11) for ¥, we obtain

(L4 19, DW (wp—1 D) [l 128y < c(B) forall B e (0,1]. (2.35)
Combining this estimate with equation (2.33) and estimate (2.26) we arrive at the
inequality

[ Aully12-p(0) = c(B). (2.36)
Since the embedding W!27#(2) — L*F~2(£2) is bounded, we conclude from
this that for 8 < 1/2

I llw2s o) = A8 llwizs2) = c(B),  [IDllLo2) = [unllw2sg) = c.
Hence u,, satisfies inequalities (2.17). It remains to note that the boundedness of
the sequence Du, leads to the estimates
lwn_ i Ay llyrzg) S clidiv A7 A+ 9) W (wa—1 D) iz gy
< cll(1+ 9) W (wp—1Dwy) || 12-5 () = c, (2.37)

which yield (2.18).

Step 2. Now our task is to estimate wy. Recall that wy satisfies the ordinary
differential equation and initial condition (2.7). Notice that the differentiability of
wy with respect to x follows from the differentiability of u,, 9,, and general results
on the differentiability of solutions to ordinary differential equations with respect
to parameters. It is necessary to prove (2.17). Differentiation of both sides of (2.7)
with respect to x gives

9, (Vwy) = —H(p)Vwy — H (p)wyVe fort(n — 1) <t < tn, (2.38)
Vwy(tn —1)) = Vw,_1. '
If W satisfies condition (H.1a), then formula (1.26e) for ¢ implies

& _ _
@(D?u,. Duy., By wy) = S(d =l uf o]

d
+wh (1 + 9)) (dW (wy' Du,) — W (wy' Du,) : (wy' Duy)) — Ew%ﬁz’
(2.39)
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where
on = w, ' Au, = @y (1) Auy (1), 1€ ((n—Dr,ntl.  (2.40)
It follows that
Vo = MiVwy + N{Vw,_1 + Ly, (2.41)
where

& >
My =5 — 42w 2y 562 L Ry — 5 —wi 192,
Ni = —e(d — 4w, 1wl o, (2.42)

L = e(d — Hwd 1wl 0, Va, + (1 + 0w 'P
w! (dW (&) — W' (&) : §)VI, — dw? 9, V.

Here the matrix—valued function & is given by
& = wy' Du,, (2.43)
and the scalar function R and the vector function P = (P;); <; <, are given by

W (&)

_d—1 2 _ / .
R = w’, (l—i—z‘}n)(d W) + (1 2d)W(g)..s+8$”a€pq

Epafi )
(2.44)

IW(E) W) ) 9%,
0&;j & 0Epg "7
If W satisfies condition (H.1b), then formula (1.32) for ¢ implies

Po=(@-1

ax;joxi

&
(p(Dzui’h Duna ﬁl’ls U)N) = E(d _4) 8 %dwfv 402

n
N

H 1+ 00) Y coy(d — 20wl % Wa, (Duy)
i=1

dw?] 2 d
— Tﬂn + (1 4+ Py)codwly . (2.45)
It follows that
Vo = MhVwy + NaVw,—1 + Lo, (2.46)
where
N

=—(d H2wE T 0 A (140,) Y o, (d — 200wl 2 Wy, (Duy)
i=1

> 4
- —w% 192+ (14 ﬁn)Codzw% :
Ny = Ny,
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L) =¢e(d— 4)w,§j‘lw%74onVGn — dw%ﬁlﬂnVﬁn
N
+ 1+ 90) Y ca;(d — 2 wly > W,, (Du,) : Du,Vu

i=1
N
+ <Z Coy (d = 20 )W > Wy, (Duy,) + codwgfv> V0, (2.47)
i=1
Since the functions wy and Du,, are uniformly bounded, we have
€<, [RilSc, [Pi|<c|Duyl. (2.48)

It follows that

IMi| £ (1 + 917 + 14w, ), INi| < c|Au,,

ILi| < c(1+ [92)(1 + [V?u,]) + c|Au, || Vo | + c(1+ [9a)| VIl 24
On the other hand, representations (2.39) and (2.45) imply

—@(D?uy, Duy, O, wy) Z ¢ (100 + [Au ) — ¢,

where ¢ > 0 is independent of N. From this and |H'(¢)| < c(1 + |¢|)~! we
conclude that

|H' ()] < (1 + 941> + |Au,[H "
Combining this with (2.50) we arrive at

|H' (@)Mi| = ¢, [H'(9Ni| =c, (2.50)
|H'(@)Li| £ c(1+ |[Vou| + VO] + [Vu,)).
Next, substituting (2.41) and (2.46) into (2.38) we obtain
O (Vwy)=—(H(p) + H' (9)wy M;)Vwy —wy H' (9)Nij)Vw,_1 — wy H' (9)L;,
which, along with (2.50), yields
3| Vwy| = 18, (Vwn)| = c|Vwy| + c|Vwy—1]| + ¢Gy. (2.51)
Here
Gy =1+ V2| + V0| + |Vonl. (2.52)
Multiplying both sides of (2.51) by exp(—ct) we obtain
(e Vwn)) £ ce” ([Vwai] + el + [V2uu| + [VOu| + [Vou|).  (2.53)

Choose any t € [t(n — 1), Tn]. Integrating this inequality over [t(n — 1), ¢] and
multiplying the result by e, we arrive at
IVwy 0] £ V1] + (D7 = 1) Q[Vw,-1] + G)
= [Vwu—1|(1 +¢7) + T Gy,
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where c is independent of N. Applying the Cauchy inequality we obtain
IVwy () £ [Vw,_1>(1 +¢t) + ¢G> fort(n—1) <1 < tn.

Integrating both sides over §2 and recalling estimates (2.17)—(2.18) we obtain
/ [Vwy (1)]?dx < (1 + c1) / [Vwp_1|?dx + cT / G2 dx
Q 2 Q

<1+ cr)/ [Vwp_i|>dx + cT / (14 |V, [%) dx.
2 Q
(2.54)
Since wy (nt) = w,, we conclude from this that

f [Vw,|?dx < (1+cr)/ |an_1|2dx+ct/ (1 4 |V8, %) dx.
2 2 2

It follows that

n
/ |an|2dx§(l+cr)"/ |Vwo|? dx +ct Z(1+cr)"*k/ (1 + |V |* dx.
$2 2 k=0 2

In view of the relation T = TN~! we have
A +c0)" <A +enN = {1 +en)V/@)T <ol

Thus we get

n
/ |Vw,|? dx §eCTf |Vw0|2dx+ceCTfZ/ (1 + |V dx
2 2 pare)

nt
= e”T/ |Vawo* dx + ce"T/ / (1 + Vo) dxdt <
Q 0 2
(2.55)

forall 1 £ n < N.Combining this result with (2.54) we obtain
/ IVwy @)[>dx < ¢ forallt € [0, T]. (2.56)
2

From this, (2.55), and (2.51) we conclude that
/ 10 (Vwy (1)) dx < ¢ +c/ [VOy|? dx
2 2
for t(n — 1) <t < tn. Noting that ¥y (f) = 1, on this interval, we obtain

T T
/ / 10; (Vwy (1) ]> dxdt < ¢ + c/ f IVoy|?dx <ec.  (2.57)
0 2 0 2

It remains to note that the desired inequality (2.19) clearly follows from (2.56) and
2.57). O
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Proof of Proposition 2.1. We first observe that estimate (2.21) obviously follows
from (2.16)~(2.19) and the identity vy = 9y — W (wy' Duy).

Let us prove estimate (2.22). Since the embedding W!2(2) — L) is
bounded, the energy estimate (2.16) yields

19N 1l Lo, 7;22(2)) + 19N 20,7 26(2)) S €

By the interpolation inequality, for every o € (0, 1) we have
19Nl 0.7:Lr @) S 1080 71200y 1OV W20 i s6 0y S € (2:58)
where
a/2=1/r, 1—-a)/24+a/6=1/p.

Estimate (2.22) for ¥y obviously follows from (2.58). Repeating these arguments
and using (2.21) we obtain (2.22) for vy.

It remains to prove estimate (2.23). Recall representation (2.8) for ¢y. Since
w,jf] and Du, are uniformly bounded, it follows from (2.8) that for almost every
te 0, 7),

lon ()] £ ¢+ c|Auy ()] + c|9n (D). (2.59)
Notice that in view of (2.16) we have

(ANl 50,7529 (2)) = clAun |l pooo,7:06(02)) = - (2.60)

Next, relation (2.20) yields 2s = r and 2q = p. From this and estimate (2.58) we
obtain

19315 ©.7:292) S NN Tro. L2y S C- (2.61)

Combining (2.59)-(2.61) we arrive at estimate (2.23). O

3. Compactness

In Section 2 we proved the existence of approximate solutions uy, 9y, vy, Wy
to problem (1.26). Our goal is to prove that this sequence has a limit point which
is a weak solution to (1.26). Hence, the key question is the compactness of the set
of approximate solutions in appropriate Banach spaces. In this section we give a
preliminary analysis of this problem. Notice that among the thermodynamical and
mechanical quantities in (1.26), only the entropy v and the growth factor w satisfy
evolution equations. Therefore, the compactness properties of the sequences vy and
wy can be established by applying the Dubinski-Lions Lemma. The corresponding
resultis given by the following theorem, which is the first main result of this section:
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Theorem 3.1. Let all conditions of Theorem 2.1 be satisfied. Then there is a sub-
sequence of (vy, wy), still denoted by (vn, wy), and functions v, w with

wrl € L0, T; L®(£2)) N L0, T; Wh2(2)), d,w € L*(0, T; WH2(2)),

ve L20,T; W2(2)) N L™, T; L*(2)) 3.1
such that

wi' — wr in C(0, T; L*(£2)), (3.2)

vy = v inL"(0,T; LP(£2)) (3.3)

as N — oo forall a € [1, 00) and all (p, r) satisfying (2.20).

We cannot guarantee the strong convergence of the sequences uy, ¥y and
N since these functions have no smoothness with respect to the time variable.
However, they have some smoothness with respect to the spatial variables. Hence
we can expect that these functions map the interval (0, 7') onto some relatively
compact set. The corresponding result is given by the following theorem, which is
the second main result of this section:

Theorem 3.2. Let exponents s, q and r, p satisfy conditions (2.20). Then for every
n > 0 there is a compact set T, with the following properties:

(i) T, C (0, T), meas((0, T)\7,)) = n.
(ii) The mappings v : T, — LP(82) and vy : T; — LP(82) are continuous and

v () = v(t) in LP(§2) uniformly on T,,. (3.4)
(iii) For every o € [1, 00),
wy (1) = w(t) in L*(2) uniformly on T;. (3.5)
(iv) The set
T ={@On®,en(®) : N 21, t € Ty}, (3.6)
is relatively compact in LP (§2) x L9(£2).
The rest of this section is devoted to the proof of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. We begin by proving (3.2). It suffices to show that the
sequence {wy(f)}y> is relatively compact in C(0, T; L*(§2)) for every o €
[1, 00). Set h

My, = (wy (1)1 €[0,T], N = 1}.

