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Abstract

We study the two-dimensional stationary Navier—Stokes equations describing
the flows around a rotating obstacle. The unique existence of solutions and their
asymptotic behavior at spatial infinity are established when the rotation speed of
the obstacle and the given exterior force are sufficiently small.

1. Introduction

In this paper we consider the two-dimensional Navier—Stokes equations for
viscous incompressible flows around a rotating obstacle in two-dimensions:

ov—Av+v-Vv4+Vg =g, divv=0, t>0,yeQ@)),
v=ayt, t>0,ye€dQ), (1)

v —> 0, t >0, |y| > oo.

Here v = v(y,1) = (v1(y,1),v2(y,1))" and ¢ = g(y, ) are respectively, the
unknown velocity field and pressure field, and g(y, 1) = (g1(y, 1), g2(y, 1)) T is a
given external force. The time dependent domain €2 (¢) is defined as

Q) ={yeR*|y=0(an)x,x € Q},
Otar) = (cos at  —sin oet) ’ ()

sinat  cosat

where € is an exterior domain in R? with a smooth compact boundary, while the real
numbera € R\ {0} represents the rotation speed of the obstacle Q¢ = R?\ 2. We use

: : : . _ 0 . _ 0 _ 2 2 g _
the standard notation for derivatives: 0; = 3 0j = FITE A=) =1 0 I divy =
Z?:l djvj, v- Vv = Z?:l v;d;v. The vector x* denotes the perpendicular:

xt = (=x2,x1) 7. The system (1) describes the flow around the obstacle 2 which
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rotates with a constant angular velocity «, and the condition v(z, y) = ay on the
boundary d€2(¢) represents the no-slip boundary condition. To remove the difficulty
due to the time dependence of the fluid domain it is more convenient to analyze the
system (1) in the reference frame: for r = 0 and x € €,

y=O0(at)x, u(x,t)=0(@t) v(y,1), plx,t)=qy 1),
f, )= 0@ gy, 1.

Here M T denotes the transpose of a matrix M. Then (1) is equivalent to the equations
in the time-independent domain €2:
Btu—Au—(x(xJ‘~Vu—uJ‘)+Vp=—u-Vu+f, divu=0, t>0, x € Q,
u:otxJ‘, t>0, x €0,

u— 0, t>0, |x] > oo.

In this paper we are interested in the stationary solutions to this system. Thus we
assume that f is independent of ¢ and consider the next system:

—Au—a(xt - Vu—ut)+Vp=—u-Vu+ f, divu=0, xeQ,

u = axL, x €092,

u — 0, |x|]— oco.
(NSq)
To state our result let us introduce the function spaces used in this paper. As usual,
the class C(?,Oa (€2) is defined as the set of smooth divergence free vector fields

with compact support in €2, and the homogeneous space Wolﬁ (2) is the closure of
Cgf’o(Q) with respect to the norm ||V f | ;2(q). For a fixed number s > 0 we also
introduce the weighted L space L°(2) and its subspace L;OO(Q) as follows:

LE@) = {f e L) | (1 +xD'f € LX)},

LY@ ={f e LP9Q) | Rli_)moo ess.sup, > glx|’| f(x)| = 0}. @)

These are Banach spaces equipped with the natural norm

I fllLeo() = ess.supyeq(l + x| £ ()],

and the set of functions with compact support is dense in LSO?O(Q). Moreover, for
any bounded sequence { f,} in L$°(€2) (or L35(€2)) with || f [l Lo () < M for some
M > 0, there exists a subsequence { f,,} which converges in the weak-star topology
in the sense that there is f € LJ°(Q2) (or f € L?"DO(Q), respectively) such that

Jim /an/<x)¢(x>(1+|x|)s dx =/Qf(x>¢(x><1+|x|)s dx, forany ¢ € L'(Q)
n—oo0

and || fllLe () < M. We denote by leoc (Q) the set of functions which belong to

L2(Q N K) for any compact set K C R2, and W/ﬁ)’f(ﬁ), k=1,2,..., 1is defined in
a similar manner.
The main result of this paper is stated as follows:
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Theorem 1.1. There exists ¢ = £(2) > 0 such that the following statement holds.
Assume that f € L*(Q)? is of the form f = div F = (3 F11 + 8,Fi2, 31 Fo1 +
O Fa) " with some F = (Fij)1<; j<o € LP(Q)**? and Fip — Fy1 € LY(Q). If
o # 0and

1 1
|2 | log || + || 72| log ||| (||f||L2(9)+||F||Lg°(Q)+||F12 — Fallpig) <&
“)

then there exists a solution (u, Vp) € ( loe (Q) N LOO(Q)) X leoc(ﬁ)2 to (NSy),
which is unique in a suitable class of functions (see Theorem 4.1 for the precise
description). If F € LCZ”OO(Q)2><2 in addition, then the solution u behaves as

L

ue) = s FE

+o(x|™h, x| > oo, ()
where
B = / (T, pyv)doy, + lim f SbFyh fdy. (©6)

Here T(u, p) = Vu+ (Vu)" — pI 1 = (8ij)1<i, j<o. denotes the Cauchy stress
tensor, and v is the outward unit normal vector to Q.

Remark 1.2. (i) The smallness condition on f and F' in (4) can be slightly weak-

ened with respect to the dependence on «; see Theorem 4.1 for details.

(ii) Both conditions F € L (2)2*2 and Fjp — F»; € L'(Q) are critical in view of
scaling. Note that the L " summability is needed only for the antisymmetric part
of F. These conditions are not enough to ensure that u behaves like the circular
flow ,B |2 as |x| — oo, and the additional decay condition F € L5 (SZ)2X2
as in Theorem 1.1 is required to achieve this asymptotic property.

(iii) The second term of the right-hand side of (6) is well-defined if F € L55,(2)
and Fio — Fp; € LY(Q).If F possesses an additional decay such as L2+y(§2)
with y € (0, 1) then the order o(|x|™ Dy'in (5) is replaced by O (|x|™ 1=vy at
least when |«| and given data f are further small depending on y. The precise
statement on this result is stated in Theorem 4.1.

(iv) The pressure p is determined uniquely up to a constant and belongs to Wlf)cz (Q).
Then, since u € Wl (Q)2 the coefficient 8 in (6) is well-defined.

(v) In Theorem 1.1 we assume that the external force f is of divergence form.
In fact, this is not an essential assumption, and it is possible to deal with the
external force f satisfying

Lofell @, felLlP@?, 7

with the smallness in these norms, and the asymptotic expansion (5) is verified
if f e LSS (Q)2 in addition. This is obtained by using the recent result by
the authors [16] in the whole space which solves the linearized problem for
f satisfying (7). Although this result is not so trivial since the condition (7)
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is just in the scale-critical regime, we focus only on f of divergence form in
this paper, for the argument becomes shorter due to the fact that the nonlinear
term is also written in the divergence form as div (v ® u).

As far as the authors know, Theorem 1.1 is the first general existence result of
the flows around a rotating obstacle in the two-dimensional case. Before stating
the idea of the proof of Theorem 1.1, let us recall some known results on the
mathematical analysis of flows around a rotating obstacle.

So far the mathematical results on this topic have been obtained mainly for the
three-dimensional problem, as listed below. For the nonstationary problem the exis-
tence of global weak solutions is proved by BORCHERS [1], and the unique existence
of time-local regular solutions is shown by HisHIDA [18] and GEISSERT, HECK, and
HieBER [15], while the global strong solutions for small data are obtained by GALDI
AND SILVESTRE [14]. The spectrum of the linear operator related to this problem
is studied by FARWIG AND NEUSTUPA [8]; see also the linear analysis by HISHIDA
[19]. The existence of stationary solutions to the associated system is proved in [1],
SILVESTRE [26], GALDI [11], and FARWIG AND HisHIDA [5]. In particular, in [11]
the stationary flows with the decay order O (|x|~!) are obtained, while the work of
[5]is based on the weak L3 framework, which is another natural scale-critical space
for the three-dimensional Navier—Stokes equations. Our Theorem 1.1 is considered
as a two-dimensional counterpart of the three-dimensional result of [11]. In 3D
case the asymptotic profiles of these stationary flows at spatial infinity are studied
by FARWIG AND HisHIDA [6,7] and FARWIG ET AL. [4], where it is proved that the
asymptotic profiles are described by the Landau solutions, stationary self-similar
solutions to the Navier—Stokes equations in R3\{0}. It is worthwhile to mention
that, also in the two-dimensional case, the asymptotic profile is given by the sta-
tionary self-similar solution ci—é, as is shown in Theorem 1.1. The stability of
the above stationary solutions has been well studied in the three-dimensional case;
The global L? stability is proved in [14], and the local L> stability is obtained by
HisHIDA AND SHIBATA [21].

All results mentioned above are in the three-dimensional case, while only a
few results are known so far for the flow around a rotating obstacle in the two-
dimensional case. Recently an important progress has been made by HisHIDA
[20], where the asymptotic behavior of the two-dimensional stationary Stokes flow
around a rotating obstacle is investigated in details. The equations studied in [20]
are written as

—Au—a(xl~Vu—uL)+Vp:f, divu =0, x € Q,
u=~o, x € 0L2. (Sa)

u — 0, |x] = o0.

Here b is a given smooth function on 9<2. It is proved in [20] that if « # 0 and the
smooth external force f satisfies the decay conditions

/QIXIIfIdx <oo,  f(x)=o(lx|(oglx])7"), as|x] >o0, (8
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then the solution u to (Sy) decaying at spatial infinity obeys the asymptotic expan-
sion

c1xt = 2cax

pmp + L+l Ho(x[™),  as x| > o0, (9

u(x) =

where

01=/ yL.(T(u,p)—I-ab@yl)vdoy—i—/ y*fdy,
Q Q

cz=/ b-vdoy.
aIQ

The result of [20] leads to an important conclusion that the rotation of the obstacle
resolves the Stokes paradox (see CHANG AND FINN [3] for the rigorous description
of the Stokes paradox) as in the Oseen resolution. We recall that when the obstacle
is translating with a constant velocity u, € R?\{0} the Navier—Stokes flows have
been constructed by FINN AND SMITH [9,10] for small but nonzero u, through
the analysis of the Oseen linearization; see also GALDI [13]. The resolution of the
Stokes paradox for (Sy) is due to the fact that the rotation removes the logarithmic
singularity of the associated fundamental solution, which has been well known for
the Oseen problem.

As areference to the 2D exterior problem related with ours, the reader is referred
to a recent work by HILLAIRET AND WITTWER [17], where the stationary problem
of (1) is discussed when Q(r) = Q = {y € R? | |y| > 1} and the boundary

condition is given as v = ay™ + b with a smooth and time-independent b. We note
L
that the stationary flow aﬁ exactly solves this problem when b = 0. When « is

(10)

large enough and b is sufficiently small the stationary solutions are constructed in
[17] around the explicit solution ¢ y—é, where @ a number close to . Although the
problem discussed in [17] is in fact different from ours due to the time-independent
given data b in the original frame (1), the solutions obtained in [17] share a common
property with the ones in Theorem 1.1 in view of their asymptotic behaviors at
spatial infinity.

It is well known that the existence of stationary Navier—Stokes flows in two-
dimensional exterior domains (hence, formally « = 01in (NS,)) is an open problem
in general. Partial results related to this problem have been obtained by GaLpI [12],
Russo [25], Yamazaxki [28], and PILECKAS AND Russo [24], where the solutions
are constructed under some symmetry conditions on both domains and given data.
In particular, the Navier—Stokes flows decaying in the scale-critical order O (|x|~1)
are obtained in [28] in this category. The uniqueness is also available again under
some symmetry conditions, see NAKATSUKA [23].

The stability of the stationary solutions obtained in [17,28] or in Theorem 1.1
is a highly challenging issue due to their spatial decay in the scale-critical order in
two-dimensions, and it is still an open question in general. The difficulty is brought
from the fact that the Hardy inequality ||‘71|f||Lz(Q) < ClIVflizg, f € Wol’z(Q)
does not hold when € is an exterior domain in R2. As far as the authors know, the
only result available so far is [22] by the second author of this paper, where the
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local L2 stability is established for the special solution a%, le] < 1, when Q is
the exterior domain to the unit disk.

