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Abstract

We study the two-dimensional stationary Navier–Stokes equations describing
the flows around a rotating obstacle. The unique existence of solutions and their
asymptotic behavior at spatial infinity are established when the rotation speed of
the obstacle and the given exterior force are sufficiently small.

1. Introduction

In this paper we consider the two-dimensional Navier–Stokes equations for
viscous incompressible flows around a rotating obstacle in two-dimensions:

⎧
⎪⎨

⎪⎩

∂tv − �v + v · ∇v + ∇q = g, div v = 0, t > 0, y ∈ �(t),

v = αy⊥, t > 0, y ∈ ∂�(t),

v → 0, t > 0, |y| → ∞.

(1)

Here v = v(y, t) = (v1(y, t), v2(y, t))� and q = q(y, t) are respectively, the
unknown velocity field and pressure field, and g(y, t) = (g1(y, t), g2(y, t))� is a
given external force. The time dependent domain �(t) is defined as

�(t) = {
y ∈ R

2 | y = O(αt)x, x ∈ �
}
,

O(αt) =
(
cosαt − sin αt
sin αt cosαt

)

,
(2)

where� is an exterior domain inR2 with a smooth compact boundary,while the real
numberα ∈ R\{0} represents the rotation speedof the obstacle�c = R

2\�.Weuse
the standard notation for derivatives: ∂t = ∂

∂t , ∂ j = ∂
∂x j

, � = ∑2
j=1 ∂2j , div v =

∑2
j=1 ∂ jv j , v · ∇v = ∑2

j=1 v j∂ jv. The vector x⊥ denotes the perpendicular:

x⊥ = (−x2, x1)�. The system (1) describes the flow around the obstacle�c which
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rotates with a constant angular velocity α, and the condition v(t, y) = αy⊥ on the
boundary ∂�(t) represents the no-slip boundary condition. To remove the difficulty
due to the time dependence of the fluid domain it is more convenient to analyze the
system (1) in the reference frame: for t � 0 and x ∈ �,

y = O(αt)x, u(x, t) = O(αt)�v(y, t), p(x, t) = q(y, t),

f (x, t) = O(αt)�g(y, t).

Here M� denotes the transposeof amatrix M . Then (1) is equivalent to the equations
in the time-independent domain �:

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �u − α(x⊥ · ∇u − u⊥) + ∇ p = −u · ∇u + f, div u = 0, t > 0, x ∈ �,

u = αx⊥, t > 0, x ∈ ∂�,

u → 0, t > 0, |x | → ∞.

In this paper we are interested in the stationary solutions to this system. Thus we
assume that f is independent of t and consider the next system:

⎧
⎪⎨

⎪⎩

−�u − α(x⊥ · ∇u − u⊥) + ∇ p = −u · ∇u + f, div u = 0, x ∈ �,

u = αx⊥, x ∈ ∂�,

u → 0, |x | → ∞.

(NSα)
To state our result let us introduce the function spaces used in this paper. As usual,
the class C∞

0,σ (�) is defined as the set of smooth divergence free vector fields

with compact support in �, and the homogeneous space Ẇ 1,2
0,σ (�) is the closure of

C∞
0,σ (�) with respect to the norm ‖∇ f ‖L2(�). For a fixed number s � 0 we also

introduce the weighted L∞ space L∞
s (�) and its subspace L∞

s,0(�) as follows:

L∞
s (�) = {

f ∈ L∞(�) | (1 + |x |)s f ∈ L∞(�)
}
,

L∞
s,0(�) = {

f ∈ L∞
s (�) | lim

R→∞ ess.sup|x |�R |x |s | f (x)| = 0
}
.

(3)

These are Banach spaces equipped with the natural norm

‖ f ‖L∞
s (�) = ess.supx∈�(1 + |x |)s | f (x)|,

and the set of functions with compact support is dense in L∞
s,0(�). Moreover, for

any bounded sequence { fn} in L∞
s (�) (or L∞

s,0(�)) with ‖ fn‖L∞
s (�) � M for some

M > 0, there exists a subsequence { fn′ }which converges in the weak-star topology
in the sense that there is f ∈ L∞

s (�) (or f ∈ L∞
s,0(�), respectively) such that

lim
n′→∞

∫

�
fn′(x)φ(x)(1 + |x |)s dx =

∫

�
f (x)φ(x)(1 + |x |)s dx, for any φ ∈ L1(�)

and ‖ f ‖L∞
s (�) � M . We denote by L2

loc(�) the set of functions which belong to

L2(� ∩ K ) for any compact set K ⊂ R
2, and W k,2

loc (�), k = 1, 2, . . ., is defined in
a similar manner.

The main result of this paper is stated as follows:
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Theorem 1.1. There exists ε = ε(�) > 0 such that the following statement holds.
Assume that f ∈ L2(�)2 is of the form f = div F = (∂1F11 + ∂2F12, ∂1F21 +
∂2F22)

� with some F = (Fi j )1�i, j�2 ∈ L∞
2 (�)2×2 and F12 − F21 ∈ L1(�). If

α �= 0 and

|α| 12 ∣∣ log |α|∣∣ + |α|− 1
2
∣
∣ log |α|∣∣ (‖ f ‖L2(�)+‖F‖L∞

2 (�)+‖F12 − F21‖L1(�)

)
< ε,

(4)

then there exists a solution (u,∇ p) ∈ (
W 2,2

loc (�)∩ L∞
1 (�)

)2 × L2
loc(�)2 to (NSα),

which is unique in a suitable class of functions (see Theorem 4.1 for the precise
description). If F ∈ L∞

2,0(�)2×2 in addition, then the solution u behaves as

u(x) = β
x⊥

4π |x |2 + o(|x |−1), |x | → ∞, (5)

where

β =
∫

∂�

y⊥ · (
T (u, p)ν

)
dσy + lim

δ→0

∫

�

e−δ|y|2 y⊥ · f dy. (6)

Here T (u, p) = ∇u + (∇u)� − p I, I = (δi j )1�i, j�2, denotes the Cauchy stress
tensor, and ν is the outward unit normal vector to ∂�.

Remark 1.2. (i) The smallness condition on f and F in (4) can be slightly weak-
ened with respect to the dependence on α; see Theorem 4.1 for details.

(ii) Both conditions F ∈ L∞
2 (�)2×2 and F12− F21 ∈ L1(�) are critical in view of

scaling. Note that the L1 summability is needed only for the antisymmetric part
of F . These conditions are not enough to ensure that u behaves like the circular

flow β x⊥
4π |x |2 as |x | → ∞, and the additional decay condition F ∈ L∞

2,0(�)2×2

as in Theorem 1.1 is required to achieve this asymptotic property.
(iii) The second term of the right-hand side of (6) is well-defined if F ∈ L∞

2,0(�)

and F12 − F21 ∈ L1(�). If F possesses an additional decay such as L∞
2+γ (�)

with γ ∈ (0, 1) then the order o(|x |−1) in (5) is replaced by O(|x |−1−γ ) at
least when |α| and given data f are further small depending on γ . The precise
statement on this result is stated in Theorem 4.1.

(iv) Thepressure p is determineduniquely up to a constant andbelongs toW 1,2
loc (�).

Then, since u ∈ W 2,2
loc (�)2, the coefficient β in (6) is well-defined.

(v) In Theorem 1.1 we assume that the external force f is of divergence form.
In fact, this is not an essential assumption, and it is possible to deal with the
external force f satisfying

x⊥ · f ∈ L1(�), f ∈ L∞
3 (�)2, (7)

with the smallness in these norms, and the asymptotic expansion (5) is verified
if f ∈ L∞

3,0(�)2 in addition. This is obtained by using the recent result by
the authors [16] in the whole space which solves the linearized problem for
f satisfying (7). Although this result is not so trivial since the condition (7)
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is just in the scale-critical regime, we focus only on f of divergence form in
this paper, for the argument becomes shorter due to the fact that the nonlinear
term is also written in the divergence form as div (u ⊗ u).

As far as the authors know, Theorem 1.1 is the first general existence result of
the flows around a rotating obstacle in the two-dimensional case. Before stating
the idea of the proof of Theorem 1.1, let us recall some known results on the
mathematical analysis of flows around a rotating obstacle.

So far the mathematical results on this topic have been obtained mainly for the
three-dimensional problem, as listed below. For the nonstationary problem the exis-
tence of global weak solutions is proved byBorchers [1], and the unique existence
of time-local regular solutions is shown by Hishida [18] and Geissert, Heck, and
Hieber [15], while the global strong solutions for small data are obtained byGaldi
and Silvestre [14]. The spectrum of the linear operator related to this problem
is studied by Farwig and Neustupa [8]; see also the linear analysis by Hishida
[19]. The existence of stationary solutions to the associated system is proved in [1],
Silvestre [26], Galdi [11], and Farwig and Hishida [5]. In particular, in [11]
the stationary flows with the decay order O(|x |−1) are obtained, while the work of
[5] is based on the weak L3 framework, which is another natural scale-critical space
for the three-dimensional Navier–Stokes equations. Our Theorem 1.1 is considered
as a two-dimensional counterpart of the three-dimensional result of [11]. In 3D
case the asymptotic profiles of these stationary flows at spatial infinity are studied
by Farwig and Hishida [6,7] and Farwig et al. [4], where it is proved that the
asymptotic profiles are described by the Landau solutions, stationary self-similar
solutions to the Navier–Stokes equations in R

3\{0}. It is worthwhile to mention
that, also in the two-dimensional case, the asymptotic profile is given by the sta-

tionary self-similar solution c x⊥
|x |2 , as is shown in Theorem 1.1. The stability of

the above stationary solutions has been well studied in the three-dimensional case;
The global L2 stability is proved in [14], and the local L3 stability is obtained by
Hishida and Shibata [21].

All results mentioned above are in the three-dimensional case, while only a
few results are known so far for the flow around a rotating obstacle in the two-
dimensional case. Recently an important progress has been made by Hishida
[20], where the asymptotic behavior of the two-dimensional stationary Stokes flow
around a rotating obstacle is investigated in details. The equations studied in [20]
are written as

⎧
⎪⎨

⎪⎩

−�u − α(x⊥ · ∇u − u⊥) + ∇ p = f, div u = 0, x ∈ �,

u = b, x ∈ ∂�.

u → 0, |x | → ∞ .

(Sα)

Here b is a given smooth function on ∂�. It is proved in [20] that if α �= 0 and the
smooth external force f satisfies the decay conditions

∫

�

|x || f | dx < ∞, f (x) = o
(|x |−3(log |x |)−1), as |x | → ∞, (8)
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then the solution u to (Sα) decaying at spatial infinity obeys the asymptotic expan-
sion

u(x) = c1x⊥ − 2c2x

4π |x |2 + (1 + |α|−1) o(|x |−1), as |x | → ∞, (9)

where

c1 =
∫

∂�

y⊥ · (
T (u, p) + α b ⊗ y⊥)

ν dσy +
∫

�

y⊥ · f dy,

c2 =
∫

∂�

b · ν dσy .

(10)

The result of [20] leads to an important conclusion that the rotation of the obstacle
resolves the Stokes paradox (see Chang and Finn [3] for the rigorous description
of the Stokes paradox) as in the Oseen resolution. We recall that when the obstacle
is translating with a constant velocity u∞ ∈ R

2\{0} the Navier–Stokes flows have
been constructed by Finn and Smith [9,10] for small but nonzero u∞ through
the analysis of the Oseen linearization; see also Galdi [13]. The resolution of the
Stokes paradox for (Sα) is due to the fact that the rotation removes the logarithmic
singularity of the associated fundamental solution, which has been well known for
the Oseen problem.

As a reference to the 2D exterior problem relatedwith ours, the reader is referred
to a recent work by Hillairet and Wittwer [17], where the stationary problem
of (1) is discussed when �(t) = � = {y ∈ R

2 | |y| > 1} and the boundary
condition is given as v = αy⊥ + b with a smooth and time-independent b. We note

that the stationary flow α
y⊥
|y|2 exactly solves this problem when b = 0. When α is

large enough and b is sufficiently small the stationary solutions are constructed in

[17] around the explicit solution α̃
y⊥
|y|2 , where α̃ a number close to α. Although the

problem discussed in [17] is in fact different from ours due to the time-independent
given data b in the original frame (1), the solutions obtained in [17] share a common
property with the ones in Theorem 1.1 in view of their asymptotic behaviors at
spatial infinity.

It is well known that the existence of stationary Navier–Stokes flows in two-
dimensional exterior domains (hence, formally α = 0 in (NSα)) is an open problem
in general. Partial results related to this problem have been obtained byGaldi [12],
Russo [25], Yamazaki [28], and Pileckas and Russo [24], where the solutions
are constructed under some symmetry conditions on both domains and given data.
In particular, the Navier–Stokes flows decaying in the scale-critical order O(|x |−1)

are obtained in [28] in this category. The uniqueness is also available again under
some symmetry conditions, see Nakatsuka [23].

The stability of the stationary solutions obtained in [17,28] or in Theorem 1.1
is a highly challenging issue due to their spatial decay in the scale-critical order in
two-dimensions, and it is still an open question in general. The difficulty is brought
from the fact that the Hardy inequality ‖ 1

|x | f ‖L2(�) � C‖∇ f ‖L2(�), f ∈ Ẇ 1,2
0 (�)

does not hold when � is an exterior domain in R2. As far as the authors know, the
only result available so far is [22] by the second author of this paper, where the



608 Mitsuo Higaki, Yasunori Maekawa & Yuu Nakahara

local L2 stability is established for the special solution α x⊥
|x |2 , |α| � 1, when � is

the exterior domain to the unit disk.
Finally, let us state the key idea for the proof of Theorem 1.1. Our approach is

motivated by the linear analysis developed in [20], where (10) is obtained through
the detailed analysis of the fundamental solution associated to the system (Sα) in
R
2. The expansion (9) strongly indicates that the similar asymptotics is valid also

for theNavier–Stokes flow, since the leading profile in (9) is a stationary self-similar
solution to the Navier–Stokes equations in R2\{0}. Thus our strategy for the proof
of Theorem1.1 can be summarized as follows:we derive at the same time the unique
existence of solutions and their asymptotic behavior under the smallness condition

on the given data (α, f ) in (NSα). The solution of the form of u = β x⊥
|x |2 + w

is constructed through the Banach fixed point theorem, where both the coefficient
β and the remainder term w are sufficiently small corresponding to the size of
(α, f ). However, it is far from trivial to justify this idea directly from the results of
[20], especially to ensure the smallness of (β,w) in the iteration scheme. Indeed,
there are at least two difficulties for this procedure: (I) the condition (8) is slightly
restrictive to handle the nonlinear term u · ∇u in the scale-critical framework, and
more seriously, (II) the singularity on |α| in (9) for 0 < |α| � 1 can prevent us
closing the nonlinear estimates. In fact, the smooth flows subject to the system
(NSα) are pointwise bounded above by |α| near the boundary due to the boundary
condition u = αx⊥.

For resolving the difficulty (I), the structure of the nonlinear term ∇ · (u ⊗ u) is
essential. Indeed, the symmetry of the tensor u⊗u leads to a crucial cancellation for
the coefficient “

∫

�
y⊥ · (u · ∇u) dy”, which removes a possible singularity caused

by the scale-critical decay of the flow. To overcome the difficulty (II), we revisit the
argument of [20] analyzing the fundamental solution to (Sα) in R2 and modify the
singularity of α in the estimates of the remainder term for the linear problem; see
Theorem 3.1, Lemma 3.3, and Theorem 3.8. Applying these improved estimates,
the nonlinear problem (NSα) is solved by the Banach fixed point theorem.However,
the argument becomes complicated since we have to control two kinds of norms;
the one bounds the local quantity, while the other one controls the spatial decay.
This machinery is needed since the flow in a far field region (|x | � 1) exhibits a
different dependence on |α| from the flow in a finite fluid region, and in principle,
the problem becomes more singular at |x | � 1 as |α| is decreasing. In order to
close the nonlinear estimates it is important to distinguish these two dependences
on |α| and to estimate their interaction through the nonlinearity carefully.

