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Abstract

In the present paper we study stochastic homogenization for reaction–diffusion
equations with stationary ergodic reactions (including periodic). We first show that
under suitable hypotheses, initially localized solutions to the PDE asymptotically
become approximate characteristic functions of a ballistically expanding Wulff
shape. The next crucial component is the proper definition of relevant front speeds
and the subsequent establishment of their existence.We achieve the latter by finding
a new relation between the front speeds and the Wulff shape, provided the Wulff
shape does not have corners. Once front speeds are proved to exist in all directions,
by the above means or otherwise, we are able to obtain general stochastic homoge-
nization results, showing that large space–time evolution of solutions to the PDE is
governed by a simple deterministic Hamilton–Jacobi equation whose Hamiltonian
is given by these front speeds. Our results are new even for periodic reactions, par-
ticularly of ignition type. We primarily consider the case of non-negative reactions
but we also extend our results to the more general PDE ut = F(D2u,∇u, u, x, ω),
as long as its solutions satisfy some basic hypotheses including positive lower and
upper bounds on spreading speeds in all directions and a sub-ballistic bound on the
width of the transition zone between the two equilibria of the PDE.

1. Introduction and Main Results

1.1. Background and Informal Discussion of the Main Results

The primary motivation for this work is the understanding of long-time behav-
ior of solutions to heterogeneous reaction–diffusion equations in random media.
Specifically, we are interested in equations of the form

ut = �u + f (x, u, ω) on (0,∞) × R
d , (1.1)
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with a given initial condition u(0, ·) (or, more generally, u(0, ·, ω)). The argument
ω is an element of some probability space (�,F ,P) which models the random
environment via a random (stationary ergodic in the spatial variable x) nonlinear
reaction function f (·, ·, ω). We are primarily concerned with ignition and monos-
table reactions here (see Section 1.3 for the precise hypotheses), which model
phenomena such as combustion, chemical kinetics or population dynamics with u
representing the temperature, the concentration of a reactant, or the density of a
species. Nevertheless, several of our results can be generalized to other types of re-
actions (including bistable and mixed types), as well as to other “phase transition”
processes modeled by the more general PDE

ut = F(D2u,∇u, u, x, ω) on (0,∞) × R
d , (1.2)

(see Section 1.4 below). This includes, for instance, some (viscous) Hamilton–
Jacobi equations with possibly non-convex or non-coercive Hamiltonians, or the
porous medium equation.

These equations are frequently used in modeling invasions of one equilibrium
state of a physical process by another, such as forest fires (burned area invades
unburned regions) or the spreading of invasive species. It is standard to let these
equilibria be u− ≡ 0 and u+ ≡ 1, in which case one considers f (·, 0, ·) ≡
f (·, 1, ·) ≡ 0 and solutions 0 � u � 1 (the latter being guaranteed by 0 � u(0, ·) �
1). However, our results can again be extended tomore general situations, including
with ω-dependent equilibria u−(·, ω) < u+(·, ω).

When studying long-time (and thus also large-scale) evolution of solutions to
(1.1), it is natural to consider the rescaled functions

uε(t, x, ω) := u

(
t

ε
,

x

ε
, ω

)
, (1.3)

with ε > 0 small. This turns (1.1) into

uε
t = ε�uε + 1

ε
f
( x

ε
, uε, ω

)
on (0,∞) × R

d , (1.4)

making the scale of the heterogeneities in f microscopic. Onemight therefore hope
that in the limit ε → 0, we can observe an effective homogeneous deterministic
behavior of solutions. Specifically, if one solves (1.4) with an initial condition that
is independent of ε, ω (or at least converges to an ω-independent limit as ε → 0),
then the solutions uε also converge to some ω-independent function u that solves a
PDE whose coefficients do not depend on x or ω. This is the principal goal of the
theory of homogenization of (1.1) and other PDE.

Before diving into a more detailed discussion of this problem and its history,
let us briefly list here our main results for the convenience of the expert reader.
The main results for reaction–diffusion equations (1.1) are Theorems 1.4 and 1.7,
which prove stochastic homogenization for thesemodels under suitable hypotheses,
and Theorem 1.8 and Corollary 1.11, which provide stronger results in the special
cases of periodic and isotropic reactions. Generalizations to the PDE (1.2) appear
Theorem 1.12. These results, as well as the relevant definitions and hypotheses
appear in Subsections 1.3 and 1.4 below. For a discussion of the relationship of



Stochastic Homogenization 815

our results to previous work on homogenization for Hamilton–Jacobi equations,
we refer the reader to Section 1.2.

The first question to answer in the setting considered here is how do the limits
u of solutions to (1.4) look, and which PDE (if any) do they solve. In many models,
the limiting solutions have the same (or even better) regularity as the original ones,
and the homogenized PDE are of the same type as the original PDE. This is not
the case for (1.1). As one can notice from observation of the physical processes
modeled by the PDE, the width of the transition zone between the two equilibria
(that is, the distance of points with u(t, x) = η from those with u(t, x) = 1 − η,
for small η > 0), is frequently uniformly bounded in time. Indeed, as fires spread
through forests, the scale of the burned region grows roughly linearly in time but the
actively burning areas are typically confined to neighborhoods of time-dependent
curves whose widths are bounded uniformly in time. If the solutions to (1.1) exhibit
the same bounded width behavior (see Theorem 2.3 below), then the scaling (1.3)
necessarily requires the limiting solutions (if they exist) to only take values 0 and
1, and thus be characteristic functions of time-dependent subsets of Rd .

Of course, if general solutions become characteristic functions of sets in the
ε → 0 limit, it is natural to consider initial conditions that are also (approximate)
characteristic functions. Homogenization for (1.1) should therefore involve initial
conditions satisfying

lim
ε→0

uε(0, ·, ω) = κχA

in some sense, with χA the characteristic function of some given initial set A ⊆ R
d

and κ � 1 close to 1, and the corresponding solutions to (1.4) should then for
almost all ω have the limit

lim
ε→0

uε(·, ·, ω) = χ	A (= u) (1.5)

in some sense, with 	A ⊆ (0,∞) × R
d some ω-independent set. Of course, in

that case u cannot solve a second-order PDE like (1.1). Indeed, as our main results
show, the homogenized solutions will instead solve a first-order Hamilton–Jacobi
PDE (specifically, (1.9) below) in the viscosity sense, with the set 	A

t := {x ∈
R

d | (t, x) ∈ 	A} expanding at any point of its boundary with normal velocity
that depends on the normal vector at that point but not at the point itself (with
appropriate modifications when ∂	A

t does not have normal vectors everywhere).
We note that while sometimes the homogenized solutions also satisfy a (possibly
non-isotropic) Huygens principle (see Theorem 1.4(iv) below), this is not always
the case.

The reason for the propagation velocity being only dependent on the normal
vector is that if ∂	A

t has a tangent with outer normal e ∈ S
d−1 at some point, then

after rescaling from (1.4) back to (1.1), 	A
t will be close to a half-space with outer

normal e on a ball of size O( 1
ε
) centered at the “rescaled” point. Its propagation

speed should therefore be determined by the speed of propagation of solutions
starting from (approximate) characteristic functions of half-spaces with normal
vector e (that is, front-like initial data oriented in direction e). If such (deterministic)
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front speed indeed exists, it must be independent of which half-space with normal
e we consider due to stationarity and ergodicity of f .

The existence of the front speeds for general stationary ergodic reactions in
several dimensions d � 2 is, however, a non-trivial question, and it is the main
reason for a dearth of homogenization results in this setting. (For the case d = 1,
	A

t is typically an interval and hence its boundary has a trivial geometry, see
[17,26,30,39,40,52] and the references therein.) Due, in part, to this, the only such
result in dimensions d ≥ 2 prior to the present paper appears to be homogenization
for stationary ergodic KPP reactions by Lions and Souganidis [37, Theorem
9.3]. We note that KPP reactions are a subclass of monostable reactions, satisfying
f (x, u, ω) � fu(x, 0, ω)u for all (x, u, ω) ∈ R

d ×[0, 1]×�, andwere first studied
in the one-dimensional homogeneous setting by Kolmogorov, Petrovskii, and
Piskunov [34] as well as by Fisher [25]. Crucially, their properties allow one
to study them via their linearization at u = 0, as the two dynamics typically
agree in the leading order. This was at the core of the Lions–Souganidis approach,
who perform the Hopf–Cole transformation vε := ln uε to convert the problem of
stochastic homogenization for reaction–diffusion equationswithKPP reactions into
the problem of stochastic homogenization for viscous Hamilton–Jacobi equations.

In the case of periodic (in x ∈ R
d ) reactions, it is known from the works of

Xin [49] and Berestycki and Hamel [16] that front speeds indeed do exist for
very general ignition andmonostable reactions. These are obtained after finding the
corresponding pulsating front solutions to (1.1) in direction e, which are of the form
u(t, x) = U (x ·e−ct, x), withU periodic in the second argument and satisfying the
boundary conditions lims→−∞ U (s, x) = 1 and lims→∞ U (s, x) = 0 uniformly
in x . Here both the front profile U and front speed c are unknown, and the speed of
propagation of typical solutions whose initial data vanish on a half-space with inner
normal e is the unique (for ignition f ) or minimal (for monostable f ) pulsating
front speed in direction e.

As these results aremore than 15 years old, onemight think that homogenization
has already been proved for general periodic reactions. Nevertheless, the step from
the existence of pulsating fronts to homogenization is far from trivial. In fact,
other than the general stationary ergodic KPP result in [37], homogenization has
previously only been proved for monostable periodic reactions and convex initial
sets A with smooth boundaries, in a recent work ofAlfaro andGiletti [1]. Hence,
our treatment of general stationary ergodic reactions also establishes new results for
periodic reactions, and we will obtain as a byproduct not only the result of Alfaro–
Giletti (under slightly weaker hypotheses on f and without the requirement of
smoothness of ∂ A) but also full homogenization for periodic ignition reactions (that
is, for any A). In fact, we prove homogenization whenever (1.1) has a deterministic
exclusive front speed (see Definition 1.6 below) in each direction e, which is the
case for periodic ignition reactions in any dimension.

Homogenization results have, however, been obtained in the case of (1.1) with
homogeneous reactions f (x, u) ≡ f (u) and periodic linear terms. In [14], Bar-
les and Souganidis develop their theory of generalized front propagation, which
essentially handles crystal-growth-like models where normal growth speeds are
given but the boundary of the crystal may be quite rough. One of its applications
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is the proof of homogenization in the case of homogeneous bistable reactions with´ 1
0 f (u)du > 0 and spatially periodic linear terms, under the hypothesis of exis-
tence of pulsating fronts in all directions for this model. (Bistable reactions have
f (u) < 0 for all small u > 0, and one of us has in fact shown that pulsating fronts
need not exist and homogenization need not hold for heterogeneous bistable reac-
tions, even periodic ones in one dimension d = 1 [53].) An important advantage
of bistable reactions is that solutions with small enough initial data converge to 0,
which means that if front speeds do exist, they are automatically the exclusive front
speeds from Definition 1.6. Since this convergence does not hold for non-negative
reactions, which we consider in the present paper (and in particular, Hypothesis
(H4) from [14] is not satisfied for them), we need to introduce the new concept of
exclusive front speeds here.

Homogenization for the ε → 0 limit of (1.4) with a homogeneous KPP reaction
f (u) and also time-dependent advection V (t, x, ε−αt, ε−αx), periodic in the last
two arguments and with α ∈ (0, 1], was studied by Majda and Souganidis [38].
They proved that the limit is 0 and 1 on the sets {Z < 0} and int{Z = 0}, respec-
tively, where the function Z � 0 solves some Hamilton–Jacobi equation on the set
{Z < 0}. The advection field becomes V (εt, εx, ε1−α t, ε1−αx) in the scaling of
(1.1), so if it is constant in the first two arguments and α = 1, then one obtains (1.1)
with a homogeneous KPP reaction and an ε-independent space–time periodic ad-
vection V (t, x). That is, the homogenization limit is then also the large space–time
limit for (1.1) that we are studying here for general stationary ergodic reactions.
We note that in this “ε-independent” case [38] also identifies a Hamilton–Jacobi
equation like (1.9) below that governs the evolution of the homogenization limit,
provided V is divergence-free. Although the relationship to the relevant pulsating
fronts (whose existence had not yet been established at that point) is not investi-
gated in [38], one can conclude existence of pulsating front speeds for periodic
incompressible advections and homogeneous KPP reactions from this result.

While the periodic results for non-KPP reactions are crucially dependent on the
existence of pulsating fronts, it is not clear whether some analogous solutions exist
for general stationary ergodic reactions. (Also, since it follows from the results of
one of us that no reasonable definition exists that would yield such solutions for
general heterogeneous reactions in dimensions d � 2 [54], one can in general only
hope for their existence for almost all ω ∈ � at best.) In this work, we are therefore
left with the task of defining and identifying front speeds without the existence of
some special front solutions.

We achieve this goal by first defining the front speeds c∗(e) via tracking solu-
tions evolving from (approximate) characteristic functions of relevant half-spaces
(see Definition 1.3). Then, under appropriate hypotheses, we identify these front
speeds by relating them to another family of speeds that is relevant to the question
at hand—the spreading speeds w(e) (see Remark 1 after Definition 1.2). These are
the asymptotic speeds of propagation in different directions e ∈ S

d−1 of solutions
starting from compactly supported initial data (with large enough supports so that
propagation happens, that is, limt→∞ u(t, x) = 1 locally uniformly on Rd ). In the
case of periodic reactions, the spreading speeds are known to exist and can be found
from the (unique/minimal) pulsating front speeds (which coincide with our front
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speeds c∗(e) in the periodic case) via the Freidlin-Gärtner formula

w(e) = inf
e′∈Sd−1 & e′·e>0

c∗(e′)
e′ · e

. (1.6)

This was obtained by Freidlin and Gärtner [30] (see also [27]) for periodic
KPP reactions, and was extended to periodic monostable and ignition reactions
by Weinberger [48] and Rossi [45]. Of course, existence of spreading speeds
in all directions and the comparison principle show that after scaling down by t ,
general solutions with (large enough) compactly supported initial data converge to
the characteristic function of the Wulff shape

S :=
{

se | e ∈ S
d−1 and s ∈ [0, w(e))

}
(⊆ R

d) (1.7)

as t → ∞.
In the case of stationary ergodic reactions, however, we reverse this process—

we start by identifying the spreading speeds rather than the front speeds. This
should be an easier task in non-periodic media as it involves solutions evolving
from compactly supported data rather than from characteristic functions of half-
spaces, contrasting with periodic media, where the pulsating front ansatz turns
(1.1) into a degenerate elliptic PDE on the quasi-one-dimensional domain R ×
T

d . We use here the subadditive ergodic theorem (Theorem 2.6) together with
results guaranteeing that solutions have bounded widths (Theorem 2.3) to obtain
existence of the spreading speeds and the (convex) Wulff shape S under fairly
general hypotheses (see Theorems 1.4(i) and 1.12(i)), at least in dimensions d ≤ 3.

Once this is achieved, consider a solution u of (1.1) evolving from compactly
supported initial data and let y ∈ ∂S be any point at which ∂S has a tangent
hyperplane with some unit outer normal vector e. Then for all large t , the solution
u is o(t) close to the characteristic function of the half-space {x ·e < t y ·e} in an o(t)
neighborhood of the point t y ∈ ∂(tS). If we can obtain good enough bounds on the
difference of u and the solution u′ starting from the (approximate) characteristic
function of this half-space, valid for a time t ′ during which u expands from ∼ χtS
to ∼ χ(t+t ′)S , then we would show that near the point t y and on the time interval
[t, t ′], the solution u′ is close to the characteristic function of the above half-space
moving with speed w(

y
|y| )

y
|y| · e in its normal direction e. This and convexity of S

would then yield the inverse Freidlin-Gärtner formula

c∗(e) = sup
e′∈Sd−1

w(e′)e′ · e. (1.8)

In reality, the above argument has to contend with (otherwise uncontrollable) o(t)
errors, whichmeans that the o(t) above as well as t ′ would instead have to be of size
O(t), thus causing additional difficulties. Nevertheless, after carefully calibrating
their mutual proportionality constants, we will be able to execute this approach in
a rigorous fashion and obtain existence of front speeds in all directions e that are
outer normals to S (see Theorem 1.4(ii)). If S has no corners, then this includes all
e ∈ S

d−1.
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We note that Theorem 2.3 is restricted to dimensions d � 3, and this limitation
is sharp. As a result, our proof of existence of theWulff shape for stationary ergodic
reactions only applies in this setting. Nevertheless, if one can prove existence of
a Wulff shape in another setting by other means, our method provides existence
of front speeds in all its normal directions. Similarly, as we discuss below, the
existence of (exclusive) front speeds in all directions is itself also sufficient for our
main homogenization results to hold. This, in particular, is the reason why we are
able to establish homogenization for periodic reactions in any dimension.

It is remarkable that despite the long history of the subject, formula (1.8) for
normal vectors to ∂S appears to be new even in the periodic setting. In fact, our
search of the literature for such a formula while writing this paper only yielded the
works of Soravia [46] and ofOsher andMerriman [42], in which they primarily
study the growth of crystals with an a priori given growth speed c∗(e) in each
normal direction e to the crystal’s surface (so no reaction–diffusion equations).
They show the emergence of a Wulff shape S from (1.7) for this growth, satisfying
(1.6), and also find that if the function c∗( y

|y| )|y| is convex, then (1.8) holds as well.
Additionally, Osher and Merriman show that any initial crystal A ⊆ R

d grows in
time t into A + tS (for each t > 0) when c∗( y

|y| )|y| is convex and, conversely, they
observe that if any initial crystal A grows as A+ tS for some convex set S, then the
normal speed c∗ of this growth satisfies (1.8) and c∗( y

|y| )|y| is convex. Of course,
since for each unit vector e one can choose an initial crystal A whose boundary
contains (an open subset of) the hyperplane {x ·e < 0}, (1.8) is immediate from the
growth being A + tS. In contrast, here we only use emergence of the Wulff shape
for solutions with compactly supported initial data, which in the large space–time
scaling limit corresponds to the Osher–Merriman growth rule 	A

t = A + tS for
only the set A = {0}.

We also note that the Osher–Merriman growth rule (which is the non-isotropic
Huygens principle) is the model currently used by Canadian Forest Fire Prediction
System. The relevant model, in which S is an ellipse whose parameters are deter-
mined from environmental factors such as wind speeds, is called Richards equation
[44]. Our main results for reaction–diffusion equations, namely Theorems 1.4(ii–
iv) and 1.7(ii), justify this approach for stationary ergodic media when the Wulff
shape is indeed an ellipse (or, more generally, when it has no corners).

It is important to stress here that we prove (1.8) for (1.1) only for vectors that
are unit outer normals to S. More generally and similarly to [42], (1.8) holds for
all e ∈ S

d−1 precisely when the function c∗( y
|y| )|y| is defined everywhere (we let

it be 0 at y = 0) and is convex, in which case we also recover the Osher–Merriman
growth rule for (1.1) in the asymptotic limit. This is in fact the case for general
KPP reactions [36]. However, it follows from the work of Caffarelli, Lee, and
Mellet [18, Theorems 2.6 and A.2] that there exist periodic ignition reactions in
two dimensions for which c∗( y

|y| )|y| is not convex—in which case our results show
that the corresponding Wulff shapes must have corners. On the other hand (1.6)
always holds (see Theorem 1.14).

Nevertheless, as long as existence of (exclusive) front speeds in all directions is
known—even if (1.8) does not hold for all e and hence c∗( y

|y| )|y| is not convex—we
are still able to obtain homogenization results for (1.1). To achieve this, we will



820 Jessica Lin & Andrej Zlatoš

show that the lower and upper limits of uε as ε → 0 are deterministic viscosity
super- and sub-solutions, respectively, to the Hamilton–Jacobi PDE

ut − c∗
(

− ∇u

|∇u|
)

|∇u| = 0 on (0,∞) × R
d . (1.9)

(We note that our method of showing this shares some elements with that employed
by Barles and Souganidis in their theory of generalized front propagation [14].) The
results of Soravia [46] and Barles, Soner, and Souganidis [13] on uniqueness
of viscosity solutions to such equations can then be used to show that the super-
and sub-solution in fact coincide and hence the limit u := limε→0 uε exists and
solves (1.9). This eventually yields our main homogenization results for (1.1),
Theorems 1.4(iii) and 1.7(ii). On the other hand, if (1.8) holds (hence we have the
Osher–Merriman growth rule) and the initial set A is convex, then we can obtain
homogenization by a simpler method in Theorem 1.4(iv) without having to resort
to the viscosity solutions theory for (1.9).

