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Abstract

We prove the existence of global in time weak solutions to a compressible
two-fluid Stokes system with a single velocity field and algebraic closure for the
pressure law. The constitutive relation involves densities of both fluids through
an implicit function. The system appears to be outside the class of problems that
can be treated using the classical Lions–Feireisl approach. Adapting the novel
compactness tool developed by the first author and P.-E. Jabin in the mono-fluid
compressible Navier–Stokes setting, we first prove the weak sequential stability of
solutions. Next, we construct weak solutions via an unconventional approximation
using the Lagrangian formulation, truncations, and a stability result of trajectories
for rough velocity fields.

1. Introduction

Multi-component fluid models arise in various applications including studies of
water wave impact on coastal structures (violent aerated flows) [17], the petroleum
industry [21–24], cancer cell migration in compressible media [20], or turbulent
mixing in the nuclear industry, reactive flows, propulsion and sprays [16], to name
only a few. Classical derivation ofmulti-fluidmodels beginswriting the equilibrium
equations for each component of the flow at the microscopic level with small scale
interfaces. The second step is to perform a volume averaging under suitable closure
assumptions. Averaged models bypass the local geometrical complexity of the
interphase at the cost of including new variables—the volumetric rate of presence
of each fluid/phase, see [16]. This formal derivation can be found in themonographs
of Ishii andHibiki [28], and ofDrew and Passman [19]. Mathematically rigorous
derivation of several models frommono-fluid systems may be found in [1,5–7,39].
The reader is also referred to the recent chapter [4] for discussion on modelling and
mathematical studies of multi-fluid systems in the compressible setting.
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In the present paper, we analyze a bi-fluid compressible system in the semi-
stationary Stokes regime.We assume a common velocity field and pressure for both
fluids (algebraic pressure closure). Our system of equations reads

∂t (α
±�±) + div(α±�±u) = 0, (1.1a)

− μ�u − (λ + μ)∇ div u + ∇ p = 0, (1.1b)

α+ + α− = 1, (1.1c)

p = p+ = p−, (1.1d)

with constant shear and bulk viscosities μ and λ such that λ + 2μ > 0 and μ > 0.
The unknowns of the system (1.1) are the volumetric rates of presence of fluid +
and −, α+, α−, respectively, with

0 � α± � 1, (1.2)

the two mass densities �+, �−, and the common velocity field u. By p+, p− we
denote the internal barotropic pressures for each fluid with the explicit form

p+ = a+�+γ+
, p− = a−�−γ−

, (1.3)

where a± > 0, γ ± > 1 are given constants. The purpose of this paper is to
prove the existence of solutions “à la Leray” (finite energy) to this system on the
d-dimensional torus Td , d = 2, 3, under the following constraint:

∫
Td

u(t, x) dx = 0 for t ∈ (0, T ), (1.4)

and with the initial conditions

α+�+|t=0 = R0, α−�−|t=0 = Q0, R0 � 0, Q0 � 0. (1.5)

Moreover, we ask for the following compatibility condition for the initial data:

α+|t=0 = α+
0 , α−|t=0 = α−

0

α+
0 + α−

0 = 1, α±
0 � 0, p+(�+

0 ) = p−(�−
0 ). (1.6)

Remark 1. If �+
0 is nonzero, then α+

0 = R0/�
+
0 . Because of the algebraic pressure

law closure which provides �−
0 = (a+/a−)1/γ−(�+

0 )
γ+
γ− �= 0 we can also define

α−
0 = Q0/�

−
0 . If, on the other hand, �

+
0 = �−

0 = 0, we choose α±
0 = 1/2 for each

phase.

Our main result for system (1.1) reads as follows:

Theorem 1.1. . Let γ ± > 1, γ + �= γ −, a± > 0, λ + 2μ > 0, μ > 0, and let the
initial data (1.5) satisfy (1.6). Assume that
∫
Td

(Rγ +
0 + Qγ −

0 ) dx < ∞, 0 <

∫
Td

R0 dx < ∞, 0 <

∫
Td

Q0 dx < ∞.
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Then there exists a global weak solution (α±, �±,u) of system (1.1)–(1.4) satisfying

α±�± ∈ L∞(0, T ; Lγ ±
(Td)) ∩ L2γ ±

((0, T ) × T
d) ∩ C([0, T ]; Lγ ±

(Td)),

�± ∈ L∞(0, T ; Lγ ±
(Td)) ∩ L2γ ±

((0, T ) × T
d) ∩ C([0, T ]; Lγ ±

(Td)),

u ∈ L2(0, T ; H1(Td)),

where Equations (1.1) are satisfied in D′((0, T ) × T
d) and the initial conditions

(1.5) are satisfied in D′(Td). Moreover, the equations (1.1a) are satisfied in the
renormalized sense.

Note that if a+ = a− = 1 and γ + = γ −, system (1.10) is reduced to the semi-
stationary Stokes version of (1.17). In this case our technique provides stronger
results that the classical technique of Lions. Indeed comparing [34, Theorem 2]
(see also [35, Theorem 3.1]) with the proof of Theorem (1.2) we see that we are
able to prove compactness of sequences approximating R, Q and Z , while the
results from [34] provide strong convergence of a sequence approximating Z , but
only a weak convergence of �n → �. To get Theorem 1.1, we first prove the global
existence of weak solutions for a reformulation of the system (1.1). Introducing the
notation

R = �+α+, Q = �−α−, Z = �+,

we check that the pressure p is expressed in terms of R, Q. In fact we have

p = P(R, Q) = a+Zγ+ (1.7)

for Z = Z(R, Q) such that

(
a−

a+

)1/γ −

Q =
(
1 − R

Z

)
Zγ , with γ = γ+

γ−
, (1.8)

and

R � Z . (1.9)

The system (1.1)–(1.4) can be therefore transformed to the following form:

∂t R + div(Ru) = 0, (1.10a)

∂t Q + div(Qu) = 0, (1.10b)

− (λ + 2μ) div u + a+ (
Z(R, Q)γ

+ − {Z(R, Q)γ
+}
)

= 0, (1.10c)

rot u = 0,
∫
Td

u(t, x) dx = 0, (1.10d)

where { f } = (∫
Td f (x) dx

)
/|Td | and Z is related to R and Q through the non-

explicit formula (1.8). The initial conditions for the previous system reads

R|t=0 = R0, Q|t=0 = Q0, R0 � 0, Q0 � 0, (1.11)



990 Didier Bresch et al.

with the following compatibility condition on Z |t=0 = Z0:

(
a−

a+

)1/γ −

Q0 =
(
1 − R0

Z0

)
Zγ
0 , with R0 � Z0. (1.12)

For system (1.10) we prove the following:

Theorem 1.2. Let γ ± > 1, γ + �= γ −, a± > 0, λ + 2μ > 0, μ > 0, and let the
initial data be given by (1.11) with Z0 defined through (1.12). Further, assume that
∫
Td

(Rγ +
0 + Qγ −

0 ) dx < ∞, 0 <

∫
Td

R0 dx < ∞, 0 <

∫
Td

Q0 dx < ∞.

(1.13)

Then there exists (R, Q, Z ,u)—a global in time weak solution to the system (1.8)–
(1.10) for (t, x) ∈ (0, T ) × T

d , such that

R ∈ L∞(0, T ; Lγ +
(Td)) ∩ L2γ +

((0, T ) × T
d) ∩ C([0, T ]; Lγ +

(Td)),

Q ∈ L∞(0, T ; Lγ −
(Td)) ∩ L2γ −

((0, T ) × T
d) ∩ C([0, T ]; Lγ −

(Td))

Z ∈ L∞(0, T ; Lγ +
(Td)) ∩ L2γ +

((0, T ) × T
d) ∩ C([0, T ]; Lγ +

(Td)),

u ∈ L2(0, T ; H1(Td)),

where Equations (1.7)–(1.10d) are satisfied in D′((0, T ) × T
d), and the initial

conditions (1.11) with the constraint (1.12) are satisfied in D′(Td). Moreover,
equations (1.10a) and (1.10b) are satisfied in the renormalized sense.

Our paper provides the first proof of the existence of global-in-time weak so-
lutions for a bi-fluid system with constant viscosities under algebraic pressure law
closure in physical dimensions 2 and 3. The only other available results treat the
density dependent viscosities with two velocity fields, see [3], and [8] (see also
[23,24] for specific linear pressure laws). The main difficulty in analysis of the
system (1.1) is due to, roughly speaking, the complex form of the pressure. In-
deed, by α+ + α− = 1 and (1.3), the pressure p depends on α+�+ and α−�−
(R and Q, respectively) in nonlinear implicit, see the relation (1.8). This means
that the nowadays standard approach developed by Lions [32] and Feireisl [25],
see also [34], seems to be not applicable in all generality. Therefore, we adapt a
brand new technique from [9–11] that could be used to cover more complicated
case in a future work for instance with viscosities depending on the volumic rates
α±. By reformulating system (1.1) in terms of the pressure argument Z and one of
the conserved quantities, for example R = α+�+, we show that the new technique
provides compactness for sequences approximating both unknowns.

Let us briefly discuss various contributions related to global weak solutions to
the study of compressible fluid equations with intricate pressure law.
Mono-fluid systems Note that putting α+ = 1 in (1.1), we get the usual semi-
stationary compressible Stokes system

∂t� + div(�u) = 0,

− μ�u − (λ + μ)∇ div u + ∇ p(�) = 0,
(1.14)
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which has been studied, for instance, in [32], with a monotone pressure law p(�) =
a�γ with γ > 1, and more recently in [10] with a non-monotone, locally Lipschitz,
pressure law p(�), such that p(0) = 0 and

C−1�γ − C � p(�) � C�γ + C, |p′(s)| � psγ−1

for some constants C > 0, p > 0 and γ > 1.
Compressible systems with two continuity equations Two-components compress-
ible systems have been studied in the density dependent viscous case in [3,8] for
instance. Concerning the constant viscosity case, the existence of weak solutions
to the two-phase model

∂t�
+ + div(�+u) = 0

∂t�
− + div(�−u) = 0

∂t ([�+ + �−]u) + div([�+ + �−]u ⊗ u) + ∇ p(�+, �−)

− μ�u − (λ + μ)∇ div u = 0

(1.15)

was recently proven by Vasseur et al. in [42], for the pressure law equal to
p(�+, �−) = (

�+)γ + (
�−)α with γ > 9/5 and α � 1. For the existence of

strong solutions close to equilibrium we refer, for example, to [27]. For the exten-
sive analysis of two-component models in the one-dimensional setting we refer to
papers of Evje et al. [21,22] in the constant viscosity case and with specific linear
pressure law.

In another recent paper of Maltese et al. [34], see also [26,35], the authors
considered the system used in the geophysical flow modelling

∂t� + div(�u) = 0

∂t s + u · ∇s = 0

∂t (�u) + div(�u ⊗ u) + ∇ p(�, s) − μ�u − (λ + μ)∇ div u = 0,

(1.16)

where s denotes the entropic variable, with the pressure law given by p(�, s) =
�γ T (s)with γ > 1, s > 0, andT (·) a given smooth and strictlymonotone function.
They proved the existence of weak solution to the following reformulation of (1.16)

∂t� + div(�u) = 0

∂t Z + div(Zu) = 0

∂t (�u) + div(�u ⊗ u) + ∇Zγ − μ�u − (λ + μ)∇ div u = 0,

(1.17)

where Z denotes �[T (s)]1/γ , after which they proved the equivalence between
solutions to systems (1.16) and (1.17) for γ � 9

5 . For analysis and numerical
simulations of system (1.17) with the so-called congestion constraint we refer to
[14,15].

Note that the two systems mentioned before (1.15) and (1.16) include pressure
laws which are monotone with respect to variables satisfying continuity equations.
This allows the authors to adapt the tools already developed by Lions [31,32] and
Feireisl [25] for mono-fluid systems. It is not the case for the two-fluid Stokes
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system (1.10). For this system, although ∂R Z , ∂Q Z � 0, we do not have the
crucial property

Z(R, Q) � Z(R, Q)

for Z(R, Q) denoting the weak limit of Zn(Rn, Qn) when the approximation pa-
rameter n goes to +∞. Looking at the reformulation (1.10), the pressure argument
Z is given implicitly in terms of R and Q. As a consequence, Z does not satisfy a
simple continuity equation, but we have

∂t Z + div(Zu) + (1 − γ )(Z − R)Z

γ (Z − R) + R
div u = 0.