Finally, let us state the key idea for the proof of Theorem 1.1. Our approach is
motivated by the linear analysis developed in [20], where (10) is obtained through
the detailed analysis of the fundamental solution associated to the system (S,) in
R2. The expansion (9) strongly indicates that the similar asymptotics is valid also
for the Navier—Stokes flow, since the leading profile in (9) is a stationary self-similar
solution to the Navier—Stokes equations in R\ {0}. Thus our strategy for the proof
of Theorem 1.1 can be summarized as follows: we derive at the same time the unique
existence of solutions and their asymptotic behavior under the smallness condition
on the given data («, f) in (NSy). The solution of the form of u = ,Bﬁ + w
is constructed through the Banach fixed point theorem, where both the coefficient
B and the remainder term w are sufficiently small corresponding to the size of
(o, f). However, it is far from trivial to justify this idea directly from the results of
[20], especially to ensure the smallness of (8, w) in the iteration scheme. Indeed,
there are at least two difficulties for this procedure: (I) the condition (8) is slightly
restrictive to handle the nonlinear term u - Vu in the scale-critical framework, and
more seriously, (II) the singularity on || in (9) for 0 < || < 1 can prevent us
closing the nonlinear estimates. In fact, the smooth flows subject to the system
(NSy) are pointwise bounded above by || near the boundary due to the boundary
condition u = ax=.

For resolving the difficulty (I), the structure of the nonlinear term V - (u @ u) is
essential. Indeed, the symmetry of the tensor # ® u leads to a crucial cancellation for
the coefficient “fQ y+ - (u - Vu)dy”, which removes a possible singularity caused
by the scale-critical decay of the flow. To overcome the difficulty (II), we revisit the
argument of [20] analyzing the fundamental solution to (S,) in R? and modify the
singularity of « in the estimates of the remainder term for the linear problem; see
Theorem 3.1, Lemma 3.3, and Theorem 3.8. Applying these improved estimates,
the nonlinear problem (NS, ) is solved by the Banach fixed point theorem. However,
the argument becomes complicated since we have to control two kinds of norms;
the one bounds the local quantity, while the other one controls the spatial decay.
This machinery is needed since the flow in a far field region (|x| >> 1) exhibits a
different dependence on |« | from the flow in a finite fluid region, and in principle,
the problem becomes more singular at |x| > 1 as |«¢| is decreasing. In order to
close the nonlinear estimates it is important to distinguish these two dependences
on |o| and to estimate their interaction through the nonlinearity carefully.

This paper is organized as follows. In Section 2 the basic results on the oscil-
latory integrals are collected, which are used to establish the pointwise estimates
of the fundamental solution to (S,) with a milder singularity on |«|, |¢| < 1. In
Section 3 the linearized problem (S, ) with b = 0 is studied in details. Section 3.1
is devoted to the analysis in R2, while the exterior problem is discussed in Section
3.2. Finally the nonlinear problem (NS ) is solved in Section 4.
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2. Preliminaries

In this section we collect the results of the oscillatory integrals used in Section
3.1

Lemma 2.1. Let @ € R\{0} and let m,r > 0. Then we have

dt r2
/ e””e_* / / o de
0 Ym-ﬁ-

where C = C(m) is independent of r and a. Moreover, for m > 1 we have

T st _yim-1) yon—1)
fo ¢ ' T 2men / / ‘Sm+1 dr == (12

where y (-) denotes the Euler gamma function.

1 1

2 2m2 }’
loe[r = |a|ﬁrm'il

(1)

Proof. The proof of (12) is a straightforward computation, and we omit the details.
To show (11) let us take a positive constant [ = /(r, &) which will be determined
later and split the integral as

o L 2dt Lo 2 de © o 2dt
/ ewttefT_ — / ezatefT_ +/ elatefT_.

The first term is estimated without using the effect of oscillation:

l . r2 l r2 2\m
/ elate772 < L e~ T I’_ dr < ﬂ
0 | = t

r2m 0 2m
For the second term we use the effect of oscillation to obtain

r2

. 2 dt 1 > df[ . le ©
iat —= iat
e e ! — = — e —dt
/, "o da dr tm
2
' 5t=00 00 2 = _r-
_ Mg T LT (e me T
ia tm (=l la ! tm+2 tm+1 ’

which yields
© 2t 1 (e T 1 © y2 P2\ 2
L2 2
[etmle (T e [ Gen(F) T w)
(13)

By taking the limit of / = 0 we observe that the left-hand side of (13) is then
bounded from above by \al% in virtue of (12). On the other hand, the right-hand

o
[N

2m
side of (13) is also bounded from above by ﬁ Taking [ = rmn+1 |a|_ﬁ, we

have arrived at
R 2 dt C
/ el T
0 m

1 2m?
|C(| m+1 pm+1

A
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The estimate of the integral

OO. o
[e [* e
0 t

is obtained exactly in the same manner, and hence the details are omitted here. The
proof is complete. O

Lemma 2.2. Let m > 1. Then we have

o oG@x—y? mz _ 0@y y2 _ k2, ds
‘e 4 — —e ’ dr
0 Sm+l

]
= |x|2m—l’

00 2
/ €iat€_‘%g
0 tm

Moreover, form > 1 we have

x| > 2]yl,

(14)
and

< Cmi ! ! X >0, (15)
< C min , , > 0.
el [x 2 Jx 2D !

1 1
ol P PO =D

|x|2

T Cmin{ }, [x| > 0.

(16)
Here C = C(m) is independent of x, y, and «.

Proof. By using the Taylor formula with respect to y around y = 0, we see

_lo@x—y? w2 (O(an)x,y) k2 (y, Qy> _10G@nx—0y12
4t = 4t B 4 4 ) 17
e e + 5 e +— 2 (17)

where Q = (O (at)x —0y) ® (O(at)x —0y) —2tTwith0 = O(a, 1, x, y) € (0, 1)
and (x, y) = x - y. From

|x|
|0 (at)x —0y| = |x| — [y > > =20

Lemma 2.1 leads to

© \O(aox—y\z _ \x|2 dr
|€ — e e
tm

dr
= oIyl | 'WH+OMWI+MWI+UH lmwﬂ
Clyl
= W7 x| > 2[y|.

Similarly we have from Lemma 2.1 that

_ 10—y 2 x2 . ds Cly|
o < 7
/ / S |Sm+l dr < FEER x| > 2]y].

The proof of (14) is complete. Since m > 1, the estimates (15) and (16) are
consequences of (11) and (12). The proof is complete. O
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3. Stokes System with a Rotation Effect

This section is devoted to the analysis of the linearized problem (S, ), introduced
in Section 1, with b = 0.

3.1. Linear Estimate in the Whole Plane

In this subsection let us consider the linear problem in whole plane for « €
R\{0}:

—Au—ot(xL -Vu —uL)—}—Vp = f, divu = 0, x € R2. (Sy.r2)
Our main interest is the estimate of solutions that are represented in terms of the
fundamental solution defined by (18) below. We will see that such solutions decay
at spatial infinity for a suitable class of f in virtue of the effect from the rotation; see
also Remark 3.2 about the uniqueness for solutions to (S, r2). The couple (u, p)
is said to be a weak solution to (S, g2) if (u, p) € LY (R?*)? x L% (R?) for some

q1 € [2,00) and g5 € [1, 00), and (i) divu = 0 in the sense of distributions, and
(ii) (u, p) satisfies

/ u-L_qpdx —/ pdivegdx =/ f-¢dx, forall ¢ € S(R??,
R2 R2 R2
where the operator £, is defined as

Lot = —Au —a(xt - Vu —ub).

The fundamental solution to (S, r2) plays a central role throughout this paper,
which is defined as

Fa(x,y)zf O(at) K (O(at)x — y, 1) dt, (18)
0
where
K(x,1) =G, )+ H(x, 1), H(x,t):/ V2G(x,s)ds,
t

and G (x, t) is the two-dimensional Gauss kernel

12
G(X,Z)ZME 4,

The next theorem is the main result of this subsection, which extends the result
of [20] to our functional setting. For f € LZ(RZ)2 and F = (Fij)lg,i,jgz €
L%(R?)>*? we formally set

clf1 = lim / ey p Gy,
B (19)

- . a2
GFI=1lim | e PP (Fa(y) — Fa(y)) dy.
e—0 JR2
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Note that if f € L?(R?)? is of the form f = div F = (8, F11 + 92F12, 01 F>1 +
9, F2) T withsome F € L1(R?)2*2, then c[f1 = c[F]. Indeed, from the integration
by parts we have

CLf1= EF1+ lim 2 / e~ eyl (F(y)y) dy
E—> R2

Then the Lebesgue dominated convergence theorem implies c[ f] = ¢[F]. More-
over, if F is symmetric then ¢[ F] = 0. Here and in what follows, Bg denotes the
open disk in R? of radius R > 0 and centered at the origin, and the complement of
Bp is denoted as By, = {x € R? | |x| = R)}.

Theorem 3.1. Let o € R\{0}. We formally set

LIFI) = lim [ e PRy (e y) £(y) dy. (20)
e—0 Jr2

Then the following statements hold:

() Let y € [0, 1). Suppose that f € L*(R?)? satisfies supp f C Bg for some

R 2 1. Then u = L[ f] is a weak solution to (S r2) and is written as

pu i
u(x) = [f]4 Il +RIf1x), x #0, (21
where R f] satisfies
IR e, s < Crllel™ 2 1 ligg + 1517 fllisg). 22

Here C1 is a numerical constant, and is independent of y, «, R, and f;

(ii) Let y € [0, 1). Suppose that f € L>(R?)? is of the form f = div F with some
F e Lg‘jry (R*)2*2, and in addition that ¢[F) in (19) converges when y = 0. Then
u = L[ f] is a weak solution to (S, r2) and is written as

€

u(x) = Fl s ypeE

+RILfIx),  x #0, (23)

where R[ f] satisfies for R 2 1,

||R[f]||Lc;o+V<B;R)§Cz(||F||L;o i+ swp I F gy
[x|=2R

. 1 y
+ sup mln{m,w }”F”Ll(B%)

lx|=2R
2
+ sup |x|”|lim e P (Fia(y) = Fa(y)) dY|>~
Ix|>2R e—~>0 2\y|>|x|
(24)

Here Cy is a numerical constant, and is independent of v, a, R, and f.
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Remark 3.2. Under the assumptions of (i) or (ii) in Theorem 3.1 it is not difficult
to see that L[ f] belongs to Wé‘f(Rz), and thus, L[ f] is bounded in R2 by the
Sobolev embedding in B; and the estimates stated in Theorem 3.1 for |x| = 1 (by
taking R = 1). Set

p= / T fdy. (25)
R2 27|x — y|

Then, V p belongs to L2(R?)2 under the assumptions of (i) or (ii) in Theorem 3.1
by the Calderén-Zygmund inequality, and as is shown in [20, Proposition 3.2],
the pair (L[ f], V p) satisfies (S, 2) in the sense of distributions. In virtue of the
uniqueness result stated in [20, Lemma 3.5], if f satisfies one of the assumptions in
Theorem 3.1, and if (v, ¢) € S'(R?)? x S’(R?) is a solution to (S, r2) in the sense
of distributions, then (v, ¢) has a representationasv = L[ f]+ Piandg = p+ P>
with some polynomials P; and P>. Hence, by the definition stated above, any weak
solution (u, p) to (S, g2) is represented as u = L[ f] and p is given by (25), as
long as the condition (i) or (ii) on f in Theorem 3.1 is assumed.

We note that in (ii) of Theorem 3.1 the coefficient ¢[ F] is always well-defined
when y > 0. The asymptotic expansion (21) for the case (i) is firstly established
by [20, Proposition 3.2]. Indeed, for the case (i) it is shown in [20, Proposition 3.2]
that R[ f] decays at infinity as O (|x|~2), while the singularity |a|~! appears in the
coefficient of the estimates there. The novelty of Theorem 3.1 are (22) and (24),
where both the consistency in the weighted L spaces and the milder singularity
on « for small || are essential to solve the nonlinear problem in Section 4. On
the other hand, as in [20], the key step to prove Theorem 3.1 is the expansion and
the pointwise estimate of the fundamental solution I'y (x, y), which are stated in
Lemma 3.3 below. The fundamental solution I'y (x, y) is studied in details in [20,
Proposition 3.1] and we will revisit the argument developed by [20] in the proof of
this lemma.

Lemma 3.3. Set

L@yt
4 |x|?

Then for m = 0, 1 the kernel 'y (x, y) satisfies

|V;1(F0l(x’ y) —L(x, )’))|

1 1 1 1 2—m
§C<80mmin s, +|X|1_mmin{ 3’_}+|)’| > >’
| 1x]7 o] 2 x| lee[|x]” " |x] |x]

for |x| > 2ly|.

L(x,y) = (26)

27
Here oy, is the Kronecker delta and C is independent of x, y, and «.

Remark 3.4. The case m = 0 of (27) is obtained in [20, Proposition 3.1] but with
loe| ! dependence of the coefficients in the estimate. The case m = 1 is not stated
explicitly in [20], although it can be handled in the similar spirit as in the case
m = 0. In this sense Lemma 3.3 is not completely new, and is an improvement of
[20, Proposition 3.1] with respect to the singularity on |¢| for |o| < 1.
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Proof of Lemma 3.3. In principle, our proof of Lemma 3.3 will proceed along the
line of [20, Proposition 3.1]. In fact, the only key difference of out proof for the
case m = 0 is the application of Lemmas 2.1, 2.2 in suitable parts. In the proof for
the case m = 1, the inequality (14) will be essentially used in addition.

