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Abstract

We present a new duality theory for non-convex variational problems, under
possibly mixed Dirichlet and Neumann boundary conditions. The dual problem
reads nicely as a linear programming problem, and our main result states that
there is no duality gap. Further, we provide necessary and sufficient optimality
conditions, and we show that our duality principle can be reformulated as a min–
max result which is quite useful for numerical implementations. As an example,
we illustrate the application of our method to a celebrated free boundary problem.
The results were announced inBouchitté and Fragalà (C RMath Acad Sci Paris
353(4):375–379, 2015).
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1. Introduction

A central issue of Convex Analysis is the development of a duality theory:
this allows for the association of an initial convex variational problem with a dual
problem which has the same extremal value and in many cases is easier to solve;
moreover, solutions to both the primal and the dual problem can be nicely char-
acterized through necessary and sufficient optimality conditions. This is by now a
very classical road, which in the last decades has found applications in different
areas, such as mechanics, optimal control, economics, mass transportation, and
many more. One of the reasons for this is that the duality approach enables one
to set up very stable and efficient approximation schemes. We refer the reader to
the reference monograph [29] for the theoretical framework (see also [10]), and to
[18,38] for more recent surveys including applications and numerical algorithms.

Unfortunately, such theory completely breaks down as soon as some noncon-
vexity appears in the optimization problem under study. In particular, this drawback
is often met in the Calculus of Variations, where even very classical problems in-
volve non-convex energy costs. As no systematic tool is available to characterize
a global optimum, a dramatic consequence is that all currently available numerical
methods lose their efficiency, because they are not able to rule out local minimizers
and detect the global ones.

To have in mind a prototype situation, let us mention for instance the free
boundary problem studied in the seminal paper [2]:

inf

{∫
�

1

2
|∇u|2 dx + λ

∣∣{u > 0}| : u ∈ H1(�), u = 1 on ∂�

}
; (1.1)

the free boundary here being the frontier of the positivity set {u > 0} (see Figure 1).
A huge literature about free boundaries stemmed from the existence and regularity
results proved in [2] (without any attempt at completeness, see for instance [3,
20–22,36,39]). However, these papers are mainly focused on the study of local
minimizers, through the Euler-Lagrange equation and the related free boundary
condition, intended in the variational or in the viscosity sense. To the best of our
knowledge, a systematic way of proceeding evidence for global minimizers for
problem (1.1) is still missing.

We present here a general and rigorous duality framework for non-convex vari-
ational problems, which aims at filling the aforementioned gap. In this respect, the
papers [1,8,32,35,40–42] should be mentioned as being among the few attempts
outside the convex framework. The seminal paper [1], focused on the case of free
discontinuity problems, was a source of inspiration: the explicit construction of
calibrating vector fields for such a class of problems in the spirit of the theory of
Weierstrass fields (see [9,34]) was a decisive breakthrough. Meanwhile, the idea
of exploiting the subgraph approach introduced therein has been developed in a



Duality for Non-convex Variational Problems 363

t

x

1

u = 1

u = 0

Fig. 1. The free boundary problem (1.1)

discrete framework and applied successfully in computer vision [40,41]. More re-
cently, newmulti-label approaches have been studied by the computer vision group
in Munich [35,42]; in these works (all related to the case of the total variation
functional), a vector valued convexification is proposed where the initial problem
involves functions taking values in a discrete set. However, despite the numerical
interest of this approach, it is not clearly established whether the global infimum of
the convex multilabel relaxed functional agrees with that of the original problem.

Thoughout this paper we will consider minimization problems of the form

I := inf

{∫
�

f (u,∇u) dx+
∫

�1

γ (u) dHN−1 : u ∈ W 1,p(�), u=u0 on �0

}
,

(1.2)

where� is an open bounded domain ofRN with a Lipschitz boundary and (�0, �1)

is a partition of ∂�; �0 and �1 correspond, respectively, to the Dirichlet part (the
datum u0 is a given function in W 1,p(�)) and to the Neumann part of the boundary.

The bulk integrand f (t, z), defined for t ∈ R and z ∈ R
N , is assumed to be

lower semicontinuous in both variables, and convex in z, but the key point is that it
may have a non-convex dependence in t .

The boundary integrand γ is assumed to be Lipschitz, and suitable p-growth
conditions are imposed on f and γ to ensure the existence of a minimizer in
W 1,p(�) (for some p > 1).

Clearly, problem (1.1) falls into this general framework, by taking �0 = ∂�,
u0 ≡ 1 and f (t, z) = 1

2 |z|2 + χ(0,+∞)(t), where χ(0,+∞) is the characteristic
function of (0,+∞).

As a further example, one can take f (t, z) := ε|z|2 + W (t) − λt , W being a
two-well potential, ε a small positive parameter, and λ a Lagrange multiplier. In
this case, if �1 = ∂�, problem (1.2) describes the configuration of a Cahn-Hilliard
fluid in presence of a wetting term γ on the whole of the boundary.

For general minimization problems of the form (1.2), the dual problem we
propose is formulated as follows:

I∗ := sup

{∫
Gu0

σ · νu0 dHN +
∫

�1

γ (u0) dHN−1 : σ ∈ B
}

, (1.3)
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and any optimal σ is called a calibration, in analogy to the case of classical principle
of calibration for minimal surfaces (see [1,30,37] and references therein).

The class B of admissible competitors is a family of bounded divergence free
vector fields σ , defined on �×R, which have a given normal trace on �1×R and
satisfy suitable convex pointwise constraints. The first integral appearing in (1.3)
denotes the flux of σ across the graph of the function u0, and it is well-defined as
admissible fields turn out to admit a normal trace on any set with finite perimeter.
We refer to Section 3 for all the details, including the precise statement of the
convex constraints satisfied by the admissible fields, and its comparison with the
classical dual problem in the convex case.

Here let us just give the complete formulation in case of problem (1.1), when
the dual problem reads

I∗ = sup
{
−
∫

�

σ t (x, 1) dx : σ ∈ B
}
. (1.4)

Notice that in this case the integral on �1 is missing (since �0 = ∂�), whereas
the integral on � represents the flux term across the graph of the boundary datum
u0 ≡ 1. Namely, σ t denotes the vertical component of an element σ = (σ x , σ t )

lying in the admissible class B, which for the problem under consideration is given
by all bounded divergence free vector fields on �× R satisfying the constraints

σ t (x, t)+ λ � 1

2
|σ x (x, t)|2 almost everywhere on �× R,

σ t (x, 0) � 0 almost everywhere on �.

Thus problem (1.4) has a nice fluid mechanics interpretation: it consists in max-
imizing the downflow through the top face � × {1} of an incompressible fluid
constrained into the cylinder �×R, whose speed σ satisfies the conditions above,
preventing, in particular, the fluid from passing across the bottom face (see Figure 2,
in which � = (0, 1)2 ⊂ R

2).
Our main result establishes that, in the general setting sketched above and fixed

more precisely in Section 2, there is no duality gap; the infimum I in (1.2) and the
supremumI∗ in (1.3) coincide. The result is stated, alongwith several comments, in
Section3 (seeTheorem3.4), after providing a heuristic description of the underlying
idea, and giving all the required details about the class of admissible fields.

The proof is quite delicate and to it is devoted most of the paper. Here we limit
ourselves to giving just a few hints of it. The approach we adopt is based on the
idea of reformulating the primal problem (1.2) in (N + 1) space dimensions. More
precisely, in the same spirit ofwhatwas done in the paper [1] for theMumford–Shah
functional (see also [24]), the starting point is to identify any admissible function
u : � → R with the characteristic function 1lu of its subgraph. Then the building
block of our method is a convexification recipe, which is carried over in Section 4.
Roughly speaking, it consists of embedding the class A of competitors for the
primal problem (1.2) into an enlarged class Â of functions v defined on � × R

(via the identification u 	→ 1lu), and in constructing a convex functional Ê , which
extends the primal energy E(u) := ∫

�
f (u,∇u) dx+∫

�1
γ (u) dHN−1 to the class



Duality for Non-convex Variational Problems 365

1
2 |σx|2 ≤ λ + σt

σt(x, 0) ≥ 0 x1
x2

t = 1

Fig. 2. The optimal flow problem (1.4)

Â. The key intermediate result (see Theorem 4.1) states that the infimum of the
convex functional Ê over the class Â coincides with I, and that the solutions to the
two problems are closely related to each other. To establish such a result, we exploit
as a crucial ingredient a new very general coarea-type formula (see Theorem 4.10).

The completion of the proof of Theorem 3.4 is postponed until Section 7 (since
this last part is not needed for the comprehension of the contents of Sections 5 and 6).
It is obtained essentially by using convex duality in (N + 1) space dimensions, in
synergy with several ad-hoc arguments, driven from convex analysis and geometric
measure theory, needed to handle the involved functions and fields.

The companion results of our duality theory are presented in Section 5. In
Theorem 5.1 we show that solutions to the primal and to the dual problem can be
characterized through an equality holding on the graph of an optimal function u,
and in Corollary 5.2 we give a practical way to check such a condition in concrete
situations. In Theorem 5.4 we reformulate our duality principle under the form of a
min–max result, and a variant which is conceived especially for numerical purposes
is added in Proposition 5.7.

In Section 6 we exemplify the application of our method to problem (1.1) and
present an overview of the numerical method we used (further details about the
convergence of the algorithm can be found in [31]).

To conclude this introduction, let us stress that this paper aims to give a break-
through by settling the bases of the non-convex duality theory, but of course it cannot
contain the many developments which are expected and which will be studied in
forthcoming works. In particular, the existence of a solution to the dual problem,
that we call a calibration, is a major issue. In the forthcoming paper [15], by using
rearrangement techniques for integrals with non-constant densities, we are going
to provide an existence result for problems with linear growth (for which a variant
of Theorem 3.4 can be established).

As further open problems and possible generalizations, let us mention that our
duality principle may be easily extended to the case when f and γ depend also
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on the spatial variable x . On the other hand, possible adaptations of the same
idea to variational integrals involving the Hessian of u are not straightforward and
deserve further investigation. Finally, our results open the innovative perspective of
studying the stability of minimizers of non-convex functionals by computing their
shape derivatives (in fact, our duality result should allow one to extend successfully
to the non-convex setting the approach recently proposed in [13,14]).

2. Setting of the Primal Problem

Let� be an open bounded domain ofRN , and let (�0, �1) be a partition of ∂�.
We consider as a primal problem the non-convex infimum problem

(P) I := inf
{

E(u) : u ∈ A
}
, (2.1)

where the energy cost is of the form

E(u) :=
∫

�

f (u,∇u) dx +
∫

�1

γ (u) dHN−1, (2.2)

and the class of admissible functions is given by

A :=
{

u ∈ W 1,p(�) : u = u0 on �0

}
, (2.3)

u0 being a fixed element in W 1,p(�).
We work under the setting of hypotheses listed hereafter.
Standing assumptions:
• The boundary ∂� is Lipschitz with the unit outer normal ν�.
• The integrand f = f (t, z) is a function f : R × R

N → (−∞,+∞]
satisfying:

∀t ∈ R, z 	→ f (t, z) is convex; (2.4)

(t, z) 	→ f (t, z) is lower semicontinuous on R× R
N ; (2.5)

∀(t, z) ∈ R× R
N , f (t, z) � α|z|p − C, (2.6)

where p ∈ (1,+∞) and α is a positive constant.
• There exists a Lebesgue negligible set of D ⊂ R such that, for every z ∈ R

N ,
the map t 	→ f (t, z) is upper semicontinuous on R\D, namely

f (t, z) � lim sup
s→t

f (s, z) ∀z ∈ R
N , ∀t ∈ R\D. (2.7)

• γ : R→ R is a Lipschitz function such that γ (0) = 0 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf
t∈R γ (t) > −∞ if �0 �= ∅

lim inf|t |→+∞
γ (t)

|t | > 0 if �0 = ∅.
(2.8)

• The set
{

u ∈ A : E(u) < +∞
}
is not empty.
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Remark 2.1. (i) We emphasize that the function f is not assumed to be convex
in t .

(ii) We point out that, by taking�1 = ∂� and γ = 0, we can handle homogeneous
Neumann boundary conditions. Notice also that the condition γ (0) = 0 is not
restrictive up to adding a constant.

(iii) Allowing a nonempty discontinuity set D of vanishing Lebesgue measure for
the map t 	→ f (t, z) [according to (2.7)] is quite important in order to make
our dualitymethod applicable in case of free boundary problems, cf. Section 6.

(iv) One of the main roles of the growth conditions (2.6) and (2.8) imposed on f
and γ respectively is to ensure the well-posedness of the primal problem, as
stated in the next result.

(v) We stress that, for the validity of Proposition 2.2, it is important to have
chosen p > 1 in (2.6), since for p = 1 the primal problem may fail to admit
a solution; the main reason for this is that in such case the energy E is no
longer lower semicontinuous (whereas coercivity still holds, as it is easy to
see by inspection of the proof below), thus one needs to relax the energy E in
BV (�) (see [28]), which is made extremely delicate by the presence of the
boundary integral in (2.2), in particular when ∂� exhibits corners (see [16]).

On the other hand, with minor modifications in the proof, our duality Theo-
rem 3.4 remains true also in the case p = 1 (provided �0 = ∂�), and this is
precisely the setting in which it seems easier to obtain the existence of a solution
for the dual problem. An existence result for the dual problem in the framework
of nonconvex functionals with linear growth under Dirichlet boundary conditions
will be the topic of a forthcoming paper.

Proposition 2.2. (well-posedness of the primal problem) The infimum I in (2.1) is
finite and attained.

Proof. Since we assumed that the classA of admissible competitors contains some
element u of finite energy, we may apply the direct method of the Calculus of
Variations. Thus we are reduced to showing that, under the standing assumptions,
the energy E defined in (2.2) is both lower semicontinuous and coercive respect to
the weak topology of W 1,p(�).

Theweak lower semicontinuity of thefirst addendumof the functional E follows
well-known results of weak-strong convergence (see for instance [19, Chapter 4]),
which can be applied in particular thanks to the growth conditions (2.6).

The weak lower semicontinuity of the second addendum follows as a conse-
quence of the compact embedding of W 1,p(�) into L p(∂�), by applying Fatou’s
lemma.
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We then focus attention on the coercivity property. We claim that there exists
positive constants C1, C2 such that

E(u) � C1‖u‖W 1,p(�) − C2. (2.9)

In case �1 = ∅, the coercivity follows immediately from the lower bound in (2.6).
In case�1 �= ∅, we further distinguish the cases�0 �= ∅ and�0 = ∅. If�0 �= ∅,

the coercivity follows again from the lower bound in (2.6). If �0 = ∅, the lower
bound in (2.6) tells us merely that un are bounded in W 1,p(�) modulo constants,
but by invoking the second condition in (2.8), we obtain that the boundary traces
of un are bounded in L1(∂�), and hence the constants are bounded. ��

3. The Duality Principle

In this section we present our new duality principle:

– In Section 3.1 we provide an intuitive presentation of the underlying idea;
– In Section 3.2 we introduce the class of admissible fields in the dual problem;
– In Section 3.3 we state the result (see Theorem 3.4), along with some basic

remarks.

