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Abstract

We consider the initial value problem of the 3D inviscid Boussinesq equations
for stably stratified fluids. We prove the long time existence of classical solutions
for large initial data when the buoyancy frequency is sufficiently high. Furthermore,
we consider the singular limit of the strong stratification, and show that the long
time classical solution converges to that of 2D incompressible Euler equations in
some space-time Strichartz norms.

1. Introduction

Let us consider the initial value problem for the 3D inviscid Boussinesq equa-
tions, describing the motion of perfect incompressible fluids in R

3:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + (v · ∇)v = −∇q + ηe3 t > 0, x ∈ R
3,

∂tη + (v · ∇)η = 0 t > 0, x ∈ R
3,

∇ · v = 0 t � 0, x ∈ R
3,

v(0, x) = v0(x), η(0, x) = η0(x) x ∈ R
3.

(1.1)

The unknown functions v = (v1(t, x), v2(t, x), v3(t, x))T , η = η(t, x) and q =
q(t, x) represent the velocity field, the temperature and the scalar pressure of the
fluids, respectively, while v0 = (v0,1(x), v0,2(x), v0,3(x))T is the given initial ve-
locity field satisfying the compatibility condition ∇ · v0 = 0 and η0 = η0(x) is the
given initial temperature. The vertical unit vector is denoted by e3 = (0, 0, 1)T .

In this manuscript, we prove the long time existence of classical solutions
to (1.1) around the explicit stratified solution (vs, ηs, qs) = (0, N 2x3, N 2x23/2)
when the constant temperature gradient N = √

dηs/dx3 > 0 is sufficiently large.
More precisely, we shall show that for given initial disturbance φ = (v0, (η0 −
N 2x3)/N )T ∈ Hs+4(R3) with s � 3 and for given finite time T , there exists
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a positive parameter Nφ,T such that the 3D inviscid stratified Boussinesq system
(1.3) admits a unique classical solution on the time interval [0, T ] provided N �
Nφ,T . Furthermore, we consider the singular limit of the strong stratification as
N → ∞, and show that the long time classical solution vN to (1.3) strongly
converges to that of the 2D incompressible Euler equations in the space-time norm

Lq(0, T ;W 1,∞(R3)) with the convergence rate O(N− 1
q ) for 4 � q < ∞.

Before stating our result, we first review the local existence results on the
inviscid Boussinesq equations. In the Sobolev spaces Hs-framework, it is known
that for initial data (v0, η0) ∈ Hs(R3) with ∇ · v0 = 0 and s > 5/2 there exists a
T0 = T0(s, ‖(v0, η0)‖Hs ) > 0 such that (1.1) possesses a unique classical solution
(v, η) in the classC([0, T0]; Hs(R3)). See [7,8,16,34] for the local existence theory
of (1.1) in function spaces embedded in C1 class such as the Hölder spaces and the
Besov spaces, and the blow-up criteria of local solutions. We also refer to [1,9,17]
for the global existence results on the 2D Boussinesq systems.

Next, let us consider the solution of (1.1) around a stratified solution. It is known
that the system (1.1) has an elementary explicit stationary solution (vs, ηs, qs) of
the form

vs ≡ 0, ηs(x3) = N 2x3, qs(x3) = N 2

2
x23 , (1.2)

satisfying the hydrostatic balance
dqs
dx3

= ηs , where N > 0 is called the buoyancy

or the Brunt–Väisälä frequency and represents the strength of stable stratification.
Let us set

θ(t, x) = η(t, x) − ηs(x3), p(t, x) = q(t, x) − qs(x3),

where ηs and qs are given by (1.2). We consider the time evolution of the perturba-
tions around a stable state in hydrostatic balance, and then (v, θ, p) should satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + (v · ∇)v = −∇ p + θe3,

∂tθ + (v · ∇)θ = −N 2v3,

∇ · v = 0,

v(0, x) = v0(x), θ(0, x) = θ0(x) = η0(x) − N 2x3,

(1.3)

where θ0 denotes the initial thermal disturbance. The system (1.3) exhibits a disper-
sive nature due to the presence of the skew-symmetric linear term (θe3,−N 2v3)

T

by the stable stratification. This phenomenon is closely related to the dispersive
estimates for the propagator e±i N t |Dh |/|D| defined by the Fourier integral

e±i N t
|Dh |
|D| f (x) := 1

(2π)3

∫

R3
eix ·ξ±i N t

|ξh |
|ξ | f̂ (ξ) dξ, (t, x) ∈ R

1+3.

Here, ξh = (ξ1, ξ2) ∈ R
2 so that |ξh | =

√

ξ21 + ξ22 and f̂ denotes the Fourier

transform of f . The sharp dispersive estimate for e±i N t |Dh |/|D| was established
in [33]. Widmayer [39] proved the local well-posedness of (1.3) in Hs(R3) with
s � 3 for all N � 0. Furthermore, it is shown in [39] that for initial data (v0, θ0)

T ∈
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Hs+3(R3) ∩ W 5,1(R3) with s � 3, the local solution (vN , θN ) to (1.3) on [0, T0]
can be decomposed into two parts as

(vN , θN/N )=(wN , 0, 0)+(uN , ρN ), wN =(wN
1 , wN

2 ), uN =(uN
1 , uN

2 , uN
3 ),

and there holds for every 0 < t � T0 that

‖(uN , ρN )(t)‖W 1,∞(R3) → 0, ‖wN (t) − w(t)‖L2(R3) → 0

as N → ∞, where w = (w1(t, x), w2(t, x)) solves the 2D incompressible Eu-
ler equations (see (1.7) below). For the related singular limit problems to the ro-
tating Navier–Stokes equations and the viscous and inviscid rotating Boussinesq
equations, we refer to [2–4,10–15,18,36] (see also [6,19–21,35] for compressible
stratified flows).

To state our result more precisely, we firstly rewrite the sytem (1.3). Let us com-
bine the velocity field with the rescaled thermal disturbance into the new unknown
function

u :=
(

v,
θ

N

)T

=
(

v1, v2, v3,
θ

N

)T

.

Put

J :=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟
⎟
⎠ , ∇̃ := (∇, 0)T .

Then, the perturbed system (1.3) can be written as
{

∂t u + N Ju + (u · ∇̃)u + ∇̃ p = 0, ∇̃ · u = 0,

u(0, x) = φ(x),
(1.4)

where φ := (v0, θ0/N )T . Next, let P be the Helmholtz projection of the velocity v

onto the divergence-free vector fields which is defined by

P :=
( (

δ jk + R j Rk
)

1� j,k�3 0

0 1

)

.

Here
{
R j
}

1� j�3 denote the Riesz transforms on R
3. Applying the Helmholtz

projection P to (1.4) gives the following evolution equation:
{

∂t u + NPJPu + P(u · ∇̃)u = 0, ∇̃ · u = 0,

u(0, x) = φ(x).
(1.5)

Here, we have used the facts that P∇̃ p = 0 and Pu = u since ∇̃ · u = 0.
In this paper, we address the long time existence of classical solutions to (1.5)

when the buoyancy frequency N is sufficiently high, and then we show that the long
time classical solution vN to (1.5) converges to that of the 2D incompressible Euler
equations in the space-time Strichartz norm Lq(0, T ;W 1,∞(R3)) for 4 � q < ∞.

The main result of this paper reads as follows:
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Theorem 1.1. Let s ∈ N satisfy s � 3, and let 4 � q < ∞. Then, for every
φ = (φ1, φ2, φ3, φ4)

T ∈ Hs+4(R3) satisfying ∇̃ ·φ = 0 and for every 0 < T < ∞,
there exists a positive constant Nφ,T depending on s, q, T and ‖φ‖Hs+4 such that
if N � Nφ,T then (1.5) possesses a unique classical solution uN in the class

uN ∈ C([0, T ]; Hs+4(R3)) ∩ C1([0, T ]; Hs+3(R3)).

Furthermore, there exists a positive constant C = C(s, q, T, ‖φ‖Hs+4) such that

‖uN − u0‖Lq (0,T ;W 1,∞) � CN− 1
q (1.6)

for all N � Nφ,T , where u0 = (w, 0, 0)T and w = (w1(t, x), w2(t, x))T is the
classical solution of the two dimensional Euler equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tw + Ph(w · ∇h)w = 0 t > 0, x ∈ R
3,

∇h · w = 0 t � 0, x ∈ R
3,

w(0, x) = Phφh(x) x ∈ R
3,

w ∈ C([0, T ]; Hs+4(R3)) ∩ C1([0, T ]; Hs+3(R3)).

(1.7)

Here, φh = (φ1, φ2)
T , ∇h = (∂1, ∂2)

T and Ph = (δ jk + ∂ j∂k(−
h)
−1
)

1� j,k�2
denotes the two dimensional Helmholtz projection.

