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Abstract

We consider a lattice regularization for an ill-posed diffusion equation with a
trilinear constitutive law and study the dynamics of phase interfaces in the parabolic
scaling limit. Ourmain result guarantees for a certain class of single-interface initial
data that the lattice solutions satisfy asymptotically a free boundary problem with
a hysteretic Stefan condition. The key challenge in the proof is to control the
microscopic fluctuations that are inevitably produced by the backward diffusion
when a particle passes the spinodal region.

1. Introduction

Forward–backward diffusion problems arise in many branches of physics and
materials science [1,7], mathematical biology [19,25], and technology [27], and
lead to complex and intriguing mathematical problems. The simplest dynamical
model for a one-dimensional continuous medium would be the nonlinear parabolic
PDE

∂τU = ∂2ξ P, P := Φ ′(U ) (1)

with time τ � 0, space ξ ∈ R, and non-monotone Φ ′, but the corresponding
Cauchy problem is ill-posed. To overcome this difficulty, a well-known approach
is to consider microscopic regularizations with length parameter 0 < ε � 1 that
take into account small-scale effects and complement (1) by additional terms and
dynamical laws. The latter depend on the particular choice of Φ ′ and in what
follows we focus on a typical setting in materials science, where Φ ′ is the bistable
derivative of a double-well potential Φ. We also assume that Φ ′ and Φ are odd
and even, respectively, and mention that a bistable function is sometimes called
cubic-type as its graph consists of two increasing branches which are separated by
a decreasing one.
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In the literature, a lot of attention has been paid to the Cahn–Hilliard equation

∂τU = ∂2ξ P − ε2∂4ξ U (2)

and the so-called viscous approximation

∂τU = ∂2ξ P + ε2∂τ ∂
2
ξ U, (3)

but in this paper we study the spatially discrete regularization

u̇ j (t) = � p j (t), p j = Φ ′(u j (t)
)

(4)

with microscopic time t � 0, particle index j ∈ Z, and standard Laplacian Δ on
Z, that is

Δv j = v j+1 + v j−1 − 2v j . (5)

This lattice ODE is linked to the PDE (1) by the parabolic scaling

τ := ε2t, ξ := ε j (6)

and the formal identification

u j (t) ∼= U
(
ε2t, ε j

)
, p j (t) ∼= P

(
ε2t, ε j

)
, (7)

whereby we can regard (4) as a spatial semi-discretization of (1) or, conversely, the
PDE (1) as the naive continuum limit of the lattice (4).

Of particular interest in the analysis of any regularization is the sharp-interface
limit ε → 0 since it gives rise to phase interfaces, that is, curves ξ = Ξ(τ) which
separate space-time regions in which U is confined to either one of the convex
components of Φ (usually called phases). The dynamics of such interface curves
have to be determined by a free boundary problem that couples the—now locally
well-posed—bulk diffusion (1) for U on either side of the interface with certain
conditions for Ξ . The Stefan condition

dΞ
dτ |[U ]| + |[∂ξ P]| = 0, |[P]| = 0, (8)

where |[·]| denotes the jump across the interface, guarantees for all models that
(1) holds in a distributional sense across the interface but the evolution of (U, Ξ)

depends on another interface conditionwhich encodes the details of themicroscopic
regularization. For the Cahn–Hilliard equation (2), the additional law reads

P = 0 (9)

and fixes the value of P according to Maxwell’s local equilibrium criterion. The
validity of the free boundary problem (1), (8) and (9) has been proven rigorously
in [2].

Heuristic arguments indicate that the sharp-interface limit of the viscous approx-
imation ismore involved since the interface value of P is no longer known as ε → 0
but depends in a hysteretic manner on both the state of the system and the propaga-
tion direction of the interface. More precisely, numerical experiments and formal
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asymptotic analysis as carried out in [10,29] predict that the viscous approximation
supports both standing and moving interfaces according to the flow rule

P = −p∗ for dΞ
dτ |[U ]| > 0,

P = +p∗ for dΞ
dτ |[U ]| < 0,

dΞ
dτ = 0 for P ∈ [−p∗,+p∗],

(10)

where ±p∗ are the two local extrema of the odd function Φ ′. The key argument in
this derivation is that any reasonable limit for ε → 0 satisfies the entropy inequality

∂τ η(U ) − ∂ξ

(
μ(P)∂ξ P

)
� 0, (11)

where the entropy flux η and the entropy densityμ can be chosen arbitrarily as long
as they comply with

η′ = μ ◦ Φ ′, μ′ � 0. (12)

The main tasks for a rigorous justification of the hysteretic flow rule (10) or, equiv-
alently, of (11) is to show the existence of a smooth interface curveΞ and to derive
ε-uniform a priori estimates that guarantee the strong convergence of the fields as
well as the regularity of the limit P . Although there is an extensive literature on the
viscous approximation (see the discussion below) we are not aware of any rigorous
result that links the hysteretic free boundary problem to the sharp interface limit of
(3).

For the lattice ODE (4), which can also be written as ẇ j = ∇−Φ ′(∇+w j
)
with

u j = ∇+w j = w j+1 − w j , one can easily adapt the asymptotic arguments from
[10,29] to show heuristically that the limit dynamics are governed by the same
hysteretic free boundary problem as for the viscous approximation. Moreover, this
micro-to-macro transition has been made rigorous in two cases: (i) in [3,11] for
generic bistableΦ ′ and initial data that give rise to standing interfaces only, and (i i)
by the authors in [15] for bilinearΦ ′ and a suitable class ofwell-prepared initial data.
The latter is to our knowledge the only available rigorous microscopic justification
for macroscopic phase interfaces that are driven by hysteric jump conditions. We
also refer to [8,9] for coarsening in discrete forward–backward diffusion lattices
with monostable Φ ′ and to [13,14] for other systems with spatially distributed
hysteresis.

In the current paper, we extend the rigorous analysis from [15] to the case of
trilinear Φ ′. At first glance, the step from bilinear to trilinear seems to be a minor
improvement only but themathematical analysis of the trilinear case is significantly
more involved because the spinodal region is no longer degenerate. In particular,
microscopic phase transitions are no longer instantaneous processes related to tem-
poral jumps but take a certain time as the particles have tomove through the spinodal
region. The novel challenge is that the backward diffusion during each spinodal
visit produces strong microscopic fluctuations which have to be controlled on the
macroscopic scale. The main achievement of the present paper consists, roughly
speaking, in the derivation of asymptotic formulas and estimates for the creation
and subsequent amplitude decay of the fluctuations which finally ensure that the
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Fig. 1. Left Panel. Graph of the piecewise linear function Φ ′ as defined in (13). The gray
boxes represent the intervals I∗ and I∗∗ from (15) and the correspondingdoublewell potential
is given in (17).Right panel. Cartoon of the hysteresis loop for macroscopic phase interfaces.
Notice that the interfacemoves from the phaseΘ+ into the phaseΘ− if and only the particles
at the interface transit the other way round from Θ− to Θ+ and that |[P]| = 0 implies
|[U ]| = ±2

lattice data converge as ε → 0 to regular macroscopic fields. Moreover, some of
the arguments derived below can be generalized to genuinely nonlinear bistable
functions Φ ′.

In what follows we always suppose—see Fig. 1 for an illustration—that the
lattice ODE (4) is complemented by

Φ ′(u) :=

⎧
⎪⎨

⎪⎩

u + 1 if u � −u∗,
u − 1 if u � +u∗,
−κu if − u∗ < u < +u∗,

(13)

where κ ∈ (0,∞) is a free slope-parameter and the constants

u∗ := 1

1 + κ
, p∗ := κ

1 + κ
, u∗∗ := 1 + 2κ

1 + κ
(14)

satisfy

±p∗ = Φ ′(∓u∗) = Φ ′(±u∗∗).

In particular, the bilinear case Φ ′(u) = u − sgn (u) corresponds to κ = ∞ while
for κ → 0 there is no backward diffusion anymore and the PDE (1) becomes
degenerate-parabolic.

Before we discuss the dynamical properties of the lattice ODE (4), we give a
brief and non-exhaustive overview of the literature concerning the viscous approxi-
mation (3), which can also be formulated as ∂τ W = ∂ξΦ

′(∂ξ W
)+ε∂τ ∂

2
ξ W , where

U = ∂ξ W . Moreover, some authors refer to interfaces as phase boundaries, and a
standing interface is often called steady.

The initial value problem for (3) has been studied in [23,25], and [5] provides
existence and uniqueness results for a broader class of regularizing PDEs. Numer-
ical schemes are proposed and analyzed in [10,20,28]—see also the discussion
at the end of Section 1—and [23] investigates the multitude of steady states and
their dynamical stability with respect to (3). Moreover, [10,29] characterize the
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limit ε → 0 in the framework of Young measures and entropy inequalities but we
already mentioned that the rigorous justification of the limit model has not yet been
achieved.

The existence and uniqueness of two-phase entropy solutions to the limiting
problem (1), (8), and (11) have been proven in [21] for a trilinear nonlinearity
as in (13), and [35] studies the existence and uniqueness problem for an equiv-
alent formulation in terms of a parabolic PDE that comprises a spatial family of
temporal hysteresis operators. The special case of Riemann initial data has been
discussed in [12,20], which provide explicit formulas for the corresponding self-
similar solutions on the macroscopic scale. Notice also that the ill-posed forward–
backward equation (1) admits in general—that is, without entropy conditions and
two-phase assumption—a plethora of solutions, see [18,37] as well as [33,34] for
recent results and a discussion of the literature concerning solutions that penetrate
the spinodal region. Measure-valued solutions to (1) have also been studied, see
[4,10,29,31,32,36] and the references therein.

1.1. Overview of the Key Effects

The nonlinear lattice (4), (13) exhibits a complex dynamical behavior since the
non-monotonicity of Φ ′ implies that each particle u j can either diffuse forwards
with regular coefficientΦ ′′(u j (t)

)
> 0 or backwards withΦ ′′(u j (t)

)
< 0. In order

to illustrate the different phenomena we next discuss some numerical simulations
of finite lattices j = 1, . . . , N with natural scaling parameter ε := 1/N and
homogeneous Neumann conditions, see Section 1.4 for more details. In particular,
we regard the lattice data for large N as a discrete sampling ofmacroscopic fields by
scaling time and space but not amplitude according to (7), and rely on the following
conventions and abbreviations for the interpretation of the numerical results:

Notation 1. (phases and intervals) We refer to the different connected components
of the set {u : Φ ′′(u) > 0} as phases and write

Θ− := (−∞,−u∗) for the −-phase , Θ+ := (+u∗,∞) for the +-phase ,

while Θ0 := (−u∗,+u∗) = {u : Φ ′′(u) < 0} is called the spinodal region. For the
analysis of themacroscopic dynamics it is also convenient to introduce the intervals

I∗ := [−u∗,+u∗], I∗∗ = [−u∗∗,+u∗∗], J∗ := [−p∗,+p∗], (15)

where I∗ and J∗ are the closures of Θ0 and Φ ′(Θ0), respectively, and I∗∗ denotes
the inverse image of J∗ under Φ ′.