3.1. Heuristic Genesis

The original idea, already exploited in [1] for free-discontinuity problems, relies
on geometric measure theory and stems from the so-called calibration method for
minimal surfaces (see [30,37]). It consists in considering a suitable convex setK of
vector fields σ = (σ x , σ t ) : �×R→ R

N+1 satisfying the following requirement:∫
�

f (u,∇u) dx = sup
σ∈K

∫
Gu

σ · νu dHN ∀ u ∈ W 1,p(�). (3.1)

The integral at the right hand side of (3.1), which is well-defined provided σ is
regular enough, represents the flux of σ across the graph Gu of u, seen as a N -
dimensional rectifiable subset of RN+1 and endowed with oriented unit normal

νu = (∇u,−1)√
1+ |∇u|2 . (3.2)
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Given a function u in W 1,p(�) such that u = u0 on �0, we denote by � the
subset of �×R lying between Gu0 and Gu , and by  ⊂ �1 ×R the “lateral part”
of ∂�, namely the set of points (x, t) with x ∈ �1, and t between u0(x) and u(x).
In case N = 1, taking u0 = 0 and u � 0, the region � is represented in Figure 3.1.

Let now σ be a smooth element belonging to a class K verifying (3.1), and
assume that σ satisfies the additional conditions

div σ = 0 in �× R and σ x · ν� = −γ ′ on �1 × R. (3.3)

By applying the divergence theorem on the region �, we obtain
∫

Gu

σ · νu dHN −
∫

Gu0

σ · νu0 dHN =
∫



sign(u − u0) σ · ν� dHN

= −
∫



sign(u(x)

− u0(x)) γ ′(t) dHN−1(x) dt

=
∫

�1

(
γ (u0)− γ (u)

)
dHN−1.

In view of (3.1), and recalling the definition (2.2) of the energy E , we deduce
that

E(u) �
∫

Gu0

σ · νu0 dHN +
∫

�1

γ (u0) dHN−1.

It is then natural to optimize the above inequality by considering the linear
programming problem

sup

{∫
Gu0

σ · νu0 dHN +
∫

�1

γ (u0) dHN−1 : σ ∈ K satisfying (3.3)

}
. (3.4)

Clearly from the above discussion the supremum in (3.4) turns out to be bounded
from above by the infimum I of the primal problem. We have thus found a linear
programming problem which is a good candidate for being the dual problem. To
elect it as such, we have to complete the plan, by choosing K so that the equality
(3.1) holds and the supremum in (3.4) equals I.

Let us now focus our attention on the construction of the classK, by giving some
heuristic arguments (the rigorous definition is postponed to Section 3.2 below).

Assume that σ = (σ x , σ t ) ∈ C1(�×R;RN+1) satisfies the pointwise inequal-
ity

σ t (x, t) � f ∗z (t, σ x (x, t)) ∀(x, t) ∈ �× R, (3.5)

where f ∗z denotes the Fenchel conjugate of f with respect to z:

f ∗z (t, z∗) := sup
z∈RN

[
z · z∗ − f (t, z)

]
.
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By using (3.5) on the graph of u and the Fenchel inequality, we obtain∫
�

f (u,∇u) dx �
∫

�

[
f ∗z (u(x), σ x (x, u(x)))+ f (x,∇u(x))− σ t (x, u(x))

]
dx

�
∫

�

[
σ x (x, u(x)) · ∇u − σ t (x, u(x))

]
dx =

∫
Gu

σ · νu dHN .

The above inequality turns out to optimal, and actually, as will be shown later, ifK
is chosen as the class of fields in C1(� × R;RN+1) satisfying (3.5), not only the
equality (3.1) holds true, but in addition the supremum in (3.4) equals I.

However, the class of competitors we are going to choose in our dual problem
has also to be large enough in order to allow for the existence of optimal fields.
In this respect, it will be clear from the examples considered in Section 6 that one
cannot expect optimal fields to be C1 regular, and not even to be continuous fields
which satisfy the inequality (3.5) pointwise at every (x, t) in �× R.

We are thus led to relax condition (3.5) and to work with fields which are less
regular, but still admit amathematicallymeaningful notion of flux and normal trace.

3.2. The Admissible Fields

We consider the space

X1(�× R) :=
{
σ ∈ L∞(�× R;RN+1) : div σ ∈ L1(�× R)

}
, (3.6)

where the divergence is intended in distributional sense.
For any σ ∈ X1(� × R), a notion of weak normal trace can be defined as

follows: given an open set A ⊂ � × R with Lipschitz boundary and unit outer
normal νA, there exists a unique function σ · νA ∈ L∞(∂ A) such that∫

∂ A
(σ · νA) ϕ dHN =

∫
A

(
σ · ∇ϕ + ϕ div σ

)
dx ∀ϕ ∈ C∞0 (RN × R). (3.7)

The same assertion remains true when A is merely a Lebesgue measurable set with
finite perimeter, provided ∂ A is intended as the reduced boundary of A, and νA as
the measure theoretic unit normal vector defined HN -almost everywhere on ∂ A.

In particular, for any field σ ∈ X1(�×R) and any function u ∈ W 1,p(�), the
flux integral ∫

Gu

σ · νu dHN (3.8)

is well-defined according to (3.7) [to be precise, by taking as a set A the subgraph
of u, we have νA = −νu , with νu given by (3.2)].

For later use, let us notice that, as (3.7) can be extended to all ϕ ∈ L∞(A) ∩
W 1,1(A), a duality argument easily yields the equality

{(− div q, q · νA) : q ∈ X1(A)}

=
{
( f, g) ∈ L1(A)× L∞(∂ A) :

∫
A

f dx +
∫

∂ A
g dHN = 0

}
. (3.9)
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We refer to [6,20] formore details on these topics (see alsoSection4.5,wherewe
shall need to exploit a generalized version of the Gauss-Green Theorem involving
BV functions).

Definition 3.1. (i) We set K the class of fields σ = (σ x , σ t ) ∈ X1(� × R) such
that

σ t (x, t) � f ∗z (t, σ x (x, t)) for LN+1-almost everywhere (x, t) ∈ �× R (3.10)

σ t (x, t) � − f (t, 0) ∀ t ∈ D and for LN -almost everywhere x ∈ �, (3.11)

where D is the Lebesgue negligible set introduced in the standing assumption (2.7).
For the precise meaning of (3.11), we refer to Remark 3.2 below.
(ii) We denote by B the class of fields σ ∈ K satisfying the following two

conditions:

div σ = 0 in �× R (3.12)

σ x · ν� = −γ ′ HN -almost everywhere on �1 × R, (3.13)

where σ x · ν� is meant as the weak normal trace of σ on ∂(� × R) (as ν�×R =
(ν�, 0)).

Remark 3.2. A few comments are in order about condition (3.11), which did not
appear in our previous heuristic discussion. First we observe that, for every fixed
t ∈ D, σ t (·, t) makes sense as the weak normal trace of σ on � × {t} according
to (3.7). In contrast, notice that it would not be meaningful to impose (3.10) on
D×R, as the tangential component σ x (x, t) is not well-defined on such interface.
We shall see later on (cf. Remark 4.14) that condition (3.10) implies (3.11) for
t �∈ D, but, in order to ensure equality (3.1), it is crucial to impose condition (3.11)
on each interface � × {t}, for t ∈ D. To render this fact completely evident, it is
enlightening to compare the two cases of the free boundary problem corresponding
to f1(t, z) = 1

2 z2+χ{t �=0} and of the Dirichlet problem corresponding to f2(t, z) =
1
2 z2 + 1. Since the discontinuity set of f1 is LN+1-negligible, the formultation of
condition (3.10) for f1 and f2 reads exactly the same, while the two problems are
completely different from each other.

Remark 3.3. Conditions (3.10)–(3.11) can be rephrased as

σ(x, t) ∈ K (t) for LN+1-almost everywhere (x, t) ∈ �× R, (3.14)

σ t (x, t) ∈ �N+1[K (t)] ∀ t ∈ D and for LN -almost everywhere x ∈ �,

(3.15)

where K (t) is the convex subset of RN+1 given for every t ∈ R by

K (t) := {q = (qx , qt ) : qt � f ∗z (t, qx )
}
, (3.16)

and �N+1[·] denotes the projection on the last component of RN+1 (that is, on the
space spanned by eN+1 = (0, 1)). In particular, the equivalence between (3.11)
and (3.15) follows from the identity min

z∗
f ∗z (t, z∗) = − f (t, 0).
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3.3. The Dual Problem

Recall that u0 ∈ W 1,p(�) is the prescribed trace on the Dirichlet part �0 of the
boundary [cf. (2.3)], that γ is the energy density on the Neumann part �1 of the
boundary [cf. (2.2)], and that, for every field σ belonging to the class B introduced
in Definition 3.1, the flux across the graph of u0 is well-defined as explained in
Section 3.2. We set

(P∗) I∗ := sup
{ ∫

Gu0

σ · νu0 dHN +
∫

�1

γ (u0) dHN−1 : σ ∈ B
}
. (3.17)

The core of our duality theory is the following:

Theorem 3.4. (duality principle). The extrema of the primal and dual problems
defined respectively in (2.1) and (3.17) coincide:

I = I∗. (3.18)

The proof of the inequality I � I∗ will be given in Section 4.5; it exploits a
generalized Green’s formula and a precise description of the flux (3.8) of vector
fields σ ∈ B. To also obtain the converse inequality requires a quite long process
(see the synopsis of Section 4), which will be carried over in Section 7.

Several comments about Theorem 3.4 are listed in the next remarks.

Remark 3.5. In the pure Neumann case when �0 = ∅ (so that the boundary datum
u0 is not defined), definition (3.17) must be intended as if u0 = 0, namely I∗ can
be reformulated as (cf. [12])

I∗ = sup
{
−
∫

�

σ t (x, 0) dx : σ ∈ B
}
.

Remark 3.6. In many cases, when the boundary datum u0 is a bounded function,
there exist a priori lower or upper bounds for the minimizers of the primal problem
(P), so that the infimum value I is unchanged if we impose u to take values in a
suitable closed interval [m, M]of the real line.Weare thus led to consider the variant
of the primal problem (2.1) where the class of admissible functions is changed into

A(m, M) :=
{

u ∈ W 1,p(�; [m, M]) : u = u0 on �0

}
. (3.19)

In this case, our duality result continues to hold (with a simpler proof, see Proposi-
tion 5.7), provided the admissible fields in the dual problem (P∗) are taken in the
class B(m, M) of elements σ ∈ X1(�× (m, M)) satisfying

σ t (x, t) � f ∗z (t, σ x (x, t)) for LN+1-almost everywhere (x, t) ∈ �× (m, M)

(3.20)

σ t (x, t) � − f (t, 0) ∀ t ∈ D ∪ {m, M} and for LN -almost everywhere x ∈ �

(3.21)

div σ = 0 in �× (m, M) (3.22)

σ x · ν� = −γ ′ on �1 × (m, M). (3.23)
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This reduction of the dual problem to a bounded set will be of course crucial in
the implementation of efficient algorithms for the numerical approximation of its
solutions.

Remark 3.7. In general the solution to the dual problem (P∗) is not unique (see
Section6).However, if the infimumof (P) is reached inA(m, M) and the supremum
of (P∗) is reached in B(m, M), then a unique solution to (P∗) can be selected by
considering the Tikhonov regularization

(Pε
∗) sup

{∫
Gu0

σ · νu0 dHN +
∫

�1

γ (u0)

− ε

∫
�×(m,M)

|σ |2 dx : σ ∈ B(m, M)

}
.

As ε → 0, we are led to the solution of minimal L2-norm.

Remark 3.8. In case that the integrand f is convex in (t, z), the inequality I∗ � I
(which is the most delicate part in the proof of Theorem 3.4) is a straightforward
consequence of classical duality theory. To see this, consider vector fields of the
form σ(x, t) = (η(x), a(x)− t div η(x)). For such fields, the inequality σ t (x, t) �
f ∗z (t, σ x (x, t)) is satisfied if and only if

a(x) � sup
t

{
t div η(x)+ f ∗z (t, η)

} = sup
(z,t)

{
t div η + z · η − f (t, z)

}

= f ∗(div η, η).

We deduce that B contains the class � given by fields of the form σ(x, t) =
(η(x), a(x)−t div η(x)), with η ∈ C1(�;RN ), η·ν� = −γ ′ on�1, and a ∈ C0(�),
a(x) � f ∗(div η, η) in �× R. Therefore,

I∗ � sup
{ ∫

�

−σ t (x, 0) dx : σ ∈ �
}

= sup
{ ∫

�

− f ∗(div η, η) dx : η ∈ C1(�;RN ), η · ν� = −γ ′ on �1

}
.

(3.24)

The variational problem in the last line is the classical dual problem of (P), and its
supremum coincides with I by standard convex duality (see for instance [10,29]).

Remark 3.9. In case N = 1, when the variational problem (P) is settled on an
interval (0, h) of the real line, every competitor σ in the dual problem is a bounded
divergence free vector field on (0, h)×R, so that it can been written under the form
σ = (∂tw,−∂xw), for some function w ∈ Lip((0, h) × R). For instance, in the
pure Dirichlet case �0 = {0, h} with boundary conditions u(0) = u(h) = c, when
the primal problem reads

I = inf

{∫ h

0
f (u, u′) dt : u ∈ H1(0, h), u(0) = u(h) = c

}
, (3.25)
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the dual problem (3.17) written in terms of rotated gradients becomes

I∗ = sup
{
w(h, c)− w(0, c) : w ∈ Lip((0, h)× R),

− ∂xw � f ∗z (t, ∂tw) L2-almost everywhere on (0, h)× R,

− ∂xw � − f (t, 0) ∀t ∈ D, L1-almost everywhere on (0, h)
}
.

(3.26)

Notice that problem (3.26) looks like the dual formulation of the Monge-
Kantorowich transport problem, with marginals equal to the Dirac masses at (0, c)
and (h, c), and a modified gradient constraint with respect to the usual one |∇w| �
1.

Inspired by dynamic programming and optimal control, as suggested by the
core of the proofs in [24], a natural candidate to solve (3.26) is the value function

V (x, t) := inf

{∫ x

0
f (u, u′) ds : u ∈ H1(0, h), u(0) = c, u(x) = t

}
, (3.27)

or equivalently, a possible candidate for calibration is the rotatedgradient (−∂t V, ∂x V ).
Indeed, if V is admissible in (3.26), it is automatically optimal. Namely, I∗ �

V (h, c) − V (0, c) = I and by Theorem 3.4 the first inequality holds necessarily
as an equality.