It follows from (2.17) that 91,, is bounded in W12(£2) and hence in L" (£2) for
every r € [1,6). In particular, it is relatively compact in measure. On the other
hand, inequality (2.17) yields the boundedness of M, in L°°(§2). Hence 9, is
relatively compact in L*(£2) for all @ € [1, 00).
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Next, it follows from estimate (2.19) that for 1 < o < 6, h € (0,T), and
0<t<T-—h,

lwy (¢ +h) —wyOlle@) S cllwy @ +h) —wn @) llwiz )

t+h
/ dswy (s)ds
t

If « > 6 we apply the interpolation inequality to obtain

<c

< W 28wy Ol 20,7 wr20y) S ch? (37)

lwn(t+h) —wy @)L (2)

—6
< cllwn (t + 1) — wy O low (¢ + 1) = wy Ol
6
< cllwn (t +h) — w015, < ch™. (3:8)

Estimates (3.7) and (3.8) show that the sequence wy is equicontinuous in C (0, T’;
L%(£2)). Recall that wy takes values in the relatively compact set 90t,,. Application
of the Ascoli Theorem completes the proof of (3.2). O

Our next task is to prove (3.3). Recall that (u,,, ) is a solution to the variational
problem

Sp(u,, ¥y) = max S, (u,, B).
PeWL2(2)

Calculation of the variation of S,, at the point ¢, leads to the linear elliptic boundary
value problem for 9,

—TAY, + w,‘f_IV(Du,,, Uy, Wp—1) = w,‘f_zv,,_l in £2, (3.9)
oV + 9, =0 onaf2.
Here V is given by (1.41), i.e.,
V(Duy,, ¥y, wy—1) = U — W(w 1Duy) = vy,
It follows that
Uy — V1 = w, ? (TA9, + Ry), where R, = (w! 5 —w?_ Dv,_1. (3.10)

Recall that w,,_» = wy((n— 2)r) and w,_1 = wy((n—1)7). From this and (2.19)

we conclude that |wff — w _41 £ ¢t and hence
|R | < ctlvpil. (3.11)
In view of (2.19), we have |w | < cand |Vw,_ 1||L2(A’2) c. Fix A > 3. Since

the embedding W() (.Q) < L°(£2) is bounded, we have
w9 S llwiz) < cllgllypi g, foralls e W, (92). (3.12)

Obviously {w;fl S W(;’z(.Q). Thus we get

/wan_fllﬂﬁndx = —/ V(w4 )V, dx < c| VD, ||L2(Q)||C||W1/\
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This means that
lw, !y Aull -ty S €l Vullr2gg) forall w=2/0.—1) € (1,3/2),
which along with (3.10)—(3.11) yields
lvn — Un—1||wfl,u(:z) < CT||Vl9n||L2(Q) + |RallLe(s2)
= ctlallwiagy + ctlive-1lle)-

Thus we get

N N
D lon = vt -ty S et Y (Inllwrz) + lva-illece))

n=1 n=1
T
<c / (9N ) iz + ow (= Dll ey dr < c.
0

It follows that the total variation of the piecewise constant function vy : [0, T] —
W—L#(£2) is bounded by a constant ¢ independent of N. Thus

T—h
/ lon (@ + h) — N @) |l w102 d Sch forO<h<T. (3.13)
0

On the other hand, estimate (2.21) yields
T—h
f lon ) llwi2g) < ch'/? for0 <h <T. (3.14)
T

As the embedding W1-2(2) < L*(£2) — W~1#(£2) is compact, Theorem 5 in
[39] implies that the sequence vy is relatively compact in L L, T; L*(£2)). Hence
it is relatively compact in measure. On the other hand, in view of Proposition 2.1
this sequence is bounded in L” (0, T'; L?(£2)) for all r and p satisfying (2.20). Since
the set of admissible r and p is open, we conclude that the sequence vy is relatively
compact in L" (0, T'; L?(£2)). This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. Since L?(£2) is separable, the piecewise constant map-
pings vy : (0,7) — LP(£2) are strongly measurable on (0, 7). On the other
hand, they converge strongly to v in L" (0, T; L?(£2)), Hence vy converges to v
in measure in (0, 7'), and the sequence vy meets all requirements of the Egoroff
Theorem. We conclude that for every > 0 there is a compact set 7, satisfying (i)
and (ii). Item (iii) obviously follows from (3.3).

In order to prove (iv) notice that in view of (2.6) and (2.9) we have

On (1) = vy (1) + W@y ()~ Duy (1)), (3.15)
where wy (¢) is defined by (2.9). It follows from (3.3) that
lwy —wnllco,r:22(2)) — O uniformlyin N as N — oco. (3.16)

Now choose a sequence 1, € T, m = 1. After passing to a subsequence we may
assume that t,, — to € 7, as m — oo. It follows from (3.3) and (3.16) that
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wy(tn) = w(ty) in L*(£2) as m, N — oo. After passing to a subsequence we
may assume that

wy (ty,, x) > w(ty, x) a.e.in £2. 3.17)

Next, it follows from (2.17) that the sequence u,(#,) is uniformly bounded in
W26(£2). Recall that the embedding W20(£2) < C!(£2) is compact. Hence, after
passing to a subsequence we may assume that Duy (t,,) converges uniformly in
§2. Recalling (3.16) we deduce that W (wy (tm) "' Duy (1)) converges in measure
in £2. Since the functions W (W (f,,) "' Dun (,,)) are bounded, it follows that this
sequence converges in L? (£2). On the other hand, (ii) implies that vy (#,,) converges
to v(fp) in L?(£2). From this and (3.15) we find that 9y (f,,) converges in L?(£2)
as (m, N) — oo. Hence, every sequence ¥y (t,) contains a subsequence which
converges in LP(£2). Next, in view of (2.8) and (1.26¢),

2 N
+wN(1 +ﬂN){dW(w;, Duy) — wy' W (wy' Duy) : Duy}. (3.18)

Consider now ¢y (t,). By (2.18) the sequence E‘fv_“AuN (tym) is bounded in
W12(£2). Hence, after passing to a subsequence, we may assume that this se-
quence converges a.e. in £2. We have proved that wy (t,,), U, (t,,) and Duy (t,,)
converge a.e. in £2 as (N, m) — oo. Hence ¢y (t,,) converges a.e. in £2.

Next, since wf,l and Duy are uniformly bounded, relation (3.16) implies that
foreveryt € (0,7T),

lon (D] < ¢+ c|lAuy ()] + c[on ()] (3.19)
Notice that in view of (2.20) we have

|||AUN(I)|2||L‘1(.Q) = cllAan | pooo,7:L6(02)) e (3.20)

We have already proved that the sequence 9y (f,,) is relatively compact in L? (£2).
From this and 2¢ = p we conclude that the sequence ¥y (f,,) is relatively compact
in L9(£2). Recalling (3.19) and (3.20) we conclude that the sequence ¢y (¢, is
bounded in LY(£2) for all ¢ satisfying (2.20). Since this sequence converges in
measure in §2 and the set of admissible g is open, we conclude that ¢y (#,,) converges
strongly in L9(§2). Thus we prove that for every ,, € 7T,, the sequence @y ()
contains a subsequence which converges in L7(£2). Hence the set T (1) is relatively
compact in L?(§2) x L9(£2). This completes the proof of Theorem 3.2. O

4. Marginal Function: Energy Dissipation Inequalities

In this section we deduce the energy dissipation inequalities which play a cru-
cial role in the further analysis. In Sections 2 and 3 we have built the sequence
of approximate solutions uy, 9y, wy, and vy to problem (1.26) and investigated
their properties. In particular, we have proved the strong convergence of the evolu-
tionary variables vy and wy. Now we start a long sequence in order to prove the
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convergence of ¥ and gy . Our tool is the monotonicity method, which is based on
a careful analysis of the energy dissipation inequality and works well for problems
with a convex free energy functional. In our case the main difficulty is that the free
energy density is a nonconvex function of the displacement vector field u; how-
ever, it is a concave function of the temperature ¢. Moreover, the right hand side of
equation (1.26¢) for the growth factor w is a monotone function of the trace ¢ of the
material Eshelby tensor. The idea is to eliminate the displacement vector field and to
focus on the sequences ¥y and ¢y . The key observation is the following: Substitute
the approximate solution into expressions (1.42)—(1.43) for the internal energy we
get the approximate value of the total internal energy £ y as a real valued function
of the time variable. Since the free energy and the internal energy depend on the
displacement vector field u, it is hard to expect that the sequence € yy converges for
afixed ¢. It is a remarkable fact of the theory is that the sequence of internal energies
converges almost everywhere on (0, 7') and its limit can be expressed in terms of a
marginal function depending only on the evolutionary variables v and w. This fact
immediately leads to the desired energy dissipation inequality. Recall Definition
1.2 for the functional H and the marginal function M. Now we are in a position to
formulate the first main result of this section.

Theorem 4.1. Let all conditions of Theorem 3.1 be satisfied and v, w be the limits
of vy and wy defined by Theorem 3.1. Then

Huy (), vy (), wy (@) = M), w(t)) as N - oo forae. t € (0,T).
4.1)

Moreover,

N—oo

to
M(v(10). w(t0)) = M((t), w(t) +limsup{ [ Mi(H(en). o) ds
4+t

1o I0—71

1 1
— ITy(Vy, On)d —
+2 o(Un N)S+2/

H(EN,EN)ds] <0. (4.2)
1+t 1+t

fora.e.0 < t; < 1o < T. Here the energy dissipation rate I is given by (1.47),
the function ¥ y is given by (2.9), (2.10).

Inequality (4.2) estimates M(f9) — M(#1) from above. Our next task is to estimate
this difference from below. We will thus obtain an estimate which is complementary
to the energy dissipation inequality. Such estimates are essential ingredients of the
monotonicity method.

In order to formulate the corresponding result we introduce some notation. In
view of Proposition 2.1 after passing to a subsequence we may assume that there
are functions

9 e L20, T; Wh2(22)) N L2, T; L*(R2)),
@* € L°(0,T; L1(R2)), H* e L®(2 x (0, T)) (4.3)
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such that

On — 0* weakly in L” (0, T; L”(£2)) and in L*>(0, T; Wh2(2)),

on — ¢* weakly in L*(0, T; L9($2)),

H(pn) — H* star weakly in L>(£2 x (0, T)). (4.4)
Here (7, p) and (s, g) are arbitrary exponents satisfying (2.20). Since the spaces
Wh2(£2) and L¥(2), 1 £ a < o0, are separable, the mappings v, 9* : (0, T) —

WL2(2)and H* : (0, T) — L%(£2) are strongly measurable. It follows that there
exists a set £ of full measure in (0, T) such that for all 7y, t; € £ we have

1 1
— / (loto) — v iz + 19%(10) — () lwiz o
— .

+ | H*(to) — H*(s)|l*(2)) ds — 0 ast 7 1. 4.5)

For every n > 0, the set £ contains a compact subset £, with meas([0, T]\L,) <
1n/2. Next, it follows from the Lusin theorem that there is a compact setC, C [0, T']
such that meas([0, T]1\C;) < n/2 and

lim  ([lo(to) — v(t)llwizee) + 197(0) — 9 ()12

11—1,t,€Cy

+IIH*(10) — H*(t)l =(s2) ) = 0. (4.6)

Theorem 4.2. Let 19, 1y € L, N Cy. Furthermore, assume that u € W2’6(Q) isa
minimizer of the functional H(-, v(ty), w(ty)), i.e.,

H(u, v(th), w(ty)) = M(v(t), w(to)). 4.7
and
D = v(tg) — W(w(tg) "' Du) € WH2(£2), “5)
@ = p(D*u, Du, 9, w(ty)) € L1(£2). '
Then
1
lim inf {M(v(to), w(t9)) — M(v(t), w(tl))}
n/t ty—1n
+ o (9, 9" (10)) + M (¢, H* (1)) = 0. 4.9)

Here the bilinear forms I1; are given by (1.47).
The rest of the section is devoted to the proof of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Proofof (4.1). Recall representations (2.2) and (2.3) of the
approximate solution in terms of u,, v,, ¥, and w,. Fix u such thatu —h € w22
and define 9* € W12(£) as a solution to the variational problem

Sy (ﬁ*a u) = max S, ),
SeWwl2(2)
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where S, is given by (2.1). It follows from (2.5) that
Sn(n, 1) £ S, (97, 0). (4.10)
Note that

Sp(Fn,u,) = sup S, (P, uy).
PeWl2(2)

It now follows from Lemma A.1 in the Appendix that

Sn(Pn, wy) = Euy, 0y, wp—1) — f

T
f-u,dx + - Io(Dy, Vn)
o 2

T
= H(u,, vy, wnfl)‘l'EHO(ﬁns V). (4.11)

Next, expressions (1.24) and (2.1) for ¥, and S,, imply

S, (8%, u) = / lI/g(Dzu, Du, 9", w,_1) dx +/ (w,‘f?zvn_lﬁ* —f.u)dx
2 2
T
— 51‘[0(19*, ). (4.12)
Now set
® = O (Du, v,, wy—1) = v, + W(w,—1 Du). (4.13)
Obviously we have
V(Du, ®, w,_1) = O — W(w,—1Du) = v, 4.14)
and
Dy (D*u, Du, @, w,_1) = —w’_,V(Du, ©, wy_1) = —w?_,v,. (4.15)
PYe) g s » U, Wp—1) = n—1 » &, Wp—1) = n—1Vn- .
Since Y, is a concave function of the temperature, we have
Wg(Dzu, Dua 19*7 wn—l)
2 0 2 *
S (D u, Du, O, w,_1) + %Wg(D u, Du, @, w,_1)@®" — O).
Substituting this in the right hand side of (4.12) and using (4.15) we arrive at
S,(*,u) < / W, (D*u, Du, O, wy—1) + w?_v,0)dx — f £ udx
2 2

+/ W _yvp—g — wl_vu,)0* dx — %Ho(z?*, 9%).  (4.16)
2

Next, (4.13) and expression (1.42) for the density of the internal energy give the
identity

W, (D*u, Du, O, w,_1) + wi_10,0 = E(D*u, Du, v, wy,—1),
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which along with (1.44) implies

/ (g (D*u, Du, O, w,_1) + wd_ v, —f. u) dx = H(u, vy, wy—1).
7)
4.17)

Multiplying both sides of (3.9) by ¢* and integrating the result over £2 we obtain
/ (w01 — w_v) 00 dx = To (9, 0F). (4.18)
Q
Substituting (4.17) and (4.18) into (4.16) we obtain
Su (0, 9%) < W, vy W) + T 97) = ZMTo(9*,9%). (4.19)
Combining (4.10) with (4.11) and (4.19) we arrive at
T
HWy,, vy, wy—1) = H@W, vy, wy—1) — EHO(ﬂn -0, 9, — 0%

for all integers n € [1, N]. Recalling the definition (2.2) of uy and vy and the
definition (2.9) of wy we deduce that

Huy @), vy (@), W (1) = H(u, vn (1), Wy (1)) (4.20)

forall 7 € (0, T) and all u € W>2, By (3.3) there exists a set Q of full measure in
[0, T'] such that for every t € Q,

vy () = v(@) in LP(2), wn(t) — w(t) in L¥(£2).
Letting N — oo in (4.20), we obtain

lim sup H(uy (1), vy (1), Wn (1) = H(u, v(t), w(t))

N—oo

for all u € W%2 + h, which along with the definition of the marginal function M
gives

lim sup H(uy (¢), vy (1)) < M(v(r), w(t)) forall r € Q.