Numerical simulations as depicted in Figs. 2 and 3 provide—for well prepared
single-interface initial data as defined in Assumption 1—evidence for the existence
and dynamical stability of a macroscopic phase interface that separates two space-
time regions in which the lattice data are confined to either one of the phases Θ−
and Θ+. The key observations concerning the corresponding large scale dynamics
can be summarized as follows:
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Fig. 2. Numerical example with single-interface data, computed with Neumann boundary
conditions and κ = 1, N = 500. Top row. Snapshots of u against the scaled particle index
ξ = ε j ∈ [0, 1], where the gray areas represent the intervals I∗ and I∗∗ from (15) as
depicted in Fig. 1. Bottom row. Evolution of the interface position Ξ as function of τ and
snapshots of p against ξ with shaded area now indicating the interval J∗. Interpretation. In
themacroscopic limit ε → 0, a single phase interface propagates initially to the right but gets
finally pinned at τ ≈ 0.04. Moreover, the scaled lattice data p approximate a macroscopic
function P which is continuous everywhere and piecewise differentiable. On themicroscopic
scale, however, we find strong and localized fluctuations as illustrated in Figs. 4 and 5

Fig. 3. Second numerical example with depinning of the macroscopic interface at τ ≈ 0.05.
On the moving interface, P attains the value +p∗ and ∂ξ P exhibits a jump, but when the
interface rests, P is smooth across the interface with non-fixed value in J∗. This dichotomy
gives rise to the hysteresis diagram in the right panel of Fig. 1 and complies with both the
Stefan condition (8) and the flow rule (10)

Observation 1. (hysteretic flow rule on the macroscopic scale) The macroscopic
phase interface located at the curve ξ = Ξ(τ) can either propagate or be at rest
according to the following rules:

1. Standing interfaces: At any time τ with d
dτ Ξ(τ) = 0 we have P(τ, Ξ(τ)) ∈ J∗

and P is smooth across the interface.
2. Moving interfaces: d

dτ Ξ(τ) = 0 implies P(τ, Ξ(τ)) = +p∗ or P(τ, Ξ(τ)) =
−p∗ depending on whether the interface propagates into the phase Θ− or Θ+,
respectively. The field P is still continuous across the interface but ∂ξ P admits
a jump that drives the interface.
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Fig. 4. Snapshots of u(t) (black points) and p(t) (gray squares, affinely rescaled) against
j at six non-equidistant times near the moving interface in a typical numerical simulation;
the horizontal gray boxes illustrate again I∗ and I∗∗. Particle u0 passes the spinodal region
I∗ between the times t1 and t3 and creates strong fluctuations which are still localized at t4
and not spread over lattice before t5. The next particle u1 enters the spinodal region at time
t = t6

Fig. 5. Left panel. Temporal trajectories of u2 (gray, dashed) and u4 (black, solid) for the
numerical data from Fig. 4. The k-th vertical box represents the spinodal passage of uk−1
during which fluctuations are created. Right panel. The evolution of the lattice dissipationD
from (16) with localized peak for each phase transition. In this numerical example we have
N = 200 and relatively large initial dissipation D(0) ≈ 140, so the amplitude separation
between peaks and bulk is rather small though clearly visible

Moreover, continuity of P implies discontinuity for U and the type of each interface
can change in time by pinning or depinning.

A closer look to the evolution of single particles—see Figs. 4 and 5—reveals
the following features of the small scale dynamics:

Observation 2. (phase transitions on the microscopic scale) The microscopic
dynamics of the phase interface are driven by particles u j changing their phase as
follows:

1. Spinodal entrance: A particle u j can enter the spinodal interval I∗ only when its
two neighbors belong to different phases and when one of these neighbors takes
value outside of I∗∗. The microscopic phase interface therefore propagates on
the lattice because the particles undergo a phase transition sequentially, that
is, they pass through the spinodal interval I∗ one after another.

2. Spinodal excursions: Not every spinodal visit is related to a proper phase transi-
tions since it may happen that a particle enters and leaves the spinodal interval
I∗ on the same side.
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3. Strong fluctuations: Any spinodal visit (passage or excursion) evokes strong
microscopic fluctuations that are initially very localized but in turn diffusively
spread over the lattice.

Observations 1 and2match perfectly in that they relate themacroscopic speed of
propagation to the number of particles that undergo a phase transition during a given
period of time. In Proposition 1we prove the crucial one-after-another-property in a
simplified single-interface setting, and we obtain macroscopic Lipschitz estimates
for the interface after bounding the asymptotic waiting time between adjacent phase
transitions from below in Proposition 1 and Corollary 2.

The regularity observations that the macroscopic field P is continuous while
the lattice data vary rapidly on the microscopic scale seem to contradict each other
at first glance. The bridging idea is that macroscopic regularity can be observed
in, loosely speaking, most of the macroscopic points (τ, ξ), while the rapid micro-
scopic fluctuations with large amplitude dominate the dynamical behavior in a
small subset of the macroscopic space-time only. These arguments are made rigor-
ous in Sections 3 and 4 where we prove that the superposition of all microscopic
fluctuations converges as ε → 0 pointwise almost everywhere to a continuous
macroscopic field that drives the phase interface.

We also emphasize that Observation 2 combined with the trilinearity of Φ ′
allows us to decompose the nonlinear lattice (4) into linear subproblems as follows.
As long as no particle is inside the spinodal region, the microscopic dynamics
reduce—thanks to u̇ j = ṗ j—to the discrete heat equation for p, and if some u j is
inside the spinodal region we can derive a linear equation for p where p j diffuses
backwards; see Section 3.1 for the details. Of course, the entire problem is still
nonlinear since we have no a priori information about the spinodal entrance or exit
times and hence do not knowwhen to switch between the different linear evolutions.
The linear decomposition is nonetheless very useful as it allows us to derive nearly
explicit representation formulas for the lattice data in Section 3.

1.2. Multiple Scales and Fluctuations

The dynamics of the fluctuations are governed by a subtle interplay between
the backward diffusion inside the spinodal region and the regularizing effects of the
forward diffusion inside each phase. We can think of the fluctuations produced by
the spinodal visit of some particle as a localized ‘package’ of fluctuations, which
after its creation interacts by forward diffusion with the entire lattice and hence
also with all packages evoked by former or later phase transitions. In particular,
the ∞-norm of each package (amplitude) decays algebraically in time while the
1-norm (mass) remains conserved since the fluctuations are not damped out but
merely spread over the lattice. Themicroscopic lattice dynamics is therefore related
to the informal concepts:

1. passage time (time to pass the spinodal interval I∗),
2. decay time (time needed to regularize the localized fluctuations),
3. waiting time (time between subsequent phase transitions),
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and for the mathematical analysis of the macroscopic limit ε → 0 we have to
understand the scaling relations of these times at least on a heuristic level.

We already mentioned that our asymptotic approach involves a precise lower
bound for the waiting time as established for well-prepared initial data in Corollary
2. Moreover, in (50) we identify a universal impact profile, which provides the
asymptotic shape of each package in the limit ε → 0 and enables us in the proof
of Lemma 7 to compute a microscopic time period of order ε−1 after which each
package has been sufficiently regularized by the forward diffusion. This result can
be regarded as an upper bound for the decay time although we state it differently
and focus on the implied Hölder estimates for the regular fluctuations.

The heuristic concept of the passage time is a bit more involved. By splitting
the microscopic dynamics during a spinodal passage into their slow and fast parts,
we show in Section 3.1 that the typical passage time is of order ln ε due to the
exponential growth of the fast variable. On the other hand, one can construct special
initial data such that the first passage time is as large as the observation time. Even
in this case, however, we can pass to the macroscopic limit since the interface
does not move and because our results in Section 3.4 imply, roughly speaking,
that the fluctuations remain localized for all times and hence small with respect to
macroscopic norms. By similar arguments we also control the cumulative impact of
the spinodal excursion in Corollary 3 and do not attempt to estimate their number
or duration.

The fluctuations as well as the different times scales can also be related to
energetic concepts by regarding the lattice ODE (4) as gradient flow with respect
to the spatially discrete analog to the H−1-metric structure. In particular, for finite
systems with either periodic or homogeneous Neumann boundary conditions we
readily verify the energy law

d
dt E(t) = −ε2D(t).

Here,

E(t) := N−1
N∑

j=1

Φ
(
u j

)
, D(t) := N

N∑

j=1

(
p j+1 − p j

)2 (16)

denote the averaged energy and the dissipation, respectively, and have been scaled
such that the formal identification (7) complies with the macroscopic formulas

E(t) ∼=
∫ 1

0
Φ

(
U

(
ε2t, ξ

))
dξ, D(t) ∼=

∫ 1

0

(
∂ξ P

(
ε2t, ξ

))2
dξ.

Notice that the single-particle energy follows from (13) up to an additive constant
and reads

Φ(u) = 1

2

⎧
⎪⎨

⎪⎩

(u + 1)2 if u � −u∗,
(u − 1)2 if u � +u∗,
p∗ − κu2 if − u∗ < u < +u∗.

(17)
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From (16) we infer for small ε > 0 the heuristic equivalence

D(t) ∼ 1 iff P
(
ε2t, ·

)
is regular with weak derivative ∂ξ P

(
ε2t, ·

)
,

and conclude that the localized lattice fluctuations give rise to a significant increase
in the dissipation. In other words, the interface dissipation stemming from micro-
scopic phase transitions exceeds the regular dissipation coming from the macro-
scopic bulk diffusion. See the right panel in Fig. 5 for typical numerical data and
note that our asymptotic formulas ensure that D(t) ∼ ε−1 at the end of each
microscopic phase transition.

The energy equality for gradient flows

∫ ∞

0
D(ε−2τ) dτ = E(0) − E(∞)

reveals that the initial energy bounds the total number of microscopic phase transi-
tions and hence also themaximal propagation distance of the macroscopic interface
as well as the averaged impact of all fluctuations. Therefore it seems tempting to
tackle themacroscopic limit ε → 0 by variational methods and to show that the gra-
dient flow of the latticeΓ -converges to the hysteretic free boundary problem (1), (8)
and (10)whose variational structure is described in [35]. Such approaches have been
exploited in other micro-to-macro transitions, see for instance [2,6,22,24,26,30]
for different frameworks, and are usually quite robust. It is, however, not clear to
the authors whether variational methods are capable of resolving the complicate
dynamical behavior of (4) with non-monotone dissipation and temporally varying
regularity of the microscopic data.

We finally recall that the above heuristic discussion of the lattice dynamic is
restricted to well-prepared macroscopic single-interface data. All arguments can
be adapted to the case of finitely many phase interfaces but other classes of initial
data are more crucial. For instance, numerical simulations with oscillatory single-
interface data indicate the existence of an initial transient regime during which
the systems dissipates a huge amount of energy before it reaches a state with
macroscopic regularity for the first time. It seems, however, that there is no simple
way to estimate the duration of the transient regime because a large number of phase
transitions might push the phase interface over a long distance and produce many
additional fluctuations. The dynamics of multi-phase initial data with oscillatory
phase fraction or data with many particles inside the spinodal region are even more
complicated since we expect to find measure-valued solutions on the macroscopic
scale as well as phase interfaces that connect a pure-phase region with a mixed-
phase one. First results in this direction have been obtained in [17] for a bilinear
nonlinearity and a periodic pattern for themicroscopic phase field, but in the general
case with an irregular distribution of phases it is not even clear what the analog to
the hysteretic flow rule (10) is. Moreover, for arbitrary initial data there is an extra
transient regime related to the spinodal decomposition of particles but it seems hard
to show that the latter happens in a sufficiently short period of time.
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1.3. Main Result and Plan of Paper

In this paper we derive the hysteretic free boundary problem (1), (8) and (10) in
the trilinear case (13) and for well-prepared single-interface initial data on Z. The
prototypical example of the latter stems—as in Figs. 2 and 3—from a macroscopic
initial datum with single interface located at ξ = Ξini and phases Θ+ and Θ− cor-
responding to ξ < Ξini and ξ > Ξini, respectively. More precisely, after choosing
a bounded, continuous, and piecewise smooth function Pini on R such that

Pini(ξ) > −p∗ for ξ < Ξini, Pini(ξ) ∈ J∗ for ξ > Ξini,

we consistently set

Uini(ξ) := Pini(ξ) + 1 ∈ Θ+ for ξ < Ξini,

Uini(ξ) := Pini(ξ) − 1 ∈ Θ− ∩ I∗∗ for ξ > Ξini

and initialize the lattice data by a discrete sampling via (7). Due to the upper bound
Pini(ξ) � +p∗ for ξ > Ξini, the phase interface can propagate only to the right
but it can switch between standing and moving by (several) pinning or depinning
events.

For such initial data, the macroscopic model predicts a unique interface curve
Ξ with phase field

M(τ, ξ) = sgnU (τ, ξ) = sgn (Ξ(τ) − ξ) = U (τ, ξ) − P(τ, ξ)

as well as |[U ]| = |[P + M]| = |[M]| = −2 at ξ = Ξ(τ) and for all times τ � 0.
We can therefore eliminate both U and M in the limit problem and summarize our
main findings as follows:

Result 1. (lattice data satisfy hysteretic Stefan problem) For macroscopic single-
interface initial data as described above, the scaled lattice data converge as ε → 0
to a solution of the hysteretic free boundary problem. In particular, the limit consists
of a macroscopic field P along with a nondecreasing interface curve Γ = {(τ, ξ) :
ξ = Ξ(τ)} such that the following equations are satisfied:

linear bulk diffusion outside Γ : ∂τ P = ∂2ξ P (18)

Stefan condition across Γ : 2 d
dτ Ξ = |[∂ξ P]| and |[P]| = 0 (19)

hysteretic flow rule on Γ : P = +p∗ if dΞ
dτ > 0 and

dΞ
dτ = 0 if P ∈ (−p∗, +p∗). (20)

Moreover, Ξ and P are Lipschitz and locally Hölder continuous, respectively, and
uniquely determined by Ξini and Pini.