The additional friction term (1−γ )(Z−R)Z
γ (Z−R)+R div u means that its seems that we have

no compensation of compactness between div u and the pressure p. The continuity
equation with production term in the Navier–Stokes type of system has been re-
cently investigated by Vauchelet and Zatorska [41]. In this case, the so-called
effective viscous flux equality does not imply a strong convergence of the sequence
approximating Z .

In this work we show that the recent development proposed by Bresch and
Jabin [9] may be adapted to treat the bi-fluid system (1.10). Our work therefore
provides a generalization of this result to the pressure law that depends on two
transported quantities, as in semi-stationary compressible Stokes system.

In [9], the authors explain how to handle the non-monotone truncated pressure in
the heat-conducting Navier-Stokes system. In this system the pressure depends on
two variables: the density and the temperature. The density satisfies the continuity
equation, while the temperature is given by the heat equation, and hence some
properties providing compactness in space of the second unknown are available.
Our result in this paper covers the pressure laws depending on twoquantitieswithout
knowing any a-priori compactness in space for any of them.

In our proof we rescale the unknowns and the viscosity coefficient λ + 2μ so
that a+ = a− = 1. Sincewe keep γ + �= γ − this assumption does not lead to loss of
generality. For the sake of brevity, we will always consider γ + � γ −, equivalently
γ � 1. However, due to the symmetry of the problem, the result will remain in
force also if γ + > γ −.

The paper is divided into two parts:
Part I In Section 2, we first prove energy estimates and extra integrability properties
on the solutions of the system (1.10). We also study the nonlinear relation between
Q, R and Z and present the equation satisfied by Z . Then, in Section 3, we prove
the weak sequential stability of solutions to (1.10). This means that the hypothetical
sequence of sufficiently smooth solutions {Rn, Qn, Zn,un}∞n=1 satisfying the en-
ergy and extra integrability estimates uniformly w.r.t. n, has a limit when n → ∞,
that is a weak solution to (1.10).
Part II In Section 4, we construct the approximate solutions and show that they
converge to solutions of system (1.10). The starting point is the Lagrangian refor-
mulation of (1.10) with truncation of the pressure. Using Crippa and De Lellis’
stability of the flow result (see [13] and [12]) we show that approximate solutions
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constructed in the Lagrangian coordinates define suitable approximate solutions of
the system in the Eulerian coordinates. These solutions satisfy the uniform bounds
requested in the first part of the paper. It is worth emphasizing that our construction
does not introduce any parabolic regularization of the continuity equation com-
monly used in compressible setting. In a sense it is similar to the construction of
regular solutions [36–38].

2. Preliminary Observations

Here we provide basic a-priori estimates for the sequence of solutions {Rn, Qn,

Zn,un}∞n=1, uniformlywith respect ton.Weassume that for anyn � 1 (Rn, Qn, Zn,

un) is a smooth solution to (1.10), defined on (0, T ) × T
d . We drop the index n,

when no confusion can arise, and we recall that we assume γ � 1. Moreover, the
results from this section do not depend on the value of the viscosity coefficient if
only λ + 2μ > 0. Therefore, without loss of generality we take

λ + 2μ = 1.

Lemma 2.1. Let R, Q,u be sufficiently smooth solutions to (1.10), then

0 � R, Q and R, Q ∈ L∞(0, T ; L1(Td)). (2.1)

Moreover, assuming that R, Q � 0 is given, there exists a unique Z solving (1.8)
and (1.9).

Proof. Integrating equation (1.10a) over Td we deduce that

d

dt

∫
Td

R dx = 0,

i.e.
∫
Td R0(x) dx = MR , implies

∫
Td R(t, x) dx = MR for any t ∈ [0, T ].

Moreover, since R is smooth and R0 ≥ 0, we have the estimate

R(τ, x) � inf
x∈Td

R0(x) exp

(
−
∫ τ

0
‖ div u‖L∞(R)dt

)
, (2.2)

in particular R ≥ 0. Repeating the same procedure for Q we obtain (2.1).
For fixed nonnegative R and Q, we find a candidate Z � R satisfying the

equation (1.8), i.e.,

fR,Q(Z) = Zγ − RZγ−1 − Q = 0.

Note that fR,Q(R) = −Q � 0 and ∂Z fR,Q(Z) = γ Zγ−2(Z − R) + RZγ−2.
Therefore in the range Z � R there exists a unique Z solving (1.8). �
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Our next goal is to derive estimates for R, Q, Z , and u following from bound-
edness of the energy associated with system (1.10):

Lemma 2.2. Let R, Q,u be sufficiently smooth solutions to (1.10), then the follow-
ing estimates are valid:

sup
t<T

∫
Td

(Zγ + + Rγ + + Qγ −
) dx +

∫ T

0

∫
Td

|∇u|2 dx dt � C, (2.3)

and ∫ T

0

∫
Td

(Z2γ + + R2γ + + Q2γ −
) dx dt � C(1 + T ), (2.4)

for any T > 0.

Proof. First note that from
∫
Td Zγ +

0 dx < ∞ and (1.12) it follows that

∫
Td

Rγ +
0 dx < ∞,

∫
Td

Qγ −
0 dx < ∞. (2.5)

On the opposite, assuming that (2.5) holds then using the Hölder inequality and

(1.12) it follows that
∫
Td Zγ +

0 dx < ∞. We next define α as a solution to

α =
{ R

Z if Z �= 0

1
2 otherwise.

By (1.9) we deduce that 0 � α � 1. From (1.8) we have that

Zγ + =
(

Q

1 − α

)γ −

if α �= 1 or equivalently Zγ + =
(

R

α

)γ +

if α �= 0.

(2.6)

Therefore, the gradient of the pressure can be written as

∇ P = ∇Zγ + = α∇
(

R

α

)γ +

+ (1 − α)∇
(

Q

1 − α

)γ −

= γ +

γ + − 1
R∇

(
R

α

)γ +−1

+ γ −

γ − − 1
Q∇

(
Q

1 − α

)γ −−1

.

(2.7)

Multiplying the last term on the l.h.s. of (1.10c) by − div u, and integrating by
parts, we obtain
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−
∫
Td

(P − {P}) div u dx =
∫
Td

∇ P · u dx

=
∫
Td

(
γ +

γ + − 1
R∇

(
R

α

)γ +−1

+ γ −

γ − − 1
Q∇

(
Q

1 − α

)γ −−1
)

· u dx

= − γ +

γ + − 1

∫
Td

div(Ru)

(
R

α

)γ +−1

dx − γ −

γ − − 1

∫
Td

div(Qu)

(
Q

1 − α

)γ −−1

dx

= γ +

γ + − 1

∫
Td

∂t R

(
R

α

)γ +−1

dx + γ −

γ − − 1

∫
Td

∂t Q

(
Q

1 − α

)γ −−1

dx

= 1

γ + − 1

d

dt

∫
Td

(
R

α

)γ +

α dx +
∫
Td

(
R

α

)γ +

∂tα dx

+ 1

γ − − 1

d

dt

∫
Td

(
Q

1 − α

)γ −

(1 − α) dx −
∫
Td

(
Q

1 − α

)γ −

∂tα dx

= d

dt

∫
Td

(
1

γ + − 1

(
R

α

)γ +

α + 1

γ − − 1

(
Q

1 − α

)γ −

(1 − α)

)
dx .

Multiplying the l.h.s. of the momentum equation (1.10c) by − div u we therefore
get

sup
t∈(0,T )

∫
Td

(
1

γ + − 1

(
R

α

)γ +

α + 1

γ − − 1

(
Q

1 − α

)γ −

(1 − α)

)
dx

+
∫ T

0

∫
Td

| div u|2 dx dt

�
∫
Td

(
1

γ + − 1

(
R0

α0

)γ +

α0 + 1

γ − − 1

(
Q0

1 − α0

)γ −

(1 − α0)

)
dx .

(2.8)

On account of (2.6) and (2.5) the r.h.s. is bounded. Using (2.8) and (2.6) again, we
obtain

sup
t∈(0,T )

∫
Td

Zγ +
dx = sup

t∈(0,T )

∫
Td

(
Zγ +

α + Zγ +
(1 − α)

)
dx

= sup
t∈(0,T )

∫
Td

(
Zγ +

α +
(

Q

1 − α

)γ −

(1 − α)

)
dx � C,

which provides the uniform estimate for Zγ +
, as stated in (2.3). The uniform es-

timate for Rγ +
can be obtained using (1.9), and then (2.6) provides the uniform

estimate for Qγ −
.

In order to estimate the full gradient of u we notice that
∫ T

0

∫
Td

|∇u|2 dx dt =
∫ T

0

∫
Td

| div u|2 dx dt +
∫ T

0

∫
Td

|rot u|2 dx dt;

the first term is bounded due to (2.8), and the second one is equal to 0 on account
of (1.10d).
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In order to prove (2.4) we multiply momentum equation (1.10c) by P and
integrating over time and space we get that

∫ T

0

∫
Td

P2 dx dt =
∫ T

0

∫
Td

div u P dx dt +
∫ T

0

∫
Td

{P}P dx dt

=
∫ T

0

∫
Td

div u P dx dt +
∫ T

0
{P}2 dt;

(2.9)

The last term is bounded due to (2.3), and we use the Cauchy inequality to estimate
∣∣∣∣
∫ T

0

∫
Td

div uP dx dt

∣∣∣∣ � 1

2

∫ T

0

∫
Td

P2 dx dt + 1

2

∫ T

0

∫
Td

| div u|2 dx dt

� C + 1

2

∫ T

0

∫
Td

P2 dx dt.

(2.10)

Thus, combining (2.10) with (2.9) we obtain the uniform estimate for Z2γ +
as

in (2.4). The rest of bounds from (2.4) follows, as previously, from the relations
between Z , R, and Q, see (1.9), and (2.6). �

We can now use the above estimates in order to deduce that R and Q satisfy
equations (1.10a) and (1.10b) in the renormalized sense.

Lemma 2.3. Assume X ∈ Lq((0, T )×T
d)with q � 2, andu ∈ L2(0, T ; W 1,2(Td)).

Let (X,u) solve

∂t X + div(Xu) = f in D′((0, T ) × T
d),

where f ∈ L p((0, T ) × T
d) for some p > 1, p′ ( q

2 − 1
)

� 1. Then (X,u) is also
a renormalized solution, i.e. it solves

∂t b(X) + div(b(X)u) + (
b′(X)X − b(X)

)
div u = f b′(X) in D′((0, T ) × T

d),

(2.11)
where

b ∈ C1([0,∞)), |b′(s)| � Csλ, f or s > 1, where λ � q

2
− 1. (2.12)

The proof of this lemma is a consequence of the DiPerna-Lions theory [18] of
renormalized solutions to the transport equation.

We now derive the equation satisfied by Z . If R, Q,u are smooth, the evolution
equation for Z = Z(R, Q) can be deduced from the continuity equations for R and
for Q, and the formula (1.8). However, we will use the the equivalency between
the equations (1.10a), (1.10b) and the evolution equation for Z at the level of weak
solutions, i.e. solutions with regularity specified in Lemma 2.2. For such solutions
we have the following result:

Lemma 2.4. Let u ∈ L2(0, T ; W 1,2(Td)), R ∈ L2γ +
((0, T ) × T

d) ∩ L∞(0, T ;
Lγ +

(Td)), Q ∈ L2γ −
((0, T ) × T

d) ∩ L∞(0, T ; Lγ −
(Td)), and let (R, Q,u)

solve (1.10a) and (1.10b) in the sense of distributions, and (1.10c) and (1.10d)
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a.e. in (0, T ) × 	. Then Z defined by (1.8) belongs to L2γ +
((0, T ) × T

d) ∩
L∞(0, T ; Lγ +

(Td)) and it satisfies

∂t Z + div(Zu) + (1 − γ )(Z − R)Z

γ (Z − R) + R
div u = 0, (2.13)

in the sense of distributions. Conversly, let (R, Z ,u) solve (1.10a) and (2.13) in
the sense of distributions. Then Q defined by (1.8) satisfies (1.10b), in the sense of
distributions.

