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Abstract

The basic question about the existence, uniqueness, and stability of the Boltz-
mann equation in general non-convex domains with the specular reflection bound-
ary condition has been widely open. In this paper, we consider cylindrical domains
whose cross section is generally non-convex analytic bounded planar domain. We
establish a global well-posedness and asymptotic stability of the Boltzmann equa-
tion with the specular reflection boundary condition. Our method consists of the del-
icate construction of e-tubular neighborhoods of billiard trajectories which bounce
infinitely many times or hit the boundary tangentially at some moment, and sharp
estimates of the size of such neighborhoods.
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1. Introduction

The Boltzmann equation is a fundamental mathematical model for dilute gases
which undergo binary collisions. If there is no external force or self-consistent
force, a probability density function F (¢, x, v) > 0 is governed by

F+v -V, F=0Q(F,F), F(,x,v)= Fy(x,v), (1.1

where the position is x € U C R> and the velocity is v € R3 at time r > 0. The
collision operator Q(F1, F>) takes the form of

Q(F1. F) = /R 3 /S B —u, @[ R = Fi F ()] dodu,

where ' =u + (v —u) - w)w, v =v — ((v— u) - w)w. For the collision kernel
B(v — u, w), we choose the so-called hard potential model with angular cut-off:
B —u,o) = |v—ulq®) with0 < ¢ < 1 where 0 < go() < |cosé| and
cosf = L=

When‘zheu |gas contacts the boundary, we need to impose a boundary condition
for F on dU, the boundary of the domain U. In this paper, we impose the specular

reflection boundary condition, which is one of the most basic conditions:

F(t,x,v) = F(t,x, Ryv), x €U, (1.2)

where Ryv := v — 2(n(x) - v)n(x) and n(x) is the outward unit normal vector at
v

x € dU. Note that the global Maxwellian &t = e~ 2 is an equilibrium state of
(1.1) and satisfies (1.2).

Despite extensive developments in the study of the Boltzmann theory, many
basic boundary problems, especially regarding the specular reflection BC with gen-
eral domains, have remained widely open. In 1977, in [18], SHIZUTA and ASANO
announced the global existence of the Boltzmann equation with the specular bound-
ary condition in a smooth convex domain but without a complete proof. The first
mathematical proof of such problem was given in [11] by Guo, but with an extra
assumption that the boundary should be a level set of a real analytic function. Very
recently the authors of this paper finally constructed a global unique solution and
proved asymptotic stability of u for general smooth convex domains (with or with-
out external potentials) in [17], using a novel triple iteration method and sequence
of geometric decompositions. This marks the complete resolution of a 40-years
open question after an announcement [18].

There were even fewer results on the Boltzmann equation for general non-
convex domains with the specular boundary condition. An asymptotic stability of
the global Maxwellian is established in [5], provided certain a priori strong Sobolev
estimates can be verified. However, such strong estimates seem to fail especially
when the domain is non-convex [9,10,13,16]. To the best of our knowledge, this
paper is the first result on the global well-posedness and stability on the Boltzmann
equation for any kind of non-convex domains with the specular boundary condition.
One of the intrinsic difficulties of the Boltzmann equation in a non-convex domain
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is that the billiard trajectory is very complicated to control (for example infinite
bouncing, grazing).

If F solves (1.1) and satisfies (1.2) then we have the total mass and energy
conservation laws as

2 2
R A
UxR3 UxR3 UxR3 UxR3

By normalization we assume that
v|? v|?
Fo(x,v) = —Fo(x v) = — K
UxR3 UXR% U xR3 UxR3 2
(1.4)

On the other hand, for axis-symmetric domains, we have an angular momentum
conservation law: if there exist a vector xo and an angular velocity @ such that

{(x —x0) xw} -n(x) =0 forallx € 90U, (1.5)

then we have a conservation of the angular momentum as

// {(x —x0) xw} -vF(t) = // {(x —x0) x w} - vFp. (1.6)
UxR3 UxR3

In this case we assume
/f {(x —x0) x w}-vFy(x,v) =0. (1.7)
UxR3

In this paper, we consider a periodic-in-x; cylindrical domain with a non-convex
analytic cross section. A domain U is given by, with fixed H > 0,

U=Qx [R/HZ), (x1,x3) € Qandx, € R/HZ for (x1,x2,x3) € U. (1.8)

The domain U is periodic in x, with a period H. See Fig. 1. Denote the boundary
of U as dU := 92 x (R/HZ).

\ —
Q Q \ ) |
/ / ~. ( \\\7/
), ); [ \ \
\\\ / )
J
-~ \\7717 //'
Periodic cylindrical domain Non-convex analytic cross section

Fig. 1. Periodic cylindrical domain with non-convex analytic cross section
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Definition 1. Let © C R? be an open connected bounded domain and there exist
simply connected subsets 2; C R2, fori =0,1,2,..., M < oo such that

Q=Q\{QUQU.--UQy},

where

1. Qo DD &; (compactly embedded) foralli =1,2,..., M,and 02; N0Q2; =0
foralli # j,

2. for each ;, there is a closed regular analytic curve «; : [a;, bj] — R? such
that 0€2; is an image of «;,

3.9Q = |_|M, 8%, where | | stands a disjoint union.

Theorem 1. Let w(v) = (1+ |v|)/3 with f > % Consider a periodic-in-x; cylindri-
cal domain U defined in (1.8), with an analytic non-convex cross section Q2 defined
in Definition 1. We assume (1.4) and also assume (1.7) if U is axis-symmetric (1.5).
Then, there exists 0 < § < 1 such that if

Fo=n+Vifo20 and lwfolls <3, (1.9)

then (1.1) with (1.2) has a unique global-in-time solution F (t) = u+ /i f (t) = 0.
Moreover, there exists A > 0 such that

sup e |wf ()lloo S llwfolloo, (1.10)
t=0

and conservation laws (1.3) hold. In the case of an axis-symmetric domain (1.5),
we have an additional angular momentum conservation law (1.6).

The perturbation f satisfies

O f+v-Vif+Lf=T(f f). (L.11)
and f(t,x,v) = f(¢, x, Ryv) for x € dU where
1 1
Lf = —— , , , T'(f, ) = — , .
f ﬂ[Q(M FVm) + O(f /i, )] s ) ﬁQ(ff f\(/lﬁl)z)

The linear operator Lf can be decomposed into Lf = v(v)f — Kf where the
collisional frequency v(v) is defined

v(v) :=/ / lv —ul® go(@)pw)dwdu, 0= <1, (1.13)
R3 JSs2

with Co(v)¢ < v(v) £ C1(v)¢ where (v) := /1 + |v|2 for some uniform Cy, C1 >
0. The linear operator K f is a compact operator on LZ(R?)) with kernel k(v, ),

Kf(v) = fR3 K(v, u) f (1) du. (1.14)

See [11] for the form of k(v, u).
Now we explain main ideas of the proof of the main theorem.
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1.1. Uniform Upper Bound of Number of Bounces

Let us denote the characteristics (X (s; ¢, x, v), V(s;t,x,v)) € U x R3 at s,
which start at position x with velocity v at time 7. Also we use cycles (5, x¥, vF) =
(% (x, v), x*(x, v), v*(x, v)) to denote kth bouncing time, position, and velocity
backward in time (See (2.4) for the precise definition). In contrast to the convex do-
main case, the characteristics (X (s), V (s)) can graze (hit the boundary tangentially)
at some bouncing time k. We split such a grazing set {(xk, 05y ok n(xk) = 0)
into three categories depending on where xf € 9Q belongs to: convex grazing,
concave grazing, and inflection grazing (x¥ is an inflection point of 9 for some
k, and therefore x**! cannot be defined) in Definition 4. The following simplified
lemma is the crucial tool to control the number of bounces:

Simplified version of Lemma 2 If characteristics does not belong to the inflection
grazing set then infinite bouncing cannot happen in a finite travel length.

The analyticity of the boundary is crucial. One can construct an example of
infinite number of bounces for finite travel length when the domain is smooth and
convex [12].

We prove Lemma 2 via a contradiction argument. If it bounces infinitely many
times in a finite travel length then we have a convergent sequence of boundary
points x* — x%_ If x* is concave part of the boundary then the trajectory cannot
stay in this small neighborhood. If x* is in convex part of the boundary, locally the
boundary uniformly convex. Then we use the Velocity lemma [11,17] to exclude
infinite bouncing in a finite travel length.

The last case is that x*° is an inflection point of the boundary (analytic bounded
boundary has only finitely many inflection points); see Fig. 2. Then x* has to
converge to x*° through the convex part of the boundary. Since the boundary is
analytic a profile of €2 near inflection points can be approximated by a polynomial
with vanishing curvature at the inflection point. For a curvature vanishing we obtain
|xk=1 — xk| < |xk — x**+1| which is contradiction to the hypothesis xk = xo°,

Based on Lemma 2 we derive a uniform number of bounces for given finite
travel length away from J®B: a e-tubular neighborhood of all characteristics graze
the boundary which is carefully constructed in Section 3.1.

X.: sticky grazing point

k+1

X
X2 Xk Inflection
XK1 point
~———

Tangential line - —

Bouncing near inflection point Sticky grazing point

Fig. 2. Bouncing near inflection and Sticky grazing point SG
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1.2. Sticky Grazing Set

We consider the characteristics that graze the concave part of boundary at some
backward time. Since the billiard map is measure-preserving such set has measure
zero in the phase space. However such a “soft” estimate in the phase space is not
good enough for our purpose. What we need is for every x (not almost every x)
to estimate the size of velocity (and the size has to be small) whose characteris-
tics graze the concave part of boundary. It turns out that there could exist sticky
grazing points x € cl(S2) such that for non-small set of v € R3 the characteristics
(X(s;t,x,v), V(s; t, x, v)) grazes the concave part of boundary at some backward
time s. See the Appendix for the construction of such an example and the second
picture in Fig. 2. The crucial observation is that from the rigidity of the analytic
function such a sticky grazing point can exist uniquely once the number of bounces
and the concave part are fixed. Thanks to Section 1.1 and Lemma 2 we have a uni-
form bound of bounces away from some (small) neighborhood J%5. Moreover the
bounded analytic domain has finite parts of the concave part. Therefore all possible
sticky grazing points, denoted by SG, are finite at most.

Simplified version of Lemma 1 Away from I8 and ¢ neighborhood of SG, the
number of bounces is uniformly bounded and uniformly non-grazing as

|8 (x, v) - n(x¥(x, v))| > 6 > 0, forall k.
1.3. LP—L®° Bootstrap and Double Iteration
Equipped with Lemma 1 and Lemma 2, we illustrate how to estimate the solu-
tion of the Boltzmann equation. For the sake of simplicity we consider linearized

Boltzmann equation,
of+v-Vof +v)f =KFf. (1.15)

To apply the L”—L* bootstrap argument of [11,17], we aim to derive

T
Il < Wfollze +/O (RAVES (1.16)

Let us explain our scheme with a simplified version of (1.15) 9, f +v -V, f + f =
f\ulﬁ v Jdu. Duhamel’s principle gives

t
f,x,v)=e" folx,v) + / e () / f(s, X(s;1,x,v), u) duds.
0 lul SN
Applying this formula again (double iteration) to f (s, X (s; ¢, x, v), u), we get
1
f(t, x,v) = initial datum’s contributions + O (N)

t 5—¢&
+/ e—(t—s)/ e—(s—s’) //
0 0 [u| SN, W' |EN

fs', X5, X(s: 8, x,v), u), u')du’ duds’ds.
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The key step is to prove that the change of variables from u to X (s'; s, X (s; 1, x, v),
u) is valid. We apply geometric decomposition of trajectories in [17] and use the
fact that the characteristics is trivial in x; as %(s/) = —(t —s) to verify such change
of variables away from J®8 and ¢ neighborhood of SG. The size of 3% in v is small
but SG could be large in v. For SG we use temporal integration to exclude such

cases.

2. Domain Decomposition and Notations

2.1. Analytic Non-convex Domain and Notations for Trajectory

Throughout this paper, cross section €2 is a connected and bounded open subset
in R2. In this section, we denote the spatial variable x = (x, x3) € cl(Q) C R?,
where c/(Q2) denotes the closure of Q in the standard topology of R?, and the
velocity variable v = (v1, v3) € R?. We also define standard inner product using
dot product notation: a - b := (ay, a3) - (b1, b3) = a1b; + azbs.

The cross section boundary €2 is a local image of some smooth regular curve.
More precisely, for each x € 9€2, there exists r > 0 and §; < 0 < &3 and a curve
o= (a,a3):{teR: 6 <1 <} — R?2 such that

QN B(x,r) = {a(r) e R* : 1 € (51, 8)}, (2.1

where B(x, r) := {y € 1%22: ly—x| < ryand|&(0)] = [(61 () +(@3(r)*]"/? =
[(%)2 + (%)2] # 0, for all T € (81, §2). Without loss of generality,
we can assume that a(7) is regularly parametrized curve, that is, |&¢(t)| = 1. For

a smooth regularized curve a(t) = (x1(7), @3(7)) € R?, we define the signed
curvature of o at T by

k(t) :=a(r) -n(a(r)) = a(v)as(r) — a1 (r)as(r), (2.2)

where n(« (7)) = (d3(t), —&1 (1)) is outward unit normal vector on «(t) € 9S2.
Meanwhile, we assume that the curvature of 92 is uniformly bounded from
above, so (2.1) should be understood as simply connected curve, that is, we can
choose sufficiently small » > 0 so that 02 N B(x, r) is simply connected curve
for all x € 9€2. Throughout this paper, we assume that a local parametrization of
boundary satisfies (2.1) as a simply connected curve.
We define convexity and concavity of « by the sign of « :

Definition 2. Let © C R? be an open connected bounded subset of R” and let the
boundary d$2 be an image of smooth regular curve @ € C? in (2.1). For 4Q N
Bx,r) ={a(r) : 61 <1 < 8},if

k(1) <0, 8 <71 <é,

then we say 02 N B(x, r) is locally convex. Otherwise, if k() > 0, we say it is
locally concave.
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We denote the phase boundary of the phase space Q2 x R3 as y := dQ xR?, and
split into the outgoing boundary y., the incoming boundary y_, and the grazing
boundary yy :

vo :={(x,v) € 9Q x R* : n(x) - v = 0},
ve = {(x,v) €92 x R* :n(x) - v > 0}, (2.3)
y—={(x,v) € 02 x R3: n(x) - v < 0}.

Let us define trajectory. Given (¢, x,v) € [0,00) x cl(2) X R3, we use

[X(s), V(s)] = [X(s;t,x,v), V(s;t,x,v)] to denote position and velocity of
the particle at time s which was placed at x at time ¢. Along this trajectory, we have

%X(s; t,x,v) = V(s;t,x,v), %V(s; t,x,v) =0,
with the initial condition: (X (¢; ¢, x, v), V(¢; ¢, x, v)) = (x, v).
Definition 3. We recall the standard notations from [9]. We define
tp(t, x,v) ;= sup {s Z0:X(t;t,x,v) € Q forallt € (r — s, t)},
xp(t, x,v) = X —tp(t,x,v);t,x,0),

vp(t,x,v):= lim V(@ —s;t,x,v),
s— 1ty (1,Xx,V)

and similarly,
te(t, x, v) := sup {s Z0:X(t;t,x,v) € Q forallt € (t,t—l—s)},
xe(t, x,v) == X1+ 1¢(t, x, v); 1, x, V),

ve(t, x,v) ;== lim V(+s;t,x,v).
s—>tp(t,x,v)

Here, #,, and #¢ are called the backward exit time and the forward exit time, respec-
tively. We also define the specular cycle as in [9].
We set (to, x9, vo) = (t, x, v). When #,, > 0, we define, inductively,

k k—1

—; k=1 k=l pk=ly

t — (¢
K= X @k T xR R, (2.4)
vF = RV (ks A xR ok,
with reflection operator
kaV(l‘k; tk_l,xk_l, vk—l) — V(l‘k; tk_l,xk_l, vk—l)
—2(n@x") - vk A ),

where we used abbreviation t* = t*(x, v), x*¥ = x¥(x, v), and v* = v¥(x, v) for
each k € N. We define the specular characteristics as

Xals;t,x,v) = lee(tkﬂ,,k]X(s; tk, xk, vk),
k

2.5)
Va(s; t,x,v) = Z lse(thrl,,k]V(s; tk, xk, vk).
k
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For the sake of simplicity, we abuse the notation of (2.5) by dropping the subscrip-
tion ¢l in this section.

2.2. Decomposition of the Grazing Set and the Boundary 92

In order to study the effect of geometry on particle trajectory, we further de-
compose the grazing boundary y (which was defined in (2.3)) more carefully.

Definition 4. Using a disjoint union symbol LI, we decompose the grazing set yp
as follows:

I I
Yo=vs Uy Uy, V()I=V0+'—'Vo .

yOC is a concave(singular) grazing set

vE = {(x, v) € ¥ : t(x, v) # 0and 1 (x, —v) # O}.

yOV is a convex grazing set

Yo = {(x,v) € yo : th(x, v) = 0 and 1 (x, —v) = 0}.
)/OI+ is an outward inflection grazing set

)/01+ ={(x,v) €y :tp(x,v) #0and tp(x, —v) =0and 3§ > 0
such that x 4+ tv € Rz\cl(Q) for € (0, d)}.

Iy . . . . .
Yo is an inward inflection grazing set

7/0’7 ={(x,v) € yp:tp(x,v) =0and tp(x, —v) #0and 3§ > 0
such that x — tv € Rz\cl(Q) for T € (0, §)}.

Recall that Q := Qo \ {2; U--- U Qp}, where each ; is an image of a
regularized curve «; : [a;, bi] — R2. Recall that « stands the signed curvature in
Definition 2.2. Since the curvature « is continuous, the set {t € [a;, b;] : k(t) > 0}
is an open subset of the interval [a;, b;] and therefore it is a countable union of
disjoint open intervals, that is,

{r € la;, bij]: k(1) > O} = I_J‘j?';l {t €(aij.bij):aij <t <bj}

It is clear that x (a;, ;) = 0 = «(b; ;) for all i, j : Suppose not, then there exists
& > O such that (a;, ; —€,b; j) € {t € [a;, b;] : k() > O} or (a;;,b;ij +¢) €
{t € la;, b;] : k(t) > 0}, which is a contradiction.