This paper is organized as follows. In Section 2 the basic results on the oscil-
latory integrals are collected, which are used to establish the pointwise estimates
of the fundamental solution to (Sα) with a milder singularity on |α|, |α| � 1. In
Section 3 the linearized problem (Sα) with b = 0 is studied in details. Section 3.1
is devoted to the analysis in R2, while the exterior problem is discussed in Section
3.2. Finally the nonlinear problem (NSα) is solved in Section 4.
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2. Preliminaries

In this section we collect the results of the oscillatory integrals used in Section
3.1.

Lemma 2.1. Let α ∈ R\{0} and let m, r > 0. Then we have
∣
∣
∣
∣

∫ ∞

0
eiαt e− r2

t
dt

tm

∣
∣
∣
∣+

∣
∣
∣
∣

∫ ∞

0
eiαt

∫ ∞

t
e− r2

s
ds

sm+1 dt

∣
∣
∣
∣ � C min

{ 1

|α|r2m
,

1

|α| 1
m+1 r

2m2
m+1

}
,

(11)
where C = C(m) is independent of r and α. Moreover, for m > 1 we have

∫ ∞

0
e− r2

t
dt

tm
= γ (m − 1)

r2(m−1)
,

∫ ∞

0

∫ ∞

t
e− r2

s
ds

sm+1 dt = γ (m − 1)

r2(m−1)
, (12)

where γ (·) denotes the Euler gamma function.

Proof. The proof of (12) is a straightforward computation, and we omit the details.
To show (11) let us take a positive constant l = l(r, α) which will be determined
later and split the integral as

∫ ∞

0
eiαt e− r2

t
dt

tm
=

∫ l

0
eiαt e− r2

t
dt

tm
+

∫ ∞

l
eiαt e− r2

t
dt

tm
.

The first term is estimated without using the effect of oscillation:
∣
∣
∣
∣

∫ l

0
eiαt e− r2

t
dt

tm

∣
∣
∣
∣ � 1

r2m

∫ l

0
e− r2

t

(
r2

t

)m

dt � Cl

r2m
.

For the second term we use the effect of oscillation to obtain

∫ ∞

l
eiαt e− r2

t
dt

tm
= 1

iα

∫ ∞

l

d

dt

[

eiαt
]

e− r2
t

tm
dt

= 1

iα

[

eiαt e− r2
t

tm

]t=∞

t=l
− 1

iα

∫ ∞

l
eiαt

(
r2e− r2

t

tm+2 − me− r2
t

tm+1

)

dt,

which yields

∣
∣
∣
∣

∫ ∞

l
eiαt e− r2

t
dt

tm

∣
∣
∣
∣ � 1

|α|
(

e− r2
l

lm
+ 1

r2(m+1)

∫ ∞

l

(r2

t
+ m

)
(

r2

t

)m+1

e− r2
t dt

)

.

(13)
By taking the limit of l = 0 we observe that the left-hand side of (13) is then
bounded from above by C

|α|r2m in virtue of (12). On the other hand, the right-hand

side of (13) is also bounded from above by C
|α|lm . Taking l = r

2m
m+1 |α|− 1

m+1 , we
have arrived at ∣

∣
∣
∣

∫ ∞

0
eiαt e− r2

t
dt

tm

∣
∣
∣
∣ � C

|α| 1
m+1 r

2m2
m+1

.
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The estimate of the integral
∫ ∞

0
eiαt

∫ ∞

t
e− r2

s
ds

sm+1 dt

is obtained exactly in the same manner, and hence the details are omitted here. The
proof is complete. ��
Lemma 2.2. Let m > 1. Then we have

∫ ∞

0

∣
∣e− |O(αt)x−y|2

4t − e− |x |2
4t

∣
∣ dt

tm
+

∫ ∞

0

∫ ∞

t

∣
∣e− |O(αt)x−y|2

4s − e− |x |2
4s

∣
∣ ds

sm+1 dt

� C
|y|

|x |2m−1 , |x | > 2|y|,
(14)

and
∣
∣
∣
∣

∫ ∞

0
eiαt e− |x |2

4t
dt

tm

∣
∣
∣
∣ � C min

{
1

|α||x |2m
,

1

|x |2(m−1)

}

, |x | > 0. (15)

Moreover, for m > 1 we have
∣
∣
∣
∣

∫ ∞

0
eiαt

∫ ∞

t
e− |x |2

4s
ds

sm+1 dt

∣
∣
∣
∣ � C min

{
1

|α||x |2m
,

1

|x |2(m−1)

}

, |x | > 0.

(16)
Here C = C(m) is independent of x, y, and α.

Proof. By using the Taylor formula with respect to y around y = 0, we see

e− |O(αt)x−y|2
4t = e− |x |2

4t + 〈O(αt)x, y〉
2t

e− |x |2
4t + 〈y, Qy〉

8t2
e− |O(αt)x−θy|2

4t , (17)

where Q = (
O(αt)x − θy

)⊗ (
O(αt)x − θy

)−2tIwith θ = θ(α, t, x, y) ∈ (0, 1)
and 〈x, y〉 = x · y. From

|O(αt)x − θy| � |x | − |y| >
|x |
2

, |x | > 2|y|,
Lemma 2.1 leads to

∫ ∞

0

∣
∣e− |O(αt)x−y|2

4t − e− |x |2
4t

∣
∣ dt

tm

� C

(

|x ||y|
∫ ∞

0
e− |x |2

4t
dt

tm+1 + (|x |2|y|2 + |x ||y|3 + |y|4)
∫ ∞

0
e− |x |2

16t
dt

tm+2

)

� C |y|
|x |2m−1 , |x | > 2|y|.

Similarly we have from Lemma 2.1 that
∫ ∞

0

∫ ∞

t

∣
∣e− |O(αt)x−y|2

4s − e− |x |2
4s

∣
∣ ds

sm+1 dt � C |y|
|x |2m−1 , |x | > 2|y|.

The proof of (14) is complete. Since m > 1, the estimates (15) and (16) are
consequences of (11) and (12). The proof is complete. ��
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3. Stokes System with a Rotation Effect

This section is devoted to the analysis of the linearized problem (Sα), introduced
in Section 1, with b = 0.

3.1. Linear Estimate in the Whole Plane

In this subsection let us consider the linear problem in whole plane for α ∈
R\{0}:

−�u − α(x⊥ · ∇u − u⊥) + ∇ p = f, div u = 0, x ∈ R
2. (Sα,R2 )

Our main interest is the estimate of solutions that are represented in terms of the
fundamental solution defined by (18) below. We will see that such solutions decay
at spatial infinity for a suitable class of f in virtue of the effect from the rotation; see
also Remark 3.2 about the uniqueness for solutions to (Sα,R2 ). The couple (u, p)

is said to be a weak solution to (Sα,R2 ) if (u, p) ∈ Lq1(R2)2 × Lq2(R2) for some
q1 ∈ [2,∞) and q2 ∈ [1,∞), and (i) div u = 0 in the sense of distributions, and
(ii) (u, p) satisfies

∫

R2
u · L−αφ dx −

∫

R2
p div φ dx =

∫

R2
f · φ dx, for all φ ∈ S(R2)2,

where the operator Lα is defined as

Lαu = −�u − α(x⊥ · ∇u − u⊥).

The fundamental solution to (Sα,R2 ) plays a central role throughout this paper,
which is defined as

�α(x, y) =
∫ ∞

0
O(αt)�K (O(αt)x − y, t) dt, (18)

where

K (x, t) = G(x, t)I + H(x, t), H(x, t) =
∫ ∞

t
∇2G(x, s) ds,

and G(x, t) is the two-dimensional Gauss kernel

G(x, t) = 1

4π t
e− |x |2

4t .

The next theorem is the main result of this subsection, which extends the result
of [20] to our functional setting. For f ∈ L2(R2)2 and F = (Fi j )1�,i, j�2 ∈
L2(R2)2×2 we formally set

c[ f ] = lim
ε→0

∫

R2
e−ε|y|2 y⊥ · f (y) dy,

c̃[F] = lim
ε→0

∫

R2
e−ε|y|2(F12(y) − F21(y)

)
dy.

(19)
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Note that if f ∈ L2(R2)2 is of the form f = div F = (∂1F11 + ∂2F12, ∂1F21 +
∂2F22)

� with some F ∈ L1(R2)2×2, then c[ f ] = c̃[F]. Indeed, from the integration
by parts we have

c[ f ] = c̃[F] + lim
ε→0

2
∫

R2
e−ε|y|2εy⊥ · (

F(y)y
)
dy.

Then the Lebesgue dominated convergence theorem implies c[ f ] = c̃[F]. More-
over, if F is symmetric then c̃[F] = 0. Here and in what follows, BR denotes the
open disk in R2 of radius R > 0 and centered at the origin, and the complement of
BR is denoted as Bc

R = {x ∈ R
2 | |x | � R}.

Theorem 3.1. Let α ∈ R\{0}. We formally set

L[ f ](x) = lim
ε→0

∫

R2
e−ε|y|2�α(x, y) f (y) dy. (20)

Then the following statements hold:
(i) Let γ ∈ [0, 1). Suppose that f ∈ L2(R2)2 satisfies supp f ⊂ BR for some
R � 1. Then u = L[ f ] is a weak solution to (Sα,R2 ) and is written as

u(x) = c[ f ] x⊥

4π |x |2 + R[ f ](x), x �= 0, (21)

where R[ f ] satisfies

‖R[ f ]‖L∞
1+γ (Bc

2R) � C1
(|α|− 1+γ

2 ‖ f ‖L1(BR) + ‖|y|1+γ f ‖L1(BR)

)
. (22)

Here C1 is a numerical constant, and is independent of γ , α, R, and f ;
(ii) Let γ ∈ [0, 1). Suppose that f ∈ L2(R2)2 is of the form f = div F with some
F ∈ L∞

2+γ (R2)2×2, and in addition that c̃[F] in (19) converges when γ = 0. Then
u = L[ f ] is a weak solution to (Sα,R2 ) and is written as

u(x) = c̃[F] x⊥

4π |x |2 + R[ f ](x), x �= 0, (23)

where R[ f ] satisfies for R � 1,

‖R[ f ]‖L∞
1+γ (Bc

2R) � C2

(

‖F‖L∞
2+γ (Bc

R) + sup
|x |�2R

|x |−1+γ ‖yF‖L1(B |x |
2

)

+ sup
|x |�2R

min
{ 1

|α||x |2−γ
, |x |γ }‖F‖L1(B |x |

2
)

+ sup
|x |�2R

|x |γ ∣
∣ lim
ε→0

∫

2|y|�|x |
e−ε|y|2(F12(y) − F21(y)

)
dy

∣
∣

)

.

(24)
Here C2 is a numerical constant, and is independent of γ , α, R, and f .
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Remark 3.2. Under the assumptions of (i) or (ii) in Theorem 3.1 it is not difficult
to see that L[ f ] belongs to W 2,2

loc (R2), and thus, L[ f ] is bounded in R
2 by the

Sobolev embedding in B1 and the estimates stated in Theorem 3.1 for |x | � 1 (by
taking R = 1). Set

p =
∫

R2

x − y

2π |x − y|2 f (y) dy. (25)

Then, ∇ p belongs to L2(R2)2 under the assumptions of (i) or (ii) in Theorem 3.1
by the Calderón-Zygmund inequality, and as is shown in [20, Proposition 3.2],
the pair (L[ f ],∇ p) satisfies (Sα,R2 ) in the sense of distributions. In virtue of the
uniqueness result stated in [20, Lemma 3.5], if f satisfies one of the assumptions in
Theorem 3.1, and if (v, q) ∈ S ′(R2)2 ×S ′(R2) is a solution to (Sα,R2 ) in the sense
of distributions, then (v, q) has a representation as v = L[ f ]+ P1 and q = p + P2
with some polynomials P1 and P2. Hence, by the definition stated above, any weak
solution (u, p) to (Sα,R2 ) is represented as u = L[ f ] and p is given by (25), as
long as the condition (i) or (ii) on f in Theorem 3.1 is assumed.

We note that in (ii) of Theorem 3.1 the coefficient c̃[F] is always well-defined
when γ > 0. The asymptotic expansion (21) for the case (i) is firstly established
by [20, Proposition 3.2]. Indeed, for the case (i) it is shown in [20, Proposition 3.2]
thatR[ f ] decays at infinity as O(|x |−2), while the singularity |α|−1 appears in the
coefficient of the estimates there. The novelty of Theorem 3.1 are (22) and (24),
where both the consistency in the weighted L∞ spaces and the milder singularity
on α for small |α| are essential to solve the nonlinear problem in Section 4. On
the other hand, as in [20], the key step to prove Theorem 3.1 is the expansion and
the pointwise estimate of the fundamental solution �α(x, y), which are stated in
Lemma 3.3 below. The fundamental solution �α(x, y) is studied in details in [20,
Proposition 3.1] and we will revisit the argument developed by [20] in the proof of
this lemma.

Lemma 3.3. Set

L(x, y) = x⊥ ⊗ y⊥

4π |x |2 . (26)

Then for m = 0, 1 the kernel �α(x, y) satisfies

|∇m
y

(
�α(x, y) − L(x, y)

)|

� C

(

δ0m min

{
1

|α||x |2 ,
1

|α| 12 |x |

}

+ |x |1−m min

{
1

|α||x |3 ,
1

|x |
}

+ |y|2−m

|x |2
)

,

for |x | > 2|y|.
(27)

Here δ0m is the Kronecker delta and C is independent of x, y, and α.

Remark 3.4. The case m = 0 of (27) is obtained in [20, Proposition 3.1] but with
|α|−1 dependence of the coefficients in the estimate. The case m = 1 is not stated
explicitly in [20], although it can be handled in the similar spirit as in the case
m = 0. In this sense Lemma 3.3 is not completely new, and is an improvement of
[20, Proposition 3.1] with respect to the singularity on |α| for |α| � 1.
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Proof of Lemma 3.3. In principle, our proof of Lemma 3.3 will proceed along the
line of [20, Proposition 3.1]. In fact, the only key difference of out proof for the
case m = 0 is the application of Lemmas 2.1, 2.2 in suitable parts. In the proof for
the case m = 1, the inequality (14) will be essentially used in addition.

Following the argument of [20, Section 3], we decompose �α(x, y) and define
�0

α(x, y), �11
α (x, y), and �12

α (x, y) as

�α(x, y)

= �0
α(x, y) + �11

α (x, y) + �12
α (x, y)

=
∫ ∞

0
O(αt)�G(O(αt)x − y, t) dt

+
∫ ∞

0
O(αt)�(O(αt)x − y) ⊗ (O(αt)x − y)

∫ ∞

t
G(O(αt)x − y, s)

ds

4s2
dt

−
∫ ∞

0
O(αt)�

∫ ∞

t
G(O(αt)x − y, s)

ds

2s
dt. (28)

We also decompose L(x, y) and define L0(x, y), L111(x, y), L112

(x, y), and L122(x, y) as

L(x, y) = L0(x, y) + L111(x, y) + L112(x, y) + L12(x, y)

= x ⊗ y + x⊥ ⊗ y⊥

4π |x |2 + −3(x ⊗ y) + x⊥ ⊗ y⊥

8π |x |2 + x ⊗ y

4π |x |2

− x ⊗ y + x⊥ ⊗ y⊥

8π |x |2 .

(29)

Then, by Lemma 2.1, the following representations hold:

L0(x, y) =
∫ ∞

0
G(x, t)

dt

4t

(
x · y x⊥ · y

−x⊥ · y x · y

)

,

L111(x, y) =
∫ ∞

0

∫ ∞

t
G(x, s)

ds

4s2
dt

(−3(x ⊗ y) + (x⊥ ⊗ y⊥)

2

)

,

L112(x, y) =
∫ ∞

0

∫ ∞

t
G(x, s)

ds

16s3
dt |x |2(x ⊗ y),

L12(x, y) = −
∫ ∞

0

∫ ∞

t
G(x, s)

ds

8s2
dt

(
x · y x⊥ · y

−x⊥ · y x · y

)

,

(30)

where we have used the equality

x ⊗ y + x⊥ ⊗ y⊥ =
(

x · y x⊥ · y
−x⊥ · y x · y

)

.

