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Abstract

In this paper we rigorously investigate the emergence of defects on Nematic
Shells with a genus different from one. This phenomenon is related to a non-trivial
interplay between the topology of the shell and the alignment of the director field.
To this end, we consider a discrete XY system on the shell M , described by a
tangent vector field with unit norm sitting at the vertices of a triangulation of the
shell. Defects emerge when we let the mesh size of the triangulation go to zero,
namely in the discrete-to-continuum limit. In this paper we investigate the discrete-
to-continuum limit in terms of Γ -convergence in two different asymptotic regimes.
The first scaling promotes the appearance of a finite number of defects whose
charges are in accordance with the topology of shell M , via the Poincaré–Hopf
Theorem. The second scaling produces the so called Renormalized Energy that
governs the equilibrium of the configurations with defects.

1. Introduction

Nematic Liquid Crystals offer many intriguing and fascinating examples of a
non-trivial interplay between topology, geometry, partial differential equations and
physics (see the recent survey [7]). Interestingly, Liquid Crystals manifest several
visual representations of the underlying geometric constraints. For instance, the
word Nematic itself originates from the Greek word νημα (thread) and refers to
a particular type of thread-like topological defect that this type of Liquid Crystal
exhibits.

In this paper, we are interested in exploring these interplays for Nematic Shells.
ANematic Shell is a rigid colloidal particle with a typical dimension in the microm-
eter scale coated with a thin film of nematic liquid crystal whose molecular ori-
entation is subjected to a tangential anchoring. The study of these structures has
recently received a good deal of interest. As suggested byNelson [38], the interest
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in Nematic Shells is related to the possibility of using them as building blocks of
mesoatoms with a controllable valence.

From a mathematical point of view, a Nematic Shell is usually represented as a
two dimensional compact surface M (without boundary, for simplicity) embedded
in R

3. As it happens, for nematic liquid crystals occupying a domain in R
2 or in

R
3, the basic mathematical description is given in terms of a unit-norm vector field

named director, describing the local orientation of the rod-shaped molecules of the
crystal [51].Whendealingwith nematic shells, the local orientationof themolecules
described via a unit-norm tangent vector field n : M → R

3 with n(x) ∈ Tx M for
any x ∈ M , Tx M being the tangent plane at the point x [33,36–38,46,47,50].

The study of these structures offers a non-trivial interplay between the geometry
and the topology of the fixed substrate and the tangential anchoring constraint.
Indeed, as observed in [52] and [14], the liquid crystal equilibrium (and all its stable
configurations, in general) is the result of the competition between two driving
principles: on the one hand the minimization of the “curvature of the texture”
penalized by the elastic energy, and on the other the frustration due to constraints
of a geometrical and topological nature, imposed by anchoring the nematic to the
surface of the underlying particle.

Moreover, the interaction between the local orientation of the molecules and
the topology of the surface M (and possibly of the boundary conditions, if any)
can induce the formation of topological defects, that is regions of rapid changes in
the director field n (see the survey [8] for detailed references and recent analytical
results). It is important to note that point of defects play the role of hot spots for
the formation of the mesoatoms suggested by Nelson [38]. Thus understanding
the formation and, possibly, the energetics of defect configurations is extremely
significant for applications. These types of problems have been already discussed
in the physics community, see e.g. [53] and [14] and references therein.

When dealing with smooth vector fields, the classical Poincaré-Hopf Theorem
establishes a link between the existence of a continuous tangent vector field with
unit norm on a surface M and the topology of the surface itself. To have a clue as
to what happens for Nematic Shells, let us consider the simplest form of the energy
(see [33,38,50]):

E(v) := 1

2

∫
M
|Dv|2dS, (1)

where D is the covariant derivative on M . It turns out that the rigorous analysis of
nematic shells has to facewith possible weak forms of the Poincaré–Hopf Theorem.
In particular, introducing the “Sobolev set”

W 1,2
tan (M;S2) :=

{
v : M → R

3, |v(x)| = 1, v(x) ∈ Tx M for a.a. x ∈ M,

|Dv| ∈ L2(M)
}
,

we have that (see [47] and [18])

W 1,2
tan (M;S2) �= ∅ ⇔ χ(M) = 0, (2)
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where χ(M) is the Euler Characteristic of M . Consequently, the emergence of
defects is exactly related to the choice of the topology of M via the Euler charac-
teristic. To be more detailed (see [18]), the precise relation between the topology of
the surface and the topological charge of the defects is given by the Poincaré–Hopf
Theorem: if the unit-norm vector field v on M has singularities of degree di located
at the point xi for i = 1, . . . , k, then

k∑
i=1

di = χ(M).

The goal of this paper is to understand the emergence of defects for shells of
genus different fromone (that is, non zero Euler Characteristic) and their energetics.
The defect generation is related to the impossibility, for shells with χ �= 0, of
supporting a tangent, unit-norm vector field with the Sobolev regularity above.
Thus, a possible strategy would be to relax one the above constraints, for instance
the unit-norm constraint as in the Ginzburg–Landau theory. On a Euclidean domain
Ω ⊆ R

d , d ≥ 2, the Ginzburg–Landau functional reads

EGL
ε (u) :=

∫
Ω

{
1

2
|∇u|2 + 1

4ε2

(
1− |u|2

)2}
,

and is defined for u ∈ W 1,2(Ω, C), ε > 0 being a small parameter. The asymptotic
behaviour of Ginzburg–Landau minimizers as ε → 0, in case Ω is a Euclidean
domain, has been extensively addressed (see, for instance, [12,27,29,40,41]).
Ginzburg–Landau functionals for complex-valued maps defined on a surface have
been considered by Baraket [9], who studied the asymptotic behaviour of min-
imizers in the singular limit ε → 0, and by Contreras and Sternberg [20], who
worked for fixed ε > 0 and derived the model as a thin-film limit of the three-
dimensional Ginzburg–Landau functional, via Γ -convergence. Qing [39] studied
a Ginzburg–Landau functional depending on (u, A), where u is a section of an
arbitrary line bundle on a closed Riemann surface M (in particular, u may be a
tangent field on M) and A is a connection on that bundle; the functional in [39]
includes a dependence on the curvature of A. Recently, Ignat and Jerrard [25]
studied the singular limit of a Ginzburg–Landau energy for tangent vector fields on
a closed surface, in the framework of Γ -convergence.

In this paper, we choose another point of view and instead of a continuous
model we rather consider a discrete one with the molecules sitting at the vertices
of a triangular mesh approximating the surface M . One of the advantages of this
approach is that it paves the way for a computational analysis in terms of finite
elements.

The model we consider here is a variant of the well-known XY -spin model,
which is widely regarded as a prototypical example of a discrete spin system where
phase transitions that are mediated by topological defects occur. Such phase tran-
sitions were first identified by Kosterlitz and Thouless [31] (also based on
previous work by Berezinskii [11]), who were awarded the 2016 Nobel Prize for
Physics, together with Haldane, in recognition of their discoveries on topologi-
cal phases of matter. XY -models have also attracted attention in the mathematical
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community; see, for instance, [1,2,16], where the discrete-to-continuum limit of
such models, and their connection with the continuum Ginzburg–Landau theory, is
explored. The aforementioned papers are concerned with the study of “flat” situa-
tions, i.e. the model is set on a domain Ω ⊆ R

2; the dynamics for an XY -model
on a “curved” torus has been numerically explored e.g. in [48], via a Monte-Carlo
approach.

In this paper, we aim to address the mathematical analysis of an XY -model
on surfaces. More precisely, given a closed surface M ⊆ R

3 with χ(M) �= 0, we
consider a family of triangulations Tε of M with the vertices i ∈ T 0

ε lying on M
and with mesh size ε, i.e. ε = maxT∈Tε

diam(T ) (see Section 3 for the details).
Any point i ∈ T 0

ε is occupied by a unit-norm tangent vector vε(i) ∈ Ti M . Our
energy functional takes the form

XYε(vε) := 1

2

∑
i �= j∈T 0

ε

κ i j
ε |vε(i)− vε( j)|2 ,

where the coefficients κ
i j
ε are the entries of the stiffness matrix of M , that is,

the finite-element discretization of the Laplace-Beltrami operator (see (H3) for
the definition). Our discrete energy is effectively induced by nearest-neighbours
interaction, as the coefficient κ i j

ε = 0, unless i , j are adjacent vertices.
As we will see later on in this paper, the XYε energy is intimately related to

the Dirichlet energy of the piece wise interpolation of the discrete vectors vε(i).
Consequently, when ε → 0 we expect that the behavior of XYε is dictated by (2),
and a uniform bound on the energy of a minimizer can hold if and only if the Euler
Characteristic is equal to zero. It is important to note that the discrete (tangent) vec-
tors v(i) are identified with tangent vectors in R

3 and thus the difference appearing
in the definition of the energy is exactly a difference between vectors in R

3. When
χ(M) = 0, this fact brings important consequences in the distorsion effect in the
limit energy (see Proposition 1) and in particular produces a macroscopic energy
that is capable of describing also the extrinsic effects.

When χ(M) �= 0, configurations with defects emerge when we let ε → 0,
namely in the discrete-to-continuum limit. Thus, the very goal of this paper is to
analyze this limit in terms of Γ -convergence, in the spirit of [1,2]. As is typical
in Γ -convergence results, one obtains possibly different limits according to the
chosen scaling of the energy.

Our first main result (see Theorem A) exactly relates the emergence of defects
with the topology of the shell M and is expressed in terms of the Γ -convergence (in
a suitable topology) of XYε(·)| log ε| . Following the flat case (see [1,2,29]), we introduce
the so-called vorticity measure μ̂ε(vε) of a discrete field vε, which is a kind of
discrete notion of the Jacobian. This quantity captures all the relevant “topological
information” of vε. For sequences (vε)ε that satisfy a logarithmic energy bound
(e.g., minimizers), we show that μ̂ε(vε) converges, in a suitable topology, to a
measure of the form 2π

∑K
i=1 diδxi −GdS, where the points xi ∈ M correspond to

the position of the defects, the coefficients di ∈ Z are the topological charges, G is
the Gauss curvature and dS is the area element on M . The proof follows the steps
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of analogous results in the Ginzburg–Landau literature (see, in particular, [27,29]
for the continuous setting and [1,2] for the discrete XY -setting).

Our second main result (see Theorem B) is on the energetics of configura-
tions with defects. More precisely, we investigate the Γ -convergence of XYε(·)−
πK | log ε|,whereK is the total variation of themeasure

∑K
i=1 diδxi when |di | = 1

for all i = 1, . . . ,K . What emerges in the Γ -limit is the so called Renormalized
Energy W that has been first studied in a rigorous way for the Ginzburg–Landau
theory by Brezis, Bethuel and Hélein [12]. The literature on this topic is very
vast (see [3] and references therein) and includes results for the discrete XY model
on the plane, see [2]. In the Euclidean situation this energy depends on the position
of the singularities via the Green function of the laplacian on R

2. When dealing
with a curved substrate M , one may expects that the curvature properties of M
intervene in the limit (differently from the zeroth order Γ -convergence in which
only the topological properties of M come into play). In particular, we expect that
the curvature of M (more precisely the Gaussian curvature) enters in the expression
of the Renormalized Energy and acts as a further geometric driving principle in the
location of defects. This intuition is indeed true, as the analysis in [53] shows for
a corrugated plane, that is the graph of a gaussian function. For this specific sur-
face Vitelli and Nelson [53] show that the Renormalized Energy is given by a
sum of different terms including the Green function of the Laplace Beltrami on the
surface and contributions coming from the Gaussian curvature of M . Interestingly,
Vitelli and Nelson exhibit a term in the Renormalized energy given by interaction
between the charge of the defects and the curvature of M . Instead, our Theo-
rem B deals with a compact surface M and rigorously prove the Γ -convergence of
XYε(·)− πK | log ε|, to a Renormalized Energy that takes into account also how
M sits in the three dimensional space. In fact, W is given by the sum of a purely
intrinsic part and and extrinsic part related with the shape operator of M .

As a first consequence of our result,we have the following asymptotic expansion
for the minima of XYε (thanks to classical results in Γ -convergence):

min XYε = π |χ(M)|| log ε| +W(v)+
|χ(M)|∑
i=1

γ (xi )+ oε→0(1), (3)

where v ∈ W 1,2
tan,loc(M \ {x1, . . . , x|χ(M)|}; S

2) is the “continuum limit” of the
sequence of discrete minimizers and γ (xi ) is a positive quantity that takes into
account the energy located in the core of the defects xi of v. It is interesting to note
that

∑|χ(M)|
i=1 γ (xi ) has memory of the discrete structure around any singularity

xi in the sense that γ (xi ) will depend on the (limit) triangulation around each
defect xi . This is a purely discrete phenomenon which is essentially due to the fact
that for a curved shell the vertices of the triangulation do not necessarily sit on a
structured lattice. Another striking difference from the planar case, both continuous
and discrete (see [12] and [2]), and from the curved continuous case (see [25]), is
that the core energy γ (xi ) depends on the singularity xi .

It is important to note that the Renormalized energywe introduce in this paper is
defined on a proper class of vector fields (see (17), (18) in the present paper and [2,
Eq. 4.21]). In particular, our choice is different from the classical choice of Brezis,
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Bethuel andHélein [12] that defines the Renormalized Energy as a functional of
the configuration and of the charge of the singularities. However, the two definitions
are indeed intimately linked (at least on the planar case, see [2, Eq. 4.23], and for the
intrinsic part of the Rernomalized Energy, see (21)) by a minimization procedure.
For a general surface M , the form of the Renormalized Energy W is rather implicit
and, as expected, one should work down its expression for any given surface M .
In analogy with the well established planar case and guided by the computation in
[53] for the corrugated plane, we expect in particular that the Renormalized energy
should comprise a term related with the Green function of the Laplace Beltrami
operator on M whose explicit expression heavily depends on the form of M .

Even if our analysis was motivated by Nematic Shells, the study of the interplay
between the topological properties of the domain and the possible formation of
singularities with infinite energy is common to other models as the emergence of
(topological) defects is ubiquitous in nature (see [30] and references therein). In
particular, their topological origin often give the system configurations exhibiting
defects a universal feature. Consequently, the issues we aim to address have a more
general flavors and are independent of the particular system. Moreover, energy
functionals such as (1) are commonly used also to model Amphiphilic molecules
exhibiting an hexatic bond orientational order [15,35]. Thus, the horizon of our
analysis and results is much wider than just Nematic Shells.

During the preparation of the present paper, we were informed that R. Ignat
and R. Jerrard (see [25] and [26]) were obtaining, independently from us, similar
results (among the others, the Renormalized Energy) for a Ginzburg–Landau type
functional on a two dimensional surface M ⊆ R

3.

2. Differential Geometry Notation

In this section we briefly introduce the differential geometry formalism that we
use in the paper. We refer to [23] and [32] for basic references on this subject.

Let M ⊆ R
3 be a smooth, compact, connected surface without boundary,

oriented by the choice of a smooth, unit normal field γ : M → R
3. We denote

by ω the volume form induced by this choice of the orientation and by dS the
area element on M , i.e., the positive Borel measure induced by ω. We let G be
the Gauss curvature of M . By abuse of notation, we identify G with the Borel
measure GdS and, if no confusion is possible, we write G in place of GdS. For
any point x ∈ M , we let Tx M denote the tangent plane at x and we dnote with TM
the tangent bundle of M , namely the disjoint union

⊔
x∈M Tx M . We denote with

π : TM → M the smooth map that assigns to any tangent vector its application
point. A vector field v on an open neighbourhood of A ⊂ M is a section of TM ,
namely a map v : A → TM for which π ◦ v is the identity on M . Let U ⊆ R

3 be
an open tubular neighbourhood of M of thickness h such that

h ≤ min
x∈M

(
max(|κ1(x)|, |κ2(x)|)

)−1
,

where κ1 and κ2 are the two principal curvatures of M . For a such a tubular neigh-
bourhood the nearest-point projection P : U → M is well-defined and smooth.
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Let ∇ be the connection with respect to the standard metric of R
3, i.e., given

two smooth vector fields Y and X in R
3 (identified with its tangent space), ∇XY is

the vector field whose components are the directional derivatives of the components
of Y in the direction X . We denote with Dvu the covariant derivative of u in the
direction v (u and v are smooth tangent vector fields in M), with respect to the Levi
Civita (or Riemannian) connection D of the metric g on M .

Now, if u and v are extended arbitrarily to smooth vector fields on R
3, we have

the Gauss Formula:

∇vu = Dvu+ 〈dγ [u], v〉γ . (4)

This decomposition is orthogonal, thus it holds that

|∇u|2 = |Du|2 + |dγ [u]|2. (5)

Beside the covariant derivative, we introduce another differential operator for
vector fields on M , which also takes into account the way that  embeds in R

3.
Let u be a smooth vector field on M . We extend it smoothly to a vector field ũ on
R
3 and we denote its standard gradient by ∇ũ on R

3. For x ∈ M , we define

∇su(x) := ∇ũ(x)PM (x), (6)

where PM (x) := (Id−γ ⊗ γ )(x) is the orthogonal projection on Tx M . In other
words, ∇s is the restriction of the standard derivative in R

3 to directions that are
tangent to M . Note that ∇su is well-defined, as it does not depend on the particular
extension ũ. The object just defined is a smooth mapping ∇su : M → R

3×3, or
equivalently ∇su : M → L(R3, R

3) (the space of linear continuous operators on
R
3). In general, ∇su �= Du = PM (∇u) since the matrix product is non commuta-

tive. Moreover, thanks to (4) and (5) it holds that

|∇su|2 = |Du|2 + |dγ [u]|2. (7)

The difference between the covariant (intrinsic) differentiation D and the (extrinsic)
differentiation ∇s is evident when considering M = S

1 × [0, 1], namely M is the
lateral surface of the cylinder with radius one and height one and with the axis
on the z axis in R

3. Consider the parametrization x(θ, h) = (cos θ, sin θ, h), with
θ ∈ [0, 2π ] andh ∈ (0, 1) and the tangent vector fieldu = ∂x

∂θ
= (− sin θ, cos θ, 0).

It is a standard computation to show that u is a parallel vector field, that is Du ≡ 0.
On the other hand, there holds dγ [u] = u, which gives (see (7)) ∇su �= 0.

Note that, by identifying u with a map u = (u1, u2, u3) : M → R
3, the k-th

row of thematrix representing∇su coincides with the Riemannian gradient (that we
still denote with ∇s) of uk . In other words, while D is a connection on the tangent
bundle TM , ∇s arises naturally as a connection on the trivial bundle M × R

3.
Let x0 ∈ M and let v be a vector field defined in a neighbourhood of x0 which

is continuous and satisfies v(x) �= 0 for any x in a neighbourhood of x0 except,
possibly, at x0. By taking local coordinates ϕ : Bδ ⊆ R

2 → M with ϕ(0) =
x0, we can identify v with a map ϕ∗v : Bδ ⊆ R

2 → R
2, namely ϕ∗v(z) :=
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〈dϕ−1(ϕ(z)), v(ϕ(z))〉 for z ∈ Bδ . We define the local index ind(v, x0) as the
topological degree of the map

ϕ∗v
|ϕ∗v| |∂Bδ

: ∂Bδ � S
1 → S

1.