Following the argument of [20, Section 3], we decompose 'y (x, y) and define
Io(x, y), Ti(x, y), and T2 (x, y) as

Lo (x, y)
=Ty, ») + T () + T2, )

= /oo O(at) ' G(O(at)x — y, 1) dt
0
+/ 0@ (O@@nx =) ® (O@n)x - y)/ G(O(at)x —y, s)4de2 dt
0 13
_ /Oo ow@n’ /oo Go@x —y, 5 ar. 08)
0 1 2s

We also decompose L(x,y) and define LO(x,y), L'(x,y), L'?
(x,y),and L'??(x, y) as
Lx,y) =L, y) + L™ (x, y) + L' (x, y) + L2 (x, )
_x®y+xteyt | B3y +xteyt | x®y
N 47 |x|? 81 |x|? 47 |x |2 29
_x®y—|—xL®yl
877 |x |2

Then, by Lemma 2.1, the following representations hold:

o) 1
Xy X7y
L%, y) = / G(x, f)—( ey x~y>’
-3 1 1
LM (., y)_f / G, S)42 ( (x®y)-;(x Yy ))’
(30)

L2, y) = / / G(x, s) 5 dr IX|?(x @ y),

1
L'2(x, :-//G,—dt ey ey
wn =~ | [ Gwogga( 0

where we have used the equality

1
1 1 Xy Xy
reyE ey _<_Xl'y X')’>'

To prove (27) we observe that
|V)r/n(r()l(-x’ J’) - L(xv )’))|
SV IO, y) = LG, M)+ V(T (e, y) = LM, y) — L1 (x, )|
+ VI (2 G, y) = L2 ).
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Let us estimate each term in the right-hand side of the above inequality. The key
idea is to use the Taylor formula for G(O (at)x — y, t’) around y = 0 as follows:

(O(at)x, y) G
2t

G(O(at)x — 0y, t'),

G(O(at)x —y,t) =G(x,t') +
(¥, Qy>
8172

(x,1")
(31)
+

where
0= 0(x,0y,at,t') = (0(at)x —0y) ® (O(at)x —Oy) —2¢'I,

and§ = 0(a, t', x, y) € (0, 1). Toestimate ') (x, y) — LO(x, ) we use the identity

1 . L.
O(at) " (O(at)x,y) = 5 (_);J_)_)y xx .yy>

cos 2ut X-y —xL-y sin 2t xL~y Xy
+ n + 1 .
2 \xmy x-y 2 \—x-y x-y

Let |x| > 2|y|. Then we have from (31) and (32),

(32)

ITo (. y) = LOGx, y)| = ‘/ O(at) ' G(x,1)dt
0
0 .
+/ —(O(at) (O(at)x, y)
0o 2t
1 X - y _xJ- . y
-3 <—xJ‘~y x~y)>G(x’t)dt

+/oo 0(at)T<y Qy)G(O( x — By, 1) dt
0

1

< 1 1
ol x|+ |x]?

+C|x||y|m1n{

/OO O(at) G(x,t)dt
0

+C|y|2/O {4x 1+ Ixlly] + Iy + 2}e—wdr. (33)

Here we have used (15) for the second term and used the condition |x| > 2|y| for
the third term to achieve the last line. Clearly the last term in the right-hand side

of (33) is bounded from above by C% for |x| > 2|y|, while in virtue of (11) the
first term is estimated as

1

lolx 2 |17 x|

/OO O(at) G(x,t)dt
0

< C min { Lokl >0 (34

Thus we have arrived at

IT%(x, y) — LOx, y)|

|1 1 R S O P
< C | min ——>, —— (T|ylmin > (T | x> 20yl
ol o x| el Il I
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Next we consider the derivative estimate for 1“2 (x,y) — L°%x, y). Let us go back
to the definition of I' (x, y) in (28). Then 9y, (I'J(x, y) — L%(x, y)) is computed
as
|0y, (M0 e, y) = LOCx, )|
/°° (O(atﬁ(owr)x — Wk
0

o G(O(at)x —y,t)

1 Xx-y ooxtey
_Ea—”'(—xL-y Xy G(x,t) ) dt

[e'S) T —
< / EAC) (Oz(:”)x y)k<G(0(at)x—y,t)—G(x,t))dt
0
(ow@uns =g (L0, Jowng
+ ‘/(; <O(at) (O(at)x — )k 2ay1< <_XJ_ Y oxey G(x,t) ok

(36)

. To estimate

By applying (14) the first term is bounded from above by C W

the second term we observe that

1 Xy xt. y
O(at) " (O(at)x — y)i — =y,
(at) (O(at)x — y) 2)k<_xl.y Xy
2ot in2at [—
coscal [ xn x2) SN mR M) o@nT, itk =1,
B 2 —X3 X 2 B
cos2uat [(x3 —x I sin2af ((x1 x2 — O, ifk=2.
2 \x x 2\ x

(37)
Then, by using (15) the second term in the right-hand side of (36) is bounded from
above by C(|x| + |y]) min{m, #}. Hence we have shown that

[¥] . 1 1
19y, (T0(x, y) — LOx, y))| < C(W +m1n{|al|x|3, m}>, x| > 2]yl
(38)

In exactly the same way we obtain, for m = 0, 1 and |x| > 2|y|,

vy (T = L% ) |

1 1 1 1 2—m
< ¢ (g min{ ———, —— +|y|1—'"min{—g,—}+'y'—2 .
lerf X1 1) 2 x| loe] |37 |x| |x|

(39
Next we estimate the term [T} (x, y) — L' (x, y) — L"2(x, y)|. By the Tay-
lor expansion stated in (31), we decompose F(Ll(x, y) and define Fg[”(x, y),
T2 (x, y), and TP (x, y) as
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T, y) = Tl (e, ) + TR, v) + TP (x, y)

= /Oo O(ar) (O(at)x —y) @ (O(at)x — y) /OO G(x, S)d_s2 dr
0 t 4S
+/ O(at) (O(at)x —y) ® (O(at)x — y)
0
o ds
Xf (O(at)x, y)G(x, ) dr
t 8s
+[ O(at) " (O(at)x — y) ® (O(at)x —y)
0
/oo G(O(@n)x — By, 5) = dr
X ] (¥, Oy) ar)x y,s 3544 40

For the last term Fé” (x, y) itis straightforward to see from (12) that, for |x| > 2|y|,

13 2 2 [ 2 2 _u? ds ly[?
Iy e, S Clyl“(Ix] + [yD) (Ix|” =+ |y|” + s)e™ Tos 3 dr = Cw-
0 t

(40)

To estimate the first two terms we observe

O(at) T (O(at)x — y) @ (O(at)x — y)

cos 2wt sin 2at A (41)

= Ag+ (cosat)A| + (sinat)Ar + > Az + > 4,

where

By 4+ xteyh
2

2., .2 1
—X1x2 + Y12 Xy +y —X-y x-y

Ax(x,y) = < 1772 ) . Az(x,y) = ( ) ,
—(X§ + ylz) X1x2 = y1)2 —xt.y —x.y

€L
—x . —_x.
A4(x,y>=< . _xﬂy)-

Then, by using (41) and by applying (11), the term T} (x, y) is estimated as

2, 2
X7 + xX1x2 +
Ao(x. y) = T+ 1X2 y1y2>,

. A, y) =
1w (X1xz+y1yz X§+y§

|F(}[11(xa y) - Llll(xv )’)|

R . cos 2ut sin 2act ds
(cosat)A| + (sinat)Ay + A3z + Ag )G(x,s)— dt
o Ji 2 2 452

< |x|min { x| > 2yl (42)

|a||x|3’|7|}’

Next we see

(0(at)x, y) O(at) T (O(at)x — y) ® (O(at)x — y)

2
= %x ® y + (cos2at) By (x, y) + (sin2at) B2 (x, y) + B3(x, y, at),

(43)
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where each component of the matrices By and B; is a fourth order polynomial
of x, y written as a suitable sum of the terms xi‘ xéz ylf‘ y];2 with [} + I, = 3 and
ki + k» = 1, while Bs is estimated as | B3| < C|x|?|y|? for |x| > 2|y|. Thus we
have from (43) and (11),

T3, y) — L2 (x, y)|

/OO fm <(cos 20t)B1(x, y) + (sin 2at) By (x, y))G(x, s)Sde3 dt
0 t

2o [ ds
+CRPE [ [ G S
0 t s

1 1 2
§C<|x|min{— }+ ] ) MES (a4)

| lx 37 x| ] Jxf?

=

Summing up (40), (42), and (44), we obtain
Ty Ceoy) = LM, ) = LT (x, )

. 1 1 . 1 1 IyI?
SC{min{ ——, —— b+ x[min{ ——, — 4+ = |, [|x[ >2[yl.
el X2 g2 x| leel |37 x| 7 Ix]

(45)
To estimate the derivatives in y of F(}[l (x, y) we recall the definition of F(Ll (x,y)
in (28) and use (41), which leads to the representation

I, y)

o0 o0 ds
= / / Ao G(O(at)x —y,s)—= dt
0 t 4S2
oo oo . cos 2at sin 2ot
+ (cosat)A| + (sinat)Ar + 5 Az + > Ay (46)
0 t

G(O(at) )95 4
at)x —v,8)—
Y 452

=M G y) + T2, p).
From the expression of L' (x, y) in (30), we have for |x| > 2|y|,
Jay, (P4 o y) = LM (2, )|

o oo d
/0 /t (3, Ao) (G(O(m)x —y,5) = G(x, s))ﬁdt

+ /"o /OO(O(OU)X — Mk Ao <G(0(at)x —y,5) — G(x, s))ﬂ dr
0 t 8s3

o0 o0 ds
+/ / (O(at)x — y)r Ao G()c,s)—3 dt
0 t 8s

C(|x||y| (x 1yl + Ixly12)y] (|x|2|y|+|x||y|2>>

< c L 47
|x|?

A

+
Jx[? x| Jx[*
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Here we have used (14). Next we estimate the derivatives of f‘,}tlz(x, y), which are
computed as

oy Fa (v )
cos 2at sin 2at
avk Ag

o0 o0
- f / ((cosat)aykAl + (sin@n)dy Az + Dy A3 + ——

X G(O(at)x — vy, s)— dr

. cos 2ut sin 2act
—|—/ / (O(at)x — y)i| (cosat)Ar + (sinat)Ar + 5 Az + > Ag
0 t

ds
X G(O(at)x — vy, s)—3 dr
8s

=Ii(x,y) + I (x,y). (48)

To estimate I (x, y) we observe that

d
<(cos at)dy, Ay + (sin at)BykAz)G(O(at)x -y, s)4—s2 dr
s

1x12 ds [y
< CIyI/ / ~lier CW’ [x] > 2|yl, (49)
and that
X [ cos2at sin 2at ds
8}'kA3+T8}’kA4 G(O(at)x — y,s)ﬁ dr
®© 2at in 2at d
oS A+ 2 A ) (GO@nx — v, 5) — Glx,5) ) = dr
Yk 2 Yk 4—S2
 (cos2at sin 2at ds
By, Az + By Aa ) Gx, 5) 1 di
<cﬂ+c {# i} x| > 2|y] (50)
P2 e Txl -

Here we have used (14) for the first term and (16) for the second term to derive the
last line. It remains to estimate 1 I (x, y) in (48). Below we consider the case k = 1
only, for the case k = 2 is obtained in the same manner. The direct computation
yields the following key identity:

(O(at)x — y)i((cosat)Aj + (sinat)As)

2
X 0 .
= L <2 O) ~+ (cos2at) Dy (x, y) + (sin2at) Dy (x, y) + D3(x, y, at).

2
(51

Here D and D, are the matrices Whose components are suitable sums of the third
order polynomials of the form xi' xéz ' y2 with [} + 1, 2 1, while D3(x, y, at)
is estimated as | D3| < C|x|?|y| for |x| > 2|y|. Hence, recalling the expression of

L'2(x, y) in (30), we have
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‘/000 /M(O(at)x — Mi((cosan) Ay + (sinar)A2)G(O(at)x — y, s)Sde ar =y L, y)‘
t

d
((COS 2at) Dy + (sin2at) Dy + D3> G(O(at)x — y, 3)8% dt
S

<(COS 20t) Dy + (sin 20t) Dy + D3> (G(O(at)x —y,5) —G(x, s)) SdTSE dr
t

oo oo ds
+ ‘ / / ((cos 2at) Dy + (sin2at) Dy + D3) G(x, S)W dr
f s

<c L4 cmin {1 L}, | > 20y, (52)

x| loeflx | |x]