Proof. The fact that Z ∈ L2γ +
((0, T ) × T

d) ∩ L∞(0, T ; Lγ +
(Td)) follows from

Lemma 2.2. Testing the equations (1.10a) and (1.10b) by ξη(x − ·), where ξη is a
standard periodized mollifier, we obtain

∂t Rη + div(Rηu) = r1η ,

∂t Qη + div(Qηu) = r2η ,
(2.14)

satisfied a.e. in (0, T )×T
d ,whereaη denotesa∗ξη. From theFriedrichs commutator

lemma we know that

r1η → 0 in L p1((0, T ) × T
d),

r2η → 0 in L p2((0, T ) × T
d)

(2.15)

for 1
p1

= 1
2 + 1

2γ + ,
1
p2

= 1
2 + 1

2γ − . We now define Zη via

Qη =
(
1 − Rη

Zη

)
Zγ

η ,

and as previously we find that Rη � Zη. Let us now apply ∂Qη , ∂Rη to both sides
of the above formula to obtain, respectively,

1 = γ Zγ−1
η ∂Qη Zη − Rη(γ − 1)Zγ−2

η ∂Qη Zη,

0 = γ Zγ−1
η ∂Rη Zη − Zγ−1

η − Rη(γ − 2)Zγ−1
η ∂Rη Zη.

This gives us that

∂Qη Zη = 1

γ Zγ−1
η − Rη(γ − 1)Zγ−2

η

, ∂Rη Zη = Zγ−1
η

γ Zγ−1
η − Rη(γ − 1)Zγ−2

η

.

(2.16)

Using the assumption γ ≤ 1 and inequality Rη � Zη, we check thatwe can estimate
the partial derivatives of Zη(Rη, Qη) by the integrable function, more precisely

|∂Qη Zη| ≤ Z1−γ
η

γ
, |∂Rη Zη| � 1

γ
.
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This means that ∂Qη Zη and ∂Rη Zη are suitable test functions for (2.14). We now
check that

∂t Zη = ∂Qη Zη∂t Qη + ∂Rη Zη∂t Rη

= − ∂Qη Zη div(Qηu) − ∂Rη Zη div(Rηu) + r1η∂Rη Zη + r2η∂Qη Zη

= −[∂Qη Zη∇Qη + ∂Rη Zη∇ Rη] · u − [Qη∂Qη Zη + Rη∂Rη Zη] div u
+ r1η∂Rη Zη + r2η∂Qη Zη

= −∇Zη · u − [Qη∂Qη Zη + Rη∂Rη Zη] div u + r1η∂Rη Zη + r2η∂Qη Zη,

therefore

∂t Zη + div(Zηu) + [Qη∂Qη Zη + Rη∂Rη Zη − Zη] div u = r1η∂Rη Zη + r2η∂Qη Zη.

(2.17)

Substituting (2.16), we compute

Qη∂Qη Zη + Rη∂Rη Zη − Zη = Qη + Rη Zγ−1
η − Zη(γ Zγ−1

η − Rη(γ − 1)Zγ−1
η )

γ Zγ−1
η − Rη(γ − 1)Zγ−1

η

= Zγ
η − Rη Zγ−1

η + Rη Zγ−1
η − γ Zγ

η + Rη(γ − 1)Zγ−1
η

γ Zγ−1
η − Rη(γ − 1)Zγ−1

η

= (1 − γ )(Zη − Rη)Zη

γ (Zη − Rη) + Rη

.

Using this, the equation for Zη can be written as

∂t Zη + div(Zηu) + (1 − γ )(Zη − Rη)Zη

γ (Zη − Rη) + Rη

div u = r1η∂Rη Zη + r2η∂Qη Zη.

(2.18)

Note that since γ < 1, we easily show that (1−γ )(Zη−Rη)Zη

γ (Zη−Rη)+Rη
� 0, moreover

(1−γ )(Zη−Rη)Zη

γ (Zη−Rη)+Rη
� 1−γ

γ
(Zη − Rη) ∈ L2γ +

((0, T ) × T
d). This allows us to let

η → 0 in the l.h.s. of (2.18). The r.h.s. of (2.18) vanishes provided that p1 � 1
and 1

p2
+ 1−γ

2γ + � 1, which is fulfilled provided that γ + ≥ 1.
In order to recover the equation for Q from the equations for R and Z , one

derives the equation on Q1/γ first. It is easy to observe that (1.8) yields
∣∣∣∣∂ Q1/γ

∂ Z

∣∣∣∣ � 1 and

∣∣∣∣∂ Q1/γ

∂ R

∣∣∣∣ � 1/γ.

Therefore, the rigorous procedure involvingmollifying andpassage to the limitη →
0, described above, can be repeated for Q. In this manner we obtain a renormalized
version of the equation for Q:

∂t Q1/γ + div(Q1/γ u) + Q1/γ div u = 0.

This finishes the proof. �
As a consequence of this Lemma and Lemma 2.3 we have
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Corollary 2.5. The couple (Z ,u) is a renormalized solution to (2.13).

Proof. Indeed, for the assumptions of Lemma 2.3 to be fulfilled we note that
∣∣∣∣ (1 − γ )(Z − R)Z

γ (Z − R) + R
div u

∣∣∣∣ � C Z | div u|,

and the r.h.s. is bounded in L1((0, T ) × T
d) on account of (2.3) and (2.4). �

3. Sequential Stability of Solutions

The purpose of this section is to pass to the limit n → ∞ in the sequence
{Rn, Qn, Zn,un}∞n=1 and to verify that the limit (R, Q, Z ,u) satisfies the system
(1.10) in the weak sense. We prove the following theorem:

Theorem 3.1. Let T > 0. Assume that for any n the quadruple (Rn, Qn, Zn,un)

satisfies (1.8)–(1.10) with the initial conditions

Rn|t=0 = R0,n, Qn|t=0 = Q0,n, R0,n � 0, Q0,n � 0,

with Zn|t=0 = Z0,n satisfying (1.12), and s.t.

Rn,0 → R0 strongly in L1(Td),

Zn,0 → Z0 strongly in L1(Td).

Let the estimates from the Lemmas 2.1 and 2.2 hold uniformly with respect to n.
Then up to the subsequence

Rn → R strongly in L2γ +−ε((0, T ) × T
d),

Qn → Q strongly in L2γ −−ε((0, T ) × T
d),

Zn → Z strongly in L2γ +−ε((0, T ) × T
d),

un → u weakly in L2(0, T ; H1(Td)),

for any ε > 0. Moreover, (R, Q, Z ,u) satisfies (1.8)–(1.10) in the sense of distri-
butions.

Passage to the limit n → ∞ in the two first equations of system (1.10) requires
at least weak convergence of the sequences Rn, Qn and un . This can be deduced
directly from the a-priori estimates from Lemmas 2.1 and 2.2 using nowadays
classical techniques (see, for example Lions [32] or Feireisl [25]), and we skip
this part. The core of the proof of Theorem 3.1 is to pass to the limit in the non-
linear term of the momentum equation (1.10c). Indeed, identification of the limit
limn→∞ p(Rn, Qn) = p(R, Q) requires some sort of strong convergence of se-
quences Rn , and Qn . Instead of proving the strong convergence of these sequences
directly, we use the equivalence between the system (1.10) and its reformulation in
terms of (R, Z ,u), as stated in the Lemma 2.4. The proof of Theorem (3.1) can be
therefore reduced to the proof of compactness of the sequence Zn and justification
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that the limit quantities R, Q, Z satisfy the relation (1.8). We follow the strategy
proposed by Bresch and Jabin [9] (see also [10]) in the context of compressible
Navier–Stokes equations with the non-monotone pressure law. As a byproduct of
this approach, we obtain a compactness result for the sequence Rn , and using (1.8)
the strong convergence of the sequence Qn , concluding the proof of Theorem 3.1.
The rest of this section will be therefore devoted to the proof of the following result:

Proposition 3.2. Let T > 0. Assume that {(Rn, Zn,un)}∞n=1 satisfies

∂t R + div(uR) = 0, (3.1a)

∂t Z + div(Zu) + (1 − γ )(Z − R)Z

γ (Z − R) + R
div u = 0, (3.1b)

div u = Zγ + − {Zγ +}, (3.1c)

rot u = 0,
∫
Td

u(t, x) dx = 0, (3.1d)

with the initial conditions (1.11) satisfying (1.12), and let the estimates from the
Lemmas 2.1 and 2.2 hold uniformly with respect to n. Then the sequences {Rn}∞n=1
{Zn}∞n=1 are compact in L1((0, T ) × T

d).

3.1. Preliminaries

In order to prove the strong convergence of {Rn, Zn}∞n=1 necessary to pass to the
limit in the momentum equation, we will use the compactness criterion introduced
in the context of Navier–Stokes equations in [9]. First let us introduce the necessary
notation. We define the positive, bounded and symmetric function {Kh}h>0 such
that

Kh(x) = 1

(|x | + h)a

with |x | =
√∑d

i=1 x2i for |x | � 1/2 with some a > d and Kh positive, in-
dependent of h for |x | � 2/3, Kh positive constant outside B(0, 3/4) so that
Kh ∈ C∞(Td\B(0, 3/4)) and it is a periodic function. Further, we denote

Kh(x) = Kh(x)

‖Kh‖L1(Td )

, Kh0(x) =
∫ 1

h0
Kh(x)

dh

h
. (3.2)

We also use the following properties of the kernel Kh :

Kh(x) = Kh(−x), |x ||∇Kh(x)| � C Kh(x), (3.3)

for some constant C > 0 independent of h and

‖Kh0‖L1(Td ) ∼ | log h0|. (3.4)

We recall the following compactness criterion (for the proof see [2], Lemma
3.1):
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Lemma 3.3. Let {Xn}∞n=1 be a sequence of functions uniformly bounded in L p((0, T )×
T

d) with 1 � p < +∞. Assume that Kh is a sequence of positive, bounded func-
tions s.t.

(i) ∀η > 0, suph

∫
Td

Kh(x)1{x : |x |≥η} dx < ∞,

(ii) ‖Kh‖L1(Td ) → +∞ as h → 0.

If {∂t Xn}∞n=1 is uniformly bounded in Lr ([0, T ], W −1,r (Td)) with r � 1 and

lim sup
n

(
1

‖Kh‖L1

∫ T

0

∫
T2d

Kh(x − y)|Xn(t, x) − Xn(t, y)|p dx dy dt

)
→ 0,

as h → 0,

then, {Xn}∞n=1 is compact in L p([0, T ] × T
d). Conversely, if {Xn}∞n=1 is compact

in L p([0, T ] × T
d), then the above lim sup converges to 0 as h goes to 0.

3.2. Propagation of Oscillations

Having transport equations for R and Z togetherwith necessary a-priori bounds,
our next goal is to derive the equations for perturbations of both of these quantities.
Perturbations are described by the evolution of |R(t, x) − R(t, y)| and |Z(t, x) −
Z(t, y)|, respectively, for any couple of points x, y ∈ T

d . To obtain them we first
subtract the equations for R(t, x) and R(t, y)

∂t (Rx − Ry) + divx (ux
(
Rx − Ry

)
) + divy(uy

(
Rx − Ry

)
)

= 1

2
(divx ux + divy uy)

(
Rx − Ry

) − 1

2
(divx ux − divy uy)(Rx + Ry),

where we denoted Rx = R(t, x), Ry = R(t, y). Multiplying this equation by the
sign of their difference sR = sign(Rx − Ry) we get

∂t |Rx − Ry | + divx (ux |Rx − Ry |) + divy(uy |Rx − Ry |)
= 1

2
(divx ux + divy uy)|Rx − Ry | − 1

2
(divx ux − divy uy)(Rx + Ry)sR .