Thus the key point is to check the admissibility of V in problem (3.26). By using
Bellman’s optimality principle (see for instance [23, Theorem 1.2.2]), it is easy to
check that V satisfies the constraints asked in (3.26) at every differentiability point.
Unfortunately, it fails to satisfy the last important requirement of being Lipschitz
regular close to s = 0. In Section 6 we shall be back to this phenomenon in
connection with a relevant example of a free boundary problem.

4. Convexification Recipe

The synopsis of this section is the following:

– In Subection 4.1 we introduce a convex functional Ê , defined in onemore space
dimension, of the form H + �, with H and � conceived respectively with the
aim of extending the bulk and the surface parts of the primal non-convex energy
E ; then we state the main result of the section (Theorem 4.1), which makes the
link between the primal problem (2.1) and a minimization problem for Ê .

– In Section 4.2 we provide an integral representation result for H .
– In Section 4.3 we state a generalized coarea formula, which turns out to be sat-
isfied in particular by H (as it can be seen thanks to its integral representation).

– In Section 4.4 we prove Theorem 4.1 (by using in particular a slicing formula
for Ê which follows from the coarea formula for H ).

– In Section 4.5 we prove the inequality I � I∗, which is the easiest half of
Theorem 3.4. The detailed proof of the reverse inequality is given in Section 7.
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4.1. Construction of the Convex Extension of the Primal Energy

As enlightened by the heuristics given in Section 3.1, the basic idea of our
duality method is to consider the flux of suitable fields across the graph of functions
u admissible in the primal problem, and, along theway, we are naturally led to apply
the divergence theorem on subgraphs.

Let us now fix these ideas in a systematic setting, and develop them into the pro-
posal of a convexification recipe that consists of extending the non-convex energy
introduced in (2.2) to a convex functional defined in one more space dimension.

Any element u of H1(�) can be identified with a function in one more dimen-
sion, given by the characteristic function 1lu of its subgraph, defined on � × R

by

1lu(x, t) :=
{
1 if t � u(x)

0 if t > u(x).

Notice that 1lu is not in L1(�× R), but merely in L1
loc(�× R).

Our target is to find a convex lower semicontinuous functional Ê : L1
loc(� ×

R) → R ∪ {+∞} and a suitable subclass Â of L1
loc(�× R) such that

– for every u ∈ A, it holds 1lu ∈ Â and Ê(1lu) = E(u);
– the infimum I in (2.1) can be recast by minimizing Ê over the class Â.

To this end we are going to consider separately the bulk part and the surface
part of the energy E .

We start by recalling that, for any u ∈ W 1,p(�) (and actually more in general
for any u ∈ BV (�)), its subgraph is a set with finite perimeter [33, p. 371], or
equivalently, D1lu belongs to the spaceM(�×R;RN+1) of vector valued bounded
measures on �×R. However, 1lu does not belong to BV (�×R), since as already
noticed, it is not in L1(�×R), but merely bounded.We can thus say that 1lu belongs
to the following subspace of L1

loc(�× R):

BV∞(�× R) :=
{
v ∈ L∞(�× R) : Dv ∈M(�× R;RN+1)

}
. (4.1)

For any v ∈ BV∞(�×R) and any σ in the space X1(�×R) defined in (3.6),
a pairing σ · Dv can be defined as the following linear functional, which turns out
to be a Radon measure on �× R (see [6, Thm 1.5 and Corollary 1.6])

〈(σ · Dv), ϕ〉 := −
∫

�×R
v (σ · ∇ϕ + ϕ div σ) dx ∀ϕ ∈ C∞0 (�× R). (4.2)

Moreover this measure is absolutely continuous with respect to |Dv| and satisfies
∫

�×R
|(σ · Dv)| ≤ ‖σ‖∞

∫
�×R

|Dv| . (4.3)

Notice that definition (4.2) reduces to (3.7) in the special case when v is the char-
acteristic function of a set A ⊂ �× R with finite perimeter.
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We are now in a position to define on L1
loc(� × R) the following functional,

which will give the required convex extension of the bulk part of the energy E :

H(v) :=
⎧⎨
⎩
sup
{ ∫

�×R
σ · Dv : σ ∈ K

}
if v ∈ BV∞(�× R)

+∞ otherwise.
(4.4)

Let us mention that this expression of H(v) was firstly introduced in [24], and also
appeared in [40,41] (even if therein σ belongs to a different class of more regular
fields).

An integral representation result for H will be proved in Section 4.2 below.
In particular, such a result will disclose the crucial information that any function
v ∈ L1

loc(� × R) lying in the finiteness domain of H satisfies a monotonicity
condition, namely,

H(v) < +∞ ⇒ for LN -almost everywhere

x ∈ �, the map t 	→ v(x, t) is decreasing. (4.5)

We infer that, if H(v) < +∞, forLN -almost everywhere x ∈ � andL1-almost
everywhere s ∈ (0, 1), the set {τ ∈ R : v(x, τ ) � s

}
is a nonempty half-line, and

we can define for later use the function

us(x) := inf
{
τ ∈ R : v(x, τ ) � s

}
. (4.6)

Notice that, by construction, the subgraph of us agrees up to a Lebesgue negligible
set with the level set {τ ∈ R : v(x, τ ) > s}, namely

1lus (x, t) = χ{v>s}(x, t) for LN+1-almost everywhere (x, t) ∈ �× R. (4.7)

Nextwe turn our attention to extend also the surface part of the energy E . To that
end we observe that, though 1lu �∈ L1(�×R), it becomes integrable after a suitable
translation. Indeed, since u is almost everywhere finite, for almost everywhere
x ∈ � the map t 	→ 1lu(x, t) is monotone decreasing, with

1lu(x,−∞) = 1 and 1lu(x,+∞) = 0.

We are thus led to introduce the reference function

v0(x, t) :=
{
1 if t � 0

0 if t > 0.
(4.8)

The equality

∫
R

|1lu(x, t)− v0(x, t)| dt = |u(x)|

implies that 1lu − v0 ∈ L1(�× R) as soon as u ∈ L1(�).
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We infer that the classA introduced in (2.3) can be embedded, through the map
u 	→ 1lu , into the class

Â :=
{
v ∈ BV∞(�× R) : v − v0 ∈ L1(�× R), v − 1lu0 = 0 on �0 × R

}
,

(4.9)

where the last equality is intended in the sense of traces.
Notice in particular that, for every v ∈ Â, the function v−v0 is in BV (�×R),

so that it has a L1-trace on �1 × R.
We are then in a position to define on L1

loc(� × R) the following functional,
which will give the required convex extension of the surface part of the energy E :

�(v) :=
⎧⎨
⎩
∫

�1×R
γ ′(t)(v − v0) dHN−1 dt if v ∈ Â

+∞ otherwise.
(4.10)

Finally, we set

Ê(v) := H(v)+ �(v) ∀v ∈ L1
loc(�× R). (4.11)

The next result states that the functional Ê and the class Â thus defined fit
exactly the target conditions demanded at the beginning of this section.

Theorem 4.1. (link between the initial non-convex problem and its convex exten-
sion) There holds

Ê(1lu) =
⎧⎨
⎩

E(u) if u ∈ W 1,p(�)

+∞ if u ∈ BV (�)\W 1,p(�)
(4.12)

inf
{

E(u) : u ∈ A
}
= inf

{
Ê(v) : v ∈ Â

}
. (4.13)

Moreover, both the infima in (4.13) are finite and attained, and

– if u ∈ argminA(E), then 1lu ∈ argminÂ(Ê);
– if v ∈ argminÂ(Ê), then us ∈ argminA(E) for L1-almost everywhere s ∈

(0, 1) [with us as in (4.6)].

In particular, if the primal problem inf{E(u) : u ∈ A} admits a finite number
of solutions {u1, . . . , uk}, then

argminÂ(Ê) =
{

k∑
i=1

θi1lui ,
∑

i

θi = 1 , θi ≥ 0

}
, (4.14)

meaning that solutions v are piecewise constant functions.

Remark 4.2. As kindly pointed out by one of the referees, the statement of The-
orem 4.1 can be slightly improved. In fact, by using the continuity from the right
of the map [0, 1] � s 	→ us in L1(�), and the L1-lower semicontinuity of the
functional E , it can be proved that us ∈ argminA(E) for every s ∈ [0, 1).
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Results in the same spirit as Theorem 4.1 can be found in [1,24,40] for free
discontinuity problems of Mumford–Shah type, [27,42] for the specific case of
the total variation, and [41] for more general integrands f (x, u,∇u) but with a
continuity assumption in u which does not allow tackling free boundary problems
as we do in the present work.

The proof of Theorem 4.1 will be given in Section 4.4, after developing the
necessary tools in Sections 4.2 and 4.3.

4.2. Integral Representation of H

Let us introduce the one-homogeneous convex integrand h f which will appear
in the integral representation of H . Such integrand has been already used in several
previous works exploiting the classical identification between BV functions and
subgraphs of finite perimeter (see for instance [28]). Its definition reads as follows:

Definition 4.3. For (t, q) ∈ R× R
N+1, we set

h f (t, q) :=

⎧⎪⎨
⎪⎩
−qt f

(
t,−qx/qt

)
if qt < 0

+∞ if qt > 0 or qt = 0, qx �= 0

0 if (qx , qt ) = (0, 0).

(4.15)

The above definition will look more natural recalling that it takes its origins
in Convex Analysis, as it corresponds precisely to the support function of the
epigraph of the Fenchel conjugate f ∗z (t, ·), namely of the set K (t) introduced in
(3.16) (see [43, Section 13]). For the convenience of the reader, this and the other
main properties of h f are stated below.

Lemma 4.4. (properties of h f ). The function h f is lower semicontinuous in (t, q)

and convex, positively 1-homogeneous in q.
Moreover, h f (t, ·) is the support function of the convex set K (t) introduced

in (3.16), or equivalently the Fenchel conjugate of the indicatrix function IK (t)(·)
(which equals 0 on K (t) and +∞ outside):

h f (t, q) = sup
{
q · q̃ : q̃ ∈ K (t)} = I ∗K (t)(q). (4.16)

In particular, the map t 	→ K (t) defines a lower semicontinuous multifunction
(meaning that

{
t ∈ R : K (t)∩ A �= ∅} is open for every open subset A of RN+1).

Proof. Since by assumption f is lower semicontinuous in (t, z), it is clear that
h f is l.s.c. at any (t, q) with qt < 0. Let us assume that qt � 0, and let (tn, qn)

be a sequence converging to (t, q), with lim infn→∞ h f (tn, qn) = l ∈ [0,+∞)

(otherwise there is nothing to prove). Then, possibly passing to a subsequence, for
every n it holds qt

n � 0, hence qt = 0. Recalling the growth condition from below
satisfied by f , we infer that

|qt
n|
(
α

∣∣∣qx
n

qt
n

∣∣∣p − r(tn)
)

� l,

and therefore we also have that qx = 0, so that h f (t, q) = 0 � l.
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It is immediately apparent from the definition of h f that h f (t, ·) is positively
1-homogeneous. The proof of equality (4.16), which in particular implies the con-
vexity of h f (t, ·), can be found in [43, Corollary 13.5.1], but for the sake of com-
pleteness we sketch it below. By definition, it holds that

I ∗K (t)(q) = sup
(q̃ x ,q̃ t )

{
(qx · q̃ x + qt q̃t ) : q̃ t � f ∗z (t, q̃ x )

}
.

It is immediately seen the above supremum is 0 in case qt = |qx | = 0, and+∞ in
case qt > 0 or qt = 0, qx �= 0. In case qt < 0, it holds that

sup(q̃ x ,q̃ t )

{
(qx · q̃ x + qt q̃t ) : q̃ t � f ∗z (t, q̃ x )

}
= sup

q̃ x

{(
qx · q̃ x + qt f ∗z (t, q̃ x )

)
: q̃ x ∈ R

N
}

= −qt sup
q̃ x

{(
− qx

qt
· q̃ x − f ∗z (t, q̃ x )

)
: q̃ x ∈ R

N
}

= −qt f
(

t,− qx

qt

)
.

Finally, the lower semicontinuity of the multifunction t 	→ K (t) follows from [17,
Theorem 17]. ��

As a last ingredient, let us recall that one-homogeneous convex integrands such
as h f can be integrated in the sense of measures. More precisely, for any bounded
vector-valued measure λ ∈M(�×R;RN+1), the integral of h f (t, λ) is meant as

∫
�×R

h f (t, λ) :=
∫

�×R
h f

(
t,

dλ

d|λ|
)
d|λ|,

where |λ| is the total variation measure of λ.
Such convex one-homogeneous functional on measures has been studied in

[17]. In particular, it can be characterized in terms of the duality 〈 , 〉 between
M(�× R;RN+1) and C0(�× R;RN+1) according to the next lemma.

Lemma 4.5. There holds∫
�×R

h f (t, λ)

= sup
{
〈λ,ψ〉 : ψ ∈ C0(�× R;RN+1), ψ(x, t) ∈ K (t) on �× R

}
. (4.17)

Moreover, the equality above is still true if the supremum at the right hand side is
restricted to functions ψ ∈ D(�× R;RN+1).

Proof. It is easy to check that the supremum at the right hand side of (4.17) is not
larger than

∫
�×R h f (t, λ). This follows by applying the inequality h f (t, q) � q · q̃ ,

holding for every q̃ ∈ K (t), with q = dλ
d|λ| and q̃ = ψ .

Therefore, the proof of the lemma is concluded if we show that∫
�×R

h f (t, λ) = sup
{
〈λ,ψ〉 : ψ ∈ 

}
, (4.18)
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with

 :=
{
ψ ∈ D(�× R;RN+1), ψ(x, t) ∈ K (t) on �× R

}
.

Clearly, in (4.18) we can replace  by its closure  (in the uniform norm of
C0(�×R;RN+1)). Then, according to [17, Theorem 5], in order to prove (4.18) it
is enough to establish that

 =
{
ψ ∈ C0

(
�× R;RN+1), ψ(x, t) ∈ K (t) on �× R

}
.

As  is C∞-convex, we may apply [17, Proposition 10], yielding

 =
{
ψ ∈ C0

(
�× R;RN+1), ψ(x, t) ∈ �(x, t) on �× R

}
,

with

�(x, t) := {ψ(x, t) : ψ ∈ 
}
.