We should also mention here that the existence of a Wulff shape for (1.1) with
a homogeneous KPP reaction f (u) and space–time stationary ergodic divergence-
free advection V (t, x, ω) satisfying a finite moment condition has been proved by
Nolen and Xin [41]. They did not study homogenization or front speeds for that
model—indeed, what they call front speeds are actually our spreading speedsw(e).

Finally, let us note that almost everything here applies to the more general
PDE (1.2) under some basic hypotheses, and we collect the corresponding main
results in Theorem 1.12 in Section 1.4 below. The results for (1.1) are contained in
Section 1.3.

1.2. Relation to Homogenization Results for Hamilton–Jacobi Equations

There is a vast literature on homogenization for Hamilton–Jacobi and viscous
Hamilton–Jacobi equations, such as

ut + H(∇u, x, ω) = tr(A(x, ω)D2u),

with a coercive Hamiltonian H and a positive semi-definite matrix A, and we refer
to [3,4] and references therein for an overview of the subject. While we do not
study such equations here, let us review the similarities and differences between
these results and ours.

A typical Hamilton–Jacobi homogenization result considers continuous initial
data uε(0, ·, ω) = g(x) in the rescaled equation

uε
t + H

(
∇uε,

x

ε
, ω

)
= εtr

(
A

( x

ε
, ω

)
D2uε

)
(1.10)

for

uε(t, x, ω) := εu

(
t

ε
,

x

ε
, ω

)
.

This scaling differs from the natural scaling (1.3) in the reaction–diffusion case
by a factor of ε, so while in the Hamilton–Jacobi case any interval of values for
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the unscaled equation is compressed to a single value in the ε → 0 limit, this is
not so in the reaction–diffusion case, where one needs to also show that the width
of the transition zone between the regions where uε ≈ 0 and uε ≈ 1 becomes
infinitesimally small in the ε → 0 limit, at least almost surely.

This is not just a technical issue as was mentioned above: due to it, homoge-
nization need not happen for bistable reactions (even periodic ones in one dimen-
sion [53], although we do prove homogenization for general periodic ignition and
monostable reactions in any dimension in Theorem 1.8), and there exist stationary
ergodic ignition reactions in dimensions d � 4 (even i.i.d. ones) such that the width
of the transition zone between uε ≈ 0 and uε ≈ 1 is almost surely unbounded in
time [54]. This is also why we need to define and establish/assume existence of
exclusive front speeds (rather than just of front speeds) in the strongest versions of
our homogenization results.

A second important difference is due to the relationship of the respective orig-
inal and homogenized PDE. In the ε → 0 limit, the second order term in (1.10)
disappears and H is replaced by another (homogenized) Hamiltonian H(∇u) (un-
der appropriate hypotheses). Thus the limiting equation is again a (non-viscous)
Hamilton–Jacobi equation, and the almost surely deterministic limit limε→0 uε

remains continuous if g is. In the case of reaction–diffusion equations, the homog-
enized solutions are instead discontinuous viscosity solutions to the Hamilton–
Jacobi equation (1.9) (again under appropriate hypotheses). Moreover, unlike in
the Hamilton–Jacobi case, the main term in (1.9) does not have a counterpart in the
original PDE. This, in particular, makes it difficult to obtain counterparts of various
results in the Hamilton–Jacobi case, where the assumption of convexity of H—or
at least convexity of its sub-level sets [3]—in the first argument has been central (of
course, then H has the same property). Indeed, we do not know of a comparable as-
sumption on the reaction f that would simplify the task of proving homogenization
for (1.1), except in the KPP case (see below). In fact, the abovementioned result
from [18] shows that even for the simplest periodic ignition reactions in two dimen-
sion, of the form f (x1, x2) = f (x1), while existence of front speeds in all directions
is known, the Hamiltonian c∗(− p

|p| )|p| in (1.9) may have non-convex sub-level sets
(and hence be non-convex, too). We note that relatively few positive homogeniza-
tion results have been obtained for Hamilton–Jacobi and viscous Hamilton–Jacobi
equations with non-convex Hamiltonians, see [2,5,6,19,21,24,28,29,35,43]. The
majority of these require somewhat restrictive structural assumptions on the Hamil-
tonian (for example, H(p, x, ω) = H(p) + V (x, ω)) and/or hold only in 1-
dimension, but Hamiltonians with finite range of dependence in x that are either
α-homogeneous in p with α ≥ 1 [2] or have star-shaped sub-level sets in p [24]
were also recently considered. In fact, counterexamples to stochastic homogeniza-
tion of Hamilton–Jacobi equations with non-convex Hamiltonians have recently
been obtained in [24,50].

As mentioned above, our approach to this problem starts with the proof of
the existence of the Wulff shape for (1.1) in Section 3. The method to achieve
this goes back to the study of first passage percolation and similar ideas have
also been recently employed in the study of homogenization for Hamilton–Jacobi
equations [3,4,22], although the reaction–diffusion case is somewhatmore involved
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on account of the need for appropriate bounds on the width of the transition zone
discussed above. The analog of theWulff shape in the Hamilton–Jacobi case are the
asymptotics of the solutions to the so-called metric problem. These solutions can
be shown to be approximate super-correctors for the PDE, and if the Hamiltonian
in (1.10) is convex—or at least has convex sub-level sets—in the first argument,
then their negatives will also be approximate sub-correctors. This and appropriate
comparison arguments can be used to show that the deterministic limit

H(p) := − lim
δ→0

δvδ(0, ω; p)

exists almost surely for the unique solutions to the macroscopic problem

δvδ + H(p + ∇vδ, x, ω) = 0

(for any fixed p ∈ R
d ) [3,4]. The existence of this limit is similar in spirit to the

existence of our (exclusive) front speeds, and ultimately yields homogenization in a
standard way via the perturbed test function method introduced by Evans [23]. We
note that in the reaction–diffusion case, this last step is againmore involved, needing
both existence of exclusive front speeds and the use of the theory of discontinuous
viscosity solutions to (1.9). We perform it in Section 5.

The above approach fails for general non-convex Hamiltonians, and likely does
not have an analog for reaction–diffusion equations. Instead, we show in Section 4
that the Wulff shape itself becomes a front-like solution (with some asymptotic
speed c∗(e)) in direction e near the point t y (asymptotically as t → ∞) whenever
y is a non-corner boundary point of the Wulff shape with outer normal e. We note
that the spreading speeds, which define the Wulff shape, are essentially the convex
dual to the front speeds if the latter exist. Therefore, y above is not a corner of the
Wulff shape precisely when positive multiples of e are extreme points of the level
sets of c∗(− p

|p| )|p|. This relates to [19], where it was proved that if homogenization
holds in probability for a fairly general (viscous) Hamilton–Jacobi equation, then
correctors exist almost surely for any extreme point of any sub-level set of the
effective Hamiltonian. However, this approach needs to assume homogenization in
probability (except in the case of isotropic media, under some additional structural
assumptions), while our approach via the Wulff shape does not.

This idea can in fact also be applied to Hamilton–Jacobi equations with non-
convex Hamiltonians, and one can show that appropriate limits of solutions to a
version of the metric problemwill almost surely be the desired correctors, provided
the level sets of these solutions do not have asymptotic corners in the relevant
direction [51]. Therefore, if theWulff shape or asymptotic level sets of the solutions
to the metric problem have no corners (in which case we also find that c∗(− p

|p| )|p|
resp. H(p) have convex sub-level sets), then full homogenization follows. The
no-corner question seems not an easy one to answer in general, but the answer
is always affirmative for isotropic media, when those shapes are just spheres (see
Corollary 1.11 below and [51]).

The one exception where neither of the above two difficulties applies are KPP
reactions. Indeed, in this case the dynamics of solutions is determined to the leading
order by values arbitrarily close to 0, so the non-compression of values as ε → 0
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does not cause a significant hurdle. As mentioned above, this also allows one to
use the Hopf–Cole transformation vε := ln uε to essentially convert the reaction–
diffusion PDE into a viscousHamilton–Jacobi PDEwith a convexHamiltonian, and
use results for such equations to obtain homogenization [37] (a more direct proof
of homogenization in the KPP setting will be provided in [36]). This is the reason
why stochastic homogenization for (1.1) in several dimensions had previously been
proved only for KPP reactions.

Moreover, for ignition reactions in several dimensions, not even periodic ho-
mogenization had been known to hold prior to our work. Nevertheless, we hope that
one should be able to overcome the issue of potential corners of theWulff shape and
prove a general homogenization result at least for ignition reactions in dimensions
d � 3 that are i.i.d. in space. Such a result was proved for Hamilton–Jacobi equa-
tions in any dimension in [2], with Hamiltonians that are α-homogeneous in the first
argument with α � 1 and i.i.d. in space. For general non-KPP reaction–diffusion
equations, however, this remains an open question.

1.3. Hypotheses and Main Results for (1.1)

Let (�,F ,P) be a probability space that is endowed with a group of measure-
preserving transformations

{
Ty : � → �

}
y∈Rd such that

Ty ◦ Tz = Ty+z

for all y, z ∈ R
d . Our reaction function f : Rd × [0, 1] × � → [0,∞) will then

satisfy certain uniform bounds and be stationary ergodic:

(R1) Uniform bounds: f is Lipschitz with constant M � 1 and

f (x, 0, ω) = f (x, 1, ω) = 0

for each (x, ω) ∈ R
d ×�. There is also θ0 ∈ (0, 1) and a Lipschitz function

f0 : [0, 1] → [0,∞) with f0(u) = 0 for u ∈ [0, θ0] ∪ {1} and f0(u) > 0
for u ∈ (θ0, 1) such that

f (x, u, ω) � f0(u)

for each (x, u, ω) ∈ R
d × [0, 1] × �.

If there is also θ > 0 such that f (·, u, ·) ≡ 0 for u ∈ [0, θ ] and f is non-
increasing in u on [1 − θ, 1] (for each (x, ω) ∈ R

d × �), then we say that
f is an ignition reaction.

(R2) Stationarity: for each (x, y, u, ω) ∈ R
2d × [0, 1] × � we have

f (x + y, u, ω) = f (x, u,Tyω).

(R3) Ergodicity: if Ty E = E for some E ∈ F and each y ∈ R
d , then P[E] ∈

{0, 1}.
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The hypotheses on f0 and the definition of ignition reactions in (R1) obviously
imply that ignition reactions vanish for u near 0, that is, the ignition tempera-
ture inf{u > 0 | f (·, u, ·) �≡ 0} is positive. On the other hand, reactions with
f (x, u, ω) > 0 whenever u ∈ (0, 1) are usually called monostable. Some of our
results will apply to general reactions satisfying (R1)–(R3), while others will only
apply to ignition reactions.

It follows from (R1) that for eachω ∈ �, the functions u ≡ 0, 1 are equilibrium
solutions of (1.1). The maximum principle then shows that if 0 ≤ u(0, ·, ω) ≤ 1,
then 0 ≤ u(t, ·, ω) ≤ 1 for all t > 0 (we will only consider such solutions here).
However, our results immediately extend to the case when (1.1) has ω-dependent
equilibria u−(·, ω) < u+(·, ω) andmore general f (including of bistable andmixed
types). In that case we would also need to assume certain hypotheses analogous
to Definition 1.1 below in Theorems 1.4(i) and 1.7(i). Rather than stating these in
detail, we refer the reader to the hypotheses of Theorem 2.7 in [54] (and to Remark
2 after it), which is the result that replaces Theorem 2.3 below in the proof of those
results.

It follows from the work ofAronson andWeinberger [7] that the equilibrium
u ≡ 1 is “more stable” than u ≡ 0 when (R1) holds. Specifically, solutions to (1.1)
with initial data greater than θ0 on large enough balls converge to 1 locally uniformly
as t → ∞ (see Lemma 2.1 below). In fact, this spreading occurs (asymptotically)
at speeds no less than c0 > 0, the asymptotic spreading speed and traveling front
speed for the homogeneous ignition reaction f0. This speed is the one from the
unique (up to translation in s) solution (c0, U0) to U ′′

0 (s) + c0U ′
0(s) + f0(U0) = 0

with boundary conditions lims→−∞ U0(s) = 1 and lims→∞ U0(s) = 0 (see [7]),
which means that for any e ∈ S

d−1, the function u(t, x) := U0(x · e − c0t) is a
traveling front solution for

ut = �u + f0(u) (1.11)

moving in direction e.
To obtain the existence of a deterministicWulff shape for (1.1), wewill need one

more hypothesis on f , which is relatively mild for ignition reactions but introduces
more stringent limits on the behavior of monostable reactions at small values of
u. Loosely speaking, we will require that the solutions to (1.1) are pushed (as
opposed to pulled), meaning that their dynamics are determined by the values of
f at “intermediate” u (rather than at u near 0). We note that this is not the case for
KPP reactions, whose solutions are pulled in the above sense.

We will therefore consider reactions that are not too strong at small u, with the
strength of the reaction at some u being f (x,u,ω)

u (which is the exponential rate of
growth of solutions to the ODE ut = f (x, u, ω)). This obviously does not affect
ignition reactions at all, but we will also need to assume that once the reaction does
become strong as u increases, it cannot become arbitrarily weak until u ≈ 1. This
essentially prevents the decoupling of the propagation of intermediate values of u
from the propagation of values near 1 (see (BW) below).

To satisfy both these requirements, wewill assume in Theorems 1.4(i) and 1.7(i)
below that f ∈ F( f0, M, ζ, ξ), for some ζ < c20/4 and ξ > 0, with the class of
reactions F( f0, M, ζ, ξ) defined below. (This hypothesis excludes KPP reactions,
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as any KPP f � f0 is known to satisfy inf(x,ω)∈Rd×� fu(x, 0, ω) � c20/4.) We use
the convention inf ∅ = ∞.

Definition 1.1. For f0, M from (R1) and ζ, ξ > 0, let F( f0, M, ζ, ξ) be the class
of all f from (R1) such that

inf
(x,ω)∈Rd×�

inf
u∈[γ f (x,ω;ζ ),θ0]

f (x, u, ω) � ξ, (1.12)

where
γ f (x, ω; ζ ) := inf{u � 0 | f (x, u, ω) > ζu}. (1.13)

This and the results from [54] on bounded width of solutions to (1.1) (see
Theorem 2.3 below), which guarantee that the relevant solutions are pushed, will
enable us to prove existence of a deterministic Wulff shape for (1.1) in dimensions
d � 3. However, if one can show by some other means that appropriate solutions
are pushed in a very weak sense (see Theorem 1.12(i) below), then the hypotheses
f ∈ F( f0, M, ζ, ξ) and d � 3 are not needed to obtain a deterministic Wulff
shape. Moreover, our homogenization results also do not specifically require these
hypotheses.

Next we state our definition of a (deterministic) Wulff shape for (1.1).

Definition 1.2. Assume (R1), and let R0 > 0 be large enough so that the solution
to (1.11) with initial data u(0, ·) = 1+θ0

2 χBR0 (0) converges locally uniformly to 1
as t → ∞ (see Lemma 2.1 below). For any fixed ω ∈ �, let uω solve (1.1) with
initial data

uω(0, ·) = 1 + θ0

2
χBR0 (0). (1.14)

If there is a continuous function w : S
d−1 → (0,∞) such that with the (open

bounded) set S from (1.7) we have

lim
t→∞ inf

x∈(1−δ)St
uω(t, x) = 1, (1.15)

lim
t→∞ sup

x /∈(1+δ)St
uω(t, x) = 0 (1.16)

for each δ > 0, then we say that S is a Wulff shape for (1.1) with this ω ∈ �. If
there is �0 ⊆ � with P[�0] = 1 such that (1.1) with each ω ∈ �0 has the same
Wulff shape S, then we say that S is a deterministic Wulff shape for (1.1).

Remarks. 1. Of course, then w(e) is the (deterministic) spreading speed in di-
rection e for (1.1).

2. One may wonder about the choice of initial data for uω, but the comparison
principle shows that the validity of (1.15) and (1.16) is independent of this
choice as long as the initial data are non-negative, compactly supported, have
supremum less than one, and the resulting solutions to (1.11) converge to 1
locally uniformly as t → ∞ (see the start of Section 3). In particular, the
definition is independent of the choice of R0 as long as it is large enough.
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In addition to the long time evolution of solutions starting from compactly
supported initial data, we will also need to consider the case of front-like initial
data. As explained in the introduction, while it is not clear whether the existence of
traveling or pulsating front solutions in periodic media extends to the existence of
some type of front-like solutions in randommedia, we will show that the analogous
question for front speeds can be answered in the affirmative in some cases. We will
use the following definition for the latter:

Definition 1.3. Assume (R1), and for any (ω, e) ∈ � × S
d−1, let uω,e solve (1.1)

with initial data

uω,e(0, ·) = 1 + θ0

2
χ{x ·e<0}.

Fix any (ω, e) ∈ � × S
d−1. If there is c∗(e) ∈ R such that for each compact set

K ⊆ {x · e > 0} ⊆ R
d we have

lim
t→∞ inf

x∈(c∗(e)e−K )t
uω,e(t, x) = 1,

lim
t→∞ sup

x∈(c∗(e)e+K )t
uω,e(t, x) = 0,

then we say that c∗(e) is a front speed in direction e for (1.1) with the fixed ω ∈ �.
If there is �0 ⊆ � with P[�0] = 1 such that (1.1) with each ω ∈ �0 has the same
front speed c∗(e) in direction e, then we say that c∗(e) is a deterministic front speed
in direction e for (1.1).

Remarks. 1. One can again consider instead any initial data

(θ0 + α)χ{x ·e<−α−1} � uω,e(0, ·) � (1 − α)χ{x ·e�α−1},

with any α > 0.
2. In both these definitions we do require vanishing of the initial data for large

|x | resp. x · e, rather than just convergence to 0. The latter might result in
faster spreading speeds and front speeds depending on the decay rates and on
f (cf. Definition 1.6 below). The speeds we define here could therefore be also
called “minimal front speeds”, but we do not use this terminology here.

3. Definition 1.3 appears to be the first definition of front speeds that does not rely
on the existence of special solutions (such as traveling and pulsating fronts in
the homogeneous and periodic settings). However, it is conceptually related to
the (time-independent) planar metric problem introduced by Armstrong and
Cardaliaguet in [2] (see also [24]) in their study of stochastic homogenization
for quasilinear viscous Hamilton–Jacobi equations. In their work, for each e ∈
S

d−1, the solution of this problem at a point z can be interpreted as a “distance”
(relative to the Hamiltonian in question) from z to the half-space {x · e < 0};
they show that under appropriate hypotheses, such solutions converge almost
surely and locally uniformly to cez · e as ε → 0, with ce some constant.



Stochastic Homogenization 827

The reason for only considering compact sets K in Definition 1.3 is unbound-
edness of the hyperplane {x · e = 0} when d � 2. In general, one may therefore
expect to find arbitrarily large exceptional regions in its neighborhood, onwhich we
may observe propagation with speeds different from c∗(e) on arbitrarily long time
scales. But since f is stationary ergodic, distance of such regions from the origin
grows very quickly with their size for almost all ω ∈ �, and they will therefore not
pose a threat for compact K . We also note that lower and upper bounds on the speed
of propagation in (1.20) (see Lemmas 2.1 and 2.2 below) allow one to replace com-
pact sets K ⊆ {x ·e > 0} inDefinition 1.3 by conesCδ := {x ·e � δ+δ|x−(x ·e)e|}
for all δ > 0.

With these definitions we can now state our first main result for (1.1) with gen-
eral stationary ergodic reactions (including both monostable and ignition ones),
whose homogenization parts (iii) and (iv) apply to convex initial sets A. As men-
tioned in the introduction, if deterministic front speeds exist in each direction and the
inverse Freidlin–Gärtner formula (1.8) holds, we in fact obtain theOsher–Merriman
growth rule here. Specifically, the homogenized solution is χ	A,S , where S is the
Wulff shape and

	A,S :=
{
(t, x) ∈ (0,∞) × R

d | x ∈ A + tS
}

.

