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Abstract

We consider the initial value problem of the 3D inviscid Boussinesq equations
for stably stratified fluids. We prove the long time existence of classical solutions
for large initial data when the buoyancy frequency is sufficiently high. Furthermore,
we consider the singular limit of the strong stratification, and show that the long
time classical solution converges to that of 2D incompressible Euler equations in
some space-time Strichartz norms.

1. Introduction

Let us consider the initial value problem for the 3D inviscid Boussinesq equa-
tions, describing the motion of perfect incompressible fluids in R3:

otv+ (v-V)v = —Vg + ne3 >0, xeR3,
an+@w-Vyn=0 t>0, x eR3, (w1
V-v=0 >0, x € R3, '

v(0, x) = vo(x), 1(0,x) =no(x) xeR3.

The unknown functions v = (v1(z, x), v2(z, x), v3(r, x)) T, n =n(,x)and g =
q(t, x) represent the velocity field, the temperature and the scalar pressure of the
fluids, respectively, while vp = (vo,1(x), vo,2(x), vo,g(x))T is the given initial ve-
locity field satisfying the compatibility condition V - vp = 0 and 19 = no(x) is the
given initial temperature. The vertical unit vector is denoted by e3 = (0, 0, DT.
In this manuscript, we prove the long time existence of classical solutions
to (1.1) around the explicit stratified solution (vy, 15, gs) = (0O, N2xz, N2x32/2)
when the constant temperature gradient N = /dn,/dx3 > 0 is sufficiently large.
More precisely, we shall show that for given initial disturbance ¢ = (vg, (no —
N2x3) /N ' e HSH(R3) with s > 3 and for given finite time T, there exists
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a positive parameter Ny 7 such that the 3D inviscid stratified Boussinesq system
(1.3) admits a unique classical solution on the time interval [0, T'] provided N >
Ny 7. Furthermore, we consider the singular limit of the strong stratification as
N — oo, and show that the long time classical solution vV to (1.3) strongly
converges to that of the 2D incompressible Euler equations in the space-time norm

L4(0, T; WL (R?)) with the convergence rate O(N_ql) for4 < g < oo.

Before stating our result, we first review the local existence results on the
inviscid Boussinesq equations. In the Sobolev spaces H*-framework, it is known
that for initial data (v, 19) € HS(R3) with V - vg = 0 and s > 5/2 there exists a
To = To(s, || (vo, no) |l #s) > 0 such that (1.1) possesses a unique classical solution
(v, n)intheclass C([0, Tyl; HS (R?)). See[7,8,16,34] for the local existence theory
of (1.1) in function spaces embedded in C! class such as the Holder spaces and the
Besov spaces, and the blow-up criteria of local solutions. We also refer to [1,9,17]
for the global existence results on the 2D Boussinesq systems.

Next, let us consider the solution of (1.1) around a stratified solution. It is known
that the system (1.1) has an elementary explicit stationary solution (vg, 35, g5) of

the form 5

2 N=
v, =0, n(x3) =N"x3, gs5(x3) = - X5 (1.2)

d

satisfying the hydrostatic balance dﬁ = ny, where N > 0 is called the buoyancy
X3

or the Brunt—Viisild frequency and represents the strength of stable stratification.

Let us set

e(t’x):ﬂ(t’x)_ns()%)» p(tvx):qa»x)_CIs(XS)’

where n; and g, are given by (1.2). We consider the time evolution of the perturba-
tions around a stable state in hydrostatic balance, and then (v, 6, p) should satisfy

v+ (v-V)v=—=Vp+bes,

90 + (v- V)8 = —N2us,

V.-v=0,

v(0, x) = vo(x), (0, x) = (x) = no(x) — N2x3,

(1.3)

where 6 denotes the initial thermal disturbance. The system (1.3) exhibits a disper-
sive nature due to the presence of the skew-symmetric linear term (fe3, —N 2v3)T
by the stable stratification. This phenomenon is closely related to the dispersive
estimates for the propagator ¢ N!IPil/IP1 defined by the Fourier integral

1Dy : iNg Ll o~
FNH py = o [ SN R (o e R
R3

1
2m)?

Here, &, = (&1, &) € R? so that |&,| = ,/512 + 522 and fdenotes the Fourier
transform of f. The sharp dispersive estimate for e=*N!IP:l/IDl wag established
in [33]. WIDMAYER [39] proved the local well-posedness of (1.3) in H*® (R3) with
s > 3forall N > 0. Furthermore, it is shown in [39] that for initial data (vg, 60)% €
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HsP3R3) N W31 (R3) with s > 3, the local solution (vV, 6V) to (1.3) on [0, Ty]
can be decomposed into two parts as

@Y 0N /Ny =", 0,00+@", o), wV =@ w), uN =@, u) i),
and there holds for every 0 < ¢ < T that
@™, pM)YOllwroogsy = 0. lw" @) = WOl 2@3) — O

as N — oo, where w = (w (¢, x), wa(t, x)) solves the 2D incompressible Eu-
ler equations (see (1.7) below). For the related singular limit problems to the ro-
tating Navier—Stokes equations and the viscous and inviscid rotating Boussinesq
equations, we refer to [2—4,10-15,18,36] (see also [6,19-21,35] for compressible
stratified flows).

To state our result more precisely, we firstly rewrite the sytem (1.3). Let us com-
bine the velocity field with the rescaled thermal disturbance into the new unknown

function
o\ 0\
u = (va N) = (vlv v2, U3, N) .

0 0
0 0
0
1

Put

J = , Vi=(,07".

—1
0

Then, the perturbed system (1.3) can be written as

00
00
00
00

{8,u+NJu+(u~%)u+%p:O, %-u:O, (1.4)

u(0,x) = ¢(x),

where ¢ := (vg, 6p/N)T . Next, let P be the Helmholtz projection of the velocity v
onto the divergence-free vector fields which is defined by

P::< (8jc + RjRk) < ipcs | O )
0 1

Here {R./}l << denote the Riesz transforms on R3. Applying the Helmholtz

projection P to (1.4) gives the following evolution equation:

(1.5)

du—+ NPIPuU+Pu-Viu=0, V-u=0,
u(0, x) = ¢(x).

Here, we have used the facts that PV p = 0and Pu = u since V.u=0.

In this paper, we address the long time existence of classical solutions to (1.5)
when the buoyancy frequency N is sufficiently high, and then we show that the long
time classical solution v to (1.5) converges to that of the 2D incompressible Euler
equations in the space-time Strichartz norm L4 (0, T; W1 (R?)) for4 < ¢ < oc.

