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Abstract

We study the Navier–Stokes equations governing the motion of an isentropic
compressible fluid in three dimensions interacting with a flexible shell of Koi-
ter type. The latter one constitutes a moving part of the boundary of the physi-
cal domain. Its deformation is modeled by a linearized version of Koiter’s elastic
energy. We show the existence of weak solutions to the corresponding system of
PDEs provided the adiabatic exponent satisfies γ > 12

7 (γ > 1 in two dimensions).
The solution exists until the moving boundary approaches a self-intersection. This
provides a compressible counterpart of the results in Lengeler and Růžička (Arch
Ration Mech Anal 211(1):205–255, 2014) on incompressible Navier–Stokes equa-
tions.

1. Introduction

Fluid structure interactions have been studied intensively by engineers, physi-
cists and also mathematicians. This is motivated by a plethora of applications any-
time a fluid force is balanced by some flexible material; for instance in hydro- and
aero-elasticity [7,16] or biomechanics [4]. In this work we consider the motion of
an isentropic compressible fluid (in particular a gas) in a three-dimensional body.
A part of the boundary is assumed to be changing in time. The displacement of
the boundary is prescribed via a two dimensional surface representing a Kirchhof–
Love shell. Its material properties are deduced by assuming small strains and plane
stresses parallel to the middle surface. We prove the existence of a weak solution
to the coupled compressible Navier–Stokes system interacting with the Kirchhof–
Love shell on a part of the boundary. The time interval of existence is only restricted
once a self-intersection of the moving boundary (namely the shell) is approached.
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1.1. Motivation and State of Art

Over the last century mathematicians have been fascinated by the dynamics of
fluid flows. The theory of (long-time) weak solutions started with the pioneering
work of Leray concerning incompressible Navier–Stokes equations [34]. A com-
pressible counterpart has been provided by Lions [37]. Lions’ results have later
been extendedbyFeireisl et al. [19,21] to physically important situations (includ-
ing, in particular, monoatomic gases). Today, there exists an abundant amount of
literature for both incompressible as well as compressible fluids. In the last decades
fluid structure interactions have been the subject of active research. The interac-
tions of fluids and elastic solids are of particular interest. A major mathematical
difficulty is the parabolic–hyperbolic nature of the system resulting in regularity
incompatibilities between the fluid- and the solid-phase. First results concerning
weak solutions in the incompressible case consider regularized or damped elastic-
ity laws, see [3,5,8,33]. The fluid interacts with an elastic shell which constitutes
a moving part of the boundary of the physical domain in Lagrangian coordinates.
The existence of strong solutions in short time was shown in [9]. We also refer to
related studies in [13,14], where the motion of an elastic body in an incompressible
fluid is considered. Long-time weak solutions in a similar setting have finally been
obtained in [32] assuming a linearized elastic behavior of the shell. The authors of
[32] consider a general three dimensional body in Eulerian coordinates. The elastic
shell is a possibly large part of the boundary and may deform in the direction of
the outer normal. Its material behavior depends on membrane and bending forces.
A solution exists provided the magnitude of the displacement stays below some
bound (depending only on the geometry of the reference domain) which excludes
self-intersections. The results from [32] have been extended to some incompress-
ible non-Newtonian cases in [31]; see also [24]. Results for incompressible fluids
in cylindrical domains have been shown in [38,39] and [6]. The paper [38] deals
with a cylindrical linear elastic/viscoelastic Koiter shell in two dimensions (the
shell is prescribed by a one-dimensional curve). The papers [6,39] extend this to
cylindrical three-dimensional fluid flows. Note that in [39] even nonlinear elastic
behavior of the shell is allowed.

