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Abstract

The aim of this paper is to investigate the stability of Prandtl boundary lay-
ers in the vanishing viscosity limit ν → 0. In Grenier (Commun Pure Appl Math
53(9):1067–1091, 2000), one of the authors proved that there exists no asymptotic
expansion involving one of Prandtl’s boundary layer, with thickness of order

√
ν,

which describes the inviscid limit of Navier–Stokes equations. The instability gives
rise to a viscous boundary sublayer whose thickness is of order ν3/4. In this paper,
we point out how the stability of the classical Prandtl’s layer is linked to the stability
of this sublayer. In particular, we prove that the two layers cannot both be nonlin-
early stable in L∞. That is, either the Prandtl’s layer or the boundary sublayer is
nonlinearly unstable in the sup norm.

1. Introduction

In this paper, we are interested in the inviscid limit ν → 0 of the Navier–Stokes
equations for incompressible fluids, namely

∂t u
ν + (uν · ∇)uν + ∇ pν = ν�uν, (1.1)

∇ · uν = 0, (1.2)

on the half plane� = {(x, y) ∈ T×R
+} or the half space� = {(x, y) ∈ T

2×R
+},

with the no-slip boundary condition
uν = 0 on ∂�. (1.3)

As ν goes to 0, one would expect the solutions uν to converge to solutions of Euler
equations for incompressible fluids

∂t u
0 + (u0 · ∇)u0 + ∇ p0 = 0, (1.4)
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∇ · u0 = 0, (1.5)

with the boundary condition

u0 · n = 0 on ∂�, (1.6)

where n is the unit normal to ∂�.
At the beginning of the twentieth century, Prandtl introduced the well known

boundary layers in order to describe the transition from Navier–Stokes to Euler
equations as the viscosity tends to zero. Formally, we expect that

uν(t, x, y) ≈ u0(t, x, y) + u P

(
t, x,

y√
ν

)
, (1.7)

where u P is the Prandtl boundary layer correction, which is of order one in terms
of small viscosity, and has the boundary layer variable y of order

√
ν, the classical

size of Prandtl’s boundary layer.
Prandtl boundary layers have been intensively studied. First, Oleinik [18,19]

proved the existence in small time of Sobolev solutions provided that the initial
vorticity is monotonic in the normal variable z. Oleinik’s monotonic solutions were
also recently reconstructed via energy methods [1,14,17]. There are also analytic
solutions to the Prandtl equations; see, for instance, [5,13,20] and the references
therein. On the other hand, the authors in [2] construct a class of solutions which
blow up in finite time. We also refer to [3,15,22] for the study of the onset of
singularities in Prandtl’s equations. Then, [4] showed that Prandtl equations are
ill posed in Sobolev spaces for some classes of initial data; see also [6–9,12] for
further instability of Prandtl boundary layers.

The validity of Prandtl’s Ansatz (1.7) has been established in [20,21] for initial
data with analytic regularity, leaving a remainder of order

√
ν. A similar result is

also obtained in [16]. If we assume only Sobolev regularity of the remainder in
the approximation (1.7), one of the authors proved in [7] that such an asymptotic
expansion is false, up to a remainder of order ν1/4.

In this paper, we continue the analysis introduced in [7] to further study the
structure of the instability of Prandtl’s layers. Our aim is to analyze the boundary
sublayer which prevents the previous analysis [7] to reach instability of order one
in its amplitude in the approximation (1.7).

More precisely, we study the classical stability problem of whether the time-
dependent shear layer flow

Us(t, x, y) =
(

Us(t, y/
√

ν)

0

)
(1.8)

is nonlinearly stable to the Navier–Stokes equation in the inviscid limit. Here,
Us(t, z) solves the heat equation