It is not difficult to see (and follows from the results in Section 5 below) that in this
case, χ	A,S is a viscosity solution to the first order Hamilton–Jacobi PDE (1.9).
We actually then also have 	A,S = 	A,c∗

, where the open set

	A,c∗ :=
{
(t, x) ∈ (0,∞) × R

d | v(t, x) > 0
}

(1.17)

is obtained by taking any uniformly continuous function v0 onRd satisfying v0 > 0
on A and v0 < 0 on Rd \ A, and letting v be the unique viscosity solution to (1.9)
with initial data v(0, ·) = v0 (then also 	A,c∗

is independent of the specific choice
of v0 and ∂	A,c∗

has zero measure, see Section 5). Our homogenization result here
continues to hold even if (1.8) does not hold for all directions e, with existence
of deterministic front speeds being the only requirement and χ	A,c∗ the limiting
function.

Finally, for the sake of generality, we allow for O(1) shifts and o(1) errors in
initial data as ε → 0 in (1.4). For A ⊆ R

d and r > 0, we therefore let Br (A) =⋃
x∈A Br (x) = A + Br (0) and A0

r := A \ Br (∂ A). For the sake of completeness,
let us also denote B0(A) := A and A0 := A0

0 := int(A).

Theorem 1.4. Assume (R1)–(R3) and that A ⊆ R
d is open. Then we have that:

(i) If d � 3 and f ∈ F( f0, M, ζ, ξ) for some ζ < c20/4 and ξ > 0, then (1.1)
has a deterministic Wulff shape.

(ii) If (1.1) has a deterministic Wulff shapeS, thenS is convex. Also, if e ∈ S
d−1 is

a unit outer normal of S and w is given by (1.7), then (1.1) has a deterministic
front speed in direction e, given by (1.8).
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(iii) If (1.1) has a deterministic front speed c∗(e) in each direction e ∈ S
d−1, then

for almost all ω ∈ � the following holds. If A is convex, α > 0, and uε(·, ·, ω)

solves (1.4) and

(θ0 + α)χA0
ψ(ε)

+yε
� uε(0, ·, ω) � (1 − α)χBψ(ε)(A)+yε

(1.18)

for each ε > 0, with some yε ∈ B1/α(0) and limε→0 ψ(ε) = 0, then

lim
ε→0

uε(t, x + yε, ω) = χ	A,c∗ (t, x) (1.19)

locally uniformly on ([0,∞)×R
d) \ ∂	A,c∗

(and ∂	A,c∗
has zero measure).

(iv) If (1.1) has a deterministic front speed c∗(e) in each direction e ∈ S
d−1, then

it has a deterministic Wulff shape S with w from (1.7) satisfying (1.6) for each
e ∈ S

d−1. Moreover, if (1.8) holds for each e ∈ S
d−1 (that is, c∗( y

|y| )|y| is

convex), then 	A,c∗ = 	A,S .

Remarks. 1. (ii) shows that Wulff shapes with tangent hyperplanes can give rise
to front speeds in stationary ergodic media (see Definition 1.5 below for the
relevant terminology).

2. Homogenization results are typically stated with ψ ≡ 0 and yε = 0 above. We
use the present form of (iii) for the sake of generality.

3. (iii) obviously extends to initial conditions that can take the value θ0 on ∂ A+ yε

(in the limits x → ∂ A + yε and ε → 0) because α > 0 is arbitrary and the
convergences are locally uniform. We could even consider initial data with
some values in (0, θ0], but then there would be a transient initial time interval
during which the limiting solution u would also have values in (0, θ0]. The
region {u(t, ·) = 1} would then invade the region {u(t, ·) ∈ (0, θ0]} (both time-
dependent) at speeds that would depend on the unit outer normal vector to the
former region at each point x of its boundary as well as on the value u(t, x) at
that point. We do not pursue this generalization here.

4. Note that if the claim in (iii) holds, then it follows for any e ∈ S
d−1 that c∗(e)

is the deterministic front speed in direction e.

Definition 1.5. A hyperplane H ⊆ R
d is tangent to aWulff shape S at y ∈ ∂S∩ H

when ∂S ∩ Bδ(y) ⊆ Bφ(δ)(H) for each δ > 0, with limδ→0
1
δ
φ(δ) = 0. (If S is

also convex, this is equivalent to H being the unique supporting hyper-plane for S
at y.) If e ∈ S

d−1 is the unit normal vector to this H such that y + se /∈ S for all
small s > 0, then we say that S has unit outer normal e (at y). If each e ∈ S

d−1 is
a unit normal of S, then we say that S has no corners.

Under a stronger hypothesis concerning propagation speed of front-like solu-
tions to (1.1), we are able to obtain homogenization for general initial sets A and
more general initial conditions than (1.18). Let us start with the following definition:

Definition 1.6. Assume (R1), and for (ω, e, α) ∈ � × S
d−1 × [0, 1], let uω,e,α

solve (1.1) with initial data

uω,e,α(0, ·) = χ{x ·e<0} + αχ{x ·e�0}.
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Fix any (ω, e) ∈ � × S
d−1. If (1.1) with the fixed ω ∈ � has front speed c∗(e) in

direction e, and for each compact set K ⊆ {x ·e > 0} there is βK ,e : (0, 1] → (0, 1]
with limα→0 βK ,e(α) = 0 such that

lim sup
t→∞

sup
x∈(c∗(e)e+K )t

uω,e,α(t, x) � βK ,e(α)

for each α ∈ (0, 1], then we say that c∗(e) is an exclusive front speed in direction e
for (1.1) with the fixed ω ∈ �. If there is �0 ⊆ � with P[�0] = 1 such that (1.1)
with each ω ∈ �0 has the same exclusive front speed c∗(e) in direction e (with
the same βK ,e), then we say that c∗(e) is a deterministic exclusive front speed in
direction e for (1.1).

Remark. For (1.1) with ignition reactions, one can actually choose βK ,e(α) = α

for all sufficiently small α (see the proofs of Theorems 1.7(i) and 1.8(ii) below).We
will also see in Theorem 4.4 that under very mild hypotheses, βK ,e can be chosen
to be independent of e.

In particular, it follows from this definition that if c∗(e) is an exclusive front
speed for (1.1), then solutions that satisfy limx ·e→∞ u(0, x) = 0 and lim infx ·e→−∞
u(0, x) > θ0 all propagate with exact speed c∗(e) in direction e (in the sense of the
above definitions). Note that this is possible for ignition reactions but generally not
formonostable reactions. In fact, if for someω ∈ �wehave inf x∈Rd f (x, u, ω) > 0
for each u ∈ (0, 1), then the solutions from Definition 1.6 satisfy limt→∞ infx∈Rd

u(t, x) = 1 whenever α > 0.
Part (ii) of the next result shows that existence of deterministic exclusive front

speeds in all directions yields homogenization for all initial sets A. In particular,
both its parts can be combined with Theorem 1.4(i,ii) to obtain a stronger version
of Theorem 1.4(iii) for ignition reactions.

Theorem 1.7. Assume (R1)–(R3) and that A ⊆ R
d is open. Then:

(i) If d � 3, an ignition reaction f ∈ F( f0, M, ζ, ξ) for some ζ < c20/4 and
ξ > 0, and (1.1) has a deterministic front speed in direction e ∈ S

d−1, then
(1.1) has a deterministic exclusive front speed in direction e.

(ii) If (1.1) has a deterministic exclusive front speed c∗(e) in each direction e ∈
S

d−1, then for almost all ω ∈ � the following holds. If α > 0 and uε(·, ·, ω)

solves (1.4) and

(θ0 + α)χA0
ψ(ε)

+yε
� uε(0, ·, ω) � χBψ(ε)(A)+yε

+ ψ(ε)χRd\(Bψ(ε)(A)+yε)

for each ε > 0, with some yε ∈ B1/α(0)and limε→0 ψ(ε) = 0, then (1.19)holds
locally uniformly on ([0,∞) × R

d) \ ∂	A,c∗
(and ∂	A,c∗

has zero measure).

Our results naturally apply to periodic reactions, as these are a special class of
stationary ergodic ones (we can then drop ω from the notation and “deterministic”
from the terminology). The following result spells out this application, and also
shows that the front speeds defined here coincidewith the unique/minimal pulsating
front speeds for these reactions:
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Theorem 1.8. Let f : Rd × [0, 1] → [0,∞) be Lipschitz, periodic in x ∈ R
d ,

and satisfying f (·, 0) ≡ f (·, 1) ≡ 0. Assume that there is θ > 0 such that on
R

d × (1 − θ, 1), the function f is non-increasing in u and strictly positive. Let
θ ′ � 0 be the largest number such that f ≡ 0 on R

d × [0, θ ′], and assume that
supx∈Rd f (x, u) > 0 for each u ∈ (θ ′, 1), then:

(i) The PDE
ut = �u + f (x, u) (1.20)

has a front speed in each direction e ∈ S
d−1, and this speed equals the minimal

pulsating front speed in direction e from [16]. In particular, Theorem 1.4(iii,iv)
apply to (1.20).

(ii) If θ ′ > 0 (that is, f is an ignition reaction and the minimal speeds from (i)
are also unique), then the front speeds from (i) are exclusive. In particular,
Theorem 1.7(ii) applies to (1.20).

Remarks. 1. The hypotheses on f are those from [16], and while [16] requires
monostable reactions (that is, thosewith θ ′ = 0) to beC1,δ in u, this is only used
in the study of pulsating fronts with speeds strictly greater than the minimal
speed (see Section 6 in [16]).

2. The results in [16] apply to general spatially periodic second order operators
in place of � (satisfying standard ellipticity hypotheses, as well as the first-
order term being divergence-free and mean-zero), which turn (1.20) into a form
captured by (1.2). Theorem 1.8 and its proof immediately extend to this case
(with the versions of Theorems 1.4 and 1.7 from Theorem 1.12 below).

3. The homogenization claim in (i) is a stronger version of the result of Alfaro
andGiletti [1], who require smooth ∂ A and θ ′ = 0, as well as slightly stronger
hypotheses on f .

Seeing the usefulness of Wulff shapes without corners in the study of front
speeds and homogenization for (1.1), it is natural to ask when a Wulff shape for
(1.1) has no corners. Asmentioned in the introduction, a result from [18] shows that
Wulff shapes can have corners. However, one simple casewhen this does not happen
is when f is isotropic. That is, its statistics are invariant under rotations—and hence
its Wulff shape must be a ball, if it exists.

Definition 1.9. Let SO(d) be the group of rotation matrices on Rd . We say that f
from (1.1) is isotropic if there is a group of measure-preserving transformations
{σR : � → �}R∈SO(d) such that

σR ◦ σP = σRP

for all R,P ∈ SO(d), and

f (x, u, σRω) = f (Rx, u, ω)

for each (R, x, u, ω) ∈ SO(d) × R
d × [0, 1] × �.

A natural example of isotropic reactions are perturbations of homogeneous
reactions by radially symmetric impurities randomly distributed according to a
Poisson point process. This is a special case of the following example:
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Example 1.10. Let
{

xn,ω

}
n∈N ⊆ R

d be a Poisson point process onRd (withω ∈ �

as above) and let {Rn,ω}n∈N ⊆ SO(d) be a sequence of rotations on Rd , each with
uniform distribution. If

{
xn,ω

}
n∈N and {Rn,ω}n∈N are independent and

f (x, u, ω) := g({Rn,ω(x − xn,ω)}n∈N, u)

for some function g, then f is isotropic. For instance, we could take f (x, u, ω) :=
g(infn |x − xn,ω|, u) for some Lipschitz g : [0,∞) × [0, 1] → R with g(y, 0) =
g(y, 1) = 0 and g(y, ·) � f0 for each y � 0.

The above results, applied to isotropic reactions, and Lemma 3.6 below now
yield the following corollary:

Corollary 1.11. Assume (R1)–(R3), d � 3, f ∈ F( f0, M, ζ, ξ) for some ζ < c20/4
and ξ > 0, and that f is isotropic. Let A ⊆ R

d be open. Then:

(i) (1.1) has a deterministic Wulff shape S = Bw(0) for some w > 0, and a
deterministic front speed c∗(e) = w in each direction e ∈ S

d−1. In particular,
	A,c∗ = 	A,Bw(0).

(ii) The claim in Theorem 1.4(iii) holds.
(iii) If f is an ignition reaction, then the deterministic front speeds are all exclusive

and the claim in Theorem 1.7(ii) holds.

1.4. Generalization to (1.2)

The above results in fact apply to the more general model (1.2), which includes,
for instance, some (viscous) Hamilton–Jacobi equations with possibly non-convex
or non-coercive Hamiltonians. The ε-space–time-scaled version of (1.2) is

uε
t = ε−1F

(
ε2D2u, ε∇u, u, ε−1x, ω

)
on (0,∞) × R

d . (1.21)

We consider the case when (1.2) models phase transitions, with solutions transi-
tioning between two equilibria u− < u+. After an appropriate transformation these
can be assumed to be u− ≡ 0 and u+ ≡ 1.

Definitions 1.3 and 1.6 above extend naturally to (1.2), and this form also allows
(1.1) with general second order linear operators and general reactions (including
of bistable and mixed types) as well as more general first- and second-order terms.
The basic hypothesis in this setting will be as follows:

Hypothesis H. (i) Let (1.2) have a unique solution in some class of functions
A ⊆ L1

loc((0,∞) × R
d) for each ω ∈ � and each locally BV initial condition

0 � u(0, ·, ω) � 1, with this solution being constant 0 resp. 1 when u(0, ·, ω) ≡ 0
resp. 1. Assume also that left time-shifts of solutions (restricted to (0,∞) × R

d )
are solutions from A and that (1.21) satisfies the (parabolic) comparison principle
within A.

(ii) Lemma 2.2 below holds for solutions to (1.2) fromA, and there are θ0 < 1
and R0 < ∞ such that solutions uω to (1.2) with uω(0, ·) = θ0χBR0 (0) satisfy

locally uniformly in x ∈ R
d ,

lim
t→∞ inf

ω∈�
uω(t, x) = 1.
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(iii) The analogs of (R2) and (R3) for F hold.
Lemmas 2.1 and 2.2 below show that Hypothesis H holds for (1.1), with θ0 in

(ii) being any number strictly greater than θ0 from (R1) (for example, 1+θ0
2 as in

(1.14)), and with, for instance, A = ⋂
τ>0 C1+γ,2+γ ((τ,∞) × R

d). (We choose
here this notation for the sake of simplicity of presentation, as the above results
then generalize verbatim. Then we can also equivalently state Definitions 1.2 and
1.3 with any number from [θ0, 1) in place of 1+θ0

2 , via the argument in the proof
of Theorem 1.7(i) and at the start of Section 3 below, and we will let this be θ0 for
the sake of simplicity.) The analysis for (1.2) below therefore also applies to (1.1).
Nevertheless, in it we will consider initial data with value � θ0 + α (rather than
� θ0) on some sets, with α > 0 so that our arguments also directly apply to (1.1)
with θ0 from (R1).

We note that considering only continuous initial conditions would suffice, and
we include locally BV ones only for notational convenience, so that we can use
initial conditions that are (multiples of) characteristic functions of sets. Also, (ii)
in fact shows that spreading with some positive minimal speed c0 > 0 holds for
(1.2), in the sense of (2.1) below.

Finally for u : [0,∞) × R
d → [0, 1] and η ∈ (

0, 1
2

)
, we define the width of

the transition zone of u from η to 1 − η at time t � 0 to be

Lu,η(t) := inf
{

L > 0 | {x | u(t, x) ≥ η} ⊆ BL

(
{x | u(t, x) ≥ 1 − η}01/η

)}
.

(1.22)
This is also the Hausdorff distance of {u(t, ·) ≥ 1 − η}01/η and {u(t, ·) ≤ η}, and it
is the smallest L such that if u(t, x) � η, then BL+η−1(x) contains a ball of radius
η−1 on which u(t, ·) is no less than 1 − η. It is clear that for (1.2) to have a Wulff
shape, it is necessary that limt→∞ 1

t Lu,η(t) = 0 for any η ∈ (
0, 1

2

)
, with u the

solution from H(ii) above (for almost all ω ∈ �). It turns out that this hypothesis
is also sufficient, as part (i) of the following extension of some of the above results
to solutions of (1.2) from the class A shows:

Theorem 1.12. Assume Hypothesis H, then:

(i) If for each η > 0 and almost all ω ∈ � we have limt→∞ 1
t Luω,η(t) = 0 for

the solution from H(ii), then (1.2) has a deterministic Wulff shape. If F is also
isotropic (that is, an analog of Definition 1.9 holds, with F(X, p, u, x, σRω) =
F(RXRT ,Rp, u,Rx, ω)), then Corollary 1.11(i) holds for (1.2) in place of
(1.1).

(ii) Theorem 1.4(ii–iv) and Theorem 1.7(ii) hold for (1.2) and (1.21) in place of
(1.1) and (1.4).

The limitation to d � 3 in Theorems 1.4(i) and 1.7(i) is due to the need in their
proofs for Theorem 2.3 below, which guarantees that they satisfy the hypothesis in
Theorem 1.12(i). In fact, Theorem 2.3 guarantees more: uniform-in-ω boundedness
of supt�Tη

Luω,η(t) for eachη > 0 and someTη > 0. (This also holds for someother
reactions f , see Theorem 2.7 in [54] and Remark 2 after it.) While Theorem 2.3
does not hold for d � 4 [54], the construction of counterexamples in [54] for which
lim supt→∞ 1

t Luω,η(t) > 0 is based on properties of reactions that occur with
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probability zero in the stationary ergodic setting. It is therefore quite plausible that
Theorems 1.4(i) and 1.7(i) extend to all dimensions. The formerwould immediately
follow from Theorem 1.12(i) and the proof of

Conjecture 1.13. Assume the hypotheses of Theorem 1.4(i), except for the limi-
tation on d. Then the solutions from Definition 1.2 satisfy limt→∞ 1

t Luω,η(t) = 0
for each η > 0 and almost all ω ∈ �.

Finally, we highlight one more result, which is of independent interest.

Theorem 1.14. Assume Hypothesis H and let T (resp. T̃ ) be the set of all direc-
tions e ∈ S

d−1 for which (1.2) has a deterministic front speed (resp. deterministic
exclusive front speed) c∗(e). Then we have that:

(i) T and T̃ are closed and c∗ is positive, bounded by c′ from Lemma 2.2, and
Lipschitz on T . Moreover, there is �0 ⊆ � withP[�0] = 1 such that (1.2)with
any fixed ω ∈ �0 has front speed c∗(e) in any direction e ∈ T and exclusive
front speed c∗(e) in any direction e ∈ T̃ .

(ii) If (1.2) has a deterministic Wulff shape given by (1.7), then for each e ∈ S
d−1,

w(e) = inf
e′∈T & e′·e>0

c∗(e′)
e′ · e

. (1.23)

Remark. The proof of Theorem 1.14(i) in fact shows that a stronger result holds:
we can choose �0 so that in Definition 1.6 we have βRe K ,e = βK ,e1 for any e ∈ T̃ ,
any rotation Re on R

d with Ree1 = e, and any compact K ⊆ {x1 > 0} ⊆ R
d ,

and there is also uniformity of the limits in Definitions 1.3 and 1.6 over rotations
as well as over certain translations in �. Namely, for each ω ∈ �0 and � > 0 we
have

lim
t→∞ inf

e∈T & |y|��t
inf

x∈(c∗(e)e−Re K )t
uTyω,e(t, x) = 1, (1.24)

lim
t→∞ sup

e∈T & |y|��t
sup

x∈(c∗(e)e+Re K )t
uTyω,e(t, x) = 0, (1.25)

lim sup
t→∞

sup
e∈T̃ & |y|��t

sup
x∈(c∗(e)e+Re K )t

uTyω,e,α(t, x) � βK ,e1(α). (1.26)

Such uniformity over translations in � also holds for the Wulff shape limits in
Definition 1.2 (see Proposition 3.4 below).

1.5. Organization of the Paper

In Section 2we collect some preliminary results, and also proveTheorems 1.7(i)
and 1.8. In Section 3 we studyWulff shapes and prove Theorems 1.4(i) and 1.12(i).
In Section 4we relateWulff shapes and front speeds, and proveTheorem1.4(ii,iv) as
well as the corresponding parts of Theorem1.12(ii), and also Theorem1.14. Finally,
in Section 5 we prove Theorems 1.4(iii) and 1.7(ii), as well as the corresponding
parts of Theorem 1.12(ii).
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2. Preliminaries

In this section we collect some useful results concerning solutions to (1.1) that
we will need below. The first one, which was alreadymentioned in the introduction,
shows that the asymptotic spreading speed of solutions to (1.1) with large enough
initial data is no less than c0, the unique speed for the homogeneous reaction f0.