This can be compared with the corresponding results for the 3D rotating Euler
equations and the 2D inviscid stratified Boussinesq equations. In [31,38], the long
time existence of classical solutions to those systems were proved for large Coriolis
parameter and high buoyancy frequency; their proofs are by the contradiction argu-
ments based on the Strichartz estimate for the linear propagator with the blow-up
criteria of the Beale–Kato–Majda type. However, the situation is different for the
3D inviscid stratified Boussinesq equations. Indeed, the linear solution of (1.5) is
given explicitly by

e−t NPJPφ = eiNt
|Dh |
|D| P+φ + e−i N t

|Dh |
|D| P−φ + P0φ (1.8)

(see Proposition 2.1 in Section 2 for details), which has the stationary mode P0φ.
Thus, the continuation arguments in [31,38] cannot be applied directly. Toovercome
this, we adapt the ideas in [10] for the viscous rotating stratified fluids and the
arguments in [25,37] to extend the local solutions of the 3D Euler equations, and
employ the stability method for the limit system. In the proof of Theorem 1.1,
we first show the global regularity of the limit system (1.7) and give the global a
priori Hs+3(R3)-estimate for the solution u0 = (w, 0, 0)T to the limit system with
u0(0) = P0φ. Next, we introduce the modified linear dispersive equations

⎧
⎨

⎩

∂t u± ∓ i N
|Dh |
|D| u

± + P±(u0 · ∇̃)u0 = 0, ∇̃ · u± = 0,

u±(0, x) = P±φ(x)
(1.9)

(see (4.2) in Section 4), and establish the space-time Strichartz estimates for the

solutions u± in Lq(0, T ;W 1,∞(R3)) with the decay rate N− 1
q for 4 � q < ∞.
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Then, the difference vN = uN − u0 − u+ − u− of u0, u± and the local solution
uN to (1.5) with uN (0) = φ satisfies

∂tv
N + NPJPvN +P(uN · ∇̃)vN +

∑

j=0,±
P(vN · ∇̃)u j +

∑

j,k=0,±
( j,k) �=(0,0)

P(u j · ∇̃)uk = 0

with vN (0) = 0 on some local time interval. We shall show that the Hs-norm
of vN can be taken arbitrarily small provided that the buoyancy frequency N is
large enough depending only on the given data s, q, T and ‖φ‖Hs+4 . Then, the
local solution uN has a uniform Hs-bound, and can be continued to the given time
interval [0, T ]. Furthermore, the estimate (1.6) of the singular limit immediately
follows from the Hs-bound for vN and the space-time estimates for u±.

This paper is organized as follows: in Section 2, we derive the explicit formula
(1.8) of linear solutions e−t NPJPφ, and establish the space-time Strichartz estimates
for the linear propagator e±i N t |Dh |/|D|. In Section 3, we show the global regularity
of the limit system (1.7). In Section 4, we introduce the modified linear dispersive
systems (1.9) and show the space-time decay estimates for u±. In Section 5, we
present the proof of Theorem 1.1.

Throughout this paper, we denote by C the constants which may differ at each
occurrence. In particular, C = C(·, · · · , ·) will denote the constant which depends
only on the quantities appearing in parentheses.

2. Linear Estimates

In this section, we derive the explicit representation for the time evolution
semigroup generated by the linear operator −NPJP, and establish the homoge-
neous and inhomogeneous space-time Strichartz estimates for the linear propagator
e±i N t |Dh |/|D|.

Linear solutions

We follow the argument in [33, Section 2]. Let us consider the linear system
associated to (1.5):

{
∂t u + NPJPu = 0, ∇̃ · u = 0,

u(0, x) = φ(x).
(2.1)

Applying the Fourier transform to (2.1), we have
{

∂t û + N P(ξ)J P(ξ )̂u = 0, (ξ, 0)T · û = 0,

û(0, ξ) = φ̂(ξ).
(2.2)

Here, P(ξ) is themultipliermatrix of the projectionPdefinedby P̂u(ξ)= P(ξ )̂u(ξ),
which is given explicitly by

P(ξ) :=
⎛

⎝

(

δ jk − ξ jξk

|ξ |2
)

1� j,k�3
0

0 1

⎞

⎠ .



1480 Ryo Takada

Set S(ξ) := −P(ξ)J P(ξ). Then, direct calculation yields

S(ξ) = 1

|ξ |2

⎛

⎜
⎜
⎝

0 0 0 −ξ1ξ3
0 0 0 −ξ2ξ3
0 0 0 ξ21 + ξ22

ξ1ξ3 ξ2ξ3 −(ξ21 + ξ22 ) 0

⎞

⎟
⎟
⎠ ,

and then

det {λI − S(ξ)} = λ2

(

λ2 + ξ21 + ξ22

|ξ |2
)

.

Thus, the eigenvalues of S(ξ) are
{
±i |ξh ||ξ | , 0, 0

}
, where ξh = (ξ1, ξ2) and |ξh | =

√

ξ21 + ξ22 . Moreover, the corresponding eigenvectors are given by

a±(ξ) = 1√
2|ξh ||ξ |

⎛

⎜
⎜
⎝

±iξ1ξ3
±iξ2ξ3
∓i |ξh |2
|ξh ||ξ |

⎞

⎟
⎟
⎠ , a0(ξ) = 1

|ξh |

⎛

⎜
⎜
⎝

−ξ2
ξ1
0
0

⎞

⎟
⎟
⎠ , b0(ξ) = 1

|ξ |

⎛

⎜
⎜
⎝

ξ1
ξ2
ξ3
0

⎞

⎟
⎟
⎠ .

(2.3)
We see that {a+(ξ), a−(ξ), a0(ξ), b0(ξ)} is an orthonormal basis inC

4 and satisfies

S(ξ)a±(ξ) = ±i
|ξh |
|ξ | a±(ξ), S(ξ)a0(ξ) = S(ξ)b0(ξ) = 0.

Hence the solution to (2.2) can be written as

û(t, ξ) = eNtS(ξ)φ̂(ξ) =
∑

σ∈{±,0}
eσ i N t

|ξh |
|ξ | 〈φ̂(ξ), aσ (ξ)〉C4aσ (ξ).

Here, we remark that 〈φ̂(ξ), b0(ξ)〉C4 = 0 by the divergence-free condition ∇̃ ·φ =
0. Therefore, the solution to (2.1) is explicitly given in terms of the evolution
semigroup, and we obtain the following proposition.

Proposition 2.1. For every N � 0 and for every φ ∈ L2(R3) with ∇̃ ·φ = 0, there
exists a unique solution u to (2.1) which is given explicitly by

u(t, x) = e−t NPJPφ(x)

= eiNtp(D)P+φ(x) + e−i N tp(D)P−φ(x) + P0φ(x),

where

Pjφ := F−1[〈φ̂(ξ), a j (ξ)〉C4a j (ξ)] ( j = ±, 0) , (2.4)

e±i N tp(D) f (x) := 1

(2π)3

∫

R3
eix ·ξ±i N tp(ξ) f̂ (ξ) dξ (2.5)

and

p(ξ) := |ξh |
|ξ | =

√

ξ21 + ξ22

|ξ | , ξ ∈ R
3\{0}. (2.6)
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Strichartz estimates

In this subsection, we shall prove the homogeneous and inhomogeneous space-
time Strichartz estimates for the linear propagator e±i N t |Dh |/|D| defined by (2.5)–
(2.6). Since thephase p(ξ) = |ξh |/|ξ | is homogeneousof degree0, by theLittlewood-
Paley decomposition and scaling, the matter is reduced to the frequency localized
case. Also, the sign ± does not have any role. Hence we consider the operators

UN (t) f (x) :=
∫

R3
eix ·ξ+i N tp(ξ)ψ(ξ)2 f̂ (ξ) dξ,

VN (t) f (x) :=
∫

R3
eix ·ξ+i N tp(ξ)ψ(ξ) f̂ (ξ) dξ, (t, x) ∈ R

1+3,

whereψ is a real-valued function inS (R3) satisfying suppψ ⊂ {2−2 � |ξ | � 22
}

and ψ(ξ) = 1 on
{
2−1 � |ξ | � 2

}
. The sharp dispersive estimates for UN (t) and

VN (t) are obtained in [33].

Lemma 2.2. [33, Theorem 1.1] There exists a positive constant C = C(ψ) > 0
such that

‖UN (t) f ‖L∞ � C(1 + N |t |)− 1
2 ‖ f ‖L1

for all t ∈ R and f ∈ L1(R3). The same is true for VN (t). Also, the decay rate 1/2
cannot be improved to a larger one.

Now we investigate the boundedness of UN (t). We use the notation for the
space-time norm

‖ f ‖Lq
t Lrx

:= ‖ f ‖Lq (R;Lr (R3)).

The following results are the homogeneous and inhomogeneous space-time esti-
mates for the linear operator UN (t):

Lemma 2.3. Let the exponents q, q̃, r, r̃ satisfy

2

q
+ 1

r
� 1

2
,

2

q̃
+ 1

r̃
� 1

2
, 4 � q, q̃ � ∞, 2 � r, r̃ � ∞. (2.7)

Then, there exist positive constants C1 = C1(ψ, q, r) and C2 = C2(ψ, q, q̃, r, r̃)
such that

‖UN (t) f ‖Lq
t Lrx

� C1N
− 1

q ‖ f ‖L2 , (2.8)
∥
∥
∥
∥

∫ t

−∞
UN (t − s)F(s) ds

∥
∥
∥
∥
Lq
t Lrx

� C2N
− 1

q − 1
q̃ ‖F‖

Lq̃′
t Lr̃ ′x

(2.9)

for f ∈ L2(R3) and F ∈ Lq̃ ′
(R; Lr̃ ′

(R3)), where 1/r̃+1/r̃ ′ = 1 and 1/q̃+1/q̃ ′ =
1.
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Proof. We remark that the L1−L∞ decay rate ofUN (t) is−1/2 and the admissible
range (2.7) does not include the endpoint q = 2. Hence the proof is based on the
standard T T ∗ argument and the interpolation (See for examples, [22,28,30]).