It is easily checked that ind(v, x0) does not depend on the choice of δ nor ϕ. The
index is well-defined even if v is a field of Sobolev regularity W 1,2 because the
restriction of ϕ∗v to the circle ∂Bδ is continuous for a.e. δ, thanks to Fubini theorem
and Sobolev embedding. Given an open set E ⊆ M and a continuous field v that
has finitely many zeros inside E , we let ind(v, E) :=∑

x∈E : v(x)=0 ind(v, x). By
an approximation argument, ind(v, E) can then be defined for any field v ∈ W 1,2

with ess inf∂E |v| > 0. For further details on the construction and properties of the
index, we refer the reader to, e.g., [18].

3. The Discrete Model and Main Results

In this section we introduce the discrete setting we will use in the rest of the
paper and we state our main results. This Section is organized as follows. First
of all, we will introduce the discretization of the surface M . As the mathematical
analysis of (1) bears some analogy with the analysis of harmonic maps (see [47])
the discretization of the surface is based on the formalism developed in [10]. Then,
we define the starting point of our analysis, namely the discrete energy (XYε).
Finally, we discuss the (simpler) case of defects-free textures and then we state
our Main results on the emergence of defects (Theorem A) and on their energetics
(Theorem B). To ease the presentaion, we will briefly introduce two fundamental
objects, namely a discrete version of the jacobian and the Renormalized Energy.
Their rigorous definitions together with their properties will be postponed to the
forthcoming Subsections 4.5 and 6.1.

3.1. Triangulations of a Surface

A triangulation is a 2-dimensional simplicial complex, that is, a finite collec-
tion T of non-degenerate affine triangles T ⊆ R

3 with the following property:
the intersection of any two triangles T , T ′ ∈ T is either empty or a common
subsimplex of T , T ′. The sets of vertices and edges of T will be denoted by T 0,
T 1, respectively. The size of a triangulation T is the quantity maxT∈T diam(T ).
A triangulation of a surface M is a triangulation T such that the set ∪T∈T T is
homeomorphic to M .

For a fixed ε0 > 0 and ε ∈ (0, ε0], we let Tε be a triangulation of M of
size ε. For our purposes, it is not enough to require that the set M̂ε := ∪T∈Tε

T be
homeomorphic toM ; throughout the paper, wewill assume that a stronger condition
is satisfied. Recall that the nearest-point projection P onto M is well-defined and
smooth in an open neighbourhood U ⊆ M .
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(H1) For any ε ∈ (0, ε0], T 0
ε ⊆ M , M̂ε ⊆ U and P̂ε := P|M̂ε

: M̂ε → M has a
Lipschitz inverse. Moreover, there exists an ε-independent constant Λ such
that Lip(P̂ε)+ Lip(P̂−1ε ) ≤ Λ for any ε.

This condition is stronger than just requiring M , M̂ε to be topologically equiva-
lent. (For instance, for small ε > 0 the tetrahedron of vertices (sin ε, 0, cos ε),
(− 1

2 sin ε,
√
3
2 sin ε, cos ε), (− 1

2 sin ε, −
√
3
2 sin ε, cos ε), (0, 0, 1) defines a trian-

gulation of the unit sphere which does not satisfy (H1).) However, (H1) is satisfied
in numerically relevant examples.

Given an open set Ω ⊆ Mε, we define

Ωε :=
⋃

T∈Tε : P(T )⊆Ω

P(T ) (8)

so that Ωε ⊆ M . Moreover, we denote with ∂εΩ the discrete boundary of Ω ,
namely

∂εΩ := ∂Ωε ∩ T 0
ε . (9)

Given a piecewise-smooth function u : M̂ε → R
k , we denote by∇εu the restriction

of the derivative ∇u to directions that lie in the triangles of M̂ε.
In addition to (H1), we assume that the family of triangulations (Tε) satisfies

the following conditions:

(H2) Let Tref ⊆ R
2 be a reference triangle of vertices (0, 0), (1, 0) and (0, 1).

There exists a constant Λ > 0 such that, for any ε ∈ (0, ε0] and any T ∈ Tε,
the (unique) affine bijection φ : Tref → T satisfies

Lip(φ) ≤ Λε, Lip(φ−1) ≤ Λε−1.

Here Lip(φ) denotes the Lipschitz constant of φ, Lip(φ) := supx �=y |x −
y|−1|φ(x)− φ(y)|.

(H3) For any ε ∈ (0, ε0] and any i , j ∈ T 0
ε with i �= j , there holds

κ i j
ε := −

∫
M̂ε

∇εϕ̂ε,i · ∇εϕ̂ε, j dS ≥ 0,

where the hat function ϕ̂ε,i is the uniquepiecewise-affine, continuous function
M̂ε → R such that ϕ̂ε,i ( j) = δi j for any j ∈ T 0

ε .

Remark 1. (H2) is equivalent to the following condition: there exists a con-
stant Λ > 0 such that, for any ε ∈ (0, ε0] and any triangle T ∈ Tε, we have

Λ−1ε ≤ diam(T ) ≤ Λε and αmin(T ) ≥ Λ−1,

where αmin(T ) stands for the minimum of the angles of T . Meshes that satisfy this
condition are called quasi-uniform in the numerical literature. Since themanifoldM
is compact and smooth, and hence has bounded curvature, αmin(T ) ≥ Λ−1 implies
that the number of neighbours of a given vertex is uniformly bounded with respect
to ε.
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Remark 2. A sufficient condition for (H3) is the following: for any pair of trian-
gles T1, T2 ∈ Tε that share a common edge e, let αi be the angle in Ti opposite
to e (for i ∈ {1, 2}). If α1 + α2 ≤ π for every edge e as above, then (H3) holds
(see e.g. [10, Lemma 1.4.1]). Triangular meshes that satisfy (H3) are called weakly
acute.

Remark 3. If Tε satisfies (H3) and if ϕ̂, τ̂ ∈ C(M̂ε, R) are piecewise-affine func-
tions on the triangles of Tε, then

∫
M̂ε

∇εϕ̂ · ∇ετ̂ dS =
∑

i, j∈T 0
ε

κ i j
ε (ϕ̂(i)− ϕ̂( j)) (̂τ (i)− τ̂ ( j)) . (10)

Remark 4. There are algorithmic ways to construct triangulations that are quasi-
uniform, weakly acute and satisfy (H1), for instance, Delaunay meshes (see e.g. [4,
49]).

Besides Hypotheses (H1)–(H3), for the validity of Theorem B, we will need a
refined control on the triangulation Tε around the singularities (see Proposition 5)
in the limit ε → 0. At a minimum, we require that our triangulation Tε is somehow
scale invariant. We express this requirement as follows: fix x ∈ M and let δ > 0
be smaller than the injectivity radius of M . Using geodesic coordinates, ϕ : Bδ ⊆
Tx M � R

2 → M such thatϕ(0) = x̄ , we pullTε back and define a triangulationT ε

on Bδ ⊆ R
2. (The set of vertices of T ε is ϕ−1(Bδ(x̄)∩T 0

ε ); three vertices in Tε span
a triangle in T ε if and only if their images via ϕ do.) We scale the triangulation T ε

of a factor 1/ε and define a triangulation on Bδ/ε ⊆ R
2, namely

Sε :=
{
1

ε
T : T ∈ T ε

}
.

Given another triangulation S on R
2, we denote by S|Bδ/ε the collection of trian-

gles T ∈ S such that T ⊆ Bδ/ε. We express the distance between Sε and S|Bδ/ε

as

d(Sε, S|Bδ/ε ) := inf
φ
max
i∈S0

ε

|i − φ(i)|,

where the infimum is taken over all simplicial isomorphisms φ from Sε to S|Bδ/ε

(that is, piecewise-affine maps that preserves the combinatorial structure of the
mesh; see Section 4.1 for more details). In addition to (H1), (H2) and (H3), for the
validity of Theorem B we assume that the following condition holds:

(H4) For any x ∈ M there exists a triangulation S = S(x) on R
2 such that, for

any δ > 0 smaller than the injectivity radius of M , it holds that

lim
ε↘0

d(Sε, S|Bδ/ε ) |log ε| = 0.

This assumption is only used in the arguments of Section 6.2, and in particular in
the proof of Proposition 5.
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Fig. 1. Left: a uniform triangulation by isosceles right triangles on the boundary of a cube.
Right: the same triangulation is mapped to a sphere, by renormalizing the coordinates of
each vertex

Remark 5. The construction of a countable sequence of triangulations (Tεk )k∈N

satisfying (H4), as well as (H1)–(H3), is illustrated in Figure 1, in case M is the
sphere of radius

√
3 centred at the origin. We take a cube Q inscribed in the sphere,

and subdivide each face into a square grid with spacing εk := 2/k. This induces
a triangulation on ∂Q by isosceles right triangles, whose restriction to each face
satisfies (H4). We pull back this triangulation to the sphere using the Lipschitz
map x ∈ ∂Q �→ x/|x |. A similar construction can be carried out for any closed
surfaceM by noting thatM is bilipschitz equivalent to the boundary of a polyhedron
whose faces are finite unions of squares. In the left part of Figure 2 we present
another triangulation of the sphere that satisfy our set of hypothesis (H1)–(H4). A
triangulation that does not satisfies (H4) is illustrated in the Figure 2 on the right.

The main characters of our analysis will be unit-norm tangent discrete vector
fields on M ∩ T 0

ε , namely maps

vε : T 0
ε → R

3 s.t. |v| = 1 and vε(i) · γ (i) = 0 for any i ∈ T 0
ε . (11)

We will denote with T(Tε; S
2) the space of such discrete vector fields. Given

vε ∈ T(Tε; S
2), v̂ε : M̂ε → R

3 denotes the piecewise-affine interpolant of vε.
Note that v̂ε can be represented using the basis functions ϕ̂ε,i in this way:

v̂ε =
∑
j∈T 0

ε

vε( j)ϕ̂ε, j . (12)

In a similar way, γ̂ ε denotes the piecewise-affine interpolant of γ restricted to T 0
ε .

Remark 6. In computational applications, it might be convenient to define the set
of discrete vector fields (11) using some numerical approximation γ ε of γ , instead
of γ itself. The arguments in this paper could easily be adapted to cover this case
as well, provided that the approximation γ ε satisfies an a priori bound such as

sup
i∈T 0

ε

∣∣γ ε(i)− γ (i)
∣∣ ≤ Cε.
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Fig. 2. Left: an icosphere. This triangulation is obtained by subdividing the faces of a regular
icosahedron into smaller triangles, then projecting the vertices to the sphere. By refining
this construction, one obtains a sequence of triangulations that satisfies (H1)–(H4). Right:
an UV-sphere, obtained by mapping a uniform grid on the square via spherical coordinates.
The meshes produced by this method do not satisfy (H4) nor (H2), because the number of
neighbours of the north and south poles blows up as the mesh is refined.

3.2. The Discrete Energy

Given a discrete field vε ∈ T(Tε, S
2), we consider the discrete XY-energy

XYε(vε) := 1

2

∑
i �= j∈T 0

ε

κ i j
ε |vε(i)− vε( j)|2 , (XYε)

where the κ
i j
ε ’s are the coefficients of the stiffness matrix, defined in (H3). Because

the support of the hat function ϕ̂ε,i only intersects the triangles that are adjacent
to i , we have κ

i j
ε = 0 if the vertices i , j are not adjacent. Hence, the XY-energy is

indeed defined by a nearest-neighbours interaction. Moreover, due to (12) we have

XYε(vε) = 1

2

∫
M̂ε

|∇εv̂ε|2 dS. (13)

3.3. The Defect-Free Case

Before addressing the problem of generation of defects, it is important to under-
stand what happens for a shell M with χ(M) = 0. In this case, the topology of
M does not force the formation of singularities as the Poincaré–Hopf Theorem
admits configurations with di = 0 for any i . Moreover, the results in [47] and [18]
guarantee that the set

W 1,2
tan (M;S2) :=

{
v : M → R

3, |v(x)| = 1, v(x) ∈ Tx M for a.a. x ∈ M

|Dv| ∈ L2(M)
}

is non-empty. Consequently, for a compact surface without boundary and χ(M) =
0, the following energy Eextr is well defined:
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Eextr(v) :=
∫
M
e(v)dS, e(v) := |Dv|2 + 1

2
|dγ [v]|2. (14)

When v is of unit norm, this energy governs the statics of a Nematic Shell (of genus
1) in the one constant approximation when one takes into account also extrinsic
effects (see [36,37] and [47]). Indeed, in a manner different to (1), this energy
includes the term with dγ that takes into account how the surface M sits in the
tridimensional space R

3. We refer to the papers [36,37] and [47] for a detailed
analysis of Eextr and for a discussions about the differences in selecting minimizers
between (1) and (14). Interestingly, the energy (14) emerges as the discrete to
continuum limit of the energies XYε. In fact, suppose M is a compact surface
without boundary with χ(M) = 0. Let Tε be a triangulation of M satisfying the
conditions (H1), (H2) and (H3). Now, given a smooth vector field v of unit norm
we consider the discrete vector field given by the restriction of v to the nodes of
the triangulation, namely vε(i) := v(i) for i ∈ T ε

0 . It is not difficult to realize that

lim
ε→0

XYε(vε) = lim
ε→0

1

2

∫
M̂ε

|∇εv̂ε|2 dS = 1

2

∫
M
|∇sv|2dS = Eextr(v),

where we used the fact that the directions tangent to M̂ε uniformly converge to
directions that are tangent to M together with (7). This discrete to continuum limit
can be actually made rigorous in terms of Γ -convergence. More precisely, we have

Proposition 1. Suppose that the assumptions (H1), (H2) and (H3) are satisfied.
Then, XYε Γ -converges with respect to weak convergence of L2(M;R3) to the
functional

Eextr(v) :=
{

1
2

∫
M |Dv|2 + |dγ [v]|2dS, if v ∈ W 1,2

tan (M;S2)

+∞, otherwise in L2(M;R3).

The proof of this Proposition follows routine arguments in the analysis of dis-
crete to continuum limits. Therefore we skip it and we refer to [1,16,17] and [45,
Theorem III.2].

3.4. Configuration with Defects: The Zeroth Order Γ -Limit

Towards the analysis of defects, we briefly introduce the important notion of
discrete vorticitymeasure. Thismeasurewill be a kind of discrete notion of jacobian
for the discrete vector field vε in T(Tε; S

2). As it happens, for the discrete flat case
and for Ginzburg Landau case, the vorticitymeasure of the sequence vε will provide
all the information regarding the emergence of the defects in the ε ↘ 0 limit. Even
if we will precisely introduce this measure in the next Subsection 4.5, we briefly
present it now for the sake of clarity. Given a triangle T ∈ Tε we let (i0, i1, i2) be
the vertices of T , sorted in counter-clockwise order with respect to the orientation
induced by γ , and let i3 := i0. For any triangle T , μ̂ε(vε) T is supported on the
barycenter of T and

μ̂ε(vε)[T ] :=
2∑

k=0

(
γ (ik)+ γ (ik+1)

2
, vε(ik)× vε(ik+1)

)
. (15)
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Our notion of a vorticity measure differs from other ones that appear in the math-
ematical literature on the XY-model (see e.g. [2]), in that it is not integer-valued.
However, it is possible to define a measure that approximates μ̂ε(vε), in a suitable
sense, and takes integer values, thus being closer to the approach of [2] (see Sec-
tion 4.5). In the limit ε → 0, the appearance of defects is related to a measure
concentrated on a finite number of points {x1, . . . , xk} in M . We will denote by X
the set of measures on M of the form

μ =
k∑

i=1
diδxi ,

where k ∈ N, di ∈ Z are such that
∑

i di = χ(M) and xi ∈ M
for i ∈ {1, . . . , k}. The space X will be endowed with the topology of
flat convergence, that is, the topology induced by the dual norm of Lipschitz
functions.

Here is the precise statement of the first main result of the paper:

Theorem A. Suppose that the assumptions (H1), (H2) and (H3) are satisfied. Then,
the following results hold:

(i) Compactness. If (vε) is a sequence in T(Tε; S
2) that satisfies the energy

bound

XYε(vε) ≤ Λ| log ε| (H)

then, up to subsequences, μ̂ε(vε)
flat−→ 2πμ− GdS for some μ ∈ X;

(ii) Γ -liminf inequality.Let vε ∈ T(Tε; S
2) be such that μ̂ε(vε)

flat−→ 2πμ−GdS
for some μ ∈ X. Then, there holds

lim inf
ε→0

XYε(vε)

| log ε| ≥ π |μ|(M);

(iii) Γ -limsup inequality. For any measure μ ∈ X there exists a sequence (vε)

in T(Tε; S
2) such that μ̂ε(vε)

flat−→ 2πμ− GdS and

lim sup
ε→0

XYε(vε)

| log ε| ≤ π |μ|(M).

This Theorem will be proved in the next Section 5 (see Proposition 4). In this
Proposition we will actually prove a slightly stronger result, where the Γ -liminf
inequality (ii) is replaced by (a local version of)

XYε(vε) ≥ π |μ|(M)| log ε| − C.
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3.5. Location and Energetics of Defects: The Renormalized Energy and the Core
Energy

Besides discussing the generation of defects, we are interested in understanding
the energetics of defects configurations and, consequently, locate the defects on the
surface M . This program is achieved by the analysis of the so called Renormalized
Energy W introduced by Brezis, Bethuel and Hélein for the Ginzburg Landau
equation in [12]. In this paper, we obtain the Rernomalized Energy as the (first
order) Γ -limit of the discrete energy XYε as in [2,3,41] for the Euclidean case.

The Renormalized Energy emerges as the Γ -limit with respect to the strong L2

convergence of the following rescaled energy

XYε(vε)− πK | log ε|, (16)

whereK is a positive, even integer such that |χ(M)| ≤ K . Now, we introduce the
concept of Renormalized Energy. Following [2], we introduce the following class
of vector fields in M : VK is the set of measurable fields v, and M → S

2 such that
there exist (xi )Ki=1 ∈ MK such that

v ∈ W 1,2
tan,loc

⎛
⎝M \

K⋃
i=1

xi ; S
2

⎞
⎠, |ind(v, xi )| = 1 for any i = 1, . . . ,K .

(17)

We define the intrinsic Renormalized Energy as (see [2, Eq. (4.22)]):

Wintr(v) := lim
δ→0

(
1

2

∫
Mδ

|Dv|2dS −K π | log δ|
)

for v ∈ VK , (18)

where, given v ∈ VK and δ > 0 so small that the balls Bδ(xi ) are pairwise
disjoint, we have set Mδ := M \⋃K

i=1 Bδ(xi ). As we will see in Subsection 6.1,
the functional Wintr is well defined.

Now, assume that v ∈ VK . Since, in particular, |v| = 1, we have

|dγ [v]| ≤ C a.e. in M, (19)

where the constant C depends only on M . Thus, the following quantity exists in
[−∞,+∞]:

W(v) := Wintr(v)+ 1

2

∫
M
|dγ [v]|2dS. (20)

W will be called the Renormalized Energy. Note that W contains both an intrinsic
and an extrinsic term but, due to (19), the latter is always finite. This shows, as
expected, that the concentration of the energy is due to the Dirichlet part of Eextr
in (14).