Lemma 2.1. For any f0, M as in (R1), there is η0 = η0( f0, M) ∈ (0, 1
2 ) such that

for each c < c0 and η > 0, there is λ( f0, M, c, η) ≥ 0 such that the following holds.
If f satisfies (R1), 0 � u � 1 solves (1.1) for some ω ∈ �, and u(t1, x) ≥ 1 − η0
for some (t1, x) ∈ [1,∞) × R

d , then for each t ≥ t1 + λ( f0, M, c, η) we have

inf|y−x |≤c(t−t1)
u(t, y) ≥ 1 − η. (2.1)

The same result holds if the hypothesis u(t1, x) ≥ 1 − η0 is replaced by

u(t1, ·) ≥ (θ0 + α)χBR(x)(·)
for some (t1, x) ∈ [0,∞) × R

d and α > 0, with R = R( f0, α) large enough.

The second claim in Lemma 2.1 is a result of Aronson and Weinberger [7],
combined with the comparison principle, while the first claim follows from this
and parabolic regularity (see Lemma 3.1 in [54]).

We also have an upper bound on the spreading speed for compactly supported
initial data, which follows from the next lemma.

Lemma 2.2. There are m′, c′ > 0 such that if ω ∈ �, r > 0, y ∈ R
d , and u, u′ are

two solutions of (1.1) taking values in [0, 1] and satisfying u(0, x) � u′(0, x) for
all x ∈ Br (y), then for all t � 0 we have

u(t, y) � u′(t, y) + c′e−m′(r−c′t).

Proof. Without loss assume that y = 0. Then w := u − u′ satisfies w(0, ·) �
χRd\Br

and wt � �w + Mw (with M � 1 the Lipschitz constant for f ). It follows

that, with {e j }d
j=1 the standard basis in Rd , we have

w(t, x) �
d∑

j=1

(
e−√

M(x ·e j +rd−1/2−2
√

Mt) + e−√
M(−x ·e j +rd−1/2−2

√
Mt)

)

for any (t, x) ∈ [0,∞)×R
d because the sum solves w′

t = �w′ + Mw′. The claim
now follows with m′ := √

M/d and c′ := 2
√

M d. ��
We note that a more careful proof would allow for any c′ > 2

√
M in the

exponent, but we will not need to optimize c′ here. Also note that the lemma
immediately generalizes to the conclusion

u(t, x) ≤ u′(t, x) + Ce−m′(−|x−y|+r−c′t) for all x ∈ R
d .
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A key ingredient in the proof of Theorems 1.4(i) and 1.7(i) is the bounded
width property, first defined by one of us in [54]. We say that u has bounded width
if lim supt→∞ Lu,η(t) < ∞ for each η ∈ (0, 1

2 ) (see (1.22), and also compare this
to the hypothesis in Theorem 1.12(i)). That is,

sup
t≥Tη

Lu,η(t) ≤ �η for each η ∈
(
0,

1

2

)
and some �η, Tη � 0. (BW)

(We note that [54] defines Lu,η(t)with
{

x | u(t, x) ≥ 1−η
}
in place of

{
x | u(t,

x) ≥ 1 − η
}0
1/η but as discussed before Theorem 2.9 in [54], the two resulting

definitions of bounded width are equivalent by parabolic regularity.)
The next theorem, proved by one of us in [54], guarantees (BW) and more for

certain solutions to (1.1). In it, for η, η′ ∈ (0, 1) we let

Lu,η,η′(t) := inf
{

L > 0 | {x | u(t, x) ≥ η} ⊆ BL
({

x | u(t, x) ≥ η′}) }
.

Theorem 2.3. Let f, f0, M be from (R1) and such that f ∈ F( f0, M, ζ, ξ) for
some ζ < c20/4 and ξ > 0, and let 0 � u � 1 solve (1.1) for some ω ∈ �. If d � 3,

η0 is from Lemma 2.1, σu := supη∈(0,1) ηe
√

ζ Lu,η,1−η0 (0) < ∞, and

�u(0, x) + f (x, u(0, x), ω) ≥ 0 (2.2)

in the sense of distributions on R
d , then we have (BW) and

inf
(t,x)∈(Tη,∞)×R

d

u(t,x)∈[η,1−η]
ut (t, x) ≥ mη for each η > 0 and some mη > 0,

with �η, mη depending only on η, f0, M, ζ, ξ and Tη also on σu.

Remarks. 1. Specifically, this is Remark 2 after Theorem 2.5 in [54], while
Theorem 2.5 itself is a stronger result for ignition reactions, only requiring
Lu,η,1−η0(0) < ∞ for each η > 0. The claim about �η, mη, Tη follows from
the proof of the remark in Section 5 of [54]. (In the case of Theorem 2.5, depen-
dence of Tη on σu is replaced by its dependence on the ignition temperature θ

and Lu,h,1−η0(0) for some h = h(η, f0, M, ζ, ξ, θ).) We note that these quan-
tities do not explicitly depend on f and ω, and the dependence on u(0, ·) (of
Tη only) is only via σu .

2. The hypothesis (2.2) guarantees that ut ≥ 0 because w := ut satisfies

wt = �w + fu(x, 0, ω)w.

It will suffice for us to apply Theorem 2.3 to such solutions here.
3. The limitation to d � 3 is not just technical, as it is proved in Theorem 2.4 in

[54] that in dimensions d � 4 there are f as above for which typical solutions to
(1.1) do not have boundedwidth. This also is the sole reason for Theorems 1.4(i)
and 1.7(i) being restricted to d � 3 (but see Conjecture 1.13 above).
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Theorem 2.3 shows that when studying the Wulff shape for (1.1), it may be
advantageous to (equivalently, see the start of Section 3 below) define it with com-
pactly supported initial data satisfying (2.2) rather than those from Definition 1.3.
The existence of such functions is guaranteed by

Lemma 2.4. There exists a compactly supported (radially symmetric) v : Rd →
[0,∞) that satisfies �v + f0(v) � 0 in the sense of distributions on R

d , as well
as ‖v‖∞ = v(0) = 1 − η0 (with f0, η0 from Lemma 2.1).

Proof. Since we must have 1 − η0 > θ0 for Lemma 2.1 to hold, f0 is bounded
away from 0 near 1 − η0. Then there is small r > 0 such that for any R � 1, with
R′ := R + r and R′′ := R + r + r−2, the function

v(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − η0 |x | � R

1 − η0 − (|x | − R)3 |x | ∈ (R, R′]
max

{
1 − η0 − r3 − 3r2

[
(|x | − R′) − r2

2 (|x | − R′)2
]
, 0

}
|x | ∈ (R′, R′′]

0 |x | > R′′

satisfies�v+ f0(v) � 0 on BR′(0). If now R � d−1
r2

, then the inequality is satisfied

(in the sense of distributions) on BR′′(0), and therefore also onRd because v(x) = 0
when |x | = R′′. ��

We also recall the ergodic theorems that we will need here.

Theorem 2.5. (Wiener’s ergodic theorem [15]). If (R3) holds, then for each g ∈
L1(�), there is �0 ⊆ � with P[�0] = 1 such that for all ω ∈ �0,

lim
r→∞

 

Br

g(Tyω) dy =
ˆ

�

g(ω) dP. (2.3)

Theorem 2.6. (Kingman’s subadditive ergodic theorem [33]). Assume that gn ∈
L1(�) is a sequence of measurable functions on (�,F ,P) such that

inf
n∈N

1

n

ˆ

�

gn(ω) dP > −∞,

and that T̃ : � → � is measure-preserving bijection satisfying

gm+n(·) ≤ gm(·) + gn

(
T̃m(·)

)

for any m, n ∈ N. Then 1
n gn converges almost everywhere on � to some g ∈ L1(�)

as n → ∞, and
ˆ

�

g(ω) dP = lim
n→∞

1

n

ˆ

�

gn(ω) dP = inf
n�1

1

n

ˆ

�

gn(ω) dP.

If
{
T̃m

}
m∈Z is ergodic, then g is almost everywhere constant.
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We end this section with the proofs of Theorems 1.8 and 1.7(i). We only need to
prove the first claim in each part of Theorem 1.8, as the second claims will follow
once we prove the results they refer to.

Proof of Theorem 1.8. Extend f to R
d × (R \ [0, 1]) by letting it be 0 there, let

M be its Lipschitz constant, and let it be (l1, . . . , ld)-periodic on R
d . Fix any

e ∈ S
d−1. It is proved in [16] that (1.20) has a pulsating front solution with speed

c∗(e) > 0 and of the form u(t, x) = U (x · e − c∗(e)t, x). Here U ∈ C1(Rd+1) is
(l1, . . . , ld)-periodic in the second argument and satisfies lims→−∞ U (s, x) = 1
and lims→∞ U (s, x) = 0 uniformly in x ∈ R

d , as well as Us < 0 (and hence
ut > 0). We note that u itself is a classical solution and hence in C1,2(R × R

d),
although we do not need this here. It follows that for each η > 0 we have

mη := inf
(t,x)∈Rd+1

u(t,x)∈[η,1−η]
ut (t, x) > 0. (2.4)

We also note that for f from (ii) (that is, ignition), this speed is unique, while
for non-ignition f the speed is not unique but there is a minimal speed (which is
denoted c∗(e)). In the latter case, there is a sequence cn ↗ c∗(e) and Lipschitz
ignition reactions fn(x, u) := gn(u) f (x, u) with 0 � gn � 1 (so fn � f ) and
gn = 1 on [1−θ, 1] such that cn is the unique speed of a pulsating front in direction
e for fn (for each n). In fact, c∗(e) and the corresponding pulsating front in direction
e for f are in this case obtained in [16] as limits of these objects for the reactions
fn .

(ii) Let η := 1
2 min{θ, θ ′} > 0, and consider any α ∈ (0, η], with

u±α(t, x) := u((1 ± Mαm−1
η )t, x) ± α.

Then (2.4) and the fact that u solves (1.20) and f is non-increasing in u ∈ (−∞, 2η]
as well as in u ∈ [1 − 2η,∞) show that u−α is a subsolution and u+α is a super-
solution to (1.20). Moreover, the properties of U show that

u−α(−t ′, ·) � (1 − α)χ{x ·e<0} � u(t ′, ·)
for some t ′ � 0. Using also Lemma 2.1, and limα→0(1 − Mαm−1

η )c∗(e) = c∗(e),
it now follows that (1.20) has front speed c∗(e) in direction e. This speed is also
exclusive (with βK ,e(α) = α for all sufficiently small α > 0 once K is arbitrary
but fixed) because

χ{x ·e<0} + αχ{x ·e�0} � u+α(t ′′, ·)

for some t ′′ � 0 and limα→0(1 + Mαm−1
η )c∗(e) = c∗(e).

(i) For each n as above, let un be the pulsating front in direction e for fn (with
speed cn) and let Mn be the Lipschitz constant for fn . Also define ηn, mηn as above
but for fn (so they also depend on n). If we now let

un,−α(t, x) := un((1 − Mnαm−1
ηn

)t, x) − α
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for α ∈ (0, ηn], then un,−α is again a subsolution of (1.20), and we have

un,−α(−t ′n, ·) � (1 − α)χ{x ·e<0} � u(t ′n, ·)
for some t ′n � 0. Since limn→∞ limα→0(1− Mαm−1

ηn
)cn = c∗(e), it again follows

that (1.20) has front speed c∗(e) in direction e. ��
Proof of Theorem 1.7(i). Let c∗(e) be the deterministic front speed in direction e,
and let uω,e be from Definition 1.3. Let v be from Lemma 2.4 for d = 1 and let
ũω,e solve (1.1) with initial data

ũω,e(0, x) = v(max{x · e, 0}).
Lemma 2.1, applied to (1.11), and the comparison principle show that there is
t ′ = t ′( f0) � 0 such that

uω,e(0, ·) � ũω,e(t
′, ·) and ũω,e(0, ·) � uω,e(t

′, ·).
Hence the comparison principle implies that the definition of the front speed in
direction e is unchanged if we use ũ in place of u. Let us do so.

Since (2.2) holds for ũω,e due to Lemma 2.4, Theorem 2.3 applies to ũω,e and
yields mη, Tη independent of ω, e because σũω,e also does not depend on them. We
now let

ũ+α
ω,e(t, x) := ũω,e((1 + Mαm−1

θ/2)t, x) + α,

with θ from (R1) and α ∈ (0, θ
2 ]. Similarly to the previous proof, this function

is now a supersolution to (1.1) on (Tθ/2,∞) × R
d , and Lemma 2.1 shows that it

satisfies

ũ+α
ω,e(t

′′, ·) � uω,e,α(0, ·),
with the right-hand side from Definition 1.6 and t ′′ = t ′′( f0, α) � Tθ/2. It fol-
lows from this, the comparison principle, the fact that ũω,e propagates with speed
c∗(e) in direction e (in the sense of Definition 1.3) for almost all ω ∈ �, and
limα→0(1 + Mαm−1

θ/2)c
∗(e) = c∗(e) that c∗(e) is a deterministic exclusive front

speed in direction e for (1.1) (again with βK ,e(α) = α for all sufficiently small
α > 0 once K is arbitrary but fixed). ��

3. Existence of Spreading Speeds and the Wulff Shape

In this section we will prove Theorems 1.4(i) and 1.12(i). We will first establish
existence of a deterministic spreading speed in each direction, and then upgrade
this to the existence of aWulff shape. The key will be to define an appropriate “first
passage time” for spreading in any fixed direction, an approach that has been used
extensively in the discrete setting of first passage percolation (see [8,31,32] and
references therein).
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We only need to prove Theorem 1.12(i). Then Theorem 1.4(i) will follow from
the relationship

uω(0, ·) � ũω(t ′, ·) and ũω(0, ·) � uω(t ′, ·) (3.1)

for the solutions uω (from Definition 1.2) and ũω, where the latter solves (1.1) with
initial data ũω(0, ·) = v (with v from Lemma 2.4) and t ′ = t ′( f0). (As in the proof
of Theorem 1.7(i) above, this follows from Lemma 2.1, applied to (1.11), and the
comparison principle.) This yields limt→∞ 1

t Luω,η(t) = 0 for each η > 0 (so we
can apply Theorem 1.12(i)) because (BW) for ũ (see Theorem 2.3) then implies
(BW) for u. We note that this last claim also needs the fact that any super-level set
of ũ expands with a uniformly-bounded-above speed, proved in [54]. Alternatively,
one can perform the proof below for the solutions ũ instead of u, since (BW) for
ũ yields limt→∞ 1

t Lũω,η(t) = 0 for each η > 0, and then notice that (3.1) shows
that Definition 1.2 is equivalent to itself with ũ in place of u.

Let us now prove Theorem 1.12(i), assuming hypothesis H and limt→∞ 1
t

Luω,η(t) = 0 for the solutions from H(ii) and each η > 0 (Definition 1.2 is again
equivalent to itself with θ0 in place of

1+θ0
2 when H(ii) is assumed). First note that

the second claim in Lemma 2.1 holds:

Lemma 3.1. Assume Hypothesis H(i,ii). There is c = c(F, θ0, R0) > 0 such that
for each η > 0 there is λη = λη(F, θ0, R0) ≥ 0 such that the following holds. If
0 � u � 1 solves (1.2) for some ω ∈ � and

u(t1, ·) ≥ θ0χBR0 (x)

for some (t1, x) ∈ [0,∞) × R
d , then for each t ≥ t1 + λη we have (2.1). In

particular, for η ∈ (0,min{1 − θ0,
1

R0
}] and t1 � 0 we have

Bc(t−t1)−Luω,η(t1)

({
x ∈ R

d | uω(t1, x) ≥ η
})

⊆
{

x ∈ R
d | uω(t, x) ≥ 1 − η

}

whenever t ≥ t1 + max{λη,
1
c Luω,η(t1)}.

Proof. If τ < ∞ is such that infω∈�& |x |<R0+1 uω(τ, x) � θ0, then the first claim
holds with any c < τ−1. The second claim follows. ��

For any (y, z, ω) ∈ R
d × R

d × �, we now let

τ(y, z, ω) := inf
{

t ≥ 0 | u(t, ·, ω; y) ≥ θ0χBR0 (z)

}
, (3.2)

where u(·, ·, ω; y) solves (1.2) with u(0, ·, ω; y) = θ0χBR0 (y). (ByH(iii), u(t, x, ω;
y) = uTyω(t, x − y).) Thus τ(y, z, ω) can be thought of as the time of spreading
from y to z. Notice that our PDE being of second order forces us to use θ0χBR0 (y)

and θ0χBR0 (z) to define τ , rather than just pointwise information. We next establish
some useful properties of τ .

Lemma 3.2. Assume Hypothesis H. Then the function τ from (3.2) satisfies the
following:
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(i) Subadditivity: For any y1, y2, y3 ∈ R
d we have

τ(y1, y3, ω) ≤ τ(y1, y2, ω) + τ(y2, y3, ω). (3.3)

(ii) Stationarity: For any y1, y2, z ∈ R
d we have

τ(y1, y2,Tzω) = τ(z + y1, z + y2, ω) (3.4)

(iii) Linear upper bound: There exists C = C(F, θ0, R0) such that for any x1, x2,
y1, y2 ∈ R

d we have

|τ(x1, y1, ω) − τ(x2, y2, ω)| ≤ C(|x1 − x2| + |y1 − y2| + 1). (3.5)

In particular, for any x, y ∈ R
d we have

|τ(x, y, ω)| ≤ C(|x − y| + 1). (3.6)

Proof. (i) follows from the comparison principle and (ii) from H(iii) (specifically,
(R2)). To prove (iii), by symmetry we only need to show

τ(x1, y1, ω) ≤ τ(x2, y2, ω) + C (|x1 − x2| + |y1 − y2| + 1) . (3.7)

By Lemma 3.1, there is C = C(F, θ0, R0) such that

u(C(|x1 − x2| + 1), ·, ω; x1) ≥ θ0χBR0 (x2).

Then the comparison principle and the definition of τ yield

u(C(|x1 − x2| + 1) + τ(x2, y2, ω), ·, ω; x1) ≥ θ0χBR0 (y2),

and after another application of (2.1) we obtain

u(C(|x1 − x2| + |y1 − y2| + 2) + τ(x2, y2, ω), ·, ω; x1) ≥ θ0χBR0 (y1).

Inequality (3.7) now follows after doubling C , and (3.6) is its special case with
x1 = x , y1 = y, and x2 = y2 = x because τ(x, x, ω) = 0. ��

Using these properties and (R3), we next show that for any e ∈ S
d−1,

lim
n→∞

τ(0, ne, ω)

n
exists and is constant on a full measure subset of�. We also establish boundedness
and Lipschitz continuity of this limit as a function of e.

Lemma 3.3. Assume Hypothesis H. Then for each e ∈ S
d−1, there exists a constant

τ(e) and a set �(e) ⊆ � with P[�(e)] = 1 such that for each ω ∈ �(e), we have

lim
n→∞

τ(0, ne, ω)

n
= τ(e). (3.8)

Moreover, there is C = C(F, θ0, R0) such that for any e, e′ ∈ S
d−1 we have (with

c from Lemma 3.1 and c′ from Lemma 2.2)

c ≤ 1

τ(e)
≤ c′ (3.9)

and

max

{∣∣τ(e) − τ(e′)
∣∣ ,

∣∣∣∣ 1

τ(e)
− 1

τ(e′)

∣∣∣∣
}

≤ C |e − e′|. (3.10)
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Proof. Fix e ∈ S
d−1. Lemma 3.2(i) shows that for m, n ≥ 0 we have

τ(0, (m + n)e, ω) ≤ τ(0, me, ω) + τ(me, (m + n)e, ω).

Lemma 3.2(ii) shows that for T′
s := Tse for s ∈ R,

τ(me, (m + n)e, ω) = τ(0, ne,Tmeω) = τ(0, ne,T′
mω).