(3.5)

By a similar token, we obtain the equation for |Zx − Z y |, namely

∂t |Zx − Z y | + divx (ux |Zx − Z y |) + divy(uy |Zx − Z y |)
= 1

2
(divx ux + divy uy)|Zx − Z y | − 1

2
(divx ux − divy uy)(Zx + Z y)sZ

−
[
(1 − γ )(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
divx ux − (1 − γ )(Z y − Ry)Z y

γ (Z y − Ry) + Ry
divy uy

]
sZ .

(3.6)

We now multiply (3.5) and (3.6) by wx + wy , where wx = w(t, x) denotes the
solution to the transport equation{

∂tw + u · ∇w + θDw = 0,
w(0, x) = 1,

(3.7)
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where θ is a constant parameter that will be chosen later on and D depending on u
and Z . Our next step is to write equation for

S(t) :=
∫
T2d

Kh(x − y)Ox−y(wx + wy) dx dy,

where Ox−y = |Rx − Ry | + |Zx − Z y |, we have

d

dt
S(t) =

∫
T2d

∇Kh(x − y)(ux − uy)Ox−y(wx + wy) dx dy

+ 1

2

∫
T2d

Kh(x − y)(divx ux + divy uy)Ox−y(wx + wy) dx dy

− 1

2

∫
T2d

Kh(x − y)(divx ux − divy uy)[(Rx + Ry)sR

+ (Zx + Z y)sZ ](wx + wy) dx dy

−
∫
T2d

Kh(x − y)

[
(1 − γ )(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
divx ux

− (1 − γ )(Z y − Ry)Z y

γ (Z y − Ry) + Ry
divy uy

]
sZ (wx + wy) dx dy

+
∫
T2d

Kh(x − y)Ox−y (∂twx + ux · ∇wx ) dx dy

+
∫
T2d

Kh(x − y)Ox−y
(
∂twy + uy · ∇wy

)
dx dy. (3.8)

Using the symmetry of Kh(x − y), Ox−y , and the symmetry of the second, third
and fourth integrals on the r.h.s. we obtain

d

dt
S(t) =

∫
T2d

∇Kh(x − y)(ux − uy)Ox−y(wx + wy) dx dy

+
∫
T2d

Kh(x − y)(divx ux + divy uy)Ox−ywx dx dy

−
∫
T2d

Kh(x − y)(divx ux − divy uy)[(Rx + Ry)sR

+(Zx + Z y)sZ ]wx dx dy

−2
∫
T2d

Kh(x − y)

[
(1 − γ )(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
divx ux

− (1 − γ )(Z y − Ry)Z y

γ (Z y − Ry) + Ry
divy uy

]
sZwx dx dy

+2
∫
T2d

Kh(x − y)Ox−y (∂twx + ux · ∇wx ) dx dy. (3.9)

Finally, writing (divx ux + divy uy) = −(divx ux − divy uy) + 2 divx ux and com-
bining the second and the third term on the r.h.s. we obtain
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d

dt
S(t) =

∫
T2d

∇Kh(x − y)(ux − uy)Ox−y(wx + wy) dx dy

−
∫
T2d

Kh(x − y)(divx ux − divy uy)[Rx sR + Zx sZ ]wx dx dy

− 2
∫
T2d

Kh(x − y)

[
(1 − γ )(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
divx ux

− (1 − γ )(Z y − Ry)Z y

γ (Z y − Ry) + Ry
divy uy

]
sZwx dx dy

+ 2
∫
T2d

Kh(x − y)Ox−y (∂twx + ux · ∇wx + divx uxwx ) dx dy

= I1 + I2 + I3 + I4.
(3.10)

We now estimate each term in (3.10) separately.
Estimate of I1. Recall that Kh satisfies (3.3), we also know that

|ux − uy | � C |x − y|(D|x−y|ux + D|x−y|uy), where

Dhux = 1

h

∫
|z|�h

|∇ux+z |
|z|d−1 dz.

(3.11)

Recall that Dhu � M |∇u|, where M denotes the maximal operator

M f (x) = sup
r�1

1

|B(0, r)|
∫

B(0,r)

f (x + z) dz.

For the proof of this fact we refer the reader to [29, Lemma 3.1 and Eq. 3.3].
Combining estimate (3.11) with (3.3), we have

I1 =
∫
T2d

∇Kh(x − y)(ux − uy)Ox−y(wx + wy) dx dy

� C
∫
T2d

Kh(x − y)(D|x−y|ux + D|x−y|uy)Ox−ywx dx dy.

Next, writing

D|x−y|ux + D|x−y|uy = D|x−y|uy − D|x−y|ux + 2D|x−y|ux ,

and estimating D|x−y|u(x) by the Maximal operator M |∇u|(x), we get

I1 �C
∫
T2d

Kh(x − y)(D|x−y|uy − D|x−y|ux )Ox−ywx dx dy

+ C
∫
T2d

Kh(x − y)M |∇ux |Ox−ywx dx dy.

(3.12)

Estimate of I2 Due to (3.1c), we can write that

− (
divx ux − divy uy

) [Rx sR + Zx sZ ]
= −

(
Zγ +

x − Zγ +
y

)
Rx sR −

(
Zγ +

x − Zγ +
y

)
Zx sZ .
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Note that the last term is always nonpositive, hence the contribution to I1 coming
from this term can be moved to the l.h.s. of (3.10). Concerning the first term, it can
only be estimated from above. Using Rx = αx Zx we get

I2 = −
∫
T2d

Kh(x − y)(divx ux − divy uy)[Rx sR + Zx sZ ]wx dx dy

≤ −
∫
T2d

Kh(x − y)|Zγ +
x − Zγ +

y |Zxwx dx dy

+
∫
T2d

Kh(x − y)|Zγ +
x − Zγ +

y |αx Zxwx dx dy

=
∫
T2d

Kh(x − y)|Zγ +
x − Zγ +

y |(αx − 1)Zxwx dx dy.

(3.13)

Since αx ≤ 1, the integral I2 is nonpositive and can be moved to the left hand side
of (3.10).
Estimate of I3 The estimate of this term is most lengthy and requires splitting the
term in a big bracket several times. We first note that

−
[
(1 − γ )(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
divx ux − (1 − γ )(Z y − Ry)Z y

γ (Z y − Ry) + Ry
divy uy

]
sZ

= (γ − 1)

[
(Zx − Rx )Zγ ++1

x

γ (Zx − Rx ) + Rx
− (Z y − Ry)Zγ ++1

y

γ (Z y − Ry) + Ry

]
sZ

− (γ − 1)

[
(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
− (Z y − Ry)Z y

γ (Z y − Ry) + Ry

]
sZ {Zγ +}

= (γ − 1)
(Z y − Ry)

γ (Z y − Ry) + Ry

(
Zγ ++1

x − Zγ ++1
y

)
sZ

+ (γ − 1)

[
(Zx − Rx )

γ (Zx − Rx ) + Rx
− (Z y − Ry)

γ (Z y − Ry) + Ry

]
Zγ ++1

x sZ

−(γ − 1)
(Z y − Ry)

γ (Z y − Ry) + Ry

(
Zx − Z y

)
sZ {Zγ +}

−(γ − 1)

[
(Zx − Rx )

γ (Zx − Rx ) + Rx
− (Z y − Ry)

γ (Z y − Ry) + Ry

]
Zx {Zγ +}sZ , (3.14)

where we used (3.1c) to substitute for div u, and the observation that {Zγ +
x } =

{Zγ +
y }.
Observe that

(Z y − Ry)

γ (Z y − Ry) + Ry
= (1 − αy)

γ (1 − αy) + αy
∈ (0, 1/γ ) , (3.15)

therefore, the first term on the r.h.s. of (3.14) is non-positive for γ < 1 and can be
eventually considered on the l.h.s. of (3.10). For the second term on the r.h.s. of
(3.14) we continue to write
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(γ − 1)

[
(Zx − Rx )

γ (Zx − Rx ) + Rx
− (Z y − Ry)

γ (Z y − Ry) + Ry

]
Zγ ++1

x sZ

= (γ − 1)
Ry Zx − Rx Z y

(γ (Zx − Rx ) + Rx )
(
γ (Z y − Ry) + Ry

) Zγ ++1
x sZ

= (γ − 1)
Ry(Zx − Z y)

(γ (Zx − Rx ) + Rx )
(
γ (Z y − Ry) + Ry

) Zγ ++1
x sZ

+ (γ − 1)
(Ry − Rx )Z y

(γ (Zx − Rx ) + Rx )
(
γ (Z y − Ry) + Ry

) Zγ ++1
x sZ ,

again, the first term has a good sign, while the second one can be transformed to

(γ − 1)
(Ry − Rx )Z y

(γ (Zx − Rx ) + Rx )
(
γ (Z y − Ry) + Ry

) Zγ ++1
x sZ

= (γ − 1)
(Ry − Rx )

(γ (1 − αx ) + αx )
(
γ (1 − αy) + αy

) Zγ +
x sZ

≤ 1 − γ

γ 2 |Rx − Ry |Zγ +
x .

The third and fourth terms on the r.h.s. of (3.14) can be treated similarly and
estimated by 1−γ

γ
|Zx − Z y |{Zγ +}, and by 1−γ

γ 2 Ox−y{Zγ +}, respectively.
Putting all the terms together, we conclude that

I3 = −2
∫
T2d

Kh(x − y)

[
(1 − γ )(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
divx ux

− (1 − γ )(Z y − Ry)Z y

γ (Z y − Ry) + Ry
divy uy

]
sZwx dx dy

� −2(1 − γ )

∫
T2d

Kh(x − y)
(Z y − Ry)

γ (Z y − Ry) + Ry

∣∣∣Zγ ++1
x − Zγ ++1

y

∣∣∣wx dx dy

− 2(1 − γ )

∫
T2d

Kh(x − y)
Ry |Zx − Z y |

(γ (Zx − Rx ) + Rx )
(
γ (Z y − Ry) + Ry

)
Zγ ++1

x wx dx dy

+ C
∫
T2d

Kh(x − y)|Rx − Ry |Zγ +
x wx dx dy + C{Zγ +}

∫
T2d

Kh(x − y)Ox−ywx dx dy,

(3.16)

with some constant C depending on γ .
Estimate of I4 For the last term in (3.10) we simply use the definition of themeasure
w from (3.7), we therefore get

I4 =2
∫
T2d

Kh(x − y)Ox−y (∂twx + ux · ∇wx + divx uxwx ) dx dy

=2
∫
T2d

Kh(x − y)Ox−y(divx ux − θDx )wx dx dy.

(3.17)
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As a conclusion, we obtain from (3.10), using estimates (3.12), (3.13), (3.16), and
(3.17) that

d

dt
S(t) +

∫
T2d

Kh(x − y)|Zγ +
x − Zγ +

y |(1 − αx )Zxwx dx dy

+ 2(1 − γ )

∫
T2d

Kh(x − y)
(Z y − Ry)

γ (Z y − Ry) + Ry

∣∣∣Zγ ++1
x − Zγ ++1

y

∣∣∣wx dx dy

+ 2(1 − γ )

∫
T2d

Kh(x − y)
Ry |Zx − Z y |

(γ (Zx − Rx ) + Rx )
(
γ (Z y − Ry) + Ry

)
Zγ ++1

x wx dx dy

� C
∫
T2d

Kh(x − y)(D|x−y|uy − D|x−y|ux )Ox−ywx dx dy

+ C
∫
T2d

Kh(x − y)M |∇ux |Ox−ywx dx dy

+ C
∫
T2d

Kh(x − y)|Rx − Ry |Zγ +
x wx dx dy + C{Zγ +}

∫
T2d

Kh(x − y)Ox−ywx dx dy

+ 2
∫
T2d

Kh(x − y)Ox−y(divx ux − θDx )wx dx dy.

(3.18)

Note that the only assumptions are γ < 1, i.e. γ + < γ − and α ∈ [0, 1].

3.3. Compactness Criterion with Weights

At this point of the proof it is convenient to chose the D from the definition of
the weight wx (3.7). Taking, for example,

D = M |∇u| + | div u| + Zγ + + {Zγ +} (3.19)

and θ sufficiently large, we obtain, from (3.18),

d

dt
S(t) � C

∫
T2d

Kh(x − y)(D|x−y|uy − D|x−y|ux )Ox−ywx dx dy.