For the homogeneous estimate (2.8), it suffices to show its adjoint estimate

∥
∥
∥
∥

∫

R

UN (−s)F(s) ds

∥
∥
∥
∥
L2

� CN− 1
q ‖F‖

Lq′
t Lr ′x

, (2.10)

and also (2.10) follows from the estimate

∫

R

∫

R

∣
∣〈UN (−s)F(s), UN (−t)G(t)〉L2

∣
∣ ds dt � CN− 2

q ‖F‖
Lq′
t Lr ′x

‖G‖
Lq′
t Lr ′x

.

(2.11)

Now we shall show (2.11). By Lemma 2.2 and the L2-boundedness of UN (t) with
‖UN (t) f ‖L2 � C‖ f ‖L2 , we have for 2 � r � ∞ that

‖UN (t) f ‖Lr � C(1 + N |t |)− 1
2 (1− 2

r )‖ f ‖Lr ′ (2.12)

for all t ∈ R. Then, it follows from (2.12) and the Hausdorff-Young inequality that

∣
∣〈UN (−s)F(s), UN (−t)G(t)〉L2

∣
∣ =
∣
∣
∣
∣

∫

R3
UN (t − s)F(s) · F−1[ψ2] ∗ G(t) dx

∣
∣
∣
∣

� ‖UN (t − s)F(s)‖Lr ‖F−1[ψ2] ∗ G(t)‖Lr ′
� C

(1 + N |t − s|) 1
2− 1

r

‖F(s)‖Lr ′ ‖G(t)‖Lr ′ .
(2.13)

For (q, r) = (∞, 2), we have by (2.13)

∫

R

∫

R

∣
∣〈UN (−s)F(s), UN (−t)G(t)〉L2

∣
∣ ds dt � C‖F‖L1

t L2
x
‖G‖L1

t L2
x
. (2.14)

In the case 2
q + 1

r = 1
2 with (q, r) �= (∞, 2), it follows from (2.13) and the

Hardy–Littlewood–Sobolev inequality that

∫

R

∫

R

∣
∣〈UN (−s)F(s), UN (−t)G(t)〉L2

∣
∣ ds dt

� CN−( 12− 1
r )

∫

R

∫

R

1

|t − s| 12− 1
r

‖F(s)‖Lr ′ ‖G(t)‖Lr ′ ds dt

� CN− 2
q

∥
∥
∥
∥
∥

∫

R

1

|t − s| 2q
‖F(s)‖Lr ′ ds

∥
∥
∥
∥
∥
Lq
t

‖G‖
Lq′
t Lr ′x

� CN− 2
q ‖F‖

Lq′
t Lr ′x

‖G‖
Lq′
t Lr ′x

. (2.15)
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In the case 2
q + 1

r < 1
2 , we have by (2.13) and the Hausdorff–Young inequality

∫

R

∫

R

∣
∣〈UN (−s)F(s), UN (−t)G(t)〉L2

∣
∣ ds dt

� C
∫

R

∫

R

1

(1 + N |t − s|) 1
2− 1

r

‖F(s)‖Lr ′ ‖G(t)‖Lr ′ ds dt

� C

∥
∥
∥
∥
∥

∫

R

1

(1 + N |t − s|) 1
2− 1

r

‖F(s)‖Lr ′ ds
∥
∥
∥
∥
∥
Lq
t

‖G‖
Lq′
t Lr ′x

� C

∥
∥
∥
∥
∥

1

(1 + N |t |) 1
2− 1

r

∥
∥
∥
∥
∥
L
q
2
t

‖F‖
Lq′
t Lr ′x

‖G‖
Lq′
t Lr ′x

= CN− 2
q ‖F‖

Lq′
t Lr ′x

‖G‖
Lq′
t Lr ′x

. (2.16)

Hence we obtain the homogeneous estimate (2.8) by (2.14)–(2.16). Note that it also
holds that
∫

R

∫

R

∣
∣〈VN (−s)F(s), VN (−t)G(t)〉L2

∣
∣ ds dt � CN− 2

q ‖F‖
Lq′
t Lr ′x

‖G‖
Lq′
t Lr ′x

,

(2.17)

by the exactly same procedure as above.
Next, we shall prove the inhomogeneous estimate (2.9). Since we have

∣
∣
∣
∣

∫

R

∫

R3

(∫ t

−∞
UN (t − s)F(s) ds

)

G(t) dx dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

R

∫ t

−∞
〈VN (−s)F(s), VN (−t)G(t)〉L2 ds dt

∣
∣
∣
∣ ,

by duality, it suffices to show that
∣
∣
∣
∣

∫

R

∫ t

−∞
〈VN (−s)F(s), VN (−t)G(t)〉L2 ds dt

∣
∣
∣
∣ � CN− 1

q − 1
q̃ ‖F‖

Lq̃′
t Lr̃ ′x

‖G‖
Lq′
t Lr ′x

.

Firstly, it easily follows from (2.17) that
∣
∣
∣
∣

∫

R

∫ t

−∞
〈VN (−s)F(s), VN (−t)G(t)〉L2 ds dt

∣
∣
∣
∣

�
∫

R

∫

R

∣
∣〈VN (−s)F(s), VN (−t)G(t)〉L2

∣
∣ ds dt

� CN− 2
q ‖F‖

Lq′
t Lr ′x

‖G‖
Lq′
t Lr ′x

.

Hence we have for the case (q, r) = (q̃, r̃)
∥
∥
∥
∥

∫ t

−∞
UN (t − s)F(s) ds

∥
∥
∥
∥
Lq
t Lrx

� C2N
− 2

q ‖F‖
Lq′
t Lr ′x

. (2.18)
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Also, the estimate (2.10) for VN (t) gives that

∣
∣
∣
∣

∫

R

∫ t

−∞
〈VN (−s)F(s), VN (−t)G(t)〉L2 ds dt

∣
∣
∣
∣

�
∫

R

∥
∥
∥
∥

∫ t

−∞
VN (−s)F(s) ds

∥
∥
∥
∥
L2

‖VN (−t)G(t)‖L2 dt

� CN− 1
q̃ ‖F‖

Lq̃′
t Lr̃ ′x

‖G‖L1
t L2

x
,

which yields for 2
q̃ + 1

r̃ � 1
2 that

∥
∥
∥
∥

∫ t

−∞
UN (t − s)F(s) ds

∥
∥
∥
∥
L∞
t L2

x

� C2N
− 1

q̃ ‖F‖
Lq̃′
t Lr̃ ′x

. (2.19)

Therefore, interpolating (2.18) and (2.19), and using the duality argument, we have
for 2

q + 1
r = 1

2 ,
2
q̃ + 1

r̃ = 1
2

∥
∥
∥
∥

∫ t

−∞
UN (t − s)F(s) ds

∥
∥
∥
∥
Lq
t Lrx

� C2N
− 1

q − 1
q̃ ‖F‖

Lq̃′
t Lr̃ ′x

. (2.20)

Next, we consider the case 2 � r � ∞ and 2
q̃ + 1

r̃ � 1
2 . Since there holds

‖VN (−t)G(t)‖L2 = ‖e−i N tp(ξ)ψ(ξ)Ĝ(t)‖L2
ξ

= ‖F−1[ψ] ∗ G(t)‖L2

� ‖F−1[ψ]‖
L( 12+ 1

r )−1 ‖G(t)‖Lr ′ ,

we have by (2.10) for VN (t) that

∣
∣
∣
∣

∫

R

∫ t

−∞
〈VN (−s)F(s), VN (−t)G(t)〉L2 ds dt

∣
∣
∣
∣

�
∫

R

∥
∥
∥
∥

∫ t

−∞
VN (−s)F(s) ds

∥
∥
∥
∥
L2

‖VN (−t)G(t)‖L2 dt

� CN− 1
q̃ ‖F‖

Lq̃′
t Lr̃ ′x

‖G‖L1
t Lr

′
x
,

which yields for 2 � r � ∞ and 2
q̃ + 1

r̃ � 1
2 that

∥
∥
∥
∥

∫ t

−∞
UN (t − s)F(s) ds

∥
∥
∥
∥
L∞
t Lrx

� C2N
− 1

q̃ ‖F‖
Lq̃′
t Lr̃ ′x

. (2.21)

Then, since every (q, r) satisfying 2
q + 1

r � 1
2 is an interpolation between (∞, r)

and (q0, r) with 2
q0

+ 1
r = 1

2 , it follows from (2.20), (2.21) and the interpolation
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argument that the inhomogeneous estimates (2.9) hold true for 2
q + 1

r � 1
2 and

2
q̃ + 1

r̃ = 1
2 . By duality, we then have for 2

q + 1
r = 1

2 and 2
q̃ + 1

r̃ � 1
2 that

∥
∥
∥
∥

∫ t

−∞
UN (t − s)F(s) ds

∥
∥
∥
∥
Lq
t Lrx

� C2N
− 1

q − 1
q̃ ‖F‖

Lq̃′
t Lr̃ ′x

. (2.22)

Again, since every (q, r) satisfying 2
q + 1

r � 1
2 is an interpolation between (∞, r)

and (q0, r) with 2
q0

+ 1
r = 1

2 , it follows from (2.21), (2.22) and the interpolation
argument that the inhomogeneous estimates (2.9) hold for every (q, r) and (q̃, r̃)
satisfying (2.7). This completes the proof of Lemma 2.3. ��

From (2.8), (2.9), the Littlewood–Paley theory and scaling, we can show the
space-time Strichartz estimates for the original propagator e±i N t |Dh |/|D| as a corol-
lary of Lemma 2.3. Let ϕ0 be a function in S (R3) satisfying

0 � ϕ0(ξ) � 1 for all ξ ∈ R
3, suppϕ0 ⊂

{
ξ ∈ R

3
∣
∣ 2−1 � |ξ | � 2

}

and ∑

j∈Z
ϕ j (ξ) = 1 for every ξ ∈ R

3\{0},

where ϕ j (ξ) := ϕ0(2− jξ). We set 
 j f := F−1[ϕ j (ξ) f̂ (ξ)] for j ∈ Z. Then, for
s ∈ R and 1 � r, σ � ∞, we define the semi-norm of the homogeneous Besov
spaces Ḃs

r,σ (R3) as

‖ f ‖Ḃs
r,σ

:=
∥
∥
∥
∥

{
2s j
∥
∥
 j f
∥
∥
Lr

}

j∈Z

∥
∥
∥
∥

�σ (Z)

.