To prove (27) we observe that

|∇m
y

(
�α(x, y) − L(x, y)

)|
� |∇m

y

(
�0

α(x, y) − L0(x, y)
)| + |∇m

y

(
�11

α (x, y) − L111(x, y) − L112(x, y)
)|

+ |∇m
y

(
�12

α (x, y) − L12(x, y)
)|.
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Let us estimate each term in the right-hand side of the above inequality. The key
idea is to use the Taylor formula for G(O(αt)x − y, t ′) around y = 0 as follows:

G(O(αt)x − y, t ′) = G(x, t ′) + 〈O(αt)x, y〉
2t ′

G(x, t ′)

+ 〈y, Qy〉
8t ′2

G(O(αt)x − θy, t ′) ,

(31)

where

Q = Q(x, θy, αt, t ′) = (O(αt)x − θy) ⊗ (O(αt)x − θy) − 2t ′I,

and θ = θ(α, t ′, x, y) ∈ (0, 1). To estimate�0
α(x, y)− L0(x, y)we use the identity

O(αt)�〈O(αt)x, y〉 = 1

2

(
x · y x⊥ · y

−x⊥ · y x · y

)

+ cos 2αt

2

(
x · y −x⊥ · y

x⊥ · y x · y

)

+ sin 2αt

2

(
x⊥ · y x · y
−x · y x⊥ · y

)

.

(32)

Let |x | > 2|y|. Then we have from (31) and (32),

|�0
α(x, y) − L0(x, y)| =

∣
∣
∣
∣

∫ ∞

0
O(αt)�G(x, t) dt

+
∫ ∞

0

1

2t

(

O(αt)�〈O(αt)x, y〉

− 1

2

(
x · y x⊥ · y

−x⊥ · y x · y

) )

G(x, t) dt

+
∫ ∞

0
O(αt)� 〈y, Qy〉

8t2
G(O(αt)x − θy, t) dt

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ ∞

0
O(αt)�G(x, t) dt

∣
∣
∣
∣ + C |x ||y|min

{ 1

|α||x |4 ,
1

|x |2
}

+ C |y|2
∫ ∞

0

{
(|x |2 + |x ||y| + |y|2)t−3 + t−2}e− |x |2

16t dt. (33)

Here we have used (15) for the second term and used the condition |x | > 2|y| for
the third term to achieve the last line. Clearly the last term in the right-hand side

of (33) is bounded from above by C |y|2
|x |2 for |x | > 2|y|, while in virtue of (11) the

first term is estimated as
∣
∣
∣
∣

∫ ∞

0
O(αt)�G(x, t) dt

∣
∣
∣
∣ � C min

{ 1

|α||x |2 ,
1

|α| 12 |x |
}
, |x | > 0. (34)

Thus we have arrived at

|�0
α(x, y) − L0(x, y)|

� C

(

min

{
1

|α||x |2 ,
1

|α| 12 |x |

}

+|y|min

{
1

|α||x |3 ,
1

|x |
}

+ |y|2
|x |2

)

, |x | > 2|y|.
(35)
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Next we consider the derivative estimate for �0
α(x, y) − L0(x, y). Let us go back

to the definition of �0
α(x, y) in (28). Then ∂yk

(
�0

α(x, y) − L0(x, y)
)
is computed

as
∣
∣∂yk (�

0
α(x, y) − L0(x, y))

∣
∣

=
∣
∣
∣
∣

∫ ∞

0

(
O(αt)�(O(αt)x − y)k

2t
G(O(αt)x − y, t)

− 1

4t
∂yk

(
x · y x⊥ · y

−x⊥ · y x · y

)

G(x, t)

)

dt

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ ∞

0

O(αt)�(O(αt)x − y)k

2t

(

G(O(αt)x − y, t) − G(x, t)

)

dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ ∞

0

(

O(αt)�(O(αt)x − y)k − 1

2
∂yk

(
x · y x⊥ · y

−x⊥ · y x · y

))

G(x, t)
dt

2t

∣
∣
∣
∣.

(36)

By applying (14) the first term is bounded from above by C (|x |+|y|)|y|
|x |3 . To estimate

the second term we observe that

O(αt)�(O(αt)x − y)k − 1

2
∂yk

(
x · y x⊥ · y

−x⊥ · y x · y

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos 2αt

2

(
x1 x2

−x2 x1

)

+ sin 2αt

2

(
−x2 x1
−x1 −x2

)

− y1O(αt)�, if k = 1,

cos 2αt

2

(
x2 −x1
x1 x2

)

+ sin 2αt

2

(
x1 x2
−x2 x1

)

− y2O(αt)�, if k = 2.

(37)
Then, by using (15) the second term in the right-hand side of (36) is bounded from
above by C(|x | + |y|)min{ 1

|α||x |4 ,
1

|x |2 }. Hence we have shown that

∣
∣∂yk (�

0
α(x, y) − L0(x, y))

∣
∣ � C

( |y|
|x |2 + min

{ 1

|α||x |3 ,
1

|x |
}
)

, |x | > 2|y|.
(38)

In exactly the same way we obtain, for m = 0, 1 and |x | > 2|y|,

|∇m
y

(
�12

α (x, y) − L12(x, y)
)

|

� C

(

δ0m min

{
1

|α||x |2 ,
1

|α| 12 |x |

}

+ |y|1−m min

{
1

|α||x |3 ,
1

|x |
}

+ |y|2−m

|x |2
)

.

(39)
Next we estimate the term |�11

α (x, y) − L111(x, y) − L112(x, y)|. By the Tay-
lor expansion stated in (31), we decompose �11

α (x, y) and define �111
α (x, y),

�112
α (x, y), and �113

α (x, y) as
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�11
α (x, y) = �111

α (x, y) + �112
α (x, y) + �113

α (x, y)

=
∫ ∞

0
O(αt)�(O(αt)x − y) ⊗ (O(αt)x − y)

∫ ∞

t
G(x, s)

ds

4s2
dt

+
∫ ∞

0
O(αt)�(O(αt)x − y) ⊗ (O(αt)x − y)

×
∫ ∞

t
〈O(αt)x, y〉G(x, s)

ds

8s3
dt

+
∫ ∞

0
O(αt)�(O(αt)x − y) ⊗ (O(αt)x − y)

×
∫ ∞

t
〈y, Qy〉G(O(αt)x − θy, s)

ds

32s4
dt.

For the last term�113
α (x, y) it is straightforward to see from (12) that, for |x | > 2|y|,

|�113
α (x, y)| � C |y|2(|x | + |y|)2

∫ ∞

0

∫ ∞

t
(|x |2 + |y|2 + s)e− |x |2

16s
ds

s5
dt � C

|y|2
|x |2 .

(40)

To estimate the first two terms we observe

O(αt)�(O(αt)x − y) ⊗ (O(αt)x − y)

= A0 + (cosαt)A1 + (sin αt)A2 + cos 2αt

2
A3 + sin 2αt

2
A4,

(41)

where

A0(x, y) = −3(x ⊗ y) + (x⊥ ⊗ y⊥)

2
, A1(x, y) =

(
x21 + y21 x1x2 + y1y2

x1x2 + y1y2 x22 + y22

)

,

A2(x, y) =
(−x1x2 + y1y2 x21 + y22

−(x22 + y21 ) x1x2 − y1y2

)

, A3(x, y) =
( −x · y x⊥ · y

−x⊥ · y −x · y

)

,

A4(x, y) =
(−x⊥ · y −x · y

x · y −x⊥ · y

)

.

Then, by using (41) and by applying (11), the term �111
α (x, y) is estimated as

∣
∣�111

α (x, y) − L111(x, y)
∣
∣

=
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(

(cosαt)A1 + (sin αt)A2 + cos 2αt

2
A3 + sin 2αt

2
A4

)

G(x, s)
ds

4s2
dt

∣
∣
∣
∣

� |x |min
{ 1

|α||x |3 ,
1

|x |
}
, |x | > 2|y|. (42)

Next we see

〈O(αt)x, y〉 O(αt)�(O(αt)x − y) ⊗ (O(αt)x − y)

= |x |2
2

x ⊗ y + (cos 2αt)B1(x, y) + (sin 2αt)B2(x, y) + B3(x, y, αt),
(43)
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where each component of the matrices B1 and B2 is a fourth order polynomial
of x, y written as a suitable sum of the terms xl1

1 xl2
2 yk1

1 yk2
2 with l1 + l2 = 3 and

k1 + k2 = 1, while B3 is estimated as |B3| � C |x |2|y|2 for |x | > 2|y|. Thus we
have from (43) and (11),

∣
∣�112

α (x, y) − L112(x, y)
∣
∣

�
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(

(cos 2αt)B1(x, y) + (sin 2αt)B2(x, y)

)

G(x, s)
ds

8s3
dt

∣
∣
∣
∣

+ C |x |2|y|2
∫ ∞

0

∫ ∞

t
G(x, s)

ds

s3
dt

� C

(

|x |min

{
1

|α||x |3 ,
1

|x |
}

+ |y|2
|x |2

)

, |x | > 2|y|. (44)

Summing up (40), (42), and (44), we obtain

∣
∣�11

α (x, y) − L111(x, y) − L112(x, y)
∣
∣

� C

(

min

{
1

|α||x |2 ,
1

|α| 12 |x |

}

+ |x |min

{
1

|α||x |3 ,
1

|x |
}

+ |y|2
|x |2

)

, |x | > 2|y|.
(45)

To estimate the derivatives in y of �11
α (x, y) we recall the definition of �11

α (x, y)

in (28) and use (41), which leads to the representation

�11
α (x, y)

=
∫ ∞

0

∫ ∞

t
A0 G(O(αt)x − y, s)

ds

4s2
dt

+
∫ ∞

0

∫ ∞

t

(

(cosαt)A1 + (sin αt)A2 + cos 2αt

2
A3 + sin 2αt

2
A4

)

G(O(αt)x − y, s)
ds

4s2
dt

= �̃111
α (x, y) + �̃112

α (x, y).

(46)

From the expression of L111(x, y) in (30), we have for |x | > 2|y|,
∣
∣∂yk

(
�̃111

α (x, y) − L111(x, y)
)∣
∣

=
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(
∂yk A0

)
(

G(O(αt)x − y, s) − G(x, s)

)
ds

4s2
dt

+
∫ ∞

0

∫ ∞

t
(O(αt)x − y)k A0

(

G(O(αt)x − y, s) − G(x, s)

)
ds

8s3
dt

+
∫ ∞

0

∫ ∞

t
(O(αt)x − y)k A0 G(x, s)

ds

8s3
dt

∣
∣
∣
∣

� C

( |x ||y|
|x |3 + (|x |2|y| + |x ||y|2)|y|

|x |5 + (|x |2|y| + |x ||y|2)
|x |4

)

� C
|y|
|x |2 . (47)
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Here we have used (14). Next we estimate the derivatives of �̃112
α (x, y), which are

computed as

∂yk �̃
112
α (x, y)

=
∫ ∞

0

∫ ∞

t

(

(cosαt)∂yk A1 + (sin αt)∂yk A2 + cos 2αt

2
∂yk A3 + sin 2αt

2
∂yk A4

)

× G(O(αt)x − y, s)
ds

4s2
dt

+
∫ ∞

0

∫ ∞

t
(O(αt)x − y)k

(

(cosαt)A1 + (sin αt)A2 + cos 2αt

2
A3 + sin 2αt

2
A4

)

× G(O(αt)x − y, s)
ds

8s3
dt

= Ik(x, y) + I Ik(x, y). (48)

To estimate Ik(x, y) we observe that

∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(

(cosαt)∂yk A1 + (sin αt)∂yk A2

)

G(O(αt)x − y, s)
ds

4s2
dt

∣
∣
∣
∣

� C |y|
∫ ∞

0

∫ ∞

t
e− |x |2

16s
ds

s3
dt � C

|y|
|x |2 , |x | > 2|y|, (49)

and that
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(
cos 2αt

2
∂yk A3+ sin 2αt

2
∂yk A4

)

G(O(αt)x − y, s)
ds

4s2
dt

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(
cos 2αt

2
∂yk A3 + sin 2αt

2
∂yk A4

)(

G(O(αt)x − y, s) − G(x, s)

)
ds

4s2
dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(
cos 2αt

2
∂yk A3 + sin 2αt

2
∂yk A4

)

G(x, s)
ds

4s2
dt

∣
∣
∣
∣

� C
|y|
|x |2 + C min

{ 1

|α||x |3 ,
1

|x |
}
, |x | > 2|y|. (50)

Here we have used (14) for the first term and (16) for the second term to derive the
last line. It remains to estimate I Ik(x, y) in (48). Below we consider the case k = 1
only, for the case k = 2 is obtained in the same manner. The direct computation
yields the following key identity:

(O(αt)x − y)1
(
(cosαt)A1 + (sin αt)A2

)

= |x |2
2

(
x1 0
x2 0

)

+ (cos 2αt)D1(x, y) + (sin 2αt)D2(x, y) + D3(x, y, αt).

(51)

Here D1 and D2 are the matrices whose components are suitable sums of the third
order polynomials of the form xl1

1 xl2
2 yk1

1 yk2
2 with l1 + l2 � 1, while D3(x, y, αt)

is estimated as |D3| � C |x |2|y| for |x | > 2|y|. Hence, recalling the expression of
L112(x, y) in (30), we have
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∣
∣
∣
∣

∫ ∞

0

∫ ∞

t
(O(αt)x − y)1

(
(cosαt)A1 + (sin αt)A2

)
G(O(αt)x − y, s)

ds

8s3
dt − ∂y1 L112(x, y)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(

(cos 2αt)D1 + (sin 2αt)D2 + D3

)

G(O(αt)x − y, s)
ds

8s3
dt

∣
∣
∣
∣

�
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(

(cos 2αt)D1 + (sin 2αt)D2 + D3

) (

G(O(αt)x − y, s) − G(x, s)

)
ds

8s3
dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ ∞

0

∫ ∞

t

(

(cos 2αt)D1 + (sin 2αt)D2 + D3

)

G(x, s)
ds

8s3
dt

∣
∣
∣
∣

� C
|y|
|x |2 + C min

{
1

|α||x |3 ,
1

|x |
}

, |x | > 2|y|. (52)

Here, we have again applied (14) for the first term and (16) for the second term to
derive the last line. Finally we have

∣
∣
∣
∣

∫ ∞

0

∫ ∞

t
(O(αt)x − y)1

(
cos 2αt

2
A3 + sin 2αt

2
A4

)

G(O(αt)x − y, s)
ds

8s3
dt

∣
∣
∣
∣

� C(|x | + |y|)|x ||y|
∫ ∞

0

∫ ∞

t
e− |x |2

16s
ds

s4
dt � C

|y|
|x |2 , |x | > 2|y|. (53)

Collecting (49), (50), (52) and (53), we have shown that

∣
∣∂y1

(
�̃112

α (x, y) − L112(x, y)
)∣
∣ � C

( |y|
|x |2 + min

{
1

|α||x |3 ,
1

|x |
})

, |x | > 2|y|.
(54)

The estimate of ∂y2

(
�̃112

α (x, y) − L112(x, y)
)
is obtained in the similar manner.

Thus, from (47) and (54) we have obtained the estimates of the derivatives in y for
�11

α (x, y). The proof of Lemma 3.3 is complete. ��
Proof of Theorem 3.1. The assertion that u = L[ f ] is a weak solution to (Sα,R2 )
(whose definitions are stated in the beginning of this subsection) follows from a
similar argument as in [20, Proposition 3.2]. So we omit the details on this part and
we focus on the proof for the estimates of u here. (i) Let γ ∈ [0, 1). Suppose that
supp f ⊂ BR for some R � 1. Note that (y⊥· f (y))x⊥

4π |x |2 = L(x, y) f (y) holds. Let

|x | � 2R. Then we have from Lemma 3.3 with m = 0,

∣
∣
∣
∣

∫

R2
�α(x, y) f dy − c[ f ] x⊥

4π |x |2
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

|y|�R

(
�α(x, y) − L(x, y)

)
f (y) dy

∣
∣
∣
∣

� C
∫

|y|�R

(

min

{
1

|α||x |2 ,
1

|α| 12 |x |

}

+ |x |min

{
1

|α||x |3 ,
1

|x |
}

+ |y|2
|x |2

)

| f (y)| dy,
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which implies L[ f ](x) = c[ f ] x⊥
4π |x |2 + R[ f ](x) with

|x |1+γ |R[ f ](x)| � C

(

min

{
1

|α||x |1−γ
,
|x |γ
|α| 12

}

‖ f ‖L1(BR)

+min

{
1

|α||x |1−γ
, |x |1+γ

}

‖ f ‖L1(BR) + ‖|y|1+γ f ‖L1(BR)

)

.