Note that, thanks to uniform estimates from Lemmas 2.1 and 2.2, we have that
D defined in (3.19) is uniformly bounded in L2((0, T ) × T

d) (note that
‖M |∇u|‖L2((0,T )×Td ) � C‖∇u‖L2((0,T )×Td )). This allows us to deduce the fol-
lowing properties of the weight w:

Proposition 3.4. (Proposition 7.2 in [9]) Assume that D defined in (3.19) is given
and that it is bounded in L2(0, T ×T

d). Then, there exists a weight w solving (3.7).
Moreover, we have that

(i) For any (t, x) ∈ (0, T ) × T d, 0 � w(t, x) � 1;
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(ii) If we assume moreover that the pair (X,u) is a solution to the continuity equa-
tion:

∂t X + div(Xu) = 0,

and X is bounded in L2((0, T ) × T
d), there exists C � 0, such that

∫
Td

X | logw| dx � Cθ. (3.20)

Let us now introduce

Sh0(t) =
∫ 1

h0

S(t)

‖Kh‖L1

dh

h
=

∫ 1

h0

∫
T2d

Kh(x − y)Ox−y(wx + wy) dx dy
dh

h
.

(3.21)

Recalling the notation (3.2), and changing the variables z = x − z we get from
(3.21) that

d

dt
Sh0(t) �C

∫ 1

h0

∫
T2d

Kh(x − y)
∣∣D|x−y|u(y) − D|x−y|u(x)

∣∣ Ox−ywx dx dy
dh

h

�C
∫ 1

h0

∫
Td

Kh(z)‖D|z|u(·) − D|z|u(· + z)‖L2 dz
dh

h
,

where to get the last inequality we have used the Cauchy-Schwarz inequality, L2

integrability of R and Z together with boundedness of the weight w. Integrating
with respect to time we obtain

Sh0(t) − Sh0(0) �C
∫ t

0

∫ 1

h0

∫
Td

Kh(z)‖D|z|u(·) − D|z|u(· + z)‖L2 dz
dh

h
ds.

(3.22)

We now use the following lemma from [9]:

Lemma 3.5. (Lemma 6.3 in [9]) There exists C > 0 such that for any u ∈ H1(Td),

∫ 1

h0

∫
Td

Kh(z)‖D|z|u − D|z|u(· + z)‖L2(Td ) dz
dh

h
� C | log h0|1/2‖u‖H1(Td ).

(3.23)

With this at hand (3.22) gives

Sh0(t) − Sh0(0) � C | log(h0)|1/2
∫ t

0
‖u(s)‖H1(Td ) ds.

From this, boundedness of u in L2(0, T ; H1(Td)) we get that

Sh0(t) � C | log(h0)|1/2 + Sh0(0). (3.24)
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Using the reversed Lemma 3.3 and strong convergence of initial data we get that

lim sup
n

Sh0 (0)

| log h0|

= lim sup
n

⎛
⎝
∫
T2d Kh0 (x − y)

[ ∣∣Z0,n(x) − Z0,n(y)
∣∣ + |R0,n(x) − R0,n(y)|

]
dx dy

| log h0|

⎞
⎠ → 0,

as h0 → 0. Therefore, (3.24) yields that

sup
t∈[0,T ]

Sh0

| log h0| → 0, as h0 → 0. (3.25)

3.4. Removal of the Weights

We now want to remove the weights from (3.25) to prove that

lim sup
n

(
1

| log h0|
∫
T2d

Kh0(x − y)
[ ∣∣(Zx )n − (Z y)n

∣∣

+ |(Rx )n − (Ry)n|
]
dx dy

)
→ 0

(3.26)

as h0 → 0, while for the moment we only have only convergence with the weights,
see (3.21) and (3.25). We present a formal argument leading to the estimate (3.20)
for X = Zn . It is clear that estimate (3.20) holds for X = Rn , we will explain why
one can expect the same estimate for X = Zn . Recall that from (3.7) know that the
weights satisfy the equation

∂t | logwn| + un · ∇| logwn| = θDn, (3.27)

with

Dn = M |∇un| + | div un| + Zγ +
n +

{
Zγ +

n

}
,

Multiplying (3.27) by Rn and using the fact that Rn satisfies the continuity equation
we get

d

dt

∫
Td

Rn| logwn| dx = θ

∫
Td

RnDn dx . (3.28)

Mimicking this procedure for Zn satisfying equation (3.1b) we have

d

dt

∫
Td

Zn| logwn| dx = θ

∫
Td

ZnDn dx

−
∫
Td

(1 − γ )(Zn − Rn)Zn

γ (Zn − Rn) + Rn
div un| logwn| dx .

(3.29)

The integrability of the terms RnDn and ZnDn on r.h.s. of (3.28) and (3.29), respec-
tively, follows from the fact that RnDn � ZnDn is bounded in L1((0, T ) × T

d).
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Indeed, on account of Lemma 2.2 and the assumption γ + ≥ 1, we have Zγ ++1
n ∈

L1((0, T ) × T
d). Therefore from (3.28) it follows that

∫
Td

Rn| logwn| dx � Cθ. (3.30)

To deduce the same inequality for Zn , we rewrite the term div un in (3.29) using
the formula (3.1c)

d

dt

∫
Td

Zn| logwn| dx +
∫
Td

(1 − γ )(Zn − Rn)Zn

γ (Zn − Rn) + Rn
Zγ +

n | logwn| dx

= θ

∫
Td

ZnDn dx −
∫
Td

(1 − γ )(Zn − Rn)Zn

γ (Zn − Rn) + Rn
{Zγ +

n }| logwn| dx .

Recalling (3.15), the second term on the l.h.s. is nonnegative, while the second term
on the r.h.s. can be bounded, therefore we have

d

dt

∫
Td

Zn| logwn| dx � θ

∫
Td

ZnDn dx + 1 − γ

γ
{Zγ +

n }
∫
Td

Zn| logwn| dx .

(3.31)

Applying the Gronwall Lemma we can show that
∫
Td

Zn| logwn|(t) dx

� exp

{
1 − γ

γ

∫ t

0
{Zγ +

n (s)} ds

}

(∫
Td

Zn| logwn|(0) dx + θ

∫ t

0

∫
Td

ZnDn(t) dx ds

)
.

Thus, due to (3.7), Lemma 2.2 and the discussion above we get that
∫
Td

Zn| logwn| dx � Cθ. (3.32)

The above reasoning may be made rigorous by following the proof of the Propo-
sition 3.4 presented in [9, Proposition 7.2] with minor changes due to presence of
additional terms in the equation for Zn .

Let η < 1. We define ωη = {x : w � η} and denote by ωc
η its complementary.

We have
∫
T2d

Kh0(x − y)Ox−y dx dy =
∫ 1

h0

∫
T2d

Kh(x − y)Ox−y dx dy
dh

h
= A1 + A2,

(3.33)

with

A1 =
∫ 1

h0

∫
{x∈ωc

η}∪{y∈ωc
η}

Kh(x − y)Ox−ydx dy
dh

h
� 1

η
Sh0 ,
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due to (3.21), and

A2 =
∫ 1

h0

∫
{x∈ωη}∩{y∈ωη}

Kh(x − y)Ox−y dx dy
dh

h

� 2
∫ 1

h0

∫
T2d

Kh(x − y)[R(x) + Z(x)] | logw(x)|
| log η| dx dy

dh

h
,

where we use the symmetry of Kh and the fact that, by definition, for η < 1,
| logw(x)| � | log η| for all x ∈ ωη. Changing the variables z = y − x , and
recalling ‖Kh‖L1 = 1, we get

A2 � 2| log h0|
| log η|

∫
Td

[R(x) + Z(x)]| logw(x)| dx,

where the integral on the r.h.s. is bounded due to (3.30) and (3.32).
Summarizing the estimates of A1, A2, we obtain

∫
Td

Kh0(x − y)
[ ∣∣(Zx )n − (Z y)n

∣∣ + |(Rx )n − (Ry)n|
]
dx � 1

η
Sh0 + C

| log h0|
| log η| .

Applying (3.24), we obtain
∫
T2d

Kh0(x − y)
[ ∣∣(Zx )n − (Z y)n

∣∣ + |(Rx )n − (Ry)n|
]
dx dy

� C
| log h0|1/2 + 1

η
+ C

| log h0|
| log η| ,

Next, due to (3.4), we have

1

‖Kh0‖L1

∫
T2d

Kh0(x − y)
[ ∣∣(Zx )n − (Z y)n

∣∣ + |(Rx )n − (Ry)n|
]
dx dy

� C
| log h0|1/2 + 1

η| log h0| + C

| log η| ,

so, choosing for example η = | log h0|−1/4, and letting h0 → 0, we show (3.26),
which proves the compactness criterion from Lemma 3.3.

3.5. Concluding Remarks

From the previous section it follows that the sequences Rn and Zn converge
strongly in L1((0, T )×T

d) to R, Z , respectively. Using the uniform bounds from
Lemma 2.2, we therefore deduce the strong convergence of both of these sequences
in L2γ +−ε((0 < T )×T

d), for any ε > 0. Using the equivalence relation (1.8), and
the uniform estimates on Qn , we deduce that Qn → Q strongly in L2γ −−ε((0 <

T )×T
d). With this information at hand, it is possible to pass to the limit in all equa-

tions of system (1.8)–(1.10). The proof of Theorem 3.1 is therefore
complete. �
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4. Existence of Approximate Solutions

Here we prove the existence of solutions to certain approximation of system
(1.10) involving parameter k. Let us denoteTk(·) the truncation operatorTk : R+ →
R+ for k ∈ R+ such that

Tk(t) = t for t � k and Tk(t) = k for t � k.

We consider the following approximate system for (t, x) ∈ (0, T ) × T
d :

∂t R + div(uR) = 0, (4.1a)

∂t Q + div(uQ) = 0, (4.1b)

Q =
(
1 − R

Z

)
Zγ , R � Z , (4.1c)

div u = (Tk(Z))γ+ − {(Tk(Z))γ+}, (4.1d)

rot u = 0, (4.1e)∫
Td

u(t, x) dx = 0. (4.1f)

Note that combination of (4.1e) with (4.1f) defines u as a potential flow, i.e. there
exists φ(t, x) such that u = ∇φ, equivalently �φ = div u. The main result of this
section is existence of solutions to the approximate system (4.1) supplemented by
the initial conditions

Rk |t=0 = R0,k, Qk |t=0 = Q0,k, (4.2)

and Zk |t=0 = Z0,k defined by (1.12).

Theorem 4.1. Let the initial conditions (4.2) be such that

0 < R0,k, Q0,k < ∞ a.e. in T
d ,

and let they satisfy (1.12) and (1.13). Then there exists a global in time weak solution
to (4.1) such that

R−1
k , Rk, Q−1

k , Qk, Z−1
k , Zk ∈ L∞((0, T ) × T

d),

∂t Rk + uk · ∇ Rk ∈ L∞((0, T ) × T
d),

∂t Qk + uk · ∇Qk ∈ L∞((0, T ) × T
d),

∂t Zk + uk · ∇Zk ∈ L∞((0, T ) × T
d),

∇xu ∈ L∞(0, T ; B M O(Td)), div u ∈ L∞((0, T ) × T
d),

∂tu ∈ L∞(0, T ; L2(Td)),

(4.3)

where Equations (4.1a), (4.1b), and (4.1d) are satisfied in D′((0, T ) × T
d), and

the initial conditions (4.2) are satisfied in D′(Td).
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The rest of this section is devoted to the proof of this Theorem; it will be divided
into three main steps:

Step 1. Proof of existence of solutions to the Lagrangian reformulation of system
(4.1).

Step 2. Construction of characteristics for certain regularization of the flow.
Step 3. Passage to the limit with regularization parameter and retrieval of the Eu-

lerian formulation.

4.1. Proof of Theorem 4.1—Step 1

The starting point for this section is system (4.1) written in the Lagrangian
coordinates. We omit the definition of these coordinates at this level on purpose,
wewill come back to this issue in the consecutive steps of the proof of Theorem 4.1.