Here, we have again applied (14) for the first term and (16) for the second term to
derive the last line. Finally we have

oo roo cos2at sin 2t ds
/ / (O@ix =i 5 A+ A GO — v,y dr

|7 [yl
<c<|x|+|y|>|x||y|// L TS S M)

Collecting (49), (50), (52) and (53), we have shown that

3 1 1

3y (T2 (x, y) — LM% (x, <cC Al — . — ), 20y].

| w(Fg ", y) (x y))| s P +m PIEENTY lx] > 2[y]
(54)

The estimate of 9y, (f‘ &lz(x, y) — L2 (x, y)) is obtained in the similar manner.
Thus, from (47) and (54) we have obtained the estimates of the derivatives in y for
1"3[1 (x,y). The proof of Lemma 3.3 is complete. O

Proof of Theorem 3.1. The assertion that u = L[ f] is a weak solution to (S, 2)

(whose definitions are stated in the beginning of this subsection) follows from a

similar argument as in [20, Proposition 3.2]. So we omit the details on this part and

we focus on the proof for the estimates of u here. (i) Let y € [0, 1). Suppose that
1 1

supp f C Bpg for some R = 1. Note that % = L(x,y)f(y) holds. Let

|x| = 2R. Then we have from Lemma 3.3 with m = 0,

X+

U Poe, ) f dy =l f1 2

= M‘<R(Fa(x,y)—L(x,y))f(y)dy‘

. 1 1 1 L b
<c min | ———, —— ¢t + [x[min { ——, 5 | 1 Idy,
IyI<R leel 1127 o) 3 x| loe]|x] |X| | |
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€

which implies L[ f1(x) = ¢[f]-2— + R[f](x) with

47 |x|?

|x|”

1 X
x| " IR[F1(0)] £ € [ min § ————, =5t fll
f |O[||X|l_y |Ol|% f L' (Bgr)

, |x|1+y} IF Nzt ) + |||y|1+yf||L1<BR>) .
(55)

+min e
{IOIIIXI“’

Here C isindependentof x, R, «r, y,and f. Then we use the inequality for y € [0, 1),

: 1 |x]” _ iy . 1 Ity
mln{wvw Slel” 2, min W,IXIHV Slel” 7,
o2

(56)
which leads to (22).
(ii) Let y € [0, 1) and write Ta(x,y) = (Tu(x, i) ; <, and L(x, y) =
(L(x, ¥)ij)<i, j<o- From the integration by parts we see for k = 1,2 and f =

Qlmi2 @ Fu Yy 0 F) T,

/R T frdy = Y /R e PRy Gy £ dy

j=12
- Z Z/ eia‘y‘zayzf‘a(x,y)kijzdy
j=12i=12 7R
_olvl?
+2¢ Z Z /26 Yy o (x, y)ij Fjdy
j=1,21=12"R
—eolvl2
== 3 3 [P (Ra g — L ) Findy
j=1,21=12"R
_ 2 B )
- Z Z /I:Rze b Oy, L(x, y)xj Fji dy—i-ZSA;Ze elyl (To(x, y) F y)p dy.
j=121=12
Note that
.
- Z Z Ay, L(x, y)1j Fji, — Z Z Oy, L(x, y)2j Fji
j=121=12 j=1.21=1.2
L
X
= F _F ,
(Fiz 2])471|)c|2

by the definition of L(x, y). Moreover, we have [Ty (x, y)| < % for |y| > 2|x]|
by [20, Proposition 3.1], and fv\SZ\xl ITe(x,y)|dy < C'(a, |x|) < oo by [20,
Lemma 3.3], which implies a

e—0

lim 8/]1{2 ef‘?lylzra(x, yFydy=0
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for F € LY

%, (R%)2*2. For simplicity we use the next notations:

Ve ) F=| Y > ayTao iy Fiio Y Y dyTalr, )2 Fir |

j=121=12 j=121=12

VyLGe ) F= | Y Y dyLx.y)ij Fir. Y Y dyLx. y)2j Fji

j=1,21=1,2 j=1,21=1,2

Then we have
LI = - /R Yy Ta( ) F)dy

= _/H N Vy(Ta(x,y) — Lx, y))F(y) dy _/|\>M VyTo(x,y) F(y)dy
<% 25
1 1

— i ~b P (Fia(y) — Fa1(v)) dy——— + é[F]——.
im e (Fi2(») = F21()) Y an a2 +cl ]47T|X|2

e—0 Iy\Z 1x]

(57)

The sum of the first three terms of the right-hand side of this equality is denoted by
RI[f]. To estimate R[ f] we firstly observe from Lemma 3.3 that

/|| u V,v(l“oz(x,y)—L(x,y))F(y)dy‘
yi<

7

1 . 1 1
=C 2[ 'yF‘y)'dem{iy*}/ IF()ldy ), x#0.
1= iy <t | x 3" x| ] Jpyj<tal
(58)

Next we have, from the direct calculation,
3 2 © s kP
[(ViK)(x, )| SC(t72e Tor —i—/ s 2e Tos ds ),
t
which implies
o0 C
/ [(VK)(O(at)x, t)|dt < |—| x #0.
0 X

Then by the transformation of the variables y = O (at)z we have

‘/ V,La(x. y)F () dy'
[y1=4l

éf (/ |<w<)<0(ar)x—y,r>|dr)|F(y>|dy
=5 \Jo

S Pl e, [(VK)(O(at)(x —2), )| dr ||z| 7277 dz
2R Szl \Jo
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1, ,—2—
S ClFlz (8 ) lx —z| 7 z| 77V dz
il 21> 51

s MT),”F”L%’W(BC%‘)- (59

Here C is independent of x and y € [0, 1). Collecting (57), (58), and (59), we
obtain (23) and (24). The proof of Theorem 3.1 is complete. O

Based on the results of Theorem 3.1 we study the exterior problem (S,) in
the next subsection, where its asymptotic profile is represented as the solution to
(S, r2) by a cut-off technique. However, the existence of solutions to (S, ) decaying
at spatial infinity has to be proved carefully. As in [20], for the exterior problem, a
natural way to construct solutions decaying at spatial infinity is to consider first a
regularized system and to take the limit; see the proof of Theorem 3.8 for details.
In this procedure we need to consider the following system in the whole space:

)\uA—Au,\—a(xL~Vux—u,\L)+Vp;h=f, divu, =0, xeRz,
u; — 0, |x| = oo,

(Si’ RZ )
where A is a small positive number. Let us introduce the integral kernel I‘;‘ (x,y)as

hx,y) = /Oo e MOt K(O@)x —y,0)dr, x#y.  (60)
0

In virtue of the positive A, the integral in (60) converges absolutely for x # y.
Furthermore, the velocity u; defined by

w (x) = fR The, W f(dy,  feL*R»?, (61)

satisfies (Sg‘[ r2) in the sense of distributions with a suitable pressure V p; . The next
lemma will be used in the proof of Theorem 3.8.

Lemma 3.5. Let « € R\{0} and y € [0, 1). Suppose that f € L*(R?)? is of the

form f = div F with some F € Lg‘jry (R%)2*2. Then forany® € (0, 1) and R 2 1,
the velocity u;, defined by (61) satisfies

lusll oy < COFllise, sy + 1F L1 8)- (62)
Here the constant C is independent of A and y, and depends only on 6 and R.

Proof. In the same way as in the proof of Lemma 3.3, we define L> = L* (x,y)
by

L@ y) = LM y) + L y) + L9120 y) + L7 P, ),
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where

o0 dr X - 1.
1,0 _ —At y X7y
L (x,y)—/0 e G(x’t)4t(xL-y x~y)’

00 oo _ 1 1
L“”(x,y):/ / e“G(x,s)d—szdt< 3@+ Ty )>,

2
LM (x,y) = / / e MG(x, s)16 LAtk ®y),

J_-
LM (x,y) = — / / e MG(x, s)—dt( ey y),

Yy o Xy

Then we have

o <2 dt <2 d

|vyu(x,y)|<c|x|</ e i —+/ / S
|x|2 ds
+|x|/ /

= ﬁ x| >0, (63)

where the constant C is independent of « and A. By the integration by parts we
rewrite u; as

1, (x) = —fRz VyTg(x, ) F(y)dy
= _/I " Vy (Cg(x, y) = L*(x, y)) F(y) dy
)| < 54
T (64)
- / Yy, MF () dy
vzl
[ S e Fe .
Iyl<4!
Then, proceeding as in the proof of Lemma 3.3, we obtain

1 1
|vy(r§<x,y)—LA<x,y))|§c<|'y|'2+ {— —}) x| > 21y,

e x 37 x| ©5)
where C is independent of x, y, «, and A. Then we have
A A < C
ok Vy(Th(x, y) — L*(x, »))F(y)dy| < m”F”Ll(BM)
v| < e
Clog(2 + |x|)
< -—= - o
= x| ||F||L2+V(R2)v lx| > 1,

(66)
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where the constant C is independent of A and y. The second term in the right-hand
side of (64) is also estimated as in the proof of Lemma 3.3, resulting the estimate

<
= |x|1+7’

f VoI5, y)F(y) dy 1Flzgs, a2, )- 67)
MESS s

For the last term in the right-hand side of (64) it is straightforward from (63) to see
Clog(2 + |x])

x| ”F||L§8ry(R2)’ |x] > 1. (68)

/ VyL*(x, y)Fdy| £
lyl<4t

Collecting (66), (67) and (68), we obtain (62). This completes the proof. O

3.2. Linear Estimate in the Exterior Domain

In this subsection we study the asymptotic estimates for solutions to the Stokes
system in the exterior domain
—Au—a(xL-Vu—uJ‘)—}—Vp:f, divu =0, x e Q,
u = 0, X € 89, (Sa)
u — 0, |x| — oo,
where o € R\{0} is a given constant. In the following, we fix a positive number
Ro = 1large enoughsothat R>\Q C B, holds. We also fix aradial cut-off function
@ € CSO(RZ) such that ¢(x) = 1 for |x| £ Ry and ¢(x) = 0 for |x| = 2Ry. As in
the previous subsection, for f € L2(Q)% and F € L*(2)%*2 we formally set

. _ 2
colf1=lim | Tyt O dy,
—VJQ

ZolF1=lim [ e *PF(Fia(y) — Fai(»)dy.

e—=0 Jo

(69)

These are well-defined at least when f = div F with F € Lgﬁ_y(Q)2X2 for some
y > 0, and cq[ f] = ¢q[F] holds in this case if the generalized traces v - (x2 Fy),
v - (x1F3) on 0€2 are zero in addition. Here we have set F' = (Fy, FZ)T. Note that
the coefficient co[ F] is well-defined only under the condition Fiy — F>; € LY(Q).
In general, we have the following:

Lemma 3.6. Let f € L*(Q)* be of theform f = div F = (3,21, 8, F1j, > ;=1 »

3;F2j) " for some F € L3 (Q)**% and Fiy — Fy1 € LY(). Then both cql f] and
cqlF] converge.

Proof. It is trivial that cq[F] converges. Let ¢ € Cg° (R?) be a cut-off function
introduced at the beginning of this subsection. The convergence of cq[ f] easily
follows from the integration by parts:

m[f]z/ yl~f<pdy+lim/ P — o)yt Fdy
Q e—0Jq
=/Q)’L'ffﬂdy+ calF] —/Q(Flz—le)wdy (70)

+ / vL . FVpdy + lim 2 / P ey - (Fy)(1 = g) dy.
Q e—0 Q
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The last term in the right-hand side of (70) vanishes in virtue of the decay | F (x)| =
o(|x|72) as |x| — oo. In fact, by extending F to the whole space by zero we have

‘ f e‘g'yzsy-(F(y)yl)(l—mdy‘ < f PPy PIF ()l dy
Q R2
2 lzl\2 Z
= [T E IR e
R2 2 2
where we have used the transformation of the variables y = e_%z. Then the

Lebesgue dominated convergence theorem implies the right-hand side of the above
inequality goes to zero as ¢ — (. In particular, we have

calf] =5Q[F]+/Q{(f—f—F12+F21)w+yi~Fw}dy. (71)

The proof is complete. O
Let us denote by T (u, p) the stress tensor, which is defined as
T(u,p)=Du—pl, Du=Vu+ V), I=G <o (72)

The next lemma is a counterpart of [20, Theorem 2.1] in our functional setting. We
denote by €2, the truncated domain defined as 2, = {x € Q| |x| < r}forr > 0.