Also, we define the following space-time norm for 1 � q � ∞:

‖F‖
L̃q
t Ḃs

r,σ
:=
∥
∥
∥
∥

{
2s j
∥
∥
 j F
∥
∥
Lq
t Lrx

}

j∈Z

∥
∥
∥
∥

�σ (Z)

.

Lemma 2.4. Let the exponents q, q̃, r, r̃ satisfy

2

q
+ 1

r
� 1

2
,

2

q̃
+ 1

r̃
� 1

2
, 4 � q, q̃ � ∞, 2 � r, r̃ � ∞.

Then, there exist positive constants C1 = C1(q, r) and C2 = C2(q, q̃, r, r̃) such
that

‖e±i N tp(D) f ‖
L̃q
t Ḃ0

r,σ
� C1N

− 1
q ‖ f ‖

Ḃ
3( 12− 1

r )

2,σ

, (2.23)

∥
∥
∥
∥

∫ t

−∞
e±i N (t−s)p(D)F(s) ds

∥
∥
∥
∥
L̃q
t Ḃ0

r,σ

� C2N
− 1

q − 1
q̃ ‖F‖˜

Lq̃′
t Ḃ

3(1− 1
r − 1

r̃ )

r̃ ′,σ
(2.24)

for all 1 � σ � ∞, f ∈ Ḃ
3( 12− 1

r )

2,σ (R3) and F ∈ L̃ q̃ ′
(R; Ḃ3(1− 1

r − 1
r̃ )

r̃ ′,σ (R3)).
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Proof. Since ψ(ξ) = 1 on the support of ϕ0, we see that

UN (t)
0 f (x) =
∫

R3
eix ·ξ+i N tp(ξ)ψ(ξ)2ϕ0(ξ) f̂ (ξ) dξ

= (2π)3
0e
iNtp(D) f (x).

Hence we have by (2.8) and (2.9) in Lemma 2.3

‖
0e
iNtp(D) f ‖Lq

t Lrx
� CN− 1

q ‖
0 f ‖L2 , (2.25)
∥
∥
∥
∥

∫ t

−∞

0e

iN (t−s)p(D)F(s) ds

∥
∥
∥
∥
Lq
t Lrx

� CN− 1
q − 1

q̃ ‖
0F‖
Lq̃′
t Lr̃ ′x

. (2.26)

Note that p(ξ) = |ξh |/|ξ | is homogeneous of degree 0. Hence scaling ξ �→ 2 jξ

gives that for j ∈ Z


 j e
i Ntp(D) f (x) = 
0e

iNtp(D)
[
f (2− j ·)

]
(2 j x),


 j f (x) = 
0

[
f (2− j ·)

]
(2 j x).

Therefore, we obtain by (2.25) and (2.26)

‖
 j e
i Ntp(D) f ‖Lq

t Lrx
� CN− 1

q (2 j )3(
1
2− 1

r )‖
 j f ‖L2 ,
∥
∥
∥
∥

∫ t

−∞

 j e

i N (t−s)p(D)F(s) ds

∥
∥
∥
∥
Lq
t Lrx

� C2N
− 1

q − 1
q̃ (2 j )3(1−

1
r − 1

r̃ )‖
 j F‖
Lq̃′
t Lr̃ ′x

.

Taking the �σ (Z)-norm, we complete the proof of Lemma 2.4. ��

3. The Limit System

In this section, we shall show the global regularity of the limit system (1.7), and
give the global a priori Hs+3(R3)-estimate for the solution to (1.7). We remark that
the projection P0 onto the stationary mode of the linear solution to (2.1) defined in
(2.3) and (2.4) is also written as

P̂0φ(ξ) =
( (

δ jk − ξ j ξk

|ξh |2
)

1� j,k�2
0

0 0

)

φ̂(ξ).

Hence we see that P0 corresponds to the two dimensional Helmholtz projection

Ph =
(
δ jk + ∂ j∂k(−
h)

−1
)

1� j,k�2
, P0 =

(
Ph 0
0 0

)

. (3.1)

Then, considering a solution u to (1.5) of the form u = P0u = (w, 0, 0)T with
Phw = w, we obtain the following limit system:
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⎧
⎪⎨

⎪⎩

∂tw + Ph(w · ∇h)w = 0 t > 0, x ∈ R
3,

∇h · w = 0 t � 0, x ∈ R
3,

w(0, x) = Phφh(x) x ∈ R
3,

(3.2)

where w = (w1(t, x), w2(t, x))T , φh = (φ1(x), φ2(x))T and ∇h = (∂1, ∂2)
T .

The global regularity result for (3.2) reads as follows:

Theorem 3.1. Let s ∈ N satisfy s � 3. Then, for every φh ∈ Hs+3(R3) and for
every 0 < T < ∞, there exists a unique classical solution w to (3.2) in the class

w ∈ C([0, T ]; Hs+3(R3)) ∩ C1([0, T ]; Hs+2(R3)).

Moreover, there exists a positive constant CL = CL(s, T, ‖φh‖Hs+3) such that

sup
0�t�T

‖w(t)‖Hs+3 � CL(s, T, ‖φh‖Hs+3). (3.3)

Proof. We first remark that for fixed x3 ∈ R the system (3.2) for w = w(·, x3)
is the two dimensional incompressible Euler equations. Hence it is well-known by
[23,26] that for the initial data φh(·, x3) ∈ Hs(R2) there exists a unique classical
global solution w(·, x3) to (3.2) satisfying

w(·, x3) ∈ C([0,∞); Hs(R2)) ∩ C1([0,∞); Hs−1(R2)).

Let us first derive the a priori estimate for the norm

‖w(t)‖L∞
x3
Hs
xh

:= ‖w(t)‖L∞(Rx3 ;Hs (R2)).

By the standard energy method and the Gronwall inequality (see [24,27]), we have

‖w(t, ·, x3)‖Hs (R2) � ‖φh(·, x3)‖Hs (R2) exp

{

C
∫ t

0
‖∇hw(τ, ·, x3)‖L∞(R2) dτ

}

.

(3.4)

By the Biot-Savart law, we have a representation of w in terms of the vorticity
ω = ∂1w2 − ∂2w1 as

w = −(−
h)
−1∇⊥

h ω, ∇⊥
h = (−∂2, ∂1)

T ,

which yields

∇hw =
(

Rh
1 R

h
2 (Rh

2 )2

−(Rh
1 )2 −Rh

1 R
h
2

)

ω.

Here, Rh
j = −∂ j (−
h)

− 1
2 ( j = 1, 2) denotes the two dimensional Riesz trans-

form. Then, since the Riesz transform is bounded in BMO(R2) and there holds
L∞(R2) ↪→ BMO(R2), it follows from the logarithmic Sobolev inequality by [32,
Theorem 1] that

‖∇hw(τ, ·, x3)‖L∞(R2)

� C
{
1 + ‖ω(τ, ·, x3)‖BMO(R2)

(
1 + log+ ‖∇hw(τ, ·, x3)‖Hs−1(R2)

)}

� C
{
1 + ‖ω(τ, ·, x3)‖L∞(R2) log

(‖w(τ, ·, x3)‖Hs (R2) + e
)}

. (3.5)
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Let Xh(t) be the trajectory flow defined by the solution of the ordinary differential
equation

⎧
⎨

⎩

dXh

dt
(t) = w(t, Xh(t), x3),

Xh(0) = xh ∈ R
2.

Then, since the vorticity w satisfies ∂tω + w · ∇hω = 0, we have

∂

∂t
{ω(t, Xh(t), x3)} = 0,

which yields ω(t, Xh(t), x3) = ω(0, xh, x3) for all t � 0. Hence we have

‖ω(t, ·, x3)‖L∞(R2) = ‖ω(0, ·, x3)‖L∞(R2)

� C‖φh(·, x3)‖Hs (R2). (3.6)

Then, it follows from (3.4), (3.5) and (3.6) that

‖w(t, ·, x3)‖Hs (R2) + e

�
(‖φh(·, x3)‖Hs (R2) + e

)

× exp

{

Ct + C‖φh(·, x3)‖Hs (R2)

∫ t

0
log
(‖w(τ, ·, x3)‖Hs (R2) + e

)
dτ

}

.

(3.7)

Defining z(t) = log(‖w(t, ·, x3)‖Hs (R2) + e), we have from (3.7)

z(t) � z(0) + Ct + C‖φh(·, x3)‖Hs (R2)

∫ t

0
z(τ ) dτ.

The Gronwall inequality gives

z(t) � (z(0) + Ct) exp
{
Ct‖φh(·, x3)‖Hs (R2)

}
,

which implies that

‖w(t, ·, x3)‖Hs (R2) + e

�
(‖φh(·, x3)‖Hs (R2) + e

)exp
{
Ct‖φh(·,x3)‖Hs (R2)

}

· eCt exp
{
Ct‖φh(·,x3)‖Hs (R2)

}

.