Thus we are reduced to proving the equality K (t0) = �(x0, t0) for every (x0, t0) ∈
� × R. Since K (t0) is closed, it is immediately apparent that �(x0, t0) ⊆ K (t0).
Conversely, let z ∈ int(K (t0)). There exists δ > 0 such that, for |t − t0| < δ,
we have z ∈ K (t) (see [17, Lemma 15]), and consequently the whole interval
[0, z] lies in K (t) for |t − t0| < δ. Then we define ψ(x, t) := zα(x)βδ(t), being
α ∈ D(�; [0, 1]), βδ ∈ D(R; [0, 1]) with spt(βδ) ⊂ [t0 − δ, t0 + δ], and α(x0) =
β0(t0) = 1. It is easy to check that the function ψ belongs to , and hence z ∈
�(x0, t0). Since �(x0, t0) is closed, and K (t0) coincides with the closure of its
interior, we have proved that �(x0, t0) ⊇ K (t0). ��

We are now ready for the integral representation result.

Proposition 4.6. (integral representation of H ). For every v ∈ BV∞(�× R), the
functional H defined in (4.4) satisfies the equality

H(v) =
∫

�×R
h f (t, Dv).

Proof. In view of the definition (4.4) of the functional H and of Lemma 4.5, for
every v ∈ BV∞(�× R) there holds

H(v) � sup

{∫
�×R

σ · Dv : σ ∈ K ∩D
(
�× R;RN+1)} =

∫
�×R

h f (t, Dv).

To obtain also the converse inequality we have to show that, for every σ ∈ K and
every v ∈ BV∞(� × R), there holds

∫
�×R σ · Dv �

∫
�×R h f (t, Dv). This is

established in the lemma below which completes our proof. ��
Lemma 4.7. (lower bound for H ). For every σ ∈ K and every v ∈ BV∞(�×R),
there holds ∫

�×R
σ · Dv �

∫
�×R

h f (t, Dv).
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Proof. The lemma will be obtained by showing separately the following two in-
equalities: ∫

�×(R\D)

σ · Dv �
∫

�×(R\D)

h f (t, Dv) (4.19)

∫
�×D

σ · Dv �
∫

�×D
h f (t, Dv). (4.20)

In order to prove (4.19), we need to exploit some facts established in [5,6] (see
also [11]). Recall that, for every σ ∈ K and v ∈ BV∞(�×R), the measure σ · Dv

defined in (4.2) is absolutely continuous with respect to |Dv| [cf. (4.3)]. Moreover,
setting νv := d(Dv)

d|Dv| , the Radon–Nikodym derivative of σ · Dv with respect to |Dv|
is given by

d(σ · Dv)

|Dv| = qx (x, t, νv) |Dv|-almost everywhere in �× R, (4.21)

where qσ : �× R× SN → R is the Borel function given by

qσ ((x, t), ζ )

:= lim sup
ρ→0+

lim sup
r→0+

1

LN+1(Cr,ρ((x, t), ζ )
)
∫

Cr,ρ ((x,t),ζ )

σ (y, s) · ζ dLN+1,

defined through the averages on the cylinders

Cr,ρ((x, t), ζ ) :=
{
(y, s) ∈ R

N+1 : |(y − x, s − t) · ζ |
� r,

∣∣(y − x, s − t)− ((y − x, s − t) · ζ )ζ ∣∣ � ρ
}

of axis ζ ∈ SN , height 2r , and radius ρ.
In view of (4.21), we can rewrite (4.19) as∫

�×(R\D)

qσ

(
(x, t), νv

)
d|Dv| �

∫
�×(R\D)

h f (t, νv) d|Dv|. (4.22)

We observe that

qσ ((x0, t0), ζ ) � h+f (t0, ζ ) := lim sup
t→t0

h f (t, ζ ) ∀(x0, t0)∈�×R, ∀ζ ∈ SN .

(4.23)

Namely, since σ satisfies condition (3.10) [or equivalently (3.14)], by Lemma 4.4
it holds that

σ(x, t) · ζ � h f (t, ζ ) for LN+1-almost everywhere (x, t) ∈ �× R.

By taking the mean value over the cylinder Cr,ρ((x0, t0), ζ ), and passing to the
limsup as ρ and r converge to zero, we obtain

qσ ((x0, t0), ζ )

� lim sup
ρ→0+

lim sup
r→0+

1

LN+1(Cr,ρ((x0, t0), ζ )
)
∫

Cr,ρ ((x0,t0),ζ )

h f (t, ζ ) dLN+1

� h+f (t0, ζ ).



382 Guy Bouchitté & Ilaria Fragalà

Now we notice that, thanks to our hypothesis (2.7), we have

h+f (t, ζ ) = h f (t, ζ ) ∀t ∈ R\D, ∀ζ ∈ SN . (4.24)

The required inequality (4.22), and thus (4.19), follows from (4.23) and (4.24).
Let us now prove inequality (4.20). We observe that

0 =
∫

D

(∫
�

|Dxv(·, t)|
)

dt =
∫

�×D
|Dxv|,

where the first equality follows from the assumption L1(D) = 0, and the second
one from the slicing formula for BV functions (see [4, Section 3.11]). Hence,

νv = d(Dxv)

d|Dv| = −eN+1 |Dv|-almost everywhere on �× D. (4.25)

Therefore, by (3.11), it holds that

d(σ · Dv)

d|Dv| = −σ t (x, t) � f (t, 0)

= h f

(
t,

dDv

d|Dv|
)

|Dv|-almost everywhere on �× D.

The inequality (4.20) follows by integrating on �× D. ��

4.3. Generalized Coarea Formula

Let A be an open subset ofRd . For every function v ∈ L1
loc(A) and every s ∈ R,

let χ{v>s} denote the characteristic function of the set {v > s}, that is

χ{v>s}(x) :=
{
1 if v(x) > s

0 if v(x) � s.

Following the terminology introduced in [44], we give

Definition 4.8. We say that a functional J : L1
loc(A) → [0,+∞] satisfies the

generalized coarea formula if for every u ∈ L1
loc(A) the function s 	→ J (χ{v>s})

is Lebesgue-measurable on R and there holds

J (v) =
∫ +∞

−∞
J (χ{v>s}) ds ∀v ∈ L1

loc(A). (4.26)

Remark 4.9. It is readily seen that the following conditions are necessary in order
that a functional J : L1

loc(A) → [0,+∞] satisfies the generalized coarea formula:

– J is positively 1-homogeneous (that is J (λv) = λJ (v) for all v ∈ L1
loc(A) and

λ � 0);
– J (χA) = 0.
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Indeed, the 1-homogeneity is immediately obtained via a change of variable in
(4.26), whereas the second property follows by applying (4.26) to v = χA, which
gives J (χA) = ∫ 1−∞ J (χA) dt .

The next result establishes sufficient conditions in order that a functional J
satisfies the generalized coarea formula. Its proof is postponed to Section 7.

Theorem 4.10. (generalized coarea formula) Let J : L1
loc(A) → [0,+∞] be pos-

itively 1-homogeneous and such that J (χA) = 0. Assume in addition that J is con-
vex, lower semicontinuous, and satisfies the following property: if {αi }1�i�k is a

family of functions inC∞(R; [0, 1]) with
∑k

i=1 αi ≡ 1, setting βi (t) :=
∫ t
0 αi (s) ds,

it holds that

k∑
i=1

J (βi ◦ v) � J (v) ∀v ∈ L1
loc(A). (4.27)

Then J satisfies the generalized coarea formula.

Remark 4.11. It is easy to check that the functional J : L1
loc(A) → [0,+∞]

defined by
∫

A |Dv| if u ∈ BV (A) and +∞ otherwise fulfills all the hypotheses of
Theorem 4.10. Hence J satisfies the generalized coarea formula, which allows to
recover the classical coarea formula

∫
A |Dv| = ∫ +∞−∞ Per({v > t}) dt holding for

every function u ∈ BV (A) (see for example [4, p.145]).

Theorem 4.10 applies in particular to the functional H , as stated in the next
result (which in a less general variant can already be found in [41]).

Proposition 4.12. (coarea formula for H ) The functional H satisfies the general-
ized coarea formula.

Proof. Let us check that H satisfies all the assumptions of Theorem 4.10. It is clear
from definition (4.4) that H is positively 1-homogeneous, convex, lower semicon-
tinuous, and satisfies H(χ�×R) = 0. It remains to check that, if {αi }1�i�k is a

family of functions in C∞(R; [0, 1]) with∑k
i=1 αi ≡ 1, and βi (t) :=

∫ t
0 αi (s) ds,

the inequality (4.27) holds. To that end we may assume without loss of generality
that H(v) < +∞, namely thatv ∈ BV∞(�×R).Weobserve thatv ∈ BV∞(�×R)

implies χ{v>s} ∈ BV∞(�×R) for L1-almost everywhere s ∈ R. Then, according
to Proposition 4.6, we have to prove that

∫
�×R

h f (t, Dv) �
k∑

i=1

∫
�×R

h f (t, D(βi ◦ v)). (4.28)

Denoting by D̃v the diffuse part of the measure Dv (namely the sum of the abso-
lutely continuous part plus the Cantor part), by the chain rule formula [4, Theorem
3.96], for every i = 1, . . . , k, the function βi (v) belongs to BV∞(� × R) and it
holds that

D(βi (v)) = αi (v)D̃v +
(∫ v+(x,t)

v−(x,t)
αi (s) ds

)
νv(x, t)dHN Jv.
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Then, since αi are nonnegative functions and h f (t, ·) is positively 1–homogeneous,
we have

∫
�×R

h f (t, D(βi ◦ v)) =
∫

�×R
αi (v)h f (t, D̃v)

+
∫

Jv

(∫ v+(x,t)

v−(x,t)
αi (s) ds

)
h f (t, νv(x, t))dHN .

Summing over i , and recalling that
∑k

i=1 αi ≡ 1, we deduce that (4.28) is satisfied
with equality sign. Thus (4.27) holds, we are in a position to apply Theorem 4.10,
and we obtain that H satisfies the generalized coarea formula. ��

4.4. Proof of Theorem 4.1

We are going to prove the theorem in two steps. In the first step we prove
the equality (4.12), and in the second one we prove the equality (4.13) and the
subsequent part of the statement. For the second step we need a slicing formula for
the functional Ê (stated in Proposition 4.13 below), which is obtained thanks to the
the coarea formula for H proved in the previous subsection.

Step 1 (Proof of (4.12)). Let us show separately the two equalities

∫
�×R

h f (t, D1lu)=
⎧⎨
⎩
∫

�

f (u,∇u) dx if u∈W 1,p(�)

+∞ if u∈ BV (�)\W 1,p(�),

(4.29)∫
�1×R

(1lu − v0)γ
′(t) dHN−1(x)=

∫
�1

γ (u)dHN−1(x) ∀u ∈ BV (�) (4.30)

In order to show (4.29) it will be useful to recall few basic facts about subgraphs
of BV functions. For any u ∈ BV (�), the singular set of 1lu , or equivalently the
measure theoretic boundary of the subgraph of u, is called the complete graph of
u, and is denoted by �u . Moreover, we set ν�u the inward unit normal to �u . In
particular, we have

D1lu = ν�u d
(
HN �u

)
,

and
∫

�×R
h f (t, D1lu) =

∫
h f (t, ν�u ) d

(
HN �u

)
.

By writing D1lu as the sum of the two measures

D1lu (Ju × R) and D1lu ((�\Ju)× R),
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where Ju denotes the jump set of u, one obtains a decomposition of �u into a
“vertical part” plus an “approximately continuous part”. On the vertical part, ν�u

is horizontal, and it is given by

ν�u (x, t) = (νJu (x), 0
)
. (4.31)

On the approximately continuous part, denoting by u+(x) = aplimsupy→x u(y),
ν�u is given by

ν�u (x, u+(x)) = (∇u(x),−1)√
1+ |∇u(x)|2 (4.32)

if u is approximately differentiable at x (with approximate gradient ∇u(x)), and it
is horizontal otherwise (namely at points corresponding to the Cantor part of Du).
We refer to [33, Section 4.1.5] for a detailed account of these properties.

In particular, when dealing with functions u ∈ W 1,p(�), the complete graph
�u agrees with the usual graph Gu , and νu(x, u(x)) = ν�u (x, u+(x)).

Then, from the explicit expression (4.15) of h f and the fact that ν�u is horizon-
tal except at point (x, u(x)) where u is approximately differentiable, we see that∫
�×R h f (t, D1lu) is finite only if u ∈ W 1,1(�). In this case, the measure D1lu is
given by νuHN Gu , and we have∫

�×R
h f (t, D1lu) =

∫
�u

h f (t, νu) dHN .

Since the Jacobianof themapping� � x 	→ (x, u(x)) ∈ �u is givenby
√
1+ |∇u|2

and since h f (t, ·) is positively 1-homogeneous, via change of variable we get∫
Gu

h f (t, νu) dHN =
∫

�

h f (u(x), (∇u(x),−1)) dx .

Now, by using the definition (4.15) of h f , it is immediate to check that the right-hand
side of the above equality agrees with

∫
�

f (u,∇u) dx , which yields (4.29).
The identity

(1lu − v0) =
{
1l[0,u(x)] if u(x) > 0

−1l[u(x),0] if u(x) < 0,

together with γ (0) = 0, yields∫
R

(1lu − v0)γ
′(t) dt = γ (u). (4.33)

We obtain (4.30) after an integration over �1. The identity (4.12) follows by adding
(4.29) and (4.30). ��
Proposition 4.13. For every v ∈ Â such that Ê(v) < +∞, there holds

Ê(v) =
∫ 1

0
Ê(χ{v>s}) ds =

∫ 1

0
Ê(1lus ) ds =

∫ 1

0
E(us) ds, (4.34)

where us is as in (4.6).
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Proof. Let v ∈ Â be such that Ê(v) < +∞. We claim that the following holds:

�(v) =
∫ 1

0
�(χ{v>s}) ds =

∫ 1

0
�(1lus ) ds =

∫ 1

0

∫
�1

γ (us) dHN−1 ds. (4.35)

Notice that the second and the third equalities in (4.35) are satisfied in view of (4.7)
and (4.12). Thus we have just to prove the first equality, which can be rewritten as

∫
�1×R

γ ′(t)(v − v0) dHN−1 dt =
∫ 1

0

{∫
�1×R

γ ′(t)(χ{v>s} − v0) dHN−1 dt

}
ds.

We write

�(v) =
∫

�1×R+
v(x, t)γ ′(t) dHN−1 dt−

∫
�1×R−

[1− v(x, t)]γ ′(t) dHN−1 dt

�(χ{v>s}) =
∫

�1×R+
χ{v>s}(x, t)γ ′(t) dHN−1 dt

−
∫

�1×R−
[1− χ{v>s}(x, t)]γ ′(t) dHN−1 dt.