On the other hand, the signed curvature « is analytic since the curve «; is
analytic. If « is identically zero then «; is a straight line so that d€2; cannot be
a boundary of a bounded set 2. By analyticity, x have at most finite zeroes on a
compact set [a;, b;].
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For fixed 2;, we can assume that there are 2N; number of inflection points
(where signed curvature changes sign near its neighborhood)

N;
|_| {ai(ai,j), ai(bi )},
j=I

where ¢; ; and b; ; are properly chosen so that concave intervals are written by

N;
k(t) 20 onte |_| lai,j, bi ],
Jj=1
and convex intervals are written by
Ni
k() =0 oncl | [a;, bi]\ |_| lai,j, bij] |,
Jj=1

where |_| stands disjoint union.

Definition 5. Let @ C R? be an analytic non-convex domain in Definition 1. We
decompose the boundary 9€2 into three parts:

=z

aQC =

=

Il
o
~
I
_

MC
{oel-(r) 1T € (ai, bi,j)} = |_| BQIC, (Concave boundary)
=1

[C=
=

Q! = {ai(ai,j), ai(bi )}, (Inflection boundary)

i=0 j=1
Qv == 0Q\ QC uan’). (Convex boundary)

The number M€ = ZiAiO N; and the /th concave part BQIC forl=1,2,..., M€
is renumbered sequence of {a;(r) : T € (a; . b;,;)} fori = 0,1,..., M and
j=1,2,..., N;. Therefore, we can define M € number of parametrization ¢; with
I=1,..., M€ such that

AQF = {a(r) : T € (@, by)). (2.6)

We further split 92/ = 9Q"+ U 0!~ where Q"+ := |_|M9Q/" and 9Q/- :=
LM, 09! with

BSZiI+ = {a;(r) € 9! 13 & > Osuch that «;(t') < Ofort’ € (r — &, 1) and
ki(t)y > 0fort’ e (z, T +¢)},

852{’ = {a;(r) € 9! 13 & > Osuch that «;(t') > 0fort’ € (r — &, 7) and
ki(t) <O0fort’ e (z, T +¢)}.
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Note that the following decomposition is compatible with those of Definition 4:

yOC ={(x,v)epw:x¢€ BQC}, (Concave grazing set)
yOI ={x,v)epw:x € Q! (Inflection grazing set)
yOV ={(x,v)epw:x¢c BQV}. (Convex grazing set)

Remark that from the definition, it is clear that

M N; M N;
cd(@Q€) = ct(fei(0):7 € @i j. bi p}) =| || | {0 : 7 €lai j. i 1}
i=0 j=1 i=0 j=1

3. L Estimate

3.1. Inflection Grazing Set

In this section, we study some properties of inflection grazing phase and its
neighborhood. We note that grazing trajectories are of measure zero in phase space
Q x R2.

First, let us split axial dynamics. The trajectory of a particle is very simple for
axial direction:

Val(s; t,x,v) = v, Xao(s;t,x,v) =x2— (t —s)v2.

Therefore, the characteristics of trajectories come from dynamics in the
two-dimensional cross section 2. In this subsection, we analyze trajectories in
Q C R2. First, for fixed N > 1, we define the admissible set of velocity:

2 N

VVi=lveR?: = <p <=1,

N 2

and my : P(2) — R is the standard Lebesgue measure in R2.
We control the collection of bad phase sets with those that are nearly grazing

sets for each open cover containing a boundary d€2. Different studies have been

done on the size of the sets of trajectories that reach the grazing set to derive a lower
bound of the solution in [1,2].

Lemma 1. Let Q@ C R? be an analytic non-convex domain, defined in Definition 1.
Fore < 1, N > 1, there exist finite points

{XTLB, . xl’ig} C cl(2),

and their open neighborhoods

B (x?B,rf‘B),...,B (xl"B "B) c R?,

nB’ rlnB
as well as corresponding open sets

o8 .., oM v,

lnB
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with mz((’)?B) S sforalli = 1,...,1,p such that for every x € cl(R2), there
existsi € {1,...,l,gp} withx € B(xl”B, r,”B) and satisfies either

B(xl-”B ”B)HE)Q g or |V -nx)| >e/N*
forall x' € B(xlf“B,rl."B)HBQ and v’ GVN\O;’B.

Proof. By Definition 1, 9Q € R? is a compact set in R? and a union of the images
of finite curves. For x € Q, we define r, > O such that B(x, r,) N92 = @. For each
x € 0L, we can define the outward unit normal direction n(x) and the outward
normal angle 6, (x) € [0, 27) specified uniquely by n(x) = (cos 6, (x), sin6,(x)).
Using the smoothness and uniform boundedness of curvature of the boundary 9€2,
there exists uniform r, y > 0 such that

16,(x") — 0, (x) | <&/2N? forall x' € B(x,ren) N0, (3.1

and B(x, re y) N OS2 is a simply connected curve.

By compactness, we have finite integer /,,p > 0, points {x"B }l |» and positive

numbers {rl."B}l.’f1 such that
lnB
c@c| B (x,-”B,rl-”B), P < ren.
i=1
By the above construction, for each 1 < i < I, 5, we have either
B (%, r1F) nog =9 (3.2)

or
X" e 3 and r'® <.y, sothat (3.1) holds. (3.3)

For i with case (3.2), we set (’);‘B = (J. For i with the case (3.3), we define
OfB = {v eVVN:v= (|v|cos€, [v] sin9) where
T € T €
ve((O=3) -3 (@£3)+ w5}
where we abbreviated 6, (xi"B ) = 6;. Obviously, mz((’)fB ) < JTNng/n—Nz < ¢gand

W nG)| = ] x ’(cos 0',sin0’) - (cos 6, (x'), sin Qn(x’))‘

> 55 feos (G4 )| = i ()| et <
> — x|cos(=+ — sin , &/N- ,
- N 2 N3 N

> &

=t

for x’ € B(x!"B,r'B) and v/ = [v'|(cos 0, sin0’) € VM\O!B. O
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We state a critical property of the analytic boundary for non-convergence of
consecutive specular bouncing points. We use the notation of the specular cycles
(x', v") defined in (2.4).

Lemma 2. Assume Q@ C R? is the analytic non-convex domain of Definition 1.
Choose x € cl(Q) and nonzero v € VV. If [x'(x,v), vV " (x,v)] ¢ )/01 for all
i=0,1,2,... then

Z |xi(x, v) — xiH(x, v)| = oo.

i=0

Proof. We prove this lemma by a contradiction argument: suppose [x(x, v), v’
(x,v)] ¢ yOl foralli =0,1,2,...and

Z |xi(x, v) — xi+1(x, v)| < oo, (3.4)
i=0

then x’(x,v) — x® and x® = lim; o a(7;) = a(T) € K using that IQ
is closed set. For i > 1, we assume x'(x,v) € {aj(r) : © € laj, bjl} for
some fixed j € N in Definition 1. Otherwise x'(x, v) cannot converge because
dist(082,,082j,) > & > 0 for ji # jo. Therefore we drop index j and denote
a(t;) = aj(r;) = x'(x, v) in this proof.

Step 1. Let us drop the notation of fixed (x, v) and assume that

. - -
¥ =a(y), ¥ =a(i), TP =a(ri).

We claim that if 7; < t;41, then 7741 < ti42 for sufficiently large i > 1. As
explained in (2.1), we can find r* < 1 such that if » < r*, then B(x,r) N 32 is
simply connected curve forx € 9€2. Also forx € 9€2, wecan find r** « 1 such that
if r < r** then {B(x, r)NIR} N N(x) = {x} where N(x) = {x +cn(x) : ¢ € R},
the normal line crossing x € 9<Q2. For r = min(r*, r**) we can decompose

B nna=(e@ : r<mniefud o lle@ s> maynoel.

=B_ =B
(3.5)

From (3.4), for any ¢ < % min(r*, r**), we can choose R >> 1 such that

Ix' —x* <e, Vi>R. (3.6)

If we consider B(x'*!, min(r*, r**)), both x’ and x'*2 are in B(x'*!, min(r*, r**))
N9 by (3.6). If ; < 71741, then 7; € B_. Combining this fact with disjoint
decomposition (3.5), we know that vitl. a(ti4+1) > 0. Therefore, xit2 ¢ B_ and
we already know that x’*t2 # x’+1 Finally we get

X2 e (B, min(*, 7)) NOQNN(B_ L {x'T1}} := B,

By definition of By, Ti+1 < Tit+2.
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Step 2. We split 1, into three cases and study possible cases for (3.4). Without loss
of generality, we assume that ¢ and i > R in the rest of this proof satisfy (3.6).

(1) If k(100) < 0,3 & > Osuchthat k(1) < Ofor T € (100 — &, Too + €). While the
boundary is convex, we can apply a velocity lemma; Lemma 1 in [11] or Lemma
2.6 in [17]. From the velocity lemma, the normal velocity at the bouncing points
are equivalent, especially,

CoVHD! (i p(xi)) < @ColHFDIT (it l b)) 37
e~ CalvHDI (i p(xiyy > o= Callol+Dith (itl p ity .

Since nonzero speed |v| is constant, (3.4) implies finite time stop of the trajectory.

From (3.7), v' - n(x!) cannot be zero at finite time. This is a contradiction.

(i) If k(too) > 0,3 & > O such that k() > O for T € (10 — &, Too + &). Without
loss of generality, we choose ¢ < min(r*, r**), as chosen in Step 1. By concavity,
(a(t) — xH'l) . n(xH'l) >0 for 7€ (Too, Too + &)
where R i+ Vot <o.

This implies 7; € (tj+1 — &, Ti+1], then tj12 € [Ti41, Ti+1 + ¢€). This is a contra-
diction.

(i) If k (too) = 0 and k (t) > O for 7 € (15 — &, Too), this case is exactly the same
as case (ii).

(iv)Ifk (o) = Oand k (7) = Ofort € (00—, Tool, thenk () = Ofort € [a;, bj]
by analyticity. Thus, €2 must be a half plane and we get a contradiction.

(v) Assume k(To) = 0and k(t) < O for 7 € (T — &, Tool.

Step 3. We derive a contradiction for the last case (v) by claiming
livt =X — x| S 2 x =l <6, i 2R (3.8)

for ¢ and R is what we have chosen in (3.6). As explained in (2.1), we can assume
that B(x>, &) N 9L is a graph of analytic function ¢(s). From the argument of
Step 1, we assume soo — &€ < §; < Si+] < Si+2 < Soo. Moreover, up to translation
and rotation, we can assume that ¢(s;11) = ¢'(s;x1) = 0 and ¢”(s) > 0 on
S € (Soo — &, Soo). There exist ng € N such that

dro d’
dsnf (500) £0 and d—s‘f(soo) =0 forall0 <i < ng.
If no = oo, 9Q is a straight line so is a contradiction as explained in (iv) of

Step 2. Also, by definition of the inflection point, ng = 3. For finite ng € N, for
Is] <e K1,

@"(s) = cpg—2(s — soo)”o_z(l 4+ O(ls — sx])) = 0 ass — 5. (3.9)
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To claim |xI+!1 — x7| < |xiT2 — xI+1| it suffices to claim s; 41 — 5; < Si42 — Sit1,

because the absolute values of slopes of x?x/*! and x{*+1x+2 are the same by the
specular boundary condition. Since we assume ¢’(s;+1) = 0, from the specular
boundary condition,

©(si+2) — @(sit1) _ @(si) — @(si+1)

’

Si+2 — Si+1 Si+1 — Si

Si42 t 1 Si+1 Zi+1
/ ¢"(r)drdt = ——— / / ¢ (r)drdr.
sl+2 = Si+1 Jsip Isip Si+1 — Si Js; t

(3.10)

It is important that near the inflection point, from (3.9), ¢” > 0 is monotone
decreasing to zero on s € (5o — €, Soo) for ¢ < 1. Therefore,

Si+2

! 1
f @"(rydrdr £ Z(siy2 — siv1)@" (si41),
sl+2 TS+l Jsipn s 2

Si+1 Zi+1 . 1 p
—/ / @"(r)drdt = =(si+1 — 59" (si41)-
siv1 — i Jy; t 2

@3.11)

From (3.10) and (3.11), we get s; 11 —s; < s;+2 — si+1 and justify (3.8). We proved
contradictions for all possible cases listed in Step 2, and finish the proof. O

Remark that this fact is non-trivial because we can observe the infinitely many
bounces of the specular cycles in a finite time interval even in some convex domains
[12]. Moreover in the case of non-convex domains we need to treat carefully the
trajectories that hit the inflection part (Definition 5) tangentially. The analyticity
assumption is essential in the proof.

Using Lemma 2, we define and control bad phase sets where their cycles may
hit inflection grazing sets yOI , defined in Definition 4 or 5.

Lemma 3. Let @ C R? be an analytic non-convex domain in Definition 1. For
To > 0,e < 1, N > 1, there exist finite points

{x;”, g } C Q)
and open balls

B (17 "), B (5t R,

nl’

as well as corresponding open sets

oMo, 0 CVN

with mz(O;'I) Seforalli =1,..., 1, such that for every x € cl(R2), there exists
ie{l,.... I} withx € B(x;”, rl?”) and, for v € VN\O?I, the following holds,

[X(s; To, x,v), V(s; Ty, x,v)] ¢ yOI forall s € [0, Tp]. (3.12)
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Proof. With the specular boundary condition, a particle trajectory is always re-
versible in time. Therefore, we track backward in time the trajectory which departs
from the inflection grazing phase. Recall from Definition 5 that the inflection bound-

ary 9! is a set of finite points and denote Q! = {xll, le, e, levﬂ }. Define
MI
U [(X(s; To,le-, v), V(s; T(),x;, v)) € cl(Q)
j=1

szzse[O,To],(x]I-,v)eyol,veVN}.

Now we fix one point of the inflection boundary x| € 92" and a velocity v} € R?

with |v]1.| = 1 such that (le., vjl.) € yol. More precisely, for xJI. = ai(7) € 891.1+
with some i = 1, ..., M in Definition 5, we choose vjl. = —; (1), and for xj( =

ai(1) € 8&21.]‘ we choose v! = &; (1) so that (xJI., v;) € yob’ and backward in time

trajectory is well-defined for short time (T — €, Tol, € < 1 at least.

Since |V (s; Tp, le., v]1.)| = |U]I-| < % for v]l € V¥, possible total length of the
specular cycles is bounded by % By Lemma 2, the number of bounces cannot be
infinite for finite travel length without hitting an inflection grazing phase. Moreover,
if the trajectory hits an inward inflection grazing phase yol ~, the particle cannot
propagate anymore. Therefore, the number of bounces for finite travel length is
always bounded. This implies

m
m(le) ;= inf {m e N: Z |xi(x]1-, U]I) —xiH(x]I-, vjl)| > ?} < 400,
i=1

which actually depends on N for fixed Q2 and 7o > 0. Therefore the set (3.1) is a
subset of

pRLED)
A= U U {(y,u) ecl(Q) xVN:ye xi(le., v;)x”l(xj]., vj’)
j=1 i=0
u .
and wl = :I:vl(xJ’., vll)}

which is a set of all particle paths from all inflection grazing phase. Now, we define
the projection of A on spatial a dimension

1
M! m(xj)

Pedyi=J U |y eet@:y e dd (L) T o))

j=1 i=0

Now we construct open coverings. For x € ¢l(Q2)\Py(cl(A)), we pick ry >
0 so that B(x, ry) N Py(cl(A)) = 0. For x € Py(cl(A)), we pick ry > 0 to
generate covering for P, (c/(A)). By compactness, we have a finite open covering
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1D N :16 T "1 From the above construction, for each 1 <i < I,,/,
we have elther
B(x!". r) N Pr(cl(A) = 0, (3.13)
or
e Pe(cl(A)). (3.14)

For i with the (3.13) case, we set (’)l”[ = (). For i with the (3.14) case, there
are a finite number of straight segments (ones that may intersect each other) of
Py (A). This number of segments are bounded by M I % max; m(xil ) < oo for
i=1,..., M". By saying that Of’l with i satisfies (3.14), we mean

O;l] — [u GVN . |u/|u| :bvi(le’vjl.)‘ < CNga

(3.15)
VG, ) st (] o) Gl o) 0B (gt ) # 0.

Obviously m; ((9"1) < IY‘ g;: M x max; m(x/) < & by choosing Cy < # for
sufficiently large N > 1.

Now we prove (3.12). Since the trajectory is reversible in time, [ X (s; Tp, x, v),
V(s; To, x, v)] ¢ yd if (x, v) ¢ A. By the definition of (3.15), if x € B(x/, rI'!),
v E VN\O;’I, and s € [0, Tp], then (x, v) ¢ A. This finishes the proof. O

The following lemma comes from Lemmas 1 and 3:

Lemma 4. Consider 2 as defined in Definition 1. Fore < 1, N > 1, and Ty > 0,
there exist finite points

[xllB, xlm} C cl(2),
and open balls
IB _IB IB 2
B(xl JF ),.. B(xllB,rllB) C R,
as well as corresponding open sets

off.....0f8 c vV,

with mz((’)iIB) < Ceé (for uniform constant C > 0) foralli = 1, ...,1;p such that
for every x € cl(2), there existsi € {1,...,ljp} withx € B(xl.IB, riIB) and, for
v e VN\O!B,
e
v ne)l > .

forall x € SQﬂB(inB,riIB) and

(X (155 To, x,0), V(ti; To, x,0)) ¢ v forall i € [0, To).
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Using the above lemma, we define the infinite-bounces set I8 as

IB = [(x, v) € () x VN 1 v e O'F forsome i € {1,2.....15)
(3.16)
satisfying x € B (inB rIB) }

[

The most important property of the infinite-bounces set (3.16) is that the bounc-
ing number of the specular backward trajectories on {c/(£2) x V¥ }\JB is uniformly
bounded.

Definition 6. When L > 0,x € cl(Q2) C R2, and nonzero v € R? are given, we
consider a set

k
keN:Z|xj_l(x,v)—xj(x,v)’ > Ly CN.
j=1

If this set is not empty, then we define 9t(x, v, L) € N as follows,

k
Nx,v, L) :=inf Jk e N: Z |xj7](x, v) — x/ (x, v)| > L
j=1

Otherwise, if the set is empty, it means the backward trajectory is trapped in yol .,
so we define

Nex, v, L) i=inf {i e N2 (6, 0), v ) €y )

From Lemma 4, we have M(x, v, 202) < oofor (x, v) € {c/(£2) x VN }\3%B. To
improve this finite result into a uniform bound, we use compactness and continuity
arguments.