Also (3.6) shows that

τ(me, ne, ω) ≤ C (|n − m| + 1) (3.11)

for some C = C(F, θ0, R0). These statements and Theorem 2.6 with gn(ω) :=
τ(0, ne, ω) and T̃ := Te now yield the existence of

τ(e, ω) := lim
n→∞

τ(0, ne, ω)

n
∈ L1(�)

for each ω in some full measure set �′(e) ⊆ �.
In order to show that τ(e, ω) is constant on a full measure subset of �′(e), we

need to use the ergodicity hypothesis (R3). Note that the last statement in Theo-
rem2.6does not applydirectly as {T̃m}m∈Z neednot be ergodic.ByLemma3.2(ii,iii),
for any (y, ω) ∈ R

d × �′(e) we have∣∣τ(0, ne,Tyω) − τ(0, ne, ω)
∣∣ = |τ(y, y + ne, ω) − τ(0, ne, ω)| ≤ 2C(|y| + 1),

so that

lim
n→∞

∣∣τ(0, ne,Tyω) − τ(0, ne, ω)
∣∣

n
= 0.

It then follows (after enlarging�′(e) to the translation invariant set
⋃

y∈Rd Ty�
′(e)

and extending τ(e, ·) to it) that
τ(e,Tyω) = τ(e, ω)

for any (y, ω) ∈ R
d × �′(e). Now (R3) implies that τ(e, ω) is a constant τ(e) on

some full measure set �(e) ⊆ �′(e).
The lower bound in (3.9) follows immediately Lemma 3.1 and the upper bound

from Lemma 2.2 (since θ0χBR0
is compactly supported), because these yield for

each ω ∈ � and with o(1) = o(n0),

1

c′ + o(1) � τ(0, ne, ω)

n
� 1

c
+ o(1).

Finally, (3.5) shows that∣∣τ(0, ne, ω) − τ(0, ne′, ω)
∣∣ ≤ C

(
n|e − e′| + 1

)
,

and by taking ω ∈ �(e) ∩ �(e′) and then n → ∞ we obtain∣∣τ(e) − τ(e′)
∣∣ ≤ C |e − e′|.

Then (3.10) follows from this and (3.9). ��
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This result, together with Lemma 3.1, suggests that uω = u(·, ·, ω; 0) should
have spreading speed

w(e) := 1

τ(e)
∈ [c, c′] (3.12)

in the direction e ∈ S
d−1 (see Remark 1 after Definition 1.2) whenever ω ∈ �(e)

and limt→∞ 1
t Luω,η(t) = 0 for each η > 0. Moreover, if the convergence in (3.8)

is uniform in e, then the super-level sets of u should (after a scaling by t) acquire
the Wulff shape (1.7) as t → ∞. We will next show that this indeed happens in the
case at hand.

Proof of Theorem 1.12(i). Let �(e) be the set from Lemma 3.3 for any e ∈ S
d−1,

and assume without loss that limt→∞ 1
t Luω,η(t) = 0 for each η > 0 and ω ∈ �(e)

(otherwise restrict �(e) to such ω).
Let Q be a countable dense subset of Sd−1 and define

�′ :=
⋂
e∈Q

�(e), (3.13)

so that P[�′] = 1. We will prove that for each ω ∈ �′, δ ∈ (0, 1
3 ), and η′ ∈ (0, 1)

we have
(1 − 2δ)St ⊆ {x ∈ R

d | uω(t, x) � η′} ⊆ (1 + 3δ)St (3.14)

for all large enough t , which yields the claim with �0 := �′.
Fix such ω, δ and any η ∈ (0,min{1 − θ0,

1
R0

}]. Let tδ,η be such that

max

{
λη,

Luω,η(t)

c

}
� δ′t for all t � (1 − δ′)tδ,η, (3.15)

where c, λη are from Lemma 3.1 and δ′ := min{ δ
c′(C+2) ,

δc
4c′ } (with C from (3.10)).

Let Q′ ⊆ Q be finite and satisfying S
d−1 ⊆ ⋃

e∈Q′ Bδ′(e), and let N ∈ N be such
that

sup
e∈Q′ & n�N

∣∣∣∣τ(0, ne, ω)

n
− τ(e)

∣∣∣∣ ≤ δ′

and

sup
e∈Q′ & n�N

τ(0, ne, ω) � N (τ (e) + δ′).

Consider any t � max{N (c−1 + δ′), tδ,η}. From (C + 2)δ′ � δ
c′ , (3.9), and

(3.10) we have

τ̄ (e) − τ̄ (e′) + (1 − δ)δ′ � δτ̄ (e)

and thus 1−δ
τ̄ (e′) � 1

τ̄ (e)+δ′ whenever |e − e′| � δ′. This and 1−δ
τ̄ (e′) t � c′t show that

(1− δ)St is a subset of the union of the balls Bδ′c′t+1(ne) with vectors e ∈ Q′ and
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integers n ∈ [0, t
τ̄ (e)+δ′ ]. From (3.15) and the first claim in Lemma 3.1 it follows

that

uω(s, ·) � (1 − η)χBδ′c′ t+1(ne)

for each such ball and any s � τ(0, ne, ω) + c−1(δ′c′t + 1). But (3.9), our choice
of N , and δ � 2c−1δ′c′ show that s := (1 + δ)t satisfies this for each such ball as
long as t is large enough, hence

uω((1 + δ)t, ·) � (1 − η)χ(1−δ)St

for such t . Since this holds for any small η > 0 and (1 − 2δ)(1 + δ) � 1 − δ, the
first inclusion in (3.14) follows for any η′ ∈ (0, 1) and all large t .

For the second inclusion, assume there is s � max{N (c−1 + δ′), tδ,η} and
x ∈ R

d \ (1+3δ)Ss such that uω(s, x) � η. Then there are e′ ∈ S
d−1 and t � s

1−δ

such that x = 1+δ
τ̄ (e′) te′ (because 1+δ

1−δ
� 1+3δ for δ ∈ (0, 1

3 )). From (C +2)δ′ � δ
c′ ,

(3.9), and (3.10) we have

τ̄ (e′) − τ̄ (e) + (1 + δ)δ′ � δτ̄ (e)

and thus 1+δ
τ̄ (e′) � 1

τ̄ (e)−δ′ whenever |e − e′| � δ′. This and 1+δ
τ̄ (e′) t � 2c′t show

that ∂(1 + δ)St is a subset of the union of the balls B2δ′c′t+1(ne) with vectors
e ∈ Q′ and integers n > t

τ̄ (e)−δ′ . Hence x ∈ B2δ′c′t+1(ne) for one such ball. From
uω(s, x) � η, (3.15) and the second claim in Lemma 3.1 it follows that

uω(s′, ·) � (1 − η)χBR0 (ne)

for each s′ � s + c−1(3δ′c′t + 1+ R0). From δ � 4c−1δ′c′ and t � s
1−δ

it follows
that s′ := t satisfies this as long as s is large enough, and so τ(0, ne, ω) � t .
However, (3.9) and our choice of N show that this contradicts n > t

τ̄ (e)−δ′ . We

must therefore have uω(s, x) < η for all x ∈ R
d \ (1 + 3δ)Ss whenever s is large

enough. Since this holds for any small enough η > 0, the second inclusion in (3.14)
follows for any η′ ∈ (0, 1).

This proves the first claim in (i). The second claim follows from Lemma 3.6
below and from the part of Theorem 1.12(ii) corresponding to Theorem 1.4(ii)
(which we will prove in Section 4). ��

We now show that, in fact, a stronger version of the existence of theWulff shape
holds, including certain uniformity of the relevant limits with respect to shifts of
the initial data. This will be crucial in the proof of existence of deterministic front
speeds in the next section.

Proposition 3.4. Assume Hypothesis H. If (1.2) has a deterministic Wulff shape S,
then there is �0 ⊆ � with P[�0] = 1 such that for any ω ∈ �0 and �, δ > 0,
the solutions u(t, x, ω; y) := uTyω(t, x − y) to (1.2) (for which u(0, ·, ω; y) =
θ0χBR0 (y)) satisfy

lim
t→∞ inf|y|≤�t

inf
x∈(1−δ)St

u(t, x + y, ω; y) = 1, (3.16)

lim
t→∞ sup

|y|≤�t
sup

x /∈(1+δ)St
u(t, x + y, ω; y) = 0. (3.17)
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Remark. Comparison principle shows that if (3.16) and (3.17) hold for some ω,
then they also hold forTzω for any z ∈ R

d . Hence�0 can be chosen to be translation
invariant.

Proof. Let �′ ⊆ � be such that P[�′] = 1 and (3.16) and (3.17) hold for any
ω ∈ �′ and � = 0 (that is, only for y = 0). We will extend this to any � via a
combination of Egorov’s theorem and Wiener’s ergodic theorem.

For (ω, t, η) ∈ � × [0,∞) × (0, 1) let

�ω,t,η :=
{

x ∈ R
d | u(t, x, ω; 0) � η

}
.

By (3.16) and (3.17) for any ω ∈ �′ and y = 0, and by Egorov’s Theorem, for
each m ∈ N there are τm,η � 1 and Dm,η ⊆ � with P[Dm,η] � 1 − 2−md−1 such
that for each ω ∈ Dm,η and t ≥ τm,η,

(1 − 2−m)St ⊆ �ω,t,η ⊆ (1 + 2−m)St.

Theorem 2.5 shows that there exists a set �m,η ⊆ � with P[�m,η] = 1 such that
for each ω ∈ �m,η,

lim
r→∞

 

Br

χDm,η (Tyω) dy = P[Dm,η] ≥ 1 − 2−md−1.

Hence for each ω ∈ �m,η and � > 0, there is rω,�,m,η � 2τm,η such that
∣∣{y ∈ B2t�(0) | Tyω ∈ Dm,η

}∣∣ ≥ (1 − 2−md) |B2t�(0)|
for all t ≥ rω,�,m,η, with |·| the Lebesgue measure.

Fix any � > 0, ω ∈ �m,η, and t ≥ rω,�,m,η, and let y ∈ B�t (0) be arbitrary.
Then there is z ∈ B2�t (0) such that |z − y| ≤ 21−m�t and Tzω ∈ Dm,η. From the
first claim in Lemma 3.1 we have that

u
(
2c−121−m�t, ·,Tyω; 0

)
� θ0χBR0 (z−y)

and

u
(
2c−121−m�t, ·,Tzω; 0

)
� θ0χBR0 (y−z)

provided c−121−m�t � max{λ1−θ0 , c−1R0} (which holds for all large t). But then
from Tzω ∈ Dm,η, rω,�,m,η � 2τm,η, and (3.12) we obtain

�Tyω,t,η ⊇ �Tzω,(1−2c−121−m�)t,η + (z − y)

⊇ [(1 − 2−m)(1 − 2c−121−m�) − c−121−m�]St

and

�Tyω,t,η ⊆ �Tzω,(1+2c−121−m�)t,η + (z − y)

⊆ [(1 + 2−m)(1 + 2c−121−m�) + c−121−m�]St
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for all m � log2
8�
c (so that (1 − 2c−121−m�)t � τm,η), any ω ∈ �m,η, any

large enough t (depending on F, θ0, R0,�, m, η, ω), and any y ∈ B�t (0). Then
for any δ,� > 0, η ∈ Q ∩ (0, 1), and ω ∈ �0 := ⋂

η∈Q∩(0,1)
⋂∞

m=1 �m,η (so that
P[�0] = 1) we obtain

(1 − δ)St ⊆ �Tyω,t,η = {x ∈ R
d | u(t, x + y, ω; y) � η} ⊆ (1 + δ)St

for all large enough t and any y ∈ B�t (0) (by first choosing m above large enough,
depending on c,�, δ). Since this holds for any η ∈ Q ∩ (0, 1), (3.16) and (3.17)
follow for any δ,� > 0 and ω ∈ �0. ��

A similar argument for deterministic (exclusive) front speeds yields the fol-
lowing result. Recall Definitions 1.3 and 1.6, with the former having uω,e(0, ·) =
θ0χ{x ·e<0} in the setting of Hypothesis H.

Proposition 3.5. Assume Hypothesis H. Then:

(i) If (1.2) has a deterministic front speed c∗(e) in direction e ∈ S
d−1, then there

is �e ⊆ � with P[�e] = 1 such that for any ω ∈ �e, � > 0, and compact
K ⊆ {x · e > 0} ⊆ R

d , the solutions u(t, x, ω; y, e) := uTyω,e(t, x − y) to
(1.2) (for which u(0, ·, ω; y, e) = θ0χ{x ·e<y·e}) satisfy

lim
t→∞ inf

|y|��t
inf

x∈(c∗(e)e−K )t
u(t, x + y, ω; y, e) = 1,

lim
t→∞ sup

|y|��t
sup

x∈(c∗(e)e+K )t
u(t, x + y, ω; y, e) = 0,

(ii) If (1.2) has a deterministic exclusive front speed c∗(e) in direction e ∈ S
d−1,

then there is �′
e ⊆ � with P[�′

e] = 1 and for any compact K ⊆ {x · e >

0} ⊆ R
d there is β ′

K ,e : (0, 1] → (0, 1] with limα→0 β ′
K ,e(α) = 0 such

that the solutions u(t, x, ω; y, e, α) := uTyω,e,α(t, x − y) to (1.2) (for which
u(0, ·, ω; y, e, α) = χ{x ·e<y·e} + αχ{x ·e�y·e}) satisfy for each ω ∈ �′

e and
�,α > 0,

lim sup
t→∞

sup
|y|��t

sup
x∈(c∗(e)e+K )t

u(t, x + y, ω; y, e, α) � β ′
K ,e(α).

Remark. The sets �e,�
′
e can again be chosen translation invariant.

Proof. (i) For each j � 1, let K j ⊆ {x ·e > 0} be a compact such that K j ⊆ K j+1
and

⋃
j�1 K j = {x · e > 0}. For (ω, t, η) ∈ � × [0,∞) × (0, 1) let

�ω,t,η := {x ∈ R
d | u(t, x, ω; 0, e) � η}.

As in the proof of Proposition 3.4, using that the claim holds for� = 0, we can
find a full-measure set �e ⊆ � such that the following holds for any ω ∈ �e,
� > 0, η ∈ Q ∩ (0, 1), j � 1, and m � log2

8�
c : for any large enough t and

any y ∈ B�t (0), there is z ∈ B2�t (0) such that |z − y| ≤ 21−m�t and

�Tyω,t,η ⊇ �Tzω,(1−2c−121−m�)t,η + (z − y)

⊇
[
(c∗(e)e − K j )(1 − 2c−121−m�)t

]0
21−m�t
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and

�Tyω,t,η ⊆ �Tzω,(1+2c−121−m�)t,η + (z − y)

⊆ R
d \

[
(c∗(e)e + K j )(1 + 2c−121−m�)t

]0
21−m�t

Given any compact K ⊆ {x ·e > 0}, it now suffices to take j such that K ⊆ K 0
j

and large enough m (depending on c,�, K , j) so that

[
(c∗(e)e − K j )(1 − 2c−121−m�)

]0
21−m�

⊇ c∗(e)e − K

and

[
(c∗(e)e + K j )(1 + 2c−121−m�)

]0
21−m�

⊇ c∗(e)e + K .

Indeed, since

�Tyω,t,η = {x ∈ R
d | u(t, x + y, ω; y, e) � η},

taking t → ∞ then yields

lim inf
t→∞ inf

|y|��t
inf

x∈(c∗(e)e−K )t
u(t, x + y, ω; y, e) � η,

lim sup
t→∞

sup
|y|��t

sup
x∈(c∗(e)e+K )t

u(t, x + y, ω; y, e) � η

for any ω ∈ �e, � > 0, η ∈ Q ∩ (0, 1), and compact K ⊆ {x · e > 0}. The
result follows.

(ii) This is analogous, with β ′
K ,e := βK j ,e for the chosen j (where βK j ,e is from

Definition 1.6). ��
Finally, we show that w is continuous, and it is constant if F in (1.2) (or f in

(1.1)) is isotropic.

Lemma 3.6. Assume Hypothesis H and let S be from (1.7), with w(e) from (3.12)
for each e ∈ S

d−1. Then w is Lipschitz, and if F is isotropic, then w(e) ≡ w is
constant and S = Bw(0).

Proof. The first claim follows from (3.10).
If F is isotropic, then for any e, e′ ∈ S

d−1, there is R ∈ SO(d) such that
e = Re′. From (3.8) and isotropy we obtain

τ(e) = lim
n→∞

τ(0, n Re′, ω)

n
= lim

n→∞
τ(0, ne′, σRω)

n
= τ(e′)

for almost all ω ∈ �. Therefore w(e) ≡ w is constant and S = Bw(0). ��
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4. From Spreading Speeds to Front Speeds and Homogenization for Convex
Initial Sets

It turns out that validity of Proposition 3.4 for a fixedω is sufficient for our argu-
ment yielding existence of front speeds under relevant hypotheses. Let us therefore
consider the PDE

ut = F(D2u,∇u, u, x) on (t, x) ∈ (0,∞) × R
d , (4.1)

and its ε-spacetime-scaled version

uε
t = ε−1F

(
ε2D2u, ε∇u, u, ε−1x

)
on (t, x) ∈ (0,∞) × R

d . (4.2)

We do not include ω in (4.1), which represents (1.2) for any fixed ω ∈ �0, where
�0 is a full-measure set such that Proposition 3.5 holds (with ω-independent S).
This is the starting point of this section, along with some other basic properties (cf.
Hypothesis H in the introduction).

Hypothesis H’. (i) Let (4.1) have a unique solution in some class of functions
A ⊆ L1

loc((0,∞)×R
d) for each locally BV initial condition 0 � u(0, ·) � 1, with

this solution being constant 0 resp. 1 when u(0, ·) ≡ 0 resp. 1. (Below we only
consider these solutions.) Assume also that left time-shifts of solutions (restricted to
(0,∞)×R

d ) are solutions fromA and that (4.1) satisfies the (parabolic) comparison
principle within A.

(ii) Lemma 2.2 holds for solutions to (4.1), and there are θ0 < 1 and R0 < ∞
such that solutions u(·, ·; y) to (4.1) with u(0, ·; y) = θ0χBR0 (y) for y ∈ R

d satisfy

locally uniformly in x ∈ R
d ,

lim
t→∞ inf

y∈Rd
u(t, x + y; y) = 1.

(iii) The PDE (4.1) has a strong Wulff shapeS, satisfying (1.7)with a continuous
w : Sd−1 → (0,∞), in the following strong sense: for each�, δ > 0, the solutions
from (ii) satisfy

lim
t→∞ inf|y|≤�t

inf
x∈(1−δ)St+y

u(t, x; y) = 1 (4.3)

lim
t→∞ sup

|y|≤�t
sup

x /∈(1+δ)St+y
u(t, x; y) = 0. (4.4)

Remarks. 1. Of course, as in Section 3 above, (ii) shows that nothing would
change if in the case of (1.1) we instead considered solutions ũ with initial data
ũ(0, ·; y) = v(· − y) in (ii).

2. Results from the previous sections show that Hypothesis H’ holds for (1.1) with
anyω ∈ �0,where�0 is fromProposition 3.5,with θ0 being any number greater
than θ0 from (R1) (and with, for instance, A = ⋂

τ>0 C1+γ,2+γ ((τ,∞) ×
R

d)). The analysis below therefore also applies to (1.1) with any ω ∈ �0.
(Nevertheless, below we will consider initial data with value θ0 + α on some
sets, with α > 0 so that our arguments also directly apply to (1.1) with θ0 from
(R1).)
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3. Similarly to H’(iii) above, we will consider here the analog of Proposition 3.5
instead of just Definitions 1.3 and 1.6. That is, we will say that c∗(e) is a strong
front speed in direction e ∈ S

d−1 for (4.1) if for each compact K ⊆ {x ·e > 0} ⊆
R

d , the solutions u(·, ·; y, e) to (4.1)with initial data u(0, ·; y, e) = θ0χ{x ·e<y·e}
satisfy for each � > 0,

lim
t→∞ inf

|y|��t
inf

x∈(c∗(e)e−K )t
u(t, x + y; y, e) = 1,

lim
t→∞ sup

|y|��t
sup

x∈(c∗(e)e+K )t
u(t, x + y; y, e) = 0.

And if also for each compact K ⊆ {x · e > 0} there is βK ,e : (0, 1] → (0, 1]
with limα→0 βK ,e(α) = 0 such that the solutions u(·, ·; y, e, α)with initial data
u(0, ·; y, e, α) = χ{x ·e<y·e} + αχ{x ·e�y·e} satisfy for each �,α > 0,

lim sup
t→∞

sup
|y|��t

sup
x∈(c∗(e)e+K )t

u(t, x + y; y, e, α) � βK ,e(α),

then c∗(e) will be a strong exclusive front speed in direction e for (4.1).