We consider the following system for (t, y) ∈ (0, T ) × T
d :

∂t r + rσ = 0, (4.4a)

∂t q + qσ = 0, (4.4b)

σ = (Tk(z))
γ+ − {(Tk(z))

γ+}L, (4.4c)

q =
(
1 − r

z

)
zγ , r � z, (4.4d)

where by {·}L we denote the average on the torus

{ f }L := 1

|Td |
∫
Td

f (t, y) exp

(∫ t

0
σ(s, y) ds

)
dy. (4.5)

The unknowns of the (4.4) are r = r(t, y), q = q(t, y), z = z(t, y), and σ =
σ(t, y), whereas z = z(r, q) is a unique solution to (4.4d), see the proof of Lemma
2.1. We supplement the system (4.4) with the following initial conditions:

r(0, y) = r0(y), q(0, y) = q0(y), 0 < r0, q0 < ∞ a.e. in Td ,

r0 � z0, q0 =
(
1 − r0

z0

)
zγ
0 .

Note that there are no space derivatives in system (4.4), which is themain advantage
of the Lagrangian reformulation. In fact it allows to transform the PDE system to
the system of ODEs with a nonlocal term {(Tk(z))γ+}L. In addition to that, we
know a-priori that any solution of (4.4) satisfies the estimates

‖σ‖L∞((0,T )×Td ) � kγ+ , (4.6)

and

sup
t∈(0,T )

‖r, q, r−1, q−1‖L∞(Td )(t) � ‖r0, q0, r−1
0 , q−1

0 ‖L∞(Td ) exp(T kγ+).

(4.7)
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This information suggests the choice of functional space for the fixed point theorem
that will be used to prove the existence of solutions to system (4.4). In what follows
we show that the map

� : L∞((0, T ) × T
d) × L∞((0, T ) × T

d) → L∞((0, T )

× T
d) × L∞((0, T ) × T

d),

�(r, q) = (r̄ , q̄),

where r̄ , q̄ are the solutions to the following system in (0, T ) × T
d

∂t r̄ + rσ = 0, (4.8a)

∂t q̄ + qσ = 0, (4.8b)

σ = (Tk(z))
γ+ − {(Tk(z))

γ+}L, (4.8c)

q =
(
1 − r

z

)
zγ , r � z, (4.8d)

is a contraction, at least for short time t ∈ (0, T ).
Let us denote

δr̄ = r̄1 − r̄2, δq̄ = q̄1 − q̄2, δr = r1 − r2, δq = q1 − q2, δσ = σ1 − σ2.

Using (4.8) we compute

(δr , δq) = �(r1, q1) − �(r2, q2),

and we have

∂tδr̄ + σ1δr + r2δσ = 0, (4.9a)

∂tδq̄ + σ1δq + q2δσ = 0, (4.9b)

δσ = [(Tk(z1))
γ+ − (Tk(z2))

γ+] − [{(Tk(z1))
γ+}L − {(Tk(z2))

γ+}L], (4.9c)

where z1 and z2 are functions depending respectively on (r1, q1) and (r2, q2)
through the nonlinear implicit relation (4.8d). Therefore, similarly to (2.16), we
can show that

‖∂rTk(z)‖L∞((0,T )×Td ) � C(k), and ‖∂qTk(z)‖L∞((0,T )×Td ) � C(k);
this implies, in particular, that

sup
t∈(0,T )

‖δTk(z)‖L∞(Td )(t) � C(k) sup
t∈(0,T )

(‖δr‖L∞(Td )(t) + ‖δq‖L∞(Td )(t)
)
.

(4.10)

To apply the Banach fixed point to the map �, we need to show that ‖δr̄ ,

δq̄‖L∞((0,T )×Td ) � C‖δr, δq‖L∞((0,T )×Td ) with some constant C < 1. To this
end we need to estimate δσ appearing in both equations, (4.9a) and (4.9b), by δr
and δq. Analyzing equation (4.9c) we notice that since the first term on the r.h.s.
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can be treated using (4.10), the only challenge is due to the nonlocal term. Using
(4.5) and (4.10) we write
∣∣∣Td ||{(Tk(z1))

γ+}L(t) − {(Tk(z2))
γ+}L(t)

∣∣∣
=

∣∣∣∣
∫
Td

(Tk(z(r1, q1)))
γ+ exp

(∫ t

0
σ1(s, y)ds

)
dy

−
∫
Td

(Tk(z(r2, q2)))
γ+ exp

(∫ t

0
σ2(s, y)ds

)
dy

∣∣∣∣
�

∣∣∣∣
∫
Td

exp

(∫ t

0
σ1(s, y)ds

)
((Tk(z(r1, q1)))

γ+ − (Tk(z(r2, q2)))
γ+)dy

∣∣∣∣
−

∣∣∣∣
∫
Td

(Tk(z(r2, q2)))
γ+

[
exp

(∫ t

0
σ2(y, s)ds

)
− exp

(∫ t

0
σ1(s, y)ds

)]
dy

∣∣∣∣
� C(k)

(‖δr‖L∞(Td )(t) + ‖δq‖L∞(Td )(t)
) + C(k)

∫
Td

∣∣∣∣
∫ t

0
δσ (s, y)ds

∣∣∣∣ dy

� C(k)
(‖δr‖L∞(Td )(t) + ‖δq‖L∞(Td )(t)

)
+ C(k) t sup

s∈(0,t)

∣∣{(Tk(z1))
γ+}L(s) − {(Tk(z2))

γ+}L(s)
∣∣ ,

(4.11)

where the last inequality follows from the last equation in (4.9). Taking now supre-
mum over time t ∈ (0, τ ) on both sides of (4.11) for τC(k) � 1/2|Td | we find

sup
t∈(0,τ )

|{(Tk(z1))
γ+}(t) − {(Tk(z2))

γ+}(t)| � C(k)

sup
t∈(0,τ )

(‖δr‖L∞(Td )(t) + ‖δq‖L∞(Td )(t)
)
. (4.12)

With this estimate at hand we can return to (4.9) and compute that

sup
0�t�τ

(‖δr̄‖L∞(Td )(t) + ‖δq̄‖L∞(Td )(t)
)

� C(k)t

sup
0�t�τ

(‖δr‖L∞(Td )(t) + ‖δq‖L∞(Td )(t)
)
, (4.13)

so, choosing τ small such that τC(k) < 1, map� is a contraction on a time interval
[0, τ ]. Since τ depends only on the truncation parameter k which is constant, we
can iterate this procedure to obtain a unique solution to (4.4) on the whole time
interval (0, T ).

4.2. Proof of Theorem 4.1—Step 2

4.2.1. Explanation of the Strategy The existence of the solutions proved before
corresponds, in some sense, to the Lagrangian reformulation of system (4.1). We
now want to define the Eulerian coordinates and show that we can recover the
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velocity vector field at the level of the Eulerian coordinates. Using themathematical
jargon, we intend to solve the equation

divx u(t, x) = σ(t, y), (4.14)

which means that for given σ , we will find u and x = x(t, y) such that the above
equality is satisfied. Our candidate x = x(t, y) is a solution to an ODE defining
the Lagrangian transformation

dx

dt
= u(t, x), x |t=0 = y. (4.15)

Combination of (4.14) and (4.15) leads to the nonlinear PDE-ODE system which
we intend to solve using the following variant of the Leray-Schauder fixed point
theorem.

Theorem 4.2. Let � be a continuous, compact mapping, X a Banach Space. Let
for any ζ ∈ [0, 1] the fixed point v = ζ�(v), v ∈ X be bounded. Then � possesses
at least one fixed point in X.

Let us now explain howwe intend to apply the above theorem.Wewill consider
a regularization of σ

σδ(t, y) = σ(t, y) ∗ κδ(y),

where κδ is a standard mollifier and σ is a known function—the solution found in
the previous step of the proof. We further define a map �(u) = u

� : C(0, T ; W 2−α,p(Td)) → C(0, T ; W 2−α,p(Td)),

for α > 0 arbitrary small, and p > 1, in the following way:
1. For a given u ∈ L p(0, t; W 2−α,p(Td)) we use the Cauchy-Lipschitz theorem to
find a unique x = x(t, y) such that

dx(t, y)

dt
= u(t, x(t, y)), x(t, y)|t=0 = y; (4.16)

2. We then differentiate (4.16) with respect to y, to check that H(t, y) = ∂x
∂y (t, y)

satisfies the equation

∂t H(t, y) = ∇x ū(t, x(t, y))H(t, y), H(t, y)|t=0 = I d.

Therefore, integrating in time, we get

exp

(
−
∫ T

0
‖∇x ū‖L∞(Td )dt

)
� ‖H‖L∞((0,T )×Td ) ≤exp

(∫ T

0
‖∇x ū‖L∞(Td )dt

)
.

Note also that the determinant of H(t, y), J (t, y) = det ∂x
∂y (t, y) satisfies the

equation

∂t J (t, y) = divx ū(t, x(t, y))J (t, y), (4.17)
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and so

exp

(
−
∫ T

0
‖ divx ū‖L∞(Td )dt

)
� ‖J‖L∞((0,T )×Td )

� exp

(∫ T

0
‖ divx ū‖L∞(Td )dt

)
. (4.18)

This means that H(t, y) is invertible, and moreover we have
∥∥∥∥ ∂y

∂x

∥∥∥∥
L∞((0,T )×Td )

� exp

(∫ T

0
‖∇ū‖L∞(Td )dt

)
; (4.19)

3. Because H is invertible we can express y as a function of t and x . For such
y = y(t, x) we will look for solution

u(t, x) = ∇φ(t, x), where �xφ(t, x) = σδ(t, y(t, x)). (4.20)

Remark 2. This approach guarantees not only that divx u(t, x) = σδ(t, y(t, x)),
but also, that u has a structure of a gradient flow and will satisfy (4.1e) and (4.1f).

Remark 3. The solution u constructed above depends on the parameter δ and
should be denoted uδ , but we omit this index at this stage of the proof.

4.2.2. A Priori Estimates We assume here that u = ū ∈ C(0, T ; W 2−α,p(Td))

such that there exists u(t, x) = ∇xφ(t, x) and it satisfies

�xφ(t, x) = ζσδ(t, y(t, x)), ζ ∈ [0, 1]. (4.21)

Wewill show that every solutionof this equation is bounded inC(0, T ; W 2−α,p(Td))

uniformly with respect to ζ .
Estimates of space derivative. First note that the standard elliptic estimate for (4.21)
gives

sup
t∈(0,T )

‖∇xφ(t, x)‖W 1,p(Td ) � ζC(p)‖σδ(t, y(t, x))‖L∞((0,T )×Td ) � C(p, k),

and so

sup
t∈(0,T )

‖∇u‖B M O(Td ) � C(k) (4.22)

for any p < ∞. In particular, taking p > d, we obtain W 1,p(Td) ↪→↪→ C(Td).
Differentiating equation (4.21) with respect to xk gives

�x
∂φ(t, x)

∂xk
= ∇yσδ(t, y(x, t)) · ∂y

∂xk
, (4.23)

therefore using the estimate (4.19) with u = ū we obtain

sup
t∈(0,T )

‖∇xu‖W 1,p(Td ) � ζC(p)‖∇yσδ‖L∞((0,T )×Td ) exp

(
T sup

t∈(0,T )

‖∇xu‖L∞(Td )

)
.
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We now use the following estimate for p > d:

‖∇ f ‖L∞(Td ) � C(p)(1 + ‖∇ f ‖B M O(Td )

(
1 + ln+(‖∇ f ‖W 1,p(Td ) + ‖ f ‖L∞(Td ))

)1/2
).

(4.24)
The proof of above inequality on can find in [33] in Corollary 2.4 inequality (2.6).
The original proof holds for the whole R

d , but taking an extension operator E :
T

d ∼ [0, 1]d → R
d preserving regularity in W 2,p we get the same result on the

torus. Together with (4.22) and ζ � 1, we can write

sup
t∈(0,T )

‖∇xu‖W 1,p(Td )

� C(p, δ) exp
(

T ‖∇xu‖L∞(0,T ;B M O(Td ))(1 + ln+ ‖∇xu‖L∞(0,T ;W 1,p(Td )))
1/2

)

� C(p, δ) exp

(
1

2
ln+ ‖∇xu‖L∞(0,T ;W 1,p(Td )) + C(1 + T 2)

)

� C(p, δ)eC(1+T 2)‖∇xu‖1/2
L∞(0,T ;W 1,p(Td ))

.