Lemma 5. Let (x, v) € cl(2) x VN. Then (x*(x, v), v*(x, v)) is a locally contin-
uous function of (x, v) if

(i (x,v), v (x,v) €y, Vie(l,2,... k),

that is, for any € > 0, there exist 8 y ¢ > 0 such that if |(x, v) — (y, u)| < 8x.v.e
then

| (e, 0), v (e, ) — (v w), V(v w))| < e, Vie (1,2, kb
Moreover (xi(y, u), vi(y, u)) ¢ yofori e {1,...,k}.

Proof. First we claim continuity of (x'(x, v), vl (x, V). Using trajectory notation
and the lower bound of speed in V¥, we know that

x(x,v) = X (t, x, v); 1, x,v), 1 < CN
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for uniform C which depend on the size of . Let us assume that |(x, v) — (y, u)| <
8. Then

I, v) — 2, )] € 16t e v) = 2w 4 It w) — x Ny, w)l. (3.17)

U
[v]

choose sufficiently small r, , < 1 such that 92 N B(x!(x, v), Ty ) 1 simply con-
nected and intersects with line {x + sv : s € R} in only one point non-tangentially,
because c|,1(, ) is not parallel to v. Since x + sv is continuous on v, x + su must
intersect to 92N B(x! (x, v), ry,p) atsome o (t) € 92N B(x'(x, v), r) whenever
lu — v| <« 8. This shows |x!(x, v) —x'(x, u)| < O(8y.), and

Let x!(x,v) = a;(T*). Since (x'(x,v),v) ¢ y0, d(t*)| < 1. Then we can

<= ) — = a(e

u . v
— () — — - a(th
|ul |ul

|ue] [v]

Zat) - — ()
|u vl

<Clt—t*|+N§

+

1
§CN8§§(1— )

) (3.18)

for sufficiently small § < 1. This implies ||I":—|~O'l(‘f)| < 1,thatis, (x' (x, u), u) ¢ .

Now, there exists small 7, , < 1suchthatdQN B(x'(x, u), Tx.y) 1s simply con-
nected and intersects with line {x+su : s € R} in only one point non-tangentially by
(3.18). Thus there exists 8, ¢ < 1 such thatline y +su hits QN B(x(x, u), Tx.u)
if |x — y| < 8yx.u.. It is obvious that |x!(x, u) — x'(y, u)| < ry.,. So far we have
shown the continuity of x!(x, -) and x'(-, u), so the continuity of x! follows from
(3.17).

We also note that v!(x, v) is continuous by the continuity of x!(x, v) and
n(x, v), and the specular reflection BC. For the case of i = 2,..., k are easily
gained by a chain rule, applying the above argument several times. O

Lemma 6. Let Q@ C R satisfy Definition 1. Then

CNT = sup Nx,v, NTp) £ CeNTps
(e, 0)E[cl () XTN\TB

where N(x, v, NTp) is defined in Definition 6 and e-dependence comes from
{o/8 }?ZBO, which was defined in Lemma 4.

Proof. From Lemmas 2 and 4, the trajectory does not belong to inflection grazing
set during time [0, Tp]. (x, v, -) is a nondecreasing function for fixed (x, v) €
{cl(2) x VNJ\TB and we can assume |v| = 1, because N Ty has a fixed maximal
travel length during time interval [0, Tp] with v € VN,

Step 1. We study cases depending on concave grazing.
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(Case 1) If n(x'(x,v)) - v'(x,v) # 0 fori = 1,...,M(x, v, NTp), trajectory
(X (s; Ty, x,v), V(s; Ty, x, v)) is continuous in (x, v) by Lemma 5. Therefore,
we can choose 8y y ¢ N7, <K 1 such that if [(x,v) — (¥, u)| < 6x,v.enNTy, then
b (x, V) —xp (¥, w)| < O(SX,U,S,NT())sWhere O(SX,U,E,NT()) — Oas (Sx,v,s,NTo — 0.
Therefore,

N(y,u, NTy) < 1+ N(x, v, NTp),

for [(x, v) — (y, u)| < 8y v,e,NT; <K 1. Moreover, we have

Ix' (x, v) = x' (v, u)| < OB ,veNTy)

fori =1,...,9(x, v, NTp).

(Case 2) Assume that (x'(x, v), v (x, v)) belongs to grazing set yq for some i €
{1,...,9Ux, v, NTy)}. In particular, (xi(x, v), vl (x,v)) € yoc, because yol is not
gained from {cl(2) x VN }\TB as proved in Lemma 4, and y; is the stopping point
for both forward/backward in time. Let us assume thati € {0, ..., 9(x, v, NTp)}
is the smallest bouncing index satisfying (i (x,v), vi(x,v)) € yoc. Even though
there are consecutive convex grazings, it must stop at some (xk (x,v), vk (x,v),
because €2 is analytic and bounded domain, that is, there exist i, k € N such that

(x/(x,v), v/ () ¢ yE, Vi<,
(e, 0), vl vy ey, PiSVjiSk—1, (3.19)
(v, v ) ¢ vE, =k

When j < i, the bouncing number can be counted similarly to Step I:
m(y7 u, N(TO - [i—l(-xv U))) g 1 + m(x7 v, N(TO - ti—l(-x7 U))),

for [(x,v) — (y,u)| < 8,6 NT, fOr some 8, ¢ n7, <K 1. Now we consider
consecutive multiple grazing.

When i £ j < k — 1 (consecutive convex grazing), we split things into two
cases: Case 2-1 and Case 2-2.

(Case 2-1) We assume n(x’ (x, v)) = n(xi“'l(x, V) =---= n(xk_l(x, v)). When
|(x,v) = (v, u)| < 8xv,e,n1y K 1, We have

| e, v, v T e ) = TN ), v T O )| < OB venty) K 1,

from Lemma 5. When trajectory (X (s:y,u, Top), V(s; y, u, To)) passes near
x'(x, v), we split things into several cases (Fig. 3).
We claim that

Ny, u, N(Typ — tx(x,v))) < 1+ N(x, v, N(Ty — tx(x, v))) (3.20)

holds for all of the following cases.

() If xi=1(y, u)x*(y, u) does not bounce near x/ (x, v) forall j € {i,..., k — 1},
then obviously we get (3.20).
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T X(sT,,yu)

\\

X(8;Ty, X, V) X(ST v u) X(s:Ty. X, V)
A /\ Aﬂ A .
(i)
Similar as (ii)
X(s;Ty, ¥, 1)
X(S;To, y, u) Similar as (i
R sT,,xv) N X, V)

(iif) (iv)
Fig. 3. Case 2-1

If case (i) does not hold, we can assume that the backward trajectory
(X (s5 y,u, To), V(s; v, u, Tp)) hits near x“(x, v) without hitting near x/ (x, v) for
i < j < £—1.Without loss of generality, we parametrize B(x‘(x, v), )N, £ <
1 by aregularized curve { 84(1) : ¢ =8 < T < t48,, pY(rH) =x"(x,v)}, 0=
81,0y K 1.

(1) Let xi(y, u) = ,3[(1) with ¢ — 8; < © < t¢. Without loss of generality,
we assume a multigrazing dashed line as x-axis. By the specular BC, the trajec-
tory (X (s;y,u, Ty), V(s; y, u, To)) must be above the tangential line {xi(y, u) +
s,Be(t) : s € R} near x’(y, u). Moreover, from the specular BC,

i i—1
O B0 = | B0
iy, )|

V) e _‘( v"‘l(y,u) B v@(x,v)>.ﬁgm‘
= 1t v Wiy wl [l v)
vi(x, v) Y 0 ¢

~ et (Fo - ))‘

2 1- O(Sx,v,s,NTo)- (3.21)

Tl}is implies that the angle between v'~!(y, u) and tangential line {x(y, u) +
sBY(t) | s € R} is very small, so we can apply the argument of (i) again and we
obtain (3.20).
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Fig. 4. Case 2-2

(iii) When x/ (y, u) = B%(t"), we must have

i—1
'gg_v(yau).'gg_
AR Il (e TRE A b

=1+ 0(8x,v,8,NTo) s

vi_l(y,u) . vl(x, v)
=1y, w)|  |vt(x, v)l

vl (y, u)
Vi (y, u)l

(3.22)

so the angle between v'~!(y, u) and v*(x, v) is very small. Moreover, trajectory
(X (s; y,u, To), V(s; y,u, Tp)) must be above the dash tagential line, So we can
apply (i) to derive (3.20).

(iv) When x’(y, u) = B%(r) with t¢ < t < t¢ 4 &5, the angle between S (z)
and ﬂf (tH is very small, since 6 <« 1. Moreover, the angle between vi— l(y u)
and B¢(7) is also small from (3.21). Therefore the angle between v/~ Y(y, u) and
ﬁ[(rz) is also small, that is, v’ (y, u) is nearly parallel with the dashed line in
Fig. 1. Therefore only cases (i) and (ii) are possible for x*1(y, u). For both cases,
we gain (3.20).

(Case 2-2) Assume that there exist {p1, p2,..., ps} € {i +1,...,k — 1} with
p1 < p2 < --- < pg such that

N:=n(x'(x,v)) =nx*(x,v) = =nx”(x,v))
—N = n(x?' (x,v)) = n(x"*(x,v)) = - = n@P2" 1 (x, v))
N =n(x"2(x,v)) = n(xP2H (x,v)) = - = n@x” 1 (x, v))
—N =n@"(x,v)) =nxBH(x,v) = =n@” (x,v))

We split into cases and claim that
Ny, u, N(To — tre(x, v))) = 1+ Nx, v, N(To — 1 (x, v)))
holds for all cases (Fig. 4).

First we define 7, := (P (x, v) — tP¢(x,v))/2, 1 £ £ < g, and choose
8x,v,6,NT, SO that

T,
SxveNTy K % forall ¢ € {1,...,q}, (3.23)
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which implies that the traveling time (or distance) between x?! (x, v) and x”' ~! (x, v)
is sufficiently larger than the size of 8y , ¢ n7,. We split into two cases (v) and (vi)
as follows:

(v) If x (y, u) does not hit near any of x (x, v), ..., x”'~!(x, v), we have

)(X(Tpp y’ u, To)a V(Tplv yv u, TO)) - (X(Tp| X, U, To)a V(Tp1 X, U, TO))‘

g O(BX,U,S,NTo)s
(3.24)

by Lemma 5.

(vi) If x*(y, u) hits near one of x’(x, v), ..., x”'~!(x, v), then we can apply (ii),
(iii), or (iv) of Case 2-1 to claim that there are at most 2 bouncings before trajectory
(X(s; y,u,To), V(s; y, u, To)) approaches x”! (x, v). Moreover, in any case of (ii),
(iii), and (iv), (assuming 2 bouncings WLOG),

W2y u) = v (e, )| = P, u) — 0P v)| = OB eNTy)-
Since, trajectory X (s; v, u, Tp) is very close to X (s; x, v, Tp),

X(s; y,u, To) = X (55 %, 0, T0)| £ O@rventy), 17 (x,0) S5 =Ty,
Using the above two estimates for both velocity and position, (3.24) also holds for
case (vi).

Now let us derive a uniform number of bounces of the second case in (3.19).

For (Case 2-1), we proved that (3.20) holds. For (Case 2-2) we change index
p1 — 1 < k — 1, and then apply the same argument of (Case 2-1) to derive

Ny, u, N(To — T, (x,v))) < N(x, v, N(Tp — T, (x, v))).

During (t Pr(x,v), tP (x, v)), we can also apply the same argument as that of (Case
2-1) with the help of (3.23) and (3.24) to obtain

Ny, u, N(To — T, (x,v))) < N(x, v, N(Tp — T, (x, v))).
We iterate this process until 7, to obtain
N(y, u, N(To — Tp, (x,v))) = N(x, v, N(To — Tp, (x, v))).
Since (x*(x, v), v*(x, v)) is non-grazing, we have
N(y, u, N(Tp — 1*(x, v))) £ 1+ N(x, v, N(Tp — 1 (x, v))) (3.25)

by applying (Case 2-1) for traveling from near x4 (x, v) to x*(x, v).
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Step 2. When we encounter the second consecutive convex grazings after t*(x, v),
we can follow Step I to derive a similar estimate as to (3.25). Finally there exist
Ox,v,e.,NT, < 1 such that

Ny, u, NTp) = 14+ MN(x, v, NTp), (3.26)

where (x, v) € {cl(2) % VN}\J%. Since J%B is an open set from (3.16), {cl(2) x
VNJ\JB is a closed set. Then we use a compactness argument to derive uniform
boundness from (3.26). For each (x, v) € {c/(Q) x VN\JIB, we construct small
balls B((x, v), 8x,v,6,NT,) Dear each point. For each (y, u) € B((x, v), 6x v.e.NT})>
(3.26) holds. By compactness, there exists a finite covering Ule B((xi, v;),
Ox;,v;,6,NTp) for some finite £ < oo. Therefore, for any (y, u) € {c/(2) x VVN\IB,

N(y,u, NTo) S 1+ max N(x;, vi, NTp) < Ce Ny
1<i<¢

O

Lemma 7. Let Q C R? satisfy Definition 1. For any (x, v) € {cl(2) x VN}\TB,
trajectory (X (s; To, x, v), V(s; To, x, v)) for s € [0, Ty] is uniformly away from
the inflection grazing set yol , that is, there exists ps nT, > O such that

Dz(s, x,v) 1= dist 3QF, X (s; To, x, v)) + n(X (s; To, x, v)) - V(s; To, x, v)|

Z Pe,NTy = 0
3.27)

forall s € [0, Ty] such that X (s; Ty, x, v) € 0S2.
Proof. By definition of 78 and Lemma 4,

(X (5 To, %, v), V(53 To, x,0)) ¢ ¥4 -
Therefore,

min D tjx,v,x,v >0,
i Dr(t) (. v).x,v)

where D7(t/ (x, v), x, v) is defined in (3.27). To derive uniform positivity, we use
a compactness argument again. From Lemma 6, for (x, v) € {cI(2) x VN}\JB,
we know that

N(x, v, NTp) £ Ce Nty

Therefore,
min Dz7(t/(x,v),x,v) = _ min  Dz(t/(x,v), x,v) = pryenty >0
tje[O’TO] léjécx,Lus,NTO

(3.28)
for some uniform positive constant p, ,, ¢ v7, > 0. Now we split things into two
cases.
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Case 1. If (X (s; Ty, x,v), V(s; Ty, x,v)) ¢ yp, we have local continuity from
Lemma 5, so there exists 7y , ¢ N7, << 1 such thatif |(x, v) — (y, u)| < ryv,e,NTy

Px,v,e,NTy

min  |Dz(t/ (x,v), x,v) — Dz(t! (y, u), y,u)| < (3.29)

léjécx.v,s.NTO
From (3.28) and (3.29),

. i Px,v,e,NT,
min Dzt (y,u), y,u) > UGILETLE
1§j§cx,v,s.NT0 2

which implies uniform nonzero on a ball ¢/(B((x, v), rx,v.e,N7;))- By compact-
ness, we have a finite open cover for {c/(2) x VN}\JI%B, which is written by
Ule B((x;, vi), rx; v;,e,NT,) for some finite g. Finally, we pick a uniform positive
number

. Pxj,v;,e,NT;
Pe,NT, ‘= min SRRET0 5

1<i<e 2
to finish the proof.

Case 2. If (X (s; Ty, x,v), V(s; Ty, x,v)) € y for some s € [0, Tp], it must be
concave grazing by definition of J®B, and we consider consecutive concave grazing
cases of (Case 2-1) in the proof of Lemma 6 again with Fig. 1. Let us assume (3.19).

When j < i, using Lemma 5, we have ry , o n7, < 1 such that if [(x, v) —
v, u)| < x,v,e,NTp»

Px,v,e,NTp

min |Dz(t/ (x,v),x,v) — Dz(t/ (v, u), y, u)| < 5
1

1<) <Si-

When i < j < k — 1, it is not reasonable to compare with the same bouncing
index, because we have discontinuity by convex grazing. However, since D7 is
uniformly bounded from below by (3.28), it suffices to compare Dz (t/ (v, u), y, u)
with the nearest D7(t¢(x, v), x, v) for some j < £.

@) If xi=1(x, v)x* (x, v) does not bounce near x/ (x, v) forall j € {i,..., k — 1},
then from Lemma 5 again, we can redefine ry ¢ n7, << 1 so that if [(x,v) —
v, u)| < Ix,v,e,N>»

Px,v,e,NTp

| D2t (x, v), x,v) = Dr(t (v, 0, y, )| < ==
holds. This implies

Px,v,e,NTp Px,v,e,NTy
2 2 ’

Dz(t'(y,u), y,u) = Dz(t*(x, v), x, v) — (3.30)

from (3.28).
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(ii) From Lemma 5, there exist ry v o, n7, <K 150 thatif [(x, v) = (y, u)| < 7xv.en,
|x(y, u) —x*(x, v)| = O(ry e n). Moreover, from (3.21), [vi (y, u) —v* (x, v)| =
O (rx,v.e,N) also holds, so

Px,v,e,NTy

D2t (x, v), x, ) = D' (v, w), y, )] < =25

holds and therefore, (3.30) also holds by (3.28).

(iii) Obviously, |x' (y, u) — x*(x, v)| = 0 and |[v/ (y, u) — v*(x, V)| = O (Fyv.e.N)
also holds by (3.22), and so yields (3.30), similarly.

(iv) Near x'(y, u) (near x(x, v)) and x*1(y, u) (near x**1(x, v)), we use the
argument of (ii) for both bouncings to claim that

Dr(t' (y.u). y.w), D2 (yu). yow) = Pl

if [(x, v) — (v, u)| < rx,v.e,NTp fOr some small ry o n7, <K 1.

From Step 2 in proof of Lemma 6, the number of intervals of consecutive grazing
is uniformly bounded because we assume Definition 1. Whenever we encounter
consecutive grazing, we can split into cases (i)—(iv) to gain uniform positivity
of D7 (t/(y,u), y,u) for 0 < t/(y,u) < Tp. Then we apply the compactness
argument of Case I in the proof of this Lemma to finish the proof. O

3.2. Dichotomy of Sticky Grazing

Lemma 8. Assume Q C R%as defined in Definition 1. Assume that (o (), a;- (1)) €

yocforsomej e{l,...,M}andt € (t* =68, 7" +8) C [a}, b;]. Also we assume
that

(X (s3 To, & (1), &;(1)), V(53 To, @ (1), &3(1))) & yo
fors € [0, Tyl. Let us simplify notation as follows
x (1)i=x(aj(0), & (1)), V' (2):=0'(a; (1), &} (), 1 (0):=1"(aj(0), @}(T)),

fortv e (v* =8, +68) C laj,bjl. Then we have the following dichotomy:
for each k, there exist unique x* € cl(Q) such that x* € x*(7)x*+1(t) for all
T € (t*=6,1t*4+8) C laj, bjl, and for each x € cl(2), the following set is finite:

Uk(f) 1 k k+1 * *

o €S x exk(r)xktl(r), re(x* =68, +8);.