N—o0

It remains to prove that

llivm inf H(uy (r), vy (1), wn (1)) 2 M(v(t), w(r)) forallt € 7,. (4.21)

To this end, we fix n > 0 and ¢t € 7,, where T, is given by Theorem 3.2. Next,
choose a sequence Ny such that

lim inf H (uy (1), v (1), Wy (1)) = Nliinoo H(uy, (1), v (1), W, (2)).

Since uy () is bounded in w26 (£2), we can assume, after passing to a subsequence,
that there is u* € W2:0(£2) such that

uy, () - u* weakly in w26(£2), uy, () — u* strongly in cl(2).
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Letting Ny — oo and using (3.4) and (3.5) we obtain

H@*, v(t), w(n) = N/{iinooH(uNk (1), vy (1), Wiy (1)).

On the other hand,
M(v(), w(t)) < H@*, v(r), w(r)),

which yields (4.21). Hence the desired relation (4.21) holds for every t € 7,.
Letting » — 0 we conclude that it holds for a.e. # € (0, T'). This completes the
proof of (4.1). O

In order to prove (4.2) it suffices to note that the desired inequality obviously
follows from (2.14) and (4.1).

Proof of Theorem 4.2. The proof is based on the following lemma: O

Lemma4.1. Let ¢ € L®(0,T; Wh2(2)), d;,c € L®(R2) and ¢c(t) = 0 in a
neighborhood of T. Then

T T
/ / (wvd, ¢ — VO*V¢)dxdt — / / ¢ ds +/ wgvog(O) dx = 0.
0o Ja o Jae 2
(4.22)

Moreover,

1
/ (w0 v(to) — it v(er)n dx + / ' / VO Vn dxds
2 1 2

fo
+ / / ¥ ndsdt (4.23)
131 082

foralln € Wh2(2) and all to, t, € L, N C,,.

Proof. The variation of the functional S, (9, u,) at the critical point ¢ = 9, leads
to the equality

1
;{w‘,{,(z)w(x) — W (t — Doyt — 1)} — AdN (1) =0 (4.24)

for ¢t € (0, T). Notice that
wy({t —1t)=w_1 =wg, vyE—1)=1v9 forr e (0, ].

Multiplying both sides of (4.24) by ¢ and integrating the result over £2 x (0, T),
we obtain
T
t — G
/ / {wN(t)dvn(t)M — Vz?*Vg} dxdt
0 Je T

T
_/ / ﬂ*gds:/ wgvog(O)dxz().
0 982 2
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Letting N — oo and using (3.3) and (4.4) we arrive at (4.22). Next choose 1 €
W(; 2 (£2)andt; € L£,NC,. Then choose a compactly supported continuous function
¢ such that

=1 forte(t,tp—3), ¢ =0 fort € (—oo0,t; — 8] U [tg, 00),

and ¢ is linear on the intervals (¢ — §, 1) and (#p — 8, #p). Substituting ¢ = ¢n into
(4.22), letting 6 — 0, and using (4.5) we obtain (4.23). O

Let us turn to the proof of Theorem 4.2. We assume that ¢, tp € £, NC,. By abuse
of notation we will write v; and w; instead of v(#;) and w(;). By the definition of

the marginal function, we have M(vy, wi) < H(u, vi, wi), which leads to

M(vo, wo) — M(vi, wi) 2 H(u, v, wo) — H(u, vy, wy)
= g(uv Vo, wO) - g(uv v, wl)' (425)

Here the total internal energy functional £ has the integral representation by (1.43)
with the integrand £ given by (1.42). The Taylor formula implies

E(D*u, Du, vo, wo) — E(D*u, Du, v, wy) = 3,E(D*u, Du, vy, wo)(vo — vy)
+ 3,E(D?u, Du, v, wo)(wo — wy) + R + Ry + Rs, (4.26)

where
1 1
R = —(wo — w1)2§f 32 E(Du, Du, vo, 2wy + (1 — A)wo) dA,
0
1
Ry = —(wo — wy)(vo — m)f ddwE(D*u, Du, vo, Awy + (1 — Mwo) dA,
0
1 1
Ry = —(vo — ”‘)25/ 326(D*u, Du, Av;y + (1 — A)vg, wi) dA. (4.27)
0

Now the task is to let f; — #( in expansion (4.26). Our considerations are based on
the following lemma:

Lemma 4.2. Let n € W'2(2) and g € LP(2), B > 1. Then

/ n(wto)Y v(to) — wit) v(n)) dx + / V9* (10) Vi dx
2 2

o — 11
+/ P (to)nds — 0 ast; — to, (4.28)
a2
and
/ g(x)(w(ty) — w(ty)) dx +/ gH*(t)w(to)dx — 0 ast; — fy.
fo—1 Jo Q

(4.29)
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Proof. In view of (4.23), we have

/Q 1) (w(to)v(10) — w(t)v(n)) dx

fo—n
—i—/ Vz&‘*(to)Vndxdt—i—/ ¥ (t9)n ds
7, a0

1
_ /0{/ (VO*(19) — VO*(1))Vn dxdt
1 2

o — 11

+/ ®* (o) — 9 () ds} dr (4.30)
82

for all n € W'2(£2). Since the embedding W!2(£2) < L*(£2) is bounded, it
follows from (4.5) that

1 /m
fo — 11 Jy

= C||77||W1,2(_Q)t0

/ (VO*(t0) — VO* (1)) Vi dxdt + / @*(t0) — O*(1))n ds|dr
2 982

1 fo
; / cll9* (1) — () lwr2(eydt — 0 asty — 1o,
— 1 Jy
which obviously yields (4.28). Next, we have
0]
wp — wo = —/ H*(s)w(s)ds and |w; — wo| < c(tp — t1). “4.31)

We thus get

/Q gx)(w(to) — w(r)) dx

fo—11

1[0
—f g(X)H*(to)wodx-irT/ f g(x)(H"(to) — H*(1))wo dxdt

/ /g(x)H (1) (wo — wy) dxdt. (4.32)

t() — 1
Next, for@ > /(8 — 1) we have

g(x)(H*(tg) — H*(t))wo dx| dt
o — 11 Q

cliglhray [
< ZERETE@) U H (1) — HA(1) || a2y df — O
o — N 1

as t; — to. Now, estimate (4.31) implies

/ /|8(X)H ) (wo — wy)| dxdt

Io—1
< ety — tl)/ lg(x)|dx — Oast — 1.
2

Combining this with (4.32) we arrive at (4.29). O
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Let us turn to the proof of Theorem 4.2. Our first task is to estimate the quantities
R; in expansion (4.26). Since w; and |Du| are bounded, it follows from formula
(1.42) for &£ that

192E(D*u, Du, vy, 2wy + (1 — Dwo)| < c(Jvol* + [Au?).  (4.33)

From this and inequality (4.31) we obtain

(to — 1) /Q [Rildx < c(to — 1) /Q(|vo|2 +[Auf?]) dx
Sc(tg—1) — 0 ast; — fo. (4.34)
Let us estimate R». It follows from the boundedness of w; and Du that
18,3 E(D*u, Du, vy, Awy + (1 — Mwo)| < (1 + Jvol),
which along with (4.31) yields
(to — 1)~ [Ra| = e(lvol + Dlvo — w1l (4.35)
Next, (4.6) implies
lvo — U1||W1-2(Q) — 0, ||U1||le2(9) - ||U0||le2(9) (4.36)

as t; /" to. From this we obtain
(to — tl)_lf |R2ldx = cllvoll 2y llvo — vill 2@y — 0 asti — 1o (4.37)
2

It remains to estimate R3. To this end, notice that

926 (D*u, Du, vy + (1 — Avg, wi) = w.

Thus we get
__l _ d _d l _ d __ .d _
R3 = 2(”0 v (wyvo — wivy) + 2(U0 v)(wg —wi)ve = 11 + I>.
We have

(to — 1)~ 12] < c(to — 1)~ wollvr = wollwy — wol < e(1 + o) |v1 — vol.
Hence I admits estimate (4.35). Arguing as in the proof of (4.37) we obtain
(to —tl)*‘/ [I|dx — 0 ast; — fp.
2
Next, applying Lemma 4.2 with = vp — v; and noting that

‘/ Vz‘/‘*(to)Vndxdt—I-/ z?*(to)r;ds‘
2 082

< cl|9* (to) w12y llvo — villwiag) — 0
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as t; — fg, we obtain
(to —t1)_1/9|11|dx — 0 ast; — fo,
and hence
(to —t1)~" /9 |R3|dx — 0 ast; — fo. (4.38)

Thus we have proved that the limits of all second order terms in the Taylor expansion
(4.26) equal zero. In order to find the limits of the first order terms, notice that in
view of (1.42) we have

BUE(DZu, Du, vy, wo)(vg — v1) = wgﬂ,
3wE(D*u, Du, vy, wo) (vo — v1) = wy ' + dwd~vyo,
where ¥ and ¢ are given by (4.8). It follows that
3,£(D*u, Du, vy, wo) (vo — v1) + 9,E(D>u, Du, vy, wo) (wo — wy)
= (wgvo — w‘liv])ﬂ + wgl(wo —we + (w’lj — wg)(vl — o)V
+op(w? — wl — dwi ™" (wi — wo))?. (4.39)
Nowsetn = 9 € WH2(2) and g = wo_lgp € L1(82). Applying Lemma 4.2 we

obtain
1

/ ((wgvo —wiv)® + wal(wo - w1)<ﬂ> dx —
fe)

o — 11
—/ Vi (tp) Vi dx —/ (1) ds —/ oH*(tp) dx ast; — 1.
Q 2 Q
(4.40)
Next, (4.31) and (4.36) imply
1 d __ .d _ < _
[(w] —wp)(vi —ve)d|dx = ¢ | [(vi —vo)P|dx
fo—1h Jo Q
g C”'l?”wlZ(Q)”UO — V] ”WIZ(Q) — 0 as n — 1. (441)

Finally, we apply estimate (4.31) to obtain

/ |v0(w‘f — wg — dwg_l(wl — wo))lﬂ dx
Io—h Jo

<
T lo— 1N

Combining (4.40)—(4.42) with identity (4.39) we arrive at
1

to— 1

+ 8 E(D*u, Du, vy, wo) (wo — wl)} dx

/ [9vol(w) — wo)>dx < c(to—11) — Oasty — fy. (4.42)
2

/ {avg(Dzuv Du7 vo, wO)(UO - Ul)
2

— —/ Vﬁ*(to)Vﬂdx—f ﬁ*(to)ﬁds—f oH*(t9) dx (4.43)
2 082 2
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ast; — ty. Substituting this relation along with the limiting relations (4.34), (4.37),
(4.38) for the second order remainders R; into the Taylor expansion (4.26) we obtain

(5(u, vo, wo) — E(u, vy, wl))
1
o — 1

— —/ Vz?*(to)Vﬁdx—/ ﬂ*(to)ﬁds—/ @ H*(to)wg dx
2 082 2

Ih—1n

/ {E(Dzu, Du, vy, wg) — E(DzuDu, V1, wl)} dx
Q

as 11 — ty. This result along with (4.25) implies the desired relation (4.9).