∂tUs = ∂2z Us

with initial data Us(0, z) = U (z). Occasionally, we write U in place of the vector
[U, 0]tr .
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Assumption on Us .
We assume that the initial shear layerU (z) is smooth,U (0) = 0, and limz→∞ U (z)
is finite. In addition, we assume that U (z) is spectrally unstable to Euler equations.
Precisely, there exists a growing solution of the form

vc(t, x, y) = vs(x, y)e�λt (1.9)

solving the linearized Euler equations

∂tv + (U · ∇)v + (v · ∇)U + ∇ p = 0,

∇ · v = 0,

with the boundary condition v · n = 0 on ∂�.
Using the growing mode vc, we will establish a nonlinear instability result for

the classical O(ν1/2) Prandtl’s layer Us . This construction will involve a boundary
sublayer of size O(ν3/4). To leading order (see Section 2.5), the sublayer is of the
form

v1S = v1S

(
t√
ν
,

x√
ν
,

y

ν3/4

)
, (1.10)

with v1S solving the Stokes problem

∂tv
1
S + ∇ p = ν�v1S, ∇ · v1S = 0, (1.11)

with the following boundary conditions:

v1S |z=0
= 0, lim

z→∞ v1S(t, x, z) = vc(t, x, 0).

That is, the sublayer v1S corrects the nonzero boundary condition of the inviscid
growing mode vs , defined in (1.9). As will be clear in the construction,

vs = �∇⊥(eiαxψe(z)),

withψe solving theRayleigh equationswith the zeroDirichlet boundary conditions.
As a consequence, the boundary value of the tangential component of vs is nonzero,
and the boundary sublayer is present in the construction.

Roughly speaking, we will prove that the Prandtl’s layer and the boundary
sublayer cannot be simultaneously nonlinearly stable in L∞. Precisely, we obtain
the following theorem:

Theorem 1.1. Let Us be a Prandtl’s boundary layer of the form (1.8). Assume that
the initial shear layer U is spectrally unstable to the Euler equations, giving rise
to the boundary sublayer v1S, defined as in (1.10). Then, one of the following must
hold:

• For any s, N arbitrarily large, we can find σ0 > 0, initial conditions uν(0) and
times T ν such that exact solutions uν to the Navier–Stokes equations satisfy

‖uν(0) − Us(0)‖Hs � νN ,

but

‖uν(T ν) − Us(T
ν)‖L∞ � σ0

for time sequences T ν → 0, as ν → 0.
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• There is a source f ν that is sufficiently small in L1(R+; L∞(�)) and is exponen-
tially localized within the boundary layer of size ν3/4 so that the following holds:
there is a positive constant σ0 so that the unique solution uν of the Navier–Stokes
equations, with source f ν in the momentum equation and with the initial data
uν|t=0

= v1S |t=0
, must satisfy

‖uν(T ν) − v1S(T ν)‖L∞ � σ0

for time sequences T ν → 0, as ν → 0.

Amore precise result is given in the end of the paper, where initial perturbations
and sources for the stability of the boundary sublayer are more explicit.

2. Construction of an Approximate Solution

2.1. A First Scaling

We first rescale time and space according to the classical change of variables

T = t√
ν
, X = x√

ν
, Y = y√

ν
.

The Navier–Stokes equations (1.1)–(1.2) are invariant under this scaling, except
the viscosity coefficient which is now

√
ν instead of ν. For the rest of the paper, we

shall work with the scaled Navier–Stokes equations with above scaled variables.
For sake of presentation, we write t, x, y in place of T , X and Y , respectively.

Let U (y) be the inviscid unstable shear flow, and let Us(
√

νt, y) be the cor-
responding time-dependent shear flow. Our goal is to construct an approximate
solution to the Navier–Stokes equations that exhibits the instability. Let us intro-
duce

v = u − Us,

in which u is the genuine solution to the Navier–Stokes equations. Then, v solves

∂tv + (U · ∇)v + (v · ∇)U + (v · ∇)v + ∇ p = √
ν�v + √

νSv (2.1)

∇ · v = 0, (2.2)

in which the linear operator Sv is defined by

Sv := ν−1/2 [
Us(

√
νt) − U

] · ∇v + ν−1/2v · ∇ [
Us(

√
νt) − U ] (2.3)

We shall establish the instability in four steps. First, we construct an approxi-
mate solution that exhibits the instability, starting from the maximal linear growing
mode of Euler equations. We then construct an approximate viscous solution to
the Navier–Stokes equations in the large scale of size

√
ν, without correcting the

no-slip boundary condition. That is, the approximate solution satisfies only the zero
normal velocity condition

v · n = 0 on ∂�. (2.4)
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In the third step, we approximately correctly the nonzero boundary value caused by
the previous step. This leads to an instability, which is a solution of Navier–Stokes
equations, except for a small error term which is localized in a layer of thickness
of order ν3/4. The remainder of the paper is devoted to the study of the stability of
this approximate solution.