[ (D)

Proof. Assume that we have some x* satisfying (a). If there exists another y* # x*,
k

@) —x* = (1) — x| “k(’) c ) =y
[ (D)
v (o)

=[x (1) — y*| O Te(T*=68,1t"-9).
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This gives
k
V(1)
x* =y = (@ = | = @) = )
[ (1)l
Therefore, |228\ is a constant unit vector for 7 € (t*—8, T*—3§). Since (xk(r), vk (1))

is not grazing, x¥(t) is also constant for all T € (t* — 8, T* — §). Since the tra-
jectory is deterministic forward/backward in time, &; () should be constant for
T € (v* — 8, 7" — §), which implies () is part of a straight line locally. This is
a contradiction, because €2 is an analytic bounded domain.

If there does not exist x* which satisfies (a) for 7 € (t* — 6, t™ — 9),

vk (7)
vk (7))

{r e (@ =8, =8 1K) —x* = |xF () — x|

is a finite set for any x* € cl(2) by rigidity of the analytic function. This yields
(b). O

3.3. Grazing Set

In this section, we characterize the points of {cl/(22) x VN }\TB whose spec-
ular backward cycle grazes the boundary (hits the boundary tangentially) at some
moment. By definition of J®B, this grazing cannot be an inflection grazing yOI .
Moreover, Lemma 4 guarantees that convex grazing does not happen either. There-
fore, the only possible grazing is the concave grazing yOC . We will classify these
concave grazing sets depending on the first (backward in time) concave grazing
time.

Definition 7. For Ty > 0 and (x, v) € c/(2) x R?, we define the grazing set
® = {(x, v) € {cl(Q) x VVN\TIB : 35 € [0, Ty)
s.t (X (s; To, x,v), V(s; To, x, ) € yo},

which is a set of phase (x, v) whose trajectory grazes at least once for time interval
[0, Tp]. We also define &€, &Y, and &’ by their grazing type, that s,

&€ = {(x, v) € {cl(Q) x VV\IB : 35 € [0, Tp)
s.t (X(s; Ty, x, v), V(s; To, x, v)) € yoc},

6V = {(x, v) € {cl(Q) x VNN\IB : 35 € [0, Tp)
s.t (X(s; Ty, x,v), V(s; Ty, x, v)) € )/OV},

&l = {(x,v) € {cl(Q) x VNN\IB : 35 € [0, Tp)

s.t (X(s; To, x,v), V(s; Tp, x, v)) S yol}.
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By definition of J%B, we know that &V = &/ = @. Therefore, we rewrite and
decompose & as

M€ MC
o-ot=le=Uer=UUel"
j = —

J
where
6% = [, 0) € 8 ((x,0), v () € i ),
Qilc = {(x, v) € &€ : Tk s.t. (xk(x, V), vk(x, v)) € yoc and xk(x, v) € BQIC],

Qﬁlc’j = {(x, v) € 87 xi(x,v) € 8QZC}

wherel € {1, ..., MC}, which is defined in (2.6).

Remark 1. Let us use renumbered notation (2.6) and the sets defined in Definition 7.
If (x,v) € (’5,C then there exists T € (a;, b;) and k such that (x*(x, v), v*(x, v)) €
yOC and x*(x, v) = (7). Due to Lemma 7, such 7 cannot be arbitrarily close to
the end points a;, b; which are inflection points x = 0. Lemma 7 implies that there
exists Ell* > q; and l;;“ < by foreach! € {1, ..., M€} such that

{‘C € (a, by) : (X(s; Ty, x,v), V(s; To, x, v)) € J/OC, X (s;Tp, x,v)
= &(t) for (x,v) € 6,0} c [ar, bl (3.31)

Throughout this subsection, we use some temporary symbols. Inspired by (2.4),
we can also define kth backward/forward exit time:

th(x,v) = tll(t, X, V),
té(x, v) =t — tk(t, X, V),
x],;(x, V) = xk(t, X, V),
te(x,v) = tfl (t, x,v),
tf(x, V) = —tk(O, X, —v),

xf(x, V) = xk(t, X, —V).

3.3.1. 1st-Grazing Set, ¢!  Let us use renumbered notation for the concave
part (2.6). From the definition of &' and (3.31),

7' < | [(al(r) + splvlan(v), plvld (1) € {{cl(Q) x VVN\IB} :
p==1

tela,brl, ve VN, s [0, f(a(v), p|v|&,(r))]}.
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Since the signed curvature x is positive and bounded with finite zero points,
S'N{veR?: (x,v) € Qﬁlc’l} has at most two points for fixed x. Since M€ is
uniformly bounded, sin {ve R?: (x,v) € QSIC’I} contains at most 2 x M€ points
and therefore,

mz[UERZ L (x, ) eqs,“] —0. (3.32)

Lemma 9. For any ¢ > 0, there exist an open cover Uflzl B(xl-C‘],rlC’]) for
P ({cl (Q)xVN }\3%), where Py is projection on spatial space, and corresponding
velocity set (’)l-c’l c VN with mz(OiC‘l) < & such that:

(1) For any (x,v) € {cl(Q) x VNW\JIB, there exists xl.C’l, rl.C’l, and §€1 > 0 such
that x € B(xic’l, ric’l) and

(2) ¢1(x, v) = |v-n(px,v) | >8>0 holds for v € VN\OiC’l,for some
uniformly positive §' > 0.

From the above, we define a e-neighborhood of &<1:

1
(6C), = U {B(xfl,rf*l) x Of*l}.

i=1

Proof. Let x € Py({cl() x VN}\TB). Then, there exist at most 2M€ distinct

unit velocities 11t i € {1, ..., 2MC€} such that (x, v;) € 1. We define
06! = {v eV . |Z—| _ Iz_l < Ci(N)g, Vi € {1,...,2MC}}. (3.33)
1

When v € V¥ \Of’l, we can apply Lemma 5 to show that

¢'(x,v) i= |v-n(p(x, v))|

is well-defined and locally smooth since (x,v) € {{c/(Q) x VNN\IB}\ &1,
Using the local continuity of Lemma 5 again, we can find rxc 'l « 1 such that

¢'(x,v) > 8L >0, for (x,v)€cl(Bx,rSh) x VMO
By compactness, we can find a finite open cover Uf':l B(xic’ 1, r,.C’ 1) for Py ({cl(Q) X
% }\J‘B) and a corresponding Oic ' with small measure m, (Oic ’]) < & by choos-

ing (3.33) with some proper small C(N). Finally we choose

§' .= min 81011 >0
1Si<n i

to finish the proof. O
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3.3.2. 2nd-Grazing Set &2 From the definition of €2 and (3.31), the set
BC2\ (B8C 1), is a subset of

M€
U U {(# @@, plolén) + sof @@, plolin)), vf @), plola )

I=1 p==%1
e {cl() x VNN\IDB : T e [a], b1, ve VN, s e [0, (if — 1) (@ (D),

plular ()]} @D (3.34)
Without loss of generality, it suffices to consider only the p = 1 case of (3.34),
since p = —1 does not change any argument.
Step 1. Fix p = 1 and [ € {1,..., M€}. First, we remove lst-grazing set by

complementing (61,

Let us consider (¥, 0) € %1 N Qﬁlc’z and we write & (7) = x2(X, v). Then,
from Lemma 9 and Lemma 5, there exists i € {l,...,[1} such that (x,v) €
B(xl.c’l, rl.c’]) x 0! and

l
{xz(x, v) € 0QC : V(x,v) € cl (B(xic’l,rl.c’l) x Oic’l) , where (%, 7)
e B i x 0 c @@ - 600 @ +80)],
forO0 <6+ =0(1,¢) K 1. (3.35)

Excluding (3.35) from [a], b}] for all (¥,7) € 651N Qs,” yields a union of
countable open connected intervals Z, that is,

T:=[af,dj1)U(cia,di2)U---Claf,bfl, af <dy <cy<dy<---

Now we claim that 7 contains only finite subintervals. If this union is not finite,
there exist infinitely many distinct {z; 1921’ T| < T2 < --- such that

a(r) -n@ex @), a(n) =0, ieN.

We pick a monotone increasing sequence 11, 72, .. ., Ty, . . . by choosing a point t;
for each disjoint closed interval. Since 7, < bfk for all n € N, there exist a 7, such
that 7, — 7o up to subsequence. Let us assume that

(xe @1 (T), @1 (), () € v+ xe(@(Ta), @1 (1a)) € IQ.

Since we have chosen 1,,’s from each distinct interval, there exists t/, 17, < 17/ <
Tp+1 such that

(xe(@ (), (), () ¢ vy .

By the monotonicity of {ry,..., T}, the fact that 75, is an accumulation im-
plies that we have an accumulating concave grazing phase {(Xf(O_l[(Tn), (1)),
a1 (1)) 122, near {(x¢(@(Too), 1 (Toc)), A (Too))}. This is a contradiction because
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02 is an analytic domain. Finally we can write 7 as a disjoint union of finite ml2
intervals, that is,

T:=lajdi) Ulera,dip) V- Uep s dp ) U (e 0, bfl.  (3.36)

Step 2. Since we have chosen §+ as nonzero in (3.35), we can include boundary
points of each subinterval of (3.36). Therefore, &C 2\ (BC 1), is a subset of
MC

U (@@, 101a1 ) + svf @ (o), lén (o), of @ (@), [0lér () )

=1
€ {cl(@) x VNNIB 7 € [af di]U 12, di2] U ULy 0y dy ]

Uley 510 € Vs € [0, (= 1) @), ol on] |, (3.37)
and forall T € @, dia]1U[c12.d121 U~ Uley g dy 11U Lep . b1,

|6 (7) - m(xe (@ (t), & (1)) > 81 > 0,

8C’l

where was found in Lemma 9. Moreover, we can choose these subintervals

1
—1. .
so that the measure of each puncture {(d; ;, ¢, ,-+1)};n:21 is arbitrary small, because
we can choose §+ > 0 arbitrarily small in (3.35).

Step 3. We construct a 2nd-Sticky Grazing Set S gf'z where all grazing rays from
the non-measure zero subset of [dl*, di) V(. dia)U---U (Cl,mlz—l’ dl,mlz—l) U
(Cl,mlz’ I;l*] intersect at a fixed point in Py <{cl(Q) X VN}\j%) where P, is pro-

jection on the spatial domain. Choose any i € {1, ..., mlz} and corresponding sub
interval [c; ;, d; ;]. We define

&) = {(xf1 (@ (0, [0lén (D) + svf @ (D), [01&(0), vf @ (D), vlén (D))
e {cl(Q) x VNN\IB : € [, dpil.ve VDV,

s e [0, (tfz - tfl) @(1), |v|&1(f))] }

Fix x* € Q. If there does not exist T € [cri.dii]and s € [tf(oz’(r), o'zl(r)),
(@ (v), &' (v))] satisfying x* = x{ (& (), &' (1)) + sv} (@' (v), &' (7)) then {v €
R? : (x*,v) € ®f;2} = ) with zero measure. Now suppose that there exist such
7 and s. Due to Lemma 8, there are only two cases: (i) sticky grazing: for all
T € [c1i,dyi], there exists s = s(1) € [t} (! (7), & (7)), tf(!(r), d!(r))] and
fixed x* € ¢l(R2) such that

x* = xp (@ (r), & (v) + svi (@ (1)), (3.38)

or (ii) isolated grazing: there exists §_, §, > Osothatfort’ € (t—58_, t+685)\ {7},
there is no s satisfying (3.38). We define the 2nd-sticky grazing set SG&? as a
collection of all such x* € ¢l(€2) points.
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Definition 8. Consider (3.37) and disjoint union of intervals [Ezl*, d; 11Vl 2, di 2]V
s U [cl,mlz—l’ dl,mlz—l] U [Cl,mlz’ by']. There are finite i € Iszg’l c{1,2,..., mlz}
such that case (i) sticky grazing holds;

() xf@(). @) @ (), a(r)) = x&,; which is a point in c/(R),
t€lei di,il

by writing a; = c;,1, bf = dl,m’2 . The 2nd-sticky grazing set is the collection of
such points:

M¢ MC
c2 . co . 2 CGeie?
8G9 = | 8677 = | Jlpgi e Qriely,,). (3.39)
=1 =1

Note that SG2 is a set of finite points, from the finiteness of M € and Lemma 8.
Step 4. We claim
mofv € R?: (x,v) € 8C2\ (81, } =0, (3.40)

for all x € P, ({cl(2) x VN}\j%)\SgC'2. Consider again the set (3.37) and fix
le{l,..., M. Foranyi € {1,2,..., mlz} \ Iszg’l, we apply case (b) of Lemma 8§
to say that

{veR?: (x,v) € 82\ (651, } NS = finite points,
which gives (3.40).

Lemma 10. For any ¢ > 0, there exist an open cover

i
{O B(xf’z,rf’z)}u U BO.o

i=1 yeSgC'2
for ’Px({cl(Q) X VN}\TJ%) and corresponding velocity sets O[C’z c VN with

mz(OiC ‘2) < ¢ such that:

(1) for any (x, v) € {cl(Q) x VN]\IB,

X € B(xic’z,rl.c’z) or x € B(y, e),

2 2
for some xl-c’ s rl-c’ ,andy € 8G¢2;

(2) moreover, if x ¢ Uyesgc,z B(y,¢), x € B(xiCsZ’ rl.C’2), and v € VN\OiC,z’
then

¢2(x, V) = |v1(x, v) ~n(x2(x, v))| > 82 >0 and ¢1(x, v)
= v-n(x(x,v)] > 8" >0,

for some uniformly positive 8¢, §¢2 > 0.
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From the above, we define an &-neighborhood of &€-2:
153
@Y, =1 Ba2 it <o tul () B(y.e)x VY
i=1 yesgC,Z
Proof. From (3.39), SGE2 has only finite points so we make a cover with finite

balls, Uyesgc,z B(y, ¢) for SGE2.
For x € P,({cl(Q) x VN\TB) \ Uyesgc,z B(y, €), there are at most finite

C .
(at most 2M€ +2 Z?i 1 mlz) unit vectors % such that

(x,v;) € BLUBL,
from (3.40) and (3.32). So we define

Vi

082 = lveVN:
loil vl

< Ca(N)e, Vi st (x,v;) € 8C! u@cyz}.

When v € VV \Of’z, the trajectory does not graze within second bounces, so
both

¢'(x,v) = [v-n(p(x,v)| and ¢*(x,v) = |v!(x,v) - nE*(x, V)|

are well-defined and locally smooth, because (x, v) € { (cl(Q)xVVNN\IDB }\ (Qﬁc’ Ty
QSC'Z) implies that the trajectory does not graze in the first two bounces. Using the
local continuity of Lemma 5 again, we can find er 2 « 1 such that

¢ (x,v)>8) >0, ¢*(x,v)>87>0, for(x,v) € cl(B(x,rS?)) x VM\OE2,

By compactness, we can find finite open cover U?:l B(xl.c ’2, rlc’z) for Py ({cl () x
\ }\J‘B) \ U yeSG2 B(y, ) and the corresponding Oic 2 with small measure
mz(OiC ‘2) < & by choosing (3.33) with sufficiently small C>(N). Finally we choose

8! := min 8102 >0, 8 := min 8202 >0
1Sisy i 1Sin *i

to finish the proof. O

3.3.3. kth-Grazing Set, ¢  Now we are going to construct, for k > 2, the
kth-Grazing Set and its e-neighborhood. We construct such sets via mathematical
induction. We assume that Lemma 10 holds for &€-*—1 that is, we have

Assumption 1. For any ¢ > 0, there exist SG C.k _1, which contains finite points in
cl(£2), an open cover

-1
Ck—1 C,k—1
UB(xi oYU U B(y, &)

i=1 yeSGEk-1
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for Py ({cl(2) x VN]\TB), and corresponding velocity sets O c YN with
mz(OiC’k_l) < ¢ such that

(1) for any (x, v) € {cl(Q) x VN)\TB,

Coke—1 rc’kfl) or x € B(y,é¢),

i [

x € B(x
for some xl.c’k—l, rl.c’k_l, and y € SGCk-1,

—1 -1
ic’k ,ric’k ), and v €

(2) moreover, if x ¢ UyESgC,k—l B(y,&), x € B(x
VN\(’)I-C‘]“], then

¢ @) = [ v nG ()] > 890 > 0,

foralls € {1, ..., k — 1} some uniformly positive §C.1 §C.2 . §Ck-1 5 .
We define the e-neighborhood of &C¢4~1:

lk—1

(&CF1, = LJB(xl.c’k_l,r-C’k_l)inC’k_l U U B(y, &) x V"

1
i=1 yesgC.k—l

Now, under the above assumption, we follow the steps in (’52C. From the defini-
tion of &% and (3.31), the set K \ (BCX—1), is a subset of

MC
U U (' @@, plvtéan +sof~ @), plolai e, of ' @,

I=1 p==1

p|v|&,(z))) € {cl(Q) x VNN\IDB : t e [a, b}, v e VY,

se o, (if — M@, p|u|&l(r))]}\(®cﬂk*‘)g. (3.41)

Without loss of generality, it suffices to consider only the p = 1 case of (3.41).

Step 1. Fix p = land [ € {1, ..., MC}. First, we remove the k — 1st-grazing set
by complementing (&C-4~1),.