For any v ∈ VK such that v ∈ W 1,2
loc (M \ ∪i xi ), we consider the mea-

sure
∑

i ind(v, xi )δxi − G dS, denoted (with a slight abuse of notation) �dj (v).
If W(v) < +∞, it turns out that �dj (v) coincides with the Jacobian determinant
of v, in the sense of distributions (see Lemmas 6 and 15).
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Remark 7. The Renormalized Energy on simply-connected planar domains, as
defined by Bethuel, Brezis and Hélein [12], is a function of the locations of
the defects, x = (xi )Ki=1, and their charge d = (di )Ki=1. In the curved setting, the

Renormalized Energy also depends on the so-called flux integrals of v, (Φk)
2g
k=1 ∈

(R/2πZ)2g, where g = 1−χ(M)/2 is the genus of M (see [25, Section 2]). These
quantities need to be introduced, to compensate for the lack of simple connectedness
of M . The relation between the Renormalized EnergyW as defined in [25] and ours
is the following (compare with [2, Eq. (4.23)] for the planar case):

inf
Φ∈L(x, d)

W (x, d, Φ) = inf

{
Wintr(v) : v ∈ VK , �dj (v) = 2π

K∑
i=1

diδxi − G

}
,

(21)

where L(x, d) denotes the set of admissible fluxes, given (x, d). The proof of this
property is analogous to the proof of the corresponding relation in Euclidean setting,
therefore we skip it. Interestingly, the quantity W can be expressed in terms of the
Green function for the Laplace-Beltrami operator of M ; see [25, Proposition 2].

If we assume that Hypothesis (H4) also holds, then for each singularity xi we
can construct the so-called core energy, a positive number that takes into account
the energy in the core of the defect at xi . For the sake of clarity, we briefly introduce
the core energy it here and we refer to Section 6.2 (in particular Proposition 5, for
the definition) for the details. We fix a point x̄ ∈ M and a positive δ smaller than
the injectivity radius of M . Then, for ε > 0, δ > 0, we set

γx̄ (ε, δ) := min
v∈T(Tε,S2)

{
1

2

∫
B̂δ(x̄)ε

|∇εv̂|2 dS : v = g on ∂εBδ(x̄)

}
. (22)

The boundary condition g is a minimizer with index one of the energy (14) in the
anulus of radii δ/2 and δ centered in x̄ . In the Euclidean case (see [2]), g is, up to
rotations, a hedge-hog. In the formula ahead,

B̂δ(x̄)ε :=
⋃

P(T )⊆Bδ(x̄)

T,

∂εBδ(x̄) := ∂(B̂δ(x̄)ε) ∩ T 0
ε , and v̂ is the affine interpolant of the discrete field v.

The core energy emerges in the limits ε → 0 and δ → 0 (exactly in this order)
in (22). More precisely, if the sequence of triangulations (Tε) satisfies (H1), (H2),
(H3) and (H4), for any x̄ ∈ M the following limits are finite and coincide (see
Proposition 5):

γ (x̄) := lim
δ→0

lim inf
ε→0

(
γ (ε, δ)− π log

δ

ε

)
= lim

δ→0
lim sup

ε→0

(
γ (ε, δ)− π log

δ

ε

)
.

The core energy is defined as the value of this limit.As the proof of Proposition 5will
show, the core energy γ (x̄) depends on the structure of the triangulation around the
point x̄ . This new feature is a discrete phenomenon and can be (at least heuristically)
explained by the following analogy. In their recent papers [25] and [26], Jerrard and
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Ignat show that the core energy that emerges in the Γ -convergence of the Ginzburg
Landau energy for tangent vector fields only depends (as in the euclidean case) on
the confining potential in the energy. In Ginzburg Landau theory the topological
constraints of the problem are relaxed by relaxing, via the confining potential,
the unit norm constraint. In the discrete setting, the relaxation of the topological
constraints comes by introducing a triangulation of M and by depositing a discrete
vector field at the nodes of the triangulation. This analogy hence suggests that the
dependence of the core energy on the triangulation is, somehow, natural. On the
other hand, the proof of Proposition 5—which proceeds by reducing to the case
the problem is defined on R

2—suggests that γ (x̄) should not depend on geometric
properties of the surface.

It is interesting to observe that if one considers, in the Euclidean case, an XY
type energy on a square lattice or on triangular lattice (even with some anisotropy—
see, e.g., [2] and [22]) then the core energy turns out to be a positive constant that
depends only on the details of the energy since the local structure of the mesh
is essentially the same around every point. It would be intriguing to study the
dependence of the core energy on the point even in the Euclidean case for less
structured discretizations.

To correctly state our result, we finally need a proper continuous interpolation
of the discrete vector field vε. Thus, we define (see (36)) wε : M → R

3 as

wε := v̂ε ◦ P̂−1ε ,

where v̂ε : M̂ε → R
3 is the affine interpolant of vε and P̂−1ε is the inverse of the

nearest-point projection, see (H1).
The second main result is thus the following:

Theorem B. Suppose that the assumptions (H1), (H2), (H3) and (H4) are satisfied.
Then the following Γ -convergence results hold:

(i) Compactness. Let K ∈ N and let vε be a sequence in T(Tε; S
2) for which

there exists a positive constant CK such that

XYε(vε)−K π | log ε| ≤ CK . (23)

Then, up to a subsequence, it holds that

μ̂ε(vε)
flat−→ 2πμ− GdS (24)

for some μ ∈ X with
∑k

i=1 |di | ≤ K . If |μ| = K , then k = K ≡ χ(M)

mod 2, |di | = 1 for any i . Moreover, there exists v ∈ VK with �dj (v) =
2πμ− GdS and a subsequence such that

wε → v strongly in L2(M;R3) and weakly in W 1,2
loc

⎛
⎝M

∖ K⋃
i=1

xi ;R3

⎞
⎠ .

(25)
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(ii) Γ -lim inf inequality. Let vε ∈ T(Tε; S
2) be a sequence satisfying (23) with

K ≡ χ(M) mod 2, and let v ∈ VK such that μ̂ε(vε)
flat−→ �dj (v), wε → v

as in (25). Then, we have

lim inf
ε→0

(XYε(vε)−K π | log ε|) ≥ W(v)+
K∑
i=1

γ (xi ), (26)

where γ (xi ) is the core energy around each defect xi (see Proposition 5).
(iii) Γ -lim sup inequality. Given v ∈ VK , there exists vε ∈ T(Tε; S

2) such that

μ̂ε(vε)
flat−→ �dj (v), wε → v as in (25) and

lim
ε→0

(XYε(vε)−K π | log ε|) = W(v)+
K∑
i=1

γ (xi ). (27)

As mentioned in the Introduction of the paper, the above Theorem entails a precise
convergence result for the minima of XYε. More precisely, the Fundamental The-
orem of Γ -convergence gives that if we set v∗ε ∈ argminT(Tε;S2)XYε and w∗

ε as in
(36), there exist points x1, . . . , x|χ(M)| and a unit-valued tangent field v∗ such that

w∗
ε → v∗ weakly in W 1,2

loc

⎛
⎝M

∖ |χ(M)|⋃
i=1

xi ;R3

⎞
⎠ . (28)

Moreover, it holds that

min
T(Tε;S2)

XYε = π |χ(M)|| log ε| +W(v∗)+
|χ(M)|∑
i=1

γ (xi )+ oε→0(1). (29)

Note that the fact thatK = |χ(M)| implies that there are only two circumstances
for the charge of the defects: either di = 1 for any i = 1 . . . ,K either di = −1
for any i = 1, . . . ,K .

4. Preliminaries

4.1. Distance Between Triangulations

Let S, T be two (finite) triangulations on R
2. We assume that S, T are quasi-

uniform of size O(1), i.e., there exists a constant Λ such that, for any T ∈ S ∪ T ,
the affine bijection φT from the reference triangle Tref to T satisfies

max
{
Lip(φT ), Lip(φ−1T )

}
≤ Λ (30)

(compare with (H2)). We define an isomorphism from S to T as a transformation

φ :
⋃
T∈S

T →
⋃
T∈T

T

that satisfies the following conditions:
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(i) for any T ∈ S, restricts to an affine map T → R
2;

(ii) φ restricts to a bijection S0 → T 0;
(iii) any three vertices i , j , k ∈ S0 span a triangle in S if and only if φ(i), φ( j),

φ(k) span a triangle in T .

We denote by Iso(S, T ) the set of isomorphisms from S to T . Note that
Iso(S, T ) ⊆ C ∩W 1,2. We also define

d(S, T ) := inf
φ∈Iso(S,T )

max
i∈S0

|i − φ(i)| (31)

(the infimum being equal to+∞ if Iso(S, T ) = ∅). The function d defines ametric
on the triangulations of the plane.

Lemma 1. Let S, T be two triangulations such that Iso(S, T ) �= ∅. Suppose (30)
is satisfied for some Λ > 0. Then, there exists φ ∈ Iso(S, T ) such that

max
{
Lip(φ), Lip(φ−1)

}
≤ 1+ C d(S, T ),

where C is a positive constant that depends only on Λ.

Proof. Let φ ∈ Iso(S, T ) be such that |i − φ(i)| ≤ 2d(S, T ) for any i ∈ S0.
Since the restriction of φ to any triangle of S is affine, we deduce that

‖Id−φ‖L∞(T ) ≤ 2d(S, T )

on each T ∈ S. Using the assumption (30), and up to composition with an
affine bijection, we can assume without loss of generality that T is the triangle
of vertices (0, 0), (1, 0), (0, 1). Since the space of affine functions on T is finite-
dimensional, the L∞- and the W 1,∞-norm of an affine map on T are equivalent.
Thus, ‖ Id−φ‖W 1,∞(T ) ≤ Cd(S, T ) and the lemma follows. ��

4.2. The Metric Distorsion Tensor

By the assumption (H1), the restriction of the nearest-point projection P̂ε

from M̂ε to M has a Lipschitz inverse P̂−1ε : M → M̂ε. Following [24], we use this
pair of maps to compare M with its polyhedral approximation M̂ε. For any x ∈ M
such that P̂−1ε (x) falls in the interior of a triangle of M̂ε (so that P̂−1ε is smooth in
a neighbourhood of x), we let Aε(x) be the unique linear operator Tx M → Tx M
that satisfies

(Aε(x)X, Y) =
(
d P̂−1ε (x)[X], d P̂−1ε (x)[Y]

)
(32)

for any X, Y ∈ Tx M . This defines (almost everywhere) a (1, 1)-tensor field Aε ∈
L∞(M; TM ⊗ T∗M), which is called metric distorsion tensor in the terminology
of [24]. The metric distorsion tensor is symmetric and positive definite, since the
right-hand side of (32) is. We introduce a norm ‖·‖L∞(M) on L∞(M; TM⊗T∗M)

by

‖A‖L∞(M) := ess sup
x∈M

‖A(x)‖TM⊗T∗M ,

where ‖ · ‖TM⊗T∗M is the operator norm.
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Lemma 2. Suppose that (Tε) satisfies (H1) and (H2). Then, it holds that

‖Aε − Id ‖L∞(M) + ‖A−1ε − Id ‖L∞(M) ≤ Cε.

Proof. Let ν̂ε : M̂ε → R
3 be a unit normal field to M̂ε, which is well defined (and

constant) in the interior of each triangle. The assumption (H2) implies that

‖̂νε ◦ P̂−1ε − γ ‖L∞(M) ≤ Cε, ‖ dist(·, M̂ε)‖L∞(M) ≤ Cε

for some ε-independent constant C . (One can write M as a smooth graph locally
around a point x ∈ M , then use a Taylor expansion; the constant C can be chosen
uniformly with respect to x , by a compactness argument.) Thanks to [24, Theo-
rem 1], which gives a formula for Aε in terms of (̂νε ◦ P̂−1ε , γ ) and dist(·, M̂ε),
we deduce

‖Aε − Id‖L∞(M) ≤ Cε. (33)

Now, the definition (32) of Aε, together with the fact that P̂−1ε has a Lipschitz
inverse P̂ε and Lip(P̂ε) ≤ Λ by (H1), implies that

|Aε(x)X| ≥ C |X|

for some constant C depending on Λ, a.e. x ∈ M and all X ∈ Tx M , whence
‖A−1ε ‖L∞(M) ≤ C . Thus, we have

‖A−1ε − Id ‖L∞(M) ≤ ‖A−1‖L∞(M)‖ Id−Aε‖L∞(M)

(33)≤ Cε.

��

Let gε ∈ L∞(M; T∗M⊗2) be the metric on M defined by gε(X, Y) :=
(AεX, Y), for any smooth fields X and Y on M . Given a function u ∈ W 1,2(M),
one can define the Sobolev W 1,2-seminorm of u with respect to gε, i.e.

|u|2
W 1,2

ε (M)
:=

∫
M

(
A−1ε ∇su, ∇su

)
(det Aε)

1/2 dS. (34)

By construction (32), the map P̂−1ε is an isometry between M , equipped with
the metric gε, and M̂ε, with the metric induced by R

3. Therefore, given v ∈
W 1,2(M̂ε; R) and a Borel set U ⊆ M , we have

|v ◦ P̂−1ε |2
W 1,2

ε (U )
=

∫
P̂−1ε (U )

|∇εv|2 dS. (35)

Arguing component-wise, we see that the same equality holds for a (not necessarily
tangent) vector field v : M̂ε → R

3 in place of v.
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4.3. Interpolants of Discrete Fields

Using assumption (H1), to any discrete vector field vε ∈ T(Tε; S
2) (see (11))

we can associate a continuous field wε : M → R
3 by setting

wε := v̂ε ◦ P̂−1ε , (36)

where v̂ε : M̂ε → R
3 is the affine interpolant of vε. The field wε is Lipschitz-

continuous and satisfieswε = vε onT 0
ε , but it is not tangential toM nor unit-valued,

in general. However, one can still prove some useful properties.

Lemma 3. Suppose that (H1), (H2), (H3) are satisfied. Then, for any ε ∈ (0, ε0]
and any discrete field vε ∈ T(Tε; S

2), wε is Lipschitz-continuous with Lipschitz
constant

Lip(wε) ≤ Cε−1, (37)

and, for any subset Û ⊆ M̂ε that can be written as union of triangles of Tε, it holds
that

XYε(vε, Û ) := 1

2

∑
i, j∈T 0

ε ∩Û
κ i j
ε |vε(i)− vε( j)|2 = 1

2
|wε|2W 1,2

ε (P(Û ))
. (38)

Proof. From the very definition of wε := v̂ε ◦ P̂−1ε , it follows that

Lip(wε)
(H1)≤ C Lip(̂vε) ≤ C sup

[i, j]∈T 1
ε

|vε(i)− vε( j)|
|i − j |

(H2)≤ Cε−1.

To prove (38), it is enough to combine (10) with (35). ��
Lemma 4. Suppose that (Tε) satisfies (H1), (H2). Then, there exists a contant C
such that, for any ε ∈ (0, ε0] and any vε ∈ T(Tε; S

2), it holds that

‖(wε, γ )‖L∞(M) ≤ Cε.

Proof. Every point x ∈ M̂ε can be written in the form x = λ0i0 + λ1i1 + λ2i2,
where ik ∈ T 0

ε and λk ≥ 0, λ0 + λ1 + λ2 = 1. Using the definition of the affine
interpolant, and the fact that (vε(ik), γ (ik)) = 0, we can write

∣∣(̂vε(x), (γ ◦ P̂ε)(x)
)∣∣ ≤

2∑
k=0

λk
∣∣(vε(ik), (γ ◦ P̂ε)(x)− (γ ◦ P̂ε)(ik)

)∣∣

≤ ‖∇(γ ◦ P)‖L∞(U ) sup
T∈Tε

diam(T ).

Thus, using the smoothness of γ and the assumptions (H1), (H2), we deduce

‖(wε, γ )‖L∞(M) =
∥∥(̂vε, γ ◦ P̂ε

)∥∥
L∞(M̂ε)

≤ Cε.

��
The following property is well-known in the flat case (see e.g. [1, Lemma 2]):
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Lemma 5. Suppose that (H2) is satisfied. Then, there exists a positive constant C
such that, for any 0 < ε ≤ ε0 and any discrete field vε ∈ T(Tε; S

2), it holds that

1

ε2

(
1− |wε|2

)2 ≤ C |∇swε|2 pointwise on M.

Proof. Thanks to (H1), it suffices to show that

1

ε2

(
1− |̂vε|2

)2 ≤ C |∇εv̂ε|2 on M̂ε. (39)

Let T ∈ Tε be a triangle with vertices i0, i1, i2. Any point x ∈ T can be written
as x = i0 + λ1(i1 − i0) + λ2(i2 − i0), where λ1, λ2 are positive numbers such
that λ1 + λ2 ≤ 1. Using the definition of affine interpolant and that |vε(i0)| = 1,
we obtain that

1− |̂vε(x)| ≤ |̂vε(x)− vε(i0)| ≤
2∑

k=1
λk |vε(ik)− vε(i0)|,

whence, using that |̂vε| ≤ 1 and that ∇εv̂ε is constant on T , we deduce

(
1− |̂vε(x)|2

)2 ≤ 4 (1− |̂vε(x)|)2 ≤ 8
2∑

k=1
|vε(ik)− vε(i0)|2

= 8
2∑

k=1
|∇εv̂ε(x)(ik − i0)|2 .

Now, (39) follows because |ik − i0| ≤ Cε, due to (H2). ��

As a consequence of Lemmas 3 and 5, if both (H2) and (H3) are satisfied, then
we have

1

ε2

∫
M̂ε

(
1− |wε|2

)2 ≤ C XYε(vε). (40)

Another immediate albeit important consequence of the Lemmas above is that
for discrete sequences vε with equi-bounded XYε-energy with respect to ε, the
corresponding vector fieldwε strongly converges in L2 to a unit norm tangent vector
field v. This strong convergence follows from the fact that, thanks to Lemma 2 for ε
sufficiently small, theW 1,2

ε -norm of wε is equivalent to the sum of theW 1,2-norms
of the components of wε with respect to the standard basis ofR

3. Consequently, the
strong convergence in L2 follows from standard compactness results for Sobolev
spaces on manifolds (see, e.g., [5]) applied component-wise. Then, the unit-norm
constraint and the fact that v is tangent to M follows by passing to the limit in
Lemma 4 and Lemma 5.
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4.4. Jacobians of Vector Fields on M

In this section, we define the Jacobian determinant of a vector field in the sense
of distributions, and we recall a few useful properties. This notion was introduced
in the context of Ginzburg–Landau functionals (see e.g. [28]) and in nonlinear
elasticity (see e.g. [6,34]). As we are dealing with vector fields over a manifold, it
will be useful to recast the theory in the language of differential forms.

Given a map u ∈ (W 1,1 ∩ L∞)(M; R
3), we define the “pre-jacobian” of u

(also known as vorticity or current) as the 1-form

j (u) := (γ , u ∧ du) . (41)

More explicitly, j (u) is defined via its action on a smooth, tangent field w on M :

〈j (u), w〉 = (γ , u×∇wu) . (42)

We can equivalently replace∇wu with the covariant derivative Dwu since the scalar
product in (42) does not depend on the component of ∇wu in the direction of γ .