The conditions on the initial data aremade precise inAssumption 1, and the limit
is established in several steps in Section 4. Proposition 3 first provides macroscopic
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compactness of the scaled lattice data and inTheorem1weverify the limit dynamics
along convergent subsequences.Both the convergence and the uniqueness statement
then follow because the Cauchy problem for (18), (19) and (20) is well-posed, see
[21] and [35] for approaches via hysteresis operators and entropy inequalities,
respectively.

The paper is organized as follows. In Section 2 we prove well-posedness for
microscopic single-interface solutions, derive a lower bound on the waiting time,
and establish the entropy balances on the discrete level. Section 3 is the main ana-
lytical part of this paper and concerns the macroscopic impact of the microscopic
fluctuations. First, studying a linear model problem for a spinodal visit in Sec-
tion 3.1, we characterize the backward-diffusion inside the spinodal region as the
interaction of a scalar unstable mode with infinitely many slowly varying variables
(slow-fast splitting). Afterwards we identify in Sections 3.2 and 3.3 themicroscopic
fluctuations produced by a single particle and separate their essential part from the
negligible one, where the former is given by the universal impact profile and the
latter can be estimated with the help of the slow variables from the model problem.
In Sections 3.4 and 3.5 we deal with the superposition of all fluctuations and prove
Hölder estimates for the regular part of the essential fluctuation as well as vanishing
bounds for their residual part and for the negligible fluctuations. In Section 4 we
finally pass to the limit ε → 0 and derive Main Result 1. Since the spinodal effects
are well-controlled by the fluctuation estimates from Section 3, the corresponding
arguments are similar to those from [15] for the bilinear limiting case κ = ∞.

We finally emphasize that the results of Section 2 can be generalized to more
general bistable nonlinearities while our analysis in Section 3 is intimately con-
nected to the trilinearity of Φ ′ as it relies on linear substitute problems and the
superposition principle. Moreover, for general nonlinearities it is not clear what the
analog to the aforementioned slow-fast splitting is.

1.4. On the Numerical Simulations

To conclude this introduction we describe the numerical scheme that was used
for the computation of the examples in Figs. 2 and 3. Fixing a finite particle number
N , we impose homogeneous Neumann boundary conditions

u0 ≡ u1, uN+1 ≡ uN

and prescribe the initial data by

u j (0) = c± + d± arctan (ε j + e±) for j ≷ j∗

with ε = 1/N . Here, j∗ denotes the initial position of the single interface and the
constants c±, d±, and e± have been chosen carefully for any example to produce
illustrative results, see the snaphots for τ = 0.

We solve the ODE analog to the lattice (4) by the explicit Euler scheme, which
is easy to implement. Of course, the numerical time step size δt must be chosen
sufficiently small and in accordance with the macrosocpic CFL condition
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δτ

δξ2
= ε2δt

(εδ j)2
= δt < λmax ,

where the largest eigenvalue λmax of the discrete Laplacian −Δ is basically inde-
pendent of the system size N and can be computed by discrete Fourier transform.

The numerical properties of the Euler scheme have already been investigated
in [20], and the authors there regard the onset of strong oscillations as a drawback
of the discretization. They also propose a semi-implicit scheme for the time inte-
gration of (4), which is unconditionally stable but requires to monitor the spinodal
entrance and exit times, as well as a numerical algorithm for the computation of
two-phase solutions to the free boundary problem (18)–(20). The latter scheme pro-
vides approximate solutions without spatial and temporal fluctuations as it imposes
microscopic transmission conditions at the interface which are derived from the
macroscopic entropy inequalities (11).

The oscillations in the Euler scheme are caused by the spinodal visits of par-
ticles and correspond precisely to the fluctuations described above on the level of
the lattice equation with continuous time variable. Moreover, in view of the macro-
scopic free boundary problem one might in fact regard the microscopic oscillations
as incorrect or spurious, but our analysis suggests a complementary interpretation.
The fluctuations are the inevitable echo of the microscopic phase transitions, which
drive the interface on large scales according to the hysteric flow rule (10) and
explain why the thermodynamic fields comply with the entropy conditions (11) at
all. In this context we emphasize that the solutions to the viscous approximation
(3) also exhibit strong oscillations and one might argue that the rigorous passage
to the limit ε → 0 is still open because the fine structure of these oscillations has
not yet been investigated carefully.

2. Properties of the Lattice Dynamics

In this section we investigate the dynamical properties of the diffusive lattice
(4) with trilinear Φ ′ as in (13). All arguments, however, can be generalized to other
bistable nonlinearities at the cost of more technical and notational efforts.

2.1. Existence of Single-Interface Solutions

We first introduce the notion of single-interface solutions and establish their
existence and uniqueness. Furthermore,we derive somebasic properties concerning
the dynamics of p = Φ ′(u).

Definition 1. (single-interface solution) A smooth function u : [0,∞) → ∞(Z)

is a single-interface solution to (4) if u satisfies the differential equation (4) and if
there exists a non-decreasing sequence (t∗k )k�k1 ⊂ (0,∞], k1 ∈ Z such that the
following conditions are satisfied for all k � k1 and with t∗k1−1 := 0:
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Fig. 6. Two examples of single-interface states from Xk as in Definition 1, where uk−1
and uk are highlighted. At the phase transition time t∗k we have uk

(
t∗k

) = u∗ as well as
u̇k

(
t∗k

)
> 0 according to Proposition 1 and the system moves into Xk+1

1. We have either t∗k = ∞ or t∗k+1 > t∗k ;
2. If t∗k−1 < ∞, then u takes values in the state space

Xk =
{

u ∈ ∞(Z) : u∗ < inf
j<k

u j � sup
j<k

u j < ∞,

− u∗∗ < inf
j>k

u j � sup
j>k

u j < −u∗,

− u∗∗ < uk < u∗
}

on the time interval (t∗k−1, t∗k ).

If u is a single-interface solution with u(t) ∈ Xk for some k ∈ Z and t > 0 then
u j (t) belongs to the positive phase Θ+ for j < k and to the negative phase Θ−
for j > k, respectively; see Fig. 6. At the microscopic interface j = k, however,
uk(t) may be either in the negative phase or in the spinodal interval Θ0. Moreover,
uk may enter and leave the spinodal region via uk = −u∗ several times during
the dynamics of (4) in Xk , and we refer to the time intervals where uk ∈ Θ0 as
spinodal visits of uk . On the other hand, the evolution continues in Xk+1 once uk

passes through uk = +u∗ at some phase transition time t∗k .
The proposition to follow adapts [15, Theorem 3.2] to the present potential

and provides the existence and uniqueness of single-interface solutions, where we
assume from now on that k1 = 1. The crucial argument is to show that the particles
pass the spinodal region one after another.We derive this property in the framework
of comparison principles but mention that a similar observation has been reported
in [20].

Proposition 1. (well-posedness of single-interface solutions) For given initial data
u(0) ∈ X1 there exists a unique single-interface solution u to (4), and this solution
satisfies

−u∗∗ � u j (t) � max
(

u∗∗, sup
j∈Z

u j (0)
)

(21)

for all t � 0 and j ∈ Z. Moreover, the entrance condition

uk(t
∗
k ) = u∗, u̇k(t

∗
k ) > 0 and t∗k+1 − t∗k � C
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holds for any k � 1 with t∗k < ∞, where C > 0 depends only on Φ and the initial
data, and the exit condition

uk−1(t) > u∗∗, (22)

holds at any time t > 0 with uk(t) = −u∗ and u̇k(t) � 0.

Proof. Existence and uniqueness: The right hand side �Φ ′(·) of (4) is Lipschitz
continuous with respect to the ∞-norm of u, so Picard’s theorem yields the local
existence and uniqueness of a continuously differentiable solution with values in
∞(Z). Moreover, denoting the upper bound in (21) by D and introducing the state
set

Y := {
u ∈ ∞ : −u∗∗ � u j � D for all j ∈ Z

}
,

we infer from the properties of Φ ′ the implication
(
u j (t)

)
j∈Z = Y �⇒

2Φ ′(−u∗∗) � u̇ j (t) + 2Φ ′(u j (t)
)

� 2Φ ′(D) for all j ∈ Z .

The comparison principle for scalar ODEs reveals thatY is a forwardly invariant
region for (4), and this ensures the global existence of solutions with (21).

Evolution in X1: For u(t) ∈ X1 the dynamics of p j (t) = Φ ′(u j (t)) are governed
by

ṗ j (t) = u̇ j (t) = � p j (t) for j = 1,

and together with (21) we obtain

−2p∗ � ṗ j (t) + 2p j (t) � 2Φ ′(D) for j < 1,

−2p∗ � ṗ j (t) + 2p j (t) � 2p∗ for j > 1.

The comparison principle yields

p j (t) � −p∗
(
1 − e−2t

)
+ p j (0)e

−2t for j = 1,

p j (t) � +p∗
(
1 − e−2t

)
+ p j (0)e

−2t for j > 1,

and from the continuity of u we infer that u(t) ∈ X1 holds unless u1 reaches
either −u∗∗ or u∗. In addition, if u1(t) is not inside the spinodal region, that is if
u1(t) < −u∗, then we have ṗ1(t) � −2p∗ − 2p1(t) and this implies that u1(t)
cannot reach −u∗∗. Hence, u(t) either remains inside X1 forever, which means
t∗1 := ∞, or u(t) reaches ∂ X1 ∩ ∂ X2 at some time t∗1 ∈ (0,∞) with u1(t∗1 ) = u∗.

Spinodal exit and entrance condition: For t∗1 < ∞ we have

u̇1(t
∗
1 ) = � p1(t

∗
1 ) = p0(t

∗
1 ) + p2(t

∗
1 ) − 2(−p∗) > 0,

since p j (t∗1 ) > −p∗ for j = 1, and we conclude that at the exit time t∗1 the solution
u runs into X2 with positive speed. Now suppose that t ∈ (0, t∗1 ) is an entrance
time such that u1(t) = −u∗ and u̇1(t) � 0. Then we compute

0 � u̇1(t) = p0(t) + p2(t) − 2p∗ < p0(t) − p∗
and obtain (22).
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Lower bound for t∗2 − t∗1 : Repeating the two preceding steps in the case of t∗1 <

t∗2 < ∞, we see that u(t) ∈ X2 for t ∈ (t∗1 , t∗2 ), and that p1(t) > p∗ holds at any
entrance time with u2(t) = −u∗ and u̇2(t) � 0. Moreover, for t∗2 < ∞ there exists
a time t#2 ∈ (t∗1 , t∗2 ) such that u2(t#2 ) = −u∗ for the first time, and this implies

ṗ1(t) = � p1(t) � Φ ′(D) + p∗ − 2p1(t) for t ∈ (t∗1 , t#2 )

with
p1

(
t∗1

) = −p∗, p1(t
#
2 ) � +p∗.

The comparison principle for ODEs yields

p∗ � p1(t
#
2 ) � 1

2

(
Φ ′(D) + p∗

)(
1 − e−2(t#2−t∗1 )

)
− p∗e−2(t#2−t∗1 )

and after rearranging terms we obtain via

e2(t
∗
2−t∗1 ) � e2(t

#
2−t∗1 ) � Φ ′(D) + 3p∗

Φ ′(D) − p∗
(23)

a lower bound for t∗2 − t∗1 , where the above choice of D implies Φ ′(D) � p∗.

Conclusion: The proof can now be completed by iteration. ��
As an immediate consequence of Proposition 1 we obtain the following char-

acterization of the dynamics of p = Φ ′(u) which will be the starting point for our
analysis of the spinodal fluctuations in Section 3.

Corollary 1. (dynamics of p = Φ ′(u)) Let u be a single-interface solution and
denote by

χ j (t) = 1 if u j (t) ∈ (−u∗, u∗), χ j (t) = 0 otherwise (24)

the indicator of spinodal visits of u j . Then p j = Φ ′(u j ) satisfies

ṗ j (t) = (
1 − χ j (t)

)
� p j (t) − χ j (t)κ � p j (t) (25)

for all j ∈ Z and almost all t > 0.