Letus consider (%, 9) € 6CF1NGC*, and write & () = x* (%, 7). Then, from
Ck=1 _Ck—1

; g )X

Assumption 1, thereexistsi € {1, ..., [;—1}suchthat (x, v) € B(x
(’)l.c’kf1 and

i

{xk(x, v) € 8QIC :V(x,v) €cl (B(xc’k_l, rl.c’k_l) X Ol.c’k_l) ,

where (x, v) € B(xc»k—l C,k—l) % Oic,k_l}

i 2 T

Clau@ —38-), (@ +8p)], for0<éds=0@r-1, 6 <1. (342
Excluding (3.42) from [a}, b}] for all (%, 5) € &S*~1 N &S yields a union of
countable open connected intervals Zk, that is,

T:=[a;.df)U(cj.df) U Claf,bfl, af <di<cy<dy<---.
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Using exactly the same argument of Step I in the 2nd-Grazing Set &2, we know
that this should be a finite union of sub intervals and write

k .__ =% gk k k k k k 1%
=g ,d,’l) U (01,2» dl’2) U---u (cl‘ o dl ml ) U (Cl,mi’ bil.  (3.43)

Step 2. Since we have chosen 81 as nonzero in (3.42), we can include boundary
points of each subinterval of (3.43). Therefore, BCk \ (BC =1y s a subset of

MC
U {(xf—l@(r), 011 (0) + sef = @ (@), [olén (0), o~ @ (0, vl (0)))
I=1

N\~ . —s gk k gk k k
e fer@) x vV \3B : 7 € [} df 1 ULefy 51U U [} g 1o ]
U [C;{,mi’ bilve VN s €0, (if — 1 M), |v|&,(r))]},
(3.44)

andforall T € [Ell",dl’fl]U[cfz,d{fz]u~~~u[ck ;

k k %
l‘mk* 7d [71]U[c[,mi’bl ]9

1 lmy

o (v) (e (@ (1), @ ()] > _min 5 >0,

where 6¢/ > 0is found in Assumption 1. Moreover, we can choose these subinter-

1
—1 .
vals so that for the measure of each the punctures {(dlk i cf‘ ; +1)}:n:"1 are arbitrary
small, because we can choose §+ > 0 arbitrary small in (3.42).

Step 3. We construct the kth-Sticky Grazing Set S gf*" where all grazing rays from
—x gk k gk k k
the non-measure zero subset of [a}, dl,l) U (Cl,2’ d1,2) u---u (Cl,mi—l’ dl,m’k—l) U

(C;(»mi’ l;l*] intersect at a fixed point in P, ({cl(Q) X VN}\3%>, where Py is pro-

jection onto a spatial domain. Choose any i € {1, ..., mi} and corresponding sub
interval [c;‘ i dlk ;1. We define

O { (5 @@, lén () +sef @), 1ola @), vf ™ @ (o), vlén (o))
e {cl(Q) x VNN\IB : € [, dpil.ve VY,

s e [0, (2 — )@ (o), |v|&,(z))] }

Fix x* € Q. If there does not exist T € [cf‘,, dlk,] and s € [tffl (o (1), &1(1'))
tf (a; (1), al(t))]satlsfymgx —xf (oq(r) al(r))+svf (@ (1), &;(1)),then {v €
R? : (x*,v) € 611 } = ) with zero measure. Now suppose there exist such
7 and 5. Due to Lemma 8, there are only two cases: (1) stlcky grazing: for all
T € [cl i lz] there exists s = s(7) € [tf_ (o (1), oq(r)) tf (o (1), oq(r))] and
points {x* ’}r:1 € cl(2) such that

XM = xf @(1), (1) + svf@ (1), forall t €[, df;l; (3.45)
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(ii) isolated grazing: there exists §_, 8, > Osothatfort’ € (t —6_, T +8:)\{7}
there is no s satisfying (3.45). We define the kth-sticky grazing set SGEK as a
collection of all such x*" € ¢l (£2) points.
Definition 9. Consider (3.44) and a disjoint union of intervals [c_zl*, dl]fl]U[cf 2 dzk,z]u
k k ko px - k _
U [Cl,mi—l’ dl,mﬂc—l] U [Cl,mi,’ by]. There are finite i € Isg’l c{L,2,...,(k

l)mi} such that case (i) sticky grazing holds, that is,

() @@, &) xf @), (1) = xby ., € (),
telef .df;]
forsome r=1,...,k—1,
by writing @ = cl I bl* = dk . When the above intersection is nonempty we

collect all of those points to obtam the kth-sticky grazing set:

ME mh g1

SGEk = U Sor = U U ki ). (3.46)

I=li=1r=1
Note that SG€¥ has at most (k — l)MCmi points, from indexes Z, /, and r.

Step 4. We claim
mo {v eR?: (x,v) € 60”‘\(@0*"—1)8} —0 (3.47)

for all x € Pr({cl(R2) x VNN\IB)\SGE*. Consider again the set (3. 44) and fix
le{l,..., MC).Foranypointx € c/(2)suchthati € {1,2,..., (k—1)mi}\ I¥ ol
we apply case (b) of Lemma 8 to say that

[v eR?: (x,v) € @C*k\(ecﬁk—l)g} N'S' = finite points,
which gives (3.47).

Lemma 11. We assume Assumption 1. Then, for any ¢ > 0, there exist an open
cover

I

U BaS ot 0l | BG.e

i=1 yESgC‘k
for Py ({cl(Q) X VN}\TJ%) and corresponding velocity sets Oic’k c VN with
mz(OiC’k) < & such that
(1) for any (x, v) € {cl(Q) x VN}\:i%,

xeB(x s ) or x € B(y, ),
1

l

for some xic’k, rl.C’k, and y € SGE*;
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(2) moreover, if x ¢ Uyesgc,k B(y,¢), x € B(xl,c’k’ r,.c’k), and v € VN\(’)I_CJ%
then

& (x,v) =[x, v) - n(x (x,v)| > 8T >0, r=1,...,k,

for some uniformly positive €7 > 0, r =1, ... k.
From the above, we define the g-neighborhood of ¥ as follows:

I
k k k
(Qﬁc’k)g = U B(xic’ ,rl.c’ ) x Oic’ U U B(y,¢e) x vV
i=1 yeSQC’k

Proof. Is suffices to follow the scheme of the proof of Lemma 10. From (3.46),
SGE* has finite points so we make a cover with finite balls, Uyesgc,k B(y, ¢) for

SGEk.
For x € P,({cl(Q) x VN\TB) \ UyESgC,k B(y, ¢), there are at most finite

C .
(at most 2M € + 2 Zle S M mb) unit vectors |5—" such that

o edbusiltu...uesl,

from (3.47). Thus we define

k
Of’k = :v eVV: ||v_,| — ﬁ| < Cr(N)e, Yv; st (x,v;) € U@C’r
Vi v

r=1

(3.48)
When v € V¥ \Of’k, the trajectory does not graze within second bounces, so

¢ (x,v) =lv-n(xpx, V), 1=r=k

are well-defined and locally smooth, because (x,v) € {{cl/(Q) x VNN\IB}\
( Uf: 1 @C*’) implies that the trajectory does not graze in the first k bounces. Using

the local continuity of Lemma 5 again, we can find rxc * « 1 such that
¢"(x,v) >8>0, forl <r <kand(x,v) € cl(Bx,rSF)) x VM\OEK,

By compactness, we can find an open cover Ufk: B (xl.c’k , ric’k) for Py ({cl (R2) x
VN}\TB) \ Uyesgc,z B(y, ) and corresponding (’)ic’k with small measure
my (Oic’k ) < &by choosing (3.48) with sufficiently small C (N). Finally we choose

8" = img 8ci>0, 1=Srsk
1Sis ~i

to finish the proof. O
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Proposition 1. For any ¢ > 0, we have the e-neighborhood of &:

[G lxg
@) =1 BaL.rH xOf Uil BGS. o) x VN L,
i=1 j=1

withOF C VN, my(OF) < eforalli = 1,2,...,1g <oo,andj =1,2,... I <
o0o. For any (x,v) € {cl(Q) x VNN\IB,

x € B(x{,rl) or x € B(S,e),

. Is
for some x€ or yjc. Moreover, if x ¢ U;gzl B(yjc, g), x € B(xl.c, rl.C), and v €

i

yN \(’)lc , then
W (T, x, ) -0 (T, x, )| > 8 > 0, Vi (Ty, x, v) € [0, Tol.

Proof. We use mathematical induction. We already proved the k = 1 case in
Lemma 9, for when there is no sticky grazing set. From k = 2, a sticky grazing
set appears and we have proved Lemma 10. From Assumption 1 and Lemma 11,
we know that Lemma 11 holds for any finite k € N. Moreover, number of bounces
is uniformly bounded from Lemma 6, so we stop mathematical induction with the
maximal possible number of bouncing on [0, Tp]. O

3.4. Transversality and Double Duhamel Trajectory

We introduce local parametrization for U = Q x (R/HZ). Since we should
treat three-dimensional trajectory from this subsection, we introduce the following
notation to denote two-dimensional points in cross section:

X =(x1,x3), v=(vi,v3),

where the missing x» and v, are components for the axis direction. Therefore we
can write

x=(xx) €, v=(,un) k.

Especially for the points near the boundary, we define local parametrization, that
is, for p € 0€2,

np (X, eRP:x,3 <0)NBO,8) — QN B(p, b)),

Xp = (Kp’ Xp,Z) = X = ﬁp(Xp),
3.49
1p(0,0,00 = p, ¥ =1,(x,) = (1, (%,),%.2), G4

£ = ﬁp (Kp) = Ep (Xp,l ’ O) + Xp,3n(2p(xp,lv O))?
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and n,(x,) € dQ2ifand only if x,, 3 = 0. n(ﬁp(xp‘l, O)) is an outward unit normal

vector at (np(xp,l, 0), xp,z) € 0Q2. Since  is cylindrical, the unit normal vector
n is independent of x,, . We use the following derivative symbols:

a

iy = Ve 0.0 = [, By = —
177[7 L axl 77[;, A 1,03) = axp’la axp’3 5 Xi — )

a ad
Zx = (axlv 8}(3) = B_X]’ E s

V = (Z’ 82)7 VX = (Zxa 32)1

where x € cl(2) andx), € n;l (£2). Note that it is easy to check that 1, is a locally
triple orthogonal system, that is,

(inp.9iny) =0, forall i #j, xe {xp R :x,5 < 0} N B0, 8)).
(3.50)

We also use standard notations g ;; := (9;1p, d;1p), and transformed velocity v,
is defined by

9inp(Xp)
p\Rp
Vp,i(xp) =,
Vep.i(Xp)
or, equivalently,
011p,1 021p,1 931p.1
Vp.1 (] :)/gp,n ,"/g,,,zz /8p.33
= =0T — 0T . 1Mp.2 27p,2 i3np.2
Vp=|Vp2|=0" 2| =0 v, where Q:=

&p.11 8gp.22 8p.,33
Vs s Vi Sips e
J&p,11 V8p,22 V8p,33
(3.51)
We compute transversality between two consecutive bouncings using local
parametrization (3.49) and transformed velocity (3.51). To denote the bouncing
index, we define

ka = (xkk’l,xl;k’z,O) such that x* = 1 pk (x];k),

p p
k
‘ 0im i (ka) f (3.52)
Vpk’l. =t .,
8pk.ii (XI;/(>

where p* is a point on dQ near the bouncing point x*.

Since the dynamics in the x, direction is independent of the dynamics in a cross
section, we focus on the dynamics of a two-dimensional cross section €2, for fixed
x2. We hope to compute the Jacobian between two adjacent bounces. Since we use
local orthogonal parametrization, the following lemma is a basic tool to compute
the Jacobian:
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Lemma 12. Assume that 2 are C2 (notnecessarilyconvex)and|Vk l, |Vk+11 | >
pk’3 pk+ 3
0. Consider (1*+1, X];thl,l , gl;ﬂl) as a function of (t**+1, X];kyl , gl;k).
ok — ikl 1 e @D
k T
3ka,1 Vot 3 /gpk+1’33(£k+1)
vk
. [alﬁpk (x];k’l, 0) — (k- tk+l)aT_i| : (3.53)
Xk
k+1 k+1
3Xp2_+1 1 1 alﬂpkﬂ () V,,le 1 83ka+1(£k+l)
= t oo
X i | \/gpk,11(£k+l) \/gpk,11(£k+l) okt 3/ & it 33(xFFD)
avk
o 65— @ =M —— 1, (3.54)
—-r axpk |
k+1 1
anjH’l ayk alﬂpk+1(£k+ ) n k
= . v
k k =
<’))(ka1 axpk’l /gpkﬂ’“(ikJrl)
k+1
ox _ktrl 1 0 alﬂ k+1(£k+1)
et | = , (.55)
X, 3ka+1,1 /gpk+1’11(£k+1)
k+1 k+1
oVl 5 vk o th
= — . f— ’U
k k =
axpk’l E)xpk’1 /gpk+1,33(1k+1)
k+1 k+1
XL 'l F )
’ pk i = (3.56)
8xpk’1 E)xpkH’1 gpk+1’33(£k+1)
where
k k
vk 3 /& pkrr (X) Orn y (x5) )
= LVt L =T @) == i=1.3. 357)
X[Jk,l =1 r(;él) gpk,ﬁl('ik) gpk,rr(ik)
Fori=1and j =1,3,
Bk — kY gk —krty | 9m (R a3t
p— = — L £ . (3.58)
Vo Vo3 \/gpk,jj(ik) \/gpkﬂ,sg(J_C"“)
k+1 k
3ka+1’1 (kR ajﬂpk@ ) 1
—l = - .
ok j \/gpk,,-,-(g") \/gpkﬂ,n(&"“)
(3.59)
k+1 k+1 k+1
31ﬂp-11_+1 (3_Ck+1) V[IH,] 33Qp2_+1(£k+1)

+
k+1 k+1
gpk+1)11()_ck+1) Yokt 3 VT 33 (X
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k+1 k+1 k+1
v j—*—l 1 22: 0x t;-] [8 3177 ZF-H k
avp N - aV Phj /8 pk+1.11 .
* (3.60)
31’7 k+1(x ) 0; 77 k(x )
\/g k1 11(xk+1) \/g ki
k+1 k+1 k+1
v i i 0% e, [0 e .
T = - P ¢ ‘v
avpk,j =1 avp",j VEpkTI33 xk+ 3.61)

B3t @Yy B ()
\/gpk+l,33()_fk+1) \/gpk,jj()_fk)
Proof of (3.53). By the definitions (3.49), (2.4), and our setting (3.52) and (2.1),

s
k+1 [ Gk+1 _ k k 3.62
X (ka+1,1a0) = 1 (ka'l’o)—i_/t.k V. ( )
We take i k to the above equality to get
1
8Xk7c_+11 0 k;:ll
3 _ k k+1 v
—k—+1 i Ul S o
0x, ph1 X PFLT | ket Xpk1
’ x ' (3.63)
a(tk o tk—i—l)
WD g (s 0).
axk !
pr.l
dsnihy
and then take an inner product with —2—— to have
V8 pkt1 33 | xk+1
k+1 k+ k+1
ox pEHL 1 an k+1 a1 ph+l
Tk—ﬂ B AR BT
8kal 0xX 11| /gpk+l’33
’ PR gkt k1
k+1 k+1
k 93Ny k _ ck+1 iy
1k — v . 30 1 B ot —t )vk~ 30 1
axk /8 kt1 axk - /8 i+l
Pkl Eptat33 k] Pkl Eptat33 ke
k+1
P 8377 Pkt
+8]Q}7k (ka 1’ 0) [ — ’
’ /gpk+l’33 .
x/

where we abbreviated X (s) = X (s; 5, xF, v%) and V.(s) = V(s; 1%, x¥, v5). Due
to (3.50), the LHS equals zero. Now we consider the RHS. From (3.51), we prove
(3.57).
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We also note that
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lim V(s; %, x5, %) = ok (3.64)

Yi/tk+1

Therefore, from (2.4) and (3.52),

k+1
a377 Pkt
k okt
v '—gkl ==V g
/T ki an ,
pe,33 s

Dividing both sides by v - ngl;ﬂl ’xk"'l = V];ﬂ] 4> We get (3.53).

okt
k 1
Proof of (3.54). We take the inner product w1th i to (3.63) to have
ket
k+1 k+1 k+1 k+1
ox P on pht oi1n Pl ox pEHL 1
—k—+1 o = T
xX k1 X
J Pkl ox prt11 k1 gp+ a xk+! J pk.1
k+1 k+l
axk k1 axk - k+1
Pk Epktinn ke pk.1 gp+ Al k]
k+1
X 8121,7;—1
+ o (% 1. 0) - =L
—P Lo gkarl,“
x!
Since
k+1 k+1
. o1 ph+l Yokl 1
v - — _—”
8pktl 11 . VEpkti
from (3.50) and (3.53),
k+1 k+1  k+1
ox phrL L 1 3%77 k+1(x + ) « k Kl avk
= 29 o () = (=) ——
axk, s (xk+1) -r ox"
Pkl +13 gpk+1 33 L Pkl

k+1
verl NN i avk
P =P k k_ k+1y_ %Y
N/TEERTE +g k41 | O ) = )axk '
RTI +1 x
P xk+1 P Lkl pt1

This ends the proof of (3.54).
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Proof of (3.55) and (3.56). From (2.4) and (3.52),

k+1
0
et SHpkn i o
Ve = T——— - lim V(s; ik V),
) /€ ki t
Epk+1 11 gt sl \6s
(3.65)
k+1
k1 0317t ok
VHW:—— - lim V(s; ik vY).
P /8 pk+1 33 . skl
x!
From (3.65),
k+1 k+1
v k+| 1 alﬂpk-H (& ) ayk
= . k
Bxp,{’] /gpk+l,11(£k+l) axpk’]
k+1 k+1
0x K1 9 3177 P k o
T ] - lim V(s; ik V"),
8ka,l aXp"*‘,l VEpHL1L ke sy
k+1 k+1
avpk-H 3 a3ﬂpk+l (i ) 8yk
k =" Tk
axpk’] /g il 33()_CkJrl) axp,c’1
k+1 k+1
axpk+1,1 9 931 PRt o
— T ] - lim V(s; tk Vo).
axpk,l X e \VEPH133 k1 shitr!

From (3.64), we prove (3.55) and (3.56).
Now we consider (3.58)—(3.61) for v-derivatives.