We therefore have
sup

t∈(0,T )

‖∇xu‖W 1,p(Td ) � C. (4.25)

In this way we find the a-priori information about u:

u(t, x) ∈ L∞(0, T ; W 2,p(Td)), div xu(t, x) = σ ∗ κδ(t, y(t, x)).

The estimates uniform in δ are

‖∇xu‖L∞(0,T ;B M O(Td )) + ‖ divx u‖L∞((0,T )×Td ) � C. (4.26)

Estimate of the time derivative. Wewant to check the time-regularity of u(t, x). For
fixed δ we expect better information, however here we present only the estimates
uniform with respect to δ. We therefore switch to the weak formulation of (4.21):

∫
Td

�xφ(t, x)π(x) dx = ζ

∫
Td

σδ(t, y(x, t))π(x) dx

= ζ

∫
Td

σδ(t, y)π(x(t, y))J (t, y) dy,

where π is a smooth function on T
d . We now differentiate this identity in time:

d

dt

∫
Td

�xφ(t, x)π(x) dx = ζ

∫
Td

∂t [σδ(t, y)π(x(t, y))J (t, y)] dy

= ζ

∫
Td

∂tσδ(t, y)π(x(t, y))J (t, y) dy

+ζ

∫
Td

σδ(t, y)∂tπ(x(t, y))J (t, y) dy

+ζ

∫
Td

σδ(t, y)π(x(t, y))∂t J (t, y) dy. (4.27)
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We now need to estimate all terms on the r.h.s. of (4.27). For the first one, we
differentiate (4.4d) in time, use expressions (4.4a) and (4.4b) for ∂t r and ∂t q, and
proceed as in (4.10) to check that

|∂tσδ| = |(∂tσ) ∗ κδ| � |∂tσ | � C(k)(|rt | + |qt |) ∈ L∞((0, T ) × T
d).

Next, for the second term on the r.h.s. of (4.27) we use (4.16) with ū = u to
write

∂tπ(x(t, y)) = ∇xπ
dx

dt
= u(t, x(t, y))∇xπ(x(t, y)),

so, thanks to (4.26), ∂tπ(x(t, y)) is bounded in L∞(0, T ; L2(Td)). At last, the
formula (4.17) with ū = u together with (4.18) provides that ∂t J (t, y) is bounded
in L∞((0, T ) × T

d), so the third term on the r.h.s. of (4.27) is also bounded.
Summarizing, we get that �x∂tφ is bounded in L∞(0, T ; W −1,2(Td)) uni-

formly with respect to δ. In particular, using the Helmholtz decomposition, we
deduce that

‖∂tu‖L∞(0,T ;L2(Td )) = ‖∇x∂tφ‖L∞(0,T ;L2(Td )) � C, (4.28)

with the constant C that does not depend on δ. Obviously, combining the estimate
(4.28) with (4.25) and (4.26), we verify that any fixed point satisfying (4.21) is
uniformly bounded in C(0, T ; W 2−α,p(Td)), independently of ζ .

4.2.3. The Fixed Point Argument We are now ready to proceed with the fixed
point argument explained in Section 4.2.1. We therefore take ū ∈ C(0, T ; W 2−α,p

(Td)), and show that the operator �(ū) = u defined through (4.20) and (4.16) is
continuous and compact in C(0, T ; W 2−α,p(Td)).

Compactness is straightforward. Indeed, taking ζ = 1 in the system (4.21) we
see that our a-priori estimates for u, estimates (4.28) with (4.25) and (4.26), stay
in force. Hence, on account of the Aubin–Lions lemma, the map � is compact.

We now check the continuity of the map �, by investigating the difference of
two solutions u1 = ∇xφ1 and u2 = ∇xφ2∫

Td
|�xφ1(t, x) − �xφ2(t, x)|p dx

=
∫
Td

|σδ(t, y1(t, x)) − σδ(t, y2(t, x))|p dx

≤ C‖∇yσδ(t, y(t, x))‖p
L∞(Td )

‖y1(t, x) − y2(t, x)‖p
L∞(Td )

. (4.29)

Recalling (4.16), we note that for the regular characteristics intersecting in the point
(t, x) we have

‖y1(x, t) − y2(x, t)‖L∞(Td ) �
∫ t

0
‖ū1 − ū2‖L∞(Td )dt ′.

Thus if (ū1 − ū2) → 0 in C(0, T ; W 2−α,p(Td)), then of course (ū1 − ū2) → 0
in C(0, T ; L∞(Td)), which thanks to (4.29) implies that (φ1 − φ2) → 0 in
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C(0, T ; W 2,p(Td)). Therefore, usingboundedness ofu1, u2 in L∞(0, T ; W 2,p(Td)),
and interpolation, we deduce that (u1 − u2) → 0 in L p(0, T ; W 2−α,p(Td)). By
the Leray–Schauder fixed point theorem we have the existence for approximative
system for δ fixed.

4.3. Proof of Theorem 4.1—Step 3

We want to let δ → 0 in the equation

�xφ
δ(t, xδ) = σδ(t, y(t, xδ)), (4.30)

remembering that uδ(t, xδ) = ∇xφ
δ(t, xδ) and xδ is associated with the flow uδ

via (4.16) with ū = uδ . We know that uniformly with respect to δ we have

‖∇xuδ‖L∞(0,T ;B M O(Td )) + ‖ divx uδ‖L∞((0,T )×Td ) + ‖∂tuδ‖L∞(0,T ;L2(Td )) � C.

We use again the weak form of (4.30), to get

∫ T

0

∫
Td

�xφ
δ(t, xδ)ξ(t, xδ)dxδ dt =

∫ T

0

∫
Td

σ ∗ κδ(t, y(xδ, t))ξ(t, xδ)dxδ dt

=
∫ T

0

∫
Td

σ ∗ κδ(t, y)ξ(t, xδ(t, y))J δ(t, y)dy dt

(4.31)

for any smooth ξ , where we denoted

J δ(t, y) = exp

(∫ t

0
divx uδ(t ′, xδ(t ′, y))dt ′

)
= exp

(∫ t

0
σ ∗ κδ(t

′, y)dt ′
)

.

Weseeφδ → φweakly in L∞(0, T ; W 2,p(Td)), andσ∗κδ → σ a.e. in (0, T )×T
d .

Using the Crippa–Dellelis result from [13, Theorem 2.9 (stability of the flow)]
and saying that

sup
t∈(0,T )

‖x(t, y) − xδ(t, y)‖L1(Td ) � C | ln(‖u − uδ‖L1((0,T )×Td ))|−1,

we therefore get

xδ(t, y) → x(t, y) in L∞(0, T ; L1(Td)),

since uδ is compact in L1((0, T ) × T
d). Hence we can let δ → 0 in both sides of

(4.31) to obtain
∫ T

0

∫
Td

�xφ(t, x)ξ(t, x) dx dt =
∫ T

0

∫
Td

σ(t, y)ξ(t, x(y, t))J (t, y) dy. dt.

Now we substitute for σ using (4.8c), and use Lemma 3.1. from [12] to write the
weak formulation of the momentum equation in the Eulerian coordinates

∫ T

0

∫
Td

divx u(t, x)ξ(t, x) dx dt

=
∫ T

0

∫
Td

(
(Tk(Z(t, x)))γ+ − {

(Tk(Z(t, x)))γ+} )ξ(t, x) dx dt,

(4.32)
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where Z(t, x) is defined by Z(t, x(t, y)) = z(t, y). Defining R(t, x(t, y)) =
r(t, y) and Q(t, x(t, y)) = q(t, y) we can also pass to the limit in the weak for-
mulation of (4.1a) and (4.1b). Note that for the limit case, characteristics x(t, y)

are now well defined. Thus, solutions given in the Lagrangian coordinates give us
weak solutions to the original approximate problem (4.1).

5. Existence of Solutions to System (1.10)

Having proven the existence of solutions to the approximate system we now
intend to pass to the limit with the approximation parameter k → ∞, recovering
the system (1.10) and concluding the proof of Theorem 1.2. This section will also
include rigorous justification of the compactness result from the previous section
at the level of the approximate system.

From Theorem 4.1 it follows that there exists a sequence {Rk, Qk, Zk,uk}∞k=1
satisfying system (4.1) in the sense of distributions belonging to a class (4.3). Note,
however, that this information is not uniform with respect to k.

5.1. Uniform Estimates

Although (4.3) is not uniform with respect to k, we can still use (4.7) from the
previous section to deduce that

Rk � 0, Qk � 0

uniformly with respect to k. Moreover, repeating the proof of Lemma 2.1, we find
unique Zk defined via (4.1c), therefore uniformly w.r.t. k we also have that

Rk � Zk .

In the rest of this section we will skip the index k where no confusion can arise.

5.1.1. Estimates of (Tk(Z))γ
+
Uniform w.r.t. k We use the renormalized equa-

tion for Z , (2.13), that can bederived from (4.1a) and (4.1b) using (4.1c). Testing this
equation respectively by (γ+−1)(Tk(Z))γ+−2T ′

k (Z) andby (γ+−γ )(Tk(Z))γ+−γ−1

T ′
k (Z), we obtain

∂t (Tk(Z))γ
+−1 + u · ∇(Tk(Z))γ

+−1 + (γ + − 1)(Tk(Z))γ
+−2T ′

k (Z)Z div u

+ (γ + − 1)
(1 − γ )(Z − R)(Tk(Z))γ

+−2T ′
k (Z)Z

γ (Z − R) + R
div u = 0,

and

∂t (Tk(Z))γ
+−γ + u · ∇(Tk(Z))γ

+−γ + (γ + − γ )(Tk(Z))γ
+−γ−1T ′

k (Z)Z div u

+ (γ + − γ )
(1 − γ )(Z − R)(Tk(Z))γ

+−γ−1T ′
k (Z)Z

γ (Z − R) + R
div u = 0.
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After simplification we get

∂t (Tk(Z))γ
+−1 + u · ∇(Tk(Z))γ

+−1

+ (γ + − 1)
Zγ +

γ (Z − R) + R
div u1Z�k = 0,

and

∂t (Tk(Z))γ
+−γ + u · ∇(Tk(Z))γ

+−γ

+ (γ + − γ )
Zγ +−γ+1

γ (Z − R) + R
div u1Z�k = 0.

If we multiply the first equation by R and the second by Q and use the continuity
equations (4.1a) and (4.1b) we get

∂t

(
R(Tk(Z))γ

+−1
)

+ div
(

R(Tk(Z))γ
+−1u

)

+ (γ + − 1)
RZγ +

γ (Z − R) + R
div u1Z�k = 0,

(5.1)

and

∂t

(
Q(Tk(Z))γ

+−γ
)

+ div(Q
(
Tk(Z))γ

+−γ u
)

+ (γ + − γ )
Q Zγ +−γ+1

γ (Z − R) + R
div u1Z�k = 0.

(5.2)

Multiplying equations (5.1), (5.2) by 1
(γ +−1) ,

1
(γ −−1) , respectively and noticing that

γ +−γ

(γ −−1) = γ we obtain

1

(γ + − 1)
∂t

(
R (Tk(Z))γ

+−1
)

+ 1

(γ − − 1)
∂t

(
Q(Tk(Z))γ

+−γ
)

+ 1

(γ + − 1)
div

(
R(Tk(Z))γ

+−1u
)

+ 1

(γ − − 1)
div

(
Q(Tk(Z))γ

+−γ u
)

+ Zγ + R + γ Q Z1−γ

γ (Z − R) + R
div u1Z�k � 0,

which, after integrating with respect to space, and noting that Q Z1−γ = Z − R,
gives

1

(γ + − 1)

d

dt

∫
Td

R (Tk(Z))γ
+−1 dx + 1

(γ − − 1)

d

dt

∫
Td

Q(Tk(Z))γ
+−γ dx

+
∫
Td

div u Zγ +
1Z�k dx � 0.
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Let us note that Zγ +
1Z�k = (Tk(Z))γ

+
and

{
Tk(Z))γ

+}
is constant in space,

therefore∫
Td

div u Zγ +
1Z�k dx =

∫
Td

div u
(

Zγ +
1Z�k −

{
Tk(Z))γ

+})
dx .