Proof. Equation (25) is true for times t where u j (t) ∈ {±u∗}, because p j is
continuously differentiable in a neighborhood of such t and we have ṗ j (t) =
Φ ′′(u j (t))� p j (t) with either Φ ′′(u j (t)) = 1 or Φ ′′(u j (t)) = −κ . Moreover, the
set of times {t : u j (t) = +u∗ for some j ∈ Z} is by Proposition 1 contained in the
countable set {t∗k : k ∈ N} and thus not relevant for our discussion. The same is
true for each set Tj := {t : u j (t) = −u∗, u̇ j (t) = 0}, which consists of isolated
points and is hence also countable (it can be covered by disjoint open intervals,
each of which containing a different rational number). It remains to consider T j =
{t : u j (t) = −u∗, u̇ j (t) = 0} with fixed j ∈ Z. For any given t ∈ T j and all
sufficiently small |h| > 0 we observe that u j (t + h) = u j (t) + u̇ j (t)h + o(h) =
−u∗ + o(h) and find

∣∣p j (t + h) − p j (t)
∣∣ = ∣∣Φ ′(−u∗ + o(h)) − Φ ′(−u∗)

∣∣ � max(1, κ)o(h).

This estimate implies ṗ j (t) = 0, and combining this with � p j (t) = u̇ j (t) = 0
we conclude that (25) is satisfied for all times in T j . ��
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Fig. 7. Schematic representation of the times fromNotation 2.We control neither the number
nor the duration of spinodal excursions but estimate their cumulative impact in Corollary 3

2.2. Lower Bound for the Waiting Time

Proposition 1 reveals the following dynamical properties for single-interface
data:

1. at any time t there is at most one particle inside the spinodal region, and
2. the particles undergo their phase transition one after the other in the sense

that uk+1 can enter the spinodal region only when uk has completed its phase
transition.

Our next goal is to show that the spinodal visits of neighboring particles are suitably
separated. To this end we introduce the following times and refer to Fig. 7 for an
illustration.

Notation 2. (spinodal entrance times, excursions and passage) Let u be a single-
interface solution as in Proposition 1. For k � 1 we denote by

t#k := inf
{
t > t∗k−1 : uk(t) > −u∗

}
(26)

and
t�k := inf

{
t � t#k : uk(s) > −u∗ for all s > t

}

the first and the final spinodal entrance time of uk , respectively. Moreover, we
refer to spinodal visits of uk that occur in (t#k , t�k ) as spinodal excursions and to the

spinodal visit in (t�k , t∗k ) as spinodal passage.

The quantity t#k+1 − t∗k is a lower bound for the difference t∗k+1 − t∗k between
consecutive phase transition times and implies an upper bound for the microscopic
interface speed. In the proof of Proposition 1, see (23), we have shown that t#k+1 −
t∗k � C for some constant C , but this bound is not sufficient for passing to the
macroscopic limit as it scales like 1/ε2 under the parabolic scaling (6). In the next
lemma, we therefore derive an improved estimate for the difference t#k+1 − t∗k by
means of problem-tailored comparison principles as sketched in Fig. 8. To this end,
we note that Proposition 1 combined with (14) implies for any k � 1 the estimates

−p∗ � pk(t) � p∗ for 0 � t � t∗k , −p∗ � pk(t) < ∞ for t � t∗k (27)

as well as

pk
(
t∗k

) = −p∗, pk(t
#
k+1) > +p∗ = pk+1(t

#
k+1). (28)
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Fig. 8. Illustration of Lemma 1 which provides a majorant for p and bounds the waiting
time. Left panel. Cartoon of p(t) (black) and the stationary, kink-type supersolution γ (gray)
for k = 1 and times t ∈ [t∗0 , t∗1 ]. At the phase transition time t∗1 , both the interface (vertical
line) and γ are shifted to the right by one lattice position. Right panel. Cartoon of p

(
t∗1

)
and

γ̄
(
t∗1

)
for k = 1, where the time-dependent supersolution γ̄ is used to estimate t#2 − t∗1 from

below. Notice that the phase interface has already been shifted to j = 2 and that Proposition
1 yields the two key conditions p1(t

∗
1 ) = −p∗ and p1(t

#
2 ) > +p∗

Moreover, we denote by g the discrete heat kernel, which solves

ġ j = Δg j , g j (0) = δ0j (29)

with Kronecker delta δ0j and discrete Laplacian Δ as in (5). Notice that g can be
computed explicitly by discrete Fourier transform, see for instance [15, Appendix].

Lemma 1. (waiting time) Suppose there exists b > 0 such that the single-interface
initial data u(0) ∈ X1 satisfy

p j (0) � γ j := p∗ + bmax
{
1 − j, 0} for all j ∈ Z.

Then the solution u from Proposition 1 satisfies

p j (t) � γ j−k+1 for j ∈ Z and t ∈ [t∗k−1, t∗k ) (30)

as well as
t∗k+1 − t∗k � t#k+1 − t∗k � c∗ p∗

b
(31)

for all k � 1. Here, the universal constant c∗ is determined by the discrete heat
kernel, and (31) makes sense for t∗k < ∞ only.

Proof. Supersolution for p in [t∗k−1, t∗k ]: We start with k = 1 and suppose for
contradiction that there exists a finite time t̃1 ∈ (t∗0 , t∗1 ] such that

0 < C̃ := sup
t∈[t∗0 ,t̃1]

sup
j∈Z

c j (t), c j (t) := p j (t) − γ j ,

where C̃ ∈ R is well-defined due to (21) and t∗0 = 0 holds by definition. By (27)
we have

c1(t) � p∗ − γ1 = 0 for t∗0 � t � t̃1, (32)

while for j = 1 our definitions imply

ċ j = ṗ j = Δp j = Δc j = c j+1 + c j−1 − 2c j � 2(C̃ − c j )
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thanks to Corollary 1. Therefore, and due to the initial condition c j
(
t∗0

)
� 0, the

comparison principle for ODEs guarantees that

c j (t) � C̃
(
1 − e−2t

)
for j = 1 and t∗0 � t � t̃1. (33)

The combination of (32) and (33) finally yields 0 < C̃ � C̃
(
1 − e−2t̃1

)
< C̃

and hence the desired contradiction. In particular, we established the claim (30) for
k = 1, and since this implies p j

(
t∗1

)
� γ j � γ j−1 we can proceed iteratively.

Estimate for t#k+1 − t∗k : Due to the shift invariance it suffices again to study the
case k = 1. As illustrated in Fig. 8, we introduce γ̄ as the solution to the initial
value problem

˙̄γ j (t) = � γ̄ j (t), γ̄ j (t
∗
1 ) = γ j − 2p∗δ1j for j ∈ Z and t � t∗1 ,

and using the discrete heat kernel g from (29) we write its explicit solution as

γ̄ j (t) =
∑

n∈Z
g j−n(t − t∗1 )γ̄n(t

∗
1 ) = −2p∗g j−1(t − t∗1 ) +

∑

n∈Z
gn(t − t∗1 )γ j−n .

By differentiation of γ̄1 and recalling that
∑

n

ġn(s)γ1−n =
∑

n

Δgn(s)γ1−n =
∑

n

gn(s)Δγ1−n = b
∑

n

gn(s)δ
0
n = bg0(s),

we find ˙̄γ1(t) = −2p∗ġ0
(
t − t∗1

) + bg0
(
t − t∗1

)
, which yields

γ̄1(t) = p∗ − 2p∗g0
(
t − t∗1

) + b
∫ t−t∗1

0
g0(s) ds

by integration and due to the initial conditions γ̄1
(
t∗1

) = −p∗, g0(0) = 1. Since g0
is positive and decreasing we conclude the existence of a unique time t̄1 > t∗1 such
that

γ̄1
(
t̄1

) = p∗ and γ̄1(t) < p∗ for all t ∈ [t∗1 , t̄1], (34)

and exploiting g0(s) ∼ (1 + s)−1/2 we justify that

t̄1 − t∗1 � c∗ p∗
b

(35)

holds for some universal constant c∗ > 0. Moreover, p solves the discrete heat
equation for t ∈ [t∗1 , t#2 ], where we have

p j
(
t∗1

)
� γ j

(
t∗1

)
for all j ∈ Z

according to (30) and since p1
(
t∗1

) = −p∗ holds by (28). A standard comparison
principle therefore yields

p j (t) � γ̄ j (t) for all j ∈ Z and t ∈ [t∗1 , t#2 ],
and in combination with (34) we obtain t#2 > t̄1 since (28) also guarantees that
p1(t#2 ) � p∗. The desired estimate (31) now follows from (35). ��
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2.3. Family of Entropy Inequalities

We finally establish the discrete analog to the weak formulation of the entropy
relation (11) as well as the local variant of the energy-dissipation relation.

Proposition 2. (entropy balance and energy dissipation) Let ψ ∈ 1(Z) be an
arbitrary but nonnegative test function, t � 0 a given time, and u be a solution to
(4). Then we have

d

dt

∑

j∈Z
η
(
u j (t)

)
ψ j � −

∑

j∈Z
μ

(
p j (t)

)(∇+ψ j
)(∇+ p j (t)

)
(36)

for any smooth entropy pair (η, μ) satisfying (12) as well as

∑

j∈Z

∫ t

0

(∇+ p j (s)
)2

ψ j ds �
∑

j∈Z
Φ

(
u j (0)

) −
∑

j∈Z

∫ t

0
p j (s)

(∇+ψ j
)(∇+ p j (s)

)
ds

(37)

with energy Φ as in (17).

Proof. Since (12) ensures d
dt η

(
u j

) = η′(u j
)
u̇ j = μ

(
p j

)
� p j , we compute

d

dt

∑

j∈Z
η
(
u j

)
ψ j =

∑

j∈Z
ψ jμ

(
p j

)∇−∇+ p j = −
∑

j∈Z
∇+

(
ψ jμ

(
p j

))∇+ p j

= −
∑

j∈Z
μ

(
p j

)∇+ψ j∇+ p j −
∑

j∈Z
ψ j+1∇+μ

(
p j

)∇+ p j , (38)

where we used discrete integration by parts as well as the product rule
(
a j+1b j+1 − a j b j

) = b j
(
a j+1 − a j

) + a j+1
(
b j+1 − b j

)
.

The monotonicity of μ implies

∇+μ
(

p j
)∇+ p j = (

μ
(

p j+1
) − μ

(
p j

))(
p j+1 − p j

)
� 0 ,

so (36) follows immediately thanks to the nonnegativity of ψ . Moreover, choosing
(η, μ) = (Φ, id) and integrating (38) in time we obtain (37) after rearranging terms
and due to Φ

(
u j (t)

)
� 0. ��

3. Analysis of the Spinodal Fluctuations

As already discussed in Section 1, the analysis of the fluctuations is the very
core of the convergence problem and so far we are only able to deal with trilinear
nonlinearities Φ ′ because for those we can decompose the nonlinear dynamics into
linear subproblems and combine all partial results by the superposition principle.
We also recall that the case κ ∈ (0,∞) is more involved than the bilinear limit
κ = ∞ without spinodal excursions and with degenerate spinodal passages.

The asymptotic arguments below strongly rely on the regularity of the micro-
scopic initial data. To keep the presentation as simple as possible we make from
now on the following standing assumption, which guarantees that the initial data
are well-prepared.
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Fig. 9. Typical initial data (black dots) as in Assumption 1 which sample macroscopic
functions Uini and Pini = Uini − sgnUini (gray curves) that are compatible with the limit
model from Main Result 1. The gray dots represent the kink-type majorant for p(0) which
enables us to bound all microscopic waiting times from below and hence the macroscopic
interface speed from above, see Lemma 1 and Corollary 2

Assumption 1. (macroscopic single-interface initial data) The initial data u(0)
belong to X1 and there exist constants α, β > 0 such that

p(0) = Φ ′(u(0)) = u(0) − sgn u(0)

satisfies

sup
j∈Z

|p j (0)| � α, sup
j∈Z

|∇+ p j (0)| � αε, sup
j∈Z\{1}

| � p j (0)| � αε2

as well as

|� p1(0)| � βε, p j (0) � p∗ + εβ max
{
0, 1 − j

}
for all j ∈ Z

for ε > 0. Moreover, for convenience we assume that u1(0) ∈ (−u∗,+u∗).