2.2. Linear Instability

By assumption, U (y) is spectrally unstable for Euler equations. That is, there
exists a solution of linearized Euler equations, namely equations (2.1)–(2.4) with
ν = 0, of the form

u0
e = νN �(ueeλt ), (2.5)

where ue is a smooth, divergence free, vector field and �λ > 0. Since the unstable
spectrum of the linearized Euler equations around a shear flow consists of only
unstable eigenvalues, we assume that λ is the maximal unstable eigenvalue. Fur-
thermore, as ue is divergence free, it can be written under the form

ue = ∇⊥ (
ψeeiαx

)

Here, α denotes the wave number of the Fourier transform and ψe is the corre-
sponding stream function, both solving the corresponding Rayleigh equation

(U − c)
(
∂2y − α2

)
ψe = U ′′ψe (2.6)

with boundary conditions ψe(0) = limy→+∞ ψe = 0, with c = − λ/ iα. Since
ψe is a solution of an elliptic equation, it is real analytic. As a consequence, the
unstable eigenfunction ue is entire in x and holomorphic on y.

In addition, it follows that the L p norm of u0
e behaves like νN e�λt . Precisely,

there are positive constants c0, c1 so that

c0ν
N e�λt � ‖u0

e(t)‖L p � c1ν
N e�λt , 1 � p � ∞, (2.7)

in which ‖ · ‖L p denotes the usual L p norm. Let us introduce the instability time
T 
, defined by

T 
 = − N
log ν

�λ
(2.8)

and time T 

θ , for any θ � 0, defined by

T 

θ = − (N − θ)

log ν

�λ
. (2.9)

We observe that by (2.7), ‖u0
e(T



θ )‖L p is exactly of order νθ . In order to get order

one instabilities for Prandtl’s layers, it is necessary to construct a solution ofNavier–
Stokes equations up to the time T 
, or at least to T 
 −τ for some possibly large, but
fixed τ , in the inviscid limit. However, this appears to be very difficult due to the
appearance of a viscous boundary sublayer of order ν1/4. The presence of such a
sublayer causes the (viscous) approximate solution to have a large gradient of order

νN− 1
4 e�λt . For this reason, the approach introduced in [7] stops at the time T 


1/4.
After this time, energy estimates cannot be fulfilled. The aim of this construction
is to investigate what appends between T 


1/4 and T 

0 .
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2.3. Construction of an “Inviscid” Nonlinear Instability

In this section, we build an approximate solution of (2.1)–(2.4), starting from
u0

e . We stress that this solution only satisfies the boundary condition (2.4) for Euler
solutions. Precisely, we construct solutions of the form

uapp
e = νN

M∑
j=0

ν j/2u j
e . (2.10)

For the sake of simplicity, we take N to be a (sufficiently large) integer. Plugging
this Ansatz into (2.1) and matching order in ν, we are led to solve

• for j = 0: u0
e is the growing solution defined in (2.5);

• for 0 < j � M :

∂t u
j
e + (U · ∇) u j

e +
(

u j
e · ∇

)
U + ∇ p = R j ,

∇ · u j
e = 0,

u j
e · n = 0, on ∂�,

(2.11)

together with zero initial data. Here, the remainders R j are defined by

R j = Su j−1
e + �u j−1

e +
∑

k+
+2N= j

uk
e · ∇u


e.

As a consequence, uapp
e appropriately solves the Navier–Stokes equations (2.1)–

(2.2), with Euler’s boundary condition (2.4), leaving an error of the approximation
Eapp

e , defined by

Eapp
e = νN+ M+1

2

(
SuM

e + �uM
e

)
+

∑

k+
>M+1−2N ;1�k,
�M

ν2N+ k+

2 uk

e · ∇u

e.

Note that at each step, uk
e is a solution of linearized Euler equations around U ,

with a source term consisting of solutions constructed in the previous steps. Since
the linearized Euler problem is well-posed, u j

e is uniquely defined. In addition,
by letting L be the linearized Euler operator around U , there holds the uniform
semigroup estimate

‖eLt ue‖Hs � Cβe(�λ+β)t‖ue‖Hs+2 , ∀ β > 0, ∀ t � 0

for all s � 0. The loss of derivatives in the above semigroup can be avoided by
studying the resolvent solutions to the Euler equations or the Rayleigh equations
(similarly, but much more simply, to what is done for linearized Navier–Stokes;
see, for instance, [10,11]).