The main result of this paper reads as follows:
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Theorem 1.1. Let s € N satisfy s > 3, and let 4 < q < o0. Then, for every
& = (91, P, 93, da)T € HSTHRD) satzsfyzngV ¢ = Oana’foreveryO < T < o0,
there exists a positive constant Ny 7 depending on s, q, T and ||@|| ys+4 such that
if N > Ny 1 then (1.5) possesses a unique classical solution u® in the class

Necqo, 11 HH®Y)) Nl (0, T1; HH ®R?)).
Furthermore, there exists a positive constant C = C(s, q, T, ||@|| gs+4) such that
_1
lu™ = u®ll Lo 0.7 wroey < CN ™4 (1.6)

forall N > Ny 1, where u® = (w, 0, O)T and w = (wq(t, x), wz(t,x))T is the
classical solution of the two dimensional Euler equations

w +Pp(w - Vy)w =0 t>0, x €R3,
Vip-w=0 t>0, R3,

e JC (1.7)
w(0, x) = Pron(x) x e R3,

w e C([0, T]; HSH4@R3)) n ([0, T1; HS 3 (RY)).

Here, ¢, = (¢1,¢2)". Viy = 01, 0" and By = (86 + ;0 (A1) ") <
denotes the two dimensional Helmholtz projection.

This can be compared with the corresponding results for the 3D rotating Euler
equations and the 2D inviscid stratified Boussinesq equations. In [31,38], the long
time existence of classical solutions to those systems were proved for large Coriolis
parameter and high buoyancy frequency; their proofs are by the contradiction argu-
ments based on the Strichartz estimate for the linear propagator with the blow-up
criteria of the Beale-Kato—Majda type. However, the situation is different for the
3D inviscid stratified Boussinesq equations. Indeed, the linear solution of (1.5) is
given explicitly by

e—tNPJP¢: iNt! |D| P.p+e —iNtlghl IDI P_¢ + Py (1.8)

(see Proposition 2.1 in Section 2 for details), which has the stationary mode Py¢.
Thus, the continuation arguments in [31,38] cannot be applied directly. To overcome
this, we adapt the ideas in [10] for the viscous rotating stratified fluids and the
arguments in [25,37] to extend the local solutions of the 3D Euler equations, and
employ the stability method for the limit system. In the proof of Theorem 1.1,
we first show the global regularity of the limit system (1.7) and give the global a
priori H*® +3(R3)-estimate for the solution «° = (w, 0, 0)” to the limit system with
u%(0) = Py¢. Next, we introduce the modified linear dispersive equations
1Dal S0 —0 .yt
dut FiN— D] + P’ - Vu® =0, V.ut=0, (1.9)
w0, x) = Prop(x)

(see (4.2) in Section 4), and establish the space-time Strichartz estimates for the
solutions u¥ in L4(0, T; W1 (R3)) with the decay rate N~ ‘l for4 < g < 0.
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Then, the difference vV = u — u® — ut — u= of u®, u® and the local solution

u™ to (1.5) with u™ (0) = ¢ satisfies

ooV + NPIPVN +P@Y V)N + Y PN -Vl + Y Pal Vb =0
j=0,% Jok=0,%
(.K)#(0,0)
with vV (0) = 0 on some local time interval. We shall show that the H*-norm
of vV can be taken arbitrarily small provided that the buoyancy frequency N is
large enough depending only on the given data s, g, T and ||¢|| gs+4. Then, the
local solution #” has a uniform H*-bound, and can be continued to the given time
interval [0, T']. Furthermore, the estimate (1.6) of the singular limit immediately
follows from the H*-bound for v"¥ and the space-time estimates for u*.

This paper is organized as follows: in Section 2, we derive the explicit formula
(1.8) of linear solutions e NF/F¢_and establish the space-time Strichartz estimates
for the linear propagator e VIPxl/IPI Tn Section 3, we show the global regularity
of the limit system (1.7). In Section 4, we introduce the modified linear dispersive
systems (1.9) and show the space-time decay estimates for u*. In Section 5, we
present the proof of Theorem 1.1.

Throughout this paper, we denote by C the constants which may differ at each
occurrence. In particular, C = C(-, - - - , -) will denote the constant which depends
only on the quantities appearing in parentheses.

2. Linear Estimates

In this section, we derive the explicit representation for the time evolution
semigroup generated by the linear operator —NPJP, and establish the homoge-
neous and inhomogeneous space-time Strichartz estimates for the linear propagator

eTiN!IDy|/1D]
Linear solutions

We follow the argument in [33, Section 2]. Let us consider the linear system
associated to (1.5):

du+NPJPu=0, V-u=0, @n
u(0,x) = ¢ (x). ‘
Applying the Fourier transform to (2.1), we have
WU+ NPEJPET=0, (£,0" -7=0, 2.2)
u(0,8) = ¢(&). '

Here, P (&) is the multiplier matrix of the projection [P defined by Pu E=PEu®),
which is given explicitly by

P(§) = <

|§|2)1<j,k<3
0 B
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Set S(&) := —P(£)J P(&). Then, direct calculation yields

0 0 0 —&18
_ 1o o0 0 —&2&3
OZEE 0 0 0 E+g |
£16 B& —(EP+E) 0
and then 5 5
det {\] — S(€)} = A2 <A2 + %) )
Thus, the eigenvalues of S(&) are {:I:i%, 0, O}, where &, = (§1, &) and |&;,| =

512 + 522. Moreover, the corresponding eigenvectors are given by

+i§183 —& &1
1 +i&Hré;3 1 & &
= — . , = — , b = —
“O= e | Fal | w0 | O |
1€n €] 0 0
(2.3)
We see that {a4(§), a— (&), ap(€), bo(&)} is an orthonormal basis in C* and satisfies
S(&)ax(§) = ii%ai(é), S(&)ao(§) = SE)bo(§) = 0.

Hence the solution to (2.2) can be written as
~ -~ iNg Ll ~
(. &) = NSOgE) = " TMNE(G(E). a5 (E))caao (&)
oe{+.,0}

Here, we remark that (EE (&), bo(&))c+ = 0 by the divergence-free condition v. ¢ =
0. Therefore, the solution to (2.1) is explicitly given in terms of the evolution
semigroup, and we obtain the following proposition.

Proposition 2.1. For every N > 0 and for every ¢ € L*(R>) with v. ¢ =0, there
exists a unique solution u to (2.1) which is given explicitly by

M(t,x) — e—tNP.]P¢)(x)

= NPDIp g (x) + e VPP p_gp (x) + Pogp (),
where
Pig = F (@), ajE))cia;§)] (j=%0), (24
VIO 5y im s [N e ag 23)

(2m)3

_ &l JEL+ &

ColEl el

and

p(&) £ e R3\(0). (2.6)
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Strichartz estimates

In this subsection, we shall prove the homogeneous and inhomogeneous space-
time Strichartz estimates for the linear propagator e N!IPil/ID| defined by (2.5)—
(2.6). Since the phase p (&) = |&,|/]&| ishomogeneous of degree 0, by the Littlewood-
Paley decomposition and scaling, the matter is reduced to the frequency localized
case. Also, the sign & does not have any role. Hence we consider the operators

Un@f )= [ e NTOy e Fleyat,
wvv@w=/gmwmmw@ﬁ@ma (r.x) e RIS,
R

where v is a real-valued function in . (R?) satisfying supp ¥ C {272 < |§| < 2%}
and ¥ (§) = 1 on {2_1 < gl < 2}. The sharp dispersive estimates for Uy (¢) and
Vi (¢) are obtained in [33].