(55)

HereC is independent of x , R,α,γ , and f . Thenweuse the inequality forγ ∈ [0, 1),

min

{
1

|α||x |1−γ
,
|x |γ
|α| 12

}

� |α|− 1+γ
2 , min

{
1

|α||x |1−γ
, |x |1+γ

}

� |α|− 1+γ
2 ,

(56)

which leads to (22).
(ii) Let γ ∈ [0, 1) and write �α(x, y) = (

�α(x, y)i j
)

1�i, j�2 and L(x, y) =
(L(x, y)i j )1�i, j�2. From the integration by parts we see for k = 1, 2 and f =
(
∑

l=1,2 ∂l F1l ,
∑

l=1,2 ∂l F2l)
�,

∫

R2
e−ε|y|2(�α(x, y) f )k dy =

∑

j=1,2

∫

R2
e−ε|y|2�α(x, y)k j f j dy

= −
∑

j=1,2

∑

l=1,2

∫

R2
e−ε|y|2∂yl �α(x, y)k j Fjl dy

+ 2ε
∑

j=1,2

∑

l=1,2

∫

R2
e−ε|y|2 yl�α(x, y)k j Fjl dy

= −
∑

j=1,2

∑

l=1,2

∫

R2
e−ε|y|2∂yl

(
�α(x, y)k j − L(x, y)k j

)
Fjl dy

−
∑

j=1,2

∑

l=1,2

∫

R2
e−ε|y|2∂yl L(x, y)k j Fjl dy + 2ε

∫

R2
e−ε|y|2(�α(x, y) F y)k dy.

Note that
⎛

⎝−
∑

j=1,2

∑

l=1,2

∂yl L(x, y)1 j Fjl , −
∑

j=1,2

∑

l=1,2

∂yl L(x, y)2 j Fjl

⎞

⎠

�

= (F12 − F21)
x⊥

4π |x |2 ,

by the definition of L(x, y). Moreover, we have |�α(x, y)| � C(α,|x |)
|y| for |y| > 2|x |

by [20, Proposition 3.1], and
∫

|y|�2|x | |�α(x, y)| dy � C ′(α, |x |) < ∞ by [20,
Lemma 3.3], which implies

lim
ε→0

ε

∫

R2
e−ε|y|2�α(x, y) F y dy = 0
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for F ∈ L∞
2+γ (R2)2×2. For simplicity we use the next notations:

∇y�α(x, y) F =
⎛

⎝
∑

j=1,2

∑

l=1,2

∂yl �α(x, y)1 j Fjl ,
∑

j=1,2

∑

l=1,2

∂yl �α(x, y)2 j Fjl

⎞

⎠

�
,

∇y L(x, y) F =
⎛

⎝
∑

j=1,2

∑

l=1,2

∂yl L(x, y)1 j Fjl ,
∑

j=1,2

∑

l=1,2

∂yl L(x, y)2 j Fjl

⎞

⎠

�
.

Then we have

L[ f ](x) = −
∫

R2
∇y�α(x, y) F(y) dy

= −
∫

|y|< |x |
2

∇y
(
�α(x, y) − L(x, y)

)
F(y) dy −

∫

|y|� |x |
2

∇y�α(x, y) F(y) dy

− lim
ε→0

∫

|y|� |x |
2

e−ε|y|2(F12(y) − F21(y)
)
dy

x⊥

4π |x |2 + c̃[F] x⊥

4π |x |2 .

(57)

The sum of the first three terms of the right-hand side of this equality is denoted by
R[ f ]. To estimateR[ f ] we firstly observe from Lemma 3.3 that
∣
∣
∣
∣

∫

|y|< |x |
2

∇y
(
�α(x, y) − L(x, y)

)
F(y) dy

∣
∣
∣
∣

� C

(
1

|x |2
∫

|y|< |x |
2

|y F(y)| dy + min

{
1

|α||x |3 ,
1

|x |
}∫

|y|< |x |
2

|F(y)| dy

)

, x �= 0.

(58)

Next we have, from the direct calculation,

|(∇x K )(x, t)| � C

(

t−
3
2 e− |x |2

16t +
∫ ∞

t
s− 5

2 e− |x |2
16s ds

)

,

which implies
∫ ∞

0
|(∇K )(O(αt)x, t)| dt � C

|x | , x �= 0.

Then by the transformation of the variables y = O(αt)z we have
∣
∣
∣
∣

∫

|y|� |x |
2

∇y�α(x, y)F(y) dy

∣
∣
∣
∣

�
∫

|y|� |x |
2

( ∫ ∞

0
|(∇K )(O(αt)x − y, t)| dt

)

|F(y)| dy

� ‖F‖L∞
2+γ (Bc|x |

2

)

∫

|z|� |x |
2

( ∫ ∞

0
|(∇K )(O(αt)(x − z), t)| dt

)

|z|−2−γ dz
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� C‖F‖L∞
2+γ (Bc|x |

2

)

∫

|z|� |x |
2

|x − z|−1|z|−2−γ dz

� C

|x |1+γ
‖F‖L∞

2+γ (Bc|x |
2

). (59)

Here C is independent of x and γ ∈ [0, 1). Collecting (57), (58), and (59), we
obtain (23) and (24). The proof of Theorem 3.1 is complete. ��

Based on the results of Theorem 3.1 we study the exterior problem (Sα) in
the next subsection, where its asymptotic profile is represented as the solution to
(Sα,R2 ) by a cut-off technique. However, the existence of solutions to (Sα) decaying
at spatial infinity has to be proved carefully. As in [20], for the exterior problem, a
natural way to construct solutions decaying at spatial infinity is to consider first a
regularized system and to take the limit; see the proof of Theorem 3.8 for details.
In this procedure we need to consider the following system in the whole space:

{
λuλ − �uλ − α(x⊥ · ∇uλ − u⊥

λ ) + ∇ pλ = f, div uλ = 0, x ∈ R
2,

uλ → 0, |x | → ∞,

(Sλ
α,R2 )

where λ is a small positive number. Let us introduce the integral kernel �λ
α(x, y) as

�λ
α(x, y) =

∫ ∞

0
e−λt O(αt)�K (O(αt)x − y, t) dt, x �= y. (60)

In virtue of the positive λ, the integral in (60) converges absolutely for x �= y.
Furthermore, the velocity uλ defined by

uλ(x) =
∫

R2
�λ

α(x, y) f (y) dy, f ∈ L2(R2)2, (61)

satisfies (Sλ
α,R2 ) in the sense of distributions with a suitable pressure∇ pλ. The next

lemma will be used in the proof of Theorem 3.8.

Lemma 3.5. Let α ∈ R\{0} and γ ∈ [0, 1). Suppose that f ∈ L2(R2)2 is of the
form f = div F with some F ∈ L∞

2+γ (R2)2×2. Then for any θ ∈ (0, 1) and R � 1,
the velocity uλ defined by (61) satisfies

‖uλ‖L∞
θ (Bc

2R) � C
(‖F‖L∞

2+γ (Bc
R) + ‖F‖L1(BR)

)
. (62)

Here the constant C is independent of λ and γ , and depends only on θ and R.

Proof. In the same way as in the proof of Lemma 3.3, we define Lλ = Lλ(x, y)

by

Lλ(x, y) = Lλ,0(x, y) + Lλ,111(x, y) + Lλ,112(x, y) + Lλ,12(x, y),
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where

Lλ,0(x, y) =
∫ ∞

0
e−λt G(x, t)

dt

4t

(
x · y x⊥ · y

−x⊥ · y x · y

)

,

Lλ,111(x, y) =
∫ ∞

0

∫ ∞

t
e−λt G(x, s)

ds

4s2
dt

(−3(x ⊗ y) + (x⊥ ⊗ y⊥)

2

)

,

Lλ,112(x, y) =
∫ ∞

0

∫ ∞

t
e−λt G(x, s)

ds

16s3
dt |x |2(x ⊗ y),

Lλ,12(x, y) = −
∫ ∞

0

∫ ∞

t
e−λt G(x, s)

ds

8s2
dt

(
x · y x⊥ · y

−x⊥ · y x · y

)

.

Then we have

|∇y Lλ(x, y)| � C |x |
( ∫ ∞

0
e− |x |2

4t
dt

t2
+

∫ ∞

0

∫ ∞

t
e− |x |2

4s
ds

s3
dt

+ |x |2
∫ ∞

0

∫ ∞

t
e− |x |2

4s
ds

s4
dt

)

� C

|x | , |x | > 0, (63)

where the constant C is independent of α and λ. By the integration by parts we
rewrite uλ as

uλ(x) = −
∫

R2
∇y�

λ
α(x, y) F(y) dy

= −
∫

|y|< |x |
2

∇y
(
�λ

α(x, y) − Lλ(x, y)
)
F(y) dy

−
∫

|y|� |x |
2

∇y�
λ
α(x, y)F(y) dy

−
∫

|y|< |x |
2

∇y Lλ(x, y)F(y) dy.

(64)

Then, proceeding as in the proof of Lemma 3.3, we obtain

|∇y
(
�λ

α(x, y) − Lλ(x, y)
) | � C

( |y|
|x |2 + min

{
1

|α||x |3 ,
1

|x |
})

, |x | > 2|y|,
(65)

where C is independent of x , y, α, and λ. Then we have

∣
∣
∣
∣

∫

|y|< |x |
2

∇y
(
�λ

α(x, y) − Lλ(x, y)
)
F(y) dy

∣
∣
∣
∣ � C

|x | ‖F‖L1(B |x |
2

)

� C log(2 + |x |)
|x | ‖F‖L∞

2+γ (R2), |x | > 1,

(66)
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where the constant C is independent of λ and γ . The second term in the right-hand
side of (64) is also estimated as in the proof of Lemma 3.3, resulting the estimate

∣
∣
∣
∣

∫

|y|� |x |
2

∇y�
λ
α(x, y)F(y) dy

∣
∣
∣
∣ � C

|x |1+γ
‖F‖L∞

2+γ (Bc|x |
2

). (67)

For the last term in the right-hand side of (64) it is straightforward from (63) to see
∣
∣
∣
∣

∫

|y|< |x |
2

∇y Lλ(x, y)F dy

∣
∣
∣
∣ � C log(2 + |x |)

|x | ‖F‖L∞
2+γ (R2), |x | > 1. (68)

Collecting (66), (67) and (68), we obtain (62). This completes the proof. ��

3.2. Linear Estimate in the Exterior Domain

In this subsection we study the asymptotic estimates for solutions to the Stokes
system in the exterior domain

⎧
⎪⎨

⎪⎩

−�u − α(x⊥ · ∇u − u⊥) + ∇ p = f, div u = 0, x ∈ �,

u = 0, x ∈ ∂�,

u → 0, |x | → ∞,

(Sα)

where α ∈ R\{0} is a given constant. In the following, we fix a positive number
R0 � 1 large enough so thatR2\� ⊂ BR0 holds.Wealsofix a radial cut-off function
ϕ ∈ C∞

0 (R2) such that ϕ(x) = 1 for |x | � R0 and ϕ(x) = 0 for |x | � 2R0. As in
the previous subsection, for f ∈ L2(�)2 and F ∈ L2(�)2×2 we formally set

c�[ f ] = lim
ε→0

∫

�

e−ε|y|2 y⊥ · f (y) dy,

c̃�[F] = lim
ε→0

∫

�

e−ε|y|2(F12(y) − F21(y)
)
dy.

(69)

These are well-defined at least when f = div F with F ∈ L∞
2+γ (�)2×2 for some

γ > 0, and c�[ f ] = c̃�[F] holds in this case if the generalized traces ν · (x2F1),
ν · (x1F2) on ∂� are zero in addition. Here we have set F = (F1, F2)�. Note that
the coefficient c̃�[F] is well-defined only under the condition F12 − F21 ∈ L1(�).
In general, we have the following:

Lemma 3.6. Let f ∈ L2(�)2 be of the form f = div F = (
∑

j=1,2 ∂ j F1 j ,
∑

j=1,2

∂ j F2 j )
� for some F ∈ L∞

2,0(�)2×2 and F12 − F21 ∈ L1(�). Then both c�[ f ] and
c̃�[F] converge.

Proof. It is trivial that c̃�[F] converges. Let ϕ ∈ C∞
0 (R2) be a cut-off function

introduced at the beginning of this subsection. The convergence of c�[ f ] easily
follows from the integration by parts:

c�[ f ] =
∫

�

y⊥ · f ϕ dy + lim
ε→0

∫

�

e−ε|y|2(1 − ϕ)y⊥ · f dy

=
∫

�

y⊥ · f ϕ dy + c̃�[F] −
∫

�

(F12 − F21)ϕ dy

+
∫

�

y⊥ · F∇ϕ dy + lim
ε→0

2
∫

�

e−ε|y|2εy⊥ · (Fy)(1 − ϕ) dy.

(70)
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The last term in the right-hand side of (70) vanishes in virtue of the decay |F(x)| =
o(|x |−2) as |x | → ∞. In fact, by extending F to the whole space by zero we have

∣
∣
∣
∣

∫

�

e−ε|y|2εy · (
F(y)y⊥)

(1 − ϕ) dy

∣
∣
∣
∣ �

∫

R2
e−ε|y|2ε|y|2|F(y)| dy

=
∫

R2
e−|z|2( |z|

ε
1
2

)2 ∣
∣F

( z

ε
1
2

)∣
∣ dz,

where we have used the transformation of the variables y = ε− 1
2 z. Then the

Lebesgue dominated convergence theorem implies the right-hand side of the above
inequality goes to zero as ε → 0. In particular, we have

c�[ f ] = c̃�[F] +
∫

�

{(
y⊥ · f − F12 + F21

)
ϕ + y⊥ · F∇ϕ

}
dy. (71)

The proof is complete. ��
Let us denote by T (u, p) the stress tensor, which is defined as

T (u, p) = Du − pI, Du = ∇u + (∇u)�, I = (δ jk)1� j,k�2. (72)

The next lemma is a counterpart of [20, Theorem 2.1] in our functional setting. We
denote by �r the truncated domain defined as �r = {x ∈ � | |x | < r} for r > 0.

Lemma 3.7. Let α ∈ R\{0} and γ ∈ [0, 1). Assume that f ∈ L2(�)2 is of the
form f = div F with some F ∈ L∞

2+γ (�)2×2, and that c̃�[F] converges when

γ = 0. Suppose that (u,∇ p) ∈ W 2,2
loc (�)2 × L2

loc(�)2 is a solution to the system
(Sα) satisfying ‖∇u‖L2(�) < ∞ and lim|x |→∞ |u(x)| = 0. Then u is represented as

u(x) = β
x⊥

4π |x |2 + R(x), x ∈ �\{0}, (73)

where

β =
∫

∂�

y⊥ · (
T (u, p)ν

)
dσy + b�[ f ],

b�[ f ] = c̃�[F] +
∫

�

{(
y⊥ · f − F12 + F21

)
ϕ + y⊥ · F∇ϕ

}
dy,

(74)

while R satisfies

‖R‖L∞
1+γ (Bc

4R0
) � C

(

‖F‖L∞
2+γ (Bc

2R0
) + sup

|x |�4R0

|x |−1+γ ‖yF‖L1(� |x |
2

)

+ sup
|x |�4R0

min

{
1

|α||x |2−γ
, |x |γ

}

‖F‖L1(� |x |
2

)

+ sup
|x |�4R0

|x |γ ∣
∣ lim
ε→0

∫

2|y|�|x |
e−ε|y|2 (F12 − F21) dy

∣
∣

)

+ C
(|α|− 1+γ

2 + |α|− 1
2 + 1

)(‖F‖L2(�2R0 ) + (1 + |α|)‖∇u‖L2(�2R0 )

)
.