Therefore, we obtain for all t � 0

‖w(t)‖L∞
x3
Hs
xh

�
(‖φh‖L∞

x3
Hs
xh

+ e
)exp
{

Ct‖φh‖L∞
x3

Hs
xh

}

· eCt exp

{

Ct‖φh‖L∞
x3

Hs
xh

}

.

(3.8)

Now, we shall show thatw belongs toC([0, T ]; Hs+3(R3))∩C1([0, T ]; Hs+2

(R3)) and satisfies the estimate (3.3). We firstly observe that the limit system (3.2)
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can also be regarded as the following modified 3D Euler equations for the velocity
v of the form v = (w, 0)T = (w1(t, x), w2(t, x), 0)T :

{
∂tv + Ph(v · ∇)v = 0, ∇ · v = 0,

v(0, x) = (Phφh(x), 0)T ,

where Ph is the 3 × 3 matrix defined by Ph =
(

Ph 0
0 0

)

. Hence it follows

from the local well-posedness theory of the 3D Euler equations by [5,24,27] that
there exists a local time T0 � C/‖φh‖Hs+3 such that the unique solution w to
(3.2) belongs to the class C([0, T0]; Hs+3(R3)) ∩ C1([0, T0]; Hs+2(R3)). Hence
it suffices to show the global a priori estimate (3.3) for the norm ‖w(t)‖Hs+3 .

Taking the Hs+3(R3)-inner product of (3.2) with w, we have

1

2

d

dt
‖w(t)‖2Hs+3 + 〈(w(t) · ∇h)w(t), w(t)〉Hs+3 = 0. (3.9)

Since it holds that
∫

R3
(w · ∇h)(1 − 
)

s+3
2 w · (1 − 
)

s+3
2 w dx = 0

by the divergence-free condition ∇h · w = 0, we see that
∣
∣〈(w · ∇h)w, w〉Hs+3

∣
∣

=
∣
∣
∣
∣

∫

R3

{
(1 − 
)

s+3
2 (w · ∇h)w − (w · ∇h)(1 − 
)

s+3
2 w
}

· (1 − 
)
s+3
2 w dx

∣
∣
∣
∣

�
∥
∥
∥(1 − 
)

s+3
2 (w · ∇h)w − (w · ∇h)(1 − 
)

s+3
2 w

∥
∥
∥
L2

∥
∥
∥(1 − 
)

s+3
2 w

∥
∥
∥
L2

� C
(‖∇w‖L∞‖∇hw‖Hs+2 + ‖∇hw‖L∞‖w‖Hs+3

) ‖w‖Hs+3

� ‖∇w‖L∞‖w‖2Hs+3 . (3.10)

Here, we have used the commutator estimates of the Klainerman–Majda [29] and
the Kato–Ponce type [27]:

‖(1 − 
)
s
2 ( f g) − f (1 − 
)

s
2 g‖L2 � C

(‖∇ f ‖L∞‖g‖Hs−1 + ‖g‖L∞‖ f ‖Hs
)
.

Substituting (3.10) into (3.9) gives

1

2

d

dt
‖w(t)‖2Hs+3 � C‖∇w(t)‖L∞‖w(t)‖2Hs+3 .

Therefore, we have

‖w(t)‖Hs+3 � ‖φh‖Hs+3 + C
∫ t

0
‖∇w(τ)‖L∞‖w(τ)‖Hs+3 dτ

� ‖φh‖Hs+3 + C
∫ t

0
‖∇hw(τ)‖L∞‖w(τ)‖Hs+3 dτ

+ C
∫ t

0
‖∂3w(τ)‖L∞‖w(τ)‖Hs+3 dτ. (3.11)
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Let us set the right hand side of (3.8) by

A(t, ‖φh‖L∞
x3
Hs
xh

) := (‖φh‖L∞
x3
Hs
xh

+ e
)exp
{

Ct‖φh‖L∞
x3

Hs
xh

}

e
Ct exp

{

Ct‖φh‖L∞
x3

Hs
xh

}

.

Since s � 3, the Sobolev embedding Hs(R2) ↪→ C1(R2) and (3.8) give that

‖∇hw(t)‖L∞ � ‖w(t)‖L∞
x3
Hs
xh

� A(t, ‖φh‖L∞
x3
Hs
xh

). (3.12)

Next, we shall derive the estimate for ‖∂3w(t)‖L∞ . By the Sobolev embedding
H2(R2) ↪→ L∞(R2), we have

‖∂3w(t)‖L∞ � C‖∂3w(t)‖L∞
x3
H2
xh

. (3.13)

Hence we consider the H2(R2)-estimate for ∂3w(t, ·, x3). By (3.2), ∂3w should
satisfy

∂t (∂3w) + Ph(∂3w · ∇h)w + Ph(w · ∇h)∂3w = 0. (3.14)

Taking the L2(R2)-inner product of (3.14)with ∂3w, we have by the divergence-free
condition ∇h · w = 0 that

1

2

d

dt
‖∂3w(t, ·, x3)‖2L2(R2)

+ 〈(∂3w · ∇h)w, ∂3w〉L2(R2) = 0. (3.15)

Since it holds that
∣
∣〈(∂3w · ∇h)w, ∂3w〉L2(R2)

∣
∣ � ‖∇hw‖L∞(R2)‖∂3w‖2L2(R2)

,

we have the L2(R2)-estimate by (3.15)

1

2

d

dt
‖∂3w(t, ·, x3)‖2L2(R2)

� ‖∇hw(t, ·, x3)‖L∞(R2)‖∂3w(t, ·, x3)‖2L2(R2)
. (3.16)

For the Ḣ1(R2)-estimate for ∂3w, it follows from (3.14) that

∂t (∂l∂3w) + Ph(∂l∂3w · ∇h)w + Ph(∂3w · ∇h)∂lw

+ Ph(∂lw · ∇h)∂3w + Ph(w · ∇h)∂l∂3w = 0 (3.17)

for l = 1, 2. Taking the L2(R2)-inner product of (3.17) with ∂l∂3w gives

1

2

d

dt
‖∂l∂3w(t, ·, x3)‖2L2 + 〈(∂l∂3w · ∇h)w, ∂l∂3w〉L2(R2)

+ 〈(∂3w · ∇h)∂lw, ∂l∂3w〉L2(R2) + 〈(∂lw · ∇h)∂3w, ∂l∂3w〉L2(R2) = 0.
(3.18)

Here, we have used the fact that 〈(w · ∇h)∂l∂3w, ∂l∂3w〉L2(R2) = 0 by ∇h ·w = 0.
By the Hölder inequality, we have
∣
∣〈(∂l∂3w · ∇h)w, ∂l∂3w〉L2(R2)

∣
∣ � ‖∇hw‖L∞(R2)‖∇h∂3w‖2L2(R2)

,
∣
∣〈(∂3w · ∇h)∂lw, ∂l∂3w〉L2(R2)

∣
∣ � ‖∇2

hw‖L∞(R2)‖∂3w‖L2(R2)‖∇h∂3w‖L2(R2),
∣
∣〈(∂lw · ∇h)∂3w, ∂l∂3w〉L2(R2)

∣
∣ � ‖∇hw‖L∞(R2)‖∇h∂3w‖2L2(R2)

.
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Substituting these estimates into (3.18) gives

1

2

d

dt
‖∇h∂3w(t, ·, x3)‖2L2(R2)

� C‖∇hw(t, ·, x3)‖L∞(R2)‖∇h∂3w(t, ·, x3)‖2L2(R2)

+ C‖∇2
hw(t, ·, x3)‖L∞(R2)‖∂3w(t, ·, x3)‖L2(R2)‖∇h∂3w(t, ·, x3)‖L2(R2).

(3.19)

For the Ḣ2(R2)-estimate for ∂3w, we have by (3.17)

∂t (∂k∂l∂3w) + Ph(∂k∂l∂3w · ∇h)w + Ph(∂l∂3w · ∇h)∂kw

+ Ph(∂k∂3w · ∇h)∂lw + Ph(∂3w · ∇h)∂k∂lw

+ Ph(∂k∂lw · ∇h)∂3w + Ph(∂lw · ∇h)∂k∂3w

+ Ph(∂kw · ∇h)∂l∂3w + Ph(w · ∇h)∂k∂l∂3w = 0 (3.20)

for k, l = 1, 2. Then, there holds by the Hölder inequality that
∣
∣〈(∂k∂l∂3w · ∇h)w, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇hw‖L∞(R2)‖∇2

h∂3w‖2L2(R2)
,

∣
∣〈(∂l∂3w · ∇h)∂kw, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇2

hw‖L∞(R2)‖∇h∂3w‖L2(R2)‖∇2
h∂3w‖L2(R2),

∣
∣〈(∂k∂3w · ∇h)∂lw, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇2

hw‖L∞(R2)‖∇h∂3w‖L2(R2)‖∇2
h∂3w‖L2(R2),

∣
∣〈(∂3w · ∇h)∂k∂lw, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇3

hw‖L∞(R2)‖∂3w‖L2(R2)‖∇2
h∂3w‖L2(R2),

∣
∣〈(∂k∂lw · ∇h)∂3w, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇2

hw‖L∞(R2)‖∇h∂3w‖L2(R2)‖∇2
h∂3w‖L2(R2),

∣
∣〈(∂lw · ∇h)∂k∂3w, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇hw‖L∞(R2)‖∇2

h∂3w‖2L2(R2)
,

∣
∣〈(∂kw · ∇h)∂l∂3w, ∂k∂l∂3w〉L2(R2)

∣
∣ � ‖∇hw‖L∞(R2)‖∇2

h∂3w‖2L2(R2)
.