Lemma 3.7. Let o € R\{0} and y € [0, 1). Assume that f € L*(Q)?* is of the

form f = div F with some F € Lgﬁ_y(Q)zxz, and that c¢q[F] converges when

y = 0. Suppose that (u, Vp) € Wloc (SZ)2 X L2 (Q)2 is a solution to the system
(Sa) satisfying |Vullp2q) < 00 and| llun |u(x)| = 0. Then u is represented as
X|—> 00
i
4 |x|?

ux) = p—— + Rx), x € Q\{0}, (73)

where

B = / T(u p)v) doy + balf],

(74)
balf1= calF] +/ {6 f = Fio+ Fa)g + vyt - FVg}dy,
Q
while R satisfies
RNz, 85 = C<||F||L§O (Bsz) T sup |x|_1+y”yF”L1(QM)
[x|24Ro
+ i { — |V}||F||
sup min{ —————, |x |
\x@fRo lor||x [~ g (9%) (75)
+ sup |x|”|lim e P (Fiy — le)dY|)
Ix|>4Ro 6=0J21y12 x|
+ C(lal_i ]2 + )(”F”LZ(QZRO) + 1+ |Ol|)||VM||L2(QZRO))-

Here the constant C is independent of vy, «, and F. The coefficient bg[ f] coincides
with cql f1 when F belongs in addition to L5 (Q)2X2
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Proof. We may assume that fQZR pdx =0.Letg € C° (R?) be a cut-off function
0

introduced at the beginning of this subsection. We introduce the Bogovskii operator
B in the closed annulus A = {x € R? | Ry < |x| < 2Ry}, and set

v=~_0-9u+B[Ve-ul, ¢g=(0-9¢)p.
Note that B[V - u] satisfies
suppB[Ve -u] C A, divB[Vg -u] =Vp-u (76)
and the estimates
IBIVe - ulllynii2) < CIVG - ullymagy. m=0,1 (7
See, e.g. BORCHERS AND SOHR [2]. Then (v, Vg) satisfies
—Av—a(xt - Vo—vh) +Vg=divF+g, divv=0, xeR? (78)
where F and g are the functions on R? given by
F=0-@F - VB[Vg-u],
g=F -Vo+2V¢-Vu+ (Ap +ax’ - Vo)u
— a(xTVB[Ve - ul — B[Ve - ul*) — (Vo) p.

Note that supp g C A due to (76). Recalling the uniqueness result stated in Remark
3.2, we find

u(x) = v(x) = L[div F] + L[g]
ot

= (AP +elg) 3o

+R(x),  |x[ Z4Ro, (79)

where ¢[F] and c[g] are defined in (19). Recalling that Ry = 1, we see from
Theorem 3.1 that R(x) satisfies

IRless, a5, S € (IRIAY Fl i s, ) + IRIEN ose, a5, )

=C <||F||L°°

c I+y
2+y(BZR ) + sup |)C| ||yF||L1({2R0<‘y|<M})

[x|=4Ro

1
R
+ o mm{|a||x|2—y’|x| }”F”Llquogylg';'})

|x|24Ro
+ sup |x|¥ | lim e—s|y\2(F12 - F21)d}’|
x| =>4 Ry e=0 /21y 2 x|
1
+( sup min{—_,|x|y}+1 17l )
(\x|>4Ro lerl X2~ ) )

+ C(|a 2 1)||g||L1(132R )
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Here C depends only on Ry. It is easy to see that

1F L1 By = CUIF N L2005 + 1V 2(25,))-

by applying (77) and the Poincaré inequality. Similarly, the function g is estimated
as

I8l L1 (B, < C(||F||L2(522R0) + A+ aDIVull 2@, + ||P||L2(£22R0))-

In order to estimate the pressure term let us recall the condition f Qp P dx =0,
0
which yields, from (S,),
P12 (20k,) B CIVPIE-1(Qy) = Clldiv[F + Vu + a(u @ x" —x+ ® W -1 (@25,)
= C(”F”LZ(QZRO) +d+ |01|)||VM||L2(92R0))7
where H _I(QQRO) is the topological dual of WOl ’2(522R0). Collecting these esti-
mates, we obtain (75).
Finally let us determine the coefficient § in (73). In view of (79) it suffices
to compute ¢[F] + c[g]. We follow the argument in the proof of [20, Theorem

2.11. Fix N =2 2Ry and let ¢y € Cgo (R?) be a radial cut-off function such that
¢n(x) = 1for |x| £ N and ¢ (x) = 0 for |[x| = 2N. Then we have

SF]+clgl=lim | e PP (Fia — Fa)(1 — ¢ dy

e—0 JR2

+/ (Fi2 — Fa1)¢n dy +/ v ghy dy
R2 R2
=cqlF] - f (Fi2 — B)¢n dy + /2(]:12 — PN dy
Q R
+ / y' gy dy. (80)
RZ
We set S(v,¢)(x) = T(,q)(x) + a(v @ x — x+ ® v). Since divF + g =

—divS(v,q) = (— Zj:I,Z 0;81;(v,q), — ijl,z 9782 (v, ¢))" in R2, the inte-
gration by parts and the symmetry of 7 (v, ¢) yield

f yl~g¢zvdy=—/ ¢NyL~divS(v,q)dy—/ ony*t - divFdy
R2 R2 R2
=2/ ¢Ny-vdy+/ v S, q)Vey dy
R2 R2
—/ (-7:12—]:21)¢Ndy+/ y*t - FV¢ydy
R2 R2
=/ ¥y S(v, q)Vey dy
]RZ

—[ (flz—f21)¢Ndy+/ y - FVendy. (81)
R R2



On Stationary Navier—Stokes Flows Around a Rotating Obstacle 629

Here we have used the fact that ¢ is radial, and thus, ygn (v) = Vy(fI;T rén(r) dr),

where ¢ (r) is such that pn (| y|) = ¢n (¥). Since S(v, ¢) = S(u, p) for |x| = 2Ry
and —div S(u, p) = f in €2, again from the integration parts we have

/ vt S(v, q)Ven dy
R2
=/le'5(u,p)v¢zvdy
=f yL-S(u,mvdoy—zf ¢Ny-udy+/¢NyL-fdy
02 Q Q
=/ yl-T<u,p)vday+/ onyt - fdy. (82)
Q2 Q

Here we have used the boundary condition # = 0 on 92 and also the radial
symmetry of ¢n. By taking the cut-off function ¢ above, and using the relation
PN = @, we then compute the second term in the above as

f¢Nyl~fdy=/soyl-fdy+/¢w(1—¢)yl-fdy
Q Q Q
=/ <ﬂyl'de+/(F12—F21)¢Ndy—/(F12—F21)¢dy
Q Q Q

—/ yl-Fv¢Ndy+f yt . FVepdy. (83)
Q Q

Collecting (80) - (83) and using F = F for |x| = 2Ry, we obtain

c[F]+ clgl = f y* - T(u, pvdoy
Q2 (84)
+EQ[F]+/Q{(yL~f—F12+F21)¢>+yL-Fvw}dy,

as desired. When F € LE?O(Q)ZXZ the coefficient bg[ f] coincides with cq[ f] in
virtue of (71). The proof is complete. O

Let us recall that Ry = 1 is taken so that R2\Q C Bg,. Let ¢ € C§°(2)
be a radial cut-off function such that ¢(x) = 1 for |x| £ Rg and ¢(x) = 0 for
|x| = 2Rg. Then we set

xL

4 |x |2’

V(x) = (1) (85)
Note that V is a radial circular flow satisfying div V' = 0, which describes the
asymptotic behavior of solutions to the Stokes system (S, g2) as is shown in The-
orem 3.1. The main result of this section is

Theorem 3.8. Let o € R\{0} and y € [0, 1). Suppose that f € L*()? is of the

form f =div F with F € Lg‘jry (Q2)%*2. Assume in addition that éq[ F| converges
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when y = 0. Then there exists a unique solution (u, Vp) € leo’cz (€)? x Ll20 . Q)
to (Sy) satisfying | llim lu(x)| = 0 and
X|—> 00

IVull 2@ = 1F Nl 2@), (86)

IPlL2(96r,) = C + DI Fllz2(0), (87)

||V2M||L2(QkRO) T IVPll2(@u,) = €A+ laD) (1 Fll 2 + ||f||L2(Q(k+|)RO))5 2sk=S.
(83)

Moreover, the velocity u is written as
ux) = V() + Ralflx), x €, (39)

where B € R is given by

B = /asz y& - (T, pyv)doy + bal 1,

(90)
bQ[f]ZEQ[F]+/ {OF - f = Fio+ Fat)o +y" - FVg}dy,
Q
while Rql f] satisfies
R ) c S Cl||F|; c S “HyyF
IRQLNise, g ) < (n ||L2+V<BZRO>+|x|£fRO|x| ly ||L1(Q%)
1
+ sup min {———— [x|"}||F||
x|Z4Ro { el x [~ } L1<9 \x\)
+ sup |x|”|lim eslyz(Flz—le)dy|>
Ix|24Ro £=>0J21y12)x|
_ 4y _1
+ Cle|™ 2 + |72 + 1)L+ |aD [ Fll12q)-
on

Here the constant C is independent of y, o, and F. If F € LS?O(Q)2X2 then the
coefficient bq| f1 coincides with cq[ f].

Proof. We follow the argument of [20, Theorem 2.2]. Since the argument is
quite parallel to it, we only give the outline here. For the uniqueness, let
(u,Vp), W',Vp) e leo’cz(ﬁ)2 X Lfoc(ﬁ)2 be solutions to (Sg) with the same f
such that || Vul|2(q) and [|Vu'|| 12(q) are finite and |u(x)| + [u(x)| — O as |x]| —
0o. Then the difference (v, Vq) = (u —u’, V(p — p')) € W[i’cz(ﬁ)2 X leuc(ﬁ)2
solves (Sy) with f = 0 and satisfies ||Vv||Lz(Q) < oo as well as |v(x)] — O as
|x] — oo. Moreover, the standard elliptic regularity of the Stokes operator implies
that (v, Vq) is smooth in . Then we can apply [20, Theorem 2.1, (2.8)], which
gives fQ |Dv|?>dx = 0. Hence v is the rigid motion, but the condition v = 0 on

the boundary leads to v = 0 in Q2. Then we obtain Vg = 0 from the equation. The
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proof of the uniqueness is complete. In terms of the existence, first we consider the
regularized system

)»uk—Au;L—a(xL~Vu;\—u)%)+Vpk=f, divu,; =0, x € Q,
w, =0, xed, (9]

u; — 0, |x| = oo.

Here A is a small positive number. For (Sf;l) one can show the existence of the
solution (u,, Vp,) satisfying fQZR p» dx = 0 and the energy estimate
0

1 1
Ml N2y + S 1V 2 i) S 5 1F Iz 92)

Moreover, the assumption f € L?(2)? and the elliptic regularity for the Stokes

operator imply the regularity u, € W2 (@)%, Vp; € L7, (@)%, where in virtue of

(92) each seminorm of Wl%)’cz () can be bounded uniformly in A € (0, 1). Indeed,
since (u,, p;) solves the Stokes system with the source term f +alxt -Vu, — u/\L),
for any bounded subdomain w C €2, there exists p > 0 with @ C €2, such that

lurllwzw S CULF N2 + 1Vl 20y + sl 2,)-

where the constant C depends on €2, Ry, w, and p; see [27, page 117, Theorem 1.5.1]
for the proof. From (92) and the Poincaré inequality | u;, ||Lz(9p) S CollVuyll L2(Q)

with C,, depending only on €2 and p, we obtain the bound of u; in W22 (w) which
is independent of A. Let us recall that Ry = 1 is taken so that RZ\Q C Bg,
and ¢ € Cgo (R?) is a radial cut-off function such that @(x) = 1for |x| £ Ry and
@(x) = Ofor |x| 2 2Ryp. As in the proof of Lemma 3.7, we introduce the Bogovskii
operator BB in the closed annulus A = {x € R? | Ry < |x| < 2Ry}, and set

=0 —=@uy+B[Ve-u,l, g ==0-¢)ps
Recall that B[V - u, ] satisfies

suppB[Vo - u;] C A, divB[Ve - u3] = Vo - uy, 93)
||]B[V§0 . M)L]||Wm+l,2(§2) § C”VQD . M}L”WIH,Z(Q), m=0,1. (94)

Then (v, Vg,) satisfies

A — Avy —a(xt Vo, — o) + Vg =div Fy 4 g, diva;, =0,  x € R?,
vy — 0, |x] = o0,

(95)
where
F, = (1—¢)F — VB[Ve - u;],
g = F-Vo+2B[Ve-u,]l+2V¢ - Vuy, + (Ap + ax® - Vo)u,,
— a(xTVB[Ve - u;] — B[V - u; ") — (Vo) p;.
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Note that supp g, C A due to (93). Let Fé (x, y) be the function defined in (60).
Then, as is shown in [20] (see also Remark 3.2), the velocity v;, is written as

v (x) = / T2 (x, y)div Fy(y) dy + f T2 (x, )g.(y) dy
RZ RZ
= wp(x) + ry(x). (96)

Since g; = 0 for |x| 2 2Ry, we have from [20, Proposition 3.3],

Il o) ,ca/<1+|y|)|gx<y>|dy

= Ca||gk||L2(Q)

S Ca(||F||L2(g22RO) + 1+ |01|)||VUA||L2(522R0) + ||PA||L2(92RO))-
CH)

Since fQZRo padx = 0, we have from (S7,) that

IPxll 220k = CIV Pl E-1 (925, = C(||F||L2(522RO) +d+ |0[|)||VM)»||L2(S22RO))-
Combining this estimate with (92) and (97), we obtain
I7allzge B, ) = < CollFll 12 (98)

Here C, depends only on « and Ry, but is independent of A € (0, 1). As for w;,
from Lemma 3.5, there is 0 < 6 < 1 such that

1w llzge Bge,) = C(”F”LS?H, By T ||FA||L1(32RO))

= C(I1F g, B T IFl2g))- 99)

Collecting (92),(98),(99) and u) € leo’cz (€)2 withits uniform boundon 1 € (0, 1),
we have a uniform estimate in A € (0, 1):

lusllge @) = Ca(||F||L°° @t 1Fll20))- (100)

where the Sobolev embedding W22(Qs Ry) — L°°(R2s5p,) has been applied Thus,
there are a subsequence, denoted again by (u;, Vp,), and (u, Vp) € Wl o (Q)2

L? (Q)% such that u;, —* u in L3°(Q)%, Vu;, — Vu in L2(Q)*2, and py — p
in W, OCZ(Q). It is easy to see that (u, V p) satisfies (Sy) in the sense of distributions
(note that each term of (S,) makes sense at least as a function in LZZO . (€)). The
proof of the existence is complete.