5. Sliced Measures in Banach Spaces

In this section we develop a theory of sliced measures in Banach spaces. Using
this theory we will prove the strong convergence of the sequences ¥ and ¢, . For
technical reasons, itis convenient to introduce the following notation. Fix exponents
s, q and r, p satisfying relations (2.20) and set

X = LP(£2) x L1(£2).
Further we will denote by @y and * the couples
oy = @y, on), @ =7 ¢"), (S.D

where the approximate solutions ¢y, ¢ are defined by Theorem 2.1, and the weak
limits 9%, ¢* are given by (4.4). Next, recall the definitions of the compact set 7;,
in Theorem 3.2 and of the compact sets £, C; in Theorem 4.2. Choose 1 > 0 and
set

Fy=T,NCyNLy, Fy={on®):teF), Nz1}, X, =cF,. (52

In view of Theorem 3.2 the set §, is relatively compact in X and the set X, is
compact in X. The following theorem gives the desired representation for the weak
limits of the sequences ¥ and ¢y:

Theorem 5.1. There exists a Borel measure v on F,, x X, and a subsequence of
wy, still denoted by wy, with the following properties. For every F € C(F, x Xy)
we have

lim/ /F(t,wN)dxdtz/ F(t,o)dv(t,w). (5.3)
N—oo JF, /g2 Fyx Ty

Moreover, there is a measurable family of Borel probability measures (i;, t € J,
on Xy such that

/ F(t,w)dv(t,w):/ {/ F(t,w)d,ut(w)}dt. (5.4)
Fyx 2y T 2y
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There is a set F C Fy of full measure such that

1

. ST e, T = [ PO @) 69

2y

for all tg € F, for all continuous functions F : Xy — R, and for all intervals
I, = [t,, to] such that t,, — ty.

The following theorem specifies the structure of the support of the measure u;
(recall that, in view of Theorem 2.17, there is a constant ¢y independent of  and N
such that):

luy () lly26) < co forall N = Tand s € [0, T1. (5.6)

Theorem 5.2. There is a set D of full measure in F, with the following property:
for every ty € D and w = (U, ¢) € supp Ly, there is u € W26(82) such that
”u”Wz»G(_Q) g co and

B = v(tp) + W(w(to) "' Du), ¢ = ¢(D*u, Du, ¥, w(ty)), (5.7)
H(u, v(tn), w(tp)) = M(v(tp), w(toy)). (5.8)

Here o(D*u, Du, 9, w(t)) is given by (1.26e), and the functionals H, M are given
by (1.44) and (1.45).

The rest of this section is devoted to the proof of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. Observe that the space C(F, x X,) is separable; let Fy,
k = 1, be adense set in it. Applying the diagonal process we may assume that there
is a subsequence of wy, still denoted by @y, such that the limit

lim/ ka(t,wN)dxdt =: F}
N—o0 -7:71 Q

exists for every k = 1. Since the set { F;} is dense in C(F;, x X)), the limit

lim / / F(t,wy)dxdt = F
N—o0 T,/

exists for every F' € C(F,; x X)). Obviously the quantity F linearly depends on
F and satisfies

|FI £ IFllcF,xx,), F =0 forF=0.

Hence the mapping F +— F define a continuous functional on C(F, x Xy). By
the Riesz representation theorem, there exists a nonnegative Borel measure v on
Fy x Xy such that

F:/ F(t,w)dv(t, w).
].'

XXy
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This leads to representation (5.3). If F = F(¢) is independent of @, we have

/ F(t)dt:/ F(t)dv(t, w).
F, Fyx Xy

n n

This means that the projection of the measure v on F;, coincides with the restriction
of the Lebesgue measure to ;. Hence we can apply the disintegration theorem
(see [2]) to obtain representation (5.4). It remains to note that (5.5) is a standard
result of the theory of measure derivatives.

Proof of Theorem 5.2. The proof falls into three steps.

Step 1. Consider the following construction. By (4.1) the piecewise constant func-
tions H(uy(t), vy (), wy(t)) converge to M(v(¢), w(t)) as N — oo for a.e.
t € F,. Applying the Egoroff and Lusin theorems we conclude that for every
8 > 0 there is a set Gs C JF, such that meas(F,\G;s) < 6 and

H(uy, vy, wy) — M, w) in C(Gs). 5.9)

Step 2. Choose § > 0 and let 7y be a Lebesgue point of Gs. Next, choose wy =
(P0, o) € supp py, C X. Let us prove that there are sequences Ny and #; € Gs
such that ty ' tg and Ny — oo as k — 00, and

oy, (tr) = wo in X ask — oo. (5.10)
In other words, we have to prove that

limsup  [lwn(t) —@olly' = o0 (5.11)
min{N~!,1p—t}—=0

fort € Gs and r < tg. Suppose that (5.11) is false. Then there are m > O and ¢ > 0
such that

lon(@) —wollx = ¢ for NZ>2m, 0<t9—t<m~ ', reGs. (512)
Choose a continuous nonnegative function g : X — R such that
g@) =0 for|l@—wolx =2¢ and g(w) =1 forllw—wolx < ¢&/2.
It follows from (5.12) that
gwy@)=0forN=m, 0<1t9—t<m™', tegs. (5.13)
Now choose n = m and set I,, = [ty — 1/n, to]. It follows from (5.13) that
glwy() =0 forte I, NGsand N = m.

Noting that I, C (I,\Gs) U (I, N G5) we obtain

f gy (D) dt < f @y (1) dr < meas(I\Gs) = o (5.14)
Inﬂﬁ7 (In\gﬁ)
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for all sufficiently large N. Letting N — oo and recalling (5.3) we arrive at

/ gw)dv(t, w)
INF)x Zy

= lim g(wy () dr < o,. (5.15)
N—o0 (Inm]:n)

Since ¢ is a Lebesgue point of Gg, we have lim,,_, o no, = 0. Combining this with
(5.2) and (5.5) we obtain

f g(w)dpy(w) = lim n/ g(w)dv(t,w) = 0.
n (InNFyp) x 2y

— 00
Z:”}

Since g is positive in a neighborhood of @y, this equality contradicts the inclusion
®( € Supp [y, thus proving (5.10).

Step 3. Let Ny and t;, € Gj satisfy condition (5.10). It follows from definition (2.2),
(2.8) of the approximate solution that

O, (k) = v, (1) + W@, (1)~ Duy, (1)),

) (5.16)
oN () = o(D7ap, (1), Duy, (1), On, (1), wy, (1)).

Since G5 C T, relations (3.4) and (3.5) in Theorem 3.2 imply
vy, — v in C(Gs; LP(2)), wﬁj, w]ﬂ;kl — wtl in C(Gs; LY(£2)) (5.17)

for every a € [1, 00) and every p satisfying (2.20). In particular, these relations
hold for every p € [1, 6). Moreover the mappings v : Gs — L?(§2) and v : G5 —
L% (82) are continuous. It follows that

un, () = v(to) in LP(2), Wy, (1), wy, () — w(t)™' in L*(2).
(5.18)

After passing to a subsequence we may assume that

v, (k) — v(to), Wa, (t)E = wte):!, wy, ()T @) = w(te)*! ae. in 2.
(5.19)

Next, estimates (2.17) and (2.18) in Theorem 2.2 imply
lun, ) lwasiey < cos By @)~ Auy, 1) llyr2) S e (5.20)

Notice that the embeddings W20(2) — C'(£2) and W'2(2) — L%*(£2) are
compact. Since the functions wy, ()= are uniformly bounded and converge to
w(tg) !, we can assume after passing to a subsequence that

Auy, (tx) — Au weakly in L6(.Q), Duy, (tx) — Duin C(£2),

. 5.21)
Auy, (%) — Au ae.in £2
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for some u € W20(£2) satisfying (5.20). Letting k¥ — oo in identities (5.16) and
using relations (5.19) and (5.21) we arrive at

O, (k) — v(to) + W(w(t)"'Du) =3 ae.in £2,
on, (t) — go(D2u, Du, 9, w(ty)) a.e.in £2. (5.22)

On the other hand, relations (5.10) imply
N, () = (O, (1), on (1)) — @(to) = (Po, o) in X ask — oo.
It follows from this and (5.22) that
90 = v(to) + W(w(to)~' Du), g0 = ¢(D*u, Du, 9o, w(tp)), ~ (5.23)

which gives the desired relation (5.7). It remains to prove that u is a minimizer of
the functional H (-, v(fp), w(fp)). Notice that

H(ay, (t), v, (1), wi ()

= /9 (Sm 0" A, (1) + w0 W (w10~ Duny (1) ) dx

1
+ 5 '/;2 <ka (tk)d(ka (tk) + W(ka (tk)_lDuNk (tk))2 —f. uy, (tk)> dx.
(5.24)

From this and relations (5.17), (5.21) we conclude that

liminf/ ka(tk)d—“muNk(zk)Fdxgf w(t)? 4 Aul? dx,
2 2

N—o0

im0+ o 50) W o, (1) D 1)) d

= /Q(v(to) + w(to)* W (w(to) ' Du)* dx.
Thus we get
H(u, v(t), w(to)) = lim inf H Qu, (2), vn, (1), Wi (1)
On the other hand, relations (5.9) yield
likrig;f H(up, (1), vn, (t), wi, (k) = M(v(to), w(to)).
Combining these results we arrive at the inequality
H(u, v(ty), w(to)) = M(v(to), w(to)). (5.25)

Hence u is a minimizer of H (-, v(zy), w(fy)) and we have H(u, v(tp), w(ty)) =
M(v(tp), w(ty)). It follows that the desired relation (5.8) holds for all 79 € Gs.
Letting 6 — 0 we conclude that (5.8) is fulfilled for a.e. o € F;;. This completes
the proof of Theorem 5.2.
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6. Strong Convergence of Temperature and Eshelby Tensor

In this section we employ the results obtained in Sections 4 and 5 in order to
prove the strong convergence of sequences ¥y and ¢y . This result is given by

Theorem 6.1. Let exponents (r, p) and (s, q) satisfy inequalities (2.20) and (9*, ¢*)
be defined by (4.4). Then

Oy — *inL"(0,T; LP(2)), on — ¢* in L°(0,T; L9(2)). (6.1)

For almost every t € (0,T), there is a function u € W>%(2) + h such that
lally2e.) = co and

9*(1) = v(t) + Ww @)~ 'Du), ¢* () = o(D*u, Du, 9*(t), w(r)), (6.2)
Hu, v(t), wt)) = M(t), w(t)), 6.3)

i.e., u is a minimizer of the functional H(-, v(t), w(t)).

The rest of the section is devoted to the proof of Theorem 6.1. We split the proof
into the sequence of lemmas. First we prove that the dissipation energy rate 71
given by (1.46) is integrable with respect to the measure ;. Notice that pu; is
defined on the compact subset X, of space X = L7 (£2) x L9(£2), while IT is
defined on the space W!2(£2) x L7(£2). The energy dissipation rate IT can be
considered as a discontinuous unbounded functional defined on the dense subspace
of X. However, we intend to prove that I1 (%, ¢) is integrable over the measure 1.
The proof is based on the special approximation of I7 which is defined as follows:
recall decomposition (1.47) of IT

(9, ¢) = Io(¥, 9) + IT1 (H(9), ¢), (6.4)

where the bilinear forms I7; are given by

VidVudx + /
IR

Iy, v) = /

Juds, Hl(lp,go):/ Yedx. (6.5)
Q 2

In view of the general theory of the second order elliptic equations, the spectral
problem

—AL =Ain 2, ¢+ =00ndR (6.6)

has a countable set of eigenvalues Ax > 0,k = 1,and eigenfunctions & € W22(£2),
k > 1 The eigenfunctions form an orthonormal basis in L?(£2) and an orthogonal
basis in W12(£2) Every element ¥ € L?(£2) admits the representation

B = Zﬂkg, Oy = fgﬁ;k dx. (6.7)
k

In particular, the Bessel identity implies the relations

19120y = D 10k Mo, 9) =y axlol. (6.8)
k k
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Now set
aw, ) = 0" ®,9) + M (H(g), ¢), (6.9)
where
n
1§V (9, v) = Mo(Py®, Pav), Pud =Y il (6.10)
k=1

For every v € W12(£2) and ¥ € L°°(£2) define the linear forms

(9, ¢) == IIy(9, v) + 111 (¥, 9),

. 6.11)
'V (9, o) .= (P90, Pyv) + I (Y, ¢).