Taking the L2(R2)-inner product of (3.20) with ∂k∂l∂3w and substituting the above
estimates, we have

1

2

d

dt
‖∇2

h∂3w(t, ·, x3)‖2L2(R2)

� C‖∇hw(t, ·, x3)‖L∞(R2)‖∇2
h∂3w(t, ·, x3)‖2L2(R2)

+ C‖∇2
hw(t, ·, x3)‖L∞(R2)‖∇h∂3w(t, ·, x3)‖L2(R2)‖∇2

h∂3w(t, ·, x3)‖L2(R2)

+ C‖∇3
hw(t, ·, x3)‖L∞(R2)‖∂3w(t, ·, x3)‖L2(R2)‖∇2

h∂3w(t, ·, x3)‖L2(R2).

(3.21)

Therefore, we obtain from (3.8), (3.16), (3.19), (3.21) and Hs−1(R2) ↪→ L∞(R2)

for s � 3 that

1

2

d

dt
‖∂3w(t, ·, x3)‖2H2(R2)

� ‖∇hw(t, ·, x3)‖L∞(R2)‖∂3w(t, ·, x3)‖2L2(R2)

+ C‖∇hw(t, ·, x3)‖L∞(R2)‖∇h∂3w(t, ·, x3)‖2L2(R2)

+ C‖∇2
hw(t, ·, x3)‖L∞(R2)‖∂3w(t, ·, x3)‖L2(R2)‖∇h∂3w(t, ·, x3)‖L2(R2)
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+ C‖∇hw(t, ·, x3)‖L∞(R2)‖∇2
h∂3w(t, ·, x3)‖2L2(R2)

+ C‖∇2
hw(t, ·, x3)‖L∞(R2)‖∇h∂3w(t, ·, x3)‖L2(R2)‖∇2

h∂3w(t, ·, x3)‖L2(R2)

+ C‖∇3
hw(t, ·, x3)‖L∞(R2)‖∂3w(t, ·, x3)‖L2(R2)‖∇2

h∂3w(t, ·, x3)‖L2(R2)

� C‖∂3w(t, ·, x3)‖2H2(R2)

3∑

l=1

‖∇l
hw(t, ·, x3)‖L∞(R2)

� C‖w(t, ·, x3)‖Hs+2(R2)‖∂3w(t, ·, x3)‖2H2(R2)

� CA(t, ‖φh‖L∞
x3
Hs+2
xh

)‖∂3w(t, ·, x3)‖2H2(R2)
,

which yields by the Gronwall inequality that

‖∂3w(t, ·, x3)‖H2(R2) � ‖∂3φh(·, x3)‖H2(R2) exp
{
Ct A(t, ‖φh‖L∞

x3
Hs+2
xh

)
}

.

(3.22)
Hence we obtain from (3.13) and (3.22)

‖∂3w(t)‖L∞ � C‖∂3φh‖L∞
x3
H2
xh
exp
{
Ct A(t, ‖φh‖L∞

x3
Hs+2
xh

)
}

. (3.23)

Therefore, we have by (3.11), (3.12) and (3.23)

‖w(t)‖Hs+3 � ‖φh‖Hs+3 + CA(T, ‖φh‖L∞
x3
Hs
xh

)

∫ t

0
‖w(τ)‖Hs+3 dτ

+ C‖∂3φh‖L∞
x3
H2
xh
exp
{
CT A(T, ‖φh‖L∞

x3
Hs+2
xh

)
} ∫ t

0
‖w(τ)‖Hs+3 dτ

(3.24)

for all 0 � t � T . Here, let us set

B(t, ‖φh‖Hs ) := (‖φh‖Hs + e
)exp{Ct‖φh‖Hs }

eCt exp{Ct‖φh‖Hs }.

Then, it follows from the continuous embedding H1(R) ↪→ L∞(R) that

A(t, ‖φh‖L∞
x3
Hs
xh

) � CB(t, ‖φh‖Hs+1). (3.25)

Hence we have by, (3.24) and (3.25),

‖w(t)‖Hs+3 � ‖φh‖Hs+3 + CB(T, ‖φh‖Hs+1)

∫ t

0
‖w(τ)‖Hs+3 dτ

+ C‖φh‖H4 exp
{
CT B(T, ‖φh‖Hs+3)

}
∫ t

0
‖w(τ)‖Hs+3 dτ.

Therefore, we obtain by the Gronwall inequality that

sup
0�t�T

‖w(t)‖Hs+3

� ‖φh‖Hs+3 exp
[
CB(T, ‖φh‖Hs+1) + C‖φh‖H4 exp

{
CT B(T, ‖φh‖Hs+3)

}]
.

This gives the global a priori estimate for ‖w(t)‖Hs+3 , and we complete the proof
of Theorem 3.1. ��
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4. Modified Linear Dispersive Solutions

In this section, we adapt the idea in [10] and introduce the modified linear
dispersive equations (1.9) (and (4.2) below). Making use of Lemma 2.4, we shall
establish the global space-time estimates for the solutions u± to those systems.

Let s ∈ N satisfy s � 3, and let 0 < T < ∞. Then, for the initial data φ =
(φh, φ3, φ4)

T ∈ Hs+4(R3) with ∇̃ · φ = 0, let w = (w1, w2) ∈ C([0, T ]; Hs+4

(R3)) ∩ C1([0, T ]; Hs+3(R3)) be the classical solution to (3.2) with w(0, x) =
Phφh(x) constructed in Theorem 3.1 satisfying the Hs+4-estimate

sup
0�t�T

‖w(t)‖Hs+4 � CL(s, T, ‖φh‖Hs+4). (4.1)

Now, we put u0 = (w, 0, 0)T , and consider the solution to the following linear
systems with the external forces P±(u0 · ∇̃)u0:

⎧
⎪⎨

⎪⎩

∂t u± ∓ i Np(D)u± + P±(u0 · ∇̃)u0 = 0 t > 0, x ∈ R
3,

∇̃ · u± = 0 t � 0, x ∈ R
3,

u±(0, x) = P±φ(x) x ∈ R
3,

(4.2)

where p(D) = |Dh |/|D| is the Fourier multiplier, and the projections P± are
defined in (2.3) and (2.4). By the Duhamel principle, the solutions to (4.2) are
given by

u±(t) = e±i N tp(D)P±φ −
∫ t

0
e±i N (t−τ)p(D)P±(u0(τ ) · ∇̃)u0(τ ) dτ. (4.3)

Lemma 4.1. Let s ∈ N satisfy s � 3, and let 0 < T < ∞. Then, for every
φ ∈ Hs+4(R3) satisfying ∇̃ · φ = 0, there exists a unique classical solution u± to
(4.2) in the class

u± ∈ C([0, T ]; Hs+3(R3)) ∩ C1([0, T ]; Hs+2(R3)).

Moreover, there exists a positive constant C = C(s, T, ‖φ‖Hs+4) such that

sup
0�t�T

‖u±(t)‖Hs+3 � ‖φ‖Hs+3 + C(s, T, ‖φ‖Hs+4). (4.4)

Also, for 4 � q < ∞ there exist positive constants Cq = C(q) and C =
C(s, q, T, ‖φ‖Hs+4) such that

‖∇lu±‖Lq (0,T ;L∞) � CqN
− 1

q
(‖φ‖H2+l + C(s, q, T, ‖φ‖Hs+4)

)
(4.5)

for l = 0, 1, 2, . . . , s + 1.

Proof. Let us first show the Hs+3-estimate (4.4). Taking the Hs+3 inner product
of (4.2) with u±, and considering the real part, we have

1

2

d

dt
‖u±(t)‖2Hs+3 + 〈(u0(t) · ∇̃)u0(t), u±(t)〉Hs+3 = 0. (4.6)
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It follows from the Hs+4-estimates (4.1) for w(t) that
∣
∣
∣〈(u0(t) · ∇̃)u0(t), u±(t)〉Hs+3

∣
∣
∣ � ‖(w(t) · ∇h)w(t)‖Hs+3 ‖u±(t)‖Hs+3

� C‖w(t)‖2Hs+4‖u±(t)‖Hs+3

� C(s, T, ‖φh‖Hs+4)‖u±(t)‖Hs+3 . (4.7)

Substituting (4.7) into (4.6), we have

1

2

d

dt
‖u±(t)‖2Hs+3 � C(s, T, ‖φh‖Hs+4)‖u±(t)‖Hs+3 ,

which implies that

‖u±(t)‖Hs+3 � ‖P±φ‖Hs+3 + tC(s, T, ‖φh‖Hs+4)

for all 0 � t � T . This yields the desired estimate (4.4).
Next, we shall prove the space-time estimate (4.5). For the homogeneous term

in (4.3), by the continuous embedding Ḃ0∞,1(R
3) ↪→ L∞(R3), the Minkowski

inequality and (2.23) in Lemma 2.4, we have for l = 0, 1, 2, . . . , s + 1
∥
∥
∥∇l e±i N tp(D)P±φ

∥
∥
∥
Lq (0,T ;L∞)

� C
∥
∥
∥∇l e±i N tp(D)P±φ

∥
∥
∥
Lq (0,T ;Ḃ0∞,1)

� C
∑

j∈Z

∥
∥
∥
 j∇l e±i N tp(D)P±φ

∥
∥
∥
Lq (0,T ;L∞)