(75)

Here the constant C is independent of γ , α, and F. The coefficient b�[ f ] coincides
with c�[ f ] when F belongs in addition to L∞

2,0(�)2×2.
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Proof. Wemay assume that
∫

�2R0
p dx = 0. Let ϕ ∈ C∞

0 (R2) be a cut-off function

introduced at the beginning of this subsection.We introduce the Bogovskii operator
B in the closed annulus A = {x ∈ R

2 | R0 � |x | � 2R0}, and set

v = (1 − ϕ)u + B[∇ϕ · u], q = (1 − ϕ)p.

Note that B[∇ϕ · u] satisfies
suppB[∇ϕ · u] ⊂ A, divB[∇ϕ · u] = ∇ϕ · u (76)

and the estimates

‖B[∇ϕ · u]‖W m+1,2(�) � C‖∇ϕ · u‖W m,2(�), m = 0, 1. (77)

See, e.g. Borchers and Sohr [2]. Then (v,∇q) satisfies

−�v − α(x⊥ · ∇v − v⊥) + ∇q = divF + g, div v = 0, x ∈ R
2, (78)

where F and g are the functions on R
2 given by

F = (1 − ϕ)F − ∇B[∇ϕ · u],
g = F · ∇ϕ + 2∇ϕ · ∇u + (�ϕ + αx⊥ · ∇ϕ)u

− α
(
x⊥∇B[∇ϕ · u] − B[∇ϕ · u]⊥) − (∇ϕ)p.

Note that supp g ⊂ A due to (76). Recalling the uniqueness result stated in Remark
3.2, we find

u(x) = v(x) = L[divF] + L[g]

= (
c̃[F] + c[g]) x⊥

4π |x |2 + R(x), |x | � 4R0, (79)

where c̃[F] and c[g] are defined in (19). Recalling that R0 � 1, we see from
Theorem 3.1 that R(x) satisfies

‖R‖L∞
1+γ (Bc

4R0
) � C

(
‖R [divF] ‖L∞

1+γ (Bc
4R0

) + ‖R[g]‖L∞
1+γ (Bc

4R0
)

)

� C

(

‖F‖L∞
2+γ (Bc

2R0
) + sup

|x |�4R0

|x |−1+γ ‖yF‖L1({2R0�|y|� |x |
2 })

+ sup
|x |�4R0

min

{
1

|α||x |2−γ
, |x |γ

}

‖F‖L1({2R0�|y|� |x |
2 })

+ sup
|x |�4R0

|x |γ ∣
∣ lim
ε→0

∫

2|y|�|x |
e−ε|y|2(F12 − F21) dy

∣
∣

+ (
sup

|x |�4R0

min

{
1

|α||x |2−γ
, |x |γ

}

+ 1
)‖F‖L1(B2R0 )

)

+ C(|α|− 1+γ
2 + 1)‖g‖L1(B2R0 ).
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Here C depends only on R0. It is easy to see that

‖F‖L1(B2R0 ) � C
(‖F‖L2(�2R0 ) + ‖∇u‖L2(�2R0 )

)
,

by applying (77) and the Poincaré inequality. Similarly, the function g is estimated
as

‖g‖L1(B2R0 ) � C
(‖F‖L2(�2R0 ) + (1 + |α|)‖∇u‖L2(�2R0 ) + ‖p‖L2(�2R0 )

)
.

In order to estimate the pressure term let us recall the condition
∫

�2R0
p dx = 0,

which yields, from (Sα),

‖p‖L2(�2R0 ) � C‖∇ p‖H−1(�2R0 ) = C‖div [F + ∇u + α(u ⊗ x⊥ − x⊥ ⊗ u)]‖H−1(�2R0 )

� C
(‖F‖L2(�2R0 ) + (1 + |α|)‖∇u‖L2(�2R0 )

)
,

where H−1(�2R0) is the topological dual of W 1,2
0 (�2R0). Collecting these esti-

mates, we obtain (75).
Finally let us determine the coefficient β in (73). In view of (79) it suffices

to compute c̃[F] + c[g]. We follow the argument in the proof of [20, Theorem
2.1]. Fix N � 2R0 and let φN ∈ C∞

0 (R2) be a radial cut-off function such that
φN (x) = 1 for |x | � N and φN (x) = 0 for |x | � 2N . Then we have

c̃[F] + c[g] = lim
ε→0

∫

R2
e−ε|y|2(F12 − F21)(1 − φN ) dy

+
∫

R2
(F12 − F21)φN dy +

∫

R2
y⊥ · gφN dy

= c̃�[F] −
∫

�

(F12 − F21)φN dy +
∫

R2
(F12 − F21)φN dy

+
∫

R2
y⊥ · gφN dy. (80)

We set S(v, q)(x) = T (v, q)(x) + α(v ⊗ x⊥ − x⊥ ⊗ v). Since divF + g =
−div S(v, q) = (−∑

j=1,2 ∂ j S1 j (v, q),−∑
j=1,2 ∂ j S2 j (v, q))� in R

2, the inte-
gration by parts and the symmetry of T (v, q) yield

∫

R2
y⊥ · gφN dy = −

∫

R2
φN y⊥ · div S(v, q) dy −

∫

R2
φN y⊥ · divF dy

= 2
∫

R2
φN y · v dy +

∫

R2
y⊥ · S(v, q)∇φN dy

−
∫

R2
(F12 − F21)φN dy +

∫

R2
y⊥ · F∇φN dy

=
∫

R2
y⊥ · S(v, q)∇φN dy

−
∫

R2
(F12 − F21)φN dy +

∫

R2
y⊥ · F∇φN dy. (81)
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Herewehaveused the fact thatφN is radial, and thus, yφN (y) = ∇y
( ∫ ∞

|y| r φ̃N (r) dr
)
,

where φ̃N (r) is such that φ̃N (|y|) = φN (y). Since S(v, q) = S(u, p) for |x | � 2R0
and −div S(u, p) = f in �, again from the integration parts we have

∫

R2
y⊥ · S(v, q)∇φN dy

=
∫

�

y⊥ · S(u, p)∇φN dy

=
∫

∂�

y⊥ · S(u, p)ν dσy − 2
∫

�

φN y · u dy +
∫

�

φN y⊥ · f dy

=
∫

∂�

y⊥ · T (u, p)ν dσy +
∫

�

φN y⊥ · f dy. (82)

Here we have used the boundary condition u = 0 on ∂� and also the radial
symmetry of φN . By taking the cut-off function ϕ above, and using the relation
ϕφN = ϕ, we then compute the second term in the above as
∫

�

φN y⊥ · f dy =
∫

�

ϕy⊥ · f dy +
∫

�

φN (1 − ϕ)y⊥ · f dy

=
∫

�

ϕy⊥ · f dy +
∫

�

(F12 − F21)φN dy −
∫

�

(F12 − F21)ϕ dy

−
∫

�

y⊥ · F∇φN dy +
∫

�

y⊥ · F∇ϕ dy. (83)

Collecting (80) - (83) and using F = F for |x | � 2R0, we obtain

c̃[F] + c[g] =
∫

∂�

y⊥ · T (u, p)ν dσy

+ c̃�[F] +
∫

�

{
(y⊥ · f − F12 + F21)ϕ + y⊥ · F∇ϕ

}
dy,

(84)

as desired. When F ∈ L∞
2,0(�)2×2 the coefficient b�[ f ] coincides with c�[ f ] in

virtue of (71). The proof is complete. ��
Let us recall that R0 � 1 is taken so that R2\� ⊂ BR0 . Let ϕ ∈ C∞

0 (�)

be a radial cut-off function such that ϕ(x) = 1 for |x | � R0 and ϕ(x) = 0 for
|x | � 2R0. Then we set

V (x) = (
1 − ϕ(x)

) x⊥

4π |x |2 . (85)

Note that V is a radial circular flow satisfying div V = 0, which describes the
asymptotic behavior of solutions to the Stokes system (Sα,R2 ) as is shown in The-
orem 3.1. The main result of this section is

Theorem 3.8. Let α ∈ R\{0} and γ ∈ [0, 1). Suppose that f ∈ L2(�)2 is of the
form f = div F with F ∈ L∞

2+γ (�)2×2. Assume in addition that c̃�[F] converges
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when γ = 0. Then there exists a unique solution (u,∇ p) ∈ W 2,2
loc (�)2 × L2

loc(�)

to (Sα) satisfying lim|x |→∞ |u(x)| = 0 and

‖∇u‖L2(�) � ‖F‖L2(�), (86)

‖p‖L2(�6R0 ) � C(1 + |α|)‖F‖L2(�), (87)

‖∇2u‖L2(�k R0 ) + ‖∇ p‖L2(�k R0 ) � C(1 + |α|)(‖F‖L2(�) + ‖ f ‖L2(�(k+1)R0 )

)
, 2 � k � 5.

(88)

Moreover, the velocity u is written as

u(x) = βV (x) + R�[ f ](x), x ∈ �, (89)

where β ∈ R is given by

β =
∫

∂�

y⊥ · (
T (u, p)ν

)
dσy + b�[ f ],

b�[ f ] = c̃�[F] +
∫

�

{(
y⊥ · f − F12 + F21

)
ϕ + y⊥ · F∇ϕ

}
dy,

(90)

while R�[ f ] satisfies

‖R�[ f ]‖L∞
1+γ (Bc

4R0
) � C

(

‖F‖L∞
2+γ (Bc

2R0
) + sup

|x |�4R0

|x |−1+γ ‖yF‖
L1

(

� |x |
2

)

+ sup
|x |�4R0

min
{ 1

|α||x |2−γ
, |x |γ }‖F‖

L1

(

� |x |
2

)

+ sup
|x |�4R0

|x |γ ∣
∣ lim
ε→0

∫

2|y|�|x |
e−ε|y|2(F12 − F21) dy

∣
∣

)

+ C
(|α|− 1+γ

2 + |α|− 1
2 + 1

)
(1 + |α|)‖F‖L2(�).

(91)

Here the constant C is independent of γ , α, and F. If F ∈ L∞
2,0(�)2×2 then the

coefficient b�[ f ] coincides with c�[ f ].
Proof. We follow the argument of [20, Theorem 2.2]. Since the argument is
quite parallel to it, we only give the outline here. For the uniqueness, let
(u,∇ p), (u′,∇ p′) ∈ W 2,2

loc (�)2 × L2
loc(�)2 be solutions to (Sα) with the same f

such that ‖∇u‖L2(�) and ‖∇u′‖L2(�) are finite and |u(x)| + |u′(x)| → 0 as |x | →
∞. Then the difference (v,∇q) = (u − u′,∇(p − p′)) ∈ W 2,2

loc (�)2 × L2
loc(�)2

solves (Sα) with f = 0 and satisfies ‖∇v‖L2(�) < ∞ as well as |v(x)| → 0 as
|x | → ∞. Moreover, the standard elliptic regularity of the Stokes operator implies
that (v,∇q) is smooth in �. Then we can apply [20, Theorem 2.1, (2.8)], which
gives

∫

�
|Dv|2 dx = 0. Hence v is the rigid motion, but the condition v = 0 on

the boundary leads to v = 0 in �. Then we obtain ∇q = 0 from the equation. The
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proof of the uniqueness is complete. In terms of the existence, first we consider the
regularized system
⎧
⎪⎨

⎪⎩

λuλ − �uλ − α(x⊥ · ∇uλ − u⊥
λ ) + ∇ pλ = f, div uλ = 0, x ∈ �,

uλ = 0, x ∈ ∂�,

uλ → 0, |x | → ∞.

(Sλ
α)

Here λ is a small positive number. For (Sλ
α) one can show the existence of the

solution (uλ,∇ pλ) satisfying
∫

�2R0
pλ dx = 0 and the energy estimate

λ‖uλ‖2L2(�)
+ 1

2
‖∇uλ‖2L2(�)

� 1

2
‖F‖2L2(�)

. (92)

Moreover, the assumption f ∈ L2(�)2 and the elliptic regularity for the Stokes
operator imply the regularity uλ ∈ W 2,2

loc (�)2, ∇ pλ ∈ L2
loc(�)2, where in virtue of

(92) each seminorm of W 2,2
loc (�) can be bounded uniformly in λ ∈ (0, 1). Indeed,

since (uλ, pλ) solves the Stokes systemwith the source term f +α(x⊥ ·∇uλ−u⊥
λ ),

for any bounded subdomain ω ⊂ �, there exists ρ > 0 with ω ⊂ �ρ such that

‖uλ‖W 2,2(ω) � C(‖ f ‖L2(�) + ‖∇uλ‖L2(�) + ‖uλ‖L2(�ρ)),

where the constantC depends on�, R0,ω, andρ; see [27, page 117, Theorem1.5.1]
for the proof. From (92) and the Poincaré inequality ‖uλ‖L2(�ρ) � Cρ‖∇uλ‖L2(�)

with Cρ depending only on � and ρ, we obtain the bound of uλ in W 2,2(ω) which
is independent of λ. Let us recall that R0 � 1 is taken so that R2\� ⊂ BR0

and ϕ ∈ C∞
0 (R2) is a radial cut-off function such that ϕ(x) = 1 for |x | � R0 and

ϕ(x) = 0 for |x | � 2R0. As in the proof of Lemma 3.7, we introduce the Bogovskii
operator B in the closed annulus A = {x ∈ R

2 | R0 � |x | � 2R0}, and set

vλ = (1 − ϕ)uλ + B[∇ϕ · uλ], qλ = (1 − ϕ)pλ.

Recall that B[∇ϕ · uλ] satisfies
suppB[∇ϕ · uλ] ⊂ A, divB[∇ϕ · uλ] = ∇ϕ · uλ, (93)

‖B[∇ϕ · uλ]‖W m+1,2(�) � C‖∇ϕ · uλ‖W m,2(�), m = 0, 1. (94)

Then (vλ,∇qλ) satisfies
{

λvλ − �vλ − α(x⊥ · ∇vλ − v⊥
λ ) + ∇qλ = div Fλ + gλ, div uλ = 0, x ∈ R

2,

vλ → 0, |x | → ∞,

(95)
where

Fλ = (1 − ϕ)F − ∇B[∇ϕ · uλ],
gλ = F · ∇ϕ + λB[∇ϕ · uλ] + 2∇ϕ · ∇uλ + (�ϕ + αx⊥ · ∇ϕ)uλ

− α
(
x⊥∇B[∇ϕ · uλ] − B[∇ϕ · uλ]⊥

) − (∇ϕ)pλ.
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Note that supp gλ ⊂ A due to (93). Let �λ
α(x, y) be the function defined in (60).

Then, as is shown in [20] (see also Remark 3.2), the velocity vλ is written as

vλ(x) =
∫

R2
�λ

α(x, y)div Fλ(y) dy +
∫

R2
�λ

α(x, y)gλ(y) dy

= wλ(x) + rλ(x). (96)

Since gλ = 0 for |x | � 2R0, we have from [20, Proposition 3.3],

‖rλ‖L∞
1 (Bc

4R0
) � Cα

∫

�

(1 + |y|)|gλ(y)| dy

� Cα‖gλ‖L2(�)

� Cα

(‖F‖L2(�2R0 ) + (1 + |α|)‖∇uλ‖L2(�2R0 ) + ‖pλ‖L2(�2R0 )

)
.

(97)

Since
∫

�2R0
pλ dx = 0, we have from (Sλ

α) that

‖pλ‖L2(�2R0 ) � C‖∇ pλ‖H−1(�2R0 ) � C
(‖F‖L2(�2R0 ) + (1 + |α|)‖∇uλ‖L2(�2R0 )

)
.