Suppose now that u ∈ W 1,1(M; R
3) is a unit, tangent field on M (that is,

|u| = 1 and u · γ = 0 a.e.), and let (e1, e2) be a local orthonormal basis for the
tangent frame of M . Then, we have

|j (u)|2 =
2∑

k=1

∣∣u× Deku
∣∣2 =

2∑
k=1

∣∣Deku
∣∣2 = |Du|2 , (43)

where we denote by | · | both the norm on the tangent space and the induced norm
on the cotangent space. Moreover, we can write locally that

u = (cosα)e1 + (sin α)e2 (44)

for some scalar function α with bounded variation (this follows, e.g., by [21]). A
formal computation shows that

j (u) = dα − A, (45)

where A, called the spin connection, is the 1-form defined by 〈A, w〉 := e1 · ∇we2.
Note that A depends on the choice of the frame, but its differential is an intrinsic
quantity:

dA = G dS, (46)

where we recall that G is the Gauss curvature of M .
The differential dj (u) will play an important rôle. Since dj (u) is a 2-form, it

can be written uniquely as dj (u) = f ω where f ∈ D ′(M) is scalar and ω is the
volume form on M ; we use the notation �dj (u) := f . In case M = R

2 (embedded
as the xy-plane in R

3, so that γ = e3) and u is a smooth vector field R
2 → R

2, we
easily compute that

�dj (u) = 2 det∇u,

thus �dj (u) can be thought as a generalization of the Jacobian determinant of u, up
to a constant factor 2. If u is a unit, tangential field onM , then by differentiating (45)
we see that �dj (u) contains topological information about the singularities of u.
Recall that ind(u, xi ) denotes the local degree of u at the point xi (see Section 2).
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Lemma 6. Let u ∈ W 1,1
tan (M; S

2) be a unit, tangent field. Suppose that there exist
a finite number of points x1, . . . , xp such that

u ∈ W 1,2
loc

(
M \ {x1, . . . , xp}; R

3
)

.

Then

�dj (u) = 2π
p∑

i=1
ind(u, xi )δxi − G in D ′(M).

Proof. We can assume, without loss of generality, that u is smooth on M \
{x1, . . . , xp}, as smooth unit-norm tangent fields are dense in W 1,2. This fol-
lows essentially from the density result [44, Proposition p. 267]. The paper [44]
is concerned with the study of maps from M to a fixed target manifold; however,
the arguments can be adapted to sections of the unit tangent bundle (see also [18,
Section 3] for further details).

For afixed i , take a test functionϕ ∈ C∞(M)whose support is simply connected
and does not contain any singularity of v other than xi . Suppose that an orthonormal
tangent frame (e1, e2) is defined on the support of ϕ. Then, we can locally define
an angular variable α which satisfies Equation (44) and is smooth, except for a
jump across a smooth ray starting at the point xi . The size of the jump is constant
along the ray, and equal to 2π ind(u, xi ). The Lebesgue-absolutely continuous
part dacα of the differential dα is actually continuous across the jump, and satisfies
(analogously to (45))

j (u) = dacα − A (47)

on the support of ϕ. Thanks to (47), (43) and the fact that u ∈ W 1,1, we deduce
that dacα ∈ L1. Moreover, one checks that d(dacα) = 0 on M \ {xi }.

Now, we compute �d(dacα) in the sense of distributions. For any δ > 0, we
have

− 〈
dacα, �dϕ

〉
L2(M\Bδ(xi ))

=
∫
M\Bδ(xi )

dacα ∧ dϕ = −
∫
M\Bδ(xi )

d(dacα ∧ ϕ)

=
∫

∂Bδ(xi )
dacα ∧ ϕ.

(48)

On the other hand, we have
∣∣∣∣
∫

∂Bδ(xi )
dacα ∧ (ϕ − ϕ(0))

∣∣∣∣ ≤ δ ‖∇sϕ‖L∞(M)

∫
∂Bδ(xi )

∣∣dacα∣∣ ds. (49)

We claim that the right-hand side of (49) converges to 0 at least along a subse-
quence δ j ↘ 0. For otherwise, there would exist positive numbers η and δ0 such
that

δ

∫
∂Bδ(xi )

∣∣dacα∣∣ ds ≥ η
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for any 0 < δ ≤ δ0. Dividing by δ both sides of this inequality and integrating
over δ ∈ (0, δ0), we would obtain

∫
Bδ0 (xi )

∣∣dacα∣∣ dS ≥ η

∫ δ0

0

dδ

δ
= +∞,

which is impossible because dacα ∈ L1. Then, we find a subsequence δ j ↘ 0 along
which the right-hand side of (49) converges to 0. Taking the limit in (48) along this
subsequence, and using (49), we obtain

− 〈
dacα, �dϕ

〉
L2(M)

= lim
j→+∞

∫
∂Bδ j (xi )

dacα ∧ ϕ(0) = 2π ind(u, xi ) ϕ(0).

Since the operator �d is L2(M)-anti-symmetric, the left-hand side of this identity
can be interpreted as the duality pairing 〈�d(dacα), ϕ〉, in the sense of distributions.
Combining this with (46) and (47), the lemma follows. ��
Remark 8. Let u be as in the statement of Lemma 6. By integrating dj (u) over M ,
and using Stokes’ and Gauss-Bonnet’s theorems, we deduce

0
Stokes=

∫
M
dj (u) =

∫
M

�dj (u)ω

= 2π
p∑

i=1
ind(u, xi )−

∫
M
G dS

Gauss-Bonnet= 2π
p∑

i=1
ind(u, xi )− 2πχ(M).

Therefore, we have
∑p

i=1 ind(u, xi ) = χ(M), in accordance with the Poincaré–
Hopf theorem.

We define a piecewise-continuous counterpart of j . Take a bounded, piece-
wise-smooth (but not necessarily tangent) map u : M̂ε → R

3 such that, for any
edge e = [i, j] ∈ T 1

ε ,

∇ j−iu = ∇u( j − i) is continuous across e. (50)

For example, the affine interpolant u = v̂ε of a discrete field v ∈ T(Tε; S
2)

satisfies (50). We let

ĵε(u) := (
γ̂ ε, u ∧ du

)
, (51)

that is the piecewise-smooth 1-form on M̂ε satisfying

〈ĵε(u), w〉 = (
γ̂ ε, u×∇wu

)

for any piecewise-smooth tangent field w on M̂ε. This form is well-defined and
continuous on each triangle of M̂ε. Note that ĵε(u) may not be continuous across
an edge e = [i, j] but 〈ĵε(u), i − j〉 is, therefore the integral of ĵε(u) along e is
defined unambiguously.
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4.5. Jacobians of Discrete Vector-Fields

We want to define the notion of “jacobian” for a discrete field vε ∈ T(Tε; S
2)

and we have two possibilities: either we apply dĵε to the affine interpolant v̂ε, or we
compute dj (uε) for a field uε : M → R

3 that interpolates vε. The first possibility
corresponds to the measure

μ̂ε(vε) :=
∑
T∈Tε

(∫
T
dĵε (̂vε)

)
δxT , (52)

where δxT is the Dirac delta measure supported by the barycentre xT of T .
Let (i0, i1, i2) be the vertices of a triangle T ∈ Tε, sorted in counter-clockwise
order with respect to the orientation induced by γ , and let i3 := i0. Using Stokes’
theorem and the definition of the affine interpolant, we compute

μ̂ε(vε)[T ] =
2∑

k=0

∫
[ik , ik+1]

(
γ̂ ε, v̂ε ×∇ik+1−ik v̂ε

)
ds

=
2∑

k=0

(
γ (ik)+ γ (ik+1)

2
, vε(ik)× vε(ik+1)

)
.

(53)

As for the second approach, we construct a suitable field uε in the following
way: we fix a sequence (tε)ε>0 such that

ε| log ε|
tε

→ 0 as ε → 0, (54)

e.g. tε := ε| log ε|2. Now, reminding the reader that wε := v̂ε ◦ P̂−1ε , for x ∈ M
we define

ũε(x) := projTx Mwε(x) and uε(x) := ηε (|ũε(x)|) ũε(x), (55)

where ηε(s) := min{t−1ε , s−1}. Note that uε is a Lipschitz tangent field on M
and uε = vε on T 0

ε . Next, we set

με(vε) :=
∑
T∈Tε

(∫
P(T )

dj (uε)

)
δP(xT ). (56)

Given a Borel set E ⊆ M , let Eε be the union of all the P(T )’s such that T ∈
Tε, P(xT ) ∈ E . If |ũε| ≥ 1/4 on ∂Eε, then we can find a unit tangent field Uε ∈
W 1,1

tan (Eε; S
2) such that Uε = uε on ∂Eε and Uε is smooth except at finitely

many points. (One can modify ũε in such a way that it is smooth and has 0 as a
regular value, then define Uε := ũε/|ũε|.) Since με(vε)[E] =

∫
Eε

dj (uε) and, by
Stokes’ theorem, the latter only depends on the restriction of uε to ∂Eε, we have
μ(vε)[E] =

∫
Eε

dj (Uε) and hence, by Lemma 6,

με(vε)[E] = 2π ind(uε, Eε)−
∫
Eε

G dS. (57)
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In this sense, the measure με(vε) can be thought of as a generalization of the
discrete vorticity defined in [2] (see in particular [2, Remark 2.1]), and immediately
provides information on the “topological” behaviour of vε. On the other hand, the
measure μ̂ε(vε) has the advantage of being simpler to evaluate, thanks to (53).
Luckily, if the XY-energy of the field vε satisfies a logarithmic bound, then the two
measures are close to each other.

Proposition 2. Suppose that (H1), (H2), (H3) are satisfied. Let (vε)0<ε≤ε0 be a
sequence of discrete fields that satisfies (H) for some ε-independent constant Λ

and any 0 < ε ≤ ε0. Then, it holds that

‖μ̂ε(vε)− με(vε)‖flat ≤ C

(
ε| log ε|

tε
+ ε| log ε|

)
.

In particular, the difference between the two measures converges to zero in the
flat norm as ε → 0, if we assume that (54) holds. The rest of this section is devoted
to the proof of Proposition 2. The key fact is the following continuity property
for the Jacobian, which is well-known for maps u : Ω ⊆ R

n → R
n (see e.g. [3,

Lemma 2.1]):

Lemma 7. Let u, w be (not necessarily tangent) fields in W 1,2(M; R
3). Then, it

holds that

‖ � dj (u)‖L1(M) ≤ C
(
‖u‖2L2(M)

+ ‖∇su‖2L2(M)

)
, (58)

‖�dj (u)− �dj (w)‖flat ≤ ‖u− w‖L2(M)

(‖∇su‖L2(M) + ‖∇sw‖L2(M)

)
. (59)

Proof. By a density argument, we can assumeWLOG that u, w are smooth. Using
Einstein convention, we can write

j (u) = γ iji (u), where ji (u) := εi jk u j duk,

and εi jk is the Levi-Civita symbol, given by εi jk := 1 if (i, j, k) is an even permu-
tation of (1, 2, 3), εi jk := −1 if it is an odd permutation, and εi jk := 0 otherwise.
By differentiating, we deduce

dj (u) = εi jk u j dγ i ∧ duk + εi jk γ i du j ∧ duk, (60)

whence (58) immediately follows by applying the Hölder inequality and using
that |∇sγ | is bounded. We now prove (59). A straightforward computation shows
that

j3(u)− j3(w) = 1

2

(
j3

(
u1 − w1, u2 + w2

)
− j3

(
u2 − w2, u1 + w1

))
,

and similar equalities hold for j1, j2, therefore

dj (u)− dj (w) = εi jk

2
d
(
γ i ji (u j − w j , uk + wk)

)
. (61)

Now, fix a function ϕ ∈ C∞c (U ). Thanks to (61) and an integration by parts, we
deduce

〈�dj (u)− �dj (w), ϕ〉 = −εi jk

2
〈γ i ji (u j − w j , uk + wk), �dϕ〉.
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The definition of ji and the Hölder inequality immediately imply

〈�dj (u)− �dj (w), ϕ〉 ≤ ‖u− w‖L2(M)‖∇su− ∇sw‖L2(M)‖∇sϕ‖L∞(M),

whence (59) follows by taking the supremum over ϕ. ��
Lemma 7 has a counterpart in the piecewise-continuous setting. For further

reference, here we only mention that

Lemma 8. Let u : M̂ε → R
3 be a (not necessarily tangent) piecewise-smooth field

that satisfies (50). Then, we have

‖ � dĵε(u)‖L1(T ) ≤ C
(
‖u‖2L2(T )

+ ‖∇εu‖2L2(T )

)
for any T ∈ Tε.

Proof. We argue as in Lemma 7, using that the functions γ̂ ε are Lipschitz contin-
uous and ‖∇εγ̂ ε‖L∞(M̂ε)

≤ ‖∇sγ ‖L∞(M). ��

Proof of Proposition 2. Given a piecewise-smooth map u : M̂ε → R
3, we let

j (u) := (γ ◦ P, u∧ du), i.e. we extend the operator u �→ j (u) to fields u that are
not defined on M by pre-composing γ with the projection P : U → M . When u
is a piecewise-smooth field, we denote by dj (u), dĵε(u) the Lebesgue-absolutely
continuous part of the distributional differential of j (u), ĵε(u) respectively—that
is, we neglect any jumps that may arise at the boundary of the regions where u is
smooth.

Let (vε) be a sequence of discrete fields satisfying the energy bound (H). The
assumption (H) together with (13), (40) and the fact that |̂vε| ≤ 1 implies that

‖̂vε‖2L2(M̂ε)
+ ‖∇εv̂ε‖2L2(M̂ε)

+ ε−2‖1− |̂vε|2‖2L2(M̂ε)
≤ C | log ε| (62)

for any 0 < ε ≤ ε0 and some constant C = C(M, Λ, ε0), provided that ε0 < 1.
We decompose the difference μ̂ε(vε)− με(vε) as a sum of several terms:

μ̂ε(vε)− με(vε) = μ̂ε(vε)− �dĵε (̂vε)︸ ︷︷ ︸
=:A1

+ �dĵε (̂vε)− �dj (̂vε)︸ ︷︷ ︸
=:A2

+ �dj (̂vε)− �dj (wε)︸ ︷︷ ︸
=:A3

+ �dj (wε)− �dj (ũε)︸ ︷︷ ︸
=:A4

+ �dj (ũε)− �dj (uε)︸ ︷︷ ︸
=:A5

+ �dj (uε)− με(uε)︸ ︷︷ ︸
=:A6

.

Throughout the rest of the proof, we let ϕ ∈ C∞c (U ) be an arbitrarily fixed test
function.
Analysis of A1. There holds

〈μ̂ε(vε)− �dĵε (̂vε), ϕ〉 =
∑
T∈Tε

∫
T

(ϕ(xT )− ϕ) dĵε (̂vε)

≤ ‖ � dĵε (̂vε)‖L1(M̂ε)
‖∇ϕ‖L∞(U ) sup

T∈Tε

diam(T ).
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Using Lemma 8, the assumption (H2) and (62), we deduce

‖μ̂ε(vε)− �dĵε (̂vε)‖flat ≤ Cε| log ε|. (63)

Analysis of A2. By integrating by parts on each triangle of the triangulation, we can
write

〈�dĵε (̂vε)− �dj (̂vε), ϕ〉 = −
∑
T∈Tε

∫
T

(ĵε(̂vε)− j (̂vε)) ∧ (�dϕ).

The total contribution of the boundary terms vanishes, because each edge appears
in the sum twice, with opposite orientations. Then, by the Hölder inequality, we
obtain

‖ � dĵε (̂vε)− �dj (̂vε)‖flat ≤ ‖γ̂ ε − γ ◦ P‖L∞(M̂ε)
‖̂vε‖L2(M̂ε)

‖∇εv̂ε‖L2(M̂ε)
.

Using that |̂vε| ≤ 1, that ‖γ̂ ε − γ ◦ P‖L∞(M̂ε)
≤ Cε (as a consequence of (H2))

and (62), we conclude that

‖ � dĵε (̂vε)− �dj (̂vε)‖flat ≤ Cε| log ε|1/2. (64)

Analysis of A3. Set ω := j (wε), so ω is a 1-form on M and P̂∗ε (ω) = j (̂vε). Since
the sets P̂ε(T ) for T ∈ Tε define a Borel partition of M up to sets of measure zero,
we can write

〈�dj (wε)− �dj (̂vε), ϕ〉 =
∑
T∈Tε

(∫
P̂ε(T )

ϕ dω −
∫
T

ϕ P̂∗ε (dω)

)
.

Thanks to the assumption (H1), P̂ε induces a bilipschitz equivalence of T onto its
image. Therefore, by applying the area formula to the first integral in the right-hand
side, we deduce

〈�dj (wε)− �dj (̂vε), ϕ〉 =
∑
T∈Tε

∫
T

(
P̂∗ε (ϕ dω)− ϕ P̂∗ε (dω)

)

=
∑
T∈Tε

∫
T

(
ϕ ◦ P̂ε − ϕ

)
P̂∗ε (dω)

=
∫
M̂ε

(
ϕ ◦ P̂ε − ϕ

)
dj (̂vε).

The Hölder inequality and Lemma 8 then yield

〈�dj (wε)− �dj (̂vε), ϕ〉 ≤ C dist(M̂ε, M)‖∇εϕ‖L∞(M̂ε)

·
(
‖̂vε‖2L2(M̂ε)

+ ‖∇εv̂ε‖2L2(M̂ε)

)
,

whence, by applying (H2) and (62), we conclude

‖ � dj (̂vε)− �dj (wε)‖flat ≤ Cε| log ε|. (65)
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Analysis of A4. Reminding the definition (55) of ũε and Lemma 4, we have

‖wε − ũε‖L∞(M) = ‖(wε, γ )‖L∞(M) ≤ Cε. (66)

On the other hand, using (62) and the assumption (H1), we compute that

‖∇swε‖L2(M) + ‖∇sũε‖L2(M) ≤ C | log ε|1/2. (67)

We combine (59) in Lemma 7 with (66) and (67) to obtain

‖ � dj (wε)− �dj (ũε)‖flat ≤ Cε| log ε|1/2. (68)

Analysis of A5. From the definition (55) of uε and (67), we compute

‖∇suε‖L2(M) ≤ 2t−1ε ‖∇sũε‖L2(M) ≤ Ct−1ε | log ε|1/2. (69)

On the other hand, thanks to (66), we obtain

|uε − ũε|2 ≤ (1− |ũε|)2 ≤ (1− |wε|)2 + Cε ≤
(
1− |wε|2

)2 + Cε.

By integrating both sides of the inequality, and making a change of variable we
deduce

‖uε − ũε‖2L2(M)
≤

∥∥∥1− |̂vε|2
∥∥∥2
L2(M̂ε)

+ CεH 2(M̂ε) ≤ Cε2| log ε|. (70)

For the last inequality, we have used (62) and the fact that H 2(M̂ε) ≤ C , which
follows from (H1). Thus, by applying (59) (Lemma 7), with the help of (67), (69)
and (70) we deduce that

‖ � dj (ũε)− �dj (uε)‖flat ≤ Ct−1ε ε| log ε|. (71)

Analysis of A6. Arguing as in the proof of (63), and using (58) in Lemma 7 instead
of Lemma 8, we obtain

‖ � dj (uε)− με(vε)‖flat ≤ ε| log ε|. (72)

Now, the proposition follows by combining (63), (64), (65), (68), (71) and (72).
��
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5. The Zero-Order Γ -Convergence: Emergence of Defects

5.1. Localized Lower Bounds for the Energy

Thanks to Proposition 2, the compactness of the sequence μ̂ε(vε) is equivalent
to the compactness of με(vε). The latter is defined in terms of the fields wε ∈
W 1,∞(M; R

3), given by (55), which interpolate continuously the discrete fields vε

but are not necessarily tangent nor unit-valued. We discuss now a localized lower
bound for the Dirichlet energy of wε. Similar results are well-known in the con-
tinuum Ginzburg–Landau setting, where they play a major rôle (see, e.g., [27,
Theorems 2.1 and 4.1] and [40, Theorem 1]), and are also available for the dis-
crete XY-energy [2, Proposition 3.2]. Given a point x0 ∈ M and a radius ρ > 0,
we denote by Bρ(x0) the geodesic ball of centre x0 and radius ρ. We follow the
approach in [27]. We define

αε := (1− Cε)−2 ess inf
x∈M inf

X∈Tx M, |X|=1

(
A−1ε (x)X, X

)
(det Aε(x))

1/2 (73)

and, for 0 < ε < ρ and d ∈ Z, we let

λε(ρ, d) := αε min
0≤m≤1

{
π |d|

ρ + Cρ2m
2 ∨ C

ε
(1− m)3

}
. (74)

The constantC , which will be selected below, does not depend on ε, ρ and d. Recall
that, given a vector field vε ∈ T(Tε; S

2), we let wε := v̂ε ◦ P̂−1ε and we denote
by uε the vector field defined by (55).