Nowweobserve that, since v−v0 ∈ L1(�×R), and v(x, ·) is nonincreasing, v takes
values into [0, 1]. Any function w with values in [0, 1] can be written as w(x) =∫ 1
0 χ{w>s} ds (which is commonly called layer cake representation formula). Then,
by applying Fubini Theorem separately to the integrals over �1 × R+ and over
�1 × R−, we have:

∫
�1×R+

v(x, t)γ ′(t) dHN−1 dt

=
∫ 1

0
ds
∫

�1×R+
χ{v>s}(x, t)γ ′(t) dHN−1 dt

∫
�1×R−

[1− v(x, t)]γ ′(t) dHN−1 dt

=
∫ 1

0
dτ

∫
�1×R−

χ{1−v>τ }(x, t)γ ′(t) dHN−1 dt

=
∫ 1

0
ds
∫

�1×R−
[1− χ{v>s}(x, t)]γ ′(t) dHN−1 dt,

and we obtain (4.35) by addition.
We are now ready to conclude. By using Proposition 4.12, the equality (4.35),

the fact that (as noticed above) v takes values into [0, 1], and the equalities H(0) =
H(χ�×R) = 0, we obtain
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Ê(v) = H(v)+ �(v) =
∫ +∞

−∞
H(χ{v>s}) ds +

∫ 1

0
�(χ{v>s}) ds

=
∫ 1

0
H(χ{v>s}) ds +

∫ 1

0
�(χ{v>s}) ds

=
∫ 1

0
Ê(χ{v>s}) ds.

Finally, recalling the equalities (4.7) and (4.12), we obtain

Ê(v) =
∫ 1

0
Ê(1lus ) ds =

∫ 1

0
E(us) ds.

��
Step 2 (Proof of (4.13) and of last part in Theorem 4.1). Set, for brevity,

I = inf
{

E(u) : u ∈ A
}

and J := inf
{

Ê(v) : v ∈ Â
}
.

For every u ∈ A, the function v = 1lu belongs to Â. Therefore, in view of the
equality (4.12), we immediately see that the inequality I � J is satisfied.

Conversely, let v ∈ Â be such that Ê(v) < +∞. For such a function v, the
slicing formula (4.34) holds. Such equality implies in particular that, forL1-almost
everywhere s ∈ (0, 1), us lies in W 1,p(�); moreover, since v = 1lu0 on �0 × R,
it holds that us = u0 on �0. Therefore, for L1-almost everywhere s ∈ (0, 1), we
have us ∈ A, which implies E(us) � I. After an integration over (0, 1), by (4.34),
we obtain Ê(v) � I. By the arbitrariness of v ∈ Â, we conclude that J � I.

The equalities (4.12) and (4.13) immediately imply that, if u ∈ argminA(E),
then 1lu ∈ argminÂ(Ê). Since we know from Proposition 2.2 that the infimum I
is finite and attained, we deduce that the same holds true for the infimum J .

Finally, if v ∈ argminÂ(Ê), (4.34) and (4.13) imply that us ∈ argminA(E) for
L1-almost everywhere s ∈ (0, 1). In particular this assertion implies that, in case
the primal problemhas a finite number of solutions, vmust be a convex combination
of them as stated in (4.14). ��

4.5. Proof of the Inequality I � I∗ in Theorem 3.4

We are going to prove that, for every u ∈ A and σ ∈ B, it holds that∫
�

f (u,∇u) dx +
∫

�1

γ (u) dHN−1 �
∫

Gu

σ · νu dHN +
∫

�1

γ (u) dHN−1

=
∫

Gu0

σ · νu0 dHN +
∫

�1

γ (u0) dHN−1.

(4.36)

Once proved (4.36), by passing to the infimum over u ∈ A and to the supremum
over σ ∈ B respectively at the left hand side and at the right hand side, we obtain
the inequality I � I∗.



388 Guy Bouchitté & Ilaria Fragalà

Let us prove separately the inequality in the first line of (4.36) and the equality
in the second line.

The inequality in the first line of (4.36) follows simply by recalling (4.29) and
applying Lemma 4.7 with v = 1lu :∫

�

f (u,∇u) dx =
∫

Gu

h f (t, νu) dHN �
∫

Gu

σ · νu dHN . (4.37)

The equality in the second line of (4.36) follows via an integration by parts
formula that we state separately in the next lemma, since it will be useful again in
the sequel. It is obtained as an application of the following generalized divergence
theorem, that we recall from [6] (see also [11]): for every σ ∈ X1(� × R) and
every v ∈ BV∞(�× R) ∩ L1(�× R), there holds∫

�×R
σ · Dv +

∫
�×R

v div σ dx =
∫

∂�×R
(σ x · ν�) v dHN . (4.38)

Notice that the boundary integral at the right-hand side is well-defined since the
normal trace σ ·ν� is in L∞(∂�×R), and the function v is in L1(∂�×R) because
v ∈ BV (�× R).

Remark 4.14. As one can easily check by inspection of the proof of Lemma 4.7,
the inequality (4.37) can be strengthened into∫

ω

f (u,∇u) dx =
∫

Gu∩(ω×R)

h f (t, νu) dHN

�
∫

Gu∩(ω×R)

σ · νu dHN ∀ω Borel set ⊂ �.

By the arbitrariness of the Borel set ω we infer that, for all u ∈ A and σ ∈ B, there
holds

h f (t, νu) � σ · νu HN -almost everywhere on Gu . (4.39)

Consequently, we see that the validity of inequality (3.11) is extended for free also
to values t ∈ R\D. Indeed, by taking locally constant functions u in (4.39) we
obtain that, for all σ ∈ B, there holds f (t, 0) � −σ t (x, t) for every t ∈ R and
LN -almost everywhere x ∈ �.

Lemma 4.15. (an integration by parts formula)For every σ in X1(�×R) satisfying
(3.13) and (3.12), and every v in the class Â defined in (4.9), there holds∫

�×R
σ · Dv +

∫
�1×R

γ ′(t) (v − v0) dHN−1 dt =
∫

Gu0

σ · νu0 dHN

+
∫

�1

γ (u0) dHN−1. (4.40)

In particular, if v is of the form v = 1lu for some u ∈ A, we obtain∫
Gu

σ · νu dHN+
∫

�1

γ (u) dHN−1 =
∫

Gu0

σ · νu0 dHN+
∫

�1

γ (u0) dHN−1.

(4.41)



Duality for Non-convex Variational Problems 389

Proof. For every σ and v as in the assumptions, we have that the function v−1lu0 =
(v − v0)+ (v0 − 1lu0) is in BV∞(�× R) ∩ L1(�× R), and σ is in X1(�× R).
Therefore,we are in a position to apply the generalizedGauss-Green formula (4.38).
Exploiting also the condition div σ = 0 in �× R, we obtain∫

�×R
σ · (Dv − D1lu0) =

∫
∂�×R

(σ x · ν�) (v − 1lu0)

= −
∫

�1×R
γ ′(t) (v − 1lu0) dHN−1 dt

= −
∫

�1×R
γ ′(t) [(v − v0)− (1lu0 − v0)] dHN−1 dt.

Hence, ∫
�×R

σ · Dv +
∫

�1×R
γ ′(t) (v − v0) dHN−1 dt

=
∫

�×R
σ · D1lu0 +

∫
�1×R

γ ′(t) (1lu0 − v0) dHN−1 dt

=
∫

Gu0

σ · νu0 dHn−1 +
∫

�1

γ (u0) dHN−1.

Notice that in the last equality we have used the identity
∫
R

γ ′(t)(1lu0−v0) dt =
γ (u0), already shown in the proof of Theorem 4.1 [cf. equation (4.33)]. ��

We have thus completed the proof of (4.36) and hence of the inequality I � I∗
in Theorem 3.4.

5. Optimality Conditions and Min-Max Formulation

Out next goal is to provide necessary and sufficient conditions for optimality.

Theorem 5.1. (geometric optimality condition) Let u ∈ A and σ ∈ B. Then u is a
solution to the primal problem problem (P) in (2.1) and σ is a solution to the dual
problem (P∗) in (3.17) if and only if

h f (t, νu) = σ · νu HN -almost everywhere on Gu . (5.1)

In this case, we say that σ is a calibration for u.

Proof. Assume that u ∈ A and σ ∈ B satisfy (5.1). By using in the order the
definition of I∗, Lemma 4.15, condition (5.1), the equality (4.29), and the definition
of I, we obtain

I∗ �
∫

Gu0

σ · νu0 dHN+
∫

�1

γ (u0) dHN−1 =
∫

Gu

σ · νu dHN+
∫

�1

γ (u) dHN−1

=
∫

Gu

h f (t, νu) dHN +
∫

�1

γ (u) dHN−1 =
∫

�

f (u,∇u) dx+
∫

�1

γ (u) dHN−1

� I.
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Since we know from Theorem 3.4 that also the converse inequality I � I∗ holds
true, we infer that all the inequalities above hold as equalities, which means, in
particular, that u and σ are optimal respectively for the primal and the dual problem.

Assume that u ∈ A and σ ∈ B are optimal respectively for the primal and the
dual problem. By using in the order Lemma 4.15, the optimality of σ , Theorem 3.4,
the optimality of u, and the equality (4.29), we obtain
∫

Gu

σ · νu dHN+
∫

�1

γ (u) dHN−1 =
∫

Gu0

σ · νu0 dHN+
∫

�1

γ (u0) dHN−1 = I∗

= I =
∫

�

f (u,∇u) dx+
∫

�1

γ (u) dHN−1

=
∫

Gu

h f (t, νu) dHN+
∫

�1

γ (u) dHN−1.

We infer that
∫

Gu
σ · νu dHN = ∫Gu

h f (t, νu) dHN ; in turn, recalling the inequality
(4.39) in Remark 4.14, this implies (5.1). ��

From a practical point of view, in order to construct a calibration, it is useful to
rephrase condition (5.1) more explicitly as is done in the next result.

Corollary 5.2. (user’s form of optimality conditions). Let u ∈ A and σ ∈ B, with
σ continuous on � × (R\D). Then condition (5.1) is satisfied if and only if there
holds

σ x (x, u(x)) ∈ ∂z f (u(x),∇u(x)) for LN -almost everywhere x ∈ u−1(R\D);
(5.2)

σ t (x, u(x))= f ∗z (u(x), σ x (x, u(x))) for LN -almost everywhere x ∈ u−1(R\D);
(5.3)

σ t (x, t)=− f (t, 0) ∀ t ∈R and for LN -almost everywhere x ∈{u= t}. (5.4)

(Note that the set of values t ∈ R such that LN ({u = t}) > 0 is at most countable.)

Proof. By (5.2)–(5.3), we infer that the following equality is satisfiedHN -almost
everywhere on Gu ∩ [�× (R\D)]:

σ · νu = νx
u · σ x + νt

u f ∗z (u, σ x )

= −νt
u

[− νx
u

νt
u
· σ x − f ∗z (u, σ x )

]
= −νt

u

[∇u · σ x − f ∗z (u, σ x )
]

= −νt
u f (u,∇u)

= −νt
u f

(
u,−νx

u

νt
u

)
= h f (t, νu).

On the other hand, by (5.4), HN -almost everywhere on Gu ∩ [�× D] we have
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σ · (−eN+1) = −σ t (x, t) = f (t, 0) = h f (t,−eN+1).

Recalling (4.25) with v = 1lu , we conclude that (5.1) is fulfilled.
Conversely, assume that (5.1) holds true.
Since σ satisfies (3.10) and is assumed to be continuous on � × (R\D), the

following chain of inequalities is satisfied HN -almost everywhere on Gu ∩ [� ×
(R\D)]:

h f (t, νu) = σ · νu � νx
u · σ x + νt

u f ∗z (u, σ x )

= −νt
u

[− νx
u

νt
u
· σ x − f ∗z (u, σ x )

]

= −νt
u

[∇u · σ x − f ∗z (u, σ x )
]

� −νt
u f (u,∇u)

= −νt
u f (u,− νx

u
νt

u
) = h f (t, νu).

We deduce that the two inequalities appearing in the chain are actually equalities,
which yields (5.2)–(5.3).

On the other hand, sinceσ satisfies (3.11) on�×R (cf. Remark 3.2),HN -almost
everywhere on Gu ∩ [�× R] we have

h f (t,−eN+1) = σ · (−eN+1) = −σ t (x, t) � f (t, 0) = h f (t,−eN+1).

We conclude that the inequality appearing in the line above holds with equality
sign, which yields (5.4). ��
Remark 5.3. In the case when f is differentiable and convex in (t, z) and γ ′ ≡ c,
it is easy to construct an explicit calibration for a given solution u to problem (P).
Indeed, denoting by σ a solution to the classical dual problem (cf. Remark 3.8), we
claim that the field σ defined on �× R by⎧⎨

⎩
σ x (x, t) = σ(x)

σ t (x, t) = f ∗z (u, σ )− (div σ)
(
t − u(x)

)
,

(5.5)

is a calibration for u, provided it is continuous on �× R.
Namely, by classical duality, u and σ satisfy the optimality conditions

σ = ∂z f (u,∇u), div σ = ∂t f (u,∇u) LN -almost everywhere in �

(5.6)

σ · ν� = −γ ′(u) HN−1-almost everywhere on �1. (5.7)

In view of (5.6) and of the continuity assumptionmade on σ , Corollary 5.2 (applied
with D = ∅) ensures that σ is a calibration for u, provided we show that σ ∈ B.

We can immediately verify that σ satisfies (3.12). By (5.7) and the assumption
γ ′ ≡ c, it also satisfies (3.13). It only remains to check (3.10), namely that

f ∗z (u, σ )− (div σ)
(
t − u(x)

)
� f ∗z (t, σ ) LN+1-almost everywhere on �× R,
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or equivalently that

f ∗z (u, σ ) � sup
z∈RN

[
σ · z − f (t, z)

]

+ (div σ)
(
t − u(x)

) LN+1-almost everywhere on �× R.

In turn, the latter inequality is satisfied, provided that

f ∗z (u, σ ) � sup
(t,z)∈RN+1

[
(div σ , σ ) · (t, z)− f (t, z)

]− u(x) div σ

= f ∗(div σ , σ )− u(x) div σ LN -almost everywhere on �,

(5.8)

where f ∗ denotes the global Fenchel conjugate of f with respect to the pair (t, z).
Now, by the two equations in (5.6), we have that (div σ , σ ) satisfy the Fenchel

equality

f ∗(div σ , σ )+ f (u,∇u) = u(x) div σ

+∇u(x) · σ LN -almost everywhere on �.

Inserting this identity into (5.8), we are reduced to

f ∗z (u, σ ) � ∇u(x) · σ − f (u,∇u) LN -almost everywhere on �,

which is satisfied by definition of f ∗z (and actually holds as an equality since
σ = ∂z f (u,∇u)).

Hereafter we give a min–max formulation of our duality result. For every pair
(v, σ ), with v ∈ BV∞(�×R) and σ ∈ X1(�×R), we introduce the Lagrangian

L(v, σ ) :=
∫

�×R
σ · Dv +

∫
�1×R

γ ′(t)(v − v0) dHN−1. (5.9)

Theorem 5.4. (saddle point). There holds

I = inf
v∈Â

sup
σ∈K

L(v, σ ) = sup
σ∈K

inf
v∈Â

L(v, σ ) = I∗.