Thus, using density of smooth functions in L2, and taking in (4.32) ξ = div u, we
get

1

(γ + − 1)

d

dt

∫
Td

R (Tk(Z))γ
+−1 dx + 1

(γ − − 1)

d

dt

∫
Td

Q(Tk(Z))γ
+−γ dx

+
∫
Td

div2 u dx � 0,

(5.3)

hence,

d

dt

[∫
1

(γ + − 1)
R (Tk(Z))γ

+−1 + 1

(γ − − 1)
Q(Tk(Z))γ

+−γ

]
� 0. (5.4)

We now observe that

R(Tk(Z))γ
+−1 + Q(Tk(Z))γ

+−γ

= R(Tk(Z))γ
+−1 + (Z − R)Zγ−1(Tk(Z))γ

+−γ

= Zγ (Tk(Z))γ
+−γ + R[kγ−1 − Zγ−1]1Z�k(Tk(Z))γ

+−γ .

(5.5)

Since γ − 1 < 0, the last term is nonnegative, therefore

(Tk(Z))γ
+ � R(Tk(Z))γ

+−1 + Q(Tk(Z))γ
+−γ . (5.6)

Therefore, using (5.6) and integrating (5.4) over time, we obtain

‖Tk(Z)‖L∞(0,T ;Lγ+
(Td ))

� C, (5.7)

uniformly w.r.t. k.

5.1.2. Uniform Estimates of Rγ +
and on Zγ +

Recall that the equation on R reads

∂t R + div(Ru) = 0,

and is satisfied in the sense of distributions on (0, T ) × T
d . Due to (4.3), this

equation is satisfied in the renormalized sense, therefore we have

∂t Rγ + + div(Rγ +
u) + (γ + − 1) Rγ +

div u = 0.

Using (4.1d) and integrating with respect to space, it gives

d

dt

∫
Td

Rγ +
dx + (γ + − 1)

∫
Td

Rγ +
(Tk(Z))γ

+
dx

= (γ + − 1)
∫
Td

Rγ +
dx

∫
Td

(Tk(Z))γ
+
dx .
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Using (5.7), we get through Gronwall Lemma

‖R‖L∞(0,T ;Lγ+
(Td ))

+ ‖Rγ +
(Tk(Z))γ

+‖L1((0,T )×Td ) � C, (5.8)

uniformly w.r.t. k. Performing exactly the same procedure for Z we obtain

‖Z‖L∞(0,T ;Lγ+
(Td ))

+ ‖Tk(Z)‖L2γ+
((0,T )×Td )

� C. (5.9)

These bounds are important to pass to the limit in the system (4.1) with respect
to k. Note that the bound on Z provides the same bound on (Tk(Z)). Finally,
renormalizing the approximate equation for Q we easily deduce that

‖Q‖L∞(0,T ;Lγ−
(Td ))

+ ‖Qγ −
(Tk(Z))γ

+‖L1((0,T )×Td ) � C. (5.10)

5.1.3. Uniform Estimates of u With the estimate (5.9) at hand we can now
estimate div u directly from (4.1d), we have

‖ div u‖L∞(0,T ;L1(Td )) + ‖ div u‖L2((0,T )×Td ) � C.

Using the fact that rotu = 0, we therefore find that

‖u‖L2(0,T ;W 1,2(Td )) � C. (5.11)

5.2. Compactness Argument

The uniform estimates from the previous section are sufficient to perform the
limit passage k → ∞ in all linear terms of the approximate system (4.1). Estimating
the time derivatives of Rk and Qk from equations (4.1a), (4.1b), respectively, and
using the uniformestimate (5.11) togetherwith aDiv-Curl type argument,we justify
that Rkuk converges to Ru and Qkuk converges to Qu in the sense of distributions.

The last problem to solve is to pass to the limit in the nonlinear term in the
momentum equation (4.1d)—the pressure. This requires a strong convergence of
the sequence {Zk}∞k=1 approximating Z . For the moment we only know that Zk

converges weakly∗ to Z in L∞(0, T ; Lγ +
(Td)). To improve this convergence, we

adapt the compactness criterion presented in Section 3.
We first justify how to obtain the equivalent of equations (3.5) and (3.6) on the

approximate level. First, we write the equation for Rx − Ry using (4.1a) we get

∂t (Rx − Ry) + divx (ux
(
Rx − Ry

)
) + divy(uy

(
Rx − Ry

)
)

= 1

2
(divx ux + divy uy)

(
Rx − Ry

)

− 1

2
(divx ux − divy uy)(Rx + Ry).
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Regularizing this equation over the space variables, i.e. testing the equation by
ξη(x−·)ξη(y−·),where ξη is a standardmollifier, anddenoting Sη[ f ] = ξ∗y(ξ∗x f )

we obtain

∂t Sη[Rx − Ry] + divx (ux Sη[Rx − Ry]) + divy(uy Sη[Rx − Ry])
= rη + 1

2
Sη

[
(divx ux + divy uy)

(
Rx − Ry

)]

− 1

2
Sη

[
(divx ux − divy uy)(Rx + Ry)

]
,

(5.12)

where on account of the Friedrichs commutator lemma, rη → 0 in L p((0, T )×T
2d)

for any p < ∞. We then multiply (5.16) by

Sη[Rx − Ry]
(

Sη[Rx − Ry]2 + δ
) β−2

2
,

where δ > 0. Note that on account of (4.3) this function is bounded in L∞((0, T )×
T

d) uniformly w.r.t. η. We therefore obtain

1

β
∂t

((
Sη[Rx − Ry]

)2 + δ
) β

2

+ 1

β
divx

(((
Sη[Rx − Ry]

)2 + δ
) β

2
ux

)

+ 1

β
divy

(((
Sη[Rx − Ry]

)2 + δ
) β

2
uy

)

=
{

rη + 1

2
Sη

[
(divx ux + divy uy)

(
Rx − Ry

)]

− 1

2
Sη

[
(divx ux − divy uy)(Rx + Ry)

] }

× Sη[Rx − Ry]
(

Sη[Rx − Ry]2 + δ
) β−2

2
.

(5.13)

This equation can now be multiplied by Kh(x − y)
(
wx + wy

)
, where Kh is the

same as in Section 3.1, and wx = w(t, x) satisfies the equation{
∂tw + u · ∇w + θDkw = 0,
w(0, x) = 1,

(5.14)

with

Dk = M |∇u| + | div u| + (Tk(Z))γ
+ + {(Tk(Z))γ

+}. (5.15)

The choice of Dk is to accommodate the extra terms appearing in the main com-
pactness estimate, and will be explained later, the same applies to the choice of
the constant θ . The most important observation at this level is that for any k, fixed
Dk ∈ L∞((0, T ) × T

d) and that due to regularity of u = uk , see (4.3), Equa-
tion (5.14) has a unique distributional solution, see for example Lemma 6.10 and
Lemma 6.12 from [9].
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Therefore, letting δ → 0, β → 1, and η → 0 in
∫
T2d (5.13) dx and using the

dominated convergence theorem, we recover

d

dt

∫
T2d

Kh(x − y)|Rx − Ry |
(
wx + wy

)
dx dy

=
∫
T2d

∇Kh(x − y)(ux − uy)|Rx − Ry |(wx + wy) dx dy

−
∫
T2d

Kh(x − y)(divx ux − divy uy)Rx sRwx dx dy

+ 2
∫
T2d

Kh(x − y)|Rx − Ry | (∂twx + ux · ∇wx + divx uxwx ) dx dy.

(5.16)

To obtain the equation for |Zx − Z y | we proceed in a similar manner. As a conse-
quence, the analogue of (3.10) can be now written as

d

dt
S(t) =

∫
T2d

∇Kh(x − y)(ux − uy)Ox−y(wx + wy) dx dy

=
∫
T2d

∇Kh(x − y)(ux − uy)Ox−y(wx + wy) dx dy

−
∫
T2d

Kh(x − y)(divx ux − divy uy)[Rx sR + Zx sZ ]wx dx dy

+ 2(1 − γ )

∫
T2d

Kh(x − y)

[
(Z y − Ry)Z y divy uy

γ (Z y − Ry) + Ry

− (Zx − Rx )Zx divx ux

γ (Zx − Rx ) + Rx

]
sZwx dx dy

+ 2
∫
T2d

Kh(x − y)Ox−y (∂twx + ux · ∇wx + divx uxwx ) dx dy

=
4∑

i=1

Ii ,

(5.17)

where Ox−y = |Rx − Ry |+ |Zx − Z y |. For abbreviation we will only comment on
the changes due to the presence of new approximation terms and truncations. The
changes due to truncation in the momentum equation apply to terms I2, and I3. For
the first one we use (4.1d) to write

− (
divx ux − divy uy

) [Rx sR + Zx sZ ]
= −

(
(Tk(Zx ))

γ + − (Tk(Z y))
γ +)

Rx sR −
(
(Tk(Zx ))

γ + − (Tk(Z y))
γ +)

Zx sZ ,

(5.18)

which gives the following contribution to the l.h.s. of (5.17):
∫
T2d

Kh(x − y)

∣∣∣(Tk(Zx ))
γ + − (Tk(Z y))

γ + ∣∣∣ (−αx )Zxwx dx dy. (5.19)
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For I3 we write as in (3.14)

(1 − γ )

[
(Z y − Ry)Z y divy uy

γ (Z y − Ry) + Ry
− (Zx − Rx )Zx divx ux

γ (Zx − Rx ) + Rx

]
sZ

= (1 − γ )

[
(Z y − Ry)Z y(Tk(Z y))

γ +

γ (Z y − Ry) + Ry
− (Zx − Rx )Zx (Tk(Zx ))

γ +

γ (Zx − Rx ) + Rx

]
sZ

(1 − γ )

[
(Zx − Rx )Zx

γ (Zx − Rx ) + Rx
− (Z y − Ry)Z y

γ (Z y − Ry) + Ry

]
sZ {(Tk(Z))γ

+}

= (1 − γ )
(Z y − Ry)

γ (Z y − Ry) + Ry

(
Z y(Tk(Z y))

γ + − Zx (Tk(Zx ))
γ +)

sZ

+ (γ − 1)

[
(Zx − Rx )

γ (Zx − Rx ) + Rx
− (Z y − Ry)

γ (Z y − Ry) + Ry

]
Zx (Tk(Zx ))

γ +
sZ

− (γ − 1)
(Z y − Ry)

γ (Z y − Ry) + Ry

(
Zx − Z y

)
sZ {(Tk(Zx ))

γ +}

− (γ − 1)

[
(Zx − Rx )

γ (Zx − Rx ) + Rx
− (Z y − Ry)

γ (Z y − Ry) + Ry

]
Zx {(Tk(Zx ))

γ +}sZ .

(5.20)

The first term has a good sign, while the rest of terms can be treated exactly as in
the Section 3, using in particular the definition of the weight (5.14) and (5.15) with
θ sufficiently large to absorb all the unwanted terms by I4 in (5.17).

The above considerations allow us to deduce

lim sup
k

(
1

| log h0|
∫
T2d

Kh0(x − y)
[ ∣∣(Zx )k − (Z y)k

∣∣

+|(Rx )k − (Ry)k |
]
dx dy

)
→ 0

by noticing that the thesis of Proposition 3.4 stay in force also for (X,u) satisfying
the continuity equation with a friction term. Indeed, since Dk ∈ L2((0, T ) × 	)

independently of k (see (5.9) and (5.11)), the crucial estimate (3.20) holds for both
sequences {Rk}∞k=1, and {Zk}∞k=1 independently of k. This observation finishes the
proof of Theorem 1.2. �

With this at hand, using Remark 1 to define α+ and α−, we find a weak solution
to our original system (1.1). The proof of Theorem 1.1 is therefore complete. �
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