Lemma 9. There exist positive constants R∗ and ε∗ with the following property:
for any ε ∈ (0, ε∗], any x0 ∈ M, any ρ ∈ (ε, R∗] and any vε ∈ Tε(Tε; S

2) such
that |wε| ≥ 1/2 on ∂Bρ(x0), it holds that

1

2
|wε|2W 1,2

ε (∂Bρ(x0))
≥ λε

(
ρ, ind(uε, Bρ(x0))

)
. (75)

Moreover, we have

λε(ρ, d) ≥ (1− Cε)π |d|
ρ + Cρ2 − Cε1/3|d|1/3ρ−4/3 (76)

for any ρ > ε, d ∈ Z and some constant C which does not depend on ε, ρ, d.

Proof of Lemma 9. This argument is adapted from [27, Theorem2.1]. Throughout
the proof, the symbolC denotes several constants that do not depend on ε or x0 ∈ M ,
but possibly on R∗, ε∗. We start by proving (75).

Step 1. There exist positive numbers R∗ and C such that, for any x0 ∈ M and
any 0 < ρ ≤ R∗, we have

H 1(∂Bρ(x0)) ≤ 2πρ + Cρ2. (77)

Indeed, thanks to the area formula, the left-hand side is bounded by
Lip(expx0|Dρ

)H 1(∂Dρ), where expx0 : Tx0M → M is the exponential map
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and Dρ ⊆ Tx0M is the disk of radius ρ centred at the origin. Since D(expx0) =
IdTx0M

, by a Taylor expansion we see that Lip(expx0|Dρ
) ≤ 1 − Cρ if ρ is small

enough. By a compactness argument, the numbers R∗ and C can be chosen uni-
formly with respect to x0.

Step 2. Take a point x0 ∈ M and a field vε ∈ T (Tε; S
2) such that |wε| ≥ 1/2

on ∂Bρ(x0). Since x0 will be fixed for the rest of the proof, we will omit it from the
notation. Thanks to Lemma 4 and to (54), (55) we have that |ũε| ≥ 1/4 and uε =
ũε/|ũε| on ∂Bρ provided that ε is small enough, say, smaller that some number ε∗.
Then, we compute

|wε| |(γ , uε ×∇τ uε)| = |wε|
|ũε|2 |(γ , ũε ×∇τ ũε)|

= |wε|
|ũε|2 |(γ , wε ×∇τ wε)− (wε, γ ) (γ , wε ×∇τ γ )|

≤ |wε|2
|ũε|2 (|∇swε| + C |(wε, γ )|) .

Using (55) and the fact that |ũε| ≥ 1/4, we can bound the ratio |wε|/|ũε| in terms
of |(wε, γ )|, which in turns is bounded by Cε, due to Lemma 4. This yields

|wε| |(γ , uε ×∇τ uε)| ≤ (1+ Cε) (|∇swε| + Cε) .

After a rearrangement, and using again that |wε| ≥ 1/2, we obtain

|∇swε|2 ≥ (1+ Cε)−2|wε|2 (|(γ , uε ×∇τ uε)| − Cε)2 . (78)

Step 3. Thanks to Lemma 2, there exists ε∗ such that the quantity αε defined in (73)
satisfies

αε ≥ 1− Cε > 0 for any 0 < ε ≤ ε∗. (79)

Fix ε and ρ such that 0 < ε ≤ ε∗ and ε < ρ ≤ R∗. By definition (34) of the
W 1,2

ε -seminorm, we have that

1

2
|wε|2W 1,2

ε (∂Bρ)
≥ αε(1− Cε)2

2

∫
∂Bρ

|∇swε|2 ds. (80)

Set m(ρ) := min∂Bρ |wε| (note that m(ρ) ∈ [1, 1/2]), and let τ be a unit tangent
field on ∂Bρ . Using (78) and the definition (41) of j , we obtain

1

2
|wε|2W 1,2

ε (∂Bρ)
≥ αεm2(ρ)

2

∫
∂Bρ

|〈j (uε), τ 〉 − Cε|2 ds.

By applying Jensen inequality, we deduce

1

2
|wε|2W 1,2

ε (∂Bρ)
≥ αε m2(ρ)

2H 1(∂Bρ)

∣∣∣∣∣
∫

∂Bρ

j (uε)− CεH 1(∂Bρ)

∣∣∣∣∣
2

(77)≥ αε m2(ρ)

4πρ + Cρ2

∣∣∣∣∣
∫

∂Bρ

j (uε)− CεH 1(∂Bρ)

∣∣∣∣∣
2

.
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Using Lemma 6, and arguing as in the proof of (57), we can evaluate the integral
of j (uε) in terms of d := ind(uε, Bρ) and the Gauss curvature G:

1

2
|wε|2W 1,2

ε (∂Bρ)
≥ αε m2(ρ)

4πρ + Cρ2

∣∣∣∣∣2πd −
∫
Bρ

G − CεH 1(∂Bρ)

∣∣∣∣∣
2

.

Now, the Gauss curvature G is bounded and ε < ρ ≤ R∗, so the integral of G is
uniformly bounded by CR2∗ , while εH 1(∂Bρ) ≤ CR2∗ .

Thus, reducing the value of R∗ if necessary, we can assume that

u := 1

2π

∣∣∣∣∣
∫
Bρ

G + CεH 1(∂Bρ)

∣∣∣∣∣ <
1

2
.

If |d| > 1, then |d − u|2 ≥ d2 − 2u|d| ≥ |d|, and hence

1

2
|wε|2W 1,2

ε (∂Bρ)
≥ αεπ m2(ρ)

ρ + Cρ2 |d|. (81)

An elementary computation, based on the fact that u ≤ Cρ2, shows that the same
inequality is satisfied also if |d| = 1, provided that we take a larger constant C in
the denominator, and we reduce again the value of R∗ if necessary. Finally, (81) is
trivially satisfied if d = 0.

Step 4. Suppose that m(ρ) < 1, and let xρ ∈ ∂Bρ be such that |wε(xρ)| = m(ρ).
We have |wε| ≤ (1+ m(ρ))/2 on Bρ′(xρ), where

ρ′ := 1− m(ρ)

2 Lip(wε)
.

Now, wε has Lipschitz constant Lip(wε) ≤ Cε−1, thanks to Lemma 3. Thus, since
we have assumed that ρ > ε, we conclude that

H 1 (∂Bρ ∩ Bρ′(xρ)
) ≥ Cρ′ ≥ Cε (1− m(ρ)) .

Thus, by applying Lemma 5, we estimate

1

2
|wε|2W 1,2

ε (∂Bρ)
≥ C

ε2

∫
∂Bρ∩Bρ′ (xρ)

(
1− |wε|2

)2
ds ≥ C

ε
(1− m(ρ))3 . (82)

Note that (82) trivially holdswhenm(ρ) = 1.Now, (75) follows by combining (79),
(81) and (82).

Step 5. (Proof of (76)) The function f : m ∈ [0, 1] �→ Am2∨ B(1−m)3 achieves
its minimum value at the pointm0 such that Am2

0 = B(1−m0)
3. From this equality,

we deduce that

B

A
(1− m0)

3 = m2
0 ≤ 1,

whence m0 ≥ 1− (A/B)1/3 and f (m0) ≥ A(1− 2(A/B)1/3). Substituting for A
and B the expressions in (74), and using (73), yields (76). ��
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Following Jerrard [27], it will be useful to reformulate the lower bound (75) in
terms of a function Λε, defined by

Λε(r) :=
∫ r

0
λε(ρ, 1) ∧ C∗

ε
dρ for r > 0. (83)

We first collect a few properties of Λε (see also [27, Proposition 3.1]).

Lemma 10. The function Λε satisfies

Λε(r + s) ≤ Λε(r)+Λε(s), Λε(r) ≤ Λε(s),
Λε(r)

r
≥ Λε(s)

s
(84)

for any 0 < r ≤ s. Moreover, it holds that

Λε(r) ≥ (1− Cε)π log
r

ε
− C (85)

for any r ∈ (ε, R∗] (where R∗ is given by Lemma 9) and some ε-independent
constant C.

Proof. It is clear by the definition (74) that λε is positive and decreasing; then (84)
follows by elementary calculus. As for the lower bound (85), Equation (76) implies
that

λε(ρ, 1) ∧ C

ε
≥ (1− Cε)π

ρ + Cρ2 − Cε1/3ρ−4/3

for any ρ ∈ (c1ε, R∗], for some constant c1 > 0. By integrating both sides of this
inequality with respect to ρ ∈ (c1ε, r), we deduce

Λε(r) ≥ (1− Cε)π

{
log

r

c1ε
+ log

Cε + 1

Cr + 1

}
+ Cε1/3

(
R1/3 − r1/3

)

c1ε<r<R∗≥ (1− Cε)π log
r

ε
− C,

where the constant C in the right-hand side depends only on c1 and R∗. If c1 ≤ 1,
then the lemma follows immediately. Otherwise, we note that, by choosing C large
enough, the right-hand side of (85) can bemade non-positive for every r ∈ [ε, c1ε],
so that (85) holds trivially. ��

We state a lower bound for the energy on annuli in terms of the function Λε.

Lemma 11. For any ε ∈ (0, ε∗], any x0 ∈ M, any ε < r < R ≤ R∗ (where ε∗, R∗
are given by Lemma 9) and any vε ∈ Tε(Tε; S

2) such that |wε| ≥ 1/2 on Ar,R :=
BR(x0) \ Br (x0), there holds

1

2
|wε|2W 1,2

ε (Ar,R)
≥ |d|

{
Λε

(
R

|d|
)
−Λε

(
r

|d|
)}

,

where d := ind(uε, BR(x0)).

The proof of this lemma follows by integrating the lower bound (75); see [27,
Proposition 3.2] for details.
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5.2. The Ball Construction

In this section, we recall the “ball construction” as presented by Jerrard [27] (a
similar construction was independently introduced by Sandier [40], see also [43]).
In contrast with [27], our lower bound (Lemma 11) is only valid for annuli with
outer radius ≤ R∗, so we need to make sure that this constraint is preserved by the
construction.

Throughout this section, we fix a sequence of discrete fields vε ∈ T(Tε; S
2),

for ε ∈ (0, ε∗], that satisfies the logarithmic energy bound (H). We define the
set Sε := {x ∈ M : |wε(x)| ≤ 1/2} and the measure

νε(vε) := 1

2π
(με(vε)+ G dS), (86)

whereμε(vε) is givenby (56). Since (vε) is fixed, throughout this sectionwewrite νε

instead of νε(vε). If E ⊆ M is a Borel set with ∂E ⊆ M \ Sε, Equation (57) implies
that νε(E) = ind(uε, E). The sequence (νε) is precompact in the flat topology if
and only if (με(vε)) is, and hence (by Proposition 2), if and only if (μ̂ε(vε)) is. We
will also need the following notation: given a closed ball B, we denote by rad(B)

its radius. IfB is a finite collection of closed balls, we set sptB := ∪B∈BB.

Lemma 12. There exists an ε-independent constant β such that, for any T ∈ Tε,

P(T ) ∩ Sε �= ∅ implies
1

2
|wε|2W 1,2

ε (P(T ))
≥ β.

Proof. Suppose that there is a point x0 ∈ P(T ) such that |wε(x0)| ≤ 1/2.
Arguing as in the proof of Lemma 9, Step 4, we deduce that |wε| ≤ 3/4 on a
ball Bρ′(x0) with ρ′ ≥ Cε. Then, using also the assumptions (H1) and (H2), we
see that H 2(P(T ) ∩ Bρ′(x0)) ≥ Cε and hence, by Lemma 5, we estimate

1

2
|wε|2W 1,2

ε (P(T ))
≥ C

ε2

∫
P(T )∩Bρ′ (xρ)

(
1− |wε|2

)2
dS ≥ C.

��
Lemma 13. There exists an ε-independent constant C such that, for any T ∈ Tε,
it holds that |νε(P(T ))| ≤ C.

Proof. We have that

|νε(P(T ))| (86)≤ |με(vε)[P(T )]| + Cε2
(56)=

∣∣∣∣
∫

∂(P(T ))

j (uε)

∣∣∣∣+ Cε2

(we have used that the Gauss curvature is bounded and the surface area of P(T ) is
≤ Cε2, which follows from (H1) and (H2)). Using now the definition (55) of uε, we
compute that j (uε) = ηε(|ũε|)j (ũε) and hence |j (uε)| ≤ Lip(ũε). Combining (55)
with the Lipschitz bound (37) for wε, we see that Lip(ũε) ≤ Lip(wε) ≤ Cε−1.
Thus

|νε(P(T ))| ≤ Cε−1H 1 (∂P(T ))+ Cε2 ≤ C,

where we have used that H 1(∂P(T )) ≤ Cε, due to (H1) and (H2). ��
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For any T ∈ Tε such that P(T ) ∩ Sε �= ∅, we consider the smallest closed
ball B of centre P(xT ) such that P(T ) ⊆ B. LetBε be the collection of such balls.
Thanks to the assumption (H2), any B ∈ Bε satisfies

C−1ε ≤ rad(B) ≤ Cε. (87)

Moreover, each ball B ∈ Bε intersects P(T ) for at most C triangles T ∈ Tε,
where C is an ε-independent constant. Therefore, from (87) and Lemma 13 we
deduce that

C−1ε ≤ sε := min
B∈Bε

rad(B)

|νε(B)| ≤ Cε. (88)

(To prove the upper bound, note that sptBε ⊇ spt(νε) and that |νε(B)| ≥ 1 as soon
as B ∩ spt(νε) �= ∅. Here, we are assuming WLOG that νε �≡ 0, otherwise sε =
+∞.) Finally, as a consequence of Lemma 12 and the energy bound (H), we obtain

#(Bε) ≤ C | log ε|. (89)

The following proposition is adapted from [27, Proposition 4.1] (see also [42,
Proposition 5.4]):

Proposition 3. There exists an (ε-independent) positive constant C such that, for
any s ∈ [sε, CR∗#(Bε)

−1], there exists a family of pairwise disjoint, closed
balls Bε(s) with the following properties:

(i) sptBε ⊆ sptBε(s) ⊆ sptBε(t) for any sε ≤ s ≤ t ≤ CR∗#(Bε)
−1;

(ii) For any B ∈ Bε(s), there holds that

1

2
|wε|2W 1,2

ε (B\sptBε)
≥ rad(B)

s
(Λε(s)−Λε(sε)) ;

(iii) For any B ∈ Bε(s), there holds that rad(B) ≥ s|νε(B)|;
(iv) There holds that

∑
B∈Bε(s)

rad(B) ≤ s

sε

∑
B∈Bε

rad(B).

Sketch of the proof. If the balls in Bε are not pairwise disjoint, the construction
starts with a merging phase, that is, we select a pair of balls B, B ′ ∈ Bε such
that B∩ B ′ �= ∅ and we replace themwith a new closed ball Bnew such that Bnew ⊇
B ∪ B ′, rad(Bnew) = rad(B)+ rad(B ′). We repeat this operation until we obtain a
collection of pairwise disjoint closed balls, which we callB′

ε. If all the balls in the
original collection Bε were pairwise disjoint, then Bε = B′

ε. Set Bε(sε) := Bε,
so (i), (iii), (iv) are trivially satisfied and (ii) is also satisfied, because of (88).

Now we perform an expansion phase, i.e. we let the parameter s grow con-
tinuously, and we let the “minimizing balls” (i.e., the balls B such that rad(B) =
s|νε(B)|) grow, leaving the other unchanged. More precisely, if B′

ε = {Bi }ki=1
and xi is the centre of Bi , then the elements ofBε(s) are defined by

Bi (s) :=
{
Bi if rad(Bi ) > s|νε(Bi )|
Bi (xi , s|νε(Bi )|) otherwise.

(90)
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For s small enough, the balls Bi (s)’s are pairwise disjoint. We also have |νε(Bi )| =
|νε(Bi (s))|, because (Bi (s)\Bi )∩sptBε = ∅ and spt(νε) ⊆ sptBε. If for some s∗
there happens Bi (s∗) ∩ Bj (s∗) �= ∅ for i �= j , then we stop the expansion phase.
We define Bε(s∗) as the family of balls obtained from {Bi (s∗)}ki=1 via merging.
For s > s∗, we repeat an expansion phase according to the same rule as (90), until
two or more balls touch and we perform a merging phase again, and so on.

Arguing as in [27, Proposition 4.1], one can show thatBε(s) is a family of closed
balls that satisfies (i), (ii) and (iii). (Actually, (ii) appears in a slightly different form,
but the same argument applies.) The proof of (ii) relies on Lemma 11; in order to
apply this lemma, we need to make sure that the radii of all the balls we consider
are ≤ R∗. However, if we temporarily assume that (iv) holds, then (using (87)
and (88) as well) we see that

∑
B∈Bε(s)

rad(B) ≤ Cs #(Bε).

Therefore, we have rad(B) ≤ R∗ for any B ∈ Bε(s) and any s ≤ C−1R∗#(Bε).
To prove (iv), we note that the quantity

∑
B∈Bε(s) rad(B) is preserved during

each merging phase. Then, for a fixed s, let s1 < . . . < sk < s be the values of
the parameter when merging occurred, and take Bi (s) ∈ Bε(s). From (90), we see
that

rad(Bi (s)) = min {rad(Bi (sk)), s|νε(Bi (s))|} ≤ s|νε(Bi (sk))|
(i i i)≤ s

sk
rad(Bi (sk))

(we have used that s �→ |νε(Bi (s))| is constant during each expansion phase). Thus,
∑

B∈Bε(s)

rad(B) ≤ s

sk

∑
B∈Bε(sk )

rad(B).

Now, we complete the proof of (iv) arguing by induction. ��

As an immediate consequence of Proposition 3, using (87), (88) the defini-
tion (83) of Λε and (85) in Lemma 10, we obtain

Corollary 1. For any s ∈ [sε, CR∗#(Bε)
−1], there exists a family of pairwise

disjoint, closed ballsBε(s) which satisfies the following properties:

(i) sptBε ⊆ sptBε(s) ⊆ sptBε(t) for any sε ≤ s ≤ t ≤ R∗#(Bε)
−1;

(ii) for any B ∈ Bε(s), it holds that

1

2
|wε|2W 1,2

ε (B\sptBε)
≥ |νε(B)|

(
π(1− Cε) log

s

ε
− C

)
;

(iii) it holds that
∑

B∈Bε(s) rad(B) ≤ Cs #(Bε).
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5.3. Proof of the Zero-Order Γ -Convergence

We state and prove a zero-order Γ -convergence result in terms of the mea-
sures νε(vε). Given a measure μ ∈ X with μ =∑

i diδxi , we set

σ0(μ) := 1

2
min

{
min
j �=i dist(xi , x j ), injectivity radius of M

}
.