Lemma 2.2. [33, Theorem 1.1] There exists a positive constant C = C(¢) > 0
such that

1UN@) Fllzee < CA+ N2 £l

forallt € Rand f € L' (R3). The same is true for Vy (t). Also, the decay rate 1/2
cannot be improved to a larger one.

Now we investigate the boundedness of Uy (¢). We use the notation for the
space-time norm

WAl zr = 1 lle i Lr ®3))-

The following results are the homogeneous and inhomogeneous space-time esti-
mates for the linear operator Uy (7):

Lemma 2.3. Let the exponents q, q, r, I satisfy

2 1
Z+-¢
q

+-< 4<q,g <00, 2<r7 <00 2.7

’

N o=
| =

\
| =
| N

Then, there exist positive constants C1 = C{ (¥, q,r) and Co = Co(V, q, 4,1, F)
such that

_1
IUNO fligap, < CIN- 9l fllg2, (2.8)

_1_1
<CNTTTAF] g, (29)

t
Hf Un(t —s)F(s)ds

LiL;

for f € LAR3) and F € L7 (R; L™ (R?)), where 1 /F+1/F' = land 1/§+1/§ =
1.
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Proof. We remark that the L! — L.® decayrate of Uy (7) is —1/2 and the admissible
range (2.7) does not include the endpoint ¢ = 2. Hence the proof is based on the
standard T T* argument and the interpolation (See for examples, [22,28,30]).

For the homogeneous estimate (2.8), it suffices to show its adjoint estimate

1
[onareas] <eniiFl,,. 2.10)
R L2 Lt Lx
and also (2.10) follows from the estimate
_2
f / (UN(=$)F(5), Uv(=0G(®) 2| dsdt <CN T|IF|| ¢, NG, -
RJR t Fx t Ex
(2.11)

Now we shall show (2.11). By Lemma 2.2 and the L?-boundedness of Uy (¢) with
N1UN @) fll 2 < CJl fll 2, we have for 2 < r < oo that

12
IUN@) fllr < CA+ NI 29D £, (2.12)

forall # € R. Then, it follows from (2.12) and the Hausdorff-Young inequality that

({Un(=$)F(s), UN(—1)G (1)) 2] = M@ Un(t —s)F(s) - F-1y2] % G(r) dx
<NUNGE =) FO N IF 21 % GOl

C
< T IFEON A IG@
1+ Nt —=sph2™r

(2.13)

For (g, r) = (o0, 2), we have by (2.13)

[ [ 10n9F 6, Un G2l dsdi < CIFIL 0G5 @14

In the case 2 + % = % with (g,r) # (00,2), it follows from (2.13) and the

Hardy-Littlewood—Sobolev inequality that

/f (Un(=$)F(s), Un(—1)G(1)) 2| ds dt
R JR

_(l_1 1
<N ,>/ / L FOIIGM e dsdi
RJR |t —s|27F

7

1
| ——1Fe, e
Rt —g|a

2
< ] ;o
<SCNTIIFI Ly, G

2
<SCN ¢ Gl

q
Ll

!
Liry

rog. 2.15
LI L ( )
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In the case % + % < %, we have by (2.13) and the Hausdorff—Young inequality

R JR

1
<C// I F @) 1G @) ds de
RJR (14 NJt—s))2~r

1
<C / IEE N ds| NGl e,

R (1+ Nt —s[)2~7 L Lo Lf Ly
<Cl——— | , IFl ¢, NGl ¢,

L+ Np3r | 40 T

_2
=CN TN Fl g MGy, (2.16)

Hence we obtain the homogeneous estimate (2.8) by (2.14)—(2.16). Note that it also
holds that

/I‘Q/R“VN(_S)F(S)’ VN (=DG(1) 2| ds dr < CNTHIFI ;NG

L
(2.17)

!
iy

by the exactly same procedure as above.
Next, we shall prove the inhomogeneous estimate (2.9). Since we have

// (/t UN(z—s)F(s)ds>mdxdz
R JR3 —00

t
/R/ (VN (=$)F(s), VN(—=1)G(t)) > ds dt

3

by duality, it suffices to show that

11
<SCNTTTANFl g Gl g0

t
// (VN(=$)F(s), VN(=1)G (1)) 2 ds dt
R J—o0

Firstly, it easily follows from (2.17) that

'
/]R/ (VN(=8)F(s), VN(=1)G(t));2ds dt

</]¥A’<VN(_S)F(S), VN(_t)G(t))LZ‘dsdt

_2
SCNTINFl Ly Gl g0

Hence we have for the case (¢, r) = (g, )

t
H/ Uy —s)F(s)ds < C2N_§||F|| (2.18)
—00

a e
L?Lr Lt L§
X
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Also, the estimate (2.10) for Viy (¢) gives that

(VN(=$)F(s), VN(=1)G(t));2dsdt

RJ—
t
</ / Vn(=s)F(s)ds
R —00

-1
N a|F]

IVN(=DG @) 2 dt
L2
211G L1z

PRI 2 1 1
which yields for st+7 < 5 that

7

-1
< GN 9|F|
LYL3

t
”/ Uy(t — s)F(s)ds (2.19)

=1
q' gy
Ly

Therefore, mterpo]atmg (2.18) and (2.19), and using the duality argument, we have

2 1_1 1
fora—i—; +~_2

t 11
H/ Un(t —s)F(s)ds < CON 4 G||F| (2.20)
—00

7
LILY Li L

Next, we consider the case 2 < r < 00 and + % Since there holds

IV (=DG DIl = e POy @G0
= |F "1 GOl
<IFWAN eyt 1G @

we have by (2.10) for Vi (¢) that

(VN(=$)F(s), VN(=1)G(t));2ds dt

VN (=) G (@) 12 dt
L2

t
/ Vn(=s)F(s)ds

RJ—
g\/\
R —00

1
< CNi|F|

L?/Lil ||G||L,1L;/ s

which yields for2 < r < oo and + % that

-1
< GN 9|F|
LOLY

t
H/ Uy(t — s)F(s)ds 2.21)

1
q i
Ly Ly

Then, since every (q r) satlsfylng + 2 is an interpolation between (oo, r)

and (qo, ) with = @ ; = 2, it follows from (2.20), (2.21) and the interpolation
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argument that the inhomogeneous estimates (2.9) hold true for % + % < % and
% + % = % By duality, we then have for % + % = % and % + % < % that
t i1
/ Un(@ —s)F(s)ds KGN 9 ||F|, g - (2.22)
—00 L?L; LI Lx