Moreover, a pair (v, σ ) is optimal for the convexified infimum problem inf
{

Ê(v) :
v ∈ Â} and for the dual problem (P∗) in (3.17) if and only if it is a saddle point
for L, namely

L(v, σ ) � L(v, σ ) � L(v, σ ) ∀(v, σ ) ∈ Â×K.

Remark 5.5. (i) Notice that, since the classA is not weakly compact, the equality
I = I∗ already established in Theorem 3.4 cannot be deduced by applying an
inf-sup commutation argument to the bivariate Lagrangian L over the product
space A×K.

(ii) We emphasize that the class K appearing in the saddle point problem does not
include the divergence free condition. In fact, such condition is handled by du-
ality, through the use of the variable v seen as a Lagrangemultiplier. (In analogy
with fluid dynamics, onemay think of σ as the speed of an incompressible fluid,
and of v as its pressure.)
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Proof of Theorem 5.4. Thanks to the equality (4.13) in Theorem 4.1, recalling the
definitions (4.11), (4.4), (4.10), and (5.9) of Ê , H , �, and L , we obtain

I = inf
{

Ê(v) : v ∈ Â} = inf
{

H(v)+ �(v) : v ∈ Â}

= inf
v∈Â

sup
σ∈K

{ ∫
�×R

σ · Dv +
∫

�1×R
γ ′(t) (v − v0) dHN−1 dt

}

= infv∈Â supσ∈K L(v, σ ).

Since we know from Theorem 3.4 that I = I∗, in order to complete the proof
it remains to show that I∗ = supσ∈K infv∈Â L(v, σ ). To that end let us show that,
for every σ ∈ K, it holds that

inf
v∈Â

L(v, σ ) =

⎧⎪⎨
⎪⎩
−∞ if σ �∈ B∫

Gu0

σ · νu0 dHN +
∫

�1

γ (u0) dHN−1 if σ ∈ B.
(5.10)

Indeed, the Lagrangian L(v, σ ) can be rewritten as

L(v, σ ) =
∫

�×R
σ · (Dv − D1lu0)+

∫
Gu0

σ · νu0 dHN

+
∫

�1×R
γ ′(t)(v − v0) dHN−1.

Then, by exploiting the generalized Gauss-Green formula (4.38), we get

L(v, σ ) = −
∫

�×R
div σ · (v − 1lu0)+

∫
�0×R

(v − 1lu0)(σ
x · ν�) dHN−1 dt

+
∫

�1×R
(v − v0)(γ

′(t)+ σ x · ν�) dHN−1 dt

+
∫

�1×R
(v0 − 1lu0)(σ

x · ν�) dHN−1 dt +
∫

Gu0

σ · νu0 dHN .

Now, by taking v ∈ Â of the form v = 1lu0 + ϕ, with ϕ ∈ D(� × R), we obtain
that infv∈Â L(v, σ ) cannot be finite unless div σ = 0 in � × R. Next, by taking
v = v0+ϕ, with ϕ ∈ D(�×R) such that ϕ = 0 on �0×R, we see that the normal
trace of σ must agree with −γ ′(t) on �1 × R. We conclude that (5.10) is true by
recalling (4.33).

The last part of the statement is a standard equivalence in min–max theory (see
for instance [29]). ��

As mentioned in Remark 3.6, whenever the solutions to the primal problem are
bounded, we can settle our duality theory on a bounded set of the form�×[m, M].

For a given u0 ∈ W 1,p(�; [m, M], we denote by I(m, M) and I∗(m, M)

respectively the infimum of the primal problem (P) and the supremum of the dual
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problem (P∗) over the classes A(m, M) and B(m, M) introduced in Remark 3.6.
Then we set

Â(m, M) :=
{
v ∈ A : v(x, t) = 1 for t < m, v(x, t) = 0 for t > M

}

K(m, M) :=
{
σ ∈ X1(�× (m, M)) satisfying (3.20)–(3.21)

}
.

Accordingly, the Lagrangian L given by (5.9) must be now intended as

L(v, σ ) :=
∫

�×[m,M]
σ · Dv +

∫
�1×[m,M]

γ ′(t)(v − v0) dHN−1. (5.11)

Remark 5.6. Note that in (5.11) the first integral may have a non vanishing contri-
bution on the horizontal part of the boundary (namely the set �×{m, M}), in case
the function v has a jump on such interfaces. More precisely, we have∫

�×[m,M]
σ · Dv =

∫
�×(m,M)

σ · Dv +
∫

�

[
σ t (x, M)(0− v(x, M−))

+σ t (x, m)(v(x, m+)− 1)
]
,

with v(x, m+) and v(x, M−) being, respectively, the traces of v on � × {m} and
�× {M}.

We can now reformulate the following variant of Theorems 3.4 and 5.4:

Proposition 5.7. With the above notation, it holds that

I(m, M) = inf
v∈Â(m,M)

sup
σ∈K(m,M)

L(v, σ ) = sup
σ∈K(m,M)

inf
v∈Â(m,M)

L(v, σ )

= I∗(m, M).

Moreover, a pair (v, σ ) is optimal for the infimum problem inf
{

Ê(v) : v ∈
Â(m, M)} and for the dual problem (P∗) settled over B(m, M) if and only if

L(v, σ ) � L(v, σ ) � L(v, σ ) ∀(v, σ ) ∈ Â(m, M)×K(m, M).

Proof. The statement can be proved in a way analogous to that which was used
to prove Theorem 5.4, taking into account that, by following the same proof as in
Theorem 3.4, one can check that I(m, M) = I∗(m, M). ��

6. Application to a Free Boundary Problem

6.1. Description of the Problem

In this section we illustrate the application of our method to the free boundary
problem

I(�, λ) := inf

{∫
�

1

2
|∇u|2 + λ

∣∣{u > 0}∣∣ : u ∈ W 1,2(�), u = 1 on ∂�

}
,

(6.1)

which was first considered in the pioneering paper [2].
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The free boundary in the minimization problem (6.1) is the frontier of the zero
level set E := {u = 0}. Actually, the infimum I(�, λ) can be recast by solving the
shape optimization problem

inf
E

{∫
�

1

2
|∇uE |2 + λ

∣∣�\E |
}

,

uE being the solution to ⎧⎪⎨
⎪⎩

�u = 0 in �\E

u = 0 in E

u = 1 on ∂�.

Such a problem falls in our setting by choosing

f (t, z) = 1

2
|z|2 + λχ(0,+∞)(t) , (�0, �1) = (∂�,∅), u0 ≡ 1.

Notice that the function f satisfies the standing assumptions, and in particular the
discontinuity set D appearing in (2.7) is given by {t = 0}.

Then, according to Theorem 3.4, we have I(�, λ) = I∗(�, λ). As was dis-
closed in the Introduction, the dual problem reads:

I∗(�, λ) := sup

{
−
∫

�

σ t (x, 1) dx : σ ∈ B
}

, (6.2)

where B is the class of bounded divergence free vector field on � × R satisfying
the constraints

σ t (x, t)+ λ � 1

2
|σ x (x, t)|2 almost everywhere on �× R,

σ t (x, 0) � 0 almost everywhere on �. (6.3)

It is easy to check that any solution u ∈ W 1,2(�) to problem (6.1) takes values
in [0, 1]. Therefore, according Remark 3.6, we can work on the bounded subset
�× [0, 1]. Then, in virtue of Proposition 5.7, searching for an optimal pair (u, σ )

amounts to finding a saddle point for the bivariate functional

inf
v∈Â

sup
σ∈K

∫
�×[0,1]

σ · Dv, (6.4)

with

Â =
{
v ∈ BV∞(�×R) : v = 1 for t <0, v = 0 for t >1, v=1 on ∂�×[0, 1]

}

K =
{
σ ∈ X1(�×(0, 1)) : σ t+λ� 1

2
|σ x |2 almost everywhere on �

× (0, 1), σ t (·, 0)�0 almost everywhere on �
}
.

Notice that the integration domain in (6.4) is the product of � times the closed
interval [0, 1]. Actually, minimizing over Â the functional v 	→ ∫

�×[0,1] σ · Dv
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appearing in (6.4) is equivalent to minimizing over the space of functions v ∈
BV (� × (0, 1)) satisfying the boundary condition v = 1 on ∂� × [0, 1] and the
functional

v 	→
∫

�×(0,1)
σ · Dv +

∫
�

[
σ t (x, 0)(v(x, 0+)− 1)− σ t (x, 1)v(x, 1−)

]
dx,

where v(x, 0+) and v(x, 1−) are, respectively, the traces of v on�×{0} and�×{1}.
Before proceeding to solve themin–maxproblem (6.4) let us recall that, if (v, σ )

is an optimal pair, the function v should be a step function. Indeed, we expect that
the primal problem (6.1) admits only one or at most a finite number of solutions.
Then, by virtue of (4.14), the function v will take only the values 0 and 1 in case
of a unique solution, or a finite number of values in [0, 1] in the case of multiple
solutions.

6.2. Numerical Algorithms

In order to solve the saddle point problem (6.4), we adopt two different numer-
ical schemes.

The first one is a primal-dual algorithm which generalizes a classical method
of Arrow-Hurwicz [7], which we took from [40] (see also [41]). This algorithm is
studied in details in [25] (see also [26]).We choose an initial point (v0, σ0) ∈ Â×K
and two positive time steps α, β. Then, for each n ∈ N, denoting by h the size
parameter of a cartesian grid in RN+1, we let

⎧⎪⎪⎨
⎪⎪⎩

σ h
n+1 = �h

K

(
σ h

n + α∇hvh
n

)
vh

n+1 = vh
n + β divh

(
σ h

n+1
)

vh
n+1 = 2vh

n+1 − vh
n ,

(6.5)

where �h
K is a suitable projection operator associated with the convex constraint

K (t). The convergence for system (6.5) requires that the stringent conditionαβ c2h �
1 is satisfied, where ch equals 2

√
N + 1/h (namely the norm of the discretized gra-

dient operator).
The computational cost in terms of the mesh size h can be shown to be of order

1
hN+2 . We refer to [26] for further details.

The second scheme is inspired from the projection method for Navier-Stokes
system, inwhich a L2-orthogonal projection is performedon the space of divergence
free field (in this analogy, σ and v represent respectively the speed and the pressure
of the fluid). Roughly, in our case we start from the reformulation of problem (6.4)
as

inf
p∈C

sup
σ∈K

∫
�×[0,1]

σ · p with C := {Dv : v ∈ Â}. (6.6)

Then we replace the second equation in (6.5) by

ph
n+1 = �h

C
(

ph
n − βσ h

n+1
)

,
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where �h
C is the L2-orthogonal projector on the convex set C. Denoting by (�h)−1

the discretization of the inverse Dirichlet–Neumann Laplacian operator which as-
sociates to a function ϕ the solution w to

�w = ϕ, w = 0 on ∂�× (0, 1),
∂w

∂n
= 0 on �× {0, 1},

we are led to the following semi-implicit algorithm:⎧⎪⎪⎨
⎪⎪⎩

σ h
n+1 = �h

K

(
σ h

n + α∇hvh
n

)
vh

n+1 = vh
n − β(�h)−1

(
divh(σ h

n+1)
)

vh
n+1 = 2vh

n+1 − vh
n .

(6.7)

Notice that (6.7) differs from (6.5) just in the term −(�h)−1(divh(σ h
n+1)), which

replaces divh(σ h
n+1).

The theoretical convergence of this second algorithm can be proved under the
condition αβ � 1, which is independent from both the mesh side and the space
dimension. Moreover, in this case the convergence occurs after a relatively small
number of iterations. In fact, the inverse Laplacian computation is the most costly
(in particular for � ⊂ R

2 when one works in R
3), and the computational cost

depends highly on the solver used for the inverse Laplace operator; if one uses a
multigrid or a FFT solver, it can be of order 1

hN+1 log h
(see [31]).

6.3. Some Simulations in Case N = 1

When the open set� is an interval (0, a) of the real line, we can solve explicitly
the primal problem, which reads

I(a, λ) := inf

{∫ a

0

|u′|2
2
+λ
∣∣{u �=0}∣∣ dt : u∈W 1,2(0, a), u(0)=u(a)=1

}
.

(6.8)

The Euler–Lagrange equation written in the integrated conservation law form reads

1

2
|u′|2 − λχ{u �=0} = C. (6.9)

Two cases may occur, according to whether the measure of the level set {u = 0} is
null or strictly positive. In the first case, the solution is the constant function equal to
1 on (0, a), with cost equal to λa. In the second case, the constant C in (6.9) equals
zero, so that u′ ∈ {0,±√2λ}. Setting E± = {x ∈ (0, a) : u′ = ±√2λ}, since∫ a
0 u′ = 0, there holds |E+| = |E−|, and the cost is 4λ|E−|.On theother hand, since

u(0) = 1 and u reaches the level zero, we have the lower bound |E−| � 1/
√
2λ.

Therefore, such a function u can be aminimizer only if a � 2
√
2/λ, and in this case

theminimal cost is larger than or equal to 2
√
2λ, with equality if E− = (0, 1/

√
2λ),

E+ = (h − 1/
√
2λ, a). To summarize, we have I(λ, a) = min{λa, 2

√
2λ}, and

(i) for a ∈ (0, 2
√

2
λ
], the unique solution is u1 ≡ 1;
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Fig. 3. Streamlines of σ and level sets of v in the case λ = 1

(ii) for a > 2
√

2
λ
, the unique solution is

u2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−√2λx + 1 if x ∈
[
0, 1√

2λ

]

0 if x ∈
[

1√
2λ

, a − 1√
2λ

]
√
2λx + 1−√2a if x ∈

[
a − 1√

2λ
, a
]
;

(iii) for a = 2
√

2
λ
there are two solutions, given by the two functions u1 and u2.

Contrary to the primal problem, the dual problem does not admit easy explicit
bounded solutions. In particular, the one obtained through the value function (cf.
Remark 3.9) blows up near the lateral boundary of the cylinder (see Remark 6.1
for more details).

Below we give some numerical results obtained, for a = 2, by using the algo-
rithm (6.7).

Figures 3, 4 and 5 correspond to three cases λ = 1, 2 and 4. They represent the
behaviour of the optimal σ and v in each case. Up to a translation of the interval
� = (0, 2) into (−1, 1), we can work on the cylinder (−1, 1) × (0, 1); then, for
symmetry reasons, we limit ourselves to plotting our functions on the right part
(0, 1)× (0, 1) of the cylinder. Notice that the most important issue is the location
of the discontinuity set of v, as the free boundary is given by the intersection of this
set with the horizontal axis.

For λ = 2, we recover the two solutions u1 and u2 since the optimal function
v exhibits three values (see Figure 4, were the regions in blue, red, and brown
correspond, respectively, to the level sets {v = 0}, {v = 0.8886}, and {v = 1}).