The following Lemma describe the properties of IT and I” and their approximations:

Lemma 6.1. The functions I1,I" : W-2(2) x L'(£22) — R and O™, r™
LY (£2) x L'Y(2) — R are continuous. In particular, IT™ and I'™ are continuous
on the Banach space X. For every @ = (9, ¢) € X we have
™ (w) 7 M(w) when ¥ € WH2(2) and 1™ (w) 7 0o otherwise, (6.12)
r' () — ') when € Wh(2) (6.13)

asn — oQ.

Proof. The continuity of functions I7, I" is obvious. The continuity of [7?, ™ :
L'(2) x L'(2) > R obviously follows from the representations

n 2
17<">=x/19d +/H dx,
@ =3 ([ vaax) + | Hipgdr
r®™ =/(u<")19+1p<p)dx, o™ =Z’\“/’k4°k e C(2).
2 1

Since Io(9, ) determines the norm in W'2(£2), relation (6.12) obviously fol-
lows from representations (6.9) and (6.10). Since ¢ form the orthogonal basis in
WL2(82), the sequence P,v converges v in W12(£2), which along with (6.11)
yields (6.13). O

The next Lemma constitutes the differentiability of the marginal function.

Lemma 6.2. There is a set Q of the full measure in (0, T) with the following
properties: for every to € D we have
1

o — t(M(v(lo), w(to)) — M(v(t), w(t)) — M'(ty) € (=00,0],  (6.14)

ast /S toandt € Q.
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Proof. Since Iy is nonnegative, inequality (4.2) in Theorem 4.1 implies that
M(v (1), w(to)) — M(v(t), w(t)) =0

for almost all 0 < ¢t < #y < T. In other words, there is a set Q; of full measure
in [0, T'] such that this inequality holds true for all + < ¢y in this set. Hence
the function M(v(t), w(t)) decreases on Qj. Obviously, it can be extended to a
decreasing function to the whole interval [0, T]. Hence there is a set @ C Q; of
full measure in (0, T) such that the extended function has the non-positive finite
derivative M’ (o) at every point of Q. O

Without loss of generality we can assume that Q contains the set D given by
Theorem 5.2. To this end, it suffices to replace D by D N Q. Thus we can assume
that the marginal function is differentiable on D. The following lemma constitutes
the integrability of the functions /7 and I” with respect to the measure p;:

Lemma 6.3. For every tgo € D and all v € wi2(2), Y € L%°(L2), the functions
0, @) = I1(9, ¢) and (¥, ¢) — I'(J,¢) (6.15)

are integrable with respect to the measure (i, given by Theorem 5.1. Moreover, we
have

/2 () d gy (@) = =M (19). (6.16)

Proof. Choose 11, tg € D with 0 < #; < fy. Recall definition (2.9) of the function
¥ n. Since 0 < H(g") < Iy, we have

f 8 9y, 9n) + / 8 @y 7x))
(t141,10)NF (t1+t,t0—0)NFy

1 1 _
< —f Iy, On) + —/ Iy(Py, O n)).
2 (t1+7,10) (t1+t,t0—7)N

It follows from this and inequality (4.2) in Theorem 4.1 that

M(v(10), w(10)) — M(v(#1), w(#1)) + lim sup {/ I (H(pn), ¢N)
(t+7,10)NFy

N—o00

1 1 _
+5 oy, owds + 5 [ @y, Ty ds| <0,
2 Sy +ri0nF, 2 Jiy+r.a0-0nF,

6.17)

Notice that the quadratic form Hé") : L2(2) x L3(22) — R is continuous. Next,
estimate (2.13) in Theorem 2.1 implies that

t _
/0 9N — 79N||iz(g) dt — 0 as N — oo.
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In particular, we have
1o _ _
/ o @y =9y, On —Ox)dt = 0 as N — oo.
0

Since the quadratic form 17" is nonnegative, the Cauchy inequality implies the
estimate

" @ . 9w — 11" On. 9n)
< $IMo(Wn, VUN) + 5_117(§n)(19N — N, 0N — ON).

It follows from this and energy estimate (2.12) that
Io _ _ Io _ _
/ 115" @, ) = 116" On, Ow)lde < e +/ " @y = Fn, On = ON).
0 0

Letting N — oo we obtain

o _ _
limsup/ 11" Oy, On) — I On, O)lde < c8 — 0 as§ — 0.

N—oo JO

It follows from this that

lim (" Fn, On) — I @Oy, o)) =0, (6.18)
N=00 J(1+1,10)0F,

Combining this relation with (6.17) we arrive at the inequality

M(v(to), w(to)) — M(v(1), w(#1)) + lim sup {/( - IT\ (H(¢N), pN)ds
H+1,10)NFy

N—o00
1 (n) 1 ()
4o I @y, o) ds + - s wy, z?N)ds} <o.
2 (t1+7.10)NF, 2 (+7,10—1)NF,

(6.19)

In view of (5.2) and Theorem 3.2 the functions wy(t), t € F,, belong to the
set §(n) which is relatively compact in X. Hence for a fixed n, the functions
T @y (1), @n (1)) are uniformly bounded on ;. Hence the functions H(gn)(z‘}N,
¥y)(t) and IT; (H (¢N), ¢n) are bounded on F;, uniformly in N. Since t — 0 as
N — o0, we have

. 1
lim sup { / Mi(H(gn). on) + 5 f 115" Wn. 9) ds
(t1+1,10)NF, (t1+1,10)NF,

N—o0 2
1

+-/ o, ﬁN)ds} = limsup/ o™ @y, o) dr.
2 (t1+t,t0—1)NF, N—oo J(t1,t0)NF,

Here we use the identity

Hén)(ﬁN, On) + M (H(pn), on) = T™ @Oy, on).
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Combining this result with (6.19) we arrive at the inequality

lim sup / I @), ey (1) dt £ —{M(v(10), w(tg)) —M(v(t1), w(t)))}.
(t1,00)NFy

N—o00

In view of Lemma 6.13 17" (@) is continuous in X. Hence we can apply Theorem
5.1 to obtain

lim I Wy, on)dt = f " (@) dv(w),
N=oo Jiiy 1InF, li0,111NFy % 5

where @ = (9, ¢). Thus we get
f " (@) dv £ —(M(v(t), w(t)) — M(v(ty), w(r))}.  (6.20)
[t0,11INFyx Xy

Since ty) € D C F we can apply the relation (5.5) in Theorem 5.1 to obtain

1
lim / I (w)dv = / I (@) dg(@).  (6.21)
h=10 10 — 11 Jt,010Tyx =, =,

On the other hand, Lemma 6.3 yields

lim {M(v(t0), w(t0)) — M(v(11), w(r1))} = M'(to). (6.22)

n—to top — 11

Combining relations (6.21) and (6.22) with inequality (6.20) we obtain
[ 1@ duy@ = M. 6.23)
Z"7

Relation (6.12) in Lemma 6.1 implies that the sequence IT" (w) increases and
converges to I1(w). Letting n — oo in (6.23) and applying the Fatou theorem
we conclude that the function I7 is integrable with respect to the measure 1, and
satisfies inequality (6.16).

Let us prove the integrability of I". Choose v € Wwl2(£2) and W oe L®(2). 1t
follows from the Cauchy inequality that

My, v) < Mo, )/ My(v, v)'/? < Mo, 9)'/ < (B, )2,
It follows from this and the representation (6.9) that
T (@, ¢)| = c(l+ (D, ¢)).

Hence I has the integrable majorant. Since ¥ € W!2(£2) almost everywhere on
the support i, it follows that the continuous functions "™ — I" i, -almost
everywhere. Hence the function I" is measurable and integrable withy respect to

Mg - O

The following lemma plays a key role in the proof of Theorem 6.1:



Nonconvex Model of Material Growth 887

Lemma 6.4. The inequality

109, ¢) dpugy < /

(10,9 @) + M (H ). ) diasy - (624

Zy

holds true for every ty € D. Here 9* and H* are the weak limits of Oy and ¢y
defined by (4.4).

Proof. Choose 19 € D C F;,. Recall that 7, € C,, where C, is given by (4.6). It
follows from 4.6 that 9* (1) € W12(£2). By virtue of Theorem 5.2, every element
® = (¥, ¢) € supp uy, has representation (5.7). Moreover, it follows from Lemma
6.3 that o € Wi2(0) - almost everywhere. Hence @ meets all requirements of
Theorem 4.2 114,- almost everywhere. In view of relation (4.9) in this theorem the
inequality

ITo(9, ¥*(10)) + 1 (H*(19), ¢)

> —limi —
> —timinf - {M(u(t0), w(i0)) = M((1), wien)

holds true for all #; € D. From this and relation (6.14) in Lemma 6.2 we obtain
o, 9*(10)) + M1 (H*(10), ¢) =2 —M(t0).

for py- a.e. (¥, ). Integrating both sides of this inequality with respect to the
probability measure 1i;, we obtain

/E (o0, 9" (10)) + T (H* (10). ¢)) djusg @) = =M ().

Combining this result with (6.16) we arrive at desired inequality (6.24). O

We are now in a position to prove that the i, is the Dirac measure.

Lemma 6.5. Lettg € D be a Lebesgue point of D. Then the measure iy, is the Dirac
measure concentrated at point ®* = (0*(ty), ¢*(t9)). Moreover, the functions
9*(to) and ¢*(ty) admit representations (6.2) and (6.3).

Proof. First we prove the identities
[ 1100, 9% @) disy = 1100* ). 9" o (6.25)
Z‘VI

/2 I\ (H*(t0), ) d gy = T (H* (10), ¢* (1)) =/2 IT (H(p), 9™ (t0)) d i1,
' ' (6.26)
L I (H(p), ) diyy = i ((Hp)* (1), 1). (6.27)
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In order to prove (6.25) notice that the function Hé") given by (6.9) admits the
representation

n
" @, 9" (t0)) = / v®@odx, v =" Atk € C(R2),
2
1

where ¢y are the Fourier coefficients of ©*(fp) in the basis ;. Since the sequence
¥y converges to * weakly in L" (0, T; L?(§2) withr > 1 and p > 2 we have

lim Hg”)(ﬂN(t),ﬁ*(to))dtzf / v (1) dxdt.
N—=00 Ji11,101nF, [r1,10INF, J 2

(6.28)

In view of Theorem 4.4 the function #* belongs to the space C (F,; L?(£2)). Since
fo is a Lebesgue point of D C F,;, we conclude from this that

1
lim / / v (1) dxdt
=t to — 11 Jiy,0InF, /2

- / v™9*(19) dx = 1" (9*(10), 9*(10)). (6.29)
2

On the other hand, relation (6.28) implies that 17(;")(19, ¥*(tp)) is a continuous
function of ¢ on X Hence we can apply relation (5.3) in Theorem 5.1 to obtain

lim " @y (1), 9*(10)) dt = / " @, 9* (1)) dv(o).
N=00 J11,1]0F;] [11,10]NFyx 2y
(6.30)
Next, relation (5.5) in Theorem 5.1 yields
1
im / " @, 9* (1)) dv()
n=10 10 — 11 Jiny, 0010 Fyx 2,
= [ 1 .07 0 disy o). (6.31)
n
Combining (6.28)—(6.31) we finally arrive at
/ 1" (9, 9*(t0)) d sy (@) = 13" (9% (t0), 9* (10)). (6.32)
Z‘Vl

Recall that [Ty is integrable with respect to measure (,, and H(g") ' I in
W12(£2). Notice that 9 € W12(£2) for s, almost every point (3, ). Lettingn —
o0 in (6.32) and applying the Fatou theorem we arrive at (6.25). Now our task is to
prove the first equality in (6.26). Recall that oy — @™ weakly in L*(0, T'; L1(£2))
and H* € L°°(£2). Thus we get

lim HI(H*(IO),wN(t))dI=/ / H*(t0)¢™ (1) dxdt.
[t1,00]NF J £2

N=00 Ji11,10)nF,
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On the other hand, relation (6.28) implies that IT; (H*(fy), ¢) is a continuous func-
tion of ¢ on X. Hence we can apply relations (5.3) in Theorem 5.1 to obtain

lim IT\ (H*(10), on (1)) dt =/ IT (H*(10), ) dv(®).
N=00 J11,19]nT, (11,1010 Ty) % 5y

Thus we get

/ / H*(t9)™(t) dxdt
[t1,00]NFy J £2

- f T (H (10), ) dv(w). (6.33)
([n ,I()]ﬂ’]?,)XEn

Since the mapping F,, > t — ¢*(¢) € L9(£2) is continuous and fy is a Lebesgue
point of F;,, we have

1
lim / / H*(to)g™ (1) dxdt
t1—1to ty — 1] [,00INT, J 2

=/Q H*(t0)¢* (to)dx = IT)(H(t0), 9™ (10))- (6.34)

Next, relation (5.5) in Theorem 5.1 implies
. 1 /'
lim
=10 fo — 11 J([11,1010T;) x 2,

- /2 Ty (H* (1), @)d g (@). 635)

I (H* (1), ¢) dv()

Combining (6.33)—(6.35) we arrive at the first equality in (6.26). Arguing as before
we obtain

lim My (Hgn), ¢*(10) di = / /Q H*(10)¢™ (1) dxdr

N=00 Jy,101nF, [11.10]INF;
and
lim I (H (pn), w*(to))dt=f IT{ (H (¢), 9™ (1)) dv(®),
N—=00 J[11,11NT, (11, 101N T x

which leads to

/ / H*(t9)@™ (t) dxdt
[11,00INF; J £2

T, (H (), ¢*(t0)) dv(®). (6.36)

/([tl,to]ﬂTn)XEn
Relation (5.5) in Theorem 5.1 implies
. 1 /
lim
n=10 to — 11 J((11,10I0T;) x 2,

= L I (H(p), ¢*(10))d piy (). (6.37)

I (H(9), ¢™(t0)) dv(w)
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Combining (6.34), (6.36), and (6.37) we obtain the second equality in (6.26). The
proof of inequality (6.27) is similar.