Proposition 4. Suppose that the assumptions (H1), (H2) and (H3) are satisfied.
Then, the following results hold:

(i) Compactness. If (vε) is a sequence in T(Tε; S
2) that satisfies the energy

bound (H) then, up to subsequences, νε(vε)
flat−→ μ for some μ ∈ X;

(ii) Localized Γ -liminf inequality. Let (vε) be a sequence in T(Tε; S
2) such

that νε(vε)
flat−→ μ for some μ ∈ X, μ = ∑K

i=1 diδxi . Then, there exists a
constant C such that, for any i ∈ {1, . . . , K } and any 0 < σ ≤ σ0(μ), we
have

lim inf
ε→0

(
1

2
|wε|2W 1,2

ε (Bσ (xi ))
− π |di | log σ

ε

)
≥ C;

(iii) Γ -limsup inequality.For anyμ ∈ X there exists a sequence (vε) inT(Tε; S
2)

such that νε(vε)
flat−→ μ and

lim sup
ε→0

|wε|2
W 1,2

ε (M)

2| log ε| ≤ π |μ|(M).

The proof of this Proposition is adapted from [2, Theorem 3.1]. Throughout the
proof, we write νε instead of νε(vε) when no confusion is possible.

Proof of (i)—Compactness. Let B1
ε := Bε(s1ε ) be the family of balls given by

Corollary 1 for the choice of parameter s1ε := ε1/2. If ε is small enough, we have

sε
(88)≤ ε1/2 ≤ CR∗

| log ε|
(89)≤ CR∗

#(Bε)
,

so s1ε satisfies the assumptions of Corollary 1. By (i) in Corollary 1, we have that
spt(νε) ⊆ sptBε ⊆ sptB1

ε , while (ii) implies

1

2
|wε|2W 1,2

ε (B)
≥ |νε(B)|

(π

2
(1− Cε)| log ε| − C

)

for any B ∈ B1
ε . Summing up this inequality over all the B’s, using Lemma 3 and

the energy bound (H), one sees that

∑
B∈B1

ε

|νε(B)| ≤ C
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for an ε-independent constant C . We introduce the measures

ν1ε :=
∑
B∈B1

ε

νε(B)δx(B),

where x(B) denotes the centre of the ball B and we note that belong to X . In fact,
we have

ν1ε (M) =
∑
B∈B1

ε

νε(B) =
∑
B∈B1

ε

ind(vε, B) = ind(vε, M) = χ(M).

The measures ν1ε have uniformly bounded mass and therefore flat-converge to an
element of X , up to extraction of a subsequence. On the other hand, (iii) in Corol-
lary 1 implies

∑
B∈B1

ε

rad(B) ≤ Cε1/2#(Bε)
(89)≤ Cε1/2| log ε|.

Then, arguing as in [2, Theorem 3.1.(i)], one can show that ‖νε − ν1ε‖flat → 0,
which yields compactness for the sequence (νε). (see also [3, Theorem 3.3] for
more details). ��
Proof of (ii)—Γ -liminf. Fix i ∈ {1, . . . , K } and 0 < σ ≤ σ0(μ). By extraction
of a non-relabelled subsequence, we can assume WLOG that

lim
ε→0

(
1

2
|wε|2W 1,2

ε (Bσ (xi ))
− π |di || log ε|

)
< +∞ (91)

(and, in particular, the limit exists). Arguing as in [2, Theorem 3.1.(ii)], we see that
‖νε(vε) − νε(v̄ε)‖flat → 0, where v̄ε denotes the restriction of vε to Bσ (xi ), and
that νε(v̄ε) flat-converges to diδxi . Therefore, we can repeat the ball construction of
Section 5.2 with M replaced by Bσ (xi ) and vε replaced by v̄ε. (This guarantees that
no ball “coming from outside” enters Bσ (xi ).) We still write νε instead of νε(v̄ε).

For a fixed γ ∈ (0, 1), we applyCorollary 1with s = s2ε := εγ . (One can check,
arguing as in the proof of (i), that the assumptions of Corollary 1 are satisfied.) The
collection of balls Bε(s2ε ) satisfies spt(νε) ⊆ sptBε(s2ε ),

∑
B∈Bε(s2ε )

rad(B) ≤ Cεγ #(Bε)
(89)≤ Cεγ | log ε|

and
1

2
|wε|2W 1,2

ε (B)
≥ |νε(B)| (π(1− γ )(1− Cε)| log ε| − C) (92)

for any B ∈ Bε(s2ε ) \ Bε. Let B2
ε := {B ∈ Bε(s2ε ) : B ⊆ Bσ (xi )} and ν2ε :=∑

B∈B2
ε
νε(B)δx(B). Arguing again as in [2], we see that ‖ν2ε − νε‖flat → 0, so ν2ε

flat-converges to diδxi and, in particular, lim infε→0 |ν2ε |(Bσ (xi )) ≥ |di |. Now, by
summing up the inequality (92) with respect to B ∈ B2

ε , we deduce

1

2
|wε|2W 1,2

ε (Bσ (xi ))
≥ π(1− γ )(1− Cε)

∣∣∣ν2ε
∣∣∣ (Bσ (xi )) |log ε| − C.
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If lim infε→0 |ν2ε |(Bσ (xi )) > |di |, then in fact lim infε→0 |ν2ε |(Bσ (xi )) ≥ |di | +
1 (because ν2ε is integer-valued) and hence the Γ -liminf inequality (ii) follows,
provided that we choose γ such that (1− γ )(|di | + 1) > |di |. Otherwise, we have
that |ν2ε |(Bσ (xi )) = |di | for ε small enough. Then, we can write

ν2ε =
k∑
j=1

pε
j δyε

i
,

where the numbers pε
j ∈ Z all have the same sign and satisfy

∑
j p

ε
j = di , and yε

j →
xi as ε → 0. By taking ε small enough, we can assume that yε

j ∈ Bσ/2(xi ) for all j .

We fix a positive number η > 0, and we apply Corollary 1 with s = s3ε :=
η #(Bε)

−1. (We chooseη small enough that s3ε ≤ CR∗#(Bε)
−1, so the assumptions

of Corollary (1) are satisfied.) We find a collection of balls B3
ε := Bε(s3ε ) that

satisfies spt(ν2ε ) ⊆ sptB3
ε ,∑

B∈B3
ε

rad(B) ≤ Cη (93)

1

2
|wε|2W 1,2

ε (B\sptBε)
≥ |νε(B)|

(
π(1− Cε) log

η

ε#(Bε)
− C

)
. (94)

Thanks to (93) and the fact that spt(ν2ε ) ⊆ sptB3
ε , dist(spt ν

2
ε , ∂Bσ (xi )) ≥ σ/2, we

can choose η so small that B ⊆ Bσ (xi ) for any B ∈ B3
ε . Then, using also the fact

that all the pε
j have the same sign and sum up to di , we see that

∑
B∈B3

ε
|ν2ε (B)| =

|di | and hence, by (94),

1

2
|wε|2W 1,2

ε (Bσ (xi )\sptBε)
≥ π |di |(1− Cε) log

η

ε#(Bε)
− C.

On the other hand, Lemma 12 implies that

1

2
|wε|2W 1,2

ε (sptBε)
≥

∑
T∈Tε : P(T )∩Sε �=∅

1

2
|wε|2W 1,2

ε (P(T ))
≥ β#(Bε).

Thus, we have

1

2
|wε|2W 1,2

ε (Bσ (xi ))
≥ π |di |(1− Cε) |log ε|

− π |di |(1− Cε) log
#(Bε)

η
+ β#(Bε)− C

≥ π |di | |log ε| − C.

��
Proof of (iii)—Γ -limsup. Fix μ = ∑K

i=1 diδxi ∈ X , and suppose that di �= 0 for
any i . By a diagonal argument, it suffices to show the following: for any δ and any
countable subsequence of ε ↘ 0, there exists a (non-relabelled) subsequence such
that

lim sup
ε→0

|wε|2W 1,2
ε (M)

2| log ε| ≤ π |μ|(M)+ δ. (95)
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Let us fix δ > 0 and the countable subsequence of ε. We also fix a small
parameter 0 < σ ≤ σ0(μ). For i ∈ {1, . . . , K } and j ∈ {1, . . . , |di |}, we
let zεi, j := εσ exp(2πιj |di |−1) ∈ C (where ι is the imaginary unit). By taking ε

small enough, we can assume that |zεi, j | < σ . We define a map ũε
i : Bσ ⊆ C → C

by

ũε
i (z) :=

di∏
j=1

z − zεi, j
|z − zεi, j |

if di > 0, ũε
i (z) :=

−di∏
j=1

z − zεi, j
|z − zεi, j |

otherwise.

(96)

Using normal coordinates ϕi : Bσ ⊆ C → M such that ϕi (0) = xi , we can trans-
port ũε

i to a vector field on Bσ (xi ) ⊆ M , i.e. we defineuε
i (ϕi (z)) := 〈dϕi (z), ũε

i (z)〉
for z ∈ Bσ ⊆ C. Since

∑
i ind(u

ε
i , Bσ (xi )) = ∑

i di = χ(N ), we find a
smooth vector field u on Mσ := M \ ∪i Bσ (xi ) that satisfies u = uε

i on ∂Bσ (xi )
for each i . We define uε := uε

i on Bσ (xi ) and uε := u on Mσ . The tangent
field uε ∈ W 1,1(M, R

3) is smooth except at the points xε
i, j := ϕi (zεi, j ) → xi and

hence, by Lemma 6,

1

2π

(
�dj (uε)− G

) =∑
i, j

sign(di ) δxε
i, j

flat−→
∑
i

diδxi = μ as ε → 0. (97)

Let vε be the discrete field defined by vε(i) := uε(i) for i ∈ T 0
ε , and let wε :=

P̂−1ε ◦ v̂ε. We have

|∇swε|
(H1)≤ C |∇εv̂ε| ≤ C

∣∣∇suε
∣∣ ,

where the last inequality follows by basic properties of the affine interpolant. Setting
Dε
i := Bσ (xi ) \ ∪ j Bε(xε

i, j ), and using (34) and Lemma 2, we obtain

1

2
|wε|2W 1,2

ε (M)
= 1

2

K∑
i=1

|wε|2W 1,2
ε (Dε

i )
+ 1

2

∑
i, j

|wε|2W 1,2
ε (Bε(xε

i, j ))

+ 1

2
|wε|2W 1,2

ε (Mσ )

≤ 1+ Cε

2

K∑
i=1

∫
Dε
i

∣∣∇suε
∣∣2 dS +

K∑
i=1

Lip(wε)
2H 2(Bε(xi ))

+ 1+ Cε

2

∫
Mσ

|∇su|2 dS

(37)≤ 1+ Cε

2

K∑
i=1

∫
Dε
i

∣∣∇suε
∣∣2 dS + Cσ ,

whereCσ is a positive constant, depending on σ . The integral of |∇sv|2 on each Dε
i

can be evaluated using (96) and the fact that Lip(ϕi |Bσ (xi )) ≤ 1+ Cσ :

1+ Cε

2

∫
Dε
i

∣∣∇suε
∣∣2 dS ≤

(
π(1+ Cσ)|di | + Cσ |di |2

)
| log ε| + Cσ ,
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whence

lim sup
ε→0

|wε|2W 1,2
ε (M)

2| log ε| ≤ π(1+ Cσ)|μ|(M)+ Cσ (|μ|(M))2 ,

and, choosing σ so small that Cσ |μ|(M)+ C |μ|(M)2 ≤ δ, (95) follows.
To conclude the proof, we only need to show that νε(vε) flat-converges to μ.

Using (H2), the definition of affine interpolant, and the fact that

∣∣∇suε(x)
∣∣ ≤ Cσ

dist(x, {xε
i, j })

for x ∈ Bσ (xi )

(as a consequence of (96)), one finds positive numbers λ, ε1 such that, for any 0 <

ε ≤ ε1, there holds |wε| ≥ 1/2 on Aε := M \ ∪i, j Bλε(xε
i, j ). Thanks to Lemma 4,

this implies |uε| ≥ 1/4 if ε is small enough, where uε is the field defined by (55).
Then, using (57) and (86), we obtain that νε(vε)[B] = 0 if B ⊆ Aε. On the other
hand, we also have μ[B] = 0 if B ⊆ Aε, due to (97). Thus, for any Lipschitz
function ϕ on M such that sup |ϕ| + Lip(ϕ) ≤ 1, it holds that

〈νε(vε)− μ, ϕ〉 =
∑
i, j

∫
Bλε(xε

i, j )

ϕ d(νε(vε)− μ)

=
∑
i, j

∫
Bλε(xε

i, j )

(ϕ − ϕ(xi )) d(νε(vε)− μ)

≤ Cλε (|νε(vε)| + |μ|) (M),

(98)

and Lemma 13 implies

|νε(vε)|(M) ≤ C# {T ∈ Tε : P(T ) \ Aε �= ∅} (H2)≤ C. (99)

Combining (98) and (99), we conclude that ‖ν(vε)− μ‖flat ≤ Cλε. ��

6. The First-Order Γ -Convergence: Location of Defects and their Energetics

6.1. The Renormalized Energy

In this Subsection we resume the concept of Renormalized energy that we have
introduced in (18) and we state its main properties. We recall that we have set

Wintr(v) := lim
δ→0

(
1

2

∫
Mδ

|Dv|2dS −K π | log δ|
)

for v ∈ VK (100)

where for K ∈ N we have set (see (17))

VK :=
{

v ∈ L2(M; S
2) : there exist (xi )Ki=1 ∈ MK s.t.

v ∈ W 1,2
tan,loc(M \ ∪Ki=1xi ; S

2) and |ind(v, xi )| = 1 for any i

}
.
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The object in (100) is well defined for a variety of reasons. First of all, a standard
construction based on the Poincaré–Hopf theorem (see, e.g., [18, Proposition 1.5])
shows that the set VK is non empty if and only if K ≥ |χ(M)| and K ≡ χ(M)

mod 2, that is,K is even. Second, for any v ∈ VK and any δ > 0 there holds that

1

2

∫
Mδ

|Dv|2dS −K π | log δ| < +∞.

Third, for any v ∈ VK , it holds that

d

dδ

(
1

2

∫
Mδ

|Dv|2dS −K π | log δ|
)
=

K∑
i=1

(
−1

2

∫
∂Bδ(xi )

|Dv|2 dS + π

δ

)

≤
K∑
i=1

(
− (2π + Cδ2)2

4πδ + Cδ2
+ π

δ

)
,

where the last inequality follows by Lemma 21 below. Since the righ-hand side is
bounded from above as δ ↘ 0, we deduce that the limit in (100) exists and belongs
to (−∞, +∞].

Similar to the Euclidean flat case (see [2]) we have the following dyadic decom-
position of the intrinsic Renormalized Energy:

Lemma 14. Fix ρ > small enough in such a way that Bρ(xi ) are pairwise disjoint
for i = 1, . . . ,K . Then, for any v ∈ VK ,

Wintr(v) = 1

2

∫
M\⋃K

i=1 Bρ(xi )
|Dv|2dS − πK | log ρ|

+
K∑
i=1

+∞∑
j=0

(
1

2

∫
B2− j ρ(xi )\B2−( j+1)ρ (xi )

|Dv|2dS − π log 2

)
.

Proof. For l ∈ N and some fixed ρ > 0 as in the statement, we consider δ =
ρ2−(l+1). Note that the limit δ → 0 corresponds to the limit l → +∞. Moreover,
we dyadically decompose Bρ(xi )\ Bρ2−(l+1) for any i = 1, . . . ,K . We thus obtain

M \
K⋃
i=1

Bδ(xi ) =
⎛
⎝M \

K⋃
i=1

Bρ(xi )

⎞
⎠ ∪

K⋃
i=1

l⋃
j=0

(
B2− jρ(xi ) \ B2−( j+1)ρ(xi )

)
.

Thus, we have∫
M\⋃K

i=1 Bδ(xi )
|Dv|2dS − πK | log δ|

=
∫
M\⋃K

i=1 Bρ(xi )
|Dv|2dS − πK | log ρ|

+
K∑
i=1

l∑
j=0

∫
B2− j ρ(xi )\B2−( j+1)ρ (xi )

|Dv|2dS − πK (l + 1) log 2
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=
∫
M\⋃K

i=1 Bρ(xi )
|Dv|2dS − πK | log ρ|

+
K∑
i=1

l∑
j=0

(∫
B2− j ρ(xi )\B2−( j+1)ρ (xi )

|Dv|2dS − π log 2

)
.

Therefore, by sending l →+∞ (i.e. δ → 0), the lemma follows. ��
Thanks to Lemma 14, the extrinsinc Renormalized Energy defined by (20) satisfies

W(v) = 1

2

∫
M\⋃K

i=1 Bρ(xi )
|Dv|2dS − πK | log ρ| + 1

2

∫
M
|dγ [v]|2dS

+
K∑
i=1

+∞∑
j=0

(
1

2

∫
B2− j ρ(xi )\B2−( j+1)ρ (xi )

|Dv|2dS − π log 2

)
.

(101)

An interesting consequence of the above representation is that, for v ∈ VK
such that W(v) < +∞, it holds that, analogously to the Euclidean case (see [2,
Remark 4.4]),

lim
j→∞

1

2

∫
B2− j ρ(xi )\B2−( j+1)ρ (xi )

|Dv|2dS

= lim
j→∞

1

2

∫
B2− j ρ(xi )\B2−( j+1)ρ (xi )

e(v)dS = π log 2.
(102)

Consequently, we have

Lemma 15. The effective domain ofW in VK is included in W 1,1
tan (M; S

2), namely

{v ∈ VK : W(v) < +∞} ⊆ W 1,1
tan (M; S

2).

Proof. It is clearly sufficient to show that any v ∈ VK with W(v) < +∞ is in
W 1,1(Bρ(xi )) (ρ > 0 smaller than the injectivity radius) for any i = 1, . . . ,K .
We set Ai

j := B2− jρ(xi ) \ B2−( j+1)ρ(xi ). Then we have

∫
Ai
j

|Dv| dS ≤
(
H 2(Ai

j )
)1/2 (∫

Ai
j

|Dv|2 dS
)1/2

,

and thus, thanks to (102)∫
Ai
j

|Dv| dS ≤ Cρ2− j , for all i = 1, . . . ,K .

Consequently, if we dyadically decompose Bρ(xi ), for any i we get

∫
Bρ(xi )

|Dv| dS ≤ C
+∞∑
j=1

2− j < +∞,

which clearly gives the result. ��
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6.2. The Core Energy

In this subsection we rigorously define the concept of core energy and dis-
cuss some of its properties. This object was introduced by Bethuel, Brexis and
Hélein [12] and later extended to the discrete setting by Alicandro et al. [2].

Given a point x̄ ∈ M and radii δ1, δ2 such that δ1 < δ2, we denote by Aδ1,δ2(x̄)
the geodesic annulus

Aδ1,δ2(x̄) := Bδ2(x̄) \ Bδ2(x̄) ⊆ M.