Assumption 1 is motivated by the limit dynamics, see Fig. 9 for an illustration,
and the prototypical example from Section 1.3 corresponds to Ξini = 0 with

α = sup
ξ∈R

(|Pini(ξ)| + ∣∣P ′
ini(ξ)

∣∣ + ∣∣P ′′
ini(ξ)

∣∣)

and

β = max
{∣∣|[∂ξ Pini(Ξini)]|

∣∣, sup
ξ<Ξini

((Pini(ξ) − p∗)/ξ)
}
.

An important consequence of Assumption 1 and Lemma 1 are the following bounds
for the microscopic waiting time and the number of microscopic phase transitions:

Corollary 2. (waiting time for macroscopic initial data) The microscopic single-
interface solution from Proposition 1 satisfies

t∗k+1 − t∗k � t#k+1 − t∗k � 2d∗
ε

for all k � 1 with t∗k < ∞ and some constant d∗ > 0, which depends only on the
potential parameter κ and on the initial data via the parameters α, β. In particular,
for any macroscopic final time τfin > 0 we have

Kε := max{k � 1 : t∗k � τfin/ε
2} � τfin

2d∗ε
,
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Fig. 10. Solution to the spinodal problem (39) with κ = 1, vanishing initial data, and source
term f (t) ≡ 0.02. Due to the backward diffusion of z0, all lattice data z j change rapidly in
time and explode exponentially but the slow variables from Lemma 2 behave much nicer

where Kε abbreviates the number of phase transitions in the corresponding micro-
scopic time interval [0, tfin] with tfin := τfin/ε

2.

Notation 3. (generic constants and parameter dependence) In the following, we
always suppose that 0 < τfin < ∞ is fixed and denote by C a generic constant that
depends on κ , α, β, and τfin but not on ε > 0.

3.1. Prototypical Spinodal Problem

Equation (25) reveals that during a spinodal visit of some uk the corresponding
pk = Φ ′(uk) satisfies ṗk = −κ � pk while all other p j adhere to forward diffusion
ṗ j = � p j . For this reason, we first consider a prototypical spinodal problem

ż j (t) =
{

−κ � z0(t) + (1 + κ) f (t) if j = 0,

+� z j (t) if j = 0,
for j ∈ Z, t � 0, (39)

where z represents some part of p and where f is a perturbation whose purpose will
become clear later. Given bounded initial data at time t = 0, the ODE (39) admits
a unique solution, and our goal in this section is to understand how the backward
diffusing z0 interacts with the forward diffusing background and the source term
(1 + κ) f . A typical numerical simulation is shown in Fig. 10.

Splitting the solution z into its even and odd parts according to

z even, j (t) := 1
2

(
z+ j (t) + z− j (t)

)
and z odd, j (t) := 1

2

(
z+ j (t) − z− j (t)

)
,

respectively, we first observe that z even also satisfies (39), whereas z odd solves the
discrete heat equation. Next, introducing the variables

ζn(t) = 1+2κ
2κ z even,n(t) − 1

2κ z even,n−1(t), n � 1 (40)

we verify by direct computation the identities

ż0(t) = (2κ)2

1+2κ

(
z0(t) − ζ1(t)

) + (1 + κ) f (t) (41)

and

ζ̇n(t) =
{

ζ2(t) − ζ1(t) − 1+κ
2κ f (t) if n = 1,

� ζn if n > 1.
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The key observation is that ζ solves the discrete heat equation on the semi-infinite
domain n � 1 with inhomogeneous Neumann boundary condition at n = 1. There-
fore, if the initial data z(0) and the source term f (t) are uniformly small in j and
t , respectively, then all components of ζ evolve slowly, and the same is true for
z odd as well. On the other hand, the fast variable z0 exhibits a strong tendency to
grow exponentially and changes generically by an order 1 in times of order 1. In
this sense, the change of variables

z ∈ 1(Z) � (z0, z odd, ζ ) ∈ R × 1(N) × 1(N)

separates the slow and fast dynamics of (39) and allows us to isolate a single
‘unstable mode’ as follows.

Lemma 2. (slow-fast splitting) Any solution to (39) can be written as

z j (t) = zfast, j (t) + zslow, j (t)

with

zfast, j (t) := z0(t)

(1 + 2κ)| j | , zslow := z − zfast,

and we have

∑

j∈Z
|zslow, j (t)| � C

⎛

⎝
∑

j∈Z
|z j (0)| +

∫ t

0
| f (s)| ds

⎞

⎠

for some constant C which depends only on the parameter κ .

Proof. Parity splitting and odd solutions: In view of the even-odd parity of the
prototypical phase-transition model (39) it suffices to consider solutions that are
either even or odd. For odd initial data, we always have z j (t) = −z− j (t) and the
assertions follow with

zfast, j (t) = 0, zslow, j (t) = z j (t) = z odd, j (t)

since z satisfies the discrete heat equation.
Even solutions: Using z j (t) = z even, j (t) as well as the definition of ζ in (40)

we verify the representation formula

z− j (t) = z j (t) = z0(t)

(1 + 2κ) j
+ 2κ

(1 + 2κ) j+1

j∑

n=1

(1 + 2κ)nζn(t) for all j � 1,

where the first and the second term on the right hand side represent zfast and zslow,
respectively. In particular, we estimate

∑

j∈Z
|zslow, j (t)| �

∞∑

j=1

4κ

(1 + 2κ) j+1

j∑

n=1

(1 + 2κ)n|ζn(t)|

=
∞∑

n=1

|ζn(t)|
∞∑

j=n

4κ

(1 + 2κ) j−n+1 = 2
∞∑

n=1

|ζn(t)|
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for all t � 0. Next, an off-site reflection with respect to j = 1/2, that is,

ζ̃ j (t) =
{

ζ j (t) if j � 1,

ζ1− j (t) if j � 0,

transforms the boundary value problem for ζ into the discrete diffusion system

d
dt ζ̃ j (t) = � ζ̃ j (t) −

(
δ0j + δ1j

)
1+κ
2κ f (t) for all j ∈ Z and t � 0

with source term at j = 0 and j = 1. Duhamel’s Principle gives

ζ j (t) = ζ̃ j (t) =
∑

n∈Z
g j−n(t )̃ζn(0) −

∫ t

0

(
g j (t − s) + g j−1(t − s)

) 1+κ
2κ f (s) ds

for all j � 1, and the claim follows from
∑

j∈Z
|̃ζ j (0)| � C

∑

j∈Z
|z j (0)|

and the mass conservation property of the discrete heat kernel. ��
The proof of Lemma 2 is intimately related to the linearity of the spinodal

problem (39) as it allows us to construct the slow variables explicitly. For a general
bistable nonlinearity, it remains a challenging task to identify the analog to (40)
and (41). We also mention that the existence of a single unstable mode has been
shown in [20] for a finite dimensional analog to (39) using spectral analysis of
tridiagonal matrices. It has also been argued that spinodal passages are typically
fast with respect to the disffusive time scale. Lemma 2 extends these results to
unbounded domains and quantifies the asymptotic slowness of the stable modes in
a robust and reliable way.

3.2. Spinodal Fluctuations

As indicated in the previous section, we think of spinodal fluctuations as unsta-
ble modes in an otherwise diffusive evolution, which are evoked by spinodal visits
of the u j ’s or, equivalently, by the linear backward diffusion of the correspond-
ing p j ’s. To study this systematically, we define the k-th spinodal fluctuation

r (k) := (r (k)
j ) j∈Z to be

r (k)
j (t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for 0 � t � t#k ,

−p j (t) + q(k)
j (t) for t#k � t � t∗k ,∑

n∈Z
g j−n(t − t∗k )r (k)

n (t∗k ) for t∗k < t,
(42)

where g is the discrete heat kernel from (29) and

q(k)
j (t) :=

⎧
⎨

⎩

0 for t < t#k ,∑

n∈Z
g j−n(t − t#k )pn(t

#
k ) for t > t#k

(43)

solves the discrete heat equation for t > t#k with initial data p(t#k ).
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Formula (42) is at the heart of our asumptotic analysis and enables us to char-
acterize both the local and the global behavior of the fluctuations. On the local side,
we infer from (42) and Corollary 1 that the evolution of each r (k) is determined by
the initial condition

r (k)
j (t#k ) = 0 for all j ∈ Z (44)

as well as the equations

ṙ (k)
j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − χk(t)

)
� r (k)

k (t)

+ χk(t)
(

− κ � r (k)
k (t) + (1 + κ)q̇(k)

k (t)
)

if j = k,

� r (k)
j (t) if j = k

(45)

for almost every t ∈ (t#k , t∗k ) and

ṙ (k)
j (t) = � r (k)

j (t), j ∈ Z (46)

for t > t∗k , where the indicator functionχk has been introduced in (24). In particular,
r (k)(t) satisfies—at any time t with χk(t) = 1 and hence on the entire interval
(t�k , t∗k )—a shifted and delayed variant of the prototypical phase transition problem

(39) with forcing term q̇(k)
k (t), and this gives rise to the local fluctuation estimates

in Section 3.3. On the other hand, arguing recursively we derive from (42) and (43)
the representation formula

p j (t) =
∑

n∈Z
g j−n(t)p j (0) −

∑

k�1

r (k)
j (t) for all j ∈ Z and t � 0, (47)

where the first and the second sum on the right hand side account for the initial
data and the cumulative impact of all phase transitions, respectively. This identity
allows us in Section 3.4 to sheave the local fluctuation estimates into global ones
and to quantify how much p deviates from the diffusive reference data due to the
spinodal visits of all particles. Finally, since p and q(k) are uniformly bounded due
to (21) and (43), the maximum principle for the discrete heat equation guarantees

sup
k�1

sup
j∈Z

sup
t�0

|r (k)
j (t)| � C, (48)

where the constant C depends only on the potential Φ and the initial data p(0).
The remainder of Section 3 deals with the analysis of the spinodal fluctuations.

As indicated in Fig. 11, it turns out that spinodal excursions and the spinodal passage
of a uk lead to two distinguishable parts of r (k), namely the negligible fluctuations
r (k)
neg and the essential fluctuations r (k)

ess , respectively.Wewill show that the negligible
fluctuations are not relevant for the macroscopic dynamics, whereas the essential
fluctuations contribute significantly to them.More precisely, r (k)

ess can be split further
into a regular part, which leads to a sufficiently regular limit contribution, and a
residual partwhich vanishes in suitable function spaces, see the proof of Proposition
3 below.



256 Michael Helmers & Michael Herrmann

Fig. 11. Life span of the total fluctuations (42) and their parts defined in (57), (58) and
(65). Both the negligible and the residual fluctuations vanish in the macroscopic limit, see
Corollary 3 and Lemma 6, while the sum of all regular fluctuations drives the interface in
the free boundary problem as shown in Section 4.2

We finally emphasize that phase transitions in the bilinear case κ = ∞ are
instantaneous processes since the spinodal region has shrunk to a point. In particular,
at the phase transition time t∗k = t#k , the value of uk is continuous but changes its
sign from negative to positive while pk is discontinuous as it jumps down from
+p∗ to −p∗. We therefore have

r (k)
j

(
t∗k + 0

) = r (k)
ess, j

(
t∗k + 0

) = 2p∗δk
j for κ = ∞

and no negligible fluctuations at all.

3.3. Local Fluctuation Estimates

In the next two lemmas, we study the fluctuations r (k) for a fixed k � 1, and a
key quantity for the analysis is

Dk :=
∫ t∗k

t#k

|q̇(k)
k (s)| ds, (49)

which allows us to bound the source term in (45). Specifically, employing a slow-
fast splitting as in Section 3.1 we characterize the fluctuations induced by uk at the
end of its phase transition and show that these are—up to small error terms—given
by a shifted variant of the universal impact profile � with

� j := 2p∗
(1 + 2κ)| j | , (50)

which depends only on κ and is illustrated in Fig. 12. Notice that the definition of
p∗ in (14) ensures

∑
j∈Z � j = 2 for all κ ∈ (0,∞) as well as � j = 2δ0j for κ = ∞

and � j → 0 pointwise as κ → 0.
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Fig. 12. The impact profile � from (50) as function of j for several values of the spinodal
parameter κ . The essential fluctuations produced by each microscopic phase transition are
given by a shifted and delayed variant of g ∗ �, see (56) and (57), and contribute to the
driving force of the macroscopic phase interface

Lemma 3. (estimates for spinodal excursions of uk) For any k � 1 we have

sup
t∈[t#k ,t�k ]

∑

j∈Z
|r (k)

j (t)| � C(1 + Dk) (51)

as well as ∑

j∈Z
|r (k)

j (t�k )| � CDk (52)

for some constant C > 0 and spinodal entrance times t#k , t�k as in (26).