Proof of (3.58). We take k to (3.62) for j = 1, 3 to get

I’ \J

k+1 k+1
ox 0 k k _ gkl
ket 1 Ol it — (kR dvt At =) ok (3.66)
vk, 8xk7{+11 vk, avk, '
pkj ,1 gkt P, pr.j
okl
and then take an inner product with RS to have
A/ 8 pk+1
pltl3s xk+1
k+1 k+1
ox PR on' Pk a3ﬁpk+1
k+1 '
avk ey ox P e 8 pk+1.33 okt
ka a(th — (k! . a3ﬁ k+1
—(tk —tk+1)  — ( Z ) lim V(s;tk,xk k) -
vak ; vak L sk VP33 | it

(3.67)
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Due to (3.50), the LHS equals zero. Now we consider the RHS. From (3.51),

k
gyk ajn (x; 1, 0)
S ”k’l . (3.68)
Mo j 8p.jj Xk > 0)
Using (3.65), (3.67) and (3.68), we prove (3.58).
+11
Proof of (3.59). For j = 1, 3, we take the inner product w1th Ut o to (3.66)
N1 X
to have
3th11 Atk — (k] vt
apk+,1= B (3k ) hrkan(st k)_(lk_thrl)akQ ]
+
Yok Voo SV P
31nkf+11
gpk+1!“ et
From (3.68) and (3.58), we prove (3.59).
Proof of (3.60) and (3.61). For j = 1, 3, from (3.65),
8Vk;rJrll 1 ox k;;ll 1 alrlk;:ll k
= 81 - lim V(S t 2)
ank,j avpkj /8 pk+111 . srktl
alﬁpw @*h av*
+ F—
/gpk+1’11(§k+1) 3Vpk7j
axk_ﬂl 1y 3177](2111 o 4 oin /<+1(x k) ajn k(x )
3Vﬂ" j VLI \/gp”l 1@ \/gp i€

From (3.58) and (3.59), we prove (3.60). The proof of (3.61) is also very similar to
the above, from (3.65). O

For the first bounce backward in time, we need similar results as to the previous
lemma which connect the first backward bounce and the interior phase.

Lemma 13. Assume that x € 2 (not necessarily convex) and that xy(t, x, v) is in
the neighborhood of p' € 9Q. When |V117| 51> 0, locally, fori, j = 1,3,
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o __ L, iy 5
ax; V;,1,3 / /gp1,33(§1)’
o m 031 (x")
9v; v1171,3 ' ,/gpl,33()_€1)’
ox), | 1 o) vl Ban i (x)

ej' + )
0x; \/gpl,n()_cl) \/gpl,u(zl) VP‘»3\/m

ox), i o, ) vl ()
ET 1 N AT
J \/gpl,ll(£ ) _\/gpl,u(i ) Tpl3/8pr33xt)

8v11)] ; E)xjul | Bigp, BXIIU1 | Bigp]
~ = — 01 V(i —1n) = — 01
8plii

0x; 0x; /8plii L 0x;
8V;1’i aiﬂpl(il) _— axi,l‘]a ( aiﬁp| )
= =0
ov; gpl,ii(J_Cl) 0v; /8pl i N
Here, ¢ is the jth directional standard unit vector in R3.
Moreover,
oIy,
8Xj
alv! | Vi(s;t,x, v
14 — im ]( s by Ay _) )
av] Sltl |K(S; t5 &5 2)|

Proof. We have

limV(s;t,x,v) =v, X(r;t,x,v) =x+v(r —1).

sit!
In particular, when © = ¢!, we get
X't 00 =x v —0).
From (3.77), we have

oV (s;t,x,v)
m —_—
st 0x;

=0.

(3.69)
(3.70)
(3.71)

(3.72)

)‘ U,
o

C(373)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

To prove (3.69)—(3.74), these estimates are very similar to those of Lemma 12.
It suffices to choose global euclidean coordinates instead of e Therefore we

should replace

k k+
Nyt = Mprs N = X =1 1

Pot—np=t" 3 x=e;.
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1

)
Proof of (3.69). For j =1, 3, we apply dx; to (3.78) and take - ;Ep . In this

1
P33 51

dv

case, we have = 0. Then we get
J

1
dtp _ 1 83ﬁpl (x")

— = -ej.

. 1
0x; Vi3 ,/gpl,33(£1)

) 1
Proof of (3.70). For j = 1,2, we apply dv; to (3.78) and take - ;El” . Then
pt.33 X1
we get a
0 3x11’1 an ' 33ﬂp1
Bv] 8Xk1 1 /gpli33 X
e X
ot —t! 931
:{—(t—tl)ej—¥limz(s;t,£,y)}~ —
ij si,tl /gp1,33 i
We use (3.77) to get (3.70).
B
Proofof (3.71).For j = 1, 3, we apply dx; to (3.78) and take - ! , and then
p.1l x!
1 1 1
axpl’l 1 332,,1()_5) » Vo N 8lﬁpl e
| J j-
dx; Vo3 /gp 3 VEpLit| 1 8platy,
This yields (3.71).
01 1
P 3.72).For j = 1,3, ly dv; to (3.78) and take -—== ,
roof of (3.72). For j we apply dv; to ( ) and take mél SO we
have
x), a(r — 1! B] N,
Ll = {— ( )limz(s;z,)_c,y)—a—r‘)—y}- =
dvj v sl i) gptan|
Then we get (3.72).
Proof of (3.73). For j =1, 3, we apply dx; to
o, .
Vo= Alim Vi(s; 7, x, v),
’ NATIRE! o st
- (3.79)
1 a3ﬂp‘
v = — -lim V(s; t, x, v).

13
P JVEp1 33 syr!

ll
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From (3.65),

lim V(s; 1, x, v),
| sl

v, ox 9 an
0x; N ax,- ax /8T 11

X
av!, ax! 91,
p3___pl hmV(stxv)
0x; 0x;j 8x JE&pl 33 sl

From (3.77), (3.71) and (3.69), we prove (3.58).

Proof of (3.74). In a fashion similar to the above, we apply dv; to (3.79) and then
use (3.77), (3.72) and (3.70). We skip the details.

Proof of (3.75). Since there is no external force, speed is constant, so the result is
obvious.

Proof of (3.76). Note that Iy;, | =limg 1 |V(s: 1, x,v)| and

a|v1 |
21vh =21lim V(s: 1, x, v) hma Visit,x,v),
p 31)] _3\[,[
so we have
alv! | Vst
P =limM 11m8 Vst x,v). (3.80)
v syl [V (s51,x, 0)] syl
Since
o dV(s;t,x,v
lim ¥ =ej, (3.81)

we combine (3.80), (3.81) and (3.70) to derive (3.76). O

Now we obtain the Jacobian between two bouncing phases when the trajectory
is not grazing.

Lemma 14. Assume Q satisfies Definition 1 and % S vl £N,forl <« N. We
also assume |t* — t*+1) < 1 and |vF ok 3| IVkﬂ1 3| > 0. Then

k+1 k+1 / k k
8ka X prHLL V!kkxpk-%—l’l gpk,ll(l ) ‘Vpk ';)

det - 4 =

k+ k+1
0k ¥ V k k+1
Xk P! y k—Pk“ 13 3pk+1,11(xk+1) Yokt 3
k+1

for the mapping (X];,k’l»_ ) (X Pkl la_pk+1)

Proof. We note that Lemma 12 holds for a nonconvex domain and the result is
exactly the same as Lemma 26 in [17], without the external potential. Then a
simplified two-dimensional version directly yields the above result. O
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Using Lemma 14, we prove the lower bound of the Jacobian between the first
bouncing phase and the general kth bouncing phase.

Lemma 15. We define,

k
Vo 2 2
~k _ ol k| _ k k
Ea) s =y () ()
!pk

where ka = g];k(t,g, v) are defined in (3.52). Assume % < |v] £ N and

|v’;,(’3|, |v’;ﬂ,’3| >8 > 0for1 < Nandk Sqns, 1. If |t — X < 1, then

N

k ok
Bxpk‘l dxp/‘,l
oxt, v
det ook aef ’ > eq N5 > 0, (3.82)
pk,l pk.l
ax!, vl
'l p.l
where t' = t1(t, x,v), x| =x!, (¢, x,v), ¥, . =¥, (1, x,v), and
pli — Tpli pli = Vpli
k _ ok 1 o1 a1 1
Xoki = ka,i(t XVl g !pli),
~k _ ok 1 1 a1 1
Voki = Vpk’i(t XVl g !pli)

Here, the constant eq N5, > 0 does not depend on t and x.

Proof. Step 1. We compute

i+1 ai+1 i+1
Ji+l 0 <Xpi+l’17 Vpi+l’1’ ‘V i+1
i

—p
i i
J (Xp",l’vp",l’

)
)

a(xi i’17zi ) a(xi+l !i+1 ) a(xiJrl Q,H»l I!l;z:ll |)

_ » pi pitl 1 Lpitl pitl 1 Y pitl 12
- i ol i i i i+1 i+1
a(xpi,l’vp’,l’|2pi|) a(xp‘ll’!p") a(Xp"“,l’zp”")
=0 =P =0i+1
(3.83)
For Q;,
1l o 0 1 0 0
8v’i . Bv’i . . ', 1
Jull P i P
O a{,l i 0 |Xp1| i
Ql = pi,l 9 !pi = ? !I’i
av' . v . ov' . v’ .
0 p.3 p.3 0 p.3 p.3
vl 3lyi vl alvi
pil Ypi pil !pi
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For Q;41,
1l 0 0 1| 0 0
ci+1 Si+1 NS
0 0 t+l 1 avpi+l 1 0 | i+1 |_1 i+1
—'+1 i1 Y i+l i+1
Qiy1 = Wi, Vi, | = Yp Wi, | (3.84)
3"’&11‘ 3 1+11‘ 3’ z+11‘ P :+11‘
p’+ pt+ i+ p’+
0 Gyt T 0 gy t1 T
pt+| 1 pi+1 3 t+| 1 pi+l 3
Note that
i+l i+1 i+1
aV 1+I 1 8 1 v i+1 1V i+1 3
s _ vl+l _ )4 ’ P >
avl-ﬁ_-l - H'l .1 ov i+ ,+1 - i+l 3 ’ (385)
pl+l’3 l+l 3 _pl+1 !pi+1

and fork =1, 3,

i+1 i+1
0 Yoi+i lei+1’k 3.86
ayi ] 1 (3.86)
pitlk Xpi+1
From (3.84), (3.85) and (3.86),
. 3
i+1 i+1 i+l i+1 i+1
1 v Vo Vol 3 Vo (V i+1 3>
detQ | = __p 3 + ptil pti3 Tp ’1=_
i i+1 i+1 St i+1 St
y i+1 y i+1 v i+1
P P _p1+l P _pr+l
3.87)
By taking the inverse, we get
.4
|
det Q; = ——2 (3.88)

i)
(Vp’l3)

From (3.83), (3.88), (3.87) and Lemma 14, we get

k+1 k+1 k k
axkk ka+1y1 V!kkxpkﬂ)] \/gpk,ll(i ) ’V k 3‘
det Pl P =

du Vil V _];2;11 N k+1 ‘

k+1
xpkyl_pkﬂ 3%3 gpk“,ll(ﬁ ) ’V K+l 3

Therefore,

|det J/*!| = | det Q; det P; det ;1]

4 , 3
i i i+1
_ !p"’ Epiatly Vpiﬁ‘ (VP’*'S)
TN el i+l 4
(Vli ) gpz+1’11 it Vpi+1 3 VH_-&l
.3 ’ -
, 2
i+1
«/gpi,ll|£i ‘Vpi+1’3‘

JEpitl1 |£i+l ‘Vi

2 9
p’l3’
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and we get
2
k
V& 1,11| 1|V k3‘
ldet Jf| = Y2 LAl (3.89)
«/gpk,ll|£k Vlljl 3‘
Step 2. From (3.64),
i+1 . S . S
) Vi+1 8|le,-+1| _ alZ(tH_l; tl’£1’21)|2 B 28X(l‘l+l; tl’il’yl)
P v v, vl
p ’n p ’n P ’n
V@ x )
onn . L. .
=2 Jl Vathd ) =2
8pi.nn o ’
Therefore, we get
0 Viﬂl v,
P l—_ 2" forn=1,3. (3.90)
v i+1
pi.n Xpi+1
Since speed is conserved, forn = 1, 3,
i+1
d X:irﬂ
—— =0, forn=1,3. (3.91)
ox' .
ph.n
Also, by conservation,
oyt
— = 1. (3.92)
d )!lp:‘
Step 3. From (3.89), (3.90), (3.91) and (3.92),
;12
k \/gplw11|x1 Vpk,3‘
|det J{| = ~ 5
NSRS ‘Vll |
p'.3
k k
Bxfk‘l afll’k‘l 0
axl,l,l BVI,IJ 0 (ka ],Q’kk 1)
= |det | 9% T 9%, = |det | — P P/
x| 9T, 0 8(x11 VL )
pil J P 1 14 )1 2x2
0 0 1
3x3

Therefore, we conclude (3.82), by (3.89). O



Decay of the Boltzmann Equation with the Specular Boundary Condition 99

Now we study the lower bound of det( ) Instead of Euclidean variable
v = (v, v3), we introduce new variables via geometrlc decomposition. In a two-
dimensional cross section, we split velocity v into speed and direction:

lv] and ¥y := ﬂ.
|v]
Note that {9},|, d;, } are independent if v3 > i > 0. Thus, under the assumption of
vz = % > 0, we perform 9|, 9, , instead of dxy» Ox,. We assume = [v| = N,
t*t(, x, v) <5 < t%(t, x, v), and |vp | > 8 > 0 (nongrazing) forl <vi <k
When we differentiate X by speed |v|, we have

k
. _ k ok ok s Y
XG53 12,0 = (0 (e 100) = ¢4 =l o= O
- a‘le k 13177 (X k K 0) + a|g|[(t - tk)|yk|]ﬁk
— (t = ) [ " []0F = (¢ = ¥ [0y " = - — )",

(3.93)

where we used 9y X}, | = 0, 8y [(r — *)[*[] = 0, 80 = 0, and By 0| = 1.

Note that this is because the bouncing position x¥, the travel length until x¥, and
the direction of v¥ are independent of |v|.
On the other hand, differentiating X by 01,

. k| k vk o

O, [X (s 11, ) =05, X 91, (6 1. 0) =5, vy | 8 — (% =) |V, | 95,8
(3.94)

To compute the last term 81;11) we use vkk 3= /1 — vk ok, |2 and |vK ok 2| > 0 to

get

3171 k 8377 k
af)]ﬁk = 8'LA)1 ;p (ka 1’ 0) ‘A’kk 1 + ;p (ka 1’ > |V k 1|
N/ AT Pt /83 N P v

9 01
= v] kl Z 01 n (ka 1’0> kkg"'i (X]; 1’0> af)]{’kkl
p gpki P «/gpk,ll ' P

(=1,3
in 1
- () e [o i
gpk’33 r |V k ]| 2 JZ

0 0en k ok k
Z 9K |:—\/ng)03:| (ka,lao) e | 98Xk
pk,l P,

=13

n 4 31 « ‘Afkk
n ;P(ka ’0>_;P(ka ,O)P_vl 3 [{,kk ]
N TaTR N el;kg LAl
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Combining (3.94) and (3.95), we get

aﬁl [X(Sv I, x, 2)] = - (af)ltk> v+ avl pk lalﬁpk (X];)k’la 0)

9 9n
k k Lp k ok k
— (" =95V S (x ,O)V 03, X
6—21:3 ax’;k 1 Lv8pee Phl L
k k Wpki (g Mpki (o e];" 1 ok
- -9 ‘21"' Tl (ka»l’())_ e (ka,l’()) | [Vp"»l]'
ph1l p~,33 pk.3

(3.96)

Definition 10. (Specular Basis and Matrix) Recall the specular cycles (tk, xk, vF)
in (2.4). Assume

n(x) - vf #£0. (3.97)
Recall M in (3.49). We define the specular basis, which is an orthonormal basis
of R?, as

k vt 1 k ok k 1 k k
eO :Z;Zm(vl,v?’), ell ::_<U3,_U1,O). (3'98)
v ,
Also, for fixed k € N, assume (3.97) with x* = x*(¢, x, |v], 01) and v} =

A .. . k k
vk(z, x, |v], D). We define the 2 x 2 specular transition matrix S&7° = Sk-P
(t,x,|v], 0y) as

k skr* 0
skrt =11, . , (3.99)
Skrt o ghr
2 3 2%2
where
k.p*
Sy BQ eJ_l,
3 8
= (20| o | ¢
¢ gpkz phe] Tl
ok
33 _ 8177 ok BN Vo, o
Epk 11 4/gpk,33€]];k3 '

and where 7« and g« are evaluated at xK(z, x, |v], 01). We also define

Ak

K, pk dxpk’l
R, Kk | T8

Lol =S (3.100)
Rz'p Pk
Vg
where x*, = x*, (¢, x, |v], 01) and v*, = VX, (¢, x, |v], D).
A A - = -p -p -

The following Lemmas (16 and 17) are necessary to prove uniform
non-degeneracy in the two dimensional cross section €2 (Lemma 18).
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Lemma 16. Fix k € N with |t — t*| < 1. Assume % <|v| £ Nand % < |v3|, for
N > 1. We also assume the non-grazing condition

Vs = x ) Gl ) = 6 =0, VISiSk (310D

and
i, 1
N P (3.102)
N/TIRT N

for some uniform 8, > 0. Then there exists at least one i € {1, 2} such that
k,pk
R; " (t,x,v)| > 0a.N,s (3.103)
for some constant oq n.s, > 0.
Proof. First we claim that
k,pk
| det(S“P)| > o0a,N.8-

It suffices to compute diagonal entries. From (3.98),

NI NEdl

ok
k,
ISy | = ‘\/gpk n—— =L

: )
lnpk pk’3

1
— k o
/ k —_— —_— -V = k
PR JEEn P ITTR]

and
ok
k., pk alﬂpk 931 ok Vo1 X
|S3 | = B vk €L
JEpk11 /8pk 33V k3

5 3 ‘vk

_ 1 k 11 k 31 P

ok p 3 o0 Vpk,l AN & ’

which implies uniform invertibility of 2 x 2 matrix SX-7 * . To considera 2 x 1 vector
on the RHS of (3.100), we compute

¢ roxt axk
Bx Bxl‘k ok Tk Bxll Bxll
1 Pkl ax! P pla pla
z’);rl 6}{?;1 — ol 1 pl1 BI\'I 6]131
6vpkvl dvpfu av’)k.1 8Vpk,| E)vl‘,.l avq'J
x| b 3x11 | 3"[1 . x| EDl
L™ pl,
aok nok -
‘”‘pk_l dxl,kvl ax;] . r’)x;l .
axl vl —L :
"xi,l 1 v . ax1 aull
= : N 3
M Mk il G A [v] a]ﬁ”] el + pla 1 LR
oty avl | . dxi Ve ) NS by g ) —
rl. pha -
—_—
A B

(3.104)
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where we used (3.73) and (3.74). The determinant of A is uniformly nonzero from
(3.82) in Lemma 15. From the elementary row operation for B,

1 1
axplvl axplvl
_ x| 0]
det B = det ann
0 v —L_).e¢
() e

From (3.71), the (1, 1) entry of matrix B is computed by

Bxélyl B e algpl V;l’l 8321;1
axi | | /g . |:¢gp1,11 " V;1,3 «/87111_33:”
_ 1 1 e1 L dimp | 93mp
B mw;l,gm'(VP"wm”""‘ﬁ)
| 1 er | v

= - (v1e3 + vzer)

N/TIRE |V;,1,3| NTIRE

gptxh) [y
p'.3

Therefore, from (3.101) and (3.102), the determinant of B is uniformly nonzero
and thus the LHS of (3.104) also has a uniformly nonzero determinant. This yields

uniform nonzeroness of the second column, that is, . From the uniform

invertibility of matrix S " and (3.100), we finish the proof. O

Lemma 17. Assume that b(z), c(z) are continuous-functions of z € R" locally. We
consider G(z,s) := b(2)s + ¢(2).