By induction, by using the semigroup estimates, it is then straightforward (for
example [7]) to prove that

‖u j
e‖Hs+4M−4 j � C j,se

(
1+ j

2N

)
�λt

(2.12)
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for any s � 0. As a consequence, the function uapp
e defined as in (2.10) approxi-

mately solves the Navier–Stokes equations in the following sense:

∂t u
app
e + (Us + uapp

e ) · ∇uapp
e + uapp

e · ∇Us + ∇ p = √
ν�uapp

e + Eapp
e ,

∇ · uapp
e = 0,

uapp
e · n = 0, on ∂�,

(2.13)

in which Us = Us(
√

νt, y). In addition, as long as νN e�λt remains bounded, there
hold

‖uapp
e ‖Hs � CνN e�λt , ‖Eapp

e ‖Hs � C
(
νN e�λt

)1+ M+1
2N

. (2.14)

Again, we stress that the approximate solution uapp
e does not satisfy the no-slip

boundary condition on ∂�, but the condition (2.4) on the normal component of
velocity. Note that, in particular, for any θ > 0 and for t � T 


θ , there holds

‖Eapp
e ‖L2 � Cνθ P ,

which can be made arbitrarily small if P = 1 + M+1
2N is chosen large enough.

Roughly speaking, uapp
e describes the “large scale” instability, which we shall intro-

duce in the next section.

Remark 2.1. The approximate solution uapp
e is in fact holomorphic on �. Indeed,

it suffices to prove the claim that u j
e is a linear combination of functions of the

form ∇⊥(ψeiβx ). Indeed, by construction, the claim holds for u0
e . Assume that the

claim holds for j � 0. Then, in particular, the source R j is holomorphic and also
a linear combination of functions of the form ∇⊥(ψeiβx ). Taking Fourier–Laplace
transform, we get that u j+1

e is a sum of solutions of Rayleigh equations, and is
therefore holomorphic.

2.4. Large Scale Behavior

We now look for a corrector ũe of uapp
e which kills the large scale error term

Eapp
e . Precisely, we construct the corrector ũe so that

uL := Us
(√

νt, y
) + uapp

e + ũe (2.15)

is an exact solution to the Navier–Stokes equations, without taking care of the no-
slip boundary condition. Indeed, we shall replace the no-slip condition by a Navier
boundary condition, which allows us to derive uniform bounds on vorticity. The
no-slip boundary condition will then be recovered in the next section.

The large scale corrector ũe, defined as in (2.15), solves

∂t ũe + uL · ∇ũe + ũe · ∇ (
Us + uapp

e
) + ∇ p − √

ν�ũe = −Eapp
e ,

∇ · ũe = 0,
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with zero initial data ũe = 0 at t = 0, and with the following Navier boundary
conditions:

ũe · n = 0, (Dũe)n · τ = 0,

on ∂�. Here, Du = 1
2 (∇u + (∇u)tr ). On the flat boundary, the above Navier

boundary conditions in particular yield ω̃e = 0 on ∂�. We stress that uL does
not satisfy the no-slip boundary condition. However, it describes the large scale
behavior of the main Prandtl’s boundary layer.

By energy estimates, using the fact that ‖∇uapp
e ‖L∞ is bounded by νN e�λt , and

using the zero boundary condition on the normal component of velocities, we get

1

2

d

dt
‖ũe‖2L2 � C(1 + νN e�λt )‖ũe‖2L2 + C

(
νN e�λt

)2+ 2(M+1)
2N

.

Hence, as long as νN e�λt remains bounded (or equivalently, t � T 
), this yields

‖ũe(t)‖L2 � C
(
νN e�λt

)1+ M+1
2N

. (2.16)

In particular, for any θ > 0 and for t � T 

θ , there holds

‖ũe‖L2 � Cνθ P ,

which can be arbitrarily small with respect to ν, provided P 
 1. Similarly, since
x-derivatives of ũe satisfy the same type of boundary conditions, there hold

‖∂k
x ũe‖L2 � C

(
νN e�λt

)P
, ∀k � 0.