In contrast to the growing literature on incompressible fluids the knowledge
about compressible fluids interacting with elastic solids is quite limited. To the best
of our knowledge, the only related result is [28]. Here, a compressible fluid interacts
with a structure modeled by a linear wave equation in Lagrangian coordinates. The
result of [28] concerns the existence of short-time strong solutions. It is related to
earlier results about the incompressible setting, see [13]. Results on long-timeweak
solutions from problems coupling compressible fluids with a priori unknown elastic
structures seem to be missing. The aim of the present paper is to open this field by
developing a compressible counterpart of the theory from [32]. More, precisely we
are going to prove the existence of a weak solution to the compressible Navier–
Stokes system coupled with a linear elastic Koiter-type shell. The two dimensional
shell is connected to the velocity field via boundary values on the free part of the
boundary. Moreover, momentum forces acting on the boundary are in equilibrium
with the membrane forces and bending forces (flexural forces) of the shell.
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1.2. The Model

We consider the Navier–Stokes system of an isentropic compressible viscous
fluid interacting with a shell of Koiter-type of thickness ε0 > 0. The Koiter shell
model is a version of the Kirchhoff-Love shell. More precisely, it is a model reduc-
tion assuming small strains and plane stresses parallel to the middle surface of the
shell. Physically this means that the shell consists of a homogeneous, isotropic
material. Its mathematical formulation is as follows. Let � ⊂ R

3 be the initial
physical domain and let T > 0. We devide ∂� into the fixed in time part � and its
compact complement M , the part where the shell is located. The shell is assumed to
be driven solely in the direction of the outer normal ν of �, cf. [8,23]. This allows
one to write the energy for elastic shells via a scalar function η : M → (a, b).
Here, the numbers a, b are fixed and depend only on the geometry of �, such that
self intersections of the boundary are not possible. For example, in case of a ball
� = Br the interval is (−r,∞). The elastic energy of the deformation is then
modeled via Koiter’s energy [26, eqs. (4.2), (8.1), (8.3)]

K (η) = 1

2
ε0

∫
M
C : σ (ην) ⊗ σ (ην) dH2 + 1

6
ε30

∫
M
C : θ(ην) ⊗ θ(ην) dH2,

which is the sum of two terms reflecting different material properties. The first
term is the membrane part of the energy which would remain even in the case of
thin films. Indeed, the term σ (ην) depends linearly on the pullback of the first
fundamental form of the two dimensional surface η(M). The second term reflects
the flexural part of the energy. Respectively, the argument θ depends linearly on the
pullback of the second fundamental form (the change of curvature). The coefficient
tensor C is a non-linear function of the first fundamental form. For more details on
the derivation of this model we refer to [25,26], where Koiter’s energy for nonlinear
elastic shells has been introduced; see also [11,12] for a more recent exposition.
Following [12, Thm. 4.2-1 and Thm. 4.2-2] one can linearize σ and θ with respect
to η and obtain

K ′(η) = m	2
�η + Bη (1.1)

for the L2-gradient K ′ of K . Here, m > 0 depends on the shell material (to be
precise on ε0 and the Lamé constants), B is a second order differential operator
and	� is the Laplace operator associated to the covariant derivative of the surface.
In particular, it is shown in [12, Thm. 4.4-2], that

K (η) = 1

2

∫
M

K ′(η) η dH2 � c0

∫
M

|∇2η|2 dH2

for all η ∈ H2
0 (M) with some c0 > 0. Equation (1.1) is a Kirchhoff–Love shell

equation for transverse displacements, cf. [10]. The technical restriction, that we
only allow forces to act on the shell in (a fixed) normal direction, is the most severe
restriction in our paper. Under this assumption we will, however, show long time
weak solutions; they exist as long as the shell does not approach a self intersection.
We also observe that long time existence results seem to be unavailable for less
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restrictive geometric assumptions. Even for one dimensional boundaries and for
incompressible fluids no long time existence result seems to be available for less
severe restrictions. Finally, observe that since η is assumed to have zero boundary
values on ∂ M , there is a canonical extension by zero to ∂�, which we will use in
the following without further remark.