Again, since every (g, r) satisfying % + % < % is an interpolation between (oo, r)

and (qo, r) with ;—0 + L = 1, it follows from (2.21), (2.22) and the interpolation
argument that the inhomogeneous estimates (2.9) hold for every (g, r) and (g, 7)

satisfying (2.7). This completes the proof of Lemma 2.3. O

From (2.8), (2.9), the Littlewood—Paley theory and scaling, we can show the
space-time Strichartz estimates for the original propagator e N'IPal/IPl a5 3 corol-
lary of Lemma 2.3. Let ¢ be a function in .7 (R?) satisfying

0< @@ <1 forallg R, suppgo {6 e B |27 < lg] <2

and

> i) =1 forevery & € R?\{0},

JEZ

where ¢ (§) 1= po(27/€). Weset A f := F~'[;(§) f(£)] for j € Z. Then, for
s eR a_nd 1 < r,o0 < oo, we define the semi-norm of the homogeneous Besov
spaces B} (R3) as

1/l = H{zf |a; ]

Al
jEZ 9 (Z)

Also, we define the following space-time norm for 1 < ¢ < oc:

1Pl gy 1= H{Z” 187F g, i€zl oz

Lemma 2.4. Let the exponents q, q, r, F satisfy
2 1
-+ -<
qg r

, 4<q, g <00, 2<r, 17 <00.

N o=
| =

+=-<

)

| =
2 N

Then, there exist positive constants C1 = Ci(q,r) and Cy = Ca(q, q,r, F) such
that

. 1
+iNtp(D -7
1= 75 < CINTINSI sy (2.23)
2,0

! . 11
H/ AN D poyds| < CoN 4T Fll~ 511, (224)
_w r

£, i B,

Ny

1_1y

3l 1 ~ . — 2
forall 1 <o < oo, feBy? (®Yand F e LT (R: By, "7 (®3)).
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Proof. Since ¥(£) = 1 on the support of ¢y, we see that

Un ()80 f (x) = fR RN © Y 6200 6) FiE) di
= (2m) Ao NP D) £ (x).
Hence we have by (2.8) and (2.9) in Lemma 2.3
180¢™ PP £, < CNTT A0 fl 2. (2.25)

? . 11
H/ Age!NU=9IPID) F(5) ds < CN 4 7| AgF|| (2.26)
—0Q0

Gl
9y
L/ LY

LiL,

Note that p(£) = |&,]/|&| is homogeneous of degree 0. Hence scaling £ +— 2/&
gives that for j € Z

AjeNTD [ ) = Mg NP | £ 27T 7).
A f@ = do[ FR7TH] @10,
Therefore, we obtain by (2.25) and (2.26)
18,6 NPP) fll g, < CNTT@IYPE DA £ 2,

! ) I
H/ A NP () ds < ONTITT @)D A F|
—0Q

q e
L{L, Li Ly

Taking the €7 (Z)-norm, we complete the proof of Lemma 2.4. 0O

3. The Limit System

In this section, we shall show the global regularity of the limit system (1.7), and
give the global a priori 73 (IR?)-estimate for the solution to (1.7). We remark that
the projection Py onto the stationary mode of the linear solution to (2.1) defined in
(2.3) and (2.4) is also written as

7173
@(5):( <8’k \S/,|2)1<j,k<2 0 )55(5).
0 0

Hence we see that Py corresponds to the two dimensional Helmholtz projection

_ P, | O
Ph=(8jk+8jak(—Ah> I)ij, Po=< T o ) 3.1)

Then, considering a solution u to (1.5) of the form u = Pou = (w, 0, O)T with
Ppw = w, we obtain the following limit system:
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dw+Py(w-Vo)w=0 >0, x €R3,
Vi -w=0 >0, x € R3, (3.2)
w(0, x) = Pyepy (x) x € R3,

where w = (w1 (¢, x), wa(t, x)", ¢n = ($1(x), $2(x)" and V), = (31, 32)".
The global regularity result for (3.2) reads as follows:

Theorem 3.1. Let s € N satisfy s > 3. Then, for every ¢, € H*T3(R?) and for
every 0 < T < o0, there exists a unique classical solution w to (3.2) in the class

w e C([0, T]; HP®*) n (0, T1; H P (RY).
Moreover, there exists a positive constant C;, = Cr (s, T, ||¢p | gs+3) such that

sup [lw(@®)llgs+3 < CL(s, T, |@nll grs+3)- (3.3)
0<I<T

Proof. We first remark that for fixed x3 € R the system (3.2) for w = w(:, x3)
is the two dimensional incompressible Euler equations. Hence it is well-known by
[23,26] that for the initial data ¢ (-, x3) € H® (R2) there exists a unique classical
global solution w(-, x3) to (3.2) satisfying

w(:, x3) € C([0, 00); H'(R*) N €' ([0, 00); H*~(R?)).
Let us first derive the a priori estimate for the norm
lwOliem, = WOl Lomw,,; Hs®2)-

By the standard energy method and the Gronwall inequality (see [24,27]), we have

t
lw(z, - x3)l gs @2y < 19n (5 X3) | s (m2) €Xp {CA Vhw(z, -, x3)[ Loo (r2) dT} .
(3.4)

By the Biot-Savart law, we have a representation of w in terms of the vorticity
w = 8111)2 - 3211)1 as

w=—(—A""Viw, Vii= (=,

which yields
Rh R/’l (Rh)2
Vhw=< it phiph | @
—(Ry)” —R{R;
Here, R;’ = —0 j(—Ah)_% (j = 1,2) denotes the two dimensional Riesz trans-

form. Then, since the Riesz transform is bounded in BMO(R?) and there holds
L®(R?) — BMO(R?), it follows from the logarithmic Sobolev inequality by [32,
Theorem 1] that
Vhw(z, -, X3)||L00(R2)
< C{l+ llo(t, - x3)lIpmowe) (1 +log" [Vaw (T, -, x3)ll gs-1w2)) |
< C {1+ llo(z, -, x3) |l o2y log (Ilw (T, -, x3) | s @2y + €) } - (3.5)
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Let X, (¢) be the trajectory flow defined by the solution of the ordinary differential
equation
dX;
—() = t, Xp(1), y
P (1) = w(t, Xp (1), x3)
X5 (0) = x; € R2.

Then, since the vorticity w satisfies 9;w + w - Vo0 = 0, we have

d
o {CU(t, Xh(t)ﬂ x3)} = Oa
ot
which yields w (¢, X, (), x3) = w(0, x5, x3) for all # > 0. Hence we have

”a)(ta ) x3)”L°0(R2) = ||a)(0, *y x3)”L°°(R2)
< ClBnC 39 e - (3.6)

Then, it follows from (3.4), (3.5) and (3.6) that
”U)(t, Yy x3)||Hx(R2) +e
< (l1gn G x3) | s r2y + €)

t
X exp {Ct + Cllgn (-, x3) | s r2) fo log (||w(r, 5 X3) | s r2) + e) d‘L’} .
(3.7

Defining z(r) = log(||w(z, -, x3) || s (r2) + €), we have from (3.7)

t

z(t) < z(0) + Cr + C||¢h(-,X3)||H-v(R2)/O z(7) dr.