Let us fix a positive number δ, smaller than the injectivity radius of M . We consider
the minimization problem

η(δ, x̄) := min
w∈W 1,2

tan (Aδ/2,δ(x̄);S2)

{
1

2

∫
Aδ/2,δ(x̄)

|Dw|2 + |dγ [w]|2dS :

ind(w, x̄) = 1

}
. (103)

We denote withH(δ, x̄) the set of its minimizers.H(δ, x̄) is non-empty, as follows
by standard arguments in the Calculus of Variations. We fix a minimizer gδ ∈
H(δ, x̄) for Problem (103) and, for ε > 0, δ > 0, we set

γx̄ (ε, δ) := min
v∈T(Tε,S2)

{
1

2

∫
B̂δ(x̄)ε

|∇εv̂|2 dS : v = gδ on ∂εBδ(x̄)

}
. (104)

Since x̄ is fixed throughout this section, we will write γ (ε, δ) instead of γx̄ (ε, δ).
We recall that B̂δ(x̄)ε is the union of the triangles T ∈ Tε such that P(T ) ⊆
Bδ(x̄), ∂εBδ(x̄) := ∂(B̂δ(x̄)ε) ∩ T 0

ε , and v̂ is the affine interpolant of the discrete
field v. γ (ε, δ) depends on the choice of the point x̄ , of gδ ∈ H(δ, x̄) and of the
triangulation Tε, even though we have dropped this dependence in the notation. We
are interested in the asymptotic behaviour of γ (ε, δ) as ε ↘ 0, δ ↘ 0.

Proposition 5. Suppose that the sequence (Tε) satisfies (H1), (H2). (H3) and (H4).
Then for any x̄ ∈ M the following limits are finite and coincide:

γ (x̄) := lim
δ→0

lim inf
ε→0

(
γ (ε, δ)− π log

δ

ε

)
= lim

δ→0
lim sup

ε→0

(
γ (ε, δ)− π log

δ

ε

)
.

It will be clear from the proof that the number γ (x̄) depends on x̄ and on the
sequence (Tε), but not on the choice of gδ ∈ H(δ, x̄). To prove Proposition 5, we
compare γ (ε, δ) with the solution of an auxiliary problem, defined as the “flat”
counterpart of Problem (104). We know that the solution of the latter converges to
a finite limit as ε ↘ 0, thanks to the analysis in [12] and [2], and hence we will be
able to prove convergence for γ (ε, δ).

Before moving to the proof of Proposition 5, let us fix some notation. Let δ > 0
be smaller than the injectivity radius of M . Let Āδ/2,δ ⊆ R

2 be the Euclidean
annulus, centred at the origin, with radii δ/2 and δ. The geodesic coordinates
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ϕ : Bδ ⊆ R
2 → M induce a bijection W 1,2( Āδ/2,δ; S

1) → W 1,2
tan (Aδ/2,δ(x̄); S

2):
the push-forward ϕ∗w of a field w ∈ W 1,2( Āδ/2,δ; S

1) is defined by

(ϕ∗w)(ϕ(x)) := 〈dϕ(x), w(x)〉
|〈dϕ(x), w(x)〉| , for x ∈ Āδ/2,δ. (105)

The pull-back of a field w ∈ W 1,2
tan (Aδ/2,δ(x̄); S

2) is given by ϕ∗w := (ϕ−1)∗w. A
straightforward computation, based on the fact that dϕ(0) = IdTx̄ M , shows that

Eextr(ϕ∗w; Aδ/2,δ(x̄)) ≤
(
1

2
+ O(δ)

)∫
Āδ/2,δ

|∇w|2 dS (106)

as δ → 0 (see (14) for the definition of the extrinsic energy Eextr); in a similar
way, it holds that

1

2

∫
Āδ/2,δ

∣∣∇(ϕ∗w)
∣∣2 dS ≤ (1+ O(δ)) Eextr(w; Aδ/2,δ(x̄)). (107)

Moreover, we have ind(w, x̄) = ind(ϕ∗w, 0). The push-forward of discrete fields
ϕ∗ : T(T ε, S

2) → T(Tε, S
1), along with its inverse ϕ∗, is defined in a similar way.

Using ϕ, we can compare minimizers gδ ∈ H(δ, x̄) of Problem (103) with
minimizers of the corresponding Euclidean problem, namely

min
w∈W 1,2( Āδ/2,δ;S1)

{
1

2

∫
Āδ/2,δ

|∇w|2 dS, ind(w, 0) = 1

}
. (108)

The minimizers of (108) are exactly the fields of the form hR(x) := Rx/|x |,
where R ∈ SO(2) is a constant rotation matrix.

Lemma 16. For any δ > 0 (smaller than the injectivity radius of M) and any gδ ∈
H(δ, x̄), there exist R = R(δ, gδ) ∈ SO(2) such that

lim
δ↘0

‖ϕ∗gδ − hR‖W 1,2(Aδ/2,δ(x̄)) = 0.

Proof. Set gδ := ϕ∗gδ and hR := ϕ∗hR . By minimality of gδ and (106), we have

Eextr(gδ, Aδ/2,δ(x̄)) ≤ Eextr(hR, Aδ/2,δ(x̄))

(106)≤
(
1

2
+ O(δ)

)∫
Āδ/2,δ

∣∣∇hR
∣∣2 dS = π log 2+ O(δ).

Then, using (107), we obtain

1

2

∫
Āδ/2,δ

∣∣∇gδ

∣∣2 dS ≤ (1+ O(δ)) Eextr(gδ, Aδ/2,δ(x̄)) ≤ π log 2+ O(δ).

Let fδ : A1/2,1 → S
1 be defined by fδ(x) := gδ(δx). From the previous inequality,

it follows that

lim
δ↘0

1

2

∫
Ā1/2,1

∣∣∇fδ

∣∣2 dS = lim
δ↘0

1

2

∫
Āδ/2,δ

∣∣∇gδ

∣∣2 dS = π log 2, (109)
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where the right-hand side is exactly the minimum value for Problem (108). Thus, fδ

is a minimizing sequence for Problem (108) and, by standard arguments in the Cal-
culus of Variations, we find a subsequence that converges strongly inW 1,2( Ā1/2,1)

to a minimizer of (108). Now, arguing by contradiction, we deduce that

lim
δ↘0

inf
R∈SO(2)

‖fδ − hR‖W 1,2(A1/2,1)
= 0,

whence the lemma follows. ��
We point out a couple of immediate, but useful, consequences of Lemma 16.

Lemma 17. For any δ > 0 (smaller than the injectivity radius of M) and any gδ ∈
H(δ, x̄), there exist R = R(δ, gδ) ∈ SO(2) such that

lim
δ↘0

sup
t∈[3δ/4, δ]

‖ϕ∗gδ − hR‖W 1/2,2(∂Bt ) = 0.

Proof. By a scaling argument, we find a constant C such that the norm of the
trace operator Tδ,t : W 1,2( Āδ/2,δ) → W 1/2,2(∂Bt ) is bounded byC , for any t and δ

satisfying 3/4 ≤ t/δ ≤ 1. Then, the lemma immediately follows from Lemma 16
and the continuity of Tt,δ . ��
Lemma 18. We have that η(δ, x̄) → π log 2 as δ ↘ 0, uniformly in x̄ ∈ M.

Proof. This follows from the arguments in the proof of Lemma 16. Note that,
since M is compact and smooth, the quantities O(δ) that appear in (106)–(107) are
bounded uniformly with respect to x̄ . ��

Lemma 16 above remains valid with a similar proof also for vector fields v ∈
VK withK ≡ χ(M) mod 2. The elements inVK are not necessarily minimizers
of (103) but they satisfy, thanks to the dyadic decomposition of the renormalized
energy (see (101) and (102)),

lim
δ→0

1

2

∫
Aδ,δ/2(xi )

|Dv|2dS = lim
δ→0

1

2

∫
Aδ,δ/2(xi )

|∇sv|2dS = π log 2

for any i = 1, . . . ,K . The above convergence replaces (109) and thus we have

Lemma 19. Let K ≡ χ(M) mod 2 and consider v ∈ VK . Then, for any δ > 0
(smaller than the injectivity radius of M) and any i = 1, . . . ,K there exist R =
R(δ, i, g) ∈ SO(2) such that

lim
δ↘0

‖∇sv − ∇shR‖L2(Aδ/2,δ(xi )) = 0.

The following lemma will also be useful in the proof of Proposition 5:

Lemma 20. Let T ⊆ R
3 be a triangle of vertices i0, i1, i2, and let w : T → R

3 be
an affine map such that |w(ik)| = 1 for k ∈ {0, 1, 2}. Let φ be a diffeomorphism
defined in a neighbourhood of T , and suppose that ‖dφ − Id ‖L∞ ≤ δ where 0 <
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δ ≤ 1/2. Let S be the triangle of vertices φ(i0), φ(i1), φ(i2), and let z be the unique
affine map S → R

3 such that

z(φ(ik)) = 〈dφ(ik), w(ik)〉
|〈dφ(ik), w(ik)〉| for k ∈ {0, 1, 2}.

Then, it holds that
∫
S
|∇z|2 dS ≤ (1+ Cδ)

∫
T
|∇w|2 dS.

Proof. Thanks to the assumptions that |w| = 1 on the vertices of T and ‖dφ −
Id ‖L∞ ≤ δ ≤ 1/2, we see that z is well-defined and

|z(ik)− z(ih)| ≤ (1+ Cδ) |w(ik)− w(ih)| ,
(1− Cδ) |ik − ih | ≤ |φ(ik)− φ(ih)| ≤ (1+ Cδ) |ik − ih |

for any k, h ∈ {0, 1, 2}. Then, the lemma follows by a straighforward
computation. ��
Proof of Proposition 5. For the sake of convenience, we split the proof into steps.

Step 1. Recall from Section (3.1) that T ε is the pull back of Tε via ϕ, namely, T ε

is a triangulation on Bδ ⊆ R
2 with set of vertices ϕ−1(Bδ(x̄) ∩ T 0

ε ); three vertices
in Tε span a triangle in T ε if and only if their images via ϕ do. We consider the
minimization problem

γ1(ε, δ) := min
v∈T(T ε,S1)

{
1

2

∫
(̂Bδ)ε

|∇εv̂|2 dS : v = gδ on ∂εBδ

}
, (110)

where gδ := ϕ∗gδ . We wish to show that

(1− Cδ) γ1(ε, δ) ≤ γ (ε, δ) ≤ (1+ Cδ) γ1(ε, δ). (111)

Let v ∈ T(T ε; S
2) with v = gδ on ∂εBδ be a competitor for Problem (110).

The pull-back ϕ∗v ∈ T(Tε; S
2) satisfies ϕ∗v = gδ on ∂εBδ(x̄), so ϕ∗v is an

admissible competitor for Problem (104). By noting that dϕ(0) = IdTx M , and
applying Lemma 20 on each triangle of T ε, we obtain that

γ (ε, δ) ≤ 1

2

∫
B̂δ(x̄)ε

|∇ε(ϕ̂∗v)|2 dS ≤
(
1

2
+ Cδ

)∫
(̂Bδ)ε

|∇v̂|2 dS.

(In order to apply Lemma 20, we extend ϕ to a 3-dimensional diffeormorphism φ

by setting φ(x1, x2, x3) := ϕ(x1, x2)+ x3(γ ◦ ϕ)(x1, x2) for (x1, x2) ∈ Bδ and x3
small enough.) Thus, by the arbitrarity of v, we deduce that

γ (ε, δ) ≤ (1+ Cδ) γ1(ε, δ).

A similar argument gives the other inequality in (111).
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Step 2. Following the notation in Section 3.1, we define a triangulation on Bδ/ε ⊆
R
2 by setting

Sε :=
{
1

ε
T : T ∈ T ε

}
.

Thanks to (H2), there exists an ε-independent constant Λ such that, for any ε and
any T ∈ Sε, the affine bijection φT from the reference triangle Tref ⊆ R

2 spanned
by (0, 0), (1, 0), (0, 1) to T satisfies

max{Lip(φT ), Lip(φ−1T )} ≤ Λ. (112)

By scaling, we deduce from (110) that

γ1(ε, δ) = min
v∈T(Sε,S1)

{
1

2

∫
(̂Bδ/ε)ε

|∇v̂|2 dS : v = gε,δ on ∂εBδ/ε

}
, (113)

where (̂Bδ/ε)ε is the union of the triangles T ∈ Sε such that T ⊆ Bδ/ε, ∂εBδ/ε :=
∂(̂Bδ/ε) ∩ S0

ε and gε,δ : Āδ/(2ε), δ/ε → R
2 is given by gε,δ(x) := gδ(εx). Let us

define

γ2(ε, δ) = min
v∈T(Sε,S1)

{
1

2

∫
(̂Bδ/ε)ε

|∇v̂|2 dS : v = h on ∂εBδ/ε

}
, (114)

where h(x) = hId(x) := x/|x | is, modulo rotations, the uniqueminimizer of (108).
We claim that there exists postive numbers σ(δ), r(δ), depending only on δ, such
that

γ2(ε, δ + σ(δ)δ)− r(δ) ≤ γ1(ε, δ) ≤ γ2(ε, δ − σ(δ)δ)+ r(δ), (115)

and σ(δ) → 0, r(δ) → 0 as δ ↘ 0.
Thanks to (112), there exists a constant λ0 (which does not depend on δ, ε) such

that ∂εBδ/ε ⊆ B̄δ/ε \ Bδ/ε−λ0 . Let σ ∈ (0, 1/2) be a parameter, possibly depending
on δ but not on ε, to be chosen later. By taking ε small enough, we can assume
without loss of generality that (1− σ/2)δ/ε ≤ δ/ε − λ0, so that

∂εBδ/ε ⊆ B̄δ/ε \ B(1−σ/2)δ/ε. (116)

We construct a function that interpolates between gε,δ and h on the annulus Aε,δ :=
B(1−σ/2)δ/ε \ B(1−σ)δ/ε. Let θδ be a lifting for gδ , that is, a map θδ ∈ W 1,2(Aδ/2,δ \
([0, +∞) × {0}); R) such that gδ = exp(iθδ), and let θε,δ(x) := θδ(εx). We
also consider the function ϕ(x) := arctan(x2/x1), which is a lifting for h. Both θε,δ

and ϕ have a jump across the ray [0, +∞)×{0}, and the size of both jumps is equal
to ind(gε,δ, 0) = ind(h, 0) = 1. Thus, θε,δ − ϕ ∈ W 1,2(Aε,δ; R). By combining
a scaling argument, Lemma 17 and the continuity of the lifting in W 1/2,2 (see [13,
Remark 3]) we deduce that, modulo rotations, it holds that

∥∥θε,δ − ϕ
∥∥
W 1/2,2(∂B(1−σ/2)δ/ε)

= ‖θδ − ϕ‖W 1/2,2(∂B(1−σ/2)δ)
→ 0 (117)
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as δ ↘ 0. Let uε,δ be the unique solution of{
�u = 0 in Aε,δ

u = θε,δ − ϕ on ∂B(1−σ/2)δ/ε, u = 0 on ∂B(1−σ)δ/ε,
(118)

let ψε,δ := uε,δ + ϕ and uε,δ := eiψε,δ . There holds uε,δ = gε on ∂B(1−σ/2)δ/ε,
uε,δ = h on ∂B(1−σ)δ/ε. By standard elliptic theory, we find that

‖∇uε,δ‖2L2(Aε,δ)
≤ Cσ−1‖θε,δ − ϕ‖2W 1/2,2(∂B(1−σ/2)δ/ε)

. (119)

The constant Cσ−1 can be obtained via a scaling argument; one could also
solve (118) explicitly, passing to polar coordinates and using the method of the
separation of variables. Now, since |∇uε,δ| = |∇ψε,δ| a.e. on Aε,δ , we have

‖∇uε,δ‖2L2(Aε,δ)
≤ 2

(
‖∇ϕ‖2L2(Aε,δ)

+ ‖∇uε,δ‖2L2(Aε,δ)

)

Using (119), and computing explicitly the gradient of ϕ, we obtain

‖∇uε,δ‖2L2(Aε,δ)
≤ C

(
log

(
1+ σ/2

1− σ

)
+ σ−1‖θε,δ − ϕ‖2W 1/2,2(∂B(1−σ/2)δ/ε)

)
.

(120)
We choose

σ = σ(δ) := ‖θε,δ − ϕ‖W 1/2,2(∂B(1−σ/2)δ/ε)
+δ

Note that, thanks to (117), the right-hand side does not depend on ε and converges
to 0 as δ ↘ 0; in particular, when δ is small enough, we have σ ≤ 1/2. Then,
using (120), we deduce that

lim
δ↘0

sup
ε∈(0, δ)

‖∇uε,δ‖2L2(Aε,δ)
= 0. (121)

Moreover, Lemma 16 combined with a scaling argument implies that

‖∇gε,δ‖2L2(Bδ/ε\Bδ/ε−σ(δ)δ/(2ε))
= ‖∇gδ‖2L2(Bδ\Bδ−σ(δ)δ/2)

→ 0 (122)

as δ ↘ 0.
Let v∗δ ∈ T(Sε; S

1) be a minimizer for Problem (114) on B(δ−σ(δ)δ)/ε, i.e. the
problem that defines γ2(ε, δ − σ(δ)δ). We construct the following discrete vector
field:

vε,δ :=

⎧⎪⎨
⎪⎩

v∗δ in B(δ−σ(δ)δ)/ε ∩ S0
ε

uε,δ in Aε,δ ∩ S0
ε

gε,δ in (Bδ/ε \ Bδ/ε−σ(δ)δ/(2ε)) ∩ S0
ε .

Thanks to standard interpolation arguments (see, e.g., [19, Theorem 3.1.5]), we see
that

1

2

∫
(̂Bδ/ε)ε

∣∣∇vε,δ

∣∣2 dS ≤ γ2(ε, δ − σ(δ)δ)+ C‖∇uε,δ‖2L2(Aε,δ)

+ C‖∇gε,δ‖2L2(Bδ/ε\Bδ/ε−σ(δ)δ/(2ε))
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for some constant C that does not depend on ε, δ (this is possible because the
sequence of triangulations Sε satisfies (112)). Then, with the help of (121), (122),
we deduce that

1

2

∫
(̂Bδ/ε)ε

∣∣∇vε,δ

∣∣2 dS ≤ γ2(ε, δ − σ(δ)δ)+ r(δ),

where r(δ) → 0 and σ(δ) → 0 as δ ↘ 0. However, due to (116), there holds
vε,δ = gε,δ on ∂εBδ/ε, so vε,δ is an admissible competitor in Problem (113) that
defines γ1(ε, δ). Thus, a comparison argument immediately yields the≤-inequality
in (115). The other inequality is obtained via a similar argument.

Step 3. Remind that, in viewof (H4), the sequenceSε converges to a triangulationS.
We consider the analogue of Problem (114) on S, that is,

γ3(ε, δ) := min
v∈T(S,S1)

{
1

2

∫
(̂Bδ/ε)∗

|∇v̂|2 dS : v = h on ∂∗Bδ/ε

}
. (123)

We have written (̂Bδ/ε)∗ to denote the union of the triangles T ∈ S such that

T ⊆ Bδ/ε, and ∂∗Bδ/ε := ∂(B̂δ/ε) ∩ S0. We claim that there exists a positive
number s(ε, δ) such that

(1− s(ε, δ)) γ3(ε, δ) ≤ γ2(ε, δ) ≤ (1+ s(ε, δ)) γ3(ε, δ) (124)

and

lim
ε↘0

s(ε, δ) |log ε| = 0 for any δ. (125)

Thanks to (H4) and Lemma 1, for any ε, δ we find a quantity s1(ε, δ) > 0 that
satisfies (125) and a piecewise affine map φε ∈ Iso(Sε, S|Bδ/ε ) such that

max
{
Lip(φε), Lip(φ

−1
ε )

}
≤ 1+ s1(ε, δ). (126)

Ifv∗ is aminimizer for Problem (123), thenwehavev∗◦φε = h◦φε on ∂εBδ/ε sov∗◦
φε may not be admissible competitor for Problem (114). However, since |∇h(x)| ≤
C/|x |, for any i ∈ ∂εBδ/ε we have

∣∣v∗ ◦ φε(i)− h(i)
∣∣ ≤ Cε

δ
d(Sε, S|Bδ/ε ) =: s2(ε, δ), (127)

and, thanks to (H4), s2(ε, δ) also satisfies (125). We set s(ε, δ) := s1(ε, δ) +
s2(ε, δ), and consider the discrete field

vε, δ :=
{

v∗ in (Bδ/ε ∩ S0
ε ) \ ∂εBδ/ε

h on ∂εBδ/ε.