It remains to show that p;, is the Dirac measure. Using identities (6.25)—(6.26)
we rewrite the right hand side of inequality (6.24) in the form

[ (060970 + 1t @0, 90) sy = = | 1000 @), 9 )
2 [ 00,9 ) di,+ TG 0,47 0

Next, using identity (6.27) and recalling that j1,, is a probability measure we rewrite
the left hand side of (6.24) in the form

/ @0, ) dps, = / o9, ) dugy + I (H)* (1), 1).
2'} E’I
Substituting these results in (6.24) we arrive at the important inequality

/2 ITo(9 — 9™ (19), ¥ — 9™ (1)) dis,
+ T ((Hp)*(19), 1) — IT1 (H*(t0), ¢*(10))) < 0.

Since ITy = 0, it follows that

I ((He)*(to), 1) — IT1 (H* (o), 9™10))
= / (Hp)*(x, t9) — H*(x, t9), ™ (x,19)))dx < Oforall 1y € D. (6.38)
2

Let us prove that H*(t9) = H(¢*(ty)). The proof of this fact is based on the
representation of the weak limits in terms of the Young measure. Notice that oy —
@* star weakly in L°°(F,; L9(82)), g > 1. Since the function H is bounded and
continuous, it follows from the fundamental theorem on the Young measures that
there is a measurable family of probability measures o ; such that

p* = /deox,t()\), H* = /RH()») doy:(X), (Hp)* = /H;H(A)A doy (M)
almost everywhere in £2 x F;,. Since o, ; is a probability measure, we have
(H)*(x. 10) — H*(x. 10). ¢* (x. 1) = fR (H (. — 7 H)doy (1)
= /R(H(A) — H)(A — A doy
= /RH(A)(,\ — A doy,

= /R(H(?») — H())( — 1) do,;
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a.e.in §£2 x F;. It follows from this and (6.38) that

/ (HQ) — HQW)(A — M) doy; =0
R

almost everywhere in §£2 x F,. Since the function H is strictly monotone, it is
possible if and only if oy ; is the Dirac measure for a.e. (x, ) € §£2 x F,,. From this
and general theory of the Young measures we conclude that ¢y — ¢ in measure
in 2 x F,. It follows that H*(t9) = H(¢*(tp) for a.e. t € F;,. Thus we get

IT (H*(to), ¢) = IT1(H(¢*(10)), @), TT{(H*(t0), ¢*(t0))
= IT\ (H (¢ (t0)), ¢* (t0))-

From this and (6.26) we obtain

I (H*(to), ) d =/ {M(H(¢*(10)), ) + T (H (), 9" (10)) } d a4,

2y 2y

~ /s T (H (¢ (1)), 9™ (10)) } d - (6.39)

On the other hand, equality (6.25) implies
/ To(, 9 (t0)) dyusy = 2 / TTo(9, 9% (t0)) dyusy
E’] Z’I
_ / o™ (1), (o) dpgy.  (6.40)
E’]

Substituting (6.39) and (6.40) into inequality (6.24) we may rewrite this inequality
in the equivalent form

ITy(9 — 9™ (19), ¥ — 9™ (1)) d s,
=,

+ : I ((H(p) — H(p"(10) (¢ — ¢*(t0)) d sy = 0.

Notice that the integrands in the left hand side of this inequality are nonnegative
and equal zero if and only if ¢ = 9*(#p) and ¢ = ¢*(1p). Hence 1, is the Dirac
measure concentrated in (9 *(fg), ¢*(f9)). This completes the proof of Lemma 6.1.
In remains to note that in view of Theorem 5.2 representations (5.7) and (5.8) hold
for every element of supp ;. Hence they hold for (¢9*(1), ¢* (o)) which yields
(6.2) and (6.3). O

Finally we prove the strong convergence of the sequences ¢y and ¢y .
Lemma 6.6. Let exponents (r, p) and (s, q) satisfy condition (2.20). Then we have

Oy — ?Fin L7(0, T; LP(2)), oy — ¢ in L°(0, T; L1(£2)). (6.41)
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Proof. Choose y > 1 satisfying the inequality y < min{r, p, s, g} and notice that
the mapping

F:(d,9) — /Q(Il‘/‘ly + lpl”) dx

is continuous on X. Lemma 6.5 implies

/}: F(@, @) dpsy = F (O (t0), ¢ (t0)) = /Q(Iﬂ*(x,to)l” + lg™(x, 10)|") dx.

n

(6.42)

for a.e. to € JF;. Applying Theorem 5.1 we obtain that

lim/ /(|19N|V+|(p|y)dxdt= lim/ FWON @), pn (1)), dxdt
Fo e N—o00 Fy

N—o0

= [ [ rocodu)a= [ [ atwor+ i or s
Fyp I Xy Fnd 2
(6.43)

Recall that the sequence (%y, @) converges to (9, ¢*) weaklyin LY (£2 x (0, T)).
Since F is strictly convex, it follows from this and (6.43) that (9, on) — (9%, ¢*)
in LY (£2 x F;). In particular, the sequence (Jy, ¢y) converges in measure in
£2 x F. Letting n — 0 we conclude that this sequence converges to (3%, ¢*)
in measure in £2 x (0, T). It follows from (4.4) that the sequence ¥y is bounded
in L"(0, T; LP(£2)) and the sequence ¢, is bounded in L5(0, T'; L?(£2)) for all
exponents (7, p) and (s, ¢) satisfying the inequalities (2.20). Since these sequences
converge in measure and the set of admissible exponents (r, p) and (s, g) is open,
we conclude that 9y — ©* in L"(0, T; LP(£2)) and ¢y — ¢* strongly in
L*(0,T; L9(82)). O

It remains to note that Theorem 6.1 is a straightforward consequence of Lemmas
6.1 and 6.6.

7. Proof of Theorem 1.1

In this section we complete the proof of the main Theorem 1.1. Let us consider
the sequence of the approximate solutions ¥, v, and wy defined by Theorem 2.1.
We begin with the observation that Theorems 3.1 and 6.1 imply the relations
wix! — wE in C(0, T; L*(2)),
(vy, PN) — (v, 9%) in L"(0, T; LP(£2)),
on = ¢(D*uy, Duy, Oy, wy) — ¢*in L0, T; L9(2)).  (7.1)
which hold true for all ¢ € [1, co) and for all (p, r), (s, g) satisfying (2.20). The
limits satisfy the conditions
w* € L0, T; L™(2) N L¥O, T; W"(2)), dyw € L*(0, T; W"*(2)),
v, 9% € L*(0, T; W3(2)) N L™(0, T; L*(£2)). (7.2)
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Moreover, Theorem 6.1 implies that for almost every ¢ € (0, T'), there is a function
u(r) € W22 + h such that [u(r) || yy26o) < co and

9*(1) = v() + W) ' Du@), ¢*(t) = p(D*u), Du(), ¥*(1), w(t)),
(7.3)
Hu(), v(@), wr)) = M(v@), w(t)). (7.4)

Let us prove that the functions v, w, u, 9* meet all requirements of Definition
1.1 and serve as a weak solution to problem (1.26). It suffices to prove that these
functions satisfy equations (1.26¢), (1.26h) and integral identities (1.39) and (1.40).
Notice that equation (2.7) in the definition of the approximate solution yields

dwy = —H(p(D*uy, Duy, 9, wy)wy, 0<t<T, wy(0) = wp.

Letting N — oo and using relations (7.1)—(7.2) we conclude that w satisfies equa-
tion and initial condition (1.26¢) and (1.26h). Next, integral identity (4.22) implies
that w and 9* satisfy integral identity (1.39) with ¥ replaced by #*. In view of the
definition (1.45) of the marginal functional the vector field u(¢) is a minimizer of
the functional H(u, v(¢), w(t)). Hence, the equality

Tim 27! (H (w4 28, v(1). w(D) —H(w, v(1), w(1)) = 0 (7.5)

holds for every function & vanishing at 9£2. Recall that the functional H is defined
by

Hu, v(t), w(r)) = E@, v(r), w?)) + / u-fdx,
ko)

where the integral functional £ is given by (1.43). Substituting the expressions for
H into (7.5) we obtain the integral identity

/ (ew(t)d_4Au(t) A&
2
+w®? (14O (Dum), v) )W W™ ) Du() : Dg+ f - §) dx =0.

Noting that #* = @ (Du(z), v(t)) we conclude that u, w and ¢#* satisfy integral
identity (1.40). Next, notice that in view of (7.4) the deformation field u(z) satisfies
the first selection principle given by Definition 1.3.

It remains to prove that 9*(¢) and ¢* = @(D>u(t), Du(r), 9*(r), w(r) satisfy
the second selection principle formulated in Definition 1.5. To this end choose a
minimizer it € W2 + h of the functional H(, v(ty), w(ty)) and set

D = v(ty) + Ww(to) "' D), ¢ = (D, Du, 9, w(t)).

It follows that (f?, @) € P(v(ty), w(tg)), where the set P(v, w) is given by Defi-
nition 1.4. Notice that the function @ meets all requirements of Theorem 4.2 with
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u replaced by . Recall that the function M(v(#), w(fy)) is differentiable at a.e.
point #y € (0, T). From this and relation (4.9) in Theorem 4.2 we obtain

oD, 9* (o)) + IT1 (¢, H*(10)) = —M'(v(t0), w(ty)) forae.tg € (0, T).
(1.6)

Obviously we have 9y — ©* weakly in L2(0, T; W1-2(£2)). Let us consider the
sequence of the functions ¥y given by (2.9)—(2.10). In view of Theorem 2.1 they
are bounded in L2(t1, to; W'2(2)) and 9y — 9y — 0in L2(1y, 10; L2(£2)). Tt
follows that ¥ y — 0* weakly in L2(t1, to: W12(£2). Thus we get

1 1o h—T _ _ In)
liminf—{ ITh(Vn, On) ds—i—/ Ho(z?N,z?N)ds} = / Mo(¥*, 0%).
N—ooo 20 J, 41 r f

1+t
(7.7)
It obviously follows from (7.1) that
o 0]
lim IT (H (W), vy)ds = / I (H@®™), 9%)ds. (7.8)
N—o0 f+t f

Letting N — oo in relation (4.2) in Theorem 4.1, and using (7.7) and (7.8) we get
the inequality

1[0
(M(v(t0), w(t0)) — M(v(11), w(n1))) + —/ I~ ¢*)dr = 0.
o — 1 Io—11 Jy

Letting #; — fo we arrive at the estimate
(9" (1), 9* (1)) < —M'(v(1), w(19)) fora.e. 19 € (0, T).

Combining this estimate with (7.6) we conclude that * and ¢* satisfy inequality
(1.49). Hence ¥ * and ¢™* satisfy the second selection principle. This completes the
proof of Theorem 1.1.