For the estimates, we note that the solution (u#, V p) obtained in the existence
proof above satisfies [|Vull 2 (q) < | Fllz2(q) in virtue of (92). Thus (86) holds.
Since the pressure p is uniquely determined up to a constant, we may assume
fQGRO pdx = 0. Then we have from (S),

12125 = CIV P15 = CIF 12205 + (1 + 1DVl 205, ))
S CU+aDlIFll2)-
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Here C depends only on Ry. This proves (87). The local estimates (88) follow from
the standard cut-off argument and the elliptic estimates for the Stokes system in
bounded domains, together with the estimates (86) and (87). Since the argument
is rather standard, we omit the details here. The expansion (89) with (90) and the
estimate (91) follow from Lemma 3.7 and (86). Note that the constant vector i,
in (73) must be zero, for the solution u constructed here decays as |x| — oo. The
proof of Theorem 3.8 is complete. O

Remark 3.9. Let Ry = 1 be as in Theorem 3.8 and let y € [0, 1). Then we have
for |x| = 4Ry,

1—
IyFllizv@,) = VI F Ly @)

I—y
IIFIILI(Q%> < ClIFllzg, @ loglx|.

o

Here C is independent of y and F. Since

1
nl——— x” {log x| < ||~ % |loglel], |a| >0,
o] x| 27
we have for y € [0, 1) and 0 < |&| < 1, by using (91),
C v _l4y
IRl MLsy, e ) = W('“' 2 [log e[ 1F llge o + |l ™ 2 I Fll L2
+ sup |x|”|lim egylz(Flz—F21)dy|>.
lx|=4Rq £=>0 J21y > x|

(101)

Here C is independent of 0 < || < 1, y € [0, 1), and F. The estimate (101)
plays a central role to solve the Navier—Stokes equations for small || in the next
section. We note that co[F'] and the last term in the right-hand side of (101) do
not converge in general when F € Lgo(Q)z’<2 . In solving the Navier-Stokes
equations, especially for the case y = 0, it is crucial that we only need the decay
of the component F1, — F1, which always vanishes when F is symmetric.

4. Solvability of Nonlinear Problem

Based on the linear analysis in the previous sections the following Navier—
Stokes equations are studied in this section:

—Au—a(xL~Vu—uL)+Vp=—u-Vu+f, divu =0, x € Q,

u = oth, x €092,

u — 0, x| = oo.
(NSq)
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Our aim is to prove, under some conditions on f, the unique existence of solutions
(u, Vp) to (NSy) satisfying the asymptotic behavior

u(x) =BV +o(xI™h  as |x| —» oo

for some B € R, where V is aradial circular flow defined by (85) and coincides with
m for |x| > 1. As in the previous sections we fix a positive number Ry = 1
large enough so that R>\Q C B Ro-andletp € Cg° (R?) be a radial cut-off function
satisfying ¢(x) = 1 for |x| £ Rg, ¢(x) = 0 for |x| = 2Ry. Set

Ux) = p(0)x, (102)

which is a radial circular flow supported in the ball B>g,. We also introduce the
function space X, y >0, as

X, =R x (W22 NLT, (2)?), (103)
which is the Banach space under the norm for (8, w) € X, :
1B, w)llx, = 1Bl + Vw2 + lwllLgs @)- (104)

We sketch the proof that X, is complete. It suffices to show the completeness of
the space W(}”f(Q) N L‘l"jry (2)2. Suppose that {w™} c Wolﬁ(Q) N L‘fiy ()% is
a Cauchy sequence. Then there exist u € Wolﬁ ()2 andv € Lcl’iy (£2)2 such that
[V (w™ —u) l22() — Oand lw™ — v||Lfo+y(Q) — 0asn — oo. What we need to
show is u = v. To show this, set f = u — v. Note that the fact u, w® ¢ WO1’2(§2)2
implies u = w™ = 0 on dQ. Then, for any ¢ € W!2(Q) such that supp ¢ is
compact, the integration by parts yields, for j, k = 1, 2,

/fj8k¢dx :/(uj — )0k dx
Q Q

=—/¢3kujdx—/ v dx
Q Q

— lim (/ pw ! dx +/ w9 dx) = 0.
Q Q

n—o0

Since we may take an arbitrary ¢ € C{°(2) we first conclude from the above
computation that f; is a constant in €2, denoted by c;. Next we have for ¢ €
W12(2)? such that supp ¢ is compact,

cj/ (p-vdoxz/cjdiV(pdxz/ fidivpdx =0,
El9) Q Q

where the result of the above computation is used. This implies ¢; = 0 since we
can choose ¢ so that fasz ¢ -vdoy # 0. Thus we obtain u = v, and hence, X, is
complete.

Let us recall that for f € L?(Q)? of the form f = divF = (}_ i=120jF1j,
Y jo120jF2))" with some F e L2(Q)>? satisfying Fia — Fa1 € L'(Q) the
coefficients cq[F] and bg[ f] in (69) and (90) are well-defined. The main results
of this section are Theorems 4.1, 4.3 below. Let us start from the next theorem.
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Theorem 4.1. Lety € [0, 1). There exists a positive constant e = €(2, y) such that
the following statement holds. Suppose that f € L*(Q)? is of the form f = div F
with some F € Lgiy (2)%*2, and in addition that F1o — F>; € L'(Q) wheny = 0.
Ifa #0and

Iy _r _1
la| 2 | logler|| + e 2|10g|oz||<I0t| 2(|b52[f]|+||F||L2(Q)+||f||L2(S26RO))

+1Fi2 = Fatll gy + | log ]| IIFIILg°<sz>) <eé,
(105)
then there exists a unique solution (u,Vp) € leo’cz(ﬁ)2 X leoc(ﬁ)2 to (NS,)
satisfying
I Fll2 @) + Cala
IVull 2 < s
V1= Cila]

and enjoying the expression u = aU + BV + w with U and V defined by (102)
and (85), respectively, and

(106)

B = fm vy (T(u, p)v)doy + balf], (107)
while

1
lwllLee @) = C3<|Ol| 2l + bl AU+ 1 Fll 2 + ||f||L2(S25RO))
(108)
+ |log Ja| I Fllge @) + I1F12 — Fa ”L'(Q)>’

andify € (0, 1),
_ Iy
lwiiz, @ < Ca( el ™= (lallloglal| + 1ol F1l + I Fll 2 + 1/ 20, ))

1
+ (lal~ % | log |a| +;)||F||Loo

24y

<sz)>~ (109)

Here ¢, C1, Ca, and C3z depend only on Q and y, and are taken uniformly with
respect to y in each compact subset of [0, 1).

Remark 4.2. (i) A careful analysis implies that 8 in Theorem 4.1 is estimated as
1B = Ca(lal + bl 11 + I Fll 12y + ||fI|L2(Q6R0)), (110)

where C4 depends only on 2. But we do not go into details in this paper.

(i) In Theorem 4.1 when y = 0 the term w decays with the order 0(|x|_1) and
there is no reason why BV provides a leading term of the asymptotic behavior
of u at |x| — oo. To achieve this asymptotics we need the additional decay of
F suchas F € LS?O(Q)ZXZ; see Theorem 4.3 below.
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Proof of Theorem 4.1. In the following argument we will freely use the condition
0 < || < e~ . We look for the solution to (NSy) of the form

u=alU +v, v=pBV+w, B, w) € X,. (111)

We need to determine 8 and w. Inserting (111) into (NSy), we see that v is the
solution to the system

—Av —ot(xL - Vv — vl) + Vg =div G, (8, w) + div Hy (F), x €,
divv =0, x e Q,
v =0, x € 0Q2.

v — 0, |x] = oo.
(NS,)
Here

g=p+P,
GoB,w)=—a2(UQuw+wU)—B(VOow+w®V)—wew,
Hy(F) =aVU+ F,

and we may assume that fQGR g dx = 0. Note that we have used the relations
0

x1t VU — UL = 0, and the radial scalar function P = P(|x|) is taken so that
VP = div[(aU 4 BV) ® (e¢U + BV)]. Both of these follow from the direct
calculation. The proof of the unique existence below relies on the standard Banach
fixed point argument in a suitable class of functions. To this end we introduce the
closed convex set Bs ,, in Xo:

Bsy = Bs,.sy.55. = {(B.w) € Xo | 1Bl + Vw2 + lwllzoe(@se,) < 1
lwilLe(@) < 82, lwlizy @ < 83}

(112)

Here we have set § = (81, 82, 83), and the positive numbers 81, 87, 63 with 8 < 83
will be suitably determined later. We note that the following inclusion always holds
for 6, < 83:

Bs1,62,83),y C Bis1,82,62),0- (113)

For any w = (8, w) € B;s,y, let (uy, Vq,) be the unique solution in Theorem 3.8
to the linear system

—Augy — a(xt - Vg, —ub) + Vg, = div Gy (B, w) + div Hy (F), x € Q,
divu, =0, x € Q,
Uy =0, x € 092,
u, — 0, x| = oo.

Our aim is to show the unique existence of (8, w) € Bs,,, such that u,, = ug v =
BV + w for suitably chosen and sufficiently small 0 < §; < 8, < e 2 and 8, < 3.
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We remark that the value 63 need not to be small when y is positive. Let us start
from the estimates for G, (8, w). Firstly we estimate its L? norm as

1Ga (B, w2

< C(|01| IVwllzz@) + Bl lwllLe@) + lwllze @) IVwll 2l log ||Vw||L2(Q)|>-
(114)

Here, for the nonlinear term, we have used (161) and the smallness of §; and §; to
obtain

lw® wli 2@ = CllwllLe@ (1 + |x|)_1w||Lz(Q)
< Cllwlie@ VWil 2@ [ log Vw2 (g -

On the other hand, it is not difficult to see that

G (B, w)lngiy,(sz) < C(lal + 1Bl + ||w||L?°(Q))||w||L‘1’<jry,(Q)7 0=y <y,

(115)

Idiv G (B, W)l 12(2g5) S € (It + 1B]+ [wll (26200 | VIl 20 (116)
and

1 Ho (F)ll 2() < C (Il + [ Fll2(ey) (117)

IHa(F)lLge @) < Clel + 1Fll @) 0S¥ Sy, (118)

Idiv Hee (F) | 205,y < € (o] + 1L F 1| 20265, (119)

Then we can apply the result of Theorem 3.8. To simplify the notation we set

M(a, B, F,w) = (la| + B Vw2 + IBlHlwllLx @)
+ lwllLe@ IVwliz@llog Vw2l + laf + [1Fllz2q)-
(120)
From (86), (114) and (117), we have
IVuguwllizg = CM(a, B, F, w). (121)

Moreover, by the Sobolev embedding W22(Q2sg,) <> L>®(Qsg,) and (86) - (88)
combined with (114), (116), (117), (119), and ||w ||Loo(Q6RO) < w||LCI>0(Q), we have

e cg,u) Lo (@sky) + Nt (g lw22(@sgy) + 1968w w12 @sp,)

(122)
< C(M(@, B, Fw) + 1l 2ge,)-

Set F = Gyo(B, w) + Hy(F) and f = div F. By Theorem 3.8, the velocity u, =
U(g,w) 1S written as
Uy = YlowlV + Rlw],
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where R[w] belongs to Lﬁy (£2)2 and ¥lw] is given by
Ylw] = / yJ_ T (1w, go)v doy +b52[f],

) 39~ o ) ) (123)

balf1=éalF] +/Q {(0F - f = Fia+ Fa)g +y* - FVg}dy.