We denote by �η(t) the variable in time domain. With a slight abuse of notation
we denote by I ×�η = ⋃

t∈I {t}×�η(t) the deformed time-space cylinder, defined
via its boundary

∂�η(t) = {x + η(t, x)ν : x ∈ ∂�}.
Recall that � is a given (smooth) reference domain with outer normal ν.

Along this cylinder we observe the flow of an isentropic compressible fluid
subject to the volume force f : I ×�η → R

3. We seek the density 
 : I ×�η → R

and velocity field u : I × �η → R
3 solving the following system:

∂t
 + div(
u) = 0, in I × �η, (1.2)

∂t (
u) + div(
u ⊗ u) = μ	u + (λ + μ)∇ div u

− ∇ p(
) + 
f in I × �η, (1.3)

u(t, x + η(x)ν(x)) = ∂tη(t, x)ν(x) on I × M, (1.4)

u = 0 on I × �, (1.5)


(0) = 
0, (
u)(0) = q0 in �η0 . (1.6)

Here, p(
) is the pressure which is assumed to follow the γ -law, for simplicity
p(
) = a
γ , where a > 0 and γ > 1. Note that in (1.3) we suppose Newton’s
rheological law

S = S(∇u) = 2μ
(∇u + ∇uT

2
− 1

3
div u I

)
+

(
λ + 2

3
μ

)
div u I,

with viscosity coefficients μ, λ satisfying

μ > 0, λ + 2

3
μ > 0,

see Remark 1.3 for the case λ + 2
3μ = 0. The shell should respond optimally with

respect to the forces, which act on the boundary. Therefore we have

ε0
S∂
2
t η + K ′(η) = g + ν · F on I × M, (1.7)

where 
S > 0 is the density of the shell. In (1.7) g : [0, T ] × M → R is a given
force density and we have

F := ( − τνη

) ◦ �η(t)| det D�η(t)|
τ := S(∇u) − p(
)I.

Here, �η(t) : ∂� → ∂�η(t) is a change of coordinates and τ is the Cauchy stress.
To simplify the presentation in (1.7) we will assume that

ε0
S = 1
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throughout the paper. We assume the following boundary and initial values for η:

η(0, ·) = η0, ∂tη(0, ·) = η1 on M, (1.8)

η = 0, ∇η = 0 on ∂ M, (1.9)

where η0, η1 : M → R are given functions such that

Im(η0) ⊂ (a, b).

In view of (1.4) we have to suppose the compatibility condition

η1(x)ν(x) = q0

0

(x + η(x)ν(x)) on M. (1.10)

By the canonical extension of η and ∂tη by 0 to ∂� we can unify (1.4) and (1.5) to

u(t, x + η(t, x)ν(x)) = ∂tη(t, x)ν on I × ∂�. (1.11)

Our main result is the following existence theory for the system (1.2)–(1.9) which
can be written in a natural way as a weak solution. The precise formulation can be
found in Section 7, cf. (7.1) and (7.2):

Theorem 1.1. For regular data and γ ∈ ( 12
7 ,∞) there exists a weak solution

(η,u, 
) to (1.2)–(1.9) satisfying the energy estimate

sup
I

∫
�η


|u|2 dx + sup
I

∫
�η


γ dx +
∫

I

∫
�η

|∇u|2 dx dσ

+ sup
I

∫
M

|∂tη|2
2

dH2 + sup
I

∫
M

|∇2η|2 dH2

� c(f, g,q0, 
0, η0, η1).

(1.12)

The interval of existence is of the form I = [0, t), where t < T only in case �η(s)

approaches a self-intersection when s → t .