In constrast, for λ = 1 or λ = 4, when the primal problem admits a unique
solution, the function v exhibits only two values (see the regions in blue and brown
in Figures 3 and 5).
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Fig. 4. Streamlines of σ and level sets of v in the case λ = 2
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Fig. 5. Streamlines of σ and level sets of v in the case λ = 4

Remark 6.1. Let us compute the candidate calibration obtained for problem (6.8)
through the method described in Remark 3.9. Through some straightforward com-
putations it is easy to obtain that the value function introduced in (3.27) is given
by

V (x, t) = inf

{∫ x

0
f (u, u′) dt : u ∈ W 1,2(0, h), u(0) = 1, u(x) = t

}

= min

{
1

2

(t − 1)2

x
+ λx,

√
2λ(1+ |t |)

}
.

Accordingly, the explicit expression of the vector field σ(x, t) := (∂t V,−∂x V )

reads
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Fig. 6. Streamlines of the field σ̃ given by the value function

σ(x, t)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
t−1
x , 1

2
(t−1)2

x2
− λ
)

if x � 1√
2λ

(
1+√t

)2
, t >0, or x � 1√

2λ
(1+|t |), t <0

(√
2λ, 0

)
if x > 1√

2λ

(
1+√t

)2
, t >0

(
−√2λ, 0

)
if x > 1√

2λ
(1+ |t |), t < 0.

It is easy to check that σ satisfies conditions (3.10)–(3.11). However, V is not opti-
mal for the formulation (3.26) of the dual problem because is not Lipschitz; indeed,
it turns out that σ blows up near x = 0, see Figure 6 for a plot representing in case
λ = 2 the symmetrized field σ̃ (x, t) := ( 12 [σ x (x, t)+ σ x (2− x, t)], 1

2 [σ t (x, t)−
σ t (2− x, t)]) [which also satisfies conditions (3.10)–(3.11)]. Again, for symmetry
reasons, the plot is restricted to the right half of the cylinder.

6.4. Some Simulations in Case N = 2

By using the concavity of themap λ 	→ I(�, λ) one can check that, in a fashion
similar to the one dimensional case, there exists a critical value λ∗ = λ∗(�) below
which the unique solution of the primal problem is u1 ≡ 1, corresponding to the
function v1 ∈ Â which vanishes identically in � × (0, 1). For λ = λ∗(�) this
solution may coexist with a non constant solution u2, exhibiting a free boundary E .

Moreover, the function � 	→ λ∗(�) turns out to be monotone decreasing with
respect to domain inclusions. In the special case when � = BR := {|x | < R}, we
find the explicit value λ∗(BR) = 2e

R2 .

We now present some numerical simulations obtained for� = (−1, 1)2. Notic-
ing that B1 ⊂ � ⊂ B√2, we can predict a critical value λ∗(�) in the interval (e, 2e).
In fact, by using the second algorithm described above with a mesh size 10−2 and
by tuning the value of λ, we obtained the estimate λ∗(�) ∼ 4.7.
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Fig. 7. Streamlines of σ in the case λ = 2e

Fig. 8. Level sets and plots of u in the case λ = 2e

In Figures 7 and 8 we represent the behaviour of the optimal field σ and of the
optimal function u for λ = 2e (for symmetry reasons, Figure 7 is referred just to a
quarter of �, namely to the set (0, 1)2). Notice that the free boundary is given by
the frontier of the region in dark blue.

7. Completion of the Proofs

In this section we make complete the proof of the duality principle stated in
Theorem 3.4 (in particular, concerning the missing inequality I � I∗) and we end
up with the proof of the coarea formula stated in Theorem 4.10.
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Before starting with the proof of Theorem 3.4, we give some preliminary lem-
mas.

Lemma 7.1. (i) If �1 �= ∅, for every compact neighbourhood U of �1, there exists
σU ∈ B such that

spt(σU ) ⊂ U × R;
(ii) There exists σ0 ∈ B such that, for δ > 0 sufficiently small, it holds that

‖η‖L∞(�×R) � δ ⇒ σ0 + η ∈ K.

Proof. (i) Let A := U ∩ �, that we can assume to be Lipschitz. We are going to
apply (3.9). Note carefully that in (3.9) A is a subset of RN+1, while here it is a
subset of RN . By (3.9), we know there exists a field q ∈ X1(�), with spt(q) ⊆ A,
such that

div q = |�1|
|A| χA in � q · νA = 1 on �1 q · νA = 0 on ∂ A\�1. (7.1)

We define the vector field σ by

σ(x, t) =
(
−γ ′(t)q(x),

|�1|
|A| χA(x)

[
γ (t)− inf

R

γ

]
+ λ

)
,

q being as in (7.1) and λ ∈ R to be chosen later. By the choice of q, it is immediately
apparent that div σ = 0 in �× R and σ · ν� = −γ ′ on �1 × R. Let us show that
it is possible to choose λ such that σ belongs to K. By the growth condition from
below in (2.6) satisfied by f , it holds that

f ∗z (t, z∗) � b|z∗|p′ + C, with b = b(α, p) := 1

p′
1

(αp)p′−1 ,

and− f (t, 0) � C . Therefore, in order that σ satisfies (3.10) and (3.11), it is enough
to choose λ such that

λ � b‖γ ′‖p′∞‖q‖p′∞ + C.

(ii) Let us consider separately the cases �1 �= ∅ and �1 = ∅.
Case �1 �= ∅. We define the vector field σ0 by

σ0(x, t) := (− γ ′(t)ψ(x), c�γ (t)+ λ
)
,

with λ ∈ R to be chosen later, c� := |∂�|/|�|, and ψ := ∇w, with w the unique
solution to the boundary value problem �w = c� in �, wν = 1 on ∂�. Clearly
σ0 ∈ L∞(� × R;RN+1) and by construction it holds div σ0 = 0 in � × R and
(σ0)

x · ν� = −γ ′ on ∂�×R (thus in particular on �1 ×R). Let us check that it is
possible to choose λ so that σ0 + η belongs to K if ‖η‖∞ � δ.

We recall that, by our hypothesis (2.8) (in its weaker version asked for �0 �= ∅),
there exists a constant m ∈ R such that

c�γ (t)− C � m for L1-almost everywhere t ∈ R. (7.2)
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In order that σ0 + η satisfies (3.10), we need to choose λ such that

|q| < δ ⇒ c�γ (t)+ λ+ qt

� f ∗z (t,−γ ′(t)ψ(x)+ qx ) for LN+1-almost everywhere (x, t) ∈ �× R.

Since, by the growth condition from below in (2.6) which is satisfied by f , it holds
that f ∗z (t, z∗) � b|z∗|p′ + C , it is enough to have

|q| < δ ⇒ c�γ (t)+ λ+ qt

� b
∣∣−γ ′(t)ψ(x)+qx |p′ +C for LN+1-almost everywhere (x, t)∈�×R.

In turn, in view of (7.2), we are reduced to choosing λ so that

|q| < δ ⇒ m + λ

� b
∣∣− γ ′(t)ψ(x)+qx |p′ −qt for LN+1-almost everywhere (x, t)∈�×R,

which is clearly possible since ψ is bounded and γ is Lipschitz.
In order that σ0 + η satisfies (3.11), we need to choose λ such that

|q| < δ ⇒ c�γ (t)+ λ+ qt

� − f (t, 0) ∀t ∈ D, for LN -almost everywhere x ∈ �.

This is possible because, by the growth assumption (2.6), we have − f (t, 0) � C ,
and hence, in view of (7.2), it is enough to choose λ so that

|q| < δ ⇒ m + λ � −qt .

Case �1 = ∅. We define the vector field σ0 simply by

σ0(x, t) := (0, λ).
Clearly, it holds that σ0 ∈ L∞(�× R;RN+1) and div σ0 = 0 in �× R. We have
just to choose λ so that σ0 + η belongs to K if ‖η‖∞ � δ.

In order that σ0 + η satisfies (3.10), in view of the inequality f ∗z (t, z∗) �
b|z∗|p′ + C , it is enough to have

|q| < δ ⇒ λ+ qt � b
∣∣qx |p′ + C for LN+1-almost everywhere (x, t) ∈ �× R.

In order that σ0 + η satisfies (3.11), in view of the inequality − f (t, 0) � C , it
is enough to choose λ such that

|q| < δ ⇒ λ+ qt � C ∀t ∈ D, for LN -almost everywhere x ∈ �.

��
Lemma 7.2. For every σ ∈ X1(�×R) and every v ∈ BV∞(�×R), it holds that

H(v) = sup

{∫
�×R

(σ + η) · Dv : η ∈ D
(
�× R;RN+1), σ + η ∈ K

}
.

(7.3)
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Proof. Let G(σ ) denote the right hand side of (7.3). The map ρ : t ∈ R 	→ G(tσ)

is convex (as it is the supremum of affine functions). By Lemma 4.5, it holds that
ρ(0) = H(v), whereas ρ(t) � H(v) for every t by Lemma 4.7. It follows that ρ(t)
is constant. We deduce in particular that G(σ ) = ρ(1) = ρ(0) = H(v). ��
Proof of Theorem 3.4. Thanks to the equality (4.13) established in Theorem 4.1,
the thesis of Theorem 3.4 (namely the equality I∗ = I) can be reformulated as

I∗ = inf
{

Ê(v) : v ∈ Â
}
. (7.4)

In order to prove (7.4), we introduce on C0(� × R;RN+1) the perturbation
function

�(η) := inf

{
−
∫

Gu0

σ · νu0 dHN

−
∫

�1

γ (u0) dHN−1 : σ ∈ X1

(
�× R;RN+1) ,

div σ = 0, σ x · ν� = −γ ′ on �1 × R, σ + η ∈ K} .

It is easy to check that the map η 	→ �(η) is convex. Moreover, in view of the
choice of admissible fields σ in the definition of �(η), it holds that

I∗ = −�(0). (7.5)

Let us compute�(0). Observe that� is continuous at 0: namely, for any η with
‖η‖∞ � δ, thanks to Lemma 7.1 (ii) it holds that

�(η) � −
∫

Gu0

σ0 · νu0 dHN −
∫

�1

γ (u0) dHN−1.

Hence we have

−�(0) = −�∗∗(0) = min(�∗), (7.6)

where �∗ = �∗(λ) denotes the Fenchel conjugate of � in the duality between
continuous functions and bounded measures. Let us compute �∗, and let us show
that it satisfies

�∗(λ) =
{

Ê(v) if λ = Dv, with v ∈ Â
+∞ otherwise.

(7.7)

Once we have proved (7.7), our proof will be achieved. Indeed, (7.7) implies in
particular that min(�∗) = min

{
Ê(v) : v ∈ Â}. Taking into account (7.5) and

(7.6), we deduce that the required equality (7.4) is satisfied.
In order to establish (7.7), we fix now a bounded vector measure λ such that

�∗(λ) < +∞ and we proceed in three steps.
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Step 1. If �1 �= ∅, for every compact neighborhood U of �1 and every bounded
continuous ψ : �× R→ R

N+1, it holds that

〈λ− D1lu0 , ψ〉 = 0 whenever divψ = 0 in �× R and ψ = 0 on U × R

(7.8)∫
(�\U )×R

h f (t, λ) < +∞. (7.9)

If �1 = ∅, conditions (7.8) and (7.9) hold true with U = ∅.
Assume first that�1 �= ∅. Given a compact neighborhoodU of�1 and a functionψ

as in (7.8), we consider the vector field σ = σU +ψ with σU chosen according to
Lemma7.1 (i) Since suchσ is divergence free and satisfiesσ x ·ν� = −γ ′ on �1×R,
in view of the definition of �, one has

�(η) ≤ −
∫

Gu0

(σU + ψ) · νu0 dHN −
∫

�1

γ (u0) dHN−1

for every smooth field η with compact support in �\U such that ψ + η ∈ K.
This implies

�∗(λ) ≥ 〈λ, η + ψ〉 + 〈D1lu0 − λ,ψ〉 +
∫

Gu0

σU · νu0 dHN

+
∫

�1

γ (u0) dHN−1,

where we have used the identity
∫

Gu0
ψ · νu0 = 〈D1lu0 , ψ〉. Now by fixing ψ and

taking the supremumwith respect to η satisfying the conditions above, by exploiting
Lemma 7.2 applied on �\U , we deduce that, for a suitable constant C , there holds

�∗(λ) ≥
∫

(�\U )×R
h f (t, λ)+ 〈D1lu0 − λ,ψ〉 + C .

Thus, since, by assumption, �∗(λ) is finite, (7.8) and (7.9) follow.
In case �1 = ∅, we can repeat the proof above with σU ≡ 0.

Step 2. There exists a scalar function v ∈ L1
loc(� × R), with v(x, ·) monotone

non-increasing, such that λ = Dv. Moreover, up to adding a constant to v, we have
v ∈ Â, as it holds that

v ∈ BV∞(�× R; [0, 1]), v(x,−∞) = 1 , v(x,∞) = 0 (7.10)

v − v0 ∈ L1(�× R) (7.11)

v = 1lu0 on �0 × R. (7.12)

From (7.8), sinceU is arbitrarily small (and empty in case�1 = ∅), we infer that
the bounded measure λ− D1lu0 is orthogonal to all smooth vector fields ψ which
are divergence free and compactly supported in � × R. By De Rahm’s Theorem,
this implies the existence of a scalar function v ∈ L1

loc(�× R) such that λ = Dv.
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Then, since
∫

K×R h f (t, λ) < +∞ for every compact set K ⊂ �, we infer that
−Dtv is a non-negative measure on �×R, which yields the desired monotonicity
property of v(x, ·) for almost every x ∈ �.

Let us now prove that v satisfies (7.10), (7.11) and (7.12).
To prove (7.10), we choose ϕ ∈ D(�;R+) and we set ψ = (0, ϕ(x)). Integrat-

ing by parts over �× (−R,+R) and taking into acount that for almost everywhere
x ∈ �, v(x,−R + 0)− v(x, R − 0) is non negative and converges increasingly to
var(v(x, ·)) as R →+∞, we obtain

〈Dv − Dv0, ψ〉 = lim
R→+∞

∫
�

ϕ(x)[v(x, R − 0)− (v(x,−R + 0)− 1)] dx

=
∫

�

ϕ(x) (1− var(v(x, ·)) dx .