176 Giacomo Canevari & Antonio Segatti

Then, vε, δ is admissible for Problem (114), and a straightforward computation,
based on (112), (126) and (127) yields that

γ2(ε, δ) ≤ 1

2

∫
(̂Bδ/ε)ε

∣∣∇v̂ε,δ

∣∣2 dS

≤ 1+ s(ε, δ)

2

∫
(̂Bδ/ε)∗

|∇v̂|2 dS = (1+ s(ε, δ)) γ3(ε, δ).

Again, the other inequality in (124) follows by a similar argument.

Step 4. (Conclusion) Arguing as in [2, Theorem 4.1] (see also [12, Lemma III.1]
for the continuous case), we find a number γ (x̄) such that, for any δ, we have

lim
ε↘0

(
γ3(ε, δ)− π log

δ

ε

)
= γ (x̄).

Then, the proposition follows by combining (111), (115), (124) and (125). ��
��
Finally, we prepare the following refined lower bound on the Dirichlet energy

of a unit norm vector field on an anulus.

Lemma 21. Let C and R∗ be as in Lemma9. Then, for any givenρ1 < ρ2 < R∗ and
any given tangent, unit norm vector field w defined in Aρ1,ρ2(x̄) := Bρ2(x̄)\Bρ1(x̄)
with w ∈ W 1,2

tan (Aρ1,ρ2(x̄); S
2) and with ind(w, x̄) = d, we have

1

2

∫
∂Bρ(x̄)

|Dw|2ds ≥ 1

4πρ + Cρ2

∣∣∣∣∣2πd −
∫
Bρ(x̄)

G ds

∣∣∣∣∣
2

for any ρ ∈ (ρ1, ρ2).

Proof. The proof is based on the fact that for a vector field w with the regularity
of the statement there holds (see (43))

|Dw|2 = |j (w)|2.
Then, the proof is similar, and actually simpler, to that of Lemma 9. In particular,
there exist positive numbers R∗ and C such that, for any x0 ∈ M and any 0 < ρ ≤
R∗, there holds

H 1(∂Bρ(x0)) ≤ 2πρ + Cρ2.

Thus, Jensen’s inequality gives

1

2

∫
∂Bρ(x̄)

|Dw|2ds = 1

2

∫
∂Bρ(x̄)

|j (w)|2ds ≥ 1

4πρ + Cρ2

∣∣∣∣∣2πd −
∫
Bρ

G

∣∣∣∣∣
2

.

��
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Lemma 22. For any ρ1, ρ2 ∈ (0, R∗), for any x̄ ∈ M and for any w ∈
W 1,2

tan (Aρ1,ρ2(x̄); S
2), we have

1

2

∫
Aρ1,ρ2 (x̄)

|Dw|2dS ≥ π |d|2 log ρ2

ρ1
− Cπ |d|2 log 2π + Cρ2

2π + Cρ1
− |d|,

where d := ind(w, x̄).

Proof. Lemma 21 gives that

1

2

∫
∂Bρ(x̄)

|Dw|2ds ≥ 2π2d2

2πρ + Cρ2 −
|d|
ρ

∫
Bρ(x̄)

G dS.

To conclude, we integrate between ρ1 and ρ2 and note that thanks to the smoothness
of the Gauss curvature G, by possibly reducing R∗, we can assume that

∫ ρ2

ρ1

(
1

ρ

∫
Bρ(x̄)

G dS

)
dρ < 1. ��

6.3. Proof of Theorem B

Proof of (i)—Compactness. The proof follows the line of [2, Theorem4.2]. Given
vε ∈ T(Tε; S

2) such that

XYε(vε)−K π | log ε| ≤ C,

the existence of a subsequence of μ̂ε and of the measure μ ∈ X with
∑k

i=1 |di | ≤
K follows from the compactness part of the zeroth order Γ -convergence result in
Theorem A. Thus, we are left with the proof of the implication:

k∑
i=1

|di | = K "⇒ |di | = 1 for any i = 1, . . . ,K , (128)

which implies that
K ≡ χ(M) mod 2. (129)

Now, fix a small r > 0 in such a way that the balls Br (xi ), i = 1, . . . ,K are
pairwise disjoint. As usual we set

Mr := M \
K⋃
i=1

Br (xi ). (130)

We have

XYε(vε) = 1

2

k∑
i=1

|wε|2W 1,2
ε (Br (xi ))

+ 1

2
|wε|2W 1,2

ε (Mr )
.

Thanks to the localized Γ -lim inf inequality in Proposition 4, the first term in the
equality above is bounded from below in the following way:



178 Giacomo Canevari & Antonio Segatti

1

2

k∑
i=1

|wε|2W 1,2
ε (Br (xi ))

≥ π

k∑
i=1

|di | log r

ε
+ C (131)

for a constant C that does not depend on r . Thus, the energy estimate (23) and the
fact that

∑
i |di | = K give

1

2
|wε|2W 1,2

ε (Mr )
≤ K π | log r | + C. (132)

Consequently, we have that the sequence wε is uniformly bounded (w.r.t. ε) in
W 1,2

ε (Mr ) for any r > 0. Hence, there exists a tangent vector field v and a subse-
quence such that

wε → v strongly in L2(M;R3) and weakly in W 1,2
loc (M \

K⋃
i=1

xi ;R3). (133)

Moreover, thanks to Lemma 5 and to the strong L2 convergence we have that
|v| = 1. Passing to the limit as ε ↘ 0 in (132), we also see that W(v) < +∞.
Finally, thanks to Fubini’s Theorem, we can find some r ′ ∈ (r, 2r) such that for
any i = 1, . . . , k

∫
∂Br ′ (xi )

|∇swε|2ds ≤ C,

implying, by compactness, that

wε → v uniformly on ∂Br ′(xi ),

and then we have that
ind(v, xi ) = di . (134)

Thus, recalling that v ∈ W 1,1
tan (M;S2) (see Lemma 15), we conclude, thanks to

Lemma 6, that �dj (v) = 2πμ − GdS. Now, we prove that k = K ≡ χ(M)

mod 2 and that |di | = 1 for any i = 1, . . . ,K . We fix ρ1 and ρ2 in the interval
(0, R∗] (R∗ is as in Lemma 9)with ρ1 < ρ2 and such that the geodesic balls Bρ2(xi )
are pairwise disjoint. We have

XYε(vε) = 1

2

k∑
i=1

|wε|2W 1,2
ε (Bρ1 (xi ))

+ 1

2
|wε|2W 1,2

ε (M\⋃k
i=1 Bρ1 (xi ))

≥ 1

2

k∑
i=1

|wε|2W 1,2
ε (Bρ1 (xi ))

+ 1

2

k∑
i=1

|wε|2W 1,2
ε (Ai

ρ1,ρ2
)
.

Now, thanks to the localized Γ -lim inf inequality in Proposition 4, the first term in
the inequality above is, as in (131), bounded from below:

1

2

k∑
i=1

|wε|2W 1,2
ε (Bρ1 (xi ))

≥ π

k∑
i=1

|di | log ρ1

ε
+ C. (135)
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Thus, we get (recall that
∑k

i=1 |di | = K )

1

2

k∑
i=1

|wε|2W 1,2
ε (Ai

ρ1,ρ2
)
≤ XYε(vε)− πK | log ε| ≤ CK . (136)

As before, we obtain that the sequence wε is uniformly bounded (w.r.t. ε)
W 1,2

ε (
⋃k

i=1 Ai
ρ1,ρ2

). Let v the unit norm vector field identified above. By semi-
continuity of the norm we get

lim inf
ε→0

1

2

k∑
i=1

|wε|2W 1,2
ε (Ai

ρ1,ρ2
)
≥ 1

2

k∑
i=1

∫
Ai

ρ1,ρ2

|Dv|2dS

+ 1

2

k∑
i=1

∫
Ai

ρ1,ρ2

|dγ [v]|2dS.

(137)

Thus,

XYε(vε) ≥ π

k∑
i=1

|di | log ρ1

ε
+ 1

2

k∑
i=1

∫
Ai

ρ1,ρ2

|Dv|2dS

+ 1

2

k∑
i=1

∫
Ai

ρ1,ρ2

|dγ [v]|2dS + C.

Moreover, Lemma 22, together with
∑k

i=1 |di | = K , gives

XYε(vε) ≥ πK | log ε| + π

k∑
i=1

(|di |2 − |di |) log ρ2

ρ1

− Cπ

k∑
i=1

|di |2 log 2π + Cρ2

2π + Cρ1
+ C.

Thus, letting ρ1 → 0 and using the energy bound, we get that

lim
ρ1→0

π

k∑
i=1

(|di |2 − |di |) log ρ2

ρ1
≤ CK + C + Cπ

k∑
i=1

|di |2 log 2π + Cρ2

2π
.

Then, since the last term is bounded by a constant depending onK and on R∗, we
get that |di | = 1 for any i = 1, . . . ,K and thus v ∈ VK . ��
Proof of (ii)—Γ -liminf. Let vε be a sequence in T(Tε; S

2) satisfying the energy
estimate (see (23))

XYε(vε)−K π | log ε| ≤ C,

with K ≡ χ(M) mod 2. Let v ∈ VK be a tangent unit-norm vector field such
that

μ̂ε(vε)
flat−→ �dj (v) (138)
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and

wε → v strongly in L2(M;R3) and weakly in W 1,2
loc (M \

K⋃
i=1

xi ;R3). (139)

In particular, the semicontinuity of the norm gives that, for any r > 0 such that the
geodesic balls B2r (xi ) are pairwise disjoint, there holds (recall (130))

lim inf
ε→0

1

2
|wε|2W 1,2

ε (Mr )
≥ 1

2

∫
Mr

|Dv|2 + |dγ [v]|2dS. (140)

In what follows, we will assume that di = 1 for any i . The case di = −1 for some
index i can be treated in a similar way, with straightforward modifications of the
proof.

For any i we consider the minimum problem (103) with x̄ = xi and t ≤ r . As
in [2], the following property holds: for any fixed σ > 0, there exists a positive
ω = ω(σ) (independent of t and of i) such that if

σ < d(wε,H(t, xi )) := inf
{
‖∇swε −∇sv‖L2(At/2,t (xi )) : v ∈ H(t, xi )

}
,

then

lim inf
ε→0

1

2
|wε|2W 1,2

ε (At/2,t (xi ))
≥ ω(σ)+ η(t, xi ) for any i = 1, . . . ,K , (141)

where η(t, xi ) is the minimum value for (103), namely

η(t, xi ) := min
w∈W 1,2

tan (At/2,t (xi );S2)

{
1

2

∫
At/2,t (xi )

|Dw|2 + |dγ [w]|2dS,

ind(w, xi ) = 1

}
.

(142)

By Lemma 18, if t ≤ r is sufficiently small, we have

η(t, xi ) ≥ π

2
log 2. (143)

Then, we fix L ∈ N in such a way that

Lω(σ) ≥ W(v)+
K∑
i=1

γ (xi )−K (π log r + C), (144)

where C is the constant that appears in the localized liminf inequality in Proposi-
tion4.This is clearly possible sinceW(v) < +∞.Moreover,we setλ := 21/(2K ) ∈
[1, 2]. For l = 1, . . . , L , and i = 1, . . . ,K we set Ai

l := Bλ1−l r (xi ) \ Bλ−l r (xi ).
We have to face the two following situations:
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Case 1. For a ε sufficiently small and for any l = 1, . . . , L , there exists one i such
that d(wε,H(λ1−lr, xi )) ≥ σ . Thus, thanks to (141), (143), to the localized lim inf
inequality in Proposition 4 and to (144), we get (recall thatK ≥ 1)

XYε(vε) ≥
K∑
i=1

1

2
|wε|2W 1,2

ε (B
λ−Lr (xi ))

+
L∑

l=1

K∑
i=1

1

2
|wε|2W 1,2

ε (Ai
l )

≥ πK log
λ−Lr

ε
− CK + π

2
L log 2+ Lω(σ)+ oε→0(1)

≥ πK | log ε| +
K∑
i=1

γ (xi )+W(v)+ oε→0(1).

(145)

Case 2. The second possibility we have to face is that (up to a subsequence) there
exists a l̄ ∈ {1, . . . , L} such that for every i it holds that

d(wε,H(λ1−l̄ r, xi )) ≤ σ.

Now, for any i = 1, . . . ,K , let wi
ε be a vector field in H such that

d(wε,H(λ1−l̄ r, xi )) = ‖∇swε −∇swi
ε‖L2(Ai

l )
.

Note that by construction, wi
ε is a tangent vector field with unit norm (defined in

Ai
l̄
) and such that ind(wi

ε, xi ) = 1. Thus, by mimicking the cut off argument in [2],

we can construct a discrete vector field ṽε ∈ T(Tε; S
2) for which its corresponding

w̃ε (see (36)) verifies for any i = 1, . . . ,K w̃ε = wi
ε on ∂B

λ1−l̄ r (xi ) and that

1

2
|wε|2W 1,2

ε (B
λ1−l̄ r (xi ))

≥ 1

2
|w̃ε|2W 1,2

ε (B
λ1−l̄ r (xi ))

+ r(ε, σ ), (146)

with limσ↘0 limε↘0 r(ε, σ ) = 0. To construct such a vector field, one can map the
lattice T ε

0 on R
2 with geodesic normal coordinates and then use the construction

of [2] (see also [3] for an analogous construction in the framework of the two
dimensional Ginzburg Landau functional).

We are ready to conclude the proof of the Γ -lim inf. On the one hand, the
construction above and Proposition 5 give that (we set r̄ := λ1−l̄ r and we recall
that γxi (ε, r̄) is the value of the minimum problem in (104))

1

2

K∑
i=1

|wε|2W 1,2
ε (Br̄ (xi ))

≥ 1

2

K∑
i=1

|w̄ε|2W 1,2
ε (B

λ1−l̄ r (xi ))
+ r(ε, σ )

≥
K∑
i=1

γxi (ε, r̄)+ r(ε, σ )

=
K∑
i=1

γ (xi )+ πK
∣∣∣log ε

r̄

∣∣∣+ r(ε, σ )+ oε→0(1)

+ or̄→0(1).

(147)
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On the other hand, (140) and (18) give

1

2
|wε|2W 1,2

ε (Mr̄ )
≥ 1

2

∫
Mr̄

|Dv|2dS + 1

2

∫
Mr̄

|dγ [v]|2dS + oε→0(1)

≥ πK | log r̄ | +W(v)+ oε→0(1)+ or̄→0(1).
(148)

As a result, combining (147) and (148), we get

XYε(vε) = 1

2

K∑
i=1

|wε|2W 1,2
ε (Br̄ (xi ))

+ 1

2
|wε|2W 1,2

ε (Mr̄ )

≥ πK | log r̄ | +W(v)+
K∑
i=1

γ (xi )+ πK
∣∣∣log ε

r̄

∣∣∣
+ r(ε, σ )+ oε→0(1)+ or̄→0(1)

= πK | log ε| +W(v)+
K∑
i=1

γ (xi )+ r(ε, σ )+ oε→0(1)+ or̄→0(1).

Thus, sending ε → 0, σ → 0, r → 0 we get the Γ -lim inf inequality (26). ��
Proof of (iii)—Γ -limsup. Given v ∈ VK , the goal is to construct a sequence vε

such that wε → v weakly in L2(M;R3), such that μ̂ε(vε)
flat−→ �dj (v) and such

that the limsup inequality (27) holds. The recovery sequence vε is constructed as
in [2]. For the sake of clarity, we highlight the main points. First of all we suppose
that v is smooth, otherwise (as in [2]) we can approximate it with a smooth vector
field in theW 1,2 norm (see [44] and [18]). Then, we recall (102) that gives that, for
a fixed ρ > 0,

lim
j→+∞

1

2

∫
Ai
2− j−1ρ,2− j ρ

|Dv|2 + |dγ [v]|2dS = π log 2.

Thus, Lemma 19 gives that we can find a matrix R = R( j) ∈ SO(2) such that for
any i

lim
j→+∞

∥∥∇sv − ∇shR( j)
∥∥
L2(Ai

2− j−1σ,2− j σ
)
= 0. (149)

Now, we construct a tangent vector field on Ai
2− j−1σ,2− jσ

that interpolates between

hR( j) and v on ∂B2− j−1ρ(xi ) and ∂B2− jρ(xi ), respectively. Let ψ : [ 12 , 1] → R be
a smooth cut off function such that ψ(1/2) = 0 and ψ(1) = 1. Let θv and θhR( j)

be the liftings of the vector fields ϕ∗v and ϕ∗hR( j). We set uij := ψ(2 jρ|x |)θv +
(1 − ψ(2 jρ|x |))θhR( j)

, and then we set ui
j := eιuij , ι being the immaginary unit.

Finally, we map ui
j back on M using ϕ∗, namely we set ui

j := ϕ∗ui
j . Using (149)

it is not difficult to see that for any i = 1, . . . , there holds that

lim
j→+∞

∫
Ai
2− j−1σ,2− j σ

|∇sui
j |2dS = π log 2. (150)
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We consider the following sequence of vector fields:

v j :=
{

v in M \⋃K
i=1 B2− j−1ρ(xi )

ũi
j in Ai

2− j−1ρ,2− jρ
.

(151)

Now, for any i ∈ {1, . . . ,K } we consider the discrete vector field viε := ϕ∗viε
with viε be the minimizer of (114) in B2− j−1ρ with hR( j) as boundary condition on
∂εB2− j−1ρ . Finally, we let the recovery sequence be the sequence of discrete vector

fields that coincides with v j on the nodes of M \⋃K
i=1 B2− j−1ρ(xi ) and with viε on

the nodes of B2− j−1ρ . More precisely, we set

vε, j :=
{

v j in
(
M \⋃K

i=1 B2− j−1ρ(xi )
)
∩ T 0

ε ,

viε in B2− j−1ρ(xi ) ∩ T 0
ε for i = 1, . . . ,K .

Now, let wε, j := v̂ε, j ◦ P̂−1ε as in (36). By a diagonal argument, we have that there

exists sequence j (ε)
ε→0−−→ 0 such that

wε, j (ε) → v strongly in L2(M;R3) and weakly in W 1,2
loc (M \

K⋃
i=1

xi ;R3).

Moreover, μ̂ε(vε, j (ε))
flat−→ �dj (v). Finally, along the same sequence, j (ε) vε, j (ε)

is indeed a recovery sequence. In fact the following holds that

XYε(vε, j )− πK | log ε| = 1

2
|wε, j |2W 1,2

ε (M)
− πK | log ε|

= 1

2
|v|2

W 1,2
ε (M\⋃K

i=1 B2− j ρ(xi ))
− πK | log 2− jρ|

+ 1

2

K∑
i=1

|wε, j |2W 1,2
ε (Ai

2− j−1ρ,2− j ρ
)
− πK log 2

+ 1

2

K∑
i=1

|wε, j |2W 1,2
ε (B2− j−1ρ

(xi ))
− πK

∣∣∣∣log ε

2− j−1ρ

∣∣∣∣ .

Thus, using (150), (151) and Proposition 5, we conclude. ��
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