Proof. Throughout the proof we drop the upper index k to ease the notation. Equa-
tion (45) can be written as

ṙ j (t) = � r j (t) + δk
j χk(t)

1 + κ

κ
(ṙk(t) − q̇k(t))

for t ∈ (t#k , t�k ), and using discrete integration by parts we find

d

dt

∑

j∈Z
|r j (t)| =

∑

j∈Z
sgn r j (t)� r j (t)

+ sgn rk(t) χk(t)
1 + κ

κ
(ṙk(t) − q̇k(t))

= −
∑

j∈Z
∇+ sgn r j (t)∇+r j (t)

+ sgn rk(t) χk(t)
1 + κ

κ
(ṙk(t) − q̇k(t))

� C
( d
dt |rk(t)| + |q̇k(t)|

)
, (53)

whereweused themonotonicity of the sign function.Thanks to (44), thefluctuations
r vanish at time t#k , so an integration yields

∑

j∈Z
|r j (t)| � C |rk(t)| + C

∫ t

t#k

|q̇k(s)| ds (54)

for all t ∈ [t#k , t�k ], and this proves (51) due to the bound (48). Moreover, by

qk(t
#
k ) = pk(t

#
k ) = pk(t

�
k ) = p∗
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we have

|rk(t
�
k )| = |qk(t

�
k ) − p∗| �

∫ t�k

t#k

|q̇k(s)| ds + |qk(t
#
k ) − p∗| � Dk + 0

and obtain (52) as a further consequence of (54). ��
Lemma 4. (estimates for the spinodal passage of uk) For any k � 1 we have

sup
t∈[t�k ,t∗k ]

∑

j∈Z
|r (k)

j (t)| � C(1 + Dk) (55)

as well as ∑

j∈Z

∣∣∣r (k)
j (t∗k ) − � j−k

∣∣∣ � CDk (56)

for some constant C.

Proof. The proof of (55) is identical to the one of (51) in the previous lemma
because (53) is also true for t ∈ [t#k , t∗k ]. To derive (56) let us consider times

t ∈ (t�k , t∗k ), so that uk is located inside the spinodal region and (45) can be written
as

ṙ j (t) =
{

−κ � rk(t) + (1 + κ)q̇k(t) if j = k,

+� r j (t) if j = k,

where we dropped the upper index k for simplicity of notation.
After shifting time and space by t�k and k, respectively, this is the prototypical

phase transition problem (39) with z = r and f = q̇ , and from Lemma 2 we obtain

∑

j∈Z

∣
∣∣r j (t) − rk(t)

(1 + 2κ)| j−k|
∣
∣∣ � C

( ∑

j∈Z
|r j (t

�
k )| +

∫ t

t�k

|q̇k(s)| ds

)
� CDk,

where the second inequality is due to (52) and (49). The claim (56) now follows
because pk(t∗k ) = −p∗ and qk(t#k ) = p∗ provide

∣∣rk(t
∗
k ) − 2p∗

∣∣ = ∣∣qk(t
∗
k ) − p∗

∣∣ �
∫ t∗k

t#k

|q̇(s)| ds + |qk(t
#
k ) − p∗| � Dk + 0,

and because
∑

j∈Z � j is finite. ��
For small Dk we infer from (56) that at the end of the spinodal passage of uk

the induced fluctuations r (k)(t∗k ) are in fact close to the shifted impact profile from
(50). This observation together with the definition of r (k)(t) for t > t∗k —see (42),
(45), and (46)—motivates the splitting of r (k) into an essential part

r (k)
ess, j (t) := χ{t�t∗k }

∑

n∈Z
g j−n(t − t∗k )�n−k (57)

and the remainder
r (k)
neg, j := r (k)

j (t) − r (k)
ess, j (t), (58)
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which we call the negligible fluctuations. We prove in Section 3.4 below that these
names are justified since Assumption 1 implies that r (k)

ess is relevant for the limit
dynamics, whereas r (k)

neg is not.
Notice also that Lemma 3 and Lemma 4 are again intimately related to the

trilinearity ofΦ ′. It remains open to identify more robust proof strategies that cover
general bistable nonlinearities as well and provide the analog to the impact profile
(50) and the splitting (57)–(58) for a broader class of nonlinear lattices (4).

3.4. Global Fluctuation Estimates

In view of Section 3.3, the main technical task for collectively controlling the
fluctuations for all k � 1 is to estimate the sum of the quantities Dk from (49). Our
starting point is the representation formula

q(k)
j (t) =

∑

n∈Z
g j−n(t)pn(0) −

k−1∑

l=1

∑

n∈Z
g j−n(t − t∗l )r (l)

n (t∗l ) (59)

for all j ∈ Z and t � t#k , which follows from (42) and (43) by induction over k and
splits q(k) into one part stemming from the initial data and another one from the
previous phase transitions.

Lemma 5. (upper bound for Dk) There exists a constant C such that

Kε∑

k=1

Dk � C√
ε

for all sufficiently small ε > 0.

Proof. By (59) we have

q̇(k)
k (t) =

∑

n∈N
ġk−n(t)pn(0) −

k−1∑

l=1

∑

n∈Z
ġk−n(t − t∗l )r (l)

n (t∗l ) (60)

for all t ∈ (t#k , t∗k ), and due to Assumption 1 we can estimate the contribution from
the initial data by

∣
∣∣∣∣

∑

n∈Z
ġk−n(t)pn(0)

∣
∣∣∣∣
=

∣
∣∣∣∣

∑

n∈Z
gk−n(t)� pn(0)

∣
∣∣∣∣
� C

(
αε2 + βε

(1 + t)1/2

)

because the discrete heat kernel g from (29) is nonnegative and satisfies

∑

j∈Z
g j (t) = 1, sup

j∈Z
g j (t) � C(1 + t)−1/2



260 Michael Helmers & Michael Herrmann

Moreover, the contributions from the previous phase transitions l = 1, . . . , k − 1
satisfy

∣∣∣∣
∣

∑

n∈Z
ġk−n(t − t∗l )r (l)

n (t∗l )

∣∣∣∣
∣
� ‖ġ(t − t∗l )‖∞

∑

n∈Z
|r (l)

n (t∗l )| � C
1 + Dl

(1 + t − t∗l )3/2

thanks to Lemma 4 and ‖ġ j (s)‖∞ � −ġ0(s) � C/(1 + s)3/2.
Combining these estimates with (49) and integrating (60) we thus find

Dk �
∫ t∗k

t#k

αε2 + βε

(1 + t)1/2
dt + C

k−1∑

l=1

∫ t∗k

t#k

1 + Dl

(1 + t − t∗l )3/2
dt. (61)

Summing over all phase transitions in [0, tfin], we estimate the first integral in (61)
by

Kε∑

k=1

∫ t∗k

t#k

αε2 + βε

(1 + t)1/2
dt �

∫ tfin

0
αε2 + βε

(1 + t)1/2
dt

� ατfin + 2β
√

ε2 + τfin � C (62)

and the second one by

Kε∑

k=1

k−1∑

l=1

∫ t∗k

t#k

1 + Dl

(1 + t − t∗l )3/2
dt =

Kε∑

l=1

(1 + Dl)

Kε∑

k=l+1

∫ t∗k

t#k

dt

(1 + t − t∗l )3/2

�
Kε∑

l=1

(1 + Dl)

∫ ∞

t#l+1

dt

(1 + t − t∗l )3/2

� 2
Kε∑

l=1

1 + Dl

(1 + t#l+1 − t∗l )1/2
. (63)

Moreover, Corollary 2 provides (1 + t#l+1 − t∗l )−1/2 � C
√

ε. Adding the partial
estimates (62) and (63) we thus arrive at

Kε∑

k=1

Dk � C

(
1 + √

εKε + √
ε

Kε∑

k=1

Dk

)
,

and the thesis follows by rearranging terms since Corollary 2 ensures that Kε �
C/ε. ��

As a consequence of Lemma 5, we obtain an upper bound for the sum of all
negligible fluctuations.

Corollary 3. (uniform 1-bound for all negligible fluctuations) We have

sup
0�t�tfin

∑

j∈Z

Kε∑

k=1

|r (k)
neg, j (t)| � C√

ε
(64)

for some constant C and all sufficiently small ε > 0.
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Proof. Fix t ∈ [0, tfin] and note that if t � t#1 then there are no fluctuations at
all and the claim is trivially true at t . Otherwise the single-interface property from
Proposition 1 provides exactly one l ∈ {1, . . . , Kε} such that

either t ∈ [t#l , t∗l ) or t ∈ [t∗l , t#l+1),

where t#Kε+1 may be larger than tfin or even infinite. In the first case we have

r (l)
neg(t) = r (l)(t), r (k)

neg(t) = 0 for k > l

according to the definitions in (57) and (58), and using the local fluctuation estimates
from Lemmas 3 and 4 we find

∑

j∈Z

Kε∑

k=1

|r (k)
neg, j (t)| �

∑

j∈Z
|r (l)
neg, j (t)| +

∑

j∈Z

l−1∑

k=1

|r (k)
neg, j (t)|

=
∑

j∈Z
|r (l)

j (t)| +
∑

j∈Z

l−1∑

k=1

|r (k)
j (t) − r (k)

ess, j (t)|

� C(1 + Dl) +
∑

j∈Z

l−1∑

k=1

∑

n∈Z
g j−n(t − t∗k )

∣∣
∣r (k)

n (t∗k ) − �n−k

∣∣
∣

� C(1 + Dl) + C
l−1∑

k=1

Dk .

The discussion of the second case t ∈ [t∗l , t#l+1) is even simpler since the contribu-
tions for k = l and k < l can be bounded in the same way. In particular, arguing as
above we find

∑

j∈Z

Kε∑

k=1

|r (k)
neg, j (t)| �

∑

j∈Z

l∑

k=1

|r (k)
j (t) − r (k)

ess, j (t)| � C
l∑

k=1

Dk,

and the claim follows in both cases from Lemma 5. ��
Notice that the superposition of all essential fluctuations satisfies

∑

j∈Z

Kε∑

k=1

r (k)
ess, j (t) = 2max

{
k : t∗k � t

}
,

since we have
∑

j∈Z � j = 2 and because the convolution with the discrete heat
kernel g preserves mass as well as positivity. Consequently, the sum of all essential
fluctuations is of order 1/ε and hence larger than the right hand side in (64), provided
that the interface propagates on themacroscopic scale. In otherwords, the negligible
fluctuations are in fact smaller than the essential ones.

We further emphasize that we are not able to estimate the number of spinodal
excursions or their duration. Corollary 3, however, controls the impact of the corre-
sponding fluctuations even in the worst-case-scenario that a single particle is either
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Fig. 13. Cartoon of the essential fluctuations r (k)
ess, j and the corresponding regular and resid-

ual ones, see (65), depicted as functions of t for j = k (black, dashed) and j = k + 1 (gray,
solid). The shaded boxes indicate the different life spans

always inside the spinodal region or enters and leaves it repeatedly over a very
long period of time. More precisely, combining the estimate (64) with the scaling
(6) we show in Section 4.1 that the sum of all negligible fluctuations is small in
the macroscopic L1-norm and confirm in this way that spinodal excursions are not
related to proper phase transitions and do not drive the interface in the macroscopic
free boundary problem (18)–(20).

3.5. Regularity of Fluctuations

A fundamental ingredient for passing to the macroscopic limit in Section 4 is to
ensure that the superposition of all fluctuations converges to a continuous function.
The essential fluctuations r (k)

ess,k , however, are discontinuous in time as they jump at
every t∗k , see Fig. 13. To overcome this problem we observe that the lower bound

for the waiting time guarantees that the diffusion effectively regularizes r (k)
ess in the

time between t∗k and t#k+1. We therefore split the latter into two parts and denote by

r (k)
reg, j (t) := r (k)

ess, j (t)χ[t∗k +d∗/ε,tfin)(t) (65)

and

r (k)
res, j (t) := r (k)

ess, j (t)χ[t∗k ,t∗k +d∗/ε)(t)

the k-th regular and residual fluctuations, respectively, where d∗ is the constant
from Corollary 2. The regular fluctuations are still discontinuous in time but it
turns out that the jumps are small and disappear as ε → 0. On the other hand, the
sum of all residual fluctuations is very irregular but the Lebesgue measure of its
domain of definition becomes small under the scaling (6).