We will next use these properties to obtain results about solutions with more
general initial data, but first we will show that S is convex. Below we will use the
notation Br := Br (0) ⊆ R

d .

Lemma 4.1. If Hypothesis H’ holds, then S is convex.

Proof. We need to show that

w

(
sw(e)e + (1 − s)w(e′)e′

|sw(e)e + (1 − s)w(e′)e′|
)

≥ ∣∣sw(e)e + (1 − s)w(e′)e′∣∣ (4.5)

for any e, e′ ∈ S
d−1 and s ∈ (0, 1). From (4.3) and S being open, we obtain for

any δ > 0,

lim
t→∞ inf

|y|�δ−1
u(st, (1 − δ)stw(e)e + y, ω; 0) = 1,

as well as (with yt := (1 − δ)stw(e)e and � large enough)

lim
t→∞ u((1 − s)t, (1 − δ)(1 − s)tw(e′)e′ + yt , ω; yt ) = 1.

This and the comparison principle imply

lim
t→∞ u(t, (1 − δ)[(1 − s)w(e′)e′ + sw(e)e]t, ω; 0) = 1,

so that (4.4) yields (4.5) after taking δ → 0. ��
We next prove a “lower bound” on the region where uε ≈ 1 in the homoge-

nization regime, allowing also for some dependence of initial data on ε > 0 (the
results will be stated in terms of (4.2)).
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Theorem 4.2. Assume Hypothesis H’. Let A ⊆ R
d be open and for ε > 0 and

y ∈ R
d let uε(·, ·; y) solve (4.2). If α, λ > 0 and

uε(0, ·; y) � (θ0 + α)χA+y,

then

lim
ε→0

inf
|y|�λ

uε(t, x + y; y) = 1

locally uniformly on 	A,S := {(t, x) ∈ (0,∞) × R
d | x ∈ A + tS}.

Remarks. 1. The proof shows that the convergence is in fact uniformon [t0,∞)×
Q for any t0 > 0 and compact Q ⊆ A + t0S.

2. If uε(0, ·; y) � χA+y , then the proof can easily be adapted to the case when
{0}× A is added to	A,S (and t0 � 0 in Remark 1 also works). This also applies
to Theorems 4.3(i), 4.4(ii), and 4.5 below.

3. Note that this in particular shows that if c∗(e) exists, then

c∗(e) ≥ sup
e′∈Sd−1

w(e′)e′ · e.

Proof. Let K ⊆ 	A,S be compact. Since 	A,S is open, there are �′, δ > 0 such
that

K ⊆ {(t, x) ∈ (0,∞) × R
d | x ∈ (A ∩ B�′tK ) + (1 − 2δ)tS},

where tK = min(t,x)∈K t > 0. From Hypothesis H’(ii) and the comparison prin-
ciple, applied to uε(t, x; y) := uε(εt, εx; y) (which solves (4.1)), we know that
there is (ε-independent) T0 > 0 such that for all small enough ε > 0 we have

inf
y∈Rd

uε(T0, · + ε−1y; y) � θ0χε−1 A+BR0
.

This, (4.3) with � := �′ + λ, and the comparison principle show that for each
η > 0 there is τη such that

inf
|y|�λ

uε(T0 + ε−1t, · + ε−1y; y) � (1 − η)χ(ε−1 A∩B
�′ε−1 t )+(1−δ)ε−1tS

whenever ε−1t � τη. This, however, means that

inf
|y|�λ

uε(ε
−1t, · + ε−1y; y) � (1 − η)χε−1[(A∩B�′ tK )+(1−2δ)tS]

whenever t � tK and ε > 0 is small enough. Since η > 0 was arbitrary, the result
follows. ��

Nextwe showhowWulff shapeswith tangent hyperplanes (and thuswith normal
vectors) give rise to front speeds.

Theorem 4.3. Assume Hypothesis H’, let e ∈ S
d−1 and c∗(e) be from (1.8), and

for ε > 0 and y ∈ R
d let uε(·, ·; y) solve (4.2). Then:
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(i) If α, λ > 0 and

uε(0, ·; y) � (θ0 + α)χ{x ·e<y·e}

for all ε > 0 and y ∈ R
d , then

lim
ε→0

inf
|y|�λ

uε(t, x + y; y) = 1

locally uniformly on {(t, x) ∈ (0,∞) × R
d | x · e < c∗(e)t}.

(ii) If e is a unit outer normal of S, α, λ > 0, and

uε(0, ·; y) � (1 − α)χ{x ·e�y·e}

for all ε > 0 and y ∈ R, then

lim
ε→0

sup
|y|�λ

uε(t, x + y; y) = 0

locally uniformly on {(t, x) ∈ (0,∞) ×R
d | x · e > c∗(e)t}. In particular, this

and (i) imply that c∗(e) is a strong front speed in direction e for (4.1) in the
sense of Remark 3 after Hypothesis H’.

Remark. (ii) and Lemma 2.2 show that (ii) in fact holds locally uniformly on
{(t, x) ∈ [0,∞)×R

d | x ·e > c∗(e)t} (the proof also shows this). This also applies
to Theorems 4.4(iii,iv), and 4.5 below.

This immediately yields Theorem 1.4(ii) as well as the corresponding part of
Theorem 1.12.

Proof of Theorem 1.4(ii) and of the corresponding part of Theorem 1.12.
Convexity of S is established by Lemma 4.1. The second claim follows from the
last claim in Theorem 4.3(ii), applied to (1.2) (or specifically (1.1)) with any fixed
ω ∈ �0, where �0 is the full-measure set from Proposition 3.4. ��
Proof of Theorem 4.3. (i) This immediately follows from (1.8) and Theorem 4.2

with A = {x · e < 0}, because then A + tS = {x · e < c∗(e)t} for all t > 0.
(ii) The secondclaim is immediate from thefirst and (i). Indeed, ifwe takeuε(0, ·; y)

= 1+θ0
2 χ{x ·e<y·e} and (α, λ) := ( 1−θ0

2 ,�), then the functions u1(·, ·; y), which
solve (4.1), satisfy u1(t, x; y) = u1/t (1, x

t ; y
t ) and hence

lim
t→∞ inf

|y|��t
inf

x∈(c∗(e)e−K )t
u1(t, x + y; y) = 1,

lim
t→∞ sup

|y|��t
sup

x∈(c∗(e)e+K )t
u1(t, x + y; y) = 0

for any compact K ⊆ {x · e > 0}. In fact, running this argument in the opposite
direction (and using uε(t, x; y) = u1( t

ε
, t

ε
x
t ; t

ε
y
t )), together with an argument as

in the proof of Theorem 1.4(i), also show that the claim in (i) and the first claim
in (ii) (even without requiring e to be a unit normal of S) follow from the second
claim in (ii).
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Let us now prove the first claim. It suffices to consider uε(0, ·; y) = (1 −
α)χ{x ·e�y·e}, in which case the function uε(t, x; y) := uε(εt, εx; y) is the solution

of (4.1) satisfying uε(0, · + ε−1y; y) = (1 − α)χ{x ·e�0}.
Let � > 0 be such that S ⊆ B�/4 and let K ⊆ {t � 0 & x · e > c∗(e)t} be a

compact set. Then

K ⊆ {t � 0 & x · e � 2δ′ + (c∗(e) + δ′)t} ∩ B1/δ′(0, 0)

for some δ′ > 0 (with Br (t, x) ⊆ R
d+1). Finally, let e′ ∈ S

d−1 be such that S has
unit outer normal e at the pointw(e′)e′ ∈ ∂S (thenw(e′)e′ ·e = c∗(e) by convexity
of S).

The proof is based on (4.3) and (4.4) and the observation that for all large t0,
the boundary ∂((t + t0)S − w(e′)e′t0) is very close to the hyperplane {x · e =
c∗(e)t} at the point w(e′)e′t . Hence the solution to (4.1) that starts from initial data
θ0χBR0 (−w(e′)e′t0) at time t = −t0 will be close to the solution with initial data
χ{x ·e<0} at time t = 0 on a space–time ball centered at (0, 0) and with radius � t0.
By (4.3) and (4.4), on this ball the former solution (with compactly-supported initial
data) looks like a front moving with speed c∗(e) in direction e, so we will be able
to conclude the same about the latter solution (with front-like initial data), which is
essentially just a rescaling of uε (with t0 ∼ ε−1). To make this argument rigorous,
we will need to choose the parameters involved very carefully, and we will also
need to contend with the shifts ε−1y at the same time. (The reader may want to
first consider the notationally simpler case y = 0, when uε is also independent of
ε and the function uC,b,T and number tC,b,T below do not depend on b.)

For any C, b, T > 0 with C > bλw(e′)−1 let

uC,b,T (t − tC,b,T (y), x; y) := u(t, x; bT y − CT w(e′)e′),

with u(·, ·; ·) from Hypothesis H’(ii) and tC,b,T (y) > 0 the smallest number such
that

uC,b,T (0, · + bT y; y) � (1 − α)χ{x ·e<0}∩BT . (4.6)

(We will eventually choose a small b and a large C , and then take T → ∞.) It
follows from (4.3) and (4.4) (with the above �, and δ → 0; note that bT λ +
CT w(e′) � �

2 CT ) that

kC := lim
T →∞

tC,b,T (y)

CT

exists and (for each y) it is the smallest number such that

{x · e < c∗(e)} ∩ B1/C (w(e′)e′) ⊆ kCS,

as well as

lim
T →∞ sup

|y|�λ

∣∣∣∣ tC,b,T (y)

CT
− kC

∣∣∣∣ = 0.
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Thus kC � 1, and we also have kC = 1 + o(C−1) (as C → ∞) because S has
a tangent hyperplane at w(e′)e′ with outer normal e. Moreover, (4.4) and c∗(e) =
w(e′)e′ · e also show that for any fixed (C, b) we have

lim
T →∞ sup

|y|�λ

sup
s�0

sup
x ·e�c∗(e)(kC −1)CT +δ′bT +(c∗(e)+δ′)bT s

uC,b,T (bT s, x + bT y; y) = 0

because S ∩ {x · e � c∗(e)} = ∅, δ′ > 0, and (with o(1) = o(T 0) uniform in
|y| � λ)

c∗(e)(kC − 1)CT + δ′bT =
[
c∗(e) + δ′b(kC C)−1 + o(1)

]
tC,b,T (y)

− CT w(e′)e′ · e.

If we choose C large enough so that c∗(e)(kC − 1)C � δ′b (which is possible
for any b > 0 because kC = 1 + o(C−1)), we obtain

lim
T →∞ sup

|y|�λ

sup
s�0

sup
x ·e�[2δ′+(c∗(e)+δ′)s]bT

uC,b,T (bT s, x + bT y; y) = 0,

and therefore

lim
T →∞ sup

|y|�λ

sup
(t,x)∈bT K

uC,b,T (t, x + bT y; y) = 0. (4.7)

Lemma2.2 applied tou(bT )−1 anduC,b,T (with the couple (y, r)being (x+bT y, T −
|x |) when |x | < T ), together with (4.6), now yields

u(bT )−1(t, x + bT y; y) � uC,b,T (t, x + bT y; y) + c′e−m′(T −|x |−c′t)

for each (t, x) ∈ [0,∞) × R
d . This, (4.7), and K ⊆ B1/δ′(0, 0) then yield

0 � lim
T →∞ sup

|y|�λ

sup
(t,x)∈bT K

u(bT )−1(t, x+bT y; y) � lim
T →∞ c′e−m′(T −(1+c′)bT/δ′)=0,

so long as we choose any b < δ′(1 + c′)−1 (and then C accordingly). But then

lim
ε→0

sup
|y|�λ

sup
(t,x)∈K

uε(t, x + y; y) = lim
ε→0

sup
|y|�λ

sup
(t,x)∈ε−1K

uε(t, x + ε−1y; y) = 0.

��
In fact, the above convergences are uniform in all directions e for which (4.1)

has a front speed. This is the content of the following result, which can then be used
to prove Theorem 1.14 and Theorem 1.4(iv):

Theorem 4.4. Assume Hypothesis H’(i,ii), letT be the set of all directions e ∈ S
d−1

for which (4.1) has a strong front speed c∗(e) in the sense of Remark 3 after
Hypothesis H’, and let T̃ ⊆ T be the set of all e ∈ S

d−1 for which (4.1) has a
strong exclusive front speed. For each e ∈ S

d−1, let Re be any rotation on R
d with

Ree1 = e, and for ε > 0 and y ∈ R
d let uε(·, ·; y, e) solve (4.2). We then have:
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(i) T and T̃ are closed and c∗|T is positive, bounded by c′ from Lemma 2.2, and
Lipschitz continuous with Lipschitz constant only depending on c′.

(ii) If α, λ > 0 and

uε(0, ·; y, e) � (θ0 + α)χ{x ·e<y·e}
for all ε > 0 and (y, e) ∈ R

d × T , then

lim
ε→0

inf
|y|�λ& e∈T

uε(t, Rex + c∗(e)te + y; y, e) = 1

locally uniformly on {(t, x) ∈ (0,∞) × R
d | x1 < 0}.

(iii) If α, λ > 0 and

uε(0, ·; y, e) � (1 − α)χ{x ·e�y·e}

for all ε > 0 and (y, e) ∈ R
d × T , then

lim
ε→0

sup
|y|�λ& e∈T

uε(t, Rex + c∗(e)te + y; y, e) = 0

locally uniformly on {(t, x) ∈ (0,∞) × R
d | x1 > 0}.

(iv) For each compact set K ⊆ {(t, x) ∈ (0,∞) × R
d | x1 > 0} there is βK :

(0, 1] → (0, 1] with limα→0 βK (α) = 0 such that if α, λ > 0 and

uε(0, ·; y, e, α) � χ{x ·e�y·e} + αχ{x ·e>y·e}

for all ε > 0 and (y, e) ∈ R
d × T̃ , then

lim sup
ε→0

sup
|y|�λ& e∈T̃

sup
(t,x)∈K

uε(t, Rex + c∗(e)te + y; y, e, α) � βK (α).

Proof of Theorem 1.14. (i) Let T ′ be a dense countable subset of T . There is
obviously �0 ⊆ � with P[�0] = 1 such that (1.2) with any fixed ω ∈ �0 has
the same front speed c∗(e) in direction e for each e ∈ T ′. Proposition 3.5 shows
that these are strong front speeds, and applying Theorem 4.4(i) now yields that
(1.2)with anyfixedω ∈ �0 has the same (strong) front speed c∗(e) in direction e
for each e ∈ T , as well as the claimed bounds on c∗. Finally, Theorem 4.4(ii,iii)
yield (1.24) and (1.25) because uTyω,e(t, x) = u(t, x + y, ω; y, e).

The same argument applies to T̃ . Moreover, the proof of Theorem 4.4(iv) below
shows that the functions βK there for compacts K ⊆ {(t, x) ∈ (0,∞) ×
R

d | x1 > 0} are determined from the functions βRe K ′,e from Proposition 3.5(ii)
(that is, the same ones as in Definition 1.6), where e are all vectors from any
dense countable subset T̃ ′ of T̃ , and K ′ are all compacts contained in {x1 >

0} ⊆ R
d . Sincewe can take the same T̃ ′ for all theω ∈ �0 (for the here-relevant

full-measure set �0), it follows that the same βK is shared by all ω ∈ �0. If
we now take K := {1} × K ′ for any given compact K ′ ⊆ {x1 > 0}, then
Theorem 4.4(iv) and 1

ε
-scaling in (t, x) show that for each ω ∈ �0 and e ∈ T̃ ′,

we can take βRe K ′,e in the definition of strong exclusive front speeds for (1.2)
with this fixed ω to be precisely this βK . Hence we get the same βRe K ′,e for all
ω ∈ �0 and e ∈ T̃ ′ (as the definition of deterministic exclusive front speeds
requires), and it also equals βK ′,e1 . Finally, Theorem 4.4(iv) also yields (1.26).
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(ii) Since S is convex due to Lemma 4.1, for each e ∈ S
d−1 there is a sequence

en ∈ S
d−1 converging to e such thatS has someunit outer normal e′

n atw(en)en .
Then Theorem 4.3(ii) shows that e′

n ∈ T and c∗(e′
n) = maxe′ w(e′)e′ · e′

n =
w(en)en · e′

n , the latter because S is convex. However, we then have

w(e) = lim
n→∞ w(en) = lim

n→∞
c∗(e′

n)

en · e′
n
,

which yields one inequality in (1.23). The other is immediate from the compar-
ison principle and the definitions of the (deterministic) Wulff shape and front
speeds. ��

Proof of Theorem 4.4. (i–iii) First note that considering the solution from Defini-
tion 1.3 and u′ ≡ 0 in Lemma 2.2 immediately yields c∗(e) � c′. We also have
c∗(e) > 0 by iterating the second assumption in Hypothesis H’(ii) (and using the
comparison principle).

Next, in (ii) and (iii) we only need to consider the convergence on sets K −
M :=

[ 1
M , M] × (BM ∩ {x1 � − 1

M }) and K +
M := [ 1

M , M] × (BM ∩ {x1 � 1
M }) for all

large M . The definition of strong front speeds and ε-scaling show that (ii,iii) hold
for each fixed e ∈ T (see the first paragraph of the proof of Theorem 4.3(ii)), and
hence also when the inf and sup are over all e ∈ T ′, with T ′ any finite subset of
T . The full result (including the rest of (i)) will now be obtained once we prove an
appropriate bound on the difference of solutions uε above with e and e′ such that
|e − e′| is small.

This will be achieved using Lemma 2.2 and the comparison principle. Fix α, λ,
let M � 1 be arbitrary and let us consider K +

M . Let T ′ ⊆ T be any finite set such
that T ⊆ B(5(3c′+1)M2)−1(T ′), and for any e ∈ T , let e′ ∈ T ′ be arbitrary such that

|e − e′| � (5(3c′ + 1)M2)−1. (4.8)

Now let u, u′ solve (4.2) for some ε > 0, with initial data satisfying

u(0, ·) � (1 − α)χ{x ·e�y·e},
u′(0, ·) = (1 − α)χ{x ·e′�y·e′+(5M)−1}.

From (4.8) it follows that

{x · e � y · e} ∩ B(3c′+1)M (y) ⊆
{

x · e′ � y · e′ + (5M)−1
}

.

Combining this with c∗(e′) � c′, we have that for any t ∈ [0, M] and z ∈ BM (y +
c∗(e′)te), u(0, ·) � u′(0, ·) on B2c′ M (z) ⊆ B(3c′+1)M (y). Applying Lemma 2.2
(after an ε-scaling in space and time) yields

u(t, z) � u′(t, z) + c′e−m′ε−1(2c′ M−c′t)

� u′(t, z) + c′e−m′c′ Mε−1
.
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Thus if R, R′ are rotations in R
d such that Re1 = e and R′e1 = e′, then

sup
(t,x)∈K +

M

u(t, Rx + y + c∗(e′)te)

� sup
(t,x)∈K +

M

u′(t, Rx + y + c∗(e′)te) + c′e−m′c′ Mε−1
.

Now t � M , (4.8), and c∗(e′) � c′ yield

|c∗(e′)te − c∗(e′)te′| � 1

5M
,

and then |Rx − R′x | � 1
5(3c′+1)M for any x ∈ BM gives

R

(
BM ∩

{
x1 � 1

M

})
+ y + c∗(e′)te

⊆ R′
(

BM+1 ∩
{

x1 � 1

5M

})
+ y + (5M)−1e′ + c∗(e′)te′.

This means that

sup
(t,x)∈K +

M

u(t, Rx + y + c∗(e′)te)

� sup
(t,x)∈K +

5M

u′(t, R′x + y + (5M)−1e′ + c∗(e′)te′) + c′e−m′c′ Mε−1
.

Therefore

sup
|y|�λ& e∈T & (t,x)∈K +

M

sup
e′∈T ′ & |e−e′|�(5(3c′+1)M2)−1

uε(t, Rex + y + c∗(e′)te; y, e)

� sup
|y|�λ& e′∈T ′ & (t,x)∈K +

5M

uε(t, Re′ x + (y + (5M)−1e′)

+ c∗(e′)te′; y + (5M)−1e′, e′)

+ c′e−m′c′ Mε−1

if we assume uε(0, ·; y, e) = (1 − α)χ{x ·e�y·e} (which suffices in (iii)). Since the
right-hand side converges to 0 as ε → 0 (see the start of this proof), so does the left-
hand side. If we now fix any e, e′ ∈ T such that M := (5(3c′ +1)|e − e′|)−1/2 � 1
and pick T ′ as above containing e′, then this for (t, x, y, λ) = (M, 1

M e1, 0, 1)
yields

lim
ε→0

uε(M, (M−1 + c∗(e′)M)e; 0, e) = 0.