Combining this estimate with (92) and (97), we obtain

‖rλ‖L∞
1 (Bc

4R0
) � Cα‖F‖L2(�). (98)

Here Cα depends only on α and R0, but is independent of λ ∈ (0, 1). As for wλ,
from Lemma 3.5, there is 0 < θ < 1 such that

‖wλ‖L∞
θ (Bc

4R0
) � C

(‖F‖L∞
2+γ (Bc

2R0
) + ‖Fλ‖L1(B2R0 )

)

� C
(‖F‖L∞

2+γ (Bc
2R0

) + ‖F‖L2(�)

)
. (99)

Collecting (92), (98), (99) and uλ ∈ W 2,2
loc (�)2 with its uniformbound onλ ∈ (0, 1),

we have a uniform estimate in λ ∈ (0, 1):

‖uλ‖L∞
θ (�) � Cα

(‖F‖L∞
2+γ (�) + ‖F‖L2(�)

)
, (100)

where the Sobolev embedding W 2,2(�5R0) ↪→ L∞(�5R0) has been applied. Thus,
there are a subsequence, denoted again by (uλ,∇ pλ), and (u,∇ p) ∈ W 2,2

loc (�)2 ×
L2

loc(�)2, such that uλ ⇀∗ u in L∞
θ (�)2, ∇uλ ⇀ ∇u in L2(�)2×2, and pλ ⇀ p

in W 1,2
loc (�). It is easy to see that (u,∇ p) satisfies (Sα) in the sense of distributions

(note that each term of (Sα) makes sense at least as a function in L2
loc(�)). The

proof of the existence is complete.
For the estimates, we note that the solution (u,∇ p) obtained in the existence

proof above satisfies ‖∇u‖L2(�) � ‖F‖L2(�) in virtue of (92). Thus (86) holds.
Since the pressure p is uniquely determined up to a constant, we may assume∫

�6R0
p dx = 0. Then we have from (Sα),

‖p‖L2(�6R0 ) � C‖∇ p‖H−1(�6R0 ) � C
(‖F‖L2(�6R0 ) + (1 + |α|)‖∇u‖L2(�6R0 )

)

� C(1 + |α|)‖F‖L2(�).
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Here C depends only on R0. This proves (87). The local estimates (88) follow from
the standard cut-off argument and the elliptic estimates for the Stokes system in
bounded domains, together with the estimates (86) and (87). Since the argument
is rather standard, we omit the details here. The expansion (89) with (90) and the
estimate (91) follow from Lemma 3.7 and (86). Note that the constant vector u∞
in (73) must be zero, for the solution u constructed here decays as |x | → ∞. The
proof of Theorem 3.8 is complete. ��
Remark 3.9. Let R0 � 1 be as in Theorem 3.8 and let γ ∈ [0, 1). Then we have
for |x | � 4R0,

‖yF‖L1(� |x |
2

) � C

1 − γ
|x |1−γ ‖F‖L∞

2+γ (�),

‖F‖L1(� |x |
2

) � C‖F‖L∞
2+γ (�) log |x |.

Here C is independent of γ and F . Since

min

{
1

|α||x |2−γ
, |x |γ

}

log |x | � |α|− γ
2
∣
∣ log |α|∣∣, |α| > 0,

we have for γ ∈ [0, 1) and 0 < |α| < 1, by using (91),

‖R�[ f ]‖L∞
1+γ (Bc

4R0
) � C

1 − γ

(

|α|− γ
2
∣
∣ log |α|∣∣ ‖F‖L∞

2+γ (�) + |α|− 1+γ
2 ‖F‖L2(�)

+ sup
|x |�4R0

|x |γ ∣
∣ lim
ε→0

∫

2|y|�|x |
e−ε|y|2(F12 − F21) dy

∣
∣

)

.

(101)

Here C is independent of 0 < |α| < 1, γ ∈ [0, 1), and F . The estimate (101)
plays a central role to solve the Navier–Stokes equations for small |α| in the next
section. We note that c̃�[F] and the last term in the right-hand side of (101) do
not converge in general when F ∈ L∞

2 (�)2×2 . In solving the Navier–Stokes
equations, especially for the case γ = 0, it is crucial that we only need the decay
of the component F12 − F21, which always vanishes when F is symmetric.

4. Solvability of Nonlinear Problem

Based on the linear analysis in the previous sections the following Navier–
Stokes equations are studied in this section:

⎧
⎪⎨

⎪⎩

−�u − α(x⊥ · ∇u − u⊥) + ∇ p = −u · ∇u + f, div u = 0, x ∈ �,

u = αx⊥, x ∈ ∂�,

u → 0, |x | → ∞.

(NSα)
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Our aim is to prove, under some conditions on f , the unique existence of solutions
(u,∇ p) to (NSα) satisfying the asymptotic behavior

u(x) = βV (x) + o(|x |−1) as |x | → ∞
for some β ∈ R, where V is a radial circular flow defined by (85) and coincides with

x⊥
4π |x |2 for |x | � 1. As in the previous sections we fix a positive number R0 � 1

large enough so thatR2\� ⊂ BR0 , and let ϕ ∈ C∞
0 (R2) be a radial cut-off function

satisfying ϕ(x) = 1 for |x | � R0, ϕ(x) = 0 for |x | � 2R0. Set

U (x) = ϕ(x)x⊥, (102)

which is a radial circular flow supported in the ball B2R0 . We also introduce the
function space Xγ , γ � 0, as

Xγ = R × (
Ẇ 1,2

0,σ (�) ∩ L∞
1+γ (�)2

)
, (103)

which is the Banach space under the norm for (β,w) ∈ Xγ :

‖(β,w)‖Xγ = |β| + ‖∇w‖L2(�) + ‖w‖L∞
1+γ (�). (104)

We sketch the proof that Xγ is complete. It suffices to show the completeness of
the space Ẇ 1,2

0,σ (�) ∩ L∞
1+γ (�)2. Suppose that {w(n)} ⊂ Ẇ 1,2

0,σ (�) ∩ L∞
1+γ (�)2 is

a Cauchy sequence. Then there exist u ∈ Ẇ 1,2
0,σ (�)2 and v ∈ L∞

1+γ (�)2 such that

‖∇(w(n)−u)‖L2(�) → 0 and ‖w(n)−v‖L∞
1+γ (�) → 0 as n → ∞. What we need to

show is u = v. To show this, set f = u − v. Note that the fact u, w(n) ∈ Ẇ 1,2
0 (�)2

implies u = w(n) = 0 on ∂�. Then, for any φ ∈ W 1,2(�) such that suppφ is
compact, the integration by parts yields, for j, k = 1, 2,

∫

�

f j∂kφ dx =
∫

�

(u j − v j )∂kφ dx

= −
∫

�

φ∂ku j dx −
∫

�

v j∂kφ dx

= − lim
n→∞

(
∫

�

φ∂kw
(n)
j dx +

∫

�

w
(n)
j ∂kφ dx

) = 0.

Since we may take an arbitrary φ ∈ C∞
0 (�) we first conclude from the above

computation that f j is a constant in �, denoted by c j . Next we have for ϕ ∈
W 1,2(�)2 such that suppϕ is compact,

c j

∫

∂�

ϕ · ν dσx =
∫

�

c j div ϕ dx =
∫

�

f j div ϕ dx = 0,

where the result of the above computation is used. This implies c j = 0 since we
can choose ϕ so that

∫

∂�
ϕ · ν dσx �= 0. Thus we obtain u = v, and hence, Xγ is

complete.
Let us recall that for f ∈ L2(�)2 of the form f = div F = (

∑
j=1,2 ∂ j F1 j ,

∑
j=1,2 ∂ j F2 j )

� with some F ∈ L2(�)2×2 satisfying F12 − F21 ∈ L1(�) the
coefficients c̃�[F] and b�[ f ] in (69) and (90) are well-defined. The main results
of this section are Theorems 4.1, 4.3 below. Let us start from the next theorem.
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Theorem 4.1. Letγ ∈ [0, 1). There exists a positive constant ε = ε(�, γ ) such that
the following statement holds. Suppose that f ∈ L2(�)2 is of the form f = div F
with some F ∈ L∞

2+γ (�)2×2, and in addition that F12− F21 ∈ L1(�) when γ = 0.
If α �= 0 and

|α| 1−γ
2

∣
∣ log |α|∣∣ + |α|− γ

2
∣
∣ log |α|∣∣

(

|α|− 1
2
(|b�[ f ]| + ‖F‖L2(�) + ‖ f ‖L2(�6R0 )

)

+ ‖F12 − F21‖L1(�) + ∣
∣ log |α|∣∣ ‖F‖L∞

2 (�)

)

< ε,

(105)

then there exists a unique solution (u,∇ p) ∈ W 2,2
loc (�)2 × L2

loc(�)2 to (NSα)
satisfying

‖∇u‖L2(�) �
‖F‖L2(�) + C2|α|√

1 − C1|α| , (106)

and enjoying the expression u = αU + βV + w with U and V defined by (102)
and (85), respectively, and

β =
∫

∂�

y⊥ · (
T (u, p)ν

)
dσy + b�[ f ], (107)

while

‖w‖L∞
1 (�) � C3

(

|α|− 1
2
(|α| + |b�[ f ]| + ‖F‖L2(�) + ‖ f ‖L2(�6R0 )

)

+ ∣
∣ log |α|∣∣ ‖F‖L∞

2 (�) + ‖F12 − F21‖L1(�)

)

,

(108)

and if γ ∈ (0, 1),

‖w‖L∞
1+γ (�) � C3

(

|α|− 1+γ
2

(|α|| log |α|∣∣ + |b�[ f ]| + ‖F‖L2(�) + ‖ f ‖L2(�6R0 )

)

+ (|α|− γ
2
∣
∣ log |α|∣∣ + 1

γ

)‖F‖L∞
2+γ (�)

)

. (109)

Here ε, C1, C2, and C3 depend only on � and γ , and are taken uniformly with
respect to γ in each compact subset of [0, 1).
Remark 4.2. (i) A careful analysis implies that β in Theorem 4.1 is estimated as

|β| � C4
(|α| + |b�[ f ]| + ‖F‖L2(�) + ‖ f ‖L2(�6R0 )

)
, (110)

where C4 depends only on �. But we do not go into details in this paper.
(ii) In Theorem 4.1 when γ = 0 the term w decays with the order O(|x |−1) and

there is no reason why βV provides a leading term of the asymptotic behavior
of u at |x | → ∞. To achieve this asymptotics we need the additional decay of
F such as F ∈ L∞

2,0(�)2×2; see Theorem 4.3 below.



636 Mitsuo Higaki, Yasunori Maekawa & Yuu Nakahara

Proof of Theorem 4.1. In the following argument we will freely use the condition
0 < |α| < e−1. We look for the solution to (NSα) of the form

u = αU + v, v = βV + w, (β,w) ∈ Xγ . (111)

We need to determine β and w. Inserting (111) into (NSα), we see that v is the
solution to the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�v − α(x⊥ · ∇v − v⊥) + ∇q = div Gα(β,w) + div Hα(F), x ∈ �,

div v = 0, x ∈ �,

v = 0, x ∈ ∂�.

v → 0, |x | → ∞.

(NS′
α)

Here

q = p + P,

Gα(β,w) = −α(U ⊗ w + w ⊗ U ) − β(V ⊗ w + w ⊗ V ) − w ⊗ w,

Hα(F) = α∇U + F,

and we may assume that
∫

�6R0
q dx = 0. Note that we have used the relations

x⊥ · ∇U − U⊥ = 0, and the radial scalar function P = P(|x |) is taken so that
∇ P = div [(αU + βV ) ⊗ (αU + βV )]. Both of these follow from the direct
calculation. The proof of the unique existence below relies on the standard Banach
fixed point argument in a suitable class of functions. To this end we introduce the
closed convex set Bδ,γ in X0:

Bδ,γ = B(δ1,δ2,δ3),γ = {
(β,w) ∈ X0 | |β| + ‖∇w‖L2(�) + ‖w‖L∞(�5R0 ) � δ1,

‖w‖L∞
1 (�) � δ2, ‖w‖L∞

1+γ (�) � δ3
}
.

(112)

Here we have set δ = (δ1, δ2, δ3), and the positive numbers δ1, δ2, δ3 with δ2 � δ3
will be suitably determined later. We note that the following inclusion always holds
for δ2 � δ3:

B(δ1,δ2,δ3),γ ⊂ B(δ1,δ2,δ2),0. (113)

For any ω = (β,w) ∈ Bδ,γ , let (uω,∇qω) be the unique solution in Theorem 3.8
to the linear system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�uω − α(x⊥ · ∇uω − u⊥
ω ) + ∇qω = div Gα(β,w) + div Hα(F), x ∈ �,

div uω = 0, x ∈ �,

uω = 0, x ∈ ∂�,

uω → 0, |x | → ∞.

Our aim is to show the unique existence of (β,w) ∈ Bδ,γ such that uω = u(β,w) =
βV +w for suitably chosen and sufficiently small 0 < δ1 � δ2 < e−2 and δ2 � δ3.
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We remark that the value δ3 need not to be small when γ is positive. Let us start
from the estimates for Gα(β,w). Firstly we estimate its L2 norm as

‖Gα(β,w)‖L2(�)

� C

(

|α| ‖∇w‖L2(�) + |β| ‖w‖L∞
1 (�) + ‖w‖L∞

1 (�)‖∇w‖L2(�)| log ‖∇w‖L2(�)|
)

.

(114)

Here, for the nonlinear term, we have used (161) and the smallness of δ1 and δ2 to
obtain

‖w ⊗ w‖L2(�) � C‖w‖L∞
1 (�)‖(1 + |x |)−1w‖L2(�)

� C‖w‖L∞
1 (�)‖∇w‖L2(�)| log ‖∇w‖L2(�)|.

On the other hand, it is not difficult to see that

‖Gα(β,w)‖L∞
2+γ ′ (�) � C

(|α| + |β| + ‖w‖L∞
1 (�)

)‖w‖L∞
1+γ ′ (�), 0 � γ ′ � γ,

(115)

‖div Gα(β,w)‖L2(�6R0 ) � C
(|α| + |β| + ‖w‖L∞(�6R0 )

)‖∇w‖L2(�), (116)

and

‖Hα(F)‖L2(�) � C
(|α| + ‖F‖L2(�)

)
, (117)

‖Hα(F)‖L∞
2+γ ′ (�) � C

(|α| + ‖F‖L∞
2+γ ′ (�)

)
, 0 � γ ′ � γ, (118)

‖div Hα(F)‖L2(�6R0 ) � C
(|α| + ‖ f ‖L2(�6R0 )

)
. (119)

Then we can apply the result of Theorem 3.8. To simplify the notation we set

M(α, β, F, w) = (|α| + |β|) ‖∇w‖L2(�) + |β| ‖w‖L∞
1 (�)

+ ‖w‖L∞
1 (�)‖∇w‖L2(�)| log ‖∇w‖L2(�)| + |α| + ‖F‖L2(�).

(120)

From (86), (114) and (117), we have

‖∇u(β,w)‖L2(�) � C M(α, β, F, w). (121)

Moreover, by the Sobolev embedding W 2,2(�5R0) ↪→ L∞(�5R0) and (86) - (88)
combined with (114), (116), (117), (119), and ‖w‖L∞(�6R0 ) � ‖w‖L∞

1 (�), we have

‖u(β,w)‖L∞(�5R0 ) + ‖u(β,w)‖W 2,2(�5R0 ) + ‖q(β,w)‖W 1,2(�5R0 )

� C
(
M(α, β, F, w) + ‖ f ‖L2(�6R0 )

)
.

(122)

Set F̃ = Gα(β,w) + Hα(F) and f̃ = div F̃ . By Theorem 3.8, the velocity uω =
u(β,w) is written as

uω = ψ[ω]V + R[ω],
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where R[ω] belongs to L∞
1+γ (�)2 and ψ[ω] is given by

ψ[ω] =
∫

∂�

y⊥ · T (uω, qω)ν dσy + b�[ f̃ ],

b�[ f̃ ] = c̃�[F̃] +
∫

�

{(
y⊥ · f̃ − F̃12 + F̃21

)
ϕ + y⊥ · F̃∇ϕ

}
dy.

(123)

We observe that c̃�[Gα(β,w)] = 0 and
∫

�

{(
y⊥ · div Gα(β,w) − Gα(β,w)12 + Gα(β,w)21

)
ϕ

+ y⊥ · (Gα(β,w)∇ϕ)
}
dy = 0.

Herewehaveused the facts thatGα(β,w) is symmetric and its trace on the boundary
is zero. This implies b�[div Gα(β,w)] = 0. Moreover, we have

b�[�U ] = c�[�U ] = 0,

in virtue of the computation
∫

�

y⊥ · �U dy =
∫

�

y · ∇rotU dy =
∫

∂�

y · ν (rotU ) dσy − 2
∫

�

rotU dy

=
∫

∂�

y · ν (rotU ) dσy − 2
∫

∂�

ν⊥ · U dσy

= 2
∫

∂�

y · ν dσy − 2
∫

∂�

ν⊥ · y⊥ dσy = 0.