Lemma 6. (uniform 1-bound for residual fluctuations) We have

sup
0�t�tfin

∑

j∈Z

Kε∑

k=1

|r (k)
res, j (t)| � C

for some constant C and all sufficiently small ε > 0.
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Proof. By Corollary 2 the intervals [t∗k , t∗k + d∗/ε] are mutually disjoint and we
conclude that for any t only one k contributes to the double sum. Combining this
with (57), (65) and the mass conservation of the discrete heat equation we find

∑

j∈Z

Kε∑

k=1

|r (k)
res, j (t)| = sup

1�k�Kε

∑

j∈Z
|r (k)
res, j (t)| � C

with C := ∑
j∈Z � j . ��

The key result of this section is the following lemma, which shows that the
regular fluctuations are Hölder continuous up to a small error that vanishes in the
limit ε → 0.

Lemma 7. (Hölder estimates for regular fluctuations) There exists a constant C,
which depends on κ and d∗ such that

∣∣∣∣∣

Kε∑

k=1

r (k)
reg, j2

(t2) −
Kε∑

k=1

r (k)
reg, j1

(t1)

∣∣∣∣∣
� Cε1/2

(
|t2 − t1|1/4 + | j2 − j1|1/2

)
+ Cε1/2

(66)

holds for any j1, j2 ∈ Z and all 0 � t1, t2 � tfin.

Proof. Elementary arguments reveal that the discrete heat kernel satisfies

∣∣g j2(t2) − g j1(t1)
∣∣ � C

(1 + min{t1, t2})3/4
(
|t2 − t1|1/4 + | j2 − j1|1/2

)
, (67)

see for instance [15, Appendix] for the details. In what follows we denote the
argument of the modulus on left hand side of (66) by D(t1, t2, j1, j2) and study the
cases j1 = j2 and t1 = t2 separately. The general result is then a consequence of
the triangle inequality.

Spatial regularity: For t1 = t2 = t , inequality (67) along with (57) and (65)
implies

∣
∣D(t, t, j1, j2)

∣
∣ �

∑

k: t∗k �t−d∗/ε

∑

n∈Z
�n−k

∣
∣g j2−n(t − t∗k ) − g j1−n(t − t∗k )

∣
∣

� C | j2 − j1|1/2
∑

k: t∗k �t−d∗/ε

1

(1 + t − t∗k )3/4

with � as in (50). Moreover, the lower bound for the waiting time in Corollary 2
guarantees that all phase transition times are sufficiently separated from each other,
and hence also that

#
{
k : t∗k < t − d∗/ε

}
�

⌊
εt

2d∗

⌋
,
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where �·� denotes the floor function. As illustrated in Fig. 14, we can therefore
estimate

∑

k: t∗k �t−d∗/ε

1

(1 + t − t∗k )3/4
� C

�εt/(2d∗)�∑

l=1

(
ε

ld∗

)3/4

� Cεt1/4 � Cτ
1/4
fin ε1/2 � Cε1/2,

(68)

where we interpreted the sum as a discretized Riemann integral, and obtain via

|D(t, t, j1, j2)| � Cε1/2| j2 − j1|1/2,
the claim (66) in the first case.

Temporal regularity: Supposing j1 = j2 = j and t1 < t2, we write

D(t1, t2, j, j) = D1(t1, t2, j) + D2(t1, t2, j),

where

D1(t1, t2, j) =
∑

k: t∗k +d∗/ε<t1

∑

n∈Z
�n−k

(
g j−n(t2 − t∗k ) − g j−n(t1 − t∗k )

)

and
D2(t1, t2, j) =

∑

k: t1�t∗k +d∗/ε<t2

∑

n∈Z
�n−k g j−n(t2 − t∗k )

account for the phase transitions that occur in the intervals [0, t1] and [t1, t2], respec-
tively. To estimate the first term, we employ (67) and Corollary 2 as in the above
discussion and infer that

|D1(t1, t2, j)| � C |t2 − t1|1/4
∑

k: t∗k +d∗/ε<t1

1

(1 + t1 − t∗k )3/4
� Cε1/2|t2 − t1|1/4.

Moreover, the decay g j (t) � C/(1 + t)1/2 for all j ∈ Z and t � 0 yields

|D2(t1, t2, j)| �
∑

k: t1�t∗k +d∗/ε<t2

C

(1 + t2 − t∗k )1/2
,

and Corollary 2 combined with |t2 − t1| � tfin = τfin/ε
2 allows us to estimate

|D2(t1, t2, j)| �
�ε(t2−t1)/(2d∗)�∑

l=1

Cε1/2

(ld∗)1/2

� Cε|t2 − t1|1/2 + Cε1/2 � Cε1/2|t2 − t1|1/4 + Cε1/2,

where �·� denotes the ceiling function. ��
As a consequence of Lemma 7 we obtain the following bound for the regular

fluctuations.
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Corollary 4. (∞-bound for all fluctuations) There exists a constant C such that

sup
t∈[0,tfin]

sup
j∈Z

(
∣∣

Kε∑

k=1

r (k)
reg, j (t)

∣∣ + ∣∣
Kε∑

k=1

r (k)
res, j (t)

∣∣ + ∣∣
Kε∑

k=1

r (k)
neg, j (t)

∣∣
)

� C

for all sufficiently small ε > 0.

Proof. The claimed estimate for the residual fluctuations is a direct consequence
of Lemma 6 while the bound for the regular fluctuations follows from Lemma 7
with t2 = t , t1 = 0, j1 = j2 = j and due to t1/4 � t1/4fin = τ

1/4
fin ε−1/2. Moreover,

the representation formula (47) implies

sup
t∈[0,tfin]

sup
j∈Z

∣∣
Kε∑

k=1

r (k)
j (t)

∣∣ � C

thanks to Proposition 1, Assumption 1, and the maximum principle for diffusion
equations. The assertion for the negligible fluctuations thus follows from r (k)

neg, j (t) =
r (k)(t) − r (k)

reg, j (t) − r (k)
res, j (t), which is provided by (57), (58), and (65). ��

We conclude this section with an estimate for the spatial gradient of the regular
fluctuations. To begin with, setting j1 = j , j2 = j + 1 and t1 = t2 = t in (66)
provides ∣∣∣∣

∣

Kε∑

k=1

∇+r (k)
reg, j (t)

∣∣∣∣
∣
� Cε1/2,

so the corresponding macroscopic gradient is bounded pointwise in space and
time by ε−1/2 but not by some quantity of order 1. The following result, however,
establishes an improved 2-estimate which enables us to pass to the macroscopic
limit pointwise in time.

Lemma 8. (2-bound for the gradient of regular fluctuations) We have

sup
0�t�tfin

∑

j∈Z

∣∣∣
∣

Kε∑

k=1

∇+r (k)
reg, j (t)

∣∣∣
∣

2

� Cε

for some constant C and all sufficiently small ε > 0.

Proof. The gradient of the discrete heat kernel satisfies
∑

j∈Z
|∇+g j (t)|2 � C(1 + t)−3/2,

for all t � 0, see for instance [15, Appendix], and (57), (65) ensure

∇+r (k)
reg, j (t) =

∑

n∈Z
�n−k∇+g j−n(t − t∗k )
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Fig. 14. To control the regularity of the fluctuations in the proof of Lemma 7, we look from
a given time t backward and label the past phase transitions in reversed order by the index l

for any k, all j , and every t with t∗k +d∗/ε � t . Young’s inequality for convolutions
implies via ‖� ∗ ·‖2 � ‖�‖1‖·‖2 the estimate

(∑

j∈Z

∣∣∇+r (k)
reg, j (t)

∣∣2
)1/2

� C

(1 + t − t∗k )3/4
,

and as in the proof of Lemma 7—see (68) and Fig. 14—we deduce

Kε∑

k=1

( ∑

j∈Z

∣∣∇+r (k)
reg, j (t)

∣∣2
)1/2

� C
�εt/(2d∗)�∑

l=1

(
ε

d∗l

)3/4

� Cε1/2.

The assertion is now a direct consequence of the triangle inequality. ��

4. Justification of the Hysteretic Free Boundary Problem

In order to pass to the macroscopic limit, we choose a scaling parameter 0 <

ε � 1 and regard the lattice data as continuous functions in the macroscopic time
τ that are piecewise constant with respect to the macroscopic space variable as they
depend only on the integer part of ξ/ε. More precisely, in accordance with (6) we
write

ξ = ε
(

jξ + ζξ

)
with jξ ∈ Z, ζξ ∈ (−1/2, +1/2], (69)

and define

Pε(τ, ξ) := p jξ (τ/ε2), Rreg, ε(τ, ξ) :=
∑

k�1

r (k)
reg, jξ

(τ/ε2).

Furthermore, by similar formulaswe construct functionsUε, Rres,ε, and Rneg,ε from
their microscopic counterparts, and setting

Qε(τ, ξ) :=
∑

n∈N
g jξ −n(τ/ε2)pn(0)

we infer from (47) the identity

Pε = Qε − (
Rreg,ε + Rneg,ε + Rres,ε

)
. (70)
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Fig. 15. Cartoon of the macroscopic phase interface, both on the discrete level (piecewise
constant graphs Ξ#

ε and Ξ∗
ε in dark and light gray, respectively) and in the continuum limit

(black curve Ξ ). All spinodal passages and excursions take place inside the shaded region,
whose macroscopic area is bounded from above by ετfin and typically of order ε2 |ln ε|

Finally, we introduce two discrete analogs to the macroscopic interface curve via

Ξ∗
ε (τ ) := ε

∑

k�1

kχ[t∗k−1,t
∗
k )(τ/ε2), Ξ#

ε (τ ) := ε
∑

k�1

kχ[t#k−1,t
#
k )(τ/ε2)

and approximate the macroscopic phase field by

Mε(τ, ξ) :=

⎧
⎪⎨

⎪⎩

−1 if ξ > Ξ#
ε (τ ),

+1 if ξ < Ξ∗
ε (τ ),

0 otherwise;
(71)

see Fig. 15 for an illustration.

4.1. Compactness Results

Our first result concerns the compactness of the scaled lattice data and extends
the arguments for the bilinear case κ = ∞ from [15].

Proposition 3. (compactness) Under Assumption 1 there exist (not relabeled)
sequences such that the following statements are satisfed for ε → 0:

1. (convergence of interfaces) We have
∣∣Γε

∣∣ → 0 with Γε := {
(τ, ξ) : Ξ∗

ε (τ ) � ξ � Ξ#
ε (τ ), 0 � τ � τfin

}
, (72)

and both Ξ#
ε and Ξ∗

ε converge strongly in L∞([0, τfin]) to the same Lipschitz
function Ξ ;

2. (strong convergence of fields) There exist bounded functions U, P, and M such
that

Uε → U, Pε → P, Mε → M strongly in Ls
loc([0, τfin] × R) (73)

for any 1 � s < ∞. Moreover, P is locally Hölder-continuous in space and
time on [0, τfin] × R and we have Pε(τ, ·) → P(τ, ·) strongly in Ls

loc(R) for
any τ ∈ [0, τfin];
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3. (weak convergence of spatial derivatives) P admits the weak derivative ∂ξ P
for any τ ∈ [0, τfin] and we have

∇+ε Pε → ∂ξ P weakly in L2loc([0, τfin] × R), (74)

where ∇+ε denotes the right-sided difference approximation of ∂ξ on εZ.

Here, 0 < τfin < ∞ denotes a fixed macroscopic time that is independent of ε.

Proof. Interface curve: The Lebesgue measure of Γε can be estimated by
∣∣Γε

∣∣ � ετfin (75)

because Proposition 1 ensures that for each time τ there is at most one particle
inside the spinodal region. Moreover, the jumps of both Ξ∗

ε and Ξ#
ε are always

of size ε and the time between two jumps is bounded from below by 2d∗ε due to
Corollary 2; see Fig. 15 for an illustration. By approximation with piecewise linear
functions we thus deduce the strong compactness of both Ξ∗

ε and Ξ#
ε as well as

the Lipschitz continuity of any accumulation point, see [15, Lemma 3.9] for the
details. Finally, (75) implies that the accumulations points of Ξ#

ε and Ξ∗
ε coincide.