In addition, the standard elliptic estimates onT×R+ yield ‖ũe‖L∞ � ‖ω̃e‖L∞ .
To bound the vorticity ω̃e, we write

∂t ω̃e + uL · ∇ω̃e − √
ν�ω̃e = −ũe · ∇(ωs + ω

app
e ) − ∇ × Eapp

e

with ω̃e = 0 on the boundary. The Maximum Principle for the transport–diffusion
equation, together with (2.14), yields

‖ω̃e(t)‖L∞ �
∫ t

0

[
‖ũe · ∇ωs‖L∞ + ‖ũe · ∇ω

app
e ‖L∞ + ‖∇ × Eapp

e ‖L∞
]
ds

� C
∫ t

0

[
‖ũe,2∂yωs‖L∞ + νN e�λs‖ω̃e(s)‖L∞ +

(
νN e�λs

)P]
ds.

Writing ũe,2 = ∫ y
0 ∂y ũe,2 dy, we have

‖ũe,2∂yωs‖L∞ � ‖y∂yωs‖L∞‖∂x ũe,1‖H1
x L2

y
� C

(
νN e�λt

)P
.

Thus, as long as νN e�λt remains sufficiently small (or equivalently, t � T 
 − τ for
large τ ), we obtain at once

‖ω̃e(t)‖L∞ � C
(
νN e�λt

)P
. (2.17)

This yields the same bound for velocity ũe and ∂k
x ũe in L∞, for k � 0.
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2.5. Sublayer Correction

It remains to correct the no-slip boundary condition of the (exact) solution uL .
To this end, we introduce the sublayer correction uS , solving the Navier–Stokes
equation

∂t uS + (uL · ∇)uS + (uS · ∇)uL + (uS · ∇)uS + ∇ p = √
ν�uS,

∇ · uS = 0,
(2.18)

together with the inhomogenous boundary condition

uS = − uL = − uapp
e − ũe, on ∂�, (2.19)

in which uapp
e + ũe is of order νN e�λt ; see (2.14) and (2.17). Observe that

u = uS + uL

is an exact solution of the genuine Navier–Stokes equations (1.1)–(1.2), with the
no-slip boundary condition (1.3). Aswewill see, uS describes the “small structures”
of u, namely its viscous boundary sublayer.

To solve (2.18), let us first consider the simplified equations

∂t u1
S + (Us · ∇)u1

S + (
u1

S · ∇)
Us + ∇ p = √

ν�u1
S,

∇ · u1
S = 0,

with the boundary condition u1
S = − uL on ∂�. Note that u1

S has a boundary layer
behavior, with a small scale of order ν1/4 in y. As a consequence, asUs is tangential
to the boundary and is of order O(y) for small y, the convection terms (Us · ∇)u1

S
and (u1

S · ∇)Us are of order O(ν1/4) smaller than u1
S . Thus, the convection terms

might be moved into the next order and u1
S may be approximated by v1S , a solution

of the linear Stokes equation

∂tv
1
S + ∇ p = √

ν�v1S, ∇ · v1S = 0, (2.20)

with the same boundary condition v1S = − uL .
The Stokes problem can be solved explicitly by introducing the stream function

φc defined through

v1S := −∇⊥φc.

Starting with v1S , we can construct an approximation of uS . Again, our construction
is inductive. For k � 2, we iteratively construct vk

S , solving the following Stokes
problem:

∂tv
k
S + ∇ p − √

ν�vk
S = − Qk,

∇ · vk
S = 0,
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with the zero Dirichlet boundary condition on vk
S and zero initial data. Here, the

remainder Qk is defined by

Qk = (uL · ∇)vk−1
S +

(
vk−1

S · ∇
)

uL +
∑

j+
=k

(
v

j
S · ∇

)
v


S .

We then set

uapp
S =

M∑
k=1

vk
S,

where M is arbitrarily large. By construction uapp
S approximately solves theNavier–

Stokes equations (2.18), leaving an error Rapp
S in the momentum equation. It is then

straightforward to prove that

|uapp
S (t, x, y)| + |∂x uapp

S (t, x, y)| � CνN e�λt e−βy/ν1/4 (2.21)

for some positive constant β, and the remainder Rapp
S satisfies

|Rapp
S (t, x, y)| � Ce−βy/ν1/4

(
νN e�λt

)P
(2.22)

for some positive P , which can be taken to be arbitrarily large (for large enough M
in the construction of the approximate solution).