8. Conclusion

In the paper we consider the quasi-stationary mathematical model describing
the volumetric growth of soft tissues. The model is based on the strain gradient
theory of the nonlinear thermoelastic material and takes into account the surface
and mass diffusion effects. The main ingredients of the modeling of the growth
process are the multiplicative decomposition of the deformation gradient as the
product of the growth factor and elastic deformation tensor, and the thermody-
namically consistent nonconservative model for the description of the growth rate.
Because of the complexity of the problem, we assume in addition that the strain
gradient energy density is taken in the simplest Falk form, the temperature is close
to an equilibrium value, and the growth is isotropic. The main peculiarity of the
problem is that the momentum balance equation may have multiple solutions at
every moment, and the number of such solutions may change when time increases.
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This leads to possible spontaneous jumps of the deformations and the temperature.
Due to the time scaling, this means that periods of slow growth can alternate with
periods of fast material growth (the inflation phenomenon). In other words, the
whole system exhibits the fast-slow dynamics behavior. We prove the existence of
solutions satisfying the additional selection principles which control the possible
multiplicity of solutions and the formation of jumps. The first principle states that
at every moment the deformation field minimize the total internal energy for fixed
entropy and growth factor. The second principle states that among all admissible
material stresses, related to the Eshelby material tensor, and all admissible temper-
ature fields, the system chooses the material stresses and temperature fields which
minimize the total energy dissipation rate. This principle is close to the Prigogin
minimum entropy production principle. Finally notice that our work is the first at-
tempt to develop the non-local rigorous mathematical theory for the mathematical
models of the volumetric material growth. Many important questions still remain
unsolved; among these are the mathematical theory of the volumetric growth with
two growth factors satisfying the covariance principle, and the full theory of the
volumetric growth which takes into account nutrition transport, angiogenesis, and
cell proliferation.

Acknowledgements. P.I. Plotnikov was supported by Russian Science Foundation (Project
15-11-20019), JAN SokOLOWSKI was partially supported by ANR-12-BS01-0007 Optiform
project.

A. Proof of Theorem 2.1

Step 1. First we prove the solvability of problem (2.4)—(2.6). Our task is to show
that there exist functions wy,, ¥,, w,, and v,, | < n < N, satisfying (2.5)—(2.6).
We proceed by the induction principle. Assume that

v € LA(2), 0p e W), wi' € L¥(2), w —heW?*?

are defined for all k < n — 1. We aim to show that there are (u,, v,, ¥,, w
satisfying (2.5)—(2.6). We begin with the observation that the functional w2 (£2) >
v — S, (u, 9) is strictly concave, continuous, and bounded from above for every

u € W22(£2). Hence there exists a unique ¥, (u) € W'2(£2) such that

+1
n )

S,(u,¥9,(w)) = max S,(u, ). (A.1)
PeW,2(2)

The following lemma gives the explicit expression for left hand side of this relation:

Lemma A.1. Letu — h € W22 and 9, = ¥, (u). Then we have

S, (u, 9,) = E(u, ﬁn,wn_1)+§170(ﬁ,,,19n)—f foude.  (A2)
2
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Proof. Calculation of the variation of S,, at the point ¥, = ¥, (u) leads to the linear
elliptic boundary boundary value problem for ¥,

— T A, + w0y = wl v,y +wl_ W(w, ! Du) in £2,

(A.3)
0,0, +9, =0 onds2.

Since wy_1, w,—> are uniformly bounded and W(w;_llDu), U_1 € LZ(SZ), it

follows from the general theory of elliptic boundary value problems that problem
(A.3) has a unique solution ¥, = ¥, (u) € W22(£2) and the mapping
W22(2)5u = ¥,(u) € W2(2) (A.4)
is continuous. Multiplying both sides of (A.3) by ¢}, and integrating the result by
parts we arrive at the identity
/ w? v, 19, dx = / wd_ V(Du, 9y, wy—1)0, dx + Ty (9, ).
Q 2
Combining this result with the expression (2.1) for S,, and noting that

W o, O, wet) = E(W, O, wa1) +f wl_ VD, By, wy1) P dx
2

we arrive at (A.2). O
It follows from (A.2) and the continuity of the mapping (A.4) that the functional
W22(2)>u — S,(u, ¥, () € R

is the sum of the strictly convex and weakly continuous parts. It is obviously
bounded from below. Hence there is u, € W22(£2) such that

S,(u,, %,(u,)) = min S,(u,¥,(u)) = min max S,(u, ). (A.S5)
u—heWw??2 u—heW?22 gewl?

Thus we prove the existence of functions (u,,, DOWEL(2) x Wh2(2) satisfying
(2.9).

Now our task is to find w,. We begin with the observation that u, and ¥, are
independent of . From this and equality (1.26e) we conclude that for a.e. x € £2,
the functions ¢(9,, D*u,, u,, w) and H(¢(d,, D*u,, u,, w)) are continuously
differentiable with respect to w on the interval (0, co). Since the functions wf;ll
are uniformly bounded, the Cauchy problem

dw = —H(@p,, D*u,, Duy, w)), w((n—1)7) = w,_1,

has a unique solution defined in a neighborhood of (n — 1)7. Moreover, since the
function H is uniformly bounded and # € (0, T'), this solution admits the estimates

Ulwa—tllzooce) + llwy o) e T < w(r)

-1 _
< (lwn—tllzee@) + lw, iz 2))e <,
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where C = sup | H|. Hence it can be extended to the interval ((n — 1)7, nt]. Denote
this extension as wy (x, ¢). By construction it satisfies (2.7). Let us show that w,,
is uniformly bounded from below and above. To this end, notice that the function
wy (x, 1) given by (2.2) is defined on the interval (0, nt] and satisfies the equation
and initial condition

dwy = —H(¢®y, D*uy, Du,, wy)) fort € (0, n7), w(0) = wy.
Since |H| < C, the function wy satisfies the inequalities

O<c'<Swyix,t)<c<oo for0<t <nr, (A6)
[;wy(x, )| Sc<oo for0 St < nr. '

Thus we find u,, ¥, and w, satisfying (2.5)—(2.7). It remains to note that v, is
given by the formula (2.6). In view of growth condition (H.1a) and (H.1b), it
follows from the embedding theorem that W (w,; 'Du,) € L?(£2) and hence v, €
L?(£2). Applying the induction principle we conclude that problem (2.4)—(2.6) has
a solution

uy € L%, T; W»3(2)), Oy € L0, T; W**(2)), A7
wil € L0, T; L®(2)), vy € L™(0, T; L*(£2)). '

Moreover, in view of (A.6), the growth factor wy satisfies the inequalities

0<c'Swyix,t)<e<oo, |dwnx, 1) <c<oo for0<s<T.
(A.8)
Step 2. Our next task is to derive the energy estimate (2.11). First we derive the
auxiliary inequality (A.18) which leads to the desired energy estimate. The proof
of this inequality is purely algebraic. We begin with the observation that

Sp(u,, ¥,)= min maxz Sp(u, 9) § ma)fz Sp(u,—1, ) =S, (u,—1, 5n—l)v

u—heW?22 pewl vewy
(A.9)
where ¥, is a solution to the variational problem
Sn(un—l»ﬁn—l) = max  S,(u,_1, ). (A.10)

PeW!2(Q)

Next, notice that problem (A.10) is a particular case of variational problem (A.1)
withu = u,,_. Arguing as before we conclude that variational problem (A.10) has
a unique solution ¥, _1 € W22(£2). Expression (2.1) for S, implies

_ _ T _ _
Sy(uy—1, Hy-1) = Ve(up—1, Op—1, Wy—1) — EHO(ﬂnfla Vn-1)

+/ (W _yva 1Tt — £ u,_p) dr. (A.11)
2
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Notice that the integrand ¥, is a concave function of ¥#, which leads to the inequality

lI/g(Dzun—h Du,_, 5n—l» wy—1) = wg(DZHn—la Duy, 1, %1, wy—1)
+ aﬁwg(D2un71a Duy,_y, 9y—1, wnfl)(gnfl = Dp—1)-

Noting that

819‘I/g(D211n_1, Duy, 1, ¥p—1, wy—1) = =V(Duy—1, -1, wy—1),
E(Dzunfl, Du, 1, ¥p—1, wy—1) = lpg(Dzunfla Du, 1, ¥p—1, wy—1)
+ ws_l V(Duy—1, ¥p—1, Wy—1)0u—1,

and recalling representation (1.43) for the internal energy E, we obtain

Wo(uy—1, Op—1, Wp—1) SE@W,—1, Op—1, wa—1)

_/ wg_lv(Dun—l» D1, wn—])En—l dx.
2

Substituting this estimate into (A.11) and recalling that v,—; = V(Du,_1,
Pn_1, Wy_2) We obtain

_ T _ _
Sp(u,—1, ¥y-1) g E(,_1, %1, wp—1) — EHO(ﬂn—h Vpo1) — / f-u,_;dx
2
+ f On—2,n-19,_; dx, (A.12)
2

where

On-2n-1=we V(Du,_1, Op_1, wy—2) — wl_ V(Dup_1, 91, wp—1).
(A.13)

On the other hand, representation (A.2) implies
Sy, %) = E(uy, ¥y, , wy—1) — / f-u,dx + 27]7170(1%“ W).
Q
Substituting this identity and inequality (A.12) in inequality (A.9) we get

T — —
E(u, 9, wy) — E(Wy_100—1, wp—1) + 5(170(19,,, Bn) + Mo -1, Dp—1))
S E(uy, 9y, wy) — E(u,, 9y, wy—1) (A.14)

+/ f-(u, —u,—1)dx +/ Qn—2,n—l§n—l dx.
Q Q
On the other hand, the identity

E(u, 9, w) = ¥, (¥, u, w)+/ w¥V(Du, ¥, w) dx
2
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implies the representation

E(u,, 9, w,) — E(u,, ¥, w,—1) + / Qn—Z,n—lEn—l dx
2

=An _An—l +Bn +Cn,

(A.15)

where

A, = _f Qn—l,nﬂn dx, B, :/ Qn—2,n—1(5n—l — Up—1)dx,
2 2

C, = Vo (Dn, Wy, wy) — W o (O, Uy, wpy—1).

(A.16)

Substituting (A.15) into (A.14) we finally obtain
T _ _
E(u,, 9n, wp) — E(y—1, On—1, wp—1) + E(HO(ﬁn» ) + Ho(Dp—1, 0n—1))
< [ @) dr A - A 4By G
2

Summing both sides with respect to n and noting that

m—1

m ™m
rzno(ﬁn,ﬁnb/ﬂ Mo@y. ¥n)dt, Y Mo(Fy. Bn)

n=I n=I[

T(m—1) .
< / Moy, Ta)dr,
Tl

we conclude that for all integers 0 <1 < m < N,

{E(um,ﬁm,wm)—fgf-umdx}—{E(u,,ﬂ,,wl)—fgf-u,dx}

T(m—1)

1 ™m 1 .
+ 5/ Hy(Wn, ¥n)dr + 5/ Mo N, Nt = A — A1 (A 17)
Tl Tl

+ Y B, +Cy).
n=Il+1

Setting / = 0 in (A.17) we finally arrive at the estimate

1 ™T™m
E(umvﬁmvwm)_/ fumdx+§f HO(ﬁN’ ﬁN)dt
2 0
m (A.18)
< A+ Y (Byl +Cy) +c.

n=1

Step 3. Now our task is to estimate the right hand side of (A.18). Introduce the
quantities

I, = / (|Aun|2 + W' Du,) + 19,%) dx, n>0. (A.19)
2
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It obviously follows from formula (1.43) for E and the inequality W = 0 that
¢y £ EQuy, 9, wp) S 1y (A.20)

In view of conditions (H.1a) and (H.1b), The elastic stored energy satisfies the
estimate

W) = c(1+[§D", (A21)

where k < 3 ford = 3 and k < oo for d = 2. Since the embedding W?2(£2) —
W1’2d([2) is bounded and u = h on 952, we have

K
/ |Du,, > dx §c(1 +/ |Aun|2dx) < eI + 1), / 19,2 dx < cI,.
2 2 2
(A.22)

Here the constant ¢ is independent of n. Our first task is to estimate A,, in terms of
L,,. Expression (A.16) for A,, implies

A gf Ol Ot mwh | . (A23)
2
It follows from (A.13) and (1.41) that

| Qm—1,m]
< Wnllwd, — wl |+ [wh W (w,,' Duy,) — wl_ W(w, ' Du,)l.
In view of (A.8) we have
lwa T+ [wpi 1T <oy Jwp —wnoi| St foralll Sn <N, (A24)
From this and (A.21) we obtain the estimate

[Om—1.m| = cT[9m| + cT(|Duy [ + 1), (A.25)

which along with the Cauchy inequality implies
Am| < (cT +5)/ |9 ]? dx +c(6)12/ (|Du,, |* + 1) dx.
2 2