We observe that cq[Gy (8, w)] = 0 and

/Q {(vF - div Go(B. w) — Go(B. w12 + Ga (B, w)21)g
+ 3" (Go (B, w)Ve)}dy =0.

Here we have used the facts that G, (8, w) is symmetric and its trace on the boundary
is zero. This implies b [div G4 (8, w)] = 0. Moreover, we have

ba[AU] = cq[AU] = 0,

in virtue of the computation
/ yt AU dy =/ y - VrotU dy =/ y~v(rotU)de—2/ rotU dy
Q Q Ele) Q

=/ y-v(rotU)day—Zf vJ‘~Ud0y
Q2 0

=2/ y-vday—Z/ vl~yldoy = 0.
Q2 Q2

Here rot U = 01U, — 9,U; and we have used the identity U (x) = x+ near 9.
Hence, (123) is in fact written as

Vo] = /3 5t T gu)w doy + bl £ (124)

Now let us define the mapping ® : Bs ,, — X as

dlw] = (Y[w], R[w]), Ylw] is given by (124), R[w] = uy, — Ylw]V.
(125)

Recalling the inclusion (113), our aim is to show that:

(i) ® is a mapping from B; , into Bj ,, and

(ii) ® is a contraction on B o in the topology of Xp. i.e., there is T € (0, 1) such
that || ®(w1) — ®(@2)|x, = Tl — w2|x, for any w;, w2 € By o.

The properties (i) and (ii) imply the existence of the fixed point of ® in Bs ,, even
for the case y > 0. Indeed, note that the sequence {cu(”)};’lo:0 = {(B™, w(”)}flo:0
defined by 0@ = ®(0) and 0™ = ® (0"~ V)forn = 1, ...is a Cauchy sequence
in Xo and each @™ belongs to B ,,, which is not difficult to see from (i) and (ii).
Then the limit w = (8, w) of {w(")},‘jio in X also belongs to B, since Bs , is a

closed subset in X by the definition.
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To prove (i) let us estimate ¥ [w] based on the representation (124). By the trace
theorem we have

|/aQ vy T, go)v doy| < C(||Vuw||w'=2(s25R0) + ||‘Zw||W1v2(Q5RO))-
Hence we have from (122) that
Wil £ C(M(a, B, F,w) + bal F1l + 1 £l 220,)- (126)
Next let us estimate R[w]. Firstly we observe from (122), (121) and (126) that

R[]l L (@spy) + VRO 2(0) = lue — Y@l VIiLo@sg)) + 1V o — Ylo]V)L2@)
< C(||”a)||L°°(§25RO) + I\ Vupllr2) + |1/f[60]|)

< C(Ma, B, F.w) + bal f11 + 1 £l 2(e,))-
(127)

On the other hand, we have from (101) and by the condition Fi» — F>; € L1(R),
for any y’ € [0, y],

R[]l Lo =

v
S Bing) = T2 (Iotl 7 | logla|| Ga (B, w) + Ho(F)llLge ()

1+
+lal™ 2 1Ga(B, w)+Ha(F>||Lz(Q)+dy/[F]),
dy[F1= sup |x|”| (Fia — F1) dy|,
|x|=4Ro 2lyl2]x]

(128)
where C is independent of y’, y, and a. Here we have used that G4 (8, w) is
symmetric and that U = 0 for |x| = 2Ry by its definition. Note that do[F] <
| F12 — F21llp1 () holds, which will be used later. Combining (127) with (128),
(114), (115), (117) and (118), we obtain, for ¥’ € [0, y],

1+

¥ M(a, B, F, w) +dy [ F]

IR[@]llzee @) = {le[f]l aPATRTCS e

11—y
_y
+ lal ™% [ log o] (lal + 181 + wllp@) Wl @

+lal [toglal] (ol + 17113, @) | (129)

Now we observe that for sufficiently small §; and §, (depending only on €2 so far)
the function M («, B, F, w) is bounded from above as

M(a, B, F,w) < (la| + 81 + 82/ log 811)81 + || + [ Fll 12()- (130)

Here we have used the fact that p(r) = r|log r| is monotone increasing on (0, e~ '],
which implies ||Vw||Lz(Q)| log ||Vw||L2(Q)| < §81|log 81|. By taking (126), (127),
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and (130) into account, we assume that |a|, | Fll.2q), [balf]l, and ||f||Lz(Q6R0)
are small enough so that

1

< —".
16(Co+ 1)
(131)

81 =16(Co + D(la| + | Fll 2 + bl f11 + I|f||L2<széR0))

Here Cy is the largest constant of C appearing in (126), (127), and (129) (larger
than 1 without loss of generality), and then, Cy is independent of y and «. Then
for 8, € (0, m] we see, from (130) that

1
<
M, B, F,w) = 1Cot 1)81. (132)

Thus, (126) and (127) imply that for 8, € (0, m],

31
[Vl + VR0l 2(q) + IR[@]ll L (@5,) = - forall @ € Bs,y .
Next we focus on ||R[C()]||L?O(Q). Taking (129) with y" = 0 and (131) (with |a| <

e‘l) into account, we set 8 as

_16(Co + 1)

_1
2= (|a| 281 + | log ||| (lee] + IIFIILgO(Q)) + | Fi2 — F2 ”Ll(Q))’

(133)

[log d1]

which is smaller than m if |o| and the data related to F appearing in
(131) and (133) are small enough, while &, is larger than §; since §; = |«| and
|a|%| logla|| < 1 for || < e!. Note that do[F] < ||[Fi2 — Faillz1(q) is also
taken into account in the choice of (133). The key observation here is that, when
f = F = 0,the numbers 61 and §; are of the order O (J«|) and O (|| %) for |a| < 1,
respectively. Then the term C|log |e||(lee| + |B] + lwllz22(e) in the right-hand
side of (129) with y’ = 0 is bounded from above by

1
3_27
if y € [0, 1) and if || and the datarelated to F (and f = div F') appearing in (131)
and (133) are sufficiently small. Note that, since §; is at best of the order 0(|a|%),

the condition y € [0, 1) is crucial to ensure (134). Precisely, we need smallness
such as

Co|log e (lee| 4 81 + 82) < (134)

1
|| [ log let]| + ki (F) < £(2) < 1, (135)
where

_1
ka(F) = le| "2 [log ol | (1blf 1l + I Fll 2 + £ | 20k,

) (136)
+ [log lal| | Fi2 = Faill 1) + (og la)* [ Fll L3 (-
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Here the number ¢(£2) depends only on €2 and is independent of « and y, and we
also note that k[ F] does not contain the number y in its definition. Under the
above smallness condition we have from (129) with ¥’ = 0 and the choice of &,
that

82
IR[@]llL@) = > forall w € Bs,y,

as desired. In the above argument the number §3 can be arbitrary.
Next we estimate the norm || R[w]|| L3, (@ (in the case y is positive). To bound
the term

_r
Tl 2| log ||| (el + 18] + Iwllzge ()
in the right-hand side of (129) with ¥’ = y, we need the additional smallness for
81 and &, depending on y:

C

0 _r 1
1_ylotl 2| log |e|| (| + 81 4 82) < Evh

(137)
Precisely, in the case y is positive, §; and &, are required to have the smallness as

1—
o 2 |log lal| + ||~ Zka (F) < £ () < 1, (138)

where the number ¢, (£2) depends €2 on y, contrary to the case of £(£2) in (135).
We note that g9(2) = £(2) and &, (R2) is taken so that it is monotone decreasing
and continuous on y € [0, 1) in virtue of (129). Then we set &3 as

_Hy _Y
8 = 2(|a| 281+ ol 2 [log el I Fllg @ +dy[F]> : (139)
Then we can conclude from (129) with ' = y and (134) that

83
IRl@]liLse (@) = > for all w € Bs,,.

It should be emphasized here that the argument works even if §3 itself is large. We
have now shown that @ is a mapping from B; , into Bs ,, with the choice of §; in
(131), (133), and (139) for j = 1, 2, 3, respectively.

Nextlet us show that ® is a contraction mapping on B, s,,5,),0. For convenience

weset B = (B1, f2),andw = (w1, wp) forw; = (B, w;) € Bs,,5,.50),0.F = 1, 2.
We also set

h = (Ylw1] — ¥[@2])V + Rlo1] — Rlw:], (140)
which is equal to u,, — u,, and hence, the velocity & satisfies

—Ah —a(xt-Vh—ht) 4+ Vg =divG,(B,w), divh=0, xeQ,
h=0, xed,

h — 0, |x| = o0,
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where ¢ = g, — G, € Wllu’cz(ﬁ). Here G/, (B, w) is given by
Gy(B, W) = —a(U ® (w1 — w2) + (w1 — w2) ® U)

—Br—pIVRW +w ®V)

=BV Wi —wr) + (w1 —w) ®V) —wi Q (wi — wn)

— (w; —w2) @ wa.
Below we give the estimates of G/, (8, w), where the estimate for the L? norm of
the term V @ w; + w1 ® V has to be carefully computed: in principle, we need to
estimate it by §; rather than §,, for their dependence on |«| is essentially different.
Due to the negative power on |«| in the linear estimate (101) this is crucial to

show that ® is a contraction mapping. Because of this reasoning we apply (161) in
Lemma A.1 by recalling the bound |V (x)| £ C(1 + |x |)_1, which yields

IV®wi +w ® Vg = ClIVwill2gllog IVwill2g)l- (141)
Here we have used the smallness of [|Vwi || 12(q) + [|lwi ||Lf°($2)- Similarly, also for
the nonlinear term in G/, (8, w) we will apply (161). Then it follows that
IGL (B, W)l 12
S C(lal IVwr —w2)ll 2 + 181 = B2l Vw1l 120 log [Vwill 12|
+ B2l lwi — wallLeo@) + llwr = wall2e@) VW20 | 10g VW L2 ()
< C(lal IV(wr = w2l 12 + 81110g 811 81 — Bal
+ 361|log é1lljwy — wzllL?o(sz))
= Cle| + 81llogdiDllwr — w2llx,, (142)

and on the other hand, it is not difficult to see

1GL (B, Wiy = C(le| lwy — w2l @) + 181 — B2l lwill o)
+ B2l llwr — wallzoe@) + Wl (o) llwr — w2||LC1’°(SZ))
< C(82181 — B2l + (lee| + 81 + 282) w1 — wallL2o(e)
< C(le| + 81 + &)llwr — wallx,- (143)

Similarly, we observe that

lIdiv Gg, (B W)ll 1205,
S C(lalIV (w1 — w2l 2 + 181 — B2l V) 22 (@5k,)
T8IV (w1 — w2l 2@ ) + Wi llLoe(@spy) IV (w1 = w2)ll 2
+ IVwall 2 lwi — wallL=e))
< C(lalIV(wi —wo)ll 2 + 81181 — Bal + 811V (w1 — w2l 2
+ 811V (wi — w2l 2y + Stllwr — wallreo o)
S Clal + 8D llwr — @2l x,- (144)
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By applying Theorem 3.8, we have the representation of the velocity & as
h = </ yt T (h, q)v day)V + Reldiv G, (B, w)]. (145)
a0

Here we have used bg[div G, (B, w)] = 0 again, which follows from the symmetry
of G,,(B, w) and from the fact that the trace of G, (8, w) on 92 is zero. Since
h = Uy, — Uy, and ¢ = G4, — qu,, We see from the definitions of T (%, g) and
Ylw;] in (124),

/ vyt T(h. q)v doy = Ylw1] — Yw],
Ele}
and thus, we also have from (140) and (145) that

Reldiv G, (B, w)] = Rlw1] — R[w].
In virtue of (86) - (88) we see

‘fm yl -T(h,q)v de‘ < C(||Vh”W1~2(Q4RO) + ||Q||W1-2(§24R0))

S C(||G£1(ﬁ, W2 + IIdiv G, (B, W)||L2(QSR0))-
(146)

A similar argument as to the derivation of (127) yields

IReldiv G, (B, w)] (g, + IIVReldiv G, (B.W]l12

. (147)
= C(”Gfx(ﬂ, W)||L2(sz) + |ldiv G(/x(ﬂ, W)||L2(QSR0))~

Moreover, by applying (101) we see that the term Rq[div G, (8, w)] satisfies

IReldiv GG (B, W)l e By,
148
< C(1al 721G, (B. W)l 20 + | log ] [1GL (B, W)l 152 )- (149)
= a\P L(Q2) g o s LS Q)

Here we have used again the symmetry of G/, (8, w). Combining (146), (147) and
(148) with (142), (143) and (144), we obtain, for sufficiently small |¢| # 0 and
ko[ F]in (136),

[®[wi] — Plw2]]lx,
= [Ylw1] = Ylw2]l + IV (Rl01] = R[@2])ll 12y + [IR[@1] = Rlw2]ll 220