It then follows from the definition of front speed in direction e that

c∗(e) � c∗(e′) + M−2 � c∗(e′) + 5(3c′ + 1)|e − e′|
when e, e′ ∈ T and |e − e′| � 1

5(3c′+1) .
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A similar argument, using initial data satisfying

u(0, ·) � (θ0 + α)χ{x ·e<y·e},
u′(0, ·) = (θ0 + α)χ{x ·e′<y·e′−(5M)−1},

eventually gives

inf
|y|�λ& e∈T & (t,x)∈K −

M

inf
e′∈T ′ & |e−e′|�(5(3c′+1)M2)−1

uε(t, Rex + y + c∗(e′)te; l, e)

� inf
|y|�λ& e′∈T ′ & (t,x)∈K −

5M

uε(t, Re′ x + (y − (5M)−1e′)

+ c∗(e′)te′; y − (5M)−1e′, e′)

− c′e−m′c′ Mε−1

if we assume uε(0, ·; y, e) = (θ0 + α)χ{x ·e�y·e} (which suffices in (ii)). Since the
right-hand side converges to 1 as ε → 0, so does the left-hand side, and from this we
also get c∗(e) � c∗(e′)−5(3c′ +1)|e − e′| when e, e′ ∈ T and |e − e′| � 1

5(3c′+1) .
These last two paragraphs now show that c∗|T is Lipschitz, with |c∗(e) −

c∗(e′)| � 5(3c′ + 1)|e − e′| when e, e′ ∈ T and |e − e′| � 1
5(3c′+1) . We can

therefore continuously extend c∗ to T . Then for any M ′ � 1, the ε → 0 limits of
the displayed inequalities in those two paragraphs with M := 2M ′ and T ′ ⊆ T
such that T ⊆ B(5(3c′+1)M2)−1(T ′) yield

lim
ε→0

sup
|y|�λ& e∈T & (t,x)∈K +

M ′
uε(t, Rex + y + c∗(e)te; y, e) = 0,

lim
ε→0

inf
|y|�λ& e∈T & (t,x)∈K −

M ′
uε(t, Rex + y + c∗(e)te; y, e) = 1

because |c∗(e)te − c∗(e′)te| � 1
M � 1

M ′ − 1
M when |e − e′| � (5(3c′ + 1)M2)−1

and |t | � M . Since M ′ was arbitrary, it now follows after ε-scaling that c∗(e) is
the front speed in direction e for (4.1) whenever e ∈ T . So T is closed, and the last
two limits also prove (ii,iii).

(iv) This (including the proof that T̃ is closed) is analogous to the above argu-
ment, but with initial data satisfying

u(0, ·) � χ{x ·e�y·e} + αχ{x ·e>y·e},
u′(0, ·) = χ{x ·e′�y·e′+(5M)−1} + αχ{x ·e′>y·e′+(5M)−1},

and also using that c∗|T is continuous. (We note that the formula uε(t, x; y) =
u1( t

ε
, t

ε
x
t ; t

ε
y
t ) from the start of the proof of Theorem 4.3(ii) shows that for any

M ′ � 1 and M := 2M ′ we can pick βK +
M ′ to be the maximum of

βRe′ (B
(5M)2∩{x1�(5M)−2}),e′ from Remark 3 after Hypothesis H′ (that is, definition of

strong exclusive front speeds) over all directions e′ ∈ T ′, with any finite T ′ ⊆ T̃
such that T̃ ⊆ B(5(3c′+1)M2)−1(T ′).) ��
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Proof of Theorem 1.4(iv) and of the corresponding part of Theorem 1.12. Our
proof of the first claim is similar to that in [48] for periodic ignition reactions
(when pulsating fronts exist in all directions), although the uniformity with respect
to certain translations in the remark after Theorem 1.14 simplifies it (uniformity
with respect to directions is not necessary here). Define S via (1.6) and (1.7) and
observe that then

S =
⋂

e∈Sd−1

{
x ∈ R

d : x · e < c∗(e)
}

.

This, Definition 1.6, and the comparison principle immediately yield (1.16) for
almost all ω ∈ � because B2c′(0) ∩ (Rd \ (1 + δ)S) is contained in some finite
union of some compacts Ke ⊆ {x ∈ R

d : x · e > c∗(e)} whenever δ > 0. (Note
that if we replace (1 + δ)S by B2c′(0) in (1.16), then the convergence is obvious
from Lemma 2.2.)

To obtain (1.15), consider any strictly convex compact W ⊆ S with a smooth
boundary. If W is such a set, then for each e ∈ S

d−1 there is a unique point xe ∈ ∂W
at which ∂W has unit outer normal e (and this map is a bijection). Also, continuity
and positivity of c∗ show that there is δ > 0 such that

W ⊆
⋂

e∈Sd−1

{
x ∈ R

d : x · e < (1 − δ)c∗(e)
}

,

which in particular means xe · e � (1− δ)c∗(e) for all e. Smoothness of ∂W shows
that there is δ′ ∈ (0, δ) such that for each e ∈ S

d−1,
{

x ∈ R
d | x · e � xe · e − c∗(e)δ′ and |x − xe| � 4c′δ−1δ′} ⊆ W,

where c′ is from Lemma 2.2.
Let us now fix any ω from the full-measure set�0 from the Remark after Theo-

rem 1.14. Pick� so that δ
2δ′ W ⊆ B�(0), and also any e ∈ S

d−1 and any t0 � 1.We
can now use Lemma 2.2 with t = 2δ−1δ′t0, any y ∈ B2c′δ−1δ′t0(t0xe), and functions

ut0,e and ut0 in place of u and u′, where ut0,e(0, ·) = 1+θ0
2 χ{x ·e<(xe·e−c∗(e)δ′)t0} and

ut0(0, ·) = 1+θ0
2 χt0W , to find

inf
x∈B2c′δ−1δ′t0 (t0xe)

[
ut0(2δ

−1δ′t0, x) − ut0,e(2δ
−1δ′t0, x)

]
� −c′e−2m′δ−1δ′t0 .

From the remark after Theorem 1.14 we now obtain

lim
t0→∞ inf

e∈T
inf

x∈B2c′δ−1δ′t0 (t0xe)∩{x ·e<(xe·e+2c∗(e)δ′(δ−1−1))t0}
ut0,e(2δ

−1δ′t0, x) = 1.

(In fact, only taking finitely many directions e would suffice here.) From xe · e �
(1 − δ)c∗(e) we then obtain

lim
t0→∞ inf

e∈T
inf

x∈B2c′δ−1δ′t0 (t0xe)∩{x ·e<xe·e(1+2δ−1δ′)t0}
ut0(2δ

−1δ′t0, x) = 1.
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But since

(1 + 2δ−1δ′)t0W ⊆ t0W ∪
⋃
e∈T

[B2c′δ−1δ′t0(t0xe) ∩ {x · e < xe · e(1 + 2δ−1δ′)t0}],

this and the first claim in Lemma 3.1 yield

lim
t0→∞ inf

x∈(1+2δ−1δ′)t0W
ut0(2δ

−1δ′t0, x) = 1.

This and the comparison principle show that if t0 is large enough and a solution u
to (1.2) satisfies

inf
(t,x)∈[t1,t1+2t0]×t0W

u(t, x) � 1 + θ0

2

for some t1 (which uω from Definition 1.3 does by Lemma 3.1), then

lim
t→∞ inf

x∈(t−t1−t0)W
u(t, x) = 1.

But this implies (1.15) for any δ > 0 such that (1 − δ
2 )S ⊆ W . Since W ⊆ S was

an arbitrary compact, the proof of the first claim is finished.
To prove the second claim, assume now that also (1.8) holds for each e ∈ S

d−1.
The hypotheses show that the Hamiltonian

H(p) = −c∗
(

− p

|p|
)

|p|
in (1.9) satisfies

H̃(p) := −H(−p) = c∗
(

p

|p|
)

|p| = sup
e′∈Sd−1

w(e′)e′ · p.

So if v and v0 are as in (1.17), then ṽ := −v solves

ṽt + H̃(∇ṽ) = 0 on (0,∞) × R
d ,

ṽ(0, x) = −v0(x) on R
d

with a convex Hamiltonian H̃ . Therefore the function

L(p) := (H̃)∗(p) := sup
q∈Rd

[
p · q − c∗

(
q

|q|
)

|q|
]

=
⎧⎨
⎩
0 if |p| ≤ w

(
p

|p|
)

,

∞ if |p| > w
(

p
|p|

)
(4.9)

is the associated Lagrangian (with the last equality due to convexity of S, by
Lemma 4.1) and H̃(p) = L∗(p). The Hopf–Lax formula now yields the iden-
tity

ṽ(t, x) = inf
y∈Rd

[
t L

(
x − y

t

)
− v0(y)

]
(4.10)

for the (unique) viscosity solution ṽ. Since L
( x−y

t

) = 0 preciselywhen y ∈ x −tS,
we obtain

{x | v(t, x) > 0} = A + tS = A + tS (4.11)

(because A is open) for any t > 0. That is,	A,c∗ = 	A,S and the proof is finished.
Note also that we did not assume convexity of A here. ��
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We will now prove our first homogenization result, Theorem 4.5. When also
(1.8) holds, we immediately obtain from it the claim in Theorem 1.4(iii) (and the
corresponding part of Theorem 1.12) because 	A,S \ 	A,S = ∂	A,S for convex
A and 	A,c∗ = 	A,S due to (1.8).

We will prove Theorem 1.4(iii) without assuming (1.8) in Section 5. In fact,
Theorem 4.5 will not be needed in the rest of the paper and can be skipped. We
include it only to demonstrate how one can prove homogenization in some settings
without the need for the theory of discontinuous viscosity solutions in Section 5.

Recall that for A ⊆ R
d and r � 0, we define A0

r := A \ Br (∂ A).

Theorem 4.5. Assume Hypothesis H’ and that (4.1) has a strong front speed c∗(e)
satisfying (1.8) in each direction e ∈ S

d−1 (for example, if S has no corners, due
to Theorem 4.3). If A ⊆ R

d is open, A′ = ch(A) is its convex hull, α > 0, and uε

solves (4.2) and

(θ0 + α)χA0
ψ(ε)

+yε
� uε(0, ·) � (1 − α)χBψ(ε)(A′)+yε

(4.12)

for each ε > 0, with some yε ∈ B1/α and limε→0 ψ(ε) = 0, then

lim
ε→0

uε(t, x + yε) =
{
1 (t, x) ∈ 	A,S ,

0 (t, x) ∈ ([0,∞) × R
d) \ 	A′,S

locally uniformly on ([0,∞) × R
d) \ (	A′,S \ 	A,S).

To prove Theorem 4.5, we will need the following geometric lemma:

Lemma 4.6. Assume that S ⊆ R
d containing 0 is open, bounded, and convex. For

each e ∈ S
d−1, let w(e) and c∗(e) be given by (1.7) and (1.8). If A ⊆ R

d is open
and convex, then for each t � 0 we have

A + tS =
⋂

e∈Sd−1

{
x · e < sup

y∈A
y · e + c∗(e)t

}
,

A + tS =
⋂

e∈Sd−1

{
x · e � sup

y∈A
y · e + c∗(e)t

}
.

Proof. Let B be the above intersection. If x ∈ A + tS, then there are y ∈ A and
z ∈ S such that x = y + zt . If z = 0 then obviously x ∈ B; otherwise let e′ = z

|z| .
Then for any e ∈ S

d−1 we have

x · e = y · e + |z|te′ · e < sup
y′∈A

y′ · e + c∗(e)t

by |z| < w(e′), (1.8), and c∗(e) > 0. Hence A + tS ⊆ B.
If now x /∈ A + tS is arbitrary, let x ′ ∈ A + tS be the closest point from (the

convex set) A + tS to x . Let e ∈ S
d−1 be such that x ′′ · e � x ′ · e � x · e for
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any x ′′ ∈ A + tS (if x �= x ′, then e = x−x ′
|x−x ′| works). Let e′ ∈ S

d−1 be such that

c∗(e) = w(e′)e′ · e. Then for any y ∈ A we have y + w(e′)e′t ∈ A + tS, so

y · e + c∗(e)t = (y + w(e′)e′t) · e � x · e.

Therefore x /∈ B, so A + tS ⊇ B. This proves the first claim, and the proof of the
second is analogous (noticing also that A + tS = A + tS). ��
Proof of Theorem 4.5. Obviously, these are two separate results, with the first in-
equality in (4.12) yielding the convergence to 1 and the second inequality yielding
convergence to 0. Hence, due to both convergences being locally uniform and due
to the inclusion of the shifts yε, it suffices to consider in both proofs ψ(ε) = 0 for
all ε > 0.

The convergence to 1 then follows directly from Theorem 4.2. For the conver-
gence to 0, recall that A′ = ch(A), and let K ⊆ ([0,∞)×R

d)\	A′,S be a compact
set. We can assume without loss that K = [0, t0] × Q for some t0 > 0 and some
compact Q ⊆ R

d \ A′ + t0S because K is contained in a finite union of such sets
(with distinct t0).

With c′ from Lemma 2.2, let � > 0 be such that Q ⊆ B�−2c′t0 and let
B := A′ ∩ B� (which is open, bounded, and convex). Then Q ∩ B + t0S = ∅, so
by Lemma 4.6, there is δ′ > 0 such that

Q ∩
⋂

e∈Sd−1

{
x · e � lB(e) + c∗(e)t0 + δ′} = ∅,

with lB(e) := supy∈B y · e. Since lB and c∗ are continuous by their definitions,

there is M such that QM := BM ∩ {x1 � 1
M } ⊆ R

d satisfies

Q ⊆
⋃

e∈Sd−1

(Re QM + lB(e)e + c∗(e)t0e)

But then an application of Theorem 4.4(iii) with λ := � + 1
α
and y = lB(e)e + yε

for any ε > 0 and e ∈ S
d−1 shows that wε solving (4.2) and

wε(0, ·) = (1 − α)χB+yε

satisfies

lim
ε→0

sup
(t,x)∈[0,t0]×Q

wε(t, x + yε) = 0.

Since Q ⊆ B�−2c′t0 and B := A′ ∩ B�, we have from this and Lemma 2.2,

0 � lim
ε→0

sup
(t,x)∈K

uε(t, x + yε) � lim
ε→0

c′e−m′(2c′ε−1t0−c′ε−1t0) = 0.

This establishes the convergence to 0 claim, and the proof is finished. ��
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5. Homogenization for General Initial Sets

In this section we prove Theorems 1.4(iii) and 1.7(ii), as well as the same
results for (1.2). We will again consider a fixed ω ∈ � (which is again dropped
from the notation), and hence show that if strong exclusive front speeds c∗(e) in all
directions e exist for (4.1), then solutions to (4.2) with appropriate families of initial
conditions converge to (discontinuous) viscosity solutions of the Hamilton–Jacobi
equation (1.9) as ε → 0. Specifically, if the initial conditions satisfy (5.7) below,
then solutions converge to χ	A,c∗ , with the set 	A,c∗

from (1.17) obtained from
solving (1.9) with initial condition (5.4).

5.1. Hamilton–Jacobi Equations and Viscosity Solutions

We begin by recalling some basic properties of Hamilton–Jacobi equations and
their viscosity solutions. We want to consider the PDE (1.9) with initial condition

u(0, ·) = χA, (5.1)

where A ⊆ R
d is an open set. As this results in us having to consider discontinuous

functions, we will have to employ the notion of viscosity solutions (the ones we
use here are also called discontinuous viscosity solutions). With u∗, u∗ : [0,∞) ×
R

d → R being the upper and lower semicontinuous envelopes of a function u :
(0,∞) × R

d → R that is bounded on bounded sets, we have the following:

Definition 5.1. ([9]). A function u : (0,∞) × R
d → R is a viscosity subsolution

to (1.9) if for any φ ∈ C1((0,∞) × R
d) we have

φt (t0, x0) ≤ c∗
(

− ∇φ(t0, x0)

|∇φ(t0, x0)|
)

|∇φ(t0, x0)| (5.2)

whenever u∗ − φ has a local maximum at (t0, x0). Similarly, u is a viscosity super-
solution to (1.9) if for any φ ∈ C1((0,∞) × R

d) we have

φt (t0, x0) ≥ c∗
(

− ∇φ(t0, x0)

|∇φ(t0, x0)|
)

|∇φ(t0, x0)| (5.3)

whenever u∗ − φ has a local minimum at (t0, x0).
We say thatu is a viscosity solution to (1.9)when it is both aviscosity subsolution

and a viscosity supersolution. We also say that u satisfies initial condition (5.1)
whenever (with A0 = int(A))

χA0 � u∗(0, ·) � u∗(0, ·) � χ Ā.

Since we can always add a constant to φ, a function u is a viscosity subsolution
provided (5.2) holds whenever φ ∈ C1 satisfies φ(t0, x0) = u∗(t0, x0) as well as
φ � u∗ on a neighborhood of (t0, x0), and u is a viscosity supersolution provided
(5.3) holds whenever φ ∈ C1 satisfies φ(t0, x0) = u∗(t0, x0) as well as φ � u∗ on
a neighborhood of (t0, x0).
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While the PDE (1.9) satisfies a comparison principle for upper semicontinu-
ous subsolutions and lower semicontinuous supersolutions (see Theorem 5.3(iii)
below), the question of uniqueness of discontinuous viscosity solutions ismore sub-
tle (see, for example, [13] for some counterexamples). However, the initial value
problem (1.9)+(5.1) does admit a unique (discontinuous) viscosity solution (up to
sets of measure 0) for certain initial conditions and under appropriate hypotheses
on c∗. This turns out to be closely related to the following definition.

Definition 5.2. Let v be the unique continuous viscosity solution to (1.9)with initial
condition v(0, ·) = v0, where v0 : Rd → R is any uniformly continuous function
satisfying

v0(x) =

⎧⎪⎨
⎪⎩

> 0 x ∈ A0,

0 x ∈ ∂ A,

< 0 x ∈ R
d \ A.

(5.4)

We say that the initial value problem (1.9)+(5.1) does not develop an interior if for
any such v0, we have

|{(t, x) | v(t, x) = 0}| = 0, (5.5)

with | · | the Lebesgue-measure on R
d+1.

This definition differs slightly from those in [13,14,46,47] and other references;
see Remark 2 after Theorem 5.3 for a discussion of this. Also observe that since
(1.9) satisfies both uniqueness and a comparison principle for continuous viscosity
solutions, it follows that the sets {v > 0}, {v < 0}, {v = 0} for continuous viscosity
solutions to (1.9)+(5.4) are independent of the choice of v0 [47, Theorem 1.4].
Therefore, as mentioned in the introduction, we define	A,c∗

via (1.17), with v any
such solution.

We now have the following theorem, which is a collection (and combination) of
results byBarles,Soner, andSouganidis [13, Theorems2.1 and4.1],Crandall,
Ishii, and Lions [20, Theorem 8.2], Souganidis [47, Theorem 1.10], and Soravia
[46], and which implies that in our setting, (1.9) admits a unique discontinuous
viscosity solutions for any relevant initial condition:

Theorem 5.3. Let c∗ : Sd−1 → R be Lipschitz and let A ⊆ R
d be open. Then:

(i) The problem (1.9)+(5.1) has a unique (up to space–time sets of measure 0)
viscosity solution u if and only if it does not develop an interior. This solution
is then given by u = χ{v>0}, where v is any solution to (1.9)+(5.4).

(ii) If c∗(e) > 0 for all e ∈ S
d−1, then (1.9)+(5.1) does not develop an interior.

(iii) If u, v : [0,∞) ×R
d → R are a bounded upper semicontinuous subsolution

and a bounded lower semicontinuous supersolution to (1.9), respectively, and
u(0, x) ≤ v(0, x) holds for each x ∈ R

d , then u(t, x) ≤ v(t, x) for all
(t, x) ∈ [0,∞) × R

d .