Negligible and residual fluctuations: For given τ , Corollary 3 and Lemma 6 yield

‖Rneg,ε(τ, ·)‖L1(R) � C
√

ε and ‖Rres,ε(·, τ )‖L1(R) � Cε,

and Corollary 4 provides

‖Rneg,ε(τ, ·)‖L∞(R) + ‖Rres,ε(τ, ·)‖L∞(R) � C.

By Hölder’s inequality and interpolation we thus find

Rneg,ε(τ, ·) → 0 and Rres,ε(τ, ·) → 0 strongly in Ls(R), (76)

as well as a corresponding convergence result in Ls([0, τfin] × R).

Essential fluctuations: From Lemma 7 we infer the estimate

|Rreg,ε(τ2, ξ2) − Rreg,ε(τ1, ξ1)| � C
(
|τ2 − τ1|1/4 + |ξ2 − ξ1|1/2

)
+ Cε1/2

and conclude that the piecewise constant function Rreg,ε is almost Hölder con-
tinuous with small spatial jumps of order ε1/2. A variant of the Arzelá-Ascoli
theorem—see [15, Lemma 3.10]—provides a Hölder continuous function R along
with a subsequence of ε → 0 such that

Rreg,ε → R strongly in L∞([0, τfin] × R)

as well as

Rreg,ε(τ, ·) → R(τ, ·) strongly in L∞(R) (77)

for any given τ .

Other fields: The compactness of Qε, which represent the scaled solutions of the
discrete heat equation with macroscopic initial data as in Assumption 1, as well
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as the regularity of any accumulation point can be proven in many ways; see for
instance [15, Lemma3.11] for an approach viaHölder regularity. Extracting another
subsequence we can therefore assume that

Qε(τ, ·) → Q(τ, ·) strongly in Ls
loc(R) (78)

and

Qε → Q strongly in Ls
loc([0, τfin] × R)

hold for some continuous function Q, and together with (70), (76), and (77) we
obtain the claimed convergence properties of Pε. Moreover, (71) and (72) imply
the convergence of Mε.

Spatial gradient: For fixed τ , Lemma 8 ensures that

‖∇+ε Rreg,ε(τ, ·)‖L2(R) � C,

while Assumption 1 combined with the properties of the discrete heat kernel guar-
antees

‖∇+ε Qε(τ, ·)‖L2loc(R) � α.

In particular, ∇+ε

(
Rreg,ε(τ, ·) + Qε(τ, ·)) is weakly compact in L2loc(R) and any

accumulation point Z(τ, ·) satisfies
∫

R

Z(τ, ξ)Ψ (ξ) dξ = − lim
ε→0

∫

R

(
Rreg,ε(τ, ξ) + Qε(τ, ξ)

)∇−εΨ (ξ) dξ

= −
∫

R

P(τ, ξ)∂ξΨ (ξ) dξ

thanks to (76)–(78), where Ψ ∈ C∞
c (R) is an arbitrary smooth test function and

∇−ε abbreviates the left-sided difference operator on εZ. This implies the existence
of the weak derivative ∂ξ P(τ, ·) ∈ L2loc(R) for any τ . Towards (74) we fix λ > 0,
define a nonnegative and piecewise constant function Ψε ∈ L∞(R) in consistency
with (69) by

Ψε(ξ) := exp
(−λε

∣∣ jξ
∣∣),

and verify by direct computations that
∣
∣∇+εΨε(ξ)

∣
∣ � Cλ

(
Ψε(ξ) + χ[−ε/2,+ε/2](ξ)

)
.

Evaluating Proposition 2 with ψ j = Ψ (ε j) and inserting the scaling (6) we then
find

∫ τfin

0

∫

R

Ψε(∇+ε Pε)
2 dξ dτ

�
∫

R

Ψε Φ(Uε) dξ −
∫ τfin

0

∫

R

Pε(∇+εΨε)(∇+ε Pε) dξ dτ
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� C + C
∫ τfin

0

∫

R

Ψε

∣
∣∇+ε Pε

∣
∣ dξ dτ

� C + C
∫ τfin

0

∫

R

Ψε dξ dτ + 1

2

∫ τfin

0

∫

R

Ψε(∇+ε Pε)
2 dξ dτ .

Here, C depends on λ but not on ε and we omitted the arguments of the functions to
ease the notation. Since λ is arbitrary we conclude that ∇+ε Pε is weakly compact
in L2loc([0, τfin] × R). Moreover, any accumulation Z point fulfills

∫ τfin

0

∫

R

Z Ψ dξ dτ = − lim
ε→0

∫ τfin

0

∫

R

Pε∇−εΨ dξ dτ =
∫ τfin

0

∫

R

∂ξ P Ψ dξ dτ

for any test functionΨ ∈ C∞
c ((0, τfin)×R), so (74) follows from the standard argu-

ment that compactness and uniqueness of accumulation points imply convergence,
which holds also with respect to the weak topology in L2loc. ��

4.2. Passage to the Macroscopic Limit

Next we derive the hysteretic free boundary problem fromMain Result 1 along
converging sequences and justify the hysteretic flow rule. In the bilinear case κ =
∞, there exists a straightforward argument based on the Hölder continuity of P
and the precise information on the microscopic phase transitions; see [15, proof of
Theorem3.6]. In the trilinear case, however,wehave to argue in amore sophisticated
way due to the lack of vanishing ∞-bounds for the negligible fluctuations. In what
followswe therefore employ thenotionof entropy solutions that has been introduced
in [10,29] in the context of the viscous regularization (3).

Theorem 1. (limit dynamics along sequences) Any limit from Proposition 3 has
the following properties, where Ω := [0, τfin] × R and Γ := {(τ, ξ) ∈ Ω : ξ =
Ξ(τ)}:
1. (free boundary problem with Stefan condition) (P, Ξ) is a distributional solu-

tion of

∂τ P = ∂2ξ P in Ω\Γ, |[P]| = 0 and 2 d
dτ Ξ = |[∂ξ P]| on Γ (79)

and attains the initial data (P(0), 0). Moreover, we have

M(τ, ξ) = sgn (U (τ, ξ)) = sgn (Ξ(τ) − ξ) for ξ = Ξ(τ) (80)

as well as

P(τ, ξ) � −p∗ for ξ � Ξ(τ), P(τ, ξ) ∈ [−p∗,+p∗] for ξ � Ξ(τ)

(81)

and d
dτ Ξ(τ) � 0 for almost all τ ;
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2. (hysteretic flow rule and entropy balances) The implication

P
(
τ,Ξ(τ)

)
< p∗ �⇒ d

dτ Ξ(τ) = 0 (82)

holds for almost all τ and the entropy inequality

∂τ η(U ) − ∂ξ

(
μ(P)∂ξ P

)
� 0 (83)

is satisfied in the sense of distributions for any smooth entropy pair (η, μ) as
in (12).

Proof. Stefan problem: By construction we have

Mε(τ, ξ) = Uε(τ, ξ) − Pε(τ, ξ) = sgnUε(τ, ξ) for (τ, ξ) /∈ Γε,

with Γε as in (72), and taking the limit ε → 0 we obtain (80) by (73) and the
pointwise convergence of both Ξ∗

ε and Ξ#
ε to Ξ . Moreover, the lattice ODE (4)

combined with the scaling (6) gives rise to
∫ τfin

0

∫

R

Uε∂τΨ dξ dτ = −
∫ τfin

0

∫

R

PεΔεΨ dξ dτ

for any test function Ψ ∈ C∞
c ((0, τfin)×R), where Δε = ∇−ε∇+ε is the finite

difference approximation of ∂2ξ on εZ. Using (72) and (73) we pass again to the
limit ε → 0 and find

∫ τfin

0

∫

R

(P + M)∂τΨ dξ dτ = −
∫ τfin

0

∫

R

P∂2ξ Ψ dξ dτ

=
∫ τfin

0

∫

R

∂ξ P∂ξΨ dξ dτ.

This is the weak formulation of (79) since the properties ofΦ from (13) along with
(73) and the continuity of P ensure that

|[U (τ )]| = U
(
τ,Ξ(τ) + 0

) − U
(
τ,Ξ(τ) − 0

) = −2u∗
holds for almost all τ and ξ . Moreover, (81) and the monotonicity of Ξ also follow
from their discrete counterparts, see Definition 1 and Propositions 1 and 3.

Entropy inequalities: Let 0 � τ1 < τ2 � τfin and Ψ ∈ C∞
c ([0, τfin] × R) be a

nonnegative test function. Proposition 2 gives rise to the entropy inequality
∫

R

η(Uε)Ψε dξ

∣∣∣∣

τ=τ2

τ=τ1

�
∫ τ2

τ1

∫

R

(η(Uε)∂τΨε − μ(Pε)(∇+εΨε)(∇+ε Pε)) dξ dτ

where Ψε denotes the ε-approximation of Ψ , which is piecewise constant in space
and defined by

Ψε(τ, ε j + ζ ) = Ψ (τ, ε j) for all j ∈ Z, τ ∈ [0, τfin], ζ ∈ [−ε/2, ε/2).

Thanks to the smoothness of Ψ , the compactness of suppΨ , the weak convergence
of ∇+ε Pε, and the strong convergence of Pε—see (73) and (74)—we can pass to
the limit ε → 0 and obtain

∫

R

η(U )Ψ dξ

∣∣∣∣

τ=τ2

τ=τ1

�
∫ τ2

τ1

∫

R

(
η(U )∂τΨ − μ(P)∂ξΨ ∂ξ P

)
dξ dτ, (84)
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Fig. 16. Left panel. Illustration of the entropy argument in the proof of Theorem 1, which
reveals that P(τ̃ , ξ̃ ) < p∗ implies d

dτ Ξ(τ̃ ) = 0. Center and right panel. Smooth approxi-
mations of the entropy pair (η̃, μ̃) from (87)

which in turn yields (83) in the sense of distributions if we choose τ1 = 0, τ2 = τfin
and a test function Ψ that vanishes for τ = 0 and τ = τfin.

Justification of the flow rule: Let τ̃ ∈ [0, τfin] be fixed with

−p∗ � P
(
τ̃ , ξ̃

)
< +p∗, ξ̃ := Ξ(τ̃ ). (85)

Thanks to the continuity of both Ξ and P we can choose positions ξ1 < ξ2 and
times τ1 < τ2 along with a number p̃ such that

ξ1 � ξ̃ � ξ2, τ1 � τ̃ � τ2, ξ1 < Ξ(τ) < ξ2 for all τ ∈ [τ1, τ2]
and

−p∗ � P(τ, ξ) < p̃ < p∗ for all (τ, ξ) ∈ [τ1, τ2] × [ξ1, ξ2].
This construction is illustrated in the left panel in Fig. 16.Moreover, considering

nonnegative test functions Ψ ∈ Cc((ξ1, ξ2)) in (84) we obtain

∫ ξ2

ξ1

η(U (τ2, ξ))Ψ (ξ) dξ −
∫ ξ2

ξ1

η(U (τ1, ξ))Ψ (ξ) dξ

� −
∫ τ2

τ1

∫ ξ2

ξ1

μ(P(τ, ξ))∂ξΨ (ξ)∂ξ P(τ, ξ) dξ dτ, (86)

and by approximation with smooth densities and fluxes we deduce that (86) holds
also for the non-smooth entropy pair

μ̃(p) :=
{
0 for p � p̃,

+1 for p > p̃,
η̃(u) =

∫ u

−∞
μ̃

(
Φ ′(ū)

)
dū. (87)

Direct computations reveal that (86) reduces to

c̃
∫ Ξ(τ2)

ξ1

Ψ (ξ) dξ − c̃
∫ Ξ(τ1)

ξ1

Ψ (ξ) dξ � 0

for some constant c̃ > 0, and since Ψ was arbitrary we get

Ξ(τ2) � Ξ(τ1).
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On the other hand, Ξ is also non-decreasing by construction. We thus arrive at

Ξ(τ) = Ξ(τ̃ ) for all τ ∈ [τ1, τ2]
and conclude that (85) implies d

dτ Ξ(τ) = 0 for almost all τ ∈ [τ1, τ2]. In particular,
the interface satisfies (82). ��

The final ingredient to the proof of the main result from Section 1 is to extend
the convergence along sequences to convergence of the whole family ε → 0. This
follows from the fact that for given macroscopic initial data there exists precisely
one solution to the limit model from Section 1. Since the arguments are the same
for the bilinear and the trilinear case, we refer to [15, Theorem 3.18] for the proof
and to [16,35] for the key estimates. A similar uniqueness result can be found in
[21].
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