2.6. Approximate Solution

We are ready to conclude the construction of an approximate solution. Indeed,
introduce

uapp = uL + uapp
S = Us

(√
νt, y

) + uapp
e + ũe + uapp

S (2.23)

with uapp
e , ũe, and uapp

S constructed in the previous subsections. Then, uapp approx-
imately solves the nonlinear Navier–Stokes equations in the following sense:

∂t u
app + uapp · ∇uapp + ∇ p = √

ν�uapp + Rapp
S ,

∇ · uapp = 0,

uapp = 0, on ∂�,

(2.24)

with the remainder Rapp
S satisfying (2.22). We stress that the remainder Rapp

S is
exponentially localized near the boundary with thickness of order ν1/4.

Let us detail the structure of this approximate solution. By construction, we
recall that

‖∂k
x uapp

e (t)‖L∞ � CνN e�λt , ‖∂k
x ũe‖L∞ � C

(
νN e�λt

)P

for k � 0, and recall the estimate (2.21) for uapp
S . This, in particular, yields

‖∂x uapp‖L∞ � CνN e�λt .
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Using divergence-free condition, we thus get the same bound for ∂yuapp
2 , and hence

we obtain the following pointwise bound:

|uapp
2 (t, x, y)| � CνN e�λt y. (2.25)

Let us give a lower bound on the approximate solution. By view of (2.7), there
exists some positive constant c2 so that

‖uapp − Us
(√

νt, ·) ‖L∞ � c2ν
N e�λt (2.26)

for all t � 0, as long as νN e�λt remains sufficiently small (independently of ν).

3. Sublayer Behavior

3.1. Link Between Sublayer and Prandtl Layer

Let uν be the genuine solution to the Navier–Stokes equations, and let uapp be
the approximate solution constructed in the previous section. Set

v = uν − uapp.

It follows that v solves

∂tv + (uapp + v) · ∇v + v · ∇uapp + ∇ p = √
ν�v + Rapp

S ,

∇ · v = 0,
(3.1)

with the zero Dirichlet boundary condition and with an exponentially localized
remainder Rapp

S satisfying

|Rapp
S (t, x, y)| � Ce−βy/ν1/4

(
νN e�λt

)P
. (3.2)

As the source term Rapp
S is located in the sublayer, we expect that v is also

located in the sublayer, provided the vertical transport remains small. Note that
(3.1) describes the behavior of a boundary sublayer of size ν1/4 (and hence of size
ν3/4 in the original variables). Let us make yet another change of variables:

X = x

ν1/4
, Y = y

ν1/4
, T = t

ν1/4
.

Then, in these new variables, (3.1) becomes the (same) Navier–Stokes equa-
tions,with viscosity ν1/4, near an approximate solutionuapp which exhibits a bound-
ary layer behavior. Precisely, uapp is of the form

uapp = uL

(
ν1/4T, ν1/4X, ν1/4Y

)
+ uapp

S (ν1/4T, ν1/4X, Y ),

inwhich the leading term v1S in uapp
S solves the Stokes problem (2.20). The boundary

type approximate solution uapp is very close to a Prandtl’s profile, except that:

• It is slowly evolving in the X direction, on sizes of order ν1/4;
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• There is a small upward velocity, of order ν1/4.

Roughly speaking, equation (3.1) describes the stability of approximate bound-
ary layer solutions, which have small amplitude and slowmodulations of pure shear
layers. It is very likely that if Prandtl layers are stable, so is (3.1), since it is rea-
sonable to believe that any proof of stability for Prandtl layers would bear small
perturbations and slow spatial modulations. As we will see in the next section, this
belief appears to be false.

3.2. Stability of the Sublayer

Let us assume that the sublayer is nonlinearly stable in L∞; namely, we assume
either that ‖v(t)‖L∞ remains sufficiently small or that

‖v(t)‖L∞ � C
(
νN e�λt

)1+β

for t � T 
 and for some β > 0. Note that this notion of stability is very weak,
since we expect β 
 1. Then, the Prandtl layer is nonlinearly unstable, since at
t = T 
 −τ for τ large enough, νN e�λt remains sufficiently small, and hence (2.26)
yields

‖uν − Us‖L∞ � ‖uapp − Us‖L∞ − ‖v‖L∞ � σ0 > 0

for some positive (and small) constant σ0 (independent on ν). The main theorem is
proved.
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