(i) Assume min |b| > 0. Define

(3.105)

Then ¢1(2) € Cl, with lgillcy < Clmin (bl [bll¢y. . Nellgy, ). Moreover if
Is| £ Land|s — ¢1(z)| > 8, then |G(z, s)| = min |b| x §.

(ii) Assume min |c| > 0. Define

—c(2)

b@I="5 () (3.106)

¢2(2) =1

Then ¢3() € C/ ., with lg2llcy | < Cmin bl 1Bl . Ny, ). Moreover, if

t,x,v

Is| < 1and |s — ¢s(2)| > 8, then |G (z, s)] = min | 2ol minle] o 51
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|

Now we consider (ii). First, if || < %,then lp2(2)| = m!§(|zc)|l/2 > 2. Therefore,

Proof. Now we consider (i). Clearly ¢; is C for this case, and

G(z, 5)| = min { ‘b(z) (%Z)) +a) 4o, b (%Z))a) +e(2)

’

2 min |b| x 8.

|G(z, s)| = min{|G(z, D], |Gz, =D} = |c(2)| — |b(z)]| = m11;|c|'

Consider the case of |b| > %. If |s — @2(s)| > &, then

—c(2) —c(2)
b(2) + 8) +c(2)], |b(2) ( ) — 8) + c(2)

. min |¢
:mmlb|x8§%x

)

|G(z, $)| 2 min Hb(z) (

|

O

Now we obtain uniform non-degeneracy in a two dimensional cross section £2
away from small sets.
Lemma 18. Fixk € Nwitht* = 1 — 1. Assume that Q is C* and (3.49). Let 1° = 0,
50 e Q, 20 € R?, and assume

1 1

~ SIS N, = <l
N N
andwe have (3.102) in Lemma 16, where (gl,yl) = (gl (0, go, 9), v! (19, )_co, QO)).
Then there exists ¢ > 0 and C}’i’y—functions 1//{‘, 1//5 : Be(t,x,v) — R with
max;—i2 III/f,-kllcxl <s,.a.N 1 and there exists a constant g5, o N > 0, such that

V=80 viSisk o @a07)

if min |s = Y, x, )| > 8
i=1,

1
and (s;t,x,v) € [max{t -1, tk+1}, min {t v tk” X Bg(to, 10, yo),

then |0y X (s; 1, x, ) X 95, X(s:1,x,v)| > 5,085,
It is important that this lower bound &5, o, x does not depend on time ¢.

Proof. Step 1. Fix k with |t%(z, x,v) — t| £ 1. Then we fix the orthonormal
basis {ef, e |} of (3.98) with x* = x*(r, x, v), v* = v*(1, x, v). Note that this
orthonormal basis {e’é, e’i,l} depends on (z, x, v).

For t"t1 < s < t*, recall the forms of a%ffl) and i%}(_s) in (3.93) and (3.96),
C J
where X (s) = X (s; t*, x*, v*). Using the specular basis (3.98), we rewrite (3.93)

and (3.96) as
0X(s) .k 0X(s) .k 0X(s)  k
[ apl €0 a0, 0 }Z[—(t—s) TR ]

0X() ok 0X() ok 0X() ok
Al €L T, €L 0 a0, €11
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Note that the (2, 2) component is written by

90X (s) k. p* k, p*
a—A'elj_’l ZRlp —(lk—S)Rzp ,
U1
by (3.96) and (3.99), where Rf’p ’ are defined in (3.100). By direct computation,
the determinant becomes,

B X(5) X 85, X (s) = —(1 — 5) {R’{*”k G s)|g’;k|R’;”’k} . (3.108)

k,pk
Here R; Pk g’;k and e'ii depend on (¢, x, v), but not s.

Step 2. Recall Lemma 16. From (3.107), we can choose non-zero constants §, for
a large N > 1. Applying Lemma 16 and (3.103), we conclude that, for some
i €{l,2},

R
i (tv X, 2) > QQ,N,8, = 0. (3109)

k
Also, we can claim that Rf."p (t,x,v) € C,l’x’v. From (3.107), all bouncings are

non-grazing. We use Lemma 5, (3.72) and (3.74) in Lemma 13, and (3.100) with
k
the regularity of €2 to derive Rf’p (t,x,v) € C,l’ x.p- Finally we choose a small

constant & > 0 such that, for some i € {1, 2} satisfying (3.109),

for |(1, x, v) — (1%, x%, 0)| < &. (3.110)

k QN8
REP (1) > SR

Step 3. With N > 1, from (3.110), we divide the cases into the following:

k k
‘RII‘”’ > C2Nh g ‘R’;” > —QQ’ZN"SZ. 3.111)
We split the first case (3.111) further into two cases:
k k
‘R’;”’ ‘ S Q2NH g ‘R’;P ) < faNy (.112)
2 4N
and . 0 . 0
‘R’{*P S C2Nh ng ‘R’;” ‘ > 0Ny
4N
Set the other case .
‘R’;”’ > —QQ*;"SZ. (3.113)
Then clearly (3.112) and (3.113) cover all the cases.
Step 4. We consider the case of (3.112). From (3.108),
k, pk k,pk
10X () x 0, X()] 2 | RE” (F =) = RYP | (¢ = 9)
(3.114)

k,pk

k k
WHIRES (= 9+ [<RYT 4+ (F = RS | (0 = 9).
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We define
S=t-—s, (3.115)

and set Lok ko ok .ok
b= Ry? and ¢:=—R}" + (" — ] RYY .

k k
Note that R]f"’ , Rg”’ , [v*| and ¥ only depend on (7, x, v):
Hence we regard the underbraced term of (3.114) as an affine function of s:

b(t,x,v)s + c(t, x, v).
Note that from (3.112),

> OQ,N,8 . NQQ,N,52 > OQ,N,8,
= 2 4N T 4 7

le(t, x, v)|

Now we apply (ii) of Lemma 17. With @5 (¢, x, v) in (3.1006), if |s — @2 (¢, x, V)| > 3,
then |b(t, x, V)5 + c(t, x, v)| = 22 x §,. We set

Yo(t, x,v) =1t — @a(t, x, V).
From (3.115),

if |5 — Y2(r, x. V)] > 8. then |b(t, x. )(t — 5) + c(t, x, v)| = 22 o5

(3.116)
Now we consider the case of (3.113). From (3.108),

k k k
10X () %3, X0)] 2 [ RE? =)+ [-RY” + (1 = D RS ]| @ = 9).
(3.117)
We set 5 as (3.115) and

k k k
b= PNRY? and ¢ =RV + (5 — npf RSP (3.118)

From (3.113) and (3.118),

| > QSZ,N,BZ.
=~ 8N?Z

We apply (i) of Lemma 17 to the following case: with ¢ (¢, x, v) in (3.105), we set

[b(t, x, v)

Ya(t,x,v) =t —@1(t, x,v)

and

OQ,N,8
N2

if [s — Y1 (2, x, 0)| > 8y, then [b(t, x, 0)(t —5) +c(t, x, V)| 2 X By
3.119)
Finally, from (3.116), (3.114), (3.119) and (3.117), we conclude the proof of

Lemma 18. O

Now we return to three-dimensional cylindrical domain U := Qx (0, H) C R3.
We state a theorem about the uniform positivity of the determinant of ‘2—}5.
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Proposition 2. Let t € [T, T + 1], then

1
(x,v) = (x,v, 1) € U x VN x {vzeR: v <v2<N}.
Recall g, § in Lemma 1. Foreachi = 1,2, ...,1g, there exists 55 > 0 and a C,{LB-

function Ilfeo’z’i’k Sfor uniform bound k < Ce N, where 1//50’2”"1‘ is defined locally
around (T + &80, X(T + 82805 t, x, v), (824, u2)) with (Lo, £) = (Lo, €1, 43) €
O L gl H =L = L 0 L+ P and 00K <
Cn,Q,5,8 < 0.

For (X(s:1,x,v), u) € {cl(2) x VN]\IB, if

1

011 !
UR el >+ >0, e
m xl(&(s;t,g,y)-ﬂ)

Isg
X(s;t,x,v) ¢ U B (yjc, 8) , Sticky grazing set defined in Lemma 1,
j=1

(3.122)
(X(s;t,x,v),u) €B (xic, ric) X VN\(’)iC forsome i =1,2,...,1g,
(3.123)
(s,uw) € [T+ (Lo — 1)d2, T + (£o + 1)d2] x 3(322, 282), (3.124)
Is —s'| = 6, (3.125)
/ k+1 Pt 1
- 1
and
$' = YLK (T 4+ 8500, X(T + 8280: 1, 2,), 850)|
= N2 (1 + ||w‘°"7”'"‘||ql”) 5, (3.127)
then
0X(s';s, X(s;t,x,v), u) ,
det ™ > €Q N.5.sy > 0, (3.128)

where B(xic, riC) x VN \Oic was constructed in Lemma 1. Also note that g, y s 5
does not dependon T, t, x, v.

Proof. Step I. First we extend two-dimensional analysis into the three dimension
case. For the vy direction, the dynamics is very simple, that is,

Xo(s;t,x,v) =x2 — (t — 5)v2,
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so we have

dX2
dv2

=—(—y9).

Note that it is obvious that v, directional dynamics is independent of the two-
dimensional trajectory which is projected on cross section €2, because of the cylin-
drical domain with the specular boundary condition.

Step 2. Fixt € [T, T + 1], (x,v) € Q X VN and assume (X(s;t,x,v),u) €
{cl(2) x VN}\TB. Assume that s € [T, t], and

lsg

Xeinxw e [ JB(3oe) and Xeinx0.0 e B (x8r) x vIOF
j=1

for some i = 1,...,lg. Due to Lemma 1, (X(s';s, X(s; 1, x,v),u), V(s'; s,

X(s;t,x,v), u)) is well-defined for all s” € [T, s] and

In(x¥ (s, X (552, x, v), w) - (s, X551, x,v), 0)| > 8

H/\

for all k with |r — X (s, X (s 1, x, v), )|
From X(s; 1, x,v) = X(5; ¢, x,v) +

h

( t, x, v)dr, we have

[k (s, X(s; 1, x,v), ) — 4G, XG53 1, x, v), )]
S 1 e, (s =51+ 1XGinx 0 = XGinx )l +lu—al)  (3.129)
S 1 llep, s =51+ (4 Nl — al).

For 0 < §; < 1 we split

(85 " 1+1
(T, T+ 1] = U [T + (6o — D82, T + (6o + 1)&2],
Lo=0
[N/85 2141
VMOF = | B((t162.4362).28) n VO
|€:1=0

From (3.129), if
(s,u) € [T + (€o — D82, T + (€o + Dd2] x {B((£182, €382), 282) N VM\OF},
then

[T + 008, X(T + €08 £, x, ), (€18, €38)) — ¥* (s, X (53 1, x, v), )|
< 195N, @+ NS,
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Therefore, if (3.127) holds,

Is" = (s, X551, 2, ), )]
2 |s" = (T + o8, X(T + £o8; 1, x, ), (€18, £38))]
— 1YW (T + €08, X(T + €08; 1, x, v), (€18, £38)) — ¥ (s, X (551, x, v), w)]
2 N2 =Nl 82 2 1Dy, 8

Step 3. Consider the three-dimensional mapping u +— X (s'; s, X(s; ¢, x, v), u).
Note that from Lemma 1 we verify the condition of Lemma 18. From Lemma 18
and 6, we construct C}é,y-function wk 2 Be(s, X(s; 1, x,v), u) — R for auniform

bound k < C.y such that if |s" — ¢ (s, X(s: 1, x, v), u)| >n.q.s 82, then

‘ (8X(s’;s,X(s;t,x,v),u)>'
det
u

dX
= ‘d_z 101 X (ss 5, X (532, x,0), 1) x 03, X (s 5, X (531, X, 0), )|
v

i /
> s —s'leq,ns8 > €qnss > 0

3.5. Duhamel’s Principle and L*° Estimate

Now we study the L estimate via the trajectory and Duhamel’s principle.

Lemma 19. Let f solve the linearized Boltzmann equation (1.15). For h := wf
withw = (1 + |v])?, B > 5/2, we have the following estimate:

t
_%
Ao S e 2[||h(0)||oo+ctf0 I f(s)l2ds.
Proof. Since L =v(v) — K,

of+v-Vf+vf =Kf.

For h := wf,
h
oh+v-Vih+vh =Kyh, Kyh:=wK|—).
w
We define
t
E(v,t,s) :=exp {—/ I)(V(‘L'))} .
s
Along the trajectory,

4 E. 1. s)h(s. X (s: V(s
&( (v, 1, $)h(s, X (s 1. x, V), (s,t,x,v)))
=E(v,¢, s)[Kwh](s, X(s;t,x,v), V(s;t,x,v)).
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By integrating from O to ¢, we obtain

h(t,x,v) = E(v, t,0)h(0, X(0), V(0))

! (3.130)
+/ E(v,t, s)/ ky(u, V(s))h(s, X(s;t,x,v), u)duds.
0 R3
Recalling the standard estimates (see Lemmas 4 and 5 in [9]),
/ lkw (v, w)|du < CK(v)*l. (3.131)
R3

We apply Duhamel’s formula (3.130) two times, for sufficiently small 0 < § <
1, and cut a part of domain where a change of variable does not work. In particular,
we use Lemma 1 and a split sticky grazing set to get

t
h(t,x,v) = E(v,t,O)h(0)+/ E(v,t,s)/kw(u,v)h(s,X(s),u)duds
0 u

13
< E(v, t,0)h(0) ~|—/ E(v, t,s)/kw(u, v)E(u, s, 0)h(0)
0 u
HEDI+ [(ED+ [(E) + [(EDI + [(E5)], (3.132)

where

t Ky
&) = / E(v,t,s)/kw(u,v)/ E(u,s,s’)/ k', wh(s’, X (s, u")
0 u 0 u’
1, (X(s),u), k=1,2,3,4,5. (3.133)

Note that we abbreviated the notations
X(s):=X(s;t,x,v), X('):=X'(s"s5, X(s5¢,x,0),u),
and E} in characteristic functions in (3.133) are defined as
E| = {(X(s), u) e R xR :u e RAVY or |us| € R\ [% N]} ,

E» = {(X(s),u) eR¥ xR : (u, up) € VN x [% N} , (X(),u) € 3%},

1
Ez:={(X(s),u) e R®* x R?: (u, up) € VN x [N,N]

lyg

(X(5). ) € {el(@) x VV)\IB. X(5) € [ J B (5. ¢) [
j=I
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Eji={(X(),u) € R® x R : (u,u) € VV x [_’N]’

(X(5), u) € {cl(22) x VN]\IB, (X(s), u)
I l.i‘g

€ B xic,ric XO,.C B yc,e x YN ,
Gt er [\ [Us (s

and

Es:={(X(s),u) e R} x R : (u,up) e V¥

x [%N] (X(s), u) € {cl(Q) x VN} \393,

(X(5), u) € {B (xic,ric) X {VN\OiC}}\ GB (ylc‘e) x VN
j=1

forsomei =1,..., I}
(3.134)
Also note that
lG 1-‘&’
(&), = U B (xl-c,rl-c) X Oic U U B (yjc,e) x YN
i=1 j=1
was defined in Lemma 1. From |V (t; ¢, x, v)| = |v| with the rotational symmetry

of v(v), we have
E(v,t,5) < e V@09,

On the RHS of (3.132), every term except (€1), (£2), (£3), (€4) and (E5) is controlled
by

E(v, 1,00h(0) < e g]loo,
t t
/ Ew,1,5) / Ko (s V) E it 5, 0)1(0) < 1ol / oot f ko (0, v) duds
0 u 0 u

Stem M hollos S e 2 holloc,

(3.135)
where we used (3.131).
We claim the smallness of (£1) ~ (E4).
From
1
/ul{aeRQ\VN or JuzleR\( 4, w1y (1) V/Rdu = O(55),
1
En=o (—) sup [|72(5) [l oo- (3.136)
NJ o<s<s
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From Lemma 4, m» (0! ) < ¢ for 1 <i < 1;5. Therefore,

&)L 0 h(s)lco-
(&) < (8)02;1; A ()] (3.137)

For (&3), we also have a similar estimate, because

t
&) < / ds1 (e OO
0

Io
XelU;E, B()S e

e 2
S C—— sup [|h(s)]loo, since |v] = —,
/N o<o<; o N

1
< CeN sup IIh(S)Iloo§0<—) sup [12(s)]lco- (3.138)
0<s<t N J o<s<s

For the estimate for (£4), since mz(OiC ) < & from Lemma 1,

ENZ0 h(s)lloo-
(&) < (s)oggt ()] (3.139)

For (&5), we choose m(N) so that
kw,m(ua v) = l{lu—v@%, |u\§m}kw (u, v)

satisfies [p3 [kum (1, v) — ky (1, v)| du < % for sufficiently large N = 1. Then,
by splitting &,

t 5
(&) < fo /0 eV / K, m (12, v) / K (' 10R(s", X' (7). 1) 15 (X (5), u) du'duds’ds
u u’

(o)

+0q (%) sup  [11(5)]oo- (3.140)

0Ss<t

We define following sets for fixed n, 71, i, k, where Proposition 2 does not work:

Ry :={u | u ¢ B(i5,28) N {R*\Of }},
Ry:={s'||s —s'| £ 8},

R3 = S/ | mE]le S/ - w?’n’i’k(n85 K(”l8; ta -la y)a (;i(sa uz))‘ SN 6”‘#1 ”C’l N } ’
=1, PRYA

Ry i= {115’ = 1518, X(n85 1, x, v), 6, u2)| S Sllley, )

1
Rs = MIIM3|§—},

N
o 1
Re:={uekR?| |—L2— -elgﬁ
VEPLI 1 (X s2t.x.0) 0

(3.141)
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Using (3.141), we write () as

k
[t/81+1 T e v
= T e

(n—1)8

X/ K m (u, V) m (U, 1) |A(s', X (s"), u')]
[u| SN, |u'|SN

X1 genrsnrsnrENRENRELES (X (), M)IMAIN) + R, (3.142)

where R corresponds to where (u, s) is in one of R; ~ Rg. We replace lﬂ k¢
in 1U>1 &, in (MAIN). For R, we have the following smallness estimate:

t N
R [ [0 [ [ @ oh X 60 1
0 Jo lu| SN /| SN i=1 Ri

1
SCov(S+e+ o(ﬁ)) sup 17(5)lloos (3.143)
0=s<t

by choosing sufficiently small § <« % Note that smallness from R; to Rs is trivial.
For Rg, we note that by the analyticity and boundness of €2, there are only finite

177 1 . 1
-e1 = 0, so Rg gives smallness O (+).
v gl’ A xeaq £ N
Let us focus on (MAIN) in (3.142). From (3.134) and (3.141), all conditions
(3.120)—(3.127) in Proposition 2 are satisfied and

points x such that

i, e {1,2,....1g) suchthatX(s)eB(C C).

lg° l
Under the condition of (u, s”) € ﬂiﬁzl Rf, indices n, 7, iy, k are determined so that

t € [(n—1)35, (n+ 1)4],
X(s;t,x,v) eB(C C),

1’1A

u e BG,29)n fvMof ],

and (3.128) in Proposition 2 gives local time-independent lower bound

’det (8)25/))’ > &5 > 0.