The Gronwall inequality gives
2(t) < (2(0) + Cr)exp {Ctllgn -, x3) s gy } »
which implies that
lw(, -, x3)l gs w2y + €
)exp{Cz||¢h<~,x3>uHs<Rz)} . eCrexp{Crn¢h<~,x3)an(Rz)}.

< (||¢h('a x3)||H»Y(R2) + e

Therefore, we obtain for all ¢t > 0

exp{CfHCPhHLooHs } Ctexp{Cthbh”LooHs }
lwlle s, < (||¢h||L;§th +e) Sty |, ST

(3.8)

Now, we shall show that w belongs to C ([0, T']; H* 3 R3))ncl ([0, T]; H+2
(R3)) and satisfies the estimate (3.3). We firstly observe that the limit system (3.2)
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can also be regarded as the following modified 3D Euler equations for the velocity
v of the form v = (w, 0)7 = (wy (¢, x), wa(t, x),0)T:

q+Pyv-Viv=0, V-v=0,
v(0,x) = (Ppgpn(x), 07,

where P}, is the 3 x 3 matrix defined by P, = ( E;h 8 . Hence it follows

from the local well-posedness theory of the 3D Euler equations by [5,24,27] that

there exists a local time Ty > C/||¢n| gs+3 such that the unique solution w to

(3.2) belongs to the class C([0, Tpl; H* T3 (R?) N C([0, Tp]; H*T>(R?)). Hence

it suffices to show the global a priori estimate (3.3) for the norm ||w(?) || ys+3.
Taking the H s+3(R3)-inner product of (3.2) with w, we have

1d

Egllw(f)lliwz + ((w(@) - Vi)w(t), w(®)) ys+3 = 0. (3.9
Since it holds that

543 543
/ w-Vpp—A)zZw-(I1-A)2wdx=0
R3
by the divergence-free condition Vj, - w = 0, we see that
[((w - Vi)w, w) s3]

= ‘/% {(1 _A)#(w'vh)w_(w'vh)(l—A)#w} - —A)#wdx
g

<Ja-aFw - vpw- @ v -aFw| a-a%F |

L2
C (IVwll oo I Vawll g2 + [ Vawll oo [wll gsa) l1w]l s
IVwllzos l[w]3;ss- (3.10)

NN

Here, we have used the commutator estimates of the Klainerman—Majda [29] and
the Kato—Ponce type [27]:

(1= A)2(fg) — f(1—A)2gl2 < C (IV fllzoc gl gzs—1 + gl ll fllas) -
Substituting (3.10) into (3.9) gives
S —llw@ s < CIVw@) |l Lo [w @) 77013
2dr
Therefore, we have
t
lw®ll gs+3 < nllgs+s + C/ IVw(@)|l Lo [w(T)] gst3 dT
0

1
< llnll grs+3 +C/0 IVrw(@) [ [lw (D)l gs+3 dT

t
+C/0 3w (T) [ Lo [lw(T) | ys+3 dz. (G.11)
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Let us set the right hand side of (3.8) by

exp[Ct\Id)hlngoH;- } Ctexp[Ct\lq&hlngoH;- ]
A, llonllLemg ) —(||¢h||L°°Hs +e) B e 350

X377 %R

Since s > 3, the Sobolev embedding H* (R?) — C!(R?) and (3.8) give that

IVaw (@)L < llw(®)llLes ay,

<A Il ms,)- (3.12)

Next, we shall derive the estimate for [|03w(#)||z~. By the Sobolev embedding
HZ(R?) < L%°(R?), we have

133w ®lL> < Clldsw Oz - (3.13)
Hence we consider the H?(R?)-estimate for d3w(z, -, x3). By (3.2), 3w should

satisfy

0;(03w) + Py (03w - Vp)w + Pp(w - V) 3w = 0. (3.14)
Taking the L?(R?)-inner product of (3.14) with 33w, we have by the divergence-free
condition Vj, - w = 0 that

1d
S 1w ,X3)||L2(Rz (3w - Vi)w, dB3w)r2ge) = 0. (3.15)

Since it holds that
[{@3w - Viyw, d3w) 2@y | < IVAWI o2 13w117 5 o)

we have the L?(R?)-estimate by (3.15)

1d

For the H 1(R?)-estimate for d3w, it follows from (3.14) that
0:(003w) + Py (903w - Vi)w + Pp (3w - Vi) dyw
4+ P (0w - Vp)ozw + Pp(w - Vi) 0103w = 0 (3.17)

for [ = 1, 2. Taking the L?(RR?)-inner product of (3.17) with 3;d3w gives

1d
5d—||3133w(t, 13172 4 (@d3w - Viw, ddsw) 22

+ (3w - Vp)ojw, 3133w>L2(R2) + ((Qw - Vp)o3w, 3133w)L2(R2) =0.
(3.18)

Here, we have used the fact that ((w - Vj)0;03w, 8183w)Lz(Rz) =0byV,-w=0.
By the Holder inequality, we have

(@03 - Viyw, 9103w) 2@y | < VWl ooy VA3 w72 o)

|((83w Vi)ojw, 0;93w) LZ(R2)| < ||Vh2w||L00(R2)||33w||L2(R2)||Vh33w||L2(R2),
<
~

[(@rw - Vi)dzw, ad3w) 2@y | < VWl oo @) VA3 w172 o)
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Substituting these estimates into (3.18) gives

d 2
zallvhasw(t, 5 X372 g2

< IV, -, x3) | o) I Vadzw(t, - x3) 22 o,

+ C||V}%w(t, S x3) | Lo w2y 13w, -, X3) | 22y VRSB, -, X3) [ L2 (Rm2) -

(3.19)
For the H 2(Rz)—estimate for 93w, we have by (3.17)
0y (0x0;03w) + Py, (0003w - Vy)w + Py (003w - V) o w
+ Py (003w - Vp)ojw + P (03w - V) 00w
+ P (0 dyw - Vi)ozw + Pp (0w - Vi) k03w
+ P (0w - V) 0103w + Pp(w - V)0 903w =0 (3.20)

for k, I = 1, 2. Then, there holds by the Holder inequality that

(@ dr03w - Vi), ddid3w) p2z2)| < IVAWl o2y | V3030117 2 o)

@ 33w - Vi) dw, dd3w) 22| < IViwll ooy | Vadswll 22y V3wl 2R2)

(8k83w . Vh)alw, 3k8183w>L2(R2) |V}%w||LOC(R2) ||Vha3UJ”L2(]R2) ||V,2183w||Lz(Rz),

<

<

< IVl ooy 183wl 22y 1V B3]l 12 g2

< IViwll o) I Vadswll 2 g2y IV 3wl L2g2).
<

(
(
(3w - V) O dyw, ddd3w) 2 (r2)
(
(

(Oqw - Vp)ord3w, ak3183w>L2(]R2)