Here rotU = ∂1U2 − ∂2U1 and we have used the identity U (x) = x⊥ near ∂�.
Hence, (123) is in fact written as

ψ[ω] =
∫

∂�

y⊥ · T (uω, qω)ν dσy + b�[ f ]. (124)

Now let us define the mapping � : Bδ,γ → X0 as

�[ω] = (ψ[ω], R[ω]), ψ[ω] is given by (124), R[ω] = uω − ψ[ω]V .

(125)

Recalling the inclusion (113), our aim is to show that:
(i) � is a mapping from Bδ,γ into Bδ,γ , and
(ii) � is a contraction on Bδ,0 in the topology of X0. i.e., there is τ ∈ (0, 1) such
that ‖�(ω1) − �(ω2)‖X0 � τ‖ω1 − ω2‖X0 for any ω1, ω2 ∈ Bδ,0.
The properties (i) and (ii) imply the existence of the fixed point of � in Bδ,γ even
for the case γ > 0. Indeed, note that the sequence {ω(n)}∞n=0 = {(β(n), w(n)}∞n=0
defined byω(0) = �(0) andω(n) = �(ω(n−1)) for n = 1, . . . is a Cauchy sequence
in X0 and each ω(n) belongs to Bδ,γ , which is not difficult to see from (i) and (ii).
Then the limit ω = (β,w) of {ω(n)}∞n=0 in X0 also belongs to Bδ,γ since Bδ,γ is a
closed subset in X0 by the definition.
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To prove (i) let us estimateψ[ω] based on the representation (124). By the trace
theorem we have

|
∫

∂�

y⊥ · T (uω, qω)ν dσy | � C
(‖∇uω‖W 1,2(�5R0 ) + ‖qω‖W 1,2(�5R0 )

)
.

Hence we have from (122) that

|ψ[ω]| � C
(
M(α, β, F, w) + |b�[ f ]| + ‖ f ‖L2(�6R0 )

)
. (126)

Next let us estimate R[ω]. Firstly we observe from (122), (121) and (126) that

‖R[ω]‖L∞(�5R0 ) + ‖∇ R[ω]‖L2(�) = ‖uω − ψ[ω]V ‖L∞(�5R0 ) + ‖∇(uω − ψ[ω]V )‖L2(�)

� C
(‖uω‖L∞(�5R0 ) + ‖∇uω‖L2(�) + |ψ[ω]|)

� C
(
M(α, β, F, w) + |b�[ f ]| + ‖ f ‖L2(�6R0 )

)
.

(127)

On the other hand, we have from (101) and by the condition F12 − F21 ∈ L1(�),
for any γ ′ ∈ [0, γ ],

‖R[ω]‖L∞
1+γ ′ (Bc

4R0
) � C

1 − γ ′

(

|α|− γ ′
2
∣
∣ log |α|∣∣ ‖Gα(β,w) + Hα(F)‖L∞

2+γ ′ (�)

+ |α|− 1+γ ′
2 ‖Gα(β,w) + Hα(F)‖L2(�) + dγ ′ [F]

)

,

dγ ′ [F] = sup
|x |�4R0

|x |γ ′ ∣∣
∫

2|y|�|x |
(F12 − F21) dy

∣
∣,

(128)
where C is independent of γ ′, γ , and α. Here we have used that Gα(β,w) is
symmetric and that U = 0 for |x | � 2R0 by its definition. Note that d0[F] �
‖F12 − F21‖L1(�) holds, which will be used later. Combining (127) with (128),
(114), (115), (117) and (118), we obtain, for γ ′ ∈ [0, γ ],

‖R[ω]‖L∞
1+γ ′ (�) � C

1 − γ ′

{

|b�[ f ]| + ‖ f ‖L2(�6R0 ) + |α|− 1+γ ′
2 M(α, β, F, w) + dγ ′ [F]

+ |α|− γ ′
2
∣
∣ log |α|∣∣ (|α| + |β| + ‖w‖L∞

1 (�)

)‖w‖L∞
1+γ ′ (�)

+ |α|− γ ′
2
∣
∣ log |α|∣∣ (|α| + ‖F‖L∞

2+γ ′ (�)

)
}

. (129)

Now we observe that for sufficiently small δ1 and δ2 (depending only on � so far)
the function M(α, β, F, w) is bounded from above as

M(α, β, F, w) �
(|α| + δ1 + δ2| log δ1|

)
δ1 + |α| + ‖F‖L2(�). (130)

Here we have used the fact that ρ(r) = r | log r | is monotone increasing on (0, e−1],
which implies ‖∇w‖L2(�)| log ‖∇w‖L2(�)| � δ1| log δ1|. By taking (126), (127),
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and (130) into account, we assume that |α|, ‖F‖L2(�), |b�[ f ]|, and ‖ f ‖L2(�6R0 )

are small enough so that

δ1 = 16(C0 + 1)
(|α| + ‖F‖L2(�) + |b�[ f ]| + ‖ f ‖L2(�6R0 )

)
<

1

16(C0 + 1)
.

(131)

Here C0 is the largest constant of C appearing in (126), (127), and (129) (larger
than 1 without loss of generality), and then, C0 is independent of γ and α. Then
for δ2 ∈ (0, 1

16(C0+1)| log δ1| ] we see, from (130) that

M(α, β, F, w) � 1

4(C0 + 1)
δ1. (132)

Thus, (126) and (127) imply that for δ2 ∈ (0, 1
16(C0+1)| log δ1| ],

|ψ[ω]| + ‖∇ R[ω]‖L2(�) + ‖R[ω]‖L∞(�5R0 ) � δ1

2
for all ω ∈ Bδ,γ .

Next we focus on ‖R[ω]‖L∞
1 (�). Taking (129) with γ ′ = 0 and (131) (with |α| <

e−1) into account, we set δ2 as

δ2 = 16(C0 + 1)

| log δ1|
(

|α|− 1
2 δ1 + ∣

∣ log |α|∣∣ (|α| + ‖F‖L∞
2 (�)

) + ‖F12 − F21‖L1(�)

)

,

(133)

which is smaller than 1
16(C0+1)| log δ1| if |α| and the data related to F appearing in

(131) and (133) are small enough, while δ2 is larger than δ1 since δ1 � |α| and
|α| 12 ∣∣ log |α|∣∣ � 1 for |α| < e−1. Note that d0[F] � ‖F12 − F21‖L1(�) is also
taken into account in the choice of (133). The key observation here is that, when

f = F = 0, the numbers δ1 and δ2 are of the order O(|α|) and O(|α| 12 ) for |α| � 1,
respectively. Then the term C

∣
∣ log |α|∣∣(|α| + |β| + ‖w‖L∞

1 (�)

)
in the right-hand

side of (129) with γ ′ = 0 is bounded from above by

C0
∣
∣ log |α|∣∣ (|α| + δ1 + δ2

)
� 1

32
, (134)

if γ ∈ [0, 1) and if |α| and the data related to F (and f = div F) appearing in (131)

and (133) are sufficiently small. Note that, since δ2 is at best of the order O(|α| 12 ),
the condition γ ∈ [0, 1) is crucial to ensure (134). Precisely, we need smallness
such as

|α| 12 ∣
∣ log |α|∣∣ + κα(F) < ε(�) � 1, (135)

where

κα(F) = |α|− 1
2
∣
∣ log |α|∣∣ (|b�[ f ]| + ‖F‖L2(�) + ‖ f ‖L2(�6R0 )

)

+ ∣
∣ log |α|∣∣ ‖F12 − F21‖L1(�) + (log |α|)2 ‖F‖L∞

2 (�).
(136)
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Here the number ε(�) depends only on � and is independent of α and γ , and we
also note that κα[F] does not contain the number γ in its definition. Under the
above smallness condition we have from (129) with γ ′ = 0 and the choice of δ2
that

‖R[ω]‖L∞
1 (�) � δ2

2
for all ω ∈ Bδ,γ ,

as desired. In the above argument the number δ3 can be arbitrary.
Next we estimate the norm ‖R[ω]‖L∞

1+γ (�) (in the case γ is positive). To bound
the term

C

1 − γ
|α|− γ

2
∣
∣ log |α|∣∣(|α| + |β| + ‖w‖L∞

1 (�)

)

in the right-hand side of (129) with γ ′ = γ , we need the additional smallness for
δ1 and δ2 depending on γ :

C0

1 − γ
|α|− γ

2
∣
∣ log |α|∣∣ (|α| + δ1 + δ2

)
� 1

32
. (137)

Precisely, in the case γ is positive, δ1 and δ2 are required to have the smallness as

|α| 1−γ
2

∣
∣ log |α|∣∣ + |α|− γ

2 κα(F) < εγ (�) � 1, (138)

where the number εγ (�) depends � on γ , contrary to the case of ε(�) in (135).
We note that ε0(�) = ε(�) and εγ (�) is taken so that it is monotone decreasing
and continuous on γ ∈ [0, 1) in virtue of (129). Then we set δ3 as

δ3 = 2

(

|α|− 1+γ
2 δ1 + |α|− γ

2
∣
∣ log |α|∣∣ ‖F‖L∞

2+γ (�) + dγ [F]
)

. (139)

Then we can conclude from (129) with γ ′ = γ and (134) that

‖R[ω]‖L∞
1+γ (�) � δ3

2
for all ω ∈ Bδ,γ .

It should be emphasized here that the argument works even if δ3 itself is large. We
have now shown that � is a mapping from Bδ,γ into Bδ,γ with the choice of δ j in
(131), (133), and (139) for j = 1, 2, 3, respectively.

Next let us show that� is a contractionmappingonB(δ1,δ2,δ2),0. For convenience
we set β = (β1, β2), andw = (w1, w2) forω j = (β j , w j ) ∈ B(δ1,δ2,δ2),0, j = 1, 2.
We also set

h = (
ψ[ω1] − ψ[ω2]

)
V + R[ω1] − R[ω2], (140)

which is equal to uω1 − uω2 , and hence, the velocity h satisfies
⎧
⎪⎨

⎪⎩

−�h − α(x⊥ · ∇h − h⊥) + ∇q = div G ′
α(β,w), div h = 0, x ∈ �,

h = 0, x ∈ ∂�,

h → 0, |x | → ∞,
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where q = qω1 − qω2 ∈ W 1,2
loc (�). Here G ′

α(β,w) is given by

G ′
α(β,w) = −α(U ⊗ (w1 − w2) + (w1 − w2) ⊗ U )

− (β1 − β2)(V ⊗ w1 + w1 ⊗ V )

− β2(V ⊗ (w1 − w2) + (w1 − w2) ⊗ V ) − w1 ⊗ (w1 − w2)

− (w1 − w2) ⊗ w2.

Below we give the estimates of G ′
α(β,w), where the estimate for the L2 norm of

the term V ⊗ w1 + w1 ⊗ V has to be carefully computed: in principle, we need to
estimate it by δ1 rather than δ2, for their dependence on |α| is essentially different.
Due to the negative power on |α| in the linear estimate (101) this is crucial to
show that � is a contraction mapping. Because of this reasoning we apply (161) in
Lemma A.1 by recalling the bound |V (x)| � C(1 + |x |)−1, which yields

‖V ⊗ w1 + w1 ⊗ V ‖L2(�) � C‖∇w1‖L2(�)| log ‖∇w1‖L2(�)|. (141)

Here we have used the smallness of ‖∇w1‖L2(�) + ‖w1‖L∞
1 (�). Similarly, also for

the nonlinear term in G ′
α(β,w) we will apply (161). Then it follows that

‖G ′
α(β,w)‖L2(�)

� C
(|α| ‖∇(w1 − w2)‖L2(�) + |β1 − β2| ‖∇w1‖L2(�)| log ‖∇w1‖L2(�)|

+ |β2| ‖w1 − w2‖L∞
1 (�) + ‖w1 − w2‖L∞

1 (�)‖∇w‖L2(�)

∣
∣ log ‖∇w‖L2(�)

∥
∥
)

� C
(|α| ‖∇(w1 − w2)‖L2(�) + δ1| log δ1| |β1 − β2|

+ 3δ1| log δ1|‖w1 − w2‖L∞
1 (�)

)

� C(|α| + δ1| log δ1|)‖ω1 − ω2‖X0 , (142)

and on the other hand, it is not difficult to see

‖G ′
α(β,w)‖L∞

2 (�) � C
(|α| ‖w1 − w2‖L∞

1 (�) + |β1 − β2| ‖w1‖L∞
1 (�)

+ |β2| ‖w1 − w2‖L∞
1 (�) + ‖w‖L∞

1 (�)‖w1 − w2‖L∞
1 (�)

)

� C
(
δ2|β1 − β2| + (|α| + δ1 + 2δ2)‖w1 − w2‖L∞

1 (�)

)

� C(|α| + δ1 + δ2)‖ω1 − ω2‖X0 . (143)

Similarly, we observe that

‖div G ′
α(β,w)‖L2(�5R0 )

� C
(|α|‖∇(w1 − w2)‖L2(�) + |β1 − β2|‖∇w1‖L2(�5R0 )

+ |β2|‖∇(w1 − w2)‖L2(�5R0 ) + ‖w1‖L∞(�5R0 )‖∇(w1 − w2)‖L2(�)

+ ‖∇w2‖L2(�)‖w1 − w2‖L∞(�)

)

� C
(|α|‖∇(w1 − w2)‖L2(�) + δ1|β1 − β2| + δ1‖∇(w1 − w2)‖L2(�)

+ δ1‖∇(w1 − w2)‖L2(�) + δ1‖w1 − w2‖L∞
1 (�)

)

� C(|α| + δ1)‖ω1 − ω2‖X0 . (144)
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By applying Theorem 3.8, we have the representation of the velocity h as

h =
(∫

∂�

y⊥ · T (h, q)ν dσy

)

V + R�[div G ′
α(β,w)]. (145)

Here we have used b�[div G ′
α(β,w)] = 0 again, which follows from the symmetry

of G ′
α(β,w) and from the fact that the trace of G ′

α(β,w) on ∂� is zero. Since
h = uω1 − uω2 and q = qω1 − qω2 , we see from the definitions of T (h, q) and
ψ[ω j ] in (124),

∫

∂�

y⊥ · T (h, q)ν dσy = ψ[ω1] − ψ[ω2],

and thus, we also have from (140) and (145) that

R�[div G ′
α(β,w)] = R[ω1] − R[ω2].

In virtue of (86) - (88) we see

∣
∣
∫

∂�

y⊥ · T (h, q)ν dσy
∣
∣ � C

(‖∇h‖W 1,2(�4R0 ) + ‖q‖W 1,2(�4R0 )

)

� C
(‖G ′

α(β,w)‖L2(�) + ‖div G ′
α(β,w)‖L2(�5R0 )

)
.

(146)

A similar argument as to the derivation of (127) yields

‖R�[div G ′
α(β,w)]‖L∞(�4R0 ) + ‖∇R�[div G ′

α(β,w)]‖L2(�)

� C
(‖G ′

α(β,w)‖L2(�) + ‖div G ′
α(β,w)‖L2(�5R0 )

)
.