Here § is an arbitrary positive number. Combining this and (A.22) we arrive at the
desired estimate for A, :

|Am] £ (cT + &)Ly + )T (1 +TI). (A.26)
The derivation of the estimate for B,, is based on the following lemma:
Lemma A.2. The estimate

TPt — Fy) + / Wnot — Tt Pdx S ct(l+L)  (A27)
2

holds true for all 1 < n < N. Here the constant c is independent of n and N.
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Proof. The variation of the functiona_l S, (u,_1, ¥) at the extremal point ¥ = ¥,,_;
leads to the following equations for 9, _1:

Y d o d d —1 .
—TAY -1 + w1 Pp—1 = W, V-1 — w,_W(w,_;Du,_1 in £2,

—_ _ (A.28)
V-1 + -1 =0.
In view of (A.3) we have
—TAY, 1 + wff_zﬁn_l = wff_3vn_2 + wZ_ZW(w;lzDun_l) in £2, (A.29)
dnn—1 +0u_1 =0 on d2. '
Notice that equation (A.29) can be written in the equivalent form
w? Jvp_1 —wl v = TAD, . (A.30)

It follows from (A.28)—(A.30) that the function ¢ = ¥,_; — ¥,_; satisfies the
equations and boundary conditions as follows:

—TAL+wl (0= 0pon 1 +TA 1, 9l +7=00nd2, (A3D)
where Q5,1 is given by (A.13). Recall that 9, _; € W?2(£2). Multiplying both

sides of this equation by ¢, integrating by parts and using the Cauchy inequality
we obtain

tIly(¢, ) +Cf9 1217 dx £ T, 9y—1)

40 [ 1ePar s 57 [ 10namia (A32)
Q Q
where the positive constant c is independent of n, g, f. Notice that
(¢ On1) £ 8IT0(C. §) + 8~ To(9p—1, Vn1)- (A.33)
Choosing § < min{c/4, 1/2} we arrive at the estimate
(¢, ¢) + f it dx S ¢ / |Om—2m—1*dx + cIlo(Fu_1, Vn_1). (A34)
Q Q

Next, inequality (A.25) and estimate (A.22) imply that

/ Qo 1P dx < er®(1 4T, 1)~ (A35)
2
Substituting this estimate into (A.34) we obtain desired estimate (A.27). O

Next, formula (A.16) for the quantity B,, along with the Cauchy inequality yields
the estimate

By | § 8_1 /Q |Q7172,n71|2 dx +8/Q(19n71 _57171)2 dx

S et A+ ) + eSTITy (D01, Duer),
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where § is an arbitrary positive number. Summing both sides with respect to n we
arrive at the desired inequality:

m

Z|B | < T8~ ‘Z(H—I,, 1)K+c5/ ITy(Wn, On)dr.  (A.36)

n=1 n=1

Our next task is to estimate C,,. To this end notice that
Cp =W (Un,uy, wy) — We(Dy, uy, wy,)
f /9 e (90, D*u,, Duy, n(x, $))(wy — wy—1) dxds,
where
n(x,s) =sw, + (1 —s)wy—1, s €][0,1]. (A.37)
Identity (1.18) yields

B'I/g 5 1
—= (%, D*u,, Du,, n(x,s)) =
ow n(x,s)

In view of (2.7) we have

@(D*u,, Duy, 9, 1(s)).

™
Wp — Wp—1 :_/ H(‘p(DzunaDunaﬂn»wN(t)))wN(t)dt-
T

n—1

Combining the obtained results we arrive at the identity

g(ﬁmun, Wp) — g(ﬁnauna Wp—1)

/ / / _QD(D u)’lsDu}’l’ n» 77(5))
t(n—1) 2 n(s)

X H((p(D u,, Du,, ¥, wy(t)) ) wy (1) dxdsdz.
Recalling the identity
@(D*u,, Duy, Oy, wy (1) = gy (t) fort € (t(n — 1), tnl,
we can rewrite this relation in the form

lI’g(ﬁna u,, w,) — ¥ (19117 Uy, wnl)

(A.38)
= —/( 1)[ H(en (1) on (1) dxdr + R,

where

™ 1
R, =/ / / P(x,s,t)H (on (1))wn(t) dxdsdt,
t(n—1) 2

Du,,, 9, wy(1)) — L(;O(D u,, Du,, ¥y, n(s)).
wy (1) n(s)

(A.39)
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Let us estimate R,,. We begin with the observation that H is bounded and wy is
uniformly bounded from below and above. Thus we get

™m 1
R, < f / f IP(x, s, t)| dxdsdt. (A.40)
t(n—1)J0 J§2

Next, we have fors € [0, 1]and ¢t € [t(n — 1), Tn],

P(x,s,t) = (wy(t) — n(S))f —@(D u,, Du,, n,g(A))>dk
s)

where
¢ =2wn(r) + (I =2)n(s) € [wy (1), n(s)].
The rest of the proof is based on the following lemma:

Lemma A.3. Let ¢ : 2 — R satisfies the inequalities ||¢*! L) = c1. Then
there is a constant c(c1) independent of n such that

f (10D, Dy, D, )1 + 10692y, DUy, B, €)1 ) e £ €1+ 1,)",
2
(A.41)
/ |3§E(D2un, Duy, 9y, ) dx < c(1 +1,)". (A.42)
2

Proof. Recall that

& 4 B2
(P(Dzunv Du}’h L?l’h g) = Egd 4|Aul’l|2 - ngn

+ 51+ 0){dW(s™ Duy) — s T'W (T Du,) : Du,}.
The growth condition (A.21) implies

|p(D?uy, Duy, 9y, )| + [0 9(Duy, Duy, 9, 6
< (18w > + 194> + (1 + 19, (1 + | Duy )¥)
< e+ [Au | + [921) + ¢ Duy .
Integrating these inequalities over §2 and using estimate (A.22) we obtain desired
estimate (A.41). Next, it follows from the expression (1.42) for the density of the
internal energy E that

19 E(D*uy, Duy, Oy, )| < (18w, * + 941> + | Du, [ + 1).

Arguing as before we arrive at (2.11). O
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We are now in a position to derive the estimate for C,,. It follows from (A.37) that
In—wn@OI = [ = wp—1| + lwy () — wy—1] = et fort € [(n — 1)Tnt].
and
O<u)1j\t,1§c, 0<ntl<e¢, 0<ctl <o,

Applying inequality (A.41) in Lemma A.3 we obtain

! VR
P(x,s.0)]dx < —(——@(D*u,. Du,, ¥y, c(1) )| dxda
[pesotax ser [ (o0, Du o c60))|ax

1
< et f f (lp(D*ws, DUy, By, )1 + 199 (D* Wy, DUy, B, 6)|) dxdd,
0 J
1
cr/ A +L) dr =ct(1 +1,)“.
0
Combining this result with (A.40) we arrive at the inequality |R,| < ct2(1 4 1,)x.
Substituting this inequality into (A.38) and recalling the expression (A.16) for C,

we finally obtain the desired estimate for C,;:

Cu

[IA

- / / H(on (0)on (1) dxdt + ct?(1 + L)~. (A.43)
t(n—1) J 2

Summing both the sides of this inequality with respect to n and recalling expression
(1.47) for the form IT| we arrive at the estimate

m ™m m
Sewvs— [ Mm@ e et YA+ Adh
n=1 0 n=1
Substituting (A.26), (A.36), and (A.44) into (A.18) we get the inequality
™T™m
E(u,, O, wm) —/ fu,de+(1/2 - 65)/ ITy(In, ON)
Q 0

~|—/ I (H(pn), o) dt < c(8)7? Z(l + L) + c(5).
0

n=1

Noting that
/ £ u,dx < 5/ | Aup > dx + 87 < 81y, + 57,
2 2
we obtain

m
E(u,,, v, wm)_81n1+(1/2_68)/0 Hy(Py, On)

+ / Mi(H(gx). gn) dr £ e()12 Y (1 + L)< + c(9).
0

n=1
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Recalling estimate (A.20) and choosing § sufficiently small we finally arrive at the
inequality

™m m
L, +/ Iy, gn)dr < c7? Z(l +1)" +c, (A.45)
0

n=1

where the energy dissipation rate I7 is defined by (1.46). Let us estimate the right
hand side of this equality. Set

t
InG) =1, for(n— 1)t <t < nr, JN(t)zf I, ds.
0

Since I7 is nonnegative, estimate (A.45) implies

t
In@t) < c+ect / Iny(s)“ds, forO<t < T. (A.46)
0

It follows that on the interval (0, T') the function Jy satisfies the inequality
d Iv S e +In)*
—Jnv Zc¢ T .
ar N = N

Obviously Jy (¢) < o (t), where o is a solution to the Cauchy problem

d . 1 1
Lo —cl4+10), o(0)=0 givenby o(t) = —((1 + (=)t Tr — 1).
dr T

For t < 1/(2(x — 1)cT), the function o is defined and uniformly bounded on the
interval [0, T']. This yields the estimate Jy < o < ¢. Combining this result with
(A.46) we obtain the estimate

L, <c for0<n <N, (A.47)

which along with (A.45) yields energy estimate (2.11). It remains to prove inequality
(2.14). We begin with the observation that inequalities (A.47) and (A.26) implies
the estimate

1An] < c(8+ 1) +c(8)72 (A.48)

Next, inequalities (A.47), (A.36), and (2.11) imply the estimate

N N N

Z IB,| < cr257! Z 1+ caf oSy, On)dt < e8! 4+ ¢5. (A.49)
0

n=1 1+1

In its turn, inequalities (A.47), (A.36), and (2.11) imply

Y G = —/m/ H(pn @)y (1) dxdt + cT>. (A.50)
Tl 2

I+1
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Substituting (A.49)—(A.50) into (A.17) and recalling the definition (1.46) of the
energy dissipation rate IT we obtain

[E(um,z‘/‘m,wm)—éf-umdx}—{E(ul,ﬂl,wg)—/gf-uldx}

™m T(m—1)

1 1 _
+ 2 mon, oy dr + - f To(@ . Ty)dr (A.51)
2 Tl 2 Tl
mt

+ ITi (H(pn), on)dt < c8 + c(d)T.

It

Let us show that we can replace w,, and wy in the left hand side of this inequality
by w,,—1 and w;_1. To this end, notice that for every integer n € [1, N], we have

EQu,, U, wy) — Ey, 9y, wy—1)

1
= / / agE(Dzums Duy,, ¥, 6)(Wy — Wpy—1) dxds,
0 J

where ¢(s) = sw, + (1 — s)w,_ satisfies the inequalities gil < c. From this,
the inequality |w, — w,—1| < ct, and estimate (A.42) in Lemma A.3 we obtain

1
[E(u,, 9, wy) — E(u,, 9y, wy—1)| g CT/ / |agE(D2unv Du,, ¥, ¢)| dxds
0 J
Scert(1+1) S et

Combining this result with (A.51) and noting that E(u,,, ¥, w,—1) = £y,
Um, Wy—1) We obtain

{8(um,vm,wm_1)—/9f-umdx} — {8(u1,v1,w1_1)—f9f-uldx}

™m T(m—1)

1 1 _
+ 2 My ow dr + —/ Moy, Ta)d
2 Tl 2 Tl

mt

+ z IT (H(pn), on)dt < ¢6 4 c(8)T.
T
It follows from the definition (2.15) of the functional H  that
Hy () = EMy,, vy, wy—1) — /Q f-u,dx forr e (n— 1)z, nt].
Thus we get

1 ™T™m
Hy ) — Hy (o) + 5 f Ho(@y, 9n) dr
Tl

1 T(m—1) _ _ mt
+3 / S M@ Tl [ ). o S b+ e
T T

(A.52)
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Now fix 79 > t; from the interval (0, T'). For every N, choose [ and m such that
t1 € (I —Dr,lt]and tyg € ((m — 1)t, mt). We have

1 ™Tm t(m—1) _ mt
3 /1 Hy(Py, ¥n) dt + 5,/ MoV, ¥ n)dr + I (H(pn), pn)dt
T T

I It

1 [P
2= Iy(Dn, ¥n)dt
h+t
1 —T _ fo
41 / Mo@x. Twdi+ [ Mi(Hgn), ox)dr.
n+rt n+rt

Notice that H y (¢) is constant on every interval ((n — 1), nt], 1 < n < N. From
this and (A.52) we conclude that

1[0
Hny (o) — Hn () + = oDy, V) dt
n—+rt

1 0—7T _ _ o
+1 / Ho@x.Tadi + [ M(Hon), gn)di < c5 + c(®)r.
2 h+t i+t

Letting N — oo and then § — 0 we obtain the desired relation (2.14).
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