(O dw - Vi)dzw, dxdd3w) 22|
| < IVhwll o) V730172 g2,

[(@w - Vi) aidsw, ddid3w) 2@y | < IVawl Lo @) IV 3w72 g0

Taking the L2(R?)-inner product of (3.20) with 9 d;d3w and substituting the above
estimates, we have

L 2ot - 1) e
2 dt LR
< CIVRw(t, -, x3) | oo @) I Vi 3w, - x3) 117 o)
+ CIViw(t, -, x3) || pooge) | Vadsw(t, - x3) | 22y I V33w (T, -, x3) | 122
+ CIViw(, -, x3) |l ooy 133w, -, x3) | 22y [ VF3w(T, -, x3) [ L2R2)-
(3.21)

Therefore, we obtain from (3.8), (3.16), (3.19), (3.21) and H*~}(R?) < L®°(R?)
for s > 3 that

1d )
Ed_”a?’w(tv ’x3)||H2(]R2)
< NVaw(, - x3) [l o) 133w(T, -, X3) 172 o)

+ ClIVAW(E, -, x3) | o I VR B3 W(E, -, X3) 172 )

+ CIVRW, - x3) | ooy 103w (1, - x3) | 2y VR dsw (t, -, x3) 22,
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+ ClIVAw(t, -, x3) | oo @) IV 3w (T, -, %3) 1175 o)
+ CIVEW(t, -, x3) |l ooy | Vadswt, - x3) | 22y IVE3W(T, -, x3) | 22

+ CIViw(t, -, x3) |l ooy 133w (E, -, x3) | 22y VRS2, -, x3) Il 12R2)
3
< Cllswt, - x3) ey D IVAWE, - x3)ll oo r2)
=1

Cllwt, - x3) | s 193w, - 13) 12252,

<
< CAG 19l e ) O30, )13 g2y
which yields by the Gronwall inequality that

193¢, - 33l g2qezy < 19360 x3) ey exp { CrAG, ||¢h||L§2H;,+z)} :
) (3.22)
Hence we obtain from (3.13) and (3.22)

[8sw(®) 1 < Closdll ez exp {CLAC. Il )| (323)

Therefore, we have by (3.11), (3.12) and (3.23)
t
lw @l gss < lgnllgsss + CACT, Il as ) /0 1w (@)l 543 de

+ Cllosnl s w2 exp {CTAT, ||¢h||L3§H;;z)} fo @)l s de
(3.24)
forall 0 <t < T. Here, let us set
B Ndnllie) := (I las + ) PO CrenplCrldnli),
Then, it follows from the continuous embedding H L(R) < L% (R) that
A gnllisgms ) < CBU, I nll gssn)- (3.25)
Hence we have by, (3.24) and (3.25),

t
lwOll gs+3 < ll@nll gs+3 + CB(T, ||¢h||Hs+1)/ lw(T) [l gs+3 dT
0

t
+ Clinll s exp [CT BT, I nll o)) /0 (D) o3 dr.

Therefore, we obtain by the Gronwall inequality that

sup [lw(@)| gs+3
0<t<T

< NIl gs+3 exp [CB(T, gnll 1) + Clidnll g+ exp {CT BT, | nll ys+3) }] -

This gives the global a priori estimate for |w(#)|| gs+3, and we complete the proof
of Theorem 3.1. O
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4. Modified Linear Dispersive Solutions

In this section, we adapt the idea in [10] and introduce the modified linear
dispersive equations (1.9) (and (4.2) below). Making use of Lemma 2.4, we shall
establish the global space-time estimates for the solutions u™ to those systems.

Let s € Nsatisfy s > 3, and let 0 < T < oo. Then, for the initial data ¢ =
(Pn, ¢3, p2)T € HSTHR3) with V- ¢ = 0, let w = (w1, wo) € C(0, T]; H 4
R*) N ([0, T1; H*F3(R?)) be the classical solution to (3.2) with w(0, x) =
P, (x) constructed in Theorem 3.1 satisfying the H**-estimate

sup [Jw (D)l gs+4 < CrL(s, T, |@nll gs+4)- (4.1)
0T

Now, we put u® = (w, 0, O)T, and con~sider the solution to the following linear
systems with the external forces P1 0 - V)uoz

qur FiNp(DWE+ P’ - V=0 >0, x eR3,

V.ut=0 >0, xeR, (42
ut(0,x) = Prp(x) x e R3,
where p(D) = |Dy|/|D] is the Fourier multiplier, and the projections Py are

defined in (2.3) and (2.4). By the Duhamel principle, the solutions to (4.2) are
given by

t
ut(t) = NP pL g — / eFINE=OrDIp, (%) . V)ul(r)dr.  (4.3)
0

Lemmad.1. Let s € N satisfy s > 3, and let 0 < T < oo. Then, for every
¢ € HTH(R3) satisfying V - ¢ = 0, there exists a unique classical solution u™ to
(4.2) in the class

u* € C([0, T]; H*P @) N €' ([0, T1; HH(R?)).
Moreover, there exists a positive constant C = C(s, T, ||¢|| gs+4) such that

sup (w0 || s < 1@l gss + Cs. T, (1l o) (4.4)
0<t<T

Also, for 4 < q < oo there exist positive constants C; = C(q) and C =
C(s,q, T, ||¢|lgs+4) such that

_1
IV u® | a0, 7500y < CgN™ 4 (19l gt + C(s, g, T, Il gs+4)) 4.5)
forl=0,1,2,...,s+ 1.

Proof. Let us first show the H°*3-estimate (4.4). Taking the H**3 inner product
of (4.2) with u*, and considering the real part, we have

1d ~
mnuimnzm + (@O @) - VU @t), u= () ysss = 0. (4.6)
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It follows from the H**-estimates (4.1) for w(¢) that

(@) - V() u=@0)) ovs| < @) - Vi)w(@ll gross = @) || gross

< Cllw@) s lu™ Ol s+
<CE T pnll gl Nl gsss. 47

Substituting (4.7) into (4.6), we have

1d
5 3 15O < O Tl o) 10 (Ol s,
which implies that

™ @) ggss < NPl s + 1CCs, T |l grosa)

for all 0 < ¢t < T. This yields the desired estimate (4.4).