By the arbitrariness of ϕ, if we combine the above equality with (7.8) and with the
identity 〈D1lu0 − Dv0, ψ〉 = 0, we get

var(v(x, ·)) = 1 for almost every x ∈ �. (7.13)

Next, we consider a function ϕ ∈ D(�) such that
∫
�

ϕ dx = 0, to which we
associate a vector field q ∈ L∞(�;RN ) such that− divx q = ϕ in� and q ·ν� = 0
on ∂�. Set

ψ(x, t) := (α′(t) q(x), α(t)ϕ(x)), with α(t) := H(t)(1− e−t ) (7.14)

(H being the Heavyside function). Then, integrating once more by parts over �×
(−R,+R) and letting R tend to +∞, we obtain

〈Dv−Dv0, ψ〉= lim
R→+∞

∫
�

ϕ(x) α(R) v(x, R − 0) dx=
∫

�

ϕ(x) v(x,+∞) dx,

where in the second equality we use dominated convergence taking into account
that |v(·, R−0)| ≤ 1+|v(·, t0)| for a suitable t0 > 0 such that v(·, t0) = v(·, t0±0)
belongs to L1(�). Then, by applying (7.8) to the function ψ introduced in (7.14),
and recalling the arbitrariness of the smooth function ϕ with vanishing average, we
deduce that v(x,+∞) is a constant that we may fix to be zero. Thus, with the help
of (7.13), we conclude the proof of (7.10).

To prove (7.11), we fix σ0 ∈ B [for instance, we can take the one given by
Lemma 7.1 (ii)]. Similarly as done above, we integrate by parts over�×(−R× R)



Duality for Non-convex Variational Problems 407

and we obtain

〈Dv − Dv0, σ0〉
= lim

R→+∞

(∫
�

[
σ t
0(x, R)v(x, R − 0)+ σ t

0(x,−R)(1− v(x,−R + 0)
]
dx

−
∫

�1×(−R,R)

γ ′(t)(v − v0) dHN−1(x) dt

)

= − lim
R→+∞

(∫
�1×[0,R)

γ ′(t)v dHN−1(x) dt

−
∫

�1×(−R,0))
γ ′(t)(1− v) dHN−1(x) dt

)
,

where in the second equality we used the fact that σ t
0 is bounded together with the

convergence of v(·, R − 0) and of 1− v(·,−R + 0) to 0 in L1(�).
Now, recalling that us are defined as in (4.6), and using the slicing property

(4.35) proved in Proposition 4.13, we can rewrite the above equality as

〈Dv − Dv0, σ0〉 = − lim
R→+∞

∫ 1

0
ds

(∫
�1∩{us≥0}

γ (us ∧ R) dHN−1(x)

+
∫

�1∩{us<0}
γ (us ∨ −R) dHN−1(x)

)

= − lim
R→+∞

∫ 1

0
ds
∫

�1

γ (u R
s ) dHN−1(x),

where u R
s := (us ∧ R) ∨ −R. Clearly u R

s → us as R → +∞. Then, since γ is
assumed to be bounded from below, by applying Fatou’s Lemma we get

〈Dv0 − Dv, σ0〉 = lim inf
R→+∞

∫ 1

0
ds
∫

�1

γ (u R
s ) dHN−1(x)

≥
∫ 1

0
ds
∫

�1

γ (us) dHN−1(x).

Recalling that 〈Dv − Dv0, σ0〉 is finite, we infer that
∫ 1

0
ds
∫

�1

γ (us)dHN−1(x) < +∞. (7.15)

Now, by Proposition 4.12 and Step 1, we know that

∫ 1

0
ds
∫

�

f (us,∇us) dx =
∫

�×R
h f (t, Dv) < +∞. (7.16)

Notice in particular that, in case �1 = ∅, the last inequality follows from (7.9),
applied with U = ∅. In case �1 = ∅, we can still apply (7.9) by letting �\U
increase to �; this is possible thanks to the fact that h f (t, λ) is bounded below by
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a multiple of the total variation of λ. The last assertion is easily checked, since, for
all (t, q) with q �= 0 such that h f (t, q) < +∞, it holds that

h f (t, q) = −qt f
(

t,−qx

qt

)
� −qt

∣∣∣qx

qt

∣∣∣p + Cqt � Cqt .

Combining (7.15) and (7.16), we deduce that
∫ 1
0 E(us) ds < +∞. In view

of the estimate (2.9) obtained in the proof of Proposition 2.2, we deduce that∫ 1
0 ‖us‖W 1,p(�) ds < +∞. This implies (7.11), since

∫
�×R |v − v0| dx dt = ∫ 10

ds
∫
�
|us | dx .

To conclude the proof of Step 2, it remains to show (7.12). To that end, it is
enough to apply (7.8). Indeed integrating by partswe obtain

∫
�0×R(v−1lu0)ψ ·ν� =

0 for every bounded continuous function ψ as in (7.8), and the conclusion follows
recalling (3.9).

Step 3. There holds �∗(λ) = Ê(v).
Let σ ∈ X1(� × R;RN+1). We observe that, by Step 2, the duality bracket

σ · Dv is well defined [cf. (4.2)]. Moreover, by Lemma 7.2 it holds that

H(v) = sup
{ ∫

�×R
(σ + η) · Dv : η ∈ D

(
�× R;RN+1), σ + η ∈ K

}
.

We are now ready to compute the Fenchel conjugate of �. We have

�∗(λ) = sup
{ ∫

�×R
η · Dv −�(η) : η ∈ C0

(
�× R;RN+1)}

= sup
{ ∫

�×R
η · Dv −�(η) : η ∈ D

(
�× R;RN+1)}

= sup
{ ∫

�×R
(η + σ) · Dv +

∫
Gu0

σ · νu0 dHN

+
∫

�1

γ (u0) dHN−1 − 〈Dv, σ 〉 :

η ∈ D
(
�× R;RN+1) , σ ∈ X1

(
�× R;RN+1),

div σ = 0, σ x · ν� = −γ ′ on �1 × R, σ + η ∈ K
}

=
∫

�×R
h f (t, Dv)+

∫
�1

γ (u0) dHN−1 + sup
{
〈D1lu0 − Dv, σ 〉 :

σ ∈ X1

(
�× R;RN+1), div σ = 0, σ x · ν� = −γ ′ on �1 × R

}
,

where

– the first equality is just the definition of �∗;
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– the second equality follows from the density of D(� × R;RN+1) in C0(� ×
R;RN+1); and from the continuity of the convex function � at 0;

– the third equality is just the definition of �;
– the fourth equality holds by Lemma 7.2.

Finally we observe that, thanks to (4.40), the expression of �∗(λ) appearing in
the fourth equality above coincides with∫

�×R
h f (t, Dv)+

∫
�1×R

(v − v0)γ
′(t) dHN = Ê(v) .

Since from Step 2 we already know that v ∈ Â, the proof of (7.7) is complete. ��
Proof of Theorem 4.10. Throughout the proof we set, for brevity,

ut (x) := χ{u>t}(x).

Let us first show that the map t 	→ J (ut ) is Lebesgue measurable.
For every fixed open set V ⊂⊂ A, consider the function of a real variable

defined by

ψV (t) :=
∫

V
ut (x) dx .

Clearly ψV is monotone decreasing, non-negative and bounded; in particular, it
turns out to be continuous on R\DV , where DV is a countable subset of R (de-
pending on V ). Moreover, since

∀t, ∀δ > 0,
∫

V
|ut − ut+δ| dx = ψV (t)− ψV (t + δ),

the map t 	→ ut is continuous from R\DV to L1(V ). Then, by considering an
increasing sequence of open sets Vh ↑ A, and exploiting the assumption that J
is lower semicontinuous on L1

loc(A), we obtain that the map t 	→ J (ut ) is lower
semicontinuous on R\D, with D = ∪h DVh countable. Consequently, the map
t 	→ J (ut ) is Lebesgue-measurable on R.

We now prove separately the inequality J (u) �
∫
R

J (ut ) dt and its converse.
Proof of the inequality J (u) �

∫
R

J (ut ) dt .
Since J is convex, lower semicontinuous, and proper (recall that by assumption

J (χA) = 0), we have J ∗∗ = J , where J ∗∗ is the Fenchel biconjugate in the duality
between L1

loc(A) and the space L∞c (A) of bounded functions with compact support.
Namely,

J (u) = J ∗∗(u) = sup

{∫
A

uw dx − J ∗(w) : w ∈ L∞c (A)

}
. (7.17)

Let us compute J ∗. We claim that

J ∗(w) =
{
0 if w ∈ X

+∞ otherwise
(7.18)
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for some nonempty closed convex set X ⊆ {w ∈ L∞c (A) : ∫A w dx = 0
}
. In fact,

this is a quite standard result for one-homogeneous functionals, but we enclose
below a short proof for the sake of completeness.

We begin by showing that J ∗ takes only the values 0 and +∞. By definition,
there holds

J ∗(w) = sup

{∫
A

uw dx − J (u) : u ∈ L1
loc(A)

}
∀w ∈ L∞c (A).

Let w ∈ L∞c (A) be fixed. If J ∗(w) �= 0, necessarily there exists some u ∈ L1
loc(A)

such that
∫

A
uw dx− J (u) =: r �= 0. Since for every λ � 0we have

∫
A
(λu)w dx−

J (λu) = λr , we infer that J ∗(w) = +∞ if r is positive (by letting λ tend to +∞)
and J ∗(w) � 0 if r is negative (by letting λ tend to 0); moreover, we see that that
J ∗(w) cannot be strictly positive unless it is +∞ (because if J ∗(w) > 0 there

exists some u ∈ L1
loc(A) such that

∫
A

uw dx − J (u) > 0, and arguing as above we

see that J ∗(w) = +∞). We deduce that J ∗ is of the form (7.18) for some subset X
of L∞c (A). Since J ∗ is convex, lower semicontinuous, and proper, X is a nonempty
closed convex subset of L∞c (A). Moreover, if w ∈ X , taking into account that by
assumption J (χA) = 0, we have

0 = J ∗(w) � sup
λ∈R

[
λ

∫
A

w dx

]
,

hence all functions in X have zero mean on A, which concludes the proof of the
claim.

We infer from (7.17) and (7.18) that

J (u) = sup
w∈X

∫
A

uw dx . (7.19)

As a next step let us show that, for every w ∈ X , setting jw(t) :=
∫

A
utw dx ,

there holds
∫

A
uw dx =

∫ ∞

−∞
jw(t) dt. (7.20)

To this end, we apply Fubini’s theorem to compute the following two integrals:
∫

u�0
uw dx

=
∫

u�0

∫ u(x)

0
w(x) dt dx =

∫
u�0

w(x)

∫ u(x)

0
dt dx

=
∫

u�0
w(x)

∫ +∞

0
ut (x) dt dx =

∫ +∞

0

∫
A

utw dx dt =
∫ +∞

0
jw(t) dt,
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and

∫
u�0

uw dx = −
∫

u�0
w

∫ 0

u(x)

dt dx = −
∫

u�0
w

∫ 0

−∞
(1− ut (x)) dt dx

=
∫ 0

−∞

∫
u�0

(utw−w) dx dt=
∫ 0

−∞

[∫
u�0

utw dx+
∫

u>0
w dx

]
dt

=
∫ 0

−∞

[∫
u�0

utw dx +
∫

u>0
utw dx

]
dt =

∫ 0

−∞
jw(t) dt.

Notice that, in the computation of the second integral (fourth equality), we used
the fact that w has zero mean on A.

By (7.19) and (7.20), we have

J (u) = sup
w∈X

∫ ∞

−∞
jw(t) dt �

∫ ∞

−∞
L1 -ess sup

w∈X
( jw) dt. (7.21)

Since we know from the first part of the proof that the map t 	→ ut is continuous
fromR\D to L1

loc(A) (with D countable), taking into account that w ∈ L∞c (A) we
see that jw(t) is continuous on R\D. Therefore,

∀t ∈ R\D, L1 -ess sup
w∈X

jw(t) = sup
w∈X

jw(t)

= sup
w∈X

∫
A

utw dx = J ∗∗(ut ) = J (ut ),

so that

∫ +∞

−∞
L1 -ess sup

w∈X
jw(t) dt =

∫ +∞

−∞
J (ut ) dt. (7.22)

By (7.21) and (7.22), the proof of the inequality J (u) �
∫ +∞
−∞ J (ut ) dt is

achieved.
Proof of the inequality J (u) �

∫
R

J (ut ) dt .
Let us start by showing that, for everyw ∈ X , ifα is any function inC∞(R, [0, 1])

and β(t) :=
∫ t

0
α(s) ds, there holds

∫ +∞

−∞
α(t) jw(t) dt � J (β ◦ u). (7.23)
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Indeed, by applying Fubini’s theorem we get∫ +∞

0
α(t) jw(t)dt =

∫ +∞

0
α(t)

∫
A

ut (x)w(x) dx dt

=
∫

A
w(x)

∫ +∞

0
α(t)ut (x) dt dx

=
∫

u�0
w(x)

∫ +∞

0
α(t)ut (x) dt dx

=
∫

u�0
w(x)

∫ u(x)

0
α(t) dt dx

=
∫

u�0
β ◦ u(x)w(x) dx

and∫ 0

−∞
α(t) jw(t) dt =

∫ 0

−∞
α(t)

∫
A

ut (x)w(x) dx dt

=
∫ 0

−∞
α(t)

∫
A
(ut (x)− 1)w(x) dx dt

=
∫

A
w(x)

∫ 0

−∞
α(t)(ut (x)− 1) dt dx

=
∫

u<0
w(x)

∫ 0

−∞
α(t)(ut (x)− 1) dt dx

=
∫

u<0
w(x)

∫ 0

u(x)

(−α(t)) dt dx =
∫

u<0
β ◦ u(x)w(x) dt.

Let us remark that, similarly as done above, in the computation of the second
integral (second equality), we exploited the fact that w has zero integral mean on
A. The validity of (7.23) readily follows, since∫ +∞

−∞
α(t) jw(t) dt =

∫
A

β ◦ u(x)w(x) dx

� sup
w∈X

∫
A

β ◦ u(x)w(x) dx = J ∗∗(β ◦ u) = J (β ◦ u).

We are now ready to prove the inequality J (u) �
∫
R

J (ut ) dt . We consider the
C∞-convex subset of L1

loc(A) defined by

H :=
{

k∑
i=1

αi jwi : αi ∈ C∞(R; [0, 1]),
k∑

i=1
αi ≡ 1, wi ∈ X

}
. (7.24)

For every u ∈ L1
loc(A), if v = ∑k

i=1 αi jwi is any function belonging to the space
H defined in (7.24), we have

J (u) �
k∑

i=1
J (βi ◦ u) �

k∑
i=1

∫ +∞

−∞
αi (t) jwi (t) dt =

∫ +∞

−∞
v(t) dt,
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where the first inequality holds by assumption (4.27), and the second one by (7.23).
By the arbitrariness of v ∈ H, by applying the commutation argument between

the supremum and the integral proved in [17, Theorem 1], and recalling the equality
(7.22), we eventually get

J (u) � sup
v∈H

∫ +∞

−∞
v dt =

∫ +∞

−∞
L1 -ess sup

v∈H
v(t) dt

�
∫ +∞

−∞
L1 -ess sup

w∈X
jw(t) dt =

∫ +∞

−∞
J (ut )dt.

��
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