= C‖∇l e±i N tp(D)P±φ‖L̃q (0,T ;Ḃ0∞,1)

� CN− 1
q ‖∇l P±φ‖

Ḃ
3
2
2,1

� CN− 1
q ‖φ‖H2+l . (4.8)

For the inhomogeneous term in (4.3), similarly to (4.8), it follows from (2.24) in
Lemma 2.4 with (q̃, r̃) = (∞, 2) that

∥
∥
∥
∥∇l
∫ t

0
e±i N (t−τ)p(D)P±(u0(τ ) · ∇̃)u0(τ ) dτ

∥
∥
∥
∥
Lq (0,T ;L∞)

� C

∥
∥
∥
∥

∫ t

0
∇l e±i N (t−τ)p(D)P±(u0(τ ) · ∇̃)u0(τ ) dτ

∥
∥
∥
∥
L̃q (0,T ;Ḃ0∞,1)

� CN− 1
q

∥
∥
∥∇l P±(u0 · ∇̃)u0

∥
∥
∥
L̃1(0,T ;Ḃ

3
2
2,1)

. (4.9)

Here, we have by the Hs+4-estimates (4.1) for w(t)

∥
∥
∥∇l P±(u0 · ∇̃)u0

∥
∥
∥
L̃1(0,T ;Ḃ

3
2
2,1)

=
∑

j∈Z
2

3
2 j
∫ T

0

∥
∥
∥
 j∇l P±(u0(t) · ∇̃)u0(t)

∥
∥
∥
L2

dt

=
∫ T

0

∥
∥
∥∇l P±(u0(t) · ∇̃)u0(t)

∥
∥
∥
Ḃ

3
2
2,1

dt
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� C
∫ T

0

∥
∥
∥(u0(t) · ∇̃)u0(t)

∥
∥
∥
H2+l

dt

� C
∫ T

0
‖w(t)‖2H3+l dt

� C
∫ T

0
‖w(t)‖2Hs+4 dt � C(s, T, ‖φh‖Hs+4).

(4.10)

Combining (4.8), (4.9) and (4.10) yields the desired estimate (4.5). ��

5. Proof of Theorem 1.1

We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let s ∈ N with s � 3, and let φ = (φh, φ3, φ4)
T ∈

Hs+4(R3) satisfying ∇̃ · φ = 0. Since PJP is skew-symmetric and then
〈PJPu, u〉Hs = 0, it follows from the standard local well-posedness theory for
the 3D Euler equations in Hs(R3) by [24,27,31] that there exists a local time
T0 = T0(s, ‖φ‖Hs ) > 0 such that (1.5) possesses a unique classical solution uN

for all N � 0 in the class

uN ∈ C([0, T0]; Hs(R3)) ∩ C1([0, T0]; Hs−1(R3)). (5.1)

In particular, there exist positive constants C0 = C0(s) and C1 = C1(s) such that

T0 � C0

‖φ‖Hs
, sup

0�t�T0
‖uN (t)‖Hs � C1‖φ‖Hs . (5.2)

Let 0 < T < ∞. We shall first show that the local solution uN in the class
(5.1) can be extended to the arbitrary finite time interval [0, T ] provided that the
buoyancy frequency N is sufficiently high.

Let w = (w1, w2) ∈ C([0, T ]; Hs+4(R3)) ∩ C1([0, T ]; Hs+3(R3)) be the
classical solution to the limit system (3.2) with w(0, x) = Phφh(x) constructed in
Theorem 3.1.We put u0 = (w, 0, 0)T . Then, by (3.1), we see that u0 is the classical
solution to the system

{
∂t u0 + P0(u0 · ∇̃)u0 = 0, ∇̃ · u0 = 0,

u0(0, x) = P0φ.

Also, let u± ∈ C([0, T ]; Hs+3(R3)) ∩ C1([0, T ]; Hs+2(R3)) be the classical so-
lutions to the linear systems (4.2) constructed in Lemma 4.1 satisfying (4.4) and
(4.5).

Now we set

vN := uN − u+ − u− − u0.
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Then, since there holdφ = Pφ = P+φ+P−φ+P0φ and Pju j = u j for j ∈ {0,±},
the perturbation vN should solve
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv
N + NPJPvN + P(uN · ∇̃)vN +

∑

j=0,±
P(vN · ∇̃)u j +

∑

j,k=0,±
( j,k) �=(0,0)

P(u j · ∇̃)uk = 0,

∇̃ · vN = 0,

vN (0, x) = 0
(5.3)

on the local time interval [0, T0]. Let us derive the Hs-estimate for vN (t). Taking
the Hs inner product of (5.3) with vN gives

1

2

d

dt
‖vN (t)‖2Hs + 〈(uN (t) · ∇̃)vN (t), vN (t)〉Hs

+
∑

j=0,±
〈(vN (t) · ∇̃)u j (t), vN (t)〉Hs

+
∑

j,k=0,±
( j,k) �=(0,0)

〈(u j (t) · ∇̃)uk(t), vN (t)〉Hs = 0.

(5.4)

Since it holds that ∫

R3
(uN · ∇̃)∂αvN · ∂αvN dx = 0

for α ∈ (N ∪ {0})3 with |α| � s by the divergence-free condition, we have

∣
∣
∣〈(uN · ∇̃)vN , vN 〉Hs

∣
∣
∣ =
∣
∣
∣
∣
∣
∣

∑

|α|�s

∫

R3
∂α(uN · ∇̃)vN · ∂αvN dx

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

|α|�s

∑

0<β�α

Cα,β

∫

R3
(∂βuN · ∇̃)∂α−βvN · ∂αvN dx

∣
∣
∣
∣
∣
∣

�
∑

|α|�s

∑

0<β�α

Cα,β

∥
∥
∥(∂

βuN · ∇̃)∂α−βvN
∥
∥
∥
L2

∥
∥
∥∂

αvN
∥
∥
∥
L2

� C‖uN‖Hs‖vN‖2Hs . (5.5)

Here, we have used the estimates (see [24, Lemma in page 302])

∥
∥
∥(∂

βuN · ∇̃)∂α−βvN
∥
∥
∥
L2

�
{
C‖uN‖H3‖vN‖H |α| 0<β � α, |β|=1, 2,

C‖uN‖H |β|‖vN‖H |α|−|β|+3 0 < β � α, |β|�3.

For the third term in the left hand side of (5.4), since s � 3 and Hs(R3) is a Banach
algebra, we see that

∣
∣
∣
∣
∣
∣

∑

j=0,±
〈(vN · ∇̃)u j , vN 〉Hs

∣
∣
∣
∣
∣
∣
�
∑

j=0,±

∥
∥
∥(v

N · ∇̃)u j
∥
∥
∥
Hs

∥
∥
∥v

N
∥
∥
∥
Hs

� C
∑

j=0,±
‖u j‖Hs+1‖vN‖2Hs . (5.6)



Strongly Stratified Limit for the 3D Inviscid Boussinesq Equations 1497

For the fourth term in the left hand side of (5.4), the Schwartz inequality gives

∣
∣
∣
∣
∣
∣
∣

∑

j,k=0,±
( j,k) �=(0,0)

〈(u j · ∇̃)uk, vN 〉Hs

∣
∣
∣
∣
∣
∣
∣

�
∑

j,k=0,±
( j,k) �=(0,0)

‖(u j · ∇̃)uk‖Hs‖vN‖Hs . (5.7)

Let us derive the estimates for ‖(u j · ∇̃)uk‖Hs . It follows from the the Leibniz rule
that

‖(u j · ∇̃)uk‖2Hs

=
∑

|α|�s

∫

R3
∂α(u j · ∇̃)uk · ∂α(u j · ∇̃)uk dx

=
∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ

∫

R3
(∂βu j · ∇̃)∂α−βuk · (∂γ u j · ∇̃)∂α−γ uk dx . (5.8)

For ( j, k) = (±,±), we have by the Hölder inequality

∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ

∫

R3
(∂βu± · ∇̃)∂α−βu± · (∂γ u± · ∇̃)∂α−γ u± dx

�
∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ ‖∂βu±‖L∞‖∂γ u±‖L∞‖∇∂α−βu±‖L2‖∇∂α−γ u±‖L2

� C‖u±‖2Hs+1

(
s∑

l=0

‖∇lu±‖L∞

)2

. (5.9)

Similarly to (5.9), we see that for ( j, k) = (±,∓)

∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ

∫

R3
(∂βu± · ∇̃)∂α−βu∓ · (∂γ u± · ∇̃)∂α−γ u∓ dx

� C‖u∓‖2Hs+1

(
s∑

l=0

‖∇lu±‖L∞

)2

. (5.10)

For ( j, k) = (±, 0), it follows from the Hölder inequality that

∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ

∫

R3
(∂βu± · ∇̃)∂α−βu0 · (∂γ u± · ∇̃)∂α−γ u0 dx

�
∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ ‖∂βu±‖L∞‖∂γ u±‖L∞‖∇∂α−βu0‖L2‖∇∂α−γ u0‖L2

� C‖u0‖2Hs+1

(
s∑

l=0

‖∇lu±‖L∞

)2

. (5.11)
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Similarly to (5.11), we have for ( j, k) = (0,±) that

∑

|α|�s

∑

β�α

∑

γ�α

Cα,β,γ

∫

R3
(∂βu0 · ∇̃)∂α−βu± · (∂γ u0 · ∇̃)∂α−γ u± dx

� C‖u0‖2Hs

(
s+1∑

l=0

‖∇lu±‖L∞

)2

. (5.12)