(147)

Moreover, by applying (101) we see that the termR�[div G ′
α(β,w)] satisfies

‖R�[div G ′
α(β,w)]‖L∞

1 (Bc
4R0

)

� C

(

|α|− 1
2 ‖G ′

α(β,w)‖L2(�) + ∣
∣ log |α|∣∣‖G ′

α(β,w)‖L∞
2 (�)

)

.
(148)

Here we have used again the symmetry of G ′
α(β,w). Combining (146), (147) and

(148) with (142), (143) and (144), we obtain, for sufficiently small |α| �= 0 and
κα[F] in (136),

‖�[ω1] − �[ω2]‖X0

= |ψ[ω1] − ψ[ω2]| + ‖∇(
R[ω1] − R[ω2]

)‖L2(�) + ‖R[ω1] − R[ω2]‖L∞
1 (�)

� C

(

|α|− 1
2
(|α| + δ1| log δ1|

) + ∣
∣ log |α|∣∣ (|α| + δ1 + δ2)

)

‖ω1 − ω2‖X0

� 3

4
‖ω1 − ω2‖X0 , (149)

that is, the map � is a contraction on B(δ1,δ2,δ2),0. Here we have used the estimates

| log δ1| �
∣
∣ log |α|∣∣ and δ1 � 2−1|α| 12 ∣∣ log |α|∣∣−1 if δ1 � |α| and the data related
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to F appearing (131) are small enough. Therefore, there exists a fixed point ω =
(β,w) of� in Bδ,γ , which is unique in B(δ1,δ2,δ2),0. By the definition of� in (125),
we see that the fixed point ω = (β,w) satisfies

uω = u(β,w) = ψ[ω]V + R[ω] = βV + w,

which is the solution to (NS′
α), as desired. Let us set v = βV +w for the fixed point

(β,w) ∈ Bδ,γ . The local regularity of v ∈ W 2,2
loc (�)2 as well as ∇q ∈ L2

loc(�)2

follows from the standard elliptic regularity of the Stokes operator by regarding
the nonlinear term, which belongs to L2(�)2 by the above construction, as a given
external force. This leads to the regularity u ∈ W 2,2

loc (�)2 and ∇ p ∈ L2
loc(�)2 for

the solution (u,∇ p) to (NSα) by (111). Next we observe that v = βV + w solves
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�v − α(x⊥ · ∇w − w⊥) + ∇q̃ = −div (αU ⊗ v + v ⊗ αU + v ⊗ v)

+ div Hα(F), x ∈ �,

div v = 0, x ∈ �,

v = 0, x ∈ ∂�,

v → 0, |x | → ∞.

(NS′′
α)

Here we have used the identity x⊥ · ∇V − V ⊥ = 0 by the definition of V . Let us
take the approximation of v of the form

v(N ) = χN βV + w(N ), w(N ) = χN w − BN [∇χN · w], N � 1, (150)

where χN (|x |) is the radial cut-off function satisfying χN = 1 for |x | � N , χN = 0
for |x | � 2N , and |∇χN | � C N−1,whileBN is theBogovskii operator in the closed
annulus AN = {N � |x | � 2N } which satisfies

suppBN [∇χN · w] ⊂ AN , divBN [∇χN · w] = ∇χN · w

and

N−1‖BN [∇χN · w]‖L2(�) + ‖∇BN [∇χN · w]‖L2(�) � C‖∇BN [∇χN · w]‖L2(�)

� C‖∇χN · w‖L2(�).

(151)

Here C is independent of N ; see, e.g. Borchers and Sohr [2, Theorem 2.10].
Then, by multiplying v(N ) both sides of the first equation in (NS′′

α) and integrating
over �, we obtain

〈∇v,∇v(N )〉L2(�) + α〈w, x⊥ · ∇w(N ) − (w(N ))⊥〉L2(�)

= 〈v ⊗ v + αU ⊗ v̄ + v ⊗ αU,∇v(N )〉L2(�) − 〈Hα(F),∇v(N )〉L2(�)

(152)

from the integration by parts. Here we have used again the identity for the radial
circular flow: x⊥ · ∇(χN V ) − χN V ⊥ = 0. It is easy to see from (151) and w ∈
Ẇ 1,2

0,σ (�) ∩ L∞
1+γ (�)2 that

〈∇v,∇v(N )〉L2(�) → 〈∇v,∇v〉L2(�),
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〈v ⊗ v,∇v(N )〉L2(�) → 〈v ⊗ v,∇v〉L2(�) = 0,

〈αU ⊗ v + v ⊗ αU,∇v(N )〉L2(�) → 〈αU ⊗ v + v ⊗ αU,∇v〉L2(�)

= α〈U ⊗ v,∇v〉L2(�),

〈Hα(F),∇v(N )〉L2(�) → 〈Hα(F),∇v〉L2(�),

as N → ∞. As for the term 〈w, (w(N ))⊥〉L2(�) we see

|〈w, (w(N ))⊥〉L2(�)| = |〈w,BN [∇χN · w]⊥〉L2(�)|
� ‖w‖L2({N�|x |�2N })‖BN [∇χN · w]‖L2(�)

� C N‖w‖L2({N�|x |�2N })‖∇χN · w‖L2(�)

� C N−2γ ‖w‖2L∞
1+γ (�)

{→ 0 (N → ∞) if γ > 0,

� C‖w‖2L∞
1 (�)

if γ = 0.

It remains to consider the term 〈w, x⊥ ·∇w(N )〉L2(�). From the integration by parts
and from x⊥ · ∇χN = 0, div(x⊥χN ) = 0, and suppBN [∇χN · w] ⊂ AN we have

|〈w, x⊥ · ∇w(N )〉L2(�)| = |〈w, x⊥ · ∇BN [∇χN · w]〉L2(�)|
� N‖w‖L2({N�|x |�2N })‖∇BN [∇χN · w]‖L2(�)

� C N−2γ ‖w‖2L∞
1+γ (�)

{→ 0 (N → ∞) if γ > 0,

� C‖w‖2L∞
1 (�)

if γ = 0.

Herewe have also used (151). Collecting these above,we have arrived at the identity

〈∇v,∇v〉L2(�) = α〈U ⊗ v,∇v〉L2(�) − 〈Hα(F),∇v〉L2(�) when γ > 0.
(153)

In particular, from the Poincaré inequality |〈U ⊗ v,∇v〉L2(�)| � C‖∇v‖2
L2(�)

, we
obtain the estimate

(1 − C |α|)‖∇v‖2L2(�)
� ‖F + α∇U‖2L2(�)

when γ > 0, (154)

which shows (106) for the case γ > 0 by the relation u = αU + v. Note that the
constant C in (154) depends only on R0 and is independent of α and γ . To obtain
the energy inequality for the case γ = 0 we first consider the approximation of F
and f such that

Fn(x) = e− 1
n |x |2 F(x), fn = div Fn . (155)
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Then Fn ∈ L∞
2+γ (�)2×2 for γ > 0 and

lim
n→∞ b�[ fn − f ] = lim

n→∞ ‖F − Fn‖L2(�) = lim
n→∞ ‖ fn − f ‖L2(�6R0 ) = 0,

lim
n→∞ ‖(F − Fn)12 − (F − Fn)21‖L1(�) = 0, ‖Fn‖L∞

2 (�) � ‖F‖L∞
2 (�).

(156)

Here we have used the condition F12− F21 ∈ L1(�) for the convergence of b�[ fn].
Assume that

|α| 12 ∣∣ log |α|∣∣ + κα[F] < ε(�),

and we fix α. Then there is a unique fixed point (β,w) of � in B(δ1,δ2,δ2),0. On the
other hand, since α is fixed, there is γ0 > 0 such that

sup
0�γ�γ0

(|α| 1−γ
2

∣
∣ log |α|∣∣ + |α|− γ

2 κα[F]) < εγ0(�).

Here we have used the fact that ε0(�) = ε(�) and εγ (�) is continuous on γ ∈
[0, 1). Hence, in view of (156) and (136), there is N � 1 such that

sup
n�N

sup
0�γ�γ0

(|α| 1−γ
2

∣
∣ log |α|∣∣ + |α|− γ

2 κα[Fn]
)

< εγ0(�).

Let (vn,∇q̃n) with vn = βn V + wn , n � N , be the unique solution to (NS′′
α)

with F replaced by Fn such that (βn, wn) ∈ B
(δ1,δ2,δ

(n)
3 ),γ

⊂ B(δ1,δ2,δ2),0 with some

γ ∈ (0, γ0]. Note that for sufficiently large n, we can take the same δ1 and δ2. Then
(153) implies

‖∇vn‖2L2(�)
= α〈U ⊗ vn,∇vn〉L2(�) − 〈Hα(F),∇vn〉L2(�). (157)

Since (βn, wn) ∈ B(δ1,δ2,δ2),0 we have uniform estimates of (vn,∇q̃n), and thus,
we find a subsequence, denoted again by (vn,∇q̃n), such that βn → β∞,

wn ⇀ w∞ in W 2,2
loc (�)2, q̃n ⇀ q̃∞ in W 1,2

loc (�),

∇wn ⇀ ∇w∞ in L2(�)2×2, wn ⇀∗ w∞ in L∞
1 (�)2,

and wn → w∞ strongly in W 1,2
loc (�)2. Moreover, we observe from (153) that

v∞ = β∞V + w∞ satisfies the energy inequality

‖∇v∞‖2L2(�)
� α 〈U ⊗ v∞,∇v∞〉L2(�) − 〈Hα(F),∇v∞〉L2(�). (158)

It is also easy to see that (v∞,∇q̃∞) is a solution to (NS′′
α) and (β∞, w∞) ∈

B(δ1,δ2,δ2),0. By the uniqueness of the fixed point of � in B(δ1,δ2,δ2),0 , we have
(β∞, w∞) = (β,w). Therefore, (158) holds with v∞ replaced by v = βV + w, as
desired. Thus we have (106) also when F ∈ L∞

2 (�)2×2 and F12 − F21 ∈ L1(�).
The estimates (108) and (109) follow from the fact ‖w‖L∞

1 (�) � δ2 and
‖w‖L∞

1+γ (�) � δ3 together with the definitions of δ j in (133), (139), and dγ [F] �
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Cγ −1‖F‖L∞
2+γ (�) when γ > 0. As for the identity (107) on the coefficient β, we

observe from (124),

β =
∫

∂�

y⊥ · (
T (v, q)ν

)
dσy + b�[ f ].

Since v = u − αx⊥ and q = p + P near ∂�, where P = P(|x |) is a radial
function and has been taken so that ∇ P = div [(αU + βV ) ⊗ (αU + βV )], the
straightforward calculations yield

∫

∂�

y⊥ · (
T (v, q)ν

)
dσy =

∫

∂�

y⊥ · (
T (u, p)ν

)
dσy .

Thus (107) holds. The proof of Theorem 4.1 is complete. ��
Finally we consider the case F ∈ L∞

2,0(�)2×2. Combining Theorem 4.1 with
Theorem 4.3 below, we obtain Theorem 1.1.

Theorem 4.3. Assume that f = div F satisfies the conditions in Theorem 4.1 for
γ = 0. Assume in addition that F ∈ L∞

2,0(�)2×2. Then the remainder w in Theorem

4.1 belongs to L∞
1,0(�)2.

Proof. The proof is very similar to the derivation of the energy inequality for the
case γ = 0 in the proof of Theorem 4.1. We set Fn and fn as in (155). Then Fn and
fn satisfy (156), and moreover, the additional condition F ∈ L∞

2,0(�)2×2 implies

‖Fn − F‖L∞
2 (�) → 0, n → ∞. (159)

The proof of (159) is as follows: for any small number ε > 0, there exists R > 0
such that‖Fn−F‖L∞

2 (Bc
R) � 2ε ‖F‖L∞

2 (�) by the decay condition F ∈ L∞
2,0(�)2×2.

Then we have

lim sup
n→∞

‖Fn − F‖L∞
2 (�) � lim sup

n→∞
(‖Fn − F‖L∞

2 (BR) + ‖Fn − F‖L∞
2 (Bc

R)

)

� lim sup
n→∞

(
(1 − e− R2

n ) + 2ε
)‖F‖L∞

2 (�) = 2ε ‖F‖L∞
2 (�),

which implies (159). As in the proof of Theorem 4.1, let (vn,∇qn), vn = βn V +wn ,
n � 1, be the solution to (NS′′

α) with F replaced by Fn such that (βn, wn) ∈
B

(δ1,δ2,δ
(n)
3, ),γ

⊂ B(δ1,δ2,δ2),0 with some γ ∈ (0, 1). Since wn ∈ L∞
1+γ (�)2 and

γ > 0, it suffices to show that (βn, wn) converges to (β,w) inR× L∞
1 (�)2, where

v = βV + w is the solution to (NS′′
α). To prove this we observe that the difference

h = v − vn solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�h − α(x⊥ · ∇h − h⊥) + ∇q = div G ′
α(β,w) + div (F − Fn), x ∈ �,

div h = 0, x ∈ �,

h = 0, x ∈ ∂�.

h → 0, |x | → ∞.
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Here we have set β = (β, βn), w = (w,wn), and

G ′
α(β,w) = −α(U ⊗ (w − wn) + (w − wn) ⊗ U ) − (β − βn)(V ⊗ w + w ⊗ V )

− βn(V ⊗ (w − wn) + (w − wn) ⊗ V ) − w ⊗ (w − wn)

− (w − wn) ⊗ wn .

Then the same argument as that for the derivation of (149) shows

‖(β,w) − (βn, wn)‖X0 � 3

4
‖(β,w) − (βn, wn)‖X0

+ C

(

|b�[ f − fn]| + ‖F − Fn‖L2(�) + ‖ f − fn‖L2(�6R0 )

+ ‖(F − Fn)12 − (F − Fn)21‖L1(�) + ‖F − Fn‖L∞
2 (�)

)

,

where C is independent of n. Thus, (βn, wn) converges to (β,w) in R× L∞
1 (�)2,

which shows w ∈ L∞
1,0(�)2. The proof is complete. ��

Appendix

We will prove the Hardy type inequality in two-dimensional exterior domains,
which is used in the proof of Theorem 4.1.

Lemma A.1. Let � be an exterior domain in R
2. Then it follows that

∥
∥
∥
∥

f

1 + |x |
∥
∥
∥
∥

L2(�)

� C‖∇ f ‖L2(�) log

(

e + ‖ f ‖L∞
1 (�)

‖∇ f ‖L2(�)

)

(160)

for any f ∈ Ẇ 1,2
0 (�) ∩ L∞

1 (�). Here C depends only on �. In particular, if

e‖∇ f ‖L2(�) + ‖ f ‖L∞
1 (�) � 1,

then

‖ f

1 + |x | ‖L2(�) � C‖∇ f ‖L2(�)

∣
∣ log ‖∇ f ‖L2(�)

∣
∣. (161)

Proof. Take x0 ∈ R
2\� and 0 < r0 < e−1 so that Br0(x0) ⊂ R

2\�. By con-
sidering the zero extension of f to R

2, it suffices to show (160) for � = R
2 and

f ∈ Ẇ 1,2(R2) ∩ L∞
1 (R2) such that f = 0 in Br0(x0). Fix R > 2|x0|. By the

condition f (x0) = 0 and the mean value theorem in the integral form we have

| f (x)|
1 + |x | � |x − x0|

1 + |x |
∫ 1

0
|(∇ f )(τ (x − x0) + x0)| dτ

� (1 + |x0|)
∫ 1

r0|x−x0 |
|(∇ f )(τ (x − x0) + x0)| dτ, x ∈ R

2\Br0(x0),
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which gives
∥
∥
∥
∥

f

1 + |x |
∥
∥
∥
∥

L2({|x−x0|�R})
� (1 + |x0|)

∫ 1

r0
R

τ−1‖∇ f ‖L2(R2) dτ

� (1 + |x0|)
(| log R| + | log r0|

)‖∇ f ‖L2(R2). (162)

On the other hand, we have
∥
∥
∥
∥

f

1 + |x |
∥
∥
∥
∥

L2({|x−x0|�R})
�

∥
∥
∥
∥

1

(1 + |x |)2
∥
∥
∥
∥

L2({|x |� R
2 })

‖ f ‖L∞
1 (R2)

� C

R
‖ f ‖L∞

1 (R2). (163)

If ‖ f ‖L∞
1 (R2) � 2|x0|‖∇ f ‖L2(R2) then we obtain (160) from (162) and (163) with

R = 2|x0|+1. If ‖ f ‖L∞
1 (R2) � 2|x0|‖∇ f ‖L2(R2) then we take R = e+ ‖ f ‖L∞

1 (R2)

‖∇ f ‖L2(R2)
,

which yields again from (162) and (163) that
∥
∥
∥
∥

f

1 + |x |
∥
∥
∥
∥

L2(R2)

� C | log r0|(1 + |x0|)‖∇ f ‖L2(R2) log

(

e + ‖ f ‖L∞
1 (R2)

‖∇ f ‖L2(R2)

)

.

(164)

Here we have used | log r0| � 1 and | log R| � 1, and C is a numerical constant.
Thus (160) holds. The proof is complete. ��
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