Next, we shall prove the space-time estimate (4.5). For the homogeneous term
in (4.3), by the continuous embedding Bgo’l(}l@) < L°(R3), the Minkowski
inequality and (2.23) in Lemma 2.4, we have for/ =0, 1,2,...,s + 1

H v/ EiNtp(D) Piqb‘

<C Hvle:tith(D)Pi(ﬁ‘
L4(0,T; L)

<C Z H A vl o EiN1p(D) Pidp
JEZL

L4(0.T;BY )

L4(0,T;L>)
"
= C||V!etiNP(D) Pedlizior.s0 )

1
< CN 7|V PLo|

3
BZZ,I

_1
< CNT7 ]l o 4.8)

For the inhomogeneous term in (4.3), similarly to (4.8), it follows from (2.24) in
Lemma 2.4 with (g, 7) = (00, 2) that

t
H v/ / e NP Py (0 (7) - Vyud (r) dr
0

L4(0,T;L)

-

t
/ VieFNE=pD) p, (97 . V)u'(1) dr

0 La(0,7:8%, )

<CN#

VP - %)uOH I 4.9)
Ll (O,T;Bfl)

Here, we have by the H s+4_estimates (4.1) for w(r)

H VPO - V)

3 dr
L10.T:B7)) L?

o =2231/0T |8,V Py - D)
Z

T
zfo Hv’Pi(uo(t)ﬁ)uo(z)HB% dr
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T
<c£Hw%y%ﬁm\

dr
H2+H
T
<cC fo lw(®) 25 dr
T
<c /0 I ()200s di < Cs. T, gl oss).
(4.10)

Combining (4.8), (4.9) and (4.10) yields the desired estimate (4.5). O

5. Proof of Theorem 1.1

We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. I;et s € Nwiths > 3, and let ¢ = (¢n, 3. 1) €
HST(R3) satisfying V - ¢ = 0. Since PJP is skew-symmetric and then
(PJPu, u)ys = 0, it follows from the standard local well-posedness theory for
the 3D Euler equations in H* (R3) by [24,27,31] that there exists a local time
To = To(s, |¢llzs) > 0 such that (1.5) possesses a unique classical solution u®™
for all N > 0 in the class

u™ € C([0, Tol; H*(R*) N C' ([0, Tol; H ™' (RY)). (5.1)

In particular, there exist positive constants Cop = Cp(s) and C; = C;(s) such that

Co
0= ;o osup [uN O llas < Crllglgs. (5.2)
lollms o<i<ny

Let 0 < T < oo. We shall first show that the local solution u” in the class
(5.1) can be extended to the arbitrary finite time interval [0, 7'] provided that the
buoyancy frequency N is sufficiently high.

Let w = (wy, wp) € C([0, TT; H*T*(R3)) n ([0, T1; H*13(R?)) be the
classical solution to the limit system (3.2) with w(0, x) = Py, (x) constructed in
Theorem 3.1. We put u® = (w,0,0)7. Then, by (3.1), we see that uY is the classical
solution to the system

du® + Py - Vyu® =0, V.u®=0,
u®(0, x) = Poo.
Also, let u* € C([0, T]; HSP3(R3)) N C([0, T1; H*T2(R?)) be the classical so-
lutions to the linear systems (4.2) constructed in Lemma 4.1 satisfying (4.4) and
4.5).
Now we set

vV i=u" —ut —u —u.
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Then, since there hold ¢ = Pp = P+ P_¢+ Py and Pju’ = u’ for j € {0, £},
the perturbation vV should solve

B,vN + NPJPuY +IP’(uN . %)UN + Z ]P’(UN . ﬁ)uj + Z P(uj -%)uk =0,

j=0,+ Jk=0,%
(j.k)#(0,0)

Vool = 0,
vN(©0,x) =0
5.3)
on the local time interval [0, Tp]. Let us derive the H*-estimate for v (¢). Taking
the H* inner product of (5.3) with v/ gives

1d ~
—— N O3 + (@™ @) - V)N @), vV (@) s

2 dt
+ (N @) -V (1), vV (1)) e
j:XO,:i (5.4)
+ 3 @O - Do), N O)as =0,
(j{kﬁ;?b.iO)

Since it holds that

@ - V)a%uN . 9%N dx =0
R3
for @ € (NU {0})3 with || < s by the divergence-free condition, we have

= Z/ 3w - Vo - 9%V dx
R3

| <s

=) > Ca,ﬁ/ @PuN . Vo« Pyl . 9N dx
R3

lo]<s 0<B<a

(@ -V, vNy s

<Y Cup H(aﬁuN.%)a“—ﬂvN‘Lz a%N‘LZ
a1 <s 0<p<a
< Clu s o 13- (5.5)

Here, we have used the estimates (see [24, Lemma in page 302])

B, N Syaqa—B, N < C||”N||H3||UN||H\<1I 0<B<a, |B]l=1,2,
@PuN . yoe BN < N N
L? Cllu™M | s v glar-ipes - 0 < B < a, |B]=3.

For the third term in the left hand side of (5.4), since s > 3 and H*(R?) is a Banach
algebra, we see that

)RR TV D D (CAR T Y
j=0,%+ j=0,%+ " "
<C Y Nud g oM 1 (5.6)

j=0,%
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For the fourth term in the left hand side of (5.4), the Schwartz inequality gives

ek N ek N
E (W - Vyu®, v¥)pgs| < E @ - V)u" || s [[0™ || s (5.7)
jok=0,% jk=0,%

(J.k)#(0,0) (j,k)#(0,0)

Let us derive the estimates for || (u/ - %)uk | g5 . It follows from the the Leibniz rule
that

u? - V||

- Zf %! - Vyuk - 9%w! - Vyuk dx
R3

| <s

=> > an,,g,y/ @Pul - o Puk . @vul - V)a* Y ukdx. (5.8)
R3

o <s B y <o
For (j, k) = (£, £), we have by the Holder inequality

Yo Ca,ﬂ,y/ @Pu® - V)« Put . (37 ut - V)oe TV ut dx
R3

lo]<s By e

<Y DD Cap 0P uF Lo 07 uF | L VO Pu|| 2| VO* Y 0™ 2
lo|<s BSa y S

2

N

< ClluF 13 (Z ||vlu*||Loo) : (5.9)
=0

Similarly to (5.9), we see that for (j, k) = (£, F)

> ZCC,,M/ @Pu® - V)9*PuF . (37ut - V)oYV uT dx
]R3

lo|<s BSa y<a
s 2
< ClluF (e (Z ||vlu*||Loo> : (5.10)
1=0
For (j, k) = (£, 0), it follows from the Holder inequality that

33D Cupy /S(Sﬂui -9 PuU0 (@7 u* - V)9* v ul dx

el <s f<a y<a R

<Y DD Capy 18P uE L 187 uF | L VO P U 2 VOV U0 2
la|<s By <a

2
N
< Cllul3em (Z ||V’ui||m> : (5.11)
=0
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Similarly to (5.11), we have for (j, k) = (0, &) that

> an,ﬁ,yf @Pul Vo Put . (37u’ - V)a* 7V ut dx
R3

lo|<s By e
2

s+1

< Cllulgs (Z ||V’ui||mo> : (5.12)
1=0

Combining (5.7)—(5.12), we obtain

Y@Vt oy
Jjok=0,%
(j,k)#(0,0)

s+1
<C Y g Y (19 e + 19 N ) oV s (513)
j=0,%+ =0

Substituting (5.5), (5.6) and (5.13) into (5.4), we have

1d .
Ny 12 N N2 N2
SN O < CluM a1 +C Yl f g 10" 11

2dt faryt
s+1
+C 3 g Y (19 e + 19 e ) 10V s
j=0,+ 1=0
which yields
d N j N
SN Ol < C {1l + 30 N g | 10" as
j=0,%
) s+1
+C Y e Y (IV' e + IVl ) . (5.14)
j=0,% 1=0