1
s C(Idl_z(lal + 811 log 81) + [ log || (o] + 81 + 52))|Iw1 — wallx,

S S llor — w2llx,, (149)

A w

that is, the map @ is a contraction on By, s,,s,),0- Here we have used the estimates
- 1 —1.
|log 81| < |log ||| and 8; < 27 'a|2|log|er|| " if 8; = |o| and the data related



644 MiTsuo HIGAKI, YASUNORI MAEKAWA & YUU NAKAHARA

to F appearing (131) are small enough. Therefore, there exists a fixed point @ =
(B, w) of ® in Bj ,,, which is unique in Bs, 5,.5,),0- By the definition of @ in (125),
we see that the fixed point w = (8, w) satisfies

uy = u@pw = Vo]V + Rlo] =BV +w,

which is the solution to (NS&), as desired. Letus set v = 8V + w for the fixed point
(B, w) € Bs,, . The local regularity of v € leo’cz(ﬁ)2 as well as Vg € leoc(ﬁ)2
follows from the standard elliptic regularity of the Stokes operator by regarding
the nonlinear term, which belongs to L?(£2)? by the above construction, as a given
external force. This leads to the regularity u leo’cz (Q)?and Vp € L} (Q)? for

the solution (1, V p) to (NS,) by (111). Next we observe that v = BV + w solves

—Av—a(xJ‘-Vw—wJ‘)+V§ =—-divieUQ@v+v®alU + v Q®v)
+div Hy(F), x €,
divv=0, xeQ,
v=20, x € 092,
v —> 0, x| = oo.
(NS

Here we have used the identity x+ - VV — V- = 0 by the definition of V. Let us
take the approximation of v of the form

v =y BV +w™ w™ = yyw —By[Vey-wl, N>1, (150

where yu (|x|) is the radial cut-off function satisfying xy = 1 for [x| S N, xy =0
for|x| = 2N,and |Vyy| < CN~!, while By is the Bogovskii operator in the closed
annulus Ay = {N =< |x| £ 2N} which satisfies

suppBy[Vxnv -w] C Ay, divBy[Vxy -w]l=Vxy-w
and
NYBNIVy - wlll 2@ + VBNV XN - wlliL2) = CIVBNIVXN - w2

S ClIVan - wllp2q)-
(151)
Here C is independent of N; see, e.2. BORCHERS AND SOHR [2, Theorem 2.10].

Then, by multiplying v™) both sides of the first equation in (N S.) and integrating

over €2, we obtain
(Vv, VU(N)>L2(Q) + a(w, xt . v — (w(N))J‘)Lz(Q) (152)
=v®v+aU®v+v®aU, VU(N))LZ(Q) — (Hy(F), VU(N))Lz(Q)

from the integration by parts. Here we have used again the identity for the radial
c_irg:tzllar flow: x+ - VixnV) — )(NVL = 0. It is easy to see from (151) and w €
Wy, ()N Lﬁy(Q)z that

(VU, VU(N)>L2(Q) — (V'U, VU)LZ(Q),
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W v, VoM o) = (v® v, V)2 =0,
(U @v+v®aU, VU(N))LZ(Q) = (@U®v+v®al, Vv)2q)
=a(U®wv, Vv)Lz(Q),
(Ho(F), Vo'™) 20y = (Ha(F), Vo) 12(q).

as N — oo. As for the term (w, (w™")F) 2 o) we see

[(w, ™)) 2ol = [(w, BN[Vn - w]) 20|

[IA

lwll2qnv<i<onp IBN VXN - wlll 2@
= CNIwll 2y <anp VN - w2
< CNY |w|?w

sC “w”LH—y(Q)

-0 (N—>oo) if y>0,
2 : _
S Cluwlag i y=0.

It remains to consider the term (w, x* - Vw®)) 12(g)- From the integration by parts
and from x+ - Vxny =0, diV()CJ‘XN) =0, and supp By[Vxy - w] C Ay we have

(w, x* - V™) 20| = [(w,x" - VBN[Vyy - wl) 2]
< N||w||L2({N§\x|§2N}) VBNV xW - w]”LZ(Q)

< CNwllis ()

-0 (N—>oo) if y>0,
2 : —
SClwling, — if ¥ =0.
Here we have also used (151). Collecting these above, we have arrived at the identity

(VU, VU)L2(Q) = (X(U X v, VU)L2(Q) - (HQ(F), VU)LZ(Q) when Yy > 0.
(153)

In particular, from the Poincaré inequality |{U ® v, V)2l < C||Vv||iz(9), we
obtain the estimate

(1= ClaDIVol3s o S IF +aVU|; when y > 0, (154)

() LX)

which shows (106) for the case y > 0 by the relation # = «U + v. Note that the
constant C in (154) depends only on Ry and is independent of o and y. To obtain
the energy inequality for the case y = 0 we first consider the approximation of F
and f such that

Fox) =e 7P F(x),  f, =divF,. (155)
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Then F, € L3S, (2)>*% for y > 0 and

nlglgo balfn — f1= nll)néo IF — Fn||L2(Q) = nlgfolo I fn — f||L2(QeR0) =0,
Jim [[(F = Faiz = (F = Faillpie =0, IElr@ = IFlie@-
(156)

Here we have used the condition Fjp — Fa; € L! (R2) for the convergence of bg| f;].
Assume that

|2 | Tog ]| + ko [F] < £(S),

and we fix . Then there is a unique fixed point (8, w) of ® in B, s,,5,),0- On the
other hand, since « is fixed, there is 39 > 0 such that

1y _Y
sup  (loe] 2 |loglal| + lee| =2 ke[ F1) < &0 ().
0=y<w
Here we have used the fact that £0(2) = £(2) and &, (£2) is continuous on y €

[0, 1). Hence, in view of (156) and (136), there is N > 1 such that

1y _Y
sup sup (loe| 2 [logle|| + lot|~ T kg [Fyl) < &4 (S2).
nZNO0<y=<yy

Let (vy, V@n) with v, = B,V 4+ wy, n 2 N, be the unique solution to (NS/)
with F replaced by F), such that (8,,, w,) € 8(81 52,6,y C Bsy,8,,5,),0 with some
E) ) 3 E)

y € (0, yo]. Note that for sufficiently large n, we can take the same 61 and §,. Then
(153) implies

V0122 = @{U @ vn. Vun) 200y — (Ha (F). Viu) 12()- (157)

Since (B, wy) € Bs,.8,,8,),0 We have uniform estimates of (v,, Vg,), and thus,
we find a subsequence, denoted again by (v,,, V§g,), such that 8, — Boo,

Wy = Woo in Wot (@2 Gu— Goo in W2,
Vw, = Ve in L2(Q)%?, w, =" we in LP(Q)%

" (€2)2. Moreover, we observe from (153) that
Voo = PooV + woo satisfies the energy inequality

and w, — wq strongly in Wllu’2

Vsl S @ (U @ voo, VVso) 12y — (Ha(F), Vo) 2y (158)

It is also easy to see that (Veo, Vdoo) is @ solution to (NS)) and (B, Weo) €
B(s,.5,.5,),0- By the uniqueness of the fixed point of ® in B, s,,5,).0 » we have
(Boo> Weo) = (B, w). Therefore, (158) holds with vy, replaced by v = BV 4 w, as
desired. Thus we have (106) also when F € L5°(Q2)%*? and Fi» — F1 € LY(Q).

The estimates (108) and (109) follow from the fact ”w”LCl)O(Q) < 8 and
||IU||LC1Xjry(Q) < 83 together with the definitions of d;in (133), (139), and d}, [ F] <
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cy™! ||F||L31V(Q) when ¥y > 0. As for the identity (107) on the coefficient B, we
observe from (124),

p= fa v (T0.0v) doy + bal 1.

Since v = u — ax™ and ¢ = p + P near 92, where P = P(|x|) is a radial
function and has been taken so that VP = div[(a«U + BV) ® («U + BV)], the
straightforward calculations yield

/ yJ‘ . (T(v,q)v) doy, = / yJ‘ . (T(u, p)v) doy.
a2 a2

Thus (107) holds. The proof of Theorem 4.1 is complete. O

Finally we consider the case F € LE?O(Q)Z’Q. Combining Theorem 4.1 with
Theorem 4.3 below, we obtain Theorem 1.1.

Theorem 4.3. Assume that f = div F satisfies the conditions in Theorem 4.1 for
y = 0. Assume in addition that F € LS?O(Q)zxz. Then the remainder w in Theorem

4.1 belongs to LT?O(Q)z.

Proof. The proof is very similar to the derivation of the energy inequality for the
case y = 0 in the proof of Theorem 4.1. We set F,, and f;, asin (155). Then F, and
[ satisfy (156), and moreover, the additional condition F € Lgf’o(Q)2X2 implies

I Fo — FliLge@ = 0, n— oo. (159)

The proof of (159) is as follows: for any small number ¢ > 0, there exists R > 0
suchthat || F,—F [l 15 (gs) < 2¢ || F 152 (e by the decay condition F € L35 ()22,
Then we have

limsup | F — Fll13@) = limsup (I1F, — FllLge g + I1Fn — F||L;°(B;))
n—oo

n—o0

. _R
<limsup ((1 —e” )+ 28)||F||Lg°(9) =2¢ || FllLge )

n—oo

which implies (159). As in the proof of Theorem 4.1, let (v,,, Vgp), v, = B,V +wy,
n > 1, be the solution to (NS/,) with F replaced by F, such that (8,, w,) €
8(51,82,5§f‘)),y C Bs,.65.5,).0 With some y € (0, 1). Since w, € L‘l’fLy(Q)2 and
y > 0, it suffices to show that (8,,, w,) converges to (8, w) in R x LTO(Q)Z, where
v = BV + w is the solution to (NS,). To prove this we observe that the difference

h = v — v, solves

—Ah —a(xt - Vh =t + Vg =divG, (B, w) +div(F — F,), xe€Q,
divh =0, xe€Q,
h=0, xecdQ.

h — 0, |x] = oo.
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Here we have set 8 = (8, 8,), w = (w, wy,), and

G,(B,W)=—a(U@w—w)+w-—w)@U)—B—-B)(VRw+we®V)
BV w—-—wy)+(w—-—w,) ®V) —w® (w—wy)

—(w—wy) @ wy.

Then the same argument as that for the derivation of (149) shows

(B, w) = (B, wn)llxo = (B, w) — (Bn, wn)llxo

3
4
+ C<|bQ[f = full HI1F = Fall 2@y + I1f = full L2,

+I(F = F)iz — (F = F)allpy) + 1 F = Fy ||L§°(Q)>,

where C is independent of n. Thus, (8,, w,) converges to (8, w) in R x L?O(Q)z,
which shows w € L‘l’f’O(Q)z. The proof is complete. O

Appendix

We will prove the Hardy type inequality in two-dimensional exterior domains,
which is used in the proof of Theorem 4.1.
Lemma A.1. Let Q be an exterior domain in R?. Then it follows that

H S I f @) )
1+ [x] IVl

= ClIV £l q) log <e + (160)

L2(Q)
forany f € Wol’z(Q) N L§°(R2). Here C depends only on Q. In particular, if

elV £l + 11 flliLe@ = 1,

then

Ll £ CIV i o IV Al | (161)
+ |x|

Proof. Take xo € R2\Q and 0 < rg < ¢! so that By (x0) C R\ Q. By con-
sidering the zero extension of f to R2, it suffices to show (160) for Q = R? and
f e WhE(R?) N L(R?) such that £ = 0 in B,y (xo). Fix R > 2|xo|. By the
condition f(xg) = 0 and the mean value theorem in the integral form we have

f@I = xol
L+ |x] = 1+ |x|

1
fo (V)2 (x — x0) + x0) de

1
SU+lvoh [ 1Y@ —x0) +x0)ldr, x € R?\By (x0),

[x—xq]
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which gives

I
1+ |x|

1
<+ IXOI)/: V@) dr
L2({lx—x0|SR}) 2

< (1+ |xoD)(llog R| + |logro) IV fll 22y (162)

On the other hand, we have

: e
Sl ILf Nl Lo (w2
H Pl 2 gevoizrn 1A+ D2 2z T
C
S E”f”LCI’C(RZ)' (163)
If ||f||Lc1>O(R2) < 2|xg] IV fll 122 then we obtain (160) from (162) and (163) with
£ oo g2
R = 240l + LI f e Z 2ol IV 22, then we take R = e+ o,
which yields again from (162) and (163) that
f I Nl oo w2y
< Cllogrol(1 + [xoD IV fll 2 r2) log | € + ———— ).
H 1+ Ix] | 22y LD IV £ 122
(164)

Here we have used |logrg| = 1 and |log R| = 1, and C is a numerical constant.
Thus (160) holds. The proof is complete. O
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