If we choose sufficiently small 8, there exist small r; ,, ; ; x such that there exists a
one-to-one map M:

M : B(ii8,28) N {VV\OE) > B(X(s's s, X (511, X, ), 1), F5 i k0)-
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We perform a change of variable for (MAIN) in (3.142) to obtain

(MAIN)
[t/8]+1

min{(n+1)4,t}
STy gl /
. k1

n=0 |i|<N max{(n—1)3,0}

X /kw,m(uv U)/ kw,m(u/s M) 1|M|SN,|J,¢/‘SN |h(s/7 X(S/), M/)|
u u' - -

1£,(X (s), u)du/ duds’ds
x/5]+1

min{(n+1)35,t}
< / / e V=5
- max{(n—1)8,0} Jk+1

n=| 0 |n\<N k

X /kw,m(u, V)1, <y du If(s", X (s, u’)||L‘2,|<N1E5 (X (s), w)duds’ ds
u u'|=

t/8]+1 k

min{(n+1)8,t}
< / / oV )5
o ax{(n—1)8,0y Jrk+1

n0|\<Nk

1/2
{/ I £(s", X (s, u)||L2 du}
|u|§N W/ |EN

x 1 (X (s), u)ds’ ds

(/811 min{(nt1)8,1) Cen
S / Z Z / oYW=
o ¢ max{(n—1)3,0} HSN K
| 1/2
x / I (s, XD a7, —det ds'ds
B(X(s"),75 ., k) ‘u SN s
[E8IHL emin{(n+1)8,0) Col ok ) (1—s")
- / / e—v v)(t—s
112:(:) max{(n—1)8,0} Z ikt

1/2
{/ If (", X (s, M)|| dX} ds"ds
\M\<N
CsN

<C,Z/ 16yl o <c,/ £ lds,
(3.144)

. " p Cen itk ' k

since w(u’) is bounded for |u'| < N and ), f,k+1 < fo, where t* =
(X (s;t,x,v),u) and X(s') = X(s';s, X(s;1,x,v),u). We collect (3.132),
(3.135), (3.136)—(3.139), (3.140), (3.142), (3.143) and (3.144) with sufficiently
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large N > 1 and small ¢, § K # to conclude

M t
IR @)lloo < 6770I||h(0)||oo+ct/o £ (s)ll2ds. (3.145)

O

4. L*-Coercivity via Contradiction Method

We start with a lemma which was proved in Lemma 5.1 in [17].

Lemma 20. Let g be a (distributional) solution to
g +v-V,g=G.

Then, for a sufficiently small ¢ > 0,

1—¢ 1
2 2
/ I Ldist(x,00) <e# Lin()-v| =8 (1) |12d2 5/0 Lgist(x,00)>3/28 O 1I7 dt
&

1
+/ f/ lgG|.
0 UxR3

Proposition 3. Assume that f solves the linearized Boltzmann equation
Of+v-Vf+Lf=0, (4.1)

and satisfies the specular reflection BC and (1.3) for F = ju+ /i f. Furthermore,
for an axis-symmetric domain, we assume (1.6). Then there exists C > 0 such that,
forall N € N,

N+1 N+1
/N IPf()|3de < C / I(L—P) £ (1)]% dt, 4.2)

N
where P f is hydrodynamic part (projection on the null space of L, N(L)), P f :=
2_
(@+b-v+c= Jand |-l =1Vl
Proof. We will use the contradiction method which is used in [11] and also in [17]

with some modification. Instead of giving full details, we describe the scheme of
proof following [17].

Step 1. First, (4.1) is translation invariant in time, so it suffices to prove coercivity
for a finite time interval ¢ € [0, 1] and so we claim (4.2) for N = 0. Now assume
that Proposition 3 is wrong. Then, for any m >> 1, there exists a solution f”* to
(4.1) with specular reflection BC, which solves

WM +v Ve f"+Lf™" =0, fort € [0, 1] 4.3)

and satisfies

1 1
/0 1P 3dr = m /0 1= P)f7 ()] dr.
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Define the normalized form of f™ by

ZM(t, x,v) == frx ) / ||PZm||2 =1
0

NI ||me<r)||2dt

Then Z™ also solves (4.3) with the specular BC and

1
L z/ 1A= P)Z" (1) dr.
m 0

Step 2. We claim that

sup sup ||Zm(t)||% < 0.
m 0<t<1

Since Z,, solves (4.3) with the specular BC, for0 < ¢ < 1,

sup [1Z"®)13 < 12" (0)13,
0<r<1

115

(4.4)

(4.5)

(4.6)

from the non-negativity of L. Moreover, by integration fol and using (4.5) and (4.4),

1Z™(©O)13 f IIPZ”’||2+/ (e VAL S 1+—

Therefore, we have proved the claim (4.6).

Step 3. Therefore, the sequence { Z"} ;1 is uniformly bounded in supo<,<i [18(?) ||‘2).

By the weak compactness of L2-space, there exists a weak limit Z such that

Z" —~ Z in L*([0,1]; L2(U x R*) N L2([0, 1]; L2(U x R?)).

Therefore, in the sense of distributions, Z solves (4.1) with the specular BC. See
the proof of Proposition of 1.4 in [17] to see that Z also satisfies the specular BC.
Moreover, it is easy to check that the weak limit Z satisfies conservation laws as

follows:

2
/f Z(t)Ji =0, /f Z(t)u\/_ 0, 0<r<1.
UxR3 U xR

In the case of axis-symmetry (1.5),

// {(x =x") x @} - vZ(@t) /1L = 0.
U xR3
On the other hand, since
1
PZ" ~PZ and I-P)Z" — 0 in / |- 12de,
0
we know that the weak limit Z has only a hydrodynamic part, that is,

{ v|?
Z(t,x,v) =3a(t,x)+v-bx,v)+

-3
w0} v

4.7

(4.8)

4.9)
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and
1 1 1
/ ||Z||%dt < liminff ||Zm||‘2)dt <l+——1.
0 m—0o0 0 m

Step 4. Compactness. For interior compactness, let x, : c/(U) — [0, 1] be a
smooth function such that x.(x) = 1 if dist(x, d9U) > 2¢* and x.(x) = 0 if
dist(x, dU) < &*. From (4.1) with Z™ ,

[0 +v-Vil(XeZ™) = v - Vaxe Z" — L(x:Z™).
From the standard Average lemma, x.Z™ is compact, that is,
xeZ™ — x.Z strongly in L%([0, 1]; L%(U x R3)). (4.10)

For the near boundary compactness for the non-grazing part, we claim that

1—¢
f (2" (2, %, v) = Z(t, %, 0) Lgigeiro0y<et Uneorol=c |3
&

1 By | 4.11)
< m _ I
< /0 (Z (t,x,v) — Z(t, x, v)) ldist(xyan% ) + 0 (ﬁ) .
Looking at the equation of Z™ — Z, from (4.9),
[0, +v- -V l(Z"—2Z2)+ LZ™ =0. (4.12)

We apply Lemma 20 to (4.12) by equating g and G with Z"* — Z and the last term
of the LHS in (4.12), respectively. Then

1—¢
2
/ 1 gistcx.00) < Linco-vl=e (2™ = Z)(@) |5 dr
&
1 2 1
S [ Maswavop@ = 20la+ [ [[@m -2z,
0 0 U xR3

Since fy [[,, g3 1(Z" — Z)LZ™| is bounded by c(ﬂf(} Ia —P)z™|% +

JL% fol 2™ + ||Z||§), we conclude (4.11) using (4.6) and (4.5).
On the other hand,
2 1—¢
<
=

1—¢
/&“
1—¢
/
&

= 0(e),

2

(Z" = D) Lgisiir,00)<e* Lineryvi<e Z" gige(x, 00y <e* Lin(x) v <o

2

2
Zldist(x,BU)<£4 1|n(x)-v| <e

2

4.13)

where the smallness of the first term on the RHS comes from Lemma 9 of Guo
[11]. For the second term, we use Lemma 6 of Guo [11] to obtain f Z%dv < 00
with |[U\U,| < e, that is, a small measure in spatial phase.
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Step 6. Strong convergence. To simplify notation, we write U, := {x € U : x. > 0}.
Then, for given ¢ > 0, we can choose m >>, 1 such that

1
f L
0 UxR3
1 e 1-¢
S A A
1—e J JUXR3 0 UxR3 & Ue xR3
l—¢ 1—e¢
o) o ,
e {U\U: xR3}N {In(x)-v| <€} e {U\Ue xR3)N {|n(x)-v|2¢}

< Ce,

where we have used (4.6), (4.10), (4.11) and (4.13). Therefore, we conclude that
7™ — Z strongly in L>([0, 1] x U x R3) and hence

1
/0 1Z13 = 1. (4.14)

Step 7. We claim Z = 0. Plugging (4.9) into the linearized Boltzmann equation,
we get

0;c =0,

orc + 9;b; =0,
dbj +0;b; =0, i+#j, (4.15)

0:b; + d;a =0,

dra = 0.

Using the first equation and a direct computation of Lemma 12 in [11],
b(t,x) = —0ic(t)x + w(t) x x +m(t).
From the second equation in (4.15) and the specular BC,
c(t,x)=cy, b=w(({t) xx+m().
We split things into two cases: @ = 0 and @ # 0.
Case of w = 0. From b(t) = m(t) and from the specular BC, we deduce that
b(t)=m(t) =0.
From, the fourth and final equations of (4.15), we can derive
a(t,x) = ag.

Since a(z, x) and c(t, x) are constant, from (4.7), we derive ag = ¢y = 0, and
hence Z = 0.
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Case of w # 0. From the specular BC,
b(t,x) -n(x) = (w(t) X X + m(t)) -n(x) =0.

Since m(¢) is a fixed vector for a given ¢, we decompose m () into the parallel and
orthogonal components to @ (¢) as

m(t) =at)w(t) — w(t) x xo(t).
Then

b(t,x) - n(x)

(w(t) X X 4+ m(t)) -n(x)
(@ (1) x (x = x0(1)) - n(x) + 2 ()@ (1) - n(x) =0,
Vx € aU. (4.16)

Choose t with @ () # 0. We can pick x’ € dU such that @ (¢) || n(x’). Then the
first term of the RHS in (4.16) is zero. Hence we deduce

a(t)=0 and b(t,x) =@ () x (x —x°(1)). (4.17)

This yields
() x (x = x0(1))) -n(x) =0, Vx € U. (4.18)

The equality (4.18) implies that U is axis-symmetric with the origin x((#) and
the axis @ (¢). From (4.8) and (4.17),

0= // |l x (x — x(2)) - v|2pdedv.
U

Therefore, we conclude that b(¢, x) = 0. Then using conservation laws (mass and
energy) again, we deduce Z = 0.

Step 8. Finally we deduce a contradiction from (4.14) and Z = 0. This finishes the
proof. 0O

5. Linear and Nonlinear Decay

5.1. Linear L? Decay

We use the coercivity estimate Proposition 3 to derive the exponential linear
L? decay of the linearized Boltzmann equation (1.15) with the specular boundary
condition.

Corollary 1. Assume that f solves the linearized Boltzmann equation with the
specular BC so that f satisfies Proposition 3. Then there exists . > 0 such that a
solution of (1.15) satisfies

supe || F)ll2 < Ml follo (5.1)
05t
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Proof. Assume that N <t < N + 1. From the energy estimate of (4.1) in a time
interval [N, 1],

t
£ + / / / FLE < 1F VIR (52)
N U xR3
From (4.1), for any A > 0,
[8: +v- Vi) )+ L f) = re f.

By the energy estimate,

N N
e f(N)I3+2 / f f M fLf -2 / / f 1™ £ ()12 1 £ )5
0 U xR3 0 U xR3

(5.3)
Splitting for each time interval we have,
2 = 21k kol 2
1N FN)5+ Y 2e* / voll (L= P) £113
k=0 k
= 2A(k+1 kol 2 2
22kt >f 115 = 1£O)]5.
k=0 k
Using (4.2), there exist Cy,, > 0 such that
AN 2 = 2uk krl 2 2
1N FINIIZ + (Cuy — 20e2) D e f 113 S 1 £ O3
k=0 k
Choosing (A < 1) sufficiently small, we get
N £ £ N foll3- (5.4)

From the non-negativeness of L, we have || £ (¢) |2 < || f (N)|l2 from 5.2. Using 5.4,
we conclude that

2 2 2 2 2 —2N 2 20(t—N 2
AN FON3 S M IFNIE S e e N foll3 < V) foll3,

and obtain (5.1). O

5.2. Nonlinear L*° Decay

We use a L?—L > bootstrap from (3.145), Duhamel’s principle, and Corollary 1
to derive nonlinear L*° decay.

Proof of Theorem 1. LetZ = wf, where f solves the linearized Boltzmann equa-
tion. Then from (3.145),

t
Y0
sup [[h(s)]loe S e 2 T>||h(T)||oo+f Il £ (s)ll2 ds.
T

se[T,t]
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We assume that m < ¢t < m + 1 and define A* := min{3, A}, where A is
some constant from Corollary 1. We use (3.145) repeatedly for each time step,
[k, k + 1), k € N and Corollary 1 to perform a L?~L> bootstrap:

" m—1 m—k
1A oo S e 2 [RO) oo + Y €70 / 1/ ()l ds
k=0 —1-k
m—1 m—k
S RO oo + Y ek / e IR £ (0) ds
k=0 m—1—k

< e NR(0) ] oo-

Now we solve the nonlinear problem. From the Duhamel principle, when f
solves the nonlinear Boltzmann, 4 = wf solves

d h h
h:=U(t)hg —i—/ Uit —s)wl (—, —> (s)ds,
0 wow (5.5)

)

o0

t
1h)lloe S e 1AO) oo + H/ Ut —s)wl (ﬁ, ﬁ) (s)ds
0 w w

where U (t) is a linear solution for the linearized Boltzmann equation. Inspired by
[11], we use Duhamel’s principle again to get

t
Uit —5)=G(t—y) +/ G(t —s))KU(sp — s)dsy,
N
where G (¢) is linear solution for the system
dh+v-Vih+vh =0, and |G()ho| £ e " |hg.

For the last term in (5.5),

d h h
/ Ui —s)wl (—, —) (s)ds
0 w w

"

oo

! h h
/ Gt —s)wl (—, —> (s)ds
0 w w o)

t t h /’l
/ / Gt —s))KyU(sp —s)wTl (—, —) (s)dsds
0 Js w w

2
§Ce)‘*'( sup e”‘||h(s)||oo> ;

[IA

0]

0<s<c0

where we used the nonlinear estimate |wI‘(%, %)| < Cv)t ||h||go (see Lemma 5
in [11]). Therefore, for sufficiently small ||2¢||.c < 1, we have the uniform bound

sup e Nh(0)]oo < 1,
0<r<o00
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hence we get global decay and uniqueness. Also note that the positivity of F is
standard by linear solvability and the solution sequence F*:

FF ™ +v . VF = 0 (F FY —v(FYHF, Fli—o = Fo.
F, x,v) = F ', x, Ryv) on dU.

From Fy = 0 and F* > 0, we have F¢t1 > 0. 0O
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6. Appendix: Example of Sticky Grazing Point

Let us consider backward in time trajectories which start from (1, 1) with velocity
v=(1,1+3),with0 < § <& « 1. All the trajectories are part of the set of rays

{Gy)iy=0+Hx-D+1, 0= <1}

We consider that the trajectories bounce on the curve f(x) = %xz. When § = 0,

the trajectory bounces on (0, 0) with collision angle 7. When 0 < § < 1, the

bouncing point on f(x) = %xz is

1
<6*, Eﬁf) . where 8, = (1 +68) — /(1 +68)2 — 25.

Using the specular BC, the bounced trajectory with v! direction is part of the set
of rays

(1+8)(14682) —2V/1+52
14+824+26,/1+82

We parametrize the convex grazing boundary with parameter § as follows:

(X(8),Y(©5), X(©0)=-Y(©0) <O0.

{(x, y) iy =L(@)(x =8+ %55} . L) =

Considering the tangential line on (X (§), Y (8)), it is easy to derive two conditions
from concave grazing:

Y'(8)
X6 = L(9),
, (6.1)
—L(8)8, + 152 = —Y—((S)X(S) +Y(5)
o X'(8) ’
We differentiate the second equation and combine with first equation to get
i( — L(8)8x + l82) =L)X =L)X (8)+Y'(8)
ds o (6.2)

= —L'(®)X().
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It is easy to check L’ > 0 locally to see 0 < § < 1. (6.2) gives X (§), and this is
analytic from the analyticity of L(§) and 8:; X () is an analytic function of § for
local 0 < § <« 1. Using the first equation of (6.1), we obtain ODE for Y (§) with
Y(0) = —X(0). Since X (8) is analytic, Y (8) is also analytic. Moreover, we can
check the concavity of (X (8), Y (8)) by

4o
45 \X'(3)

Finally, we see that the set of all lines grazing on (X (§), Y (§)) pass the sticky
grazing point (1, 1) after bouncing on the convex region y = %x2.

):U@>o
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