Here, it follows from the uniform H*3 estimates (3.3), (4.4) and (5.2) that there
exists a positive constant C = C(s, T, ||¢|| ys+4) such that

N j N 4
N Ol + Y/ Ollgser < sup [uNOllgs + Y sup [lud (@) s
j=0,% 0<1<To j=0,4 OIST

SCE T, (1ol gs+s)- (5.15)

for 0 <t < Tp. Then, by (5.14), (5.15) and vV (0) = 0, we have

s+1

t
I Ollas < CG T g ls) Y /0 (19"t @)l + IV'u™ (@)l ) de
=0

t
+CG. T, ||¢||Hx+4)/0 o™ (0) [l s dr. (5.16)



Strongly Stratified Limit for the 3D Inviscid Boussinesq Equations 1499

Here, it follows from the Holder inequality and the space-time estimates (4.5) in
Lemma 4.1 that for4 < g < oo,

s+1 . . s+1
Z/ VU= (@) e de < T Y IV | Lo, 1)
1=0 70 1=0
_1
< Cs,q, T, |pllgrss)N 4 (5.17)

for 0 <t < Ty < T. Hence we have by (5.16) and (5.17) that

_1 !
Y @)llgs < Cs, q, T, ¢l gs+)N "« +C(s, T, ||¢>||Hx+4)/0 v (0) || s d.

(5.18)
The Gronwall inequality yields

1
sup [N @) llas < Cls, g, T, [pllgssa) N~ 0 eCET 1m0 (5.19)
0<r<Ty
Therefore, there exists a positive constant No = No(s, g, T, ||¢| gs+4) > 0 such
that there holds
sup [N (@)]lgs <1 (5.20)
0<t<Ty
forall N > Ny. Then, since v = u® —u® —ut —u~—, it follows from (3.3), (4.4)
and (5.20) that there exists a positive constant Cy. = Cy (s, T, ||@|| gs+4) such that

1™ @) s < 0N Tl + Y Nlwd (To) s

j=0,%+
< sup 0N @Olas+ Y sup [ud (1) s
0<t<Ty jzo’iogth
<1+ Cals, T, 19l ) (5.21)

Note that the constant Cy (s, T, ||@|| gs+4) is independent of the local time 7. There-

fore, the local solution #?V can be extended to [Ty, 7], where
C
T — T > 0 : (5.22)
1 + C*(S, Ta ||¢||HH'4)
and there holds
sup  [u @)llgs < Cr (14 Culs, T, @l gs+4)) - (5.23)
To<t<T

We repeat the same procedure as (5.4)—(5.19) on the time interval [Ty, T1]. Since
we have the global estimates for u’ (j =0, &) on [0, T], it suffices to modify the
above argument for the initial data ||v(Tp)| gs and the H® estimates for «” as in
(5.2) and (5.23). Then, similarly to (5.18), we have

- _1
N @O as < 0N To)llgs + C(s,q, T, gl gste) N~ @

t
+CG. T, ||¢||Hs+4)/T o™ (@)l s de (5.24)
0
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for Ty < t < Ti. Therefore, it follows from (5.24), (5.19) and the Gronwall
inequality that

~ N -
sup oV @) las < C(s,q, T, 1§l ysia) N~ 7C TPl se)T
Ty<t<Th

for N > Ny. Hence one can take N1 = Ni(s,q, T, ||¢| gs+4) = No so that there
holds

sup oV (@) las <1 (5.25)
To<t<Th

for all N > Nj. Then, we have by (3.3), (4.4) and (5.25)

™ Tl < 10N @D+ > led (T s

j=0,%+
< sup WNOlas+ Y sup (w0 s
To<t<Ty j=0,+ 0<t<T
<14 Co(s, T, ||pll yss4) (5.26)

for all N > Nj. Note that the above bound (5.26) is exactly same as (5.21). Hence
the local solution #” can be uniquely extended to the solution of (1.5) on the time
interval [T1, T} + (T} — Tp)] (defined in (5.22)) for N > N and satisfies

sup UV @Ol < Cr (14 Cals, T, 1§l gs+4)) - (5.27)
ni<t<2h—To

Also note that the bound (5.27) is exactly same as (5.23). Since T is arbitrary finite
time, we repeat a finite number of the same procedures in the above, and continue the
local solution #™ to the given time interval [0, 7] in the class C([0, T]; H® RN
C'([0, T1; H~'(R?)) for N > Ny 7, where Ny 7 = N(s, q, T, ||¢|| yys+4) is some
large positive constant.

Next, we shall show that the solution u” belongs to the class C ([0, T']; H**4
R3*) N ([0, T]; H*F3(R3)). Since the initial data ¢ is in H*T*(R3) and PJP
is skew-symmetric, it follows from the standard local existence theory for the 3D
Euler equations in H* (R3) by [24,27,31] that u” belongs to

uM € ([0, T 1, H TR ncl((o, To1; H P (R?))

with some local time 77, > Cs/||¢|| gs+4 for all N > 0. Hence it suffices to show
the global a priori estimate for ||u’ (¢) | ys+4 on [0, T] when N > Ny 7.

By the above procedure on the extension of solutions, we see that the long time
solution u™ on [0, T'] satisfies the uniform H* estimate as

sup (™ O)llgs < Cls,q, T, 9]l gere), (5.28)
0<r<T

with some positive constant C(s, g, T, |||l gs++) for N > Ny 7. Therefore, the
standard energy method, the continuous embedding H* (R?) < C!(R?) and (5.28)
give that
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t
[N (0) || goss < M@l gsss + C / IVu™ () [l oo llu™ (T) || o4 dT
0

1
< ol gs+s +C(s, g, T, ||¢||Hs+4)/0 4™ ()| o4 dr,

which yields with the Gronwall inequality that
™ @l prsss < 11l prssae€ 0T 10T

for0 <t < T and N > Ny 7. This completes the proof of the long time existence
of classical solution to (1.5).

It remains to prove the convergence result (1.6). Let N > Ny 7. Since there
holds the uniform H* estimate (5.28) for u® (1), we have similarly to (5.19)

_1
Sup ”UN(Z)”I‘P < C(S, ‘L T» ||¢|IH~‘+4)N qu(S’T’H‘p”Hs+4)T. (529)
0<t<T

Recall that vV = u" —u® —u™ —u~. Therefore, by (4.5), (5.29) and the continuous
embedding H* (R?) — W1 >°(R3), we obtain for 4 < ¢ < 0o

N 0 N j
lu™ —u ||Lq(0,T;W1100) < v ||Lq(0,T;le00) + Z ||'4]||Lq(0,T;le0<>)
j==*

1 .
i N
<T7 sup [v"Ollas + E ! Wl La 0,7; wiee)
0T j=*

_1
< C(S, q, T’ ||¢||H5+4)N 9

for all N > Ny 7. This completes the proof of Theorem 1.1. O
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