Remarks. 1. In [13,47], the statement of Theorem 5.3(ii) is formulated in terms
of the PDE (1.9) with initial condition u(0, ·) = χA0 − χ Āc , and the unique
viscosity solution is u = χ{v>0} − χ{v<0} . The two statements are clearly
equivalent.
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2. In some earlier papers, the no interior condition was stated in the topological
sense, namely

∂ {v > 0} = {v = 0} = ∂ {v < 0} (5.6)

for any solution to (1.9)+(5.4). The two definitions coincide in most situations
of interest but differ in some pathological cases. For instance, when c∗ ≡ 0 (so
(1.9) is ut = 0) and A = (0, 1) ∪ (1, 2) ⊆ R, then v(t, ·) = v0 for each t > 0,
so (5.5) holds but (5.6) fails (and u(t, x) = χA(x) is the only viscosity solution
to (1.9)+(5.1)). On the other hand, if c∗ ≡ 0 and A, B ⊆ R are two open sets
with A ∪ B dense, ∂ A = ∂ B, and |∂ A| > 0, then again v(t, ·) = v0 for each
t > 0, so (5.5) fails but (5.6) holds (and u(t, x) = χA′(x) is a viscosity solution
to (1.9)+(5.1) whenever A ⊆ A′ ⊆ A). The proof of Theorem 5.3(i,ii) in fact
applies with our Definition 5.2 (see, for example, [13]), which justifies its use
here.

3. Note that (ii) implies |∂	A,c∗ | = 0.

5.2. Homogenization for (1.1) and (1.2)

We will again first consider (4.1), with the following hypotheses:
Hypothesis H”. (i) Assume H’(i).
(ii) Lemma 2.2 holds for solutions to (4.1).
(iii) ThePDE (4.1) has a strong exclusive front speed c∗(e) > 0 in each direction

e ∈ S
d−1, in the sense of Remark 3 after Hypothesis H’.

Remark. Note that we do not assume the second claim in H’(ii) here. Its role will
instead be played by the assumption c∗(e) > 0.

We now reformulate the last claim in Theorem 1.12(ii) (corresponding to The-
orem 1.7(ii)) in terms of (4.1) and Hypothesis H”. Note that with θ0 chosen to
satisfy H”(iii), we can replace θ0 +α in the statement of the theorem by just θ0 (see
Remark 2 after Hypothesis H’).

Theorem 5.4. Assume Hypothesis H ′′. If A ⊆ R
d is open, R > 0, and uε solves

(4.2) and

θ0χA0
ψ(ε)

+yε
� uε(0, ·) � χBψ(ε)(A)+yε

+ ψ(ε)χRd\(Bψ(ε)(A)+yε)
(5.7)

for each ε > 0, with some yε ∈ BR(0) and limε→0 ψ(ε) = 0, then

lim
ε→0

uε(t, x + yε) = χ	A,c∗ (t, x)

locally uniformly on
([0,∞) × R

d
) \ ∂	A,c∗

.

Proof of Theorem 1.7(ii) and of the corresponding part of Theorem 1.12. This is
immediate from Theorem 5.4 applied to those ω ∈ � for which (1.2) (or specifi-
cally (1.1)) has strong exclusive front speed c∗(e) in each direction e ∈ S

d−1. The
set of such ω has full measure by the remark after Theorem 1.14. ��
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Proof of Theorem 5.4. Since � in H”(iii) is arbitrary (and hence can be replaced
by �+ R), we can assume yε = 0 without loss of generality. Also, let c′ > ‖c∗‖∞
be as in Lemma 2.2 (note that Hypothesis H”(ii) implies that ‖c∗‖∞ � c′, and
increasing c′ keeps Lemma 2.2 valid).

Given a family of functions {uε}, we let their half-relaxed limits (introduced in
[11,12]) be

limsup* uε(t, x) = sup

{
lim sup

ε→0
uε(tε, xε) | (tε, xε) → (t, x)

}

and

liminf* uε(t, x) = inf

{
lim inf

ε→0
uε(tε, xε) | (tε, xε) → (t, x)

}
.

Then let

	1 :=
{
(t, x) ∈ (0,∞) × R

d | liminf* uε(t, x) = 1
}0

(5.8)

and

	2 :=
{
(t, x) ∈ (0,∞) × R

d | limsup* uε(t, x) = 0
}0

.

It follows then that for any compact K ⊆ 	1 we have

lim
ε→0

inf
(t,x)∈K

uε(t, x) = 1, (5.9)

while for any compact K ⊆ 	2 we have

lim
ε→0

sup
(t,x)∈K

uε(t, x) = 0. (5.10)

We now claim that the functions χ	1 and χ[(0,∞)×Rd ]\	2 are, respectively, a vis-
cosity supersolution and a viscosity subsolution to (1.9).

Let us startwithu := χ	1 ,which is obviously lower semicontinuous, sou∗ = u.
Let φ ∈ C1((0,∞)×R

d) be such that u −φ has a strict local minimum at (t0, x0).
Without loss of generality, we may assume φ � u and φ(t0, x0) = u(t0, x0). If
(t0, x0) ∈ 	1 or (t0, x0) ∈ [(0,∞) ×R

d ] \ 	1, then the claim in the supersolution
part of Definition 5.1 is satisfied for φ and (t0, x0) because u is locally constant at
(t0, x0), which implies

∇φ(t0, x0) = 0 and φt (t0, x0) = 0.

It remains to consider the case (t0, x0) ∈ ∂	1, when u(t0, x0) = 0. Let us first
assume that ∇φ(t0, x0) = 0, so that we need to show φt (t0, x0) � 0. Hence let
us assume, towards contradiction, that φt (t0, x0) < 0. Then for each small enough
h ∈ (

0, t0
2

)
we have inf |x−x0|<5c′h φ(t0 − 2h, x) > 0 because φ ∈ C1 (fix one such

h), so that {t0−2h}×B5c′h(x0) ⊆ 	1. Thus we can apply Lemma 2.2 to uε(t, x) :=
u(t, x; (x0 ·e+5c′h)ε−1, e) for any e ∈ S

d−1 (with u fromHypothesis H”(iii)) and
u′

ε(t, x) := uε(εt + t0 − 2h, εx), which solve (4.1) and satisfy uε(0, ·) � u′
ε(0, ·)
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on B5c′h/ε(
x0
ε

) for all small enough ε > 0. The lemma and Hypothesis H”(iii) then
show

lim
ε→0

inf
(t,x)∈(h/ε,3h/ε)×Bc′h/ε(x0/ε)

u′
ε(t, x) = 1.

Therefore (t0 − h, t0 + h) × Bc′h(x0) ⊆ 	1, contradicting (t0, x0) ∈ ∂	1.
Let us now assume that p := −∇φ(t0, x0) �= 0 (and let p̂ := p

|p| ), so that
we need to show φt (t0, x0) � c∗( p̂)|p|. Hence let us assume that φt (t0, x0) <

s|p| < c∗( p̂)|p| for some s ∈ R. Since φ ∈ C1, it follows that for each small
enough h ∈ (0, t0) we have φ(t0 − h, x) > 0 for all x ∈ B2c′h(x0) such that
(x − x0) · p̂ � −sh (fix one such h). This means

{t0 − h} × (
B2c′h(x0) ∩ {

x | (x − x0) · p̂ � −sh
}) ⊆ 	1.

Thus we can apply Lemma 2.2 to uε(t, x) := u(t, x; (x0 · p̂ − sh)ε−1, p̂) (with u
fromHypothesis H”(iii)) and u′

ε(t, x) := uε(εt + t0−h, εx), which solve (4.1) and
satisfy uε(0, ·) � u′

ε(0, ·) on B2c′h/ε(
x0
ε

) for all small enough ε > 0. The lemma
and Hypothesis H”(iii) then show

lim
ε→0

inf
(t,x)∈((h−δ)/ε,(h+δ)/ε)×Bδ/ε(x0/ε)

u′
ε(t, x) = 1

for some small δ > 0 because c∗( p̂) > s. But this nowmeans that (t0 −δ, t0 +δ)×
Bδ(x0) ⊆ 	1, contradicting (t0, x0) ∈ ∂	1. Therefore χ	1 is indeed a viscosity
supersolution to (1.9).

The argument for u := χ[(0,∞)×Rd ]\	2 is similar, but using exclusivity of the
front speeds c∗(e). Again notice that u is upper semicontinuous, so u∗ = u. Let
φ ∈ C1((0,∞) × R

d) be such that u − φ has a strict local maximum at (t0, x0).
Without loss of generality, we may assume φ � u and φ(t0, x0) = u(t0, x0). If
(t0, x0) ∈ 	2 or (t0, x0) ∈ [(0,∞) × R

d ] \ 	2, then the claim in the subsolution
part of Definition 5.1 is satisfied for φ and (t0, x0) because u is locally constant at
(t0, x0), which implies

∇φ(t0, x0) = 0 and φt (t0, x0) = 0.

It remains to consider the case (t0, x0) ∈ ∂	2, when u(t0, x0) = 1. Let us
first assume that ∇φ(t0, x0) = 0, so that we need to show φt (t0, x0) � 0. Hence
let us assume that φt (t0, x0) > 0. Then for each small enough h ∈ (

0, t0
2

)
we

have sup|x−x0|<5c′h φ(t0 − 2h, x) < 1 (fix one such h), which means that {t0 −
2h} × B5c′h(x0) ⊆ 	2. Thus we can apply Lemma 2.2 to u′

ε(t, x) := u(t, x; (x0 −
5c′he)ε−1, e, α) for any e ∈ S

d−1 and any small α > 0 (with u from Hypothesis
H”(iii)) anduε(t, x) := uε(εt+t0−2h, εx), which solve (4.1) and satisfyuε(0, ·) �
u′

ε(0, ·) on B5c′h/ε(
x0
ε

) for all small enough ε > 0. The lemma and Hypothesis

H”(iii) with the compact K := {x ∈ B6c′(0) : x · e � c′
3 } (and any � � h−1|x0|+

5c′) then show

lim sup
ε→0

sup
(t,x)∈(h/ε,3h/ε)×Bc′h/ε(x0/ε)

uε(t, x) � βK ,e(α) (→ 0 as α → 0).
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Therefore (t0 − h, t0 + h) × Bc′h(x0) ⊆ 	2, contradicting (t0, x0) ∈ ∂	2.
Let us now assume that p := −∇φ(t0, x0) �= 0 (and let p̂ := p

|p| ), so that
we need to show φt (t0, x0) � c∗( p̂)|p|. Hence let us assume that φt (t0, x0) >

s|p| > c∗( p̂)|p| for some s ∈ R. Since φ ∈ C1, it follows that for each small
enough h ∈ (0, t0) we have φ(t0 − h, x) < 1 for all x ∈ B2c′h(x0) such that
(x − x0) · p̂ � −sh (fix one such h). This means

{t0 − h} × (
B2c′h(x0) ∩ {

x | (x − x0) · p̂ � −sh
}) ⊆ 	2.

Thus we can apply Lemma 2.2 to u′
ε(t, x) := u(t, x; (x0 − sh p̂)ε−1, p̂) (with u

fromHypothesis H”(iii)) and uε(t, x) := uε(εt + t0−h, εx), which solve (4.1) and
satisfy uε(0, ·) � u′

ε(0, ·) on B2c′h/ε(
x0
ε

) for all small enough ε > 0. The lemma
and Hypothesis H”(iii) then show

lim sup
ε→0

inf
t∈((h−δ)/ε,(h+δ)/ε)& x∈Bδ/ε(x0/ε)

uε(t, x) � βK , p̂(α) (→ 0 as α → 0)

for some small δ > 0 and some compact K ⊆ {x · p̂ > 0} because c∗( p̂) < s, but
this means (t0 − δ, t0 + δ)× Bδ(x0) ⊆ 	2, contradicting (t0, x0) ∈ ∂	2. Therefore
χ[(0,∞)×Rd ]\	2 is indeed a viscosity subsolution to (1.9).

We next need to show that both χ	1 and χ[(0,∞)×Rd ]\	2 satisfy initial condition

(5.1). Let 	
j
t := {x | (t, x) ∈ 	 j } for t > 0 and j = 1, 2, and pick any

s ∈ (0, infe∈Sd−1 c∗(e)). (Note that Theorem 4.4 holds here because the second
claim in Hypothesis H’(ii) was only used in its proof to show that c∗(e) > 0, which
we assume in H”(iii). Therefore c∗ is continuous and hence infe∈Sd−1 c∗(e) > 0.)
An argument as in the last part of the proof that χ	1 is a supersolution, using
Lemma 2.2 and existence of strong front speeds in all directions, then shows that if
Br (x) ⊆ A for some x ∈ A and r > 0, then Br+sh(x) ⊆ 	1

h for all small enough
h > 0. Repeating this recursively and using that A is open we obtain Bst (A) ⊆ 	1

t
for all t > 0. This shows that

⋂
t>0 	1

t ⊇ A.
Next pick any s > ‖c∗‖∞. An argument as in the last part of the proof that

χ[(0,∞)×Rd ]\	2 is a subsolution, using Lemma 2.2 and the existence of strong ex-

clusive front speeds in all directions, then shows that if now Br (x) ⊆ R
d \ A,

then Br−sh(x) ⊆ 	2
h for all small enough h > 0. Repeating this recursively now

yields (Rd \ A)0st ⊆ 	2
t for all t > 0. This, together with

⋂
t>0 	1

t ⊇ A and
	1 ∩ 	2 = ∅, shows that in fact

⋂
t∈(0,T ) 	1

t = A for each T > 0 as well as

(Rd \ A)0st ⊆ 	2
t ⊆ R

d \ A for each t > 0.
The former claim means that (χ	1)∗ = χ	∗ where

	∗ := 	1 ∪
[
{0} × (A)0

]
,

while the latter means that (χ[(0,∞)×Rd ]\	2)∗ = χ	∗ where

	∗ := ([(0,∞) × R
d ] \ 	2) ∪ [{0} × A].

Hence both χ	1 and χ[(0,∞)×Rd ]\	2 satisfy (5.1).
Next we would like to apply Theorem 5.3(iii) to the subsolution χ	∗ and su-

persolution χ	∗ but we cannot do that because they are not appropriately ordered
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at t = 0. (In fact, 	1 ∩ 	2 = ∅ even yields χ	∗ � χ	∗ pointwise.) Nevertheless,
since we proved that (A ⊆) Bsh(A) ⊆ 	1

h for some s > 0 and all h > 0, we can use
the supersolution χh

	∗(t, x) := χ	∗(t +h, x) instead of χ	∗ . Then Theorem 5.3(iii)
yields for each h > 0 the second of the pointwise inequalities

χ	∗ � χ	∗ � χh
	∗ . (5.11)

Now, however, for any (T, y) ∈ (0,∞) × R
d we have

ˆ

[0,T ]×B1(y)

(χ	∗ − χ	∗) dxdt �
ˆ

[T −h,T ]×B1(y)

χh
	∗ dxdt → 0 as h → 0,

so χ	∗ = χ	∗ up to a set of measure 0. This of course means that [(0,∞) ×
R

d ] \ [	1 ∪ 	2] has zero measure and χ	1 is actually a solution to (1.9)+(5.1).
Theorem5.3(i,ii) now shows that it is the unique solution, and also that	1 = 	A,c∗

.
(We note that one can similarly show that u � χh

	∗ for h > 0 and any upper

semicontinuous subsolution u to (1.9)+(5.1), as well as χ	∗ � uh for h > 0 and
any lower semicontinuous supersolution u. This then yields an alternative proof of
uniqueness of the viscosity solution χ	1 .)

Since [(0,∞) × R
d ] \ [	1 ∪ 	2] contains no open balls, it must be contained

in ∂	2 ∪ ∂	1. And since definitions of 	1 and 	2 show that

lim
ε→0

uε(t, x) =
{
1 (t, x) ∈ 	1,

0 (t, x) ∈ 	2 ∪ [{0} × (Rd \ A)],
it remains to prove ∂	2 ∩ [(0,∞) × R

d ] ⊆ ∂	1 (note that {0} × A ⊆ ∂	1). But
if (t, x) ∈ ∂	2 for some t > 0, then (t, x) /∈ 	1 ∪ 	2 because the two sets are
open and disjoint. This means that χ	∗(t, x) = 1, so (5.11) shows (t + h, x) ∈ 	1

for all h > 0. It follows that (t, x) ∈ ∂	1, and the proof is finished. (In fact, (5.11)
implies ∂	2 ∩ [(0,∞) × R

d ] = ∂	1 ∩ [(0,∞) × R
d ].) ��

We can now also prove Theorem 1.4(iii).

Proof of Theorem 1.4(iii) and of the corresponding part of Theorem 1.12. The ar-
gument in the proof of Theorem 1.7(ii) above shows that there is a full measure set
of ω such that (1.1) (resp. (1.2)) with this ω has strong front speed c∗(e) in each
direction e ∈ S

d−1. Fix any such ω (then Hypothesis H” will be satisfied with the
word “exclusive” removed) and as in the proof of Theorem 5.4, we can assume
without loss of generality that yε = 0.

As in the proof of Theorem 5.4, consider 	1 from (5.8). Note that in that proof
we only used H”(i,ii), and the strong front speeds claim in H”(iii) to show that χ	1

is a (lower semicontinuous) viscosity supersolution to (1.9) and
⋂

t>0 	1
t ⊇ A.

Therefore this is still the case now, even though existence of exclusive front speeds
is not assumed.

Instead of exclusive front speeds, we will use convexity of A. Let

	3 :=
⋂

e∈Sd−1

{
(t, x) ∈ (0,∞) × R

d | x · e < sup
y∈∂ A

y · e + c∗(e)t
}

. (5.12)
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We now claim that it suffices to show that 	3 ⊆ 	A,c∗
.

Let us assume this is the case. From the hypotheses, the definition of strong
front speeds, and the comparison principle it follows that limsup* uε(t, x) = 0 for
each (t, x) in the set

([0,∞) × R
d) \ 	3 =

⋃
e∈Sd−1

{
(t, x) ∈ [0, ∞) × R

d | x · e > sup
y∈∂ A

y · e + c∗(e)t
}

.

(Note that 	3 ∩ [{0} × R
d ] = A.) It follows that 	1 ⊆ 	3 ⊆ 	A,c∗ . This and

	A,c∗ ∩ [{0} × R
d ] = A ⊆

⋂
t>0

	1
t

(the equality being from the definition of	A,c∗
and ‖c∗‖∞ < ∞) allow us to apply

the argument from the last proof (using time shifts by h > 0 and Theorem 5.3(iii))
to the subsolution χ	∗ with 	∗ := 	1 ∪ [{0} × (A)0] and the (super)solution χ	∗
with 	∗ := 	A,c∗ . This yields 	1 = 	3 = 	A,c∗

, finishing the proof.
It remains to prove 	3 ⊆ 	A,c∗

. Consider v0 defined by

v0(x) =
{
dist(x, ∂ A) x ∈ A,

−dist(x, ∂ A) x ∈ R
d \ A.

Thenv0 is uniformly continuous, concave, and satisfies (5.4). It follows that	A,c∗ =
{v > 0} for v the unique viscosity solution of (1.9) with v(0, ·) = v0. Since v0 is
concave and grows at most linearly, we can apply the Hopf–Lax formula for convex
initial data [10] to obtain that

−v(t, x) = sup
y∈Rd

inf
z∈Rd

{
−v0(z) + (x − z) · y − c∗

(
y

|y|
)

|y|t
}

.

Since v0|∂ A = 0, it follows that

v(t, x) ≥ inf
y∈Rd

sup
z∈∂ A

{
(z − x) · y + c∗

(
y

|y|
)

|y|t
}

.

Then, obviously, v(t, x) > 0 for each (t, x) ∈ (0,∞) × R
d such that

inf
e∈Sd−1

sup
z∈∂ A

{
(z − x) · e + c∗ (e) t

}
> 0, (5.13)

But compactness of Sd−1 and the continuity of c∗ show that these are precisely the
points from 	3, so indeed 	3 ⊆ 	A,c∗

. ��
It follows from the above that the set	A,c∗

is precisely the set of (t, x) satisfying
(5.13) when A is convex. Convexity shows that these are obviously those points
satisfying

inf
z∈∂ A

inf
e∈nz

{
(z − x) · e + c∗ (e) t

}
> 0,
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where nz is the set of all outer unit vectors for A at z ∈ ∂ A. When A is convex,
bounded, and C1 (so nz contains a single vector for each z), the characteristic
function of this set has also been proved to be the homogenization limit in the case
of periodic monostable reactions [1].
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