Combining (5.7)–(5.12), we obtain
∣
∣
∣
∣
∣
∣
∣

∑

j,k=0,±
( j,k) �=(0,0)

〈(u j · ∇̃)uk, vN 〉Hs

∣
∣
∣
∣
∣
∣
∣

� C
∑

j=0,±
‖u j‖Hs+1

s+1∑

l=0

(
‖∇lu+‖L∞ + ‖∇lu−‖L∞

)
‖vN‖Hs . (5.13)

Substituting (5.5), (5.6) and (5.13) into (5.4), we have

1

2

d

dt
‖vN (t)‖2Hs � C‖uN‖Hs‖vN‖2Hs + C

∑

j=0,±
‖u j‖Hs+1‖vN‖2Hs

+ C
∑

j=0,±
‖u j‖Hs+1

s+1∑

l=0

(
‖∇lu+‖L∞ + ‖∇lu−‖L∞

)
‖vN‖Hs ,

which yields

d

dt
‖vN (t)‖Hs � C

⎛

⎝‖uN‖Hs +
∑

j=0,±
‖u j‖Hs+1

⎞

⎠ ‖vN‖Hs

+ C
∑

j=0,±
‖u j‖Hs+1

s+1∑

l=0

(
‖∇lu+‖L∞ + ‖∇lu−‖L∞

)
. (5.14)

Here, it follows from the uniform Hs+3 estimates (3.3), (4.4) and (5.2) that there
exists a positive constant C = C(s, T, ‖φ‖Hs+4) such that

‖uN (t)‖Hs +
∑

j=0,±
‖u j (t)‖Hs+1 � sup

0�t�T0
‖uN (t)‖Hs +

∑

j=0,±
sup

0�t�T
‖u j (t)‖Hs+3

� C(s, T, ‖φ‖Hs+4). (5.15)

for 0 � t � T0. Then, by (5.14), (5.15) and vN (0) = 0, we have

‖vN (t)‖Hs � C(s, T, ‖φ‖Hs+4)

s+1∑

l=0

∫ t

0

(
‖∇lu+(τ )‖L∞ + ‖∇lu−(τ )‖L∞

)
dτ

+ C(s, T, ‖φ‖Hs+4)

∫ t

0
‖vN (τ )‖Hs dτ. (5.16)
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Here, it follows from the Hölder inequality and the space-time estimates (4.5) in
Lemma 4.1 that for 4 � q < ∞,

s+1∑

l=0

∫ t

0
‖∇lu±(τ )‖L∞ dτ � T 1− 1

q

s+1∑

l=0

‖∇lu±‖Lq (0,T ;L∞)

� C(s, q, T, ‖φ‖Hs+4)N− 1
q (5.17)

for 0 � t � T0 < T . Hence we have by (5.16) and (5.17) that

‖vN (t)‖Hs � C(s, q, T, ‖φ‖Hs+4)N− 1
q + C(s, T, ‖φ‖Hs+4)

∫ t

0
‖vN (τ )‖Hs dτ.

(5.18)
The Gronwall inequality yields

sup
0�t�T0

‖vN (t)‖Hs � C(s, q, T, ‖φ‖Hs+4)N− 1
q eC(s,T,‖φ‖Hs+4 )T . (5.19)

Therefore, there exists a positive constant N0 = N0(s, q, T, ‖φ‖Hs+4) > 0 such
that there holds

sup
0�t�T0

‖vN (t)‖Hs � 1 (5.20)

for all N � N0. Then, since vN = uN − u0 − u+ − u−, it follows from (3.3), (4.4)
and (5.20) that there exists a positive constant C∗ = C∗(s, T, ‖φ‖Hs+4) such that

‖uN (T0)‖Hs � ‖vN (T0)‖Hs +
∑

j=0,±
‖u j (T0)‖Hs

� sup
0�t�T0

‖vN (t)‖Hs +
∑

j=0,±
sup

0�t�T
‖u j (t)‖Hs+3

� 1 + C∗(s, T, ‖φ‖Hs+4). (5.21)

Note that the constantC∗(s, T, ‖φ‖Hs+4) is independent of the local time T0. There-
fore, the local solution uN can be extended to [T0, T1], where

T1 − T0 � C0

1 + C∗(s, T, ‖φ‖Hs+4)
, (5.22)

and there holds

sup
T0�t�T1

‖uN (t)‖Hs � C1
(
1 + C∗(s, T, ‖φ‖Hs+4)

)
. (5.23)

We repeat the same procedure as (5.4)–(5.19) on the time interval [T0, T1]. Since
we have the global estimates for u j ( j = 0,±) on [0, T ], it suffices to modify the
above argument for the initial data ‖v(T0)‖Hs and the Hs estimates for uN as in
(5.2) and (5.23). Then, similarly to (5.18), we have

‖vN (t)‖Hs � ‖vN (T0)‖Hs + C̃(s, q, T, ‖φ‖Hs+4)N− 1
q

+ C̃(s, T, ‖φ‖Hs+4)

∫ t

T0
‖vN (τ )‖Hs dτ (5.24)
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for T0 � t � T1. Therefore, it follows from (5.24), (5.19) and the Gronwall
inequality that

sup
T0�t�T1

‖vN (t)‖Hs � C̃(s, q, T, ‖φ‖Hs+4)N− 1
q eC̃(s,T,‖φ‖Hs+4 )T

for N � N0. Hence one can take N1 = N1(s, q, T, ‖φ‖Hs+4) � N0 so that there
holds

sup
T0�t�T1

‖vN (t)‖Hs � 1 (5.25)

for all N � N1. Then, we have by (3.3), (4.4) and (5.25)

‖uN (T1)‖Hs � ‖vN (T1)‖Hs +
∑

j=0,±
‖u j (T1)‖Hs

� sup
T0�t�T1

‖vN (t)‖Hs +
∑

j=0,±
sup

0�t�T
‖u j (t)‖Hs+3

� 1 + C∗(s, T, ‖φ‖Hs+4) (5.26)

for all N � N1. Note that the above bound (5.26) is exactly same as (5.21). Hence
the local solution uN can be uniquely extended to the solution of (1.5) on the time
interval [T1, T1 + (T1 − T0)] (defined in (5.22)) for N � N1 and satisfies

sup
T1�t�2T1−T0

‖uN (t)‖Hs � C1
(
1 + C∗(s, T, ‖φ‖Hs+4)

)
. (5.27)

Also note that the bound (5.27) is exactly same as (5.23). Since T is arbitrary finite
time,we repeat a finite number of the sameprocedures in the above, and continue the
local solution uN to the given time interval [0, T ] in the class C([0, T ]; Hs(R3))∩
C1([0, T ]; Hs−1(R3)) for N � Nφ,T , where Nφ,T = N (s, q, T, ‖φ‖Hs+4) is some
large positive constant.

Next, we shall show that the solution uN belongs to the class C([0, T ]; Hs+4

(R3)) ∩ C1([0, T ]; Hs+3(R3)). Since the initial data φ is in Hs+4(R3) and PJP

is skew-symmetric, it follows from the standard local existence theory for the 3D
Euler equations in Hs(R3) by [24,27,31] that uN belongs to

uN ∈ C([0, TL ]; Hs+4(R3)) ∩ C1([0, TL ]; Hs+3(R3))

with some local time TL � Cs/‖φ‖Hs+4 for all N � 0. Hence it suffices to show
the global a priori estimate for ‖uN (t)‖Hs+4 on [0, T ] when N � Nφ,T .

By the above procedure on the extension of solutions, we see that the long time
solution uN on [0, T ] satisfies the uniform Hs estimate as

sup
0�t�T

‖uN (t)‖Hs � C(s, q, T, ‖φ‖Hs+4), (5.28)

with some positive constant C(s, q, T, ‖φ‖Hs+4) for N � Nφ,T . Therefore, the
standard energymethod, the continuous embedding Hs(R3) ↪→ C1(R3) and (5.28)
give that
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‖uN (t)‖Hs+4 � ‖φ‖Hs+4 + C
∫ t

0
‖∇uN (τ )‖L∞‖uN (τ )‖Hs+4 dτ

� ‖φ‖Hs+4 + C(s, q, T, ‖φ‖Hs+4)

∫ t

0
‖uN (τ )‖Hs+4 dτ,

which yields with the Gronwall inequality that

‖uN (t)‖Hs+4 � ‖φ‖Hs+4eC(s,q,T,‖φ‖Hs+4 )T

for 0 � t � T and N � Nφ,T . This completes the proof of the long time existence
of classical solution to (1.5).

It remains to prove the convergence result (1.6). Let N � Nφ,T . Since there
holds the uniform Hs estimate (5.28) for uN (t), we have similarly to (5.19)

sup
0�t�T

‖vN (t)‖Hs � C(s, q, T, ‖φ‖Hs+4)N− 1
q eC(s,T,‖φ‖Hs+4 )T . (5.29)

Recall that vN = uN −u0−u+−u−. Therefore, by (4.5), (5.29) and the continuous
embedding Hs(R3) ↪→ W 1,∞(R3), we obtain for 4 � q < ∞

‖uN − u0‖Lq (0,T ;W 1,∞) � ‖vN‖Lq (0,T ;W 1,∞) +
∑

j=±
‖u j‖Lq (0,T ;W 1,∞)

� T
1
q sup
0�t�T

‖vN (t)‖Hs +
∑

j=±
‖u j‖Lq (0,T ;W 1,∞)

� C(s, q, T, ‖φ‖Hs+4)N− 1
q

for all N � Nφ,T . This completes the proof of Theorem 1.1. ��
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