The function space for weak solutions to (1.2)–(1.9) is determined by the left-
hand side of (1.12), taking into account the variable domain. For the precise assump-
tions on the given data, as well as the precise definition of a weak solution see The-
orem 7.1 in the last section of the paper. We remark that in the three dimensional
case the bound γ > 12

7 is less restrictive then the bound γ > 9
5 appearing in the

pioneering work of Lions [37], but more restrictive than the bound γ > 3
2 arising

in the theory by Feireisl et al. [21]. A detailed explanation can be found in the
next subsection. For more information on the restrictions for the growth condition
of the pressure see Remark 1.2 at the end of this section.
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1.3. Mathematical Significance and Novelties

Aprimary task is to understand how to pass to the limit in a sequence of solutions
(ηn,un, 
n) to (1.2)–(1.9) which enjoys suitable regularity properties and satisfies
the uniform estimate (1.12). The passage to the limit in the convective terms 
nun

and 
nun ⊗ un follows by local arguments combined with global integrability,
see (6.13) and (6.14). Here, problems with the moving boundary can be avoided.
Note that this is totally different to the incompressible system studied in [32],
where huge difficulties arise due to the divergence-free constraint. As it is common
for the compressible Navier–Stokes system, the major difficulty is to pass to the
limit in the nonlinear pressure. A key step is to improve the (space)-integrability
of the density to ensure that p(
n) actually converges to a measurable function
(and not just to a measure). Locally, where the effect of the moving boundary
disappears, this can be done by the standard method, see Proposition 6.3. However,
our test-functions in the weak formulation are not compactly supported. This is
crucial for the coupling of fluid and shell. Note, in particular, that this is different
from [18], where the interaction of compressible fluids and rigid bodies is studied.
In [18], at least the symmetric gradients of test-functions are supported away
from the area of interaction. In our case, however, it is essential to exclude the
concentration of p(
n) at the boundary. On account of the limited regularity of
the moving boundary (it is not even Lipschitz continuous in three dimensions, see
(1.12)) the common approach based on the Bogovskiı̆ operator fails. We solve this
problem inspired by a method introduced in [29] for compressible Navier–Stokes
equations in irregular domains; see Propositions 6.4 and 7.4. Consequently, we can
exclude the concentration of the pressure at the boundary. This, in turn, allows us
to prove that the weak continuity of the effective viscous flux

p(
) − (λ + 2μ) div u

holds globally, see (6.35) and (7.29). In order to combine this with the renormal-
ized continuity equation we are confronted with another problem: we do not have
zero boundary conditions for the velocity at the shell. In general, it seems to be
extremely difficult if not impossible to combine the properties of the effective vis-
cous flux with the renormalized continuity equation in this case (see the remarks
in [42, Section 7.12.5]). This is due to the additional boundary term which appears
when extending the continuity equation to the whole space. However, due to the
natural interplay between fluid flow and elastic shell, our situation can be under-
stood as no-slip boundary conditions with respect to the moving shell. Hence, the
just mentioned boundary term disappears due to the Lagrangian background of
the material derivative. To make this observation accessible, a careful study of the
damped continuity equation in time dependent domains is necessary. We refer to
Section 3.2 and in particular Theorem 3.1, which collects the necessary regularity
results for the density function on time changing domains; it implies, for instance,
the respective renormalized formulation. This is the second essential tool which
allows one to show strong convergence of an approximate sequence 
n and hence
to establish the correct form of the pressure in the limit equation.



Compressible Fluids Interacting with a Linear-Elastic Shell 501

The third difficulty is to construct a sequence of solutions. In the present case,
this is rather difficult to do, since the geometry and the solution are highly coupled
via the partial differential equations. Hence, in order to use the ideas explained
above rigorously, we need a four layer approximation of the system as follows:

• Artificial pressure (δ-layer): replace p(
) = a
γ by pδ(
) = a
γ +δ
β where
β is chosen large enough.

• Artificial viscosity (ε-layer): add ε	
 to the right-hand side of (1.2).
• Regularization of the boundary (κ-layer): replace the underlying domain �η

by �ηκ where ηκ is a suitable regularization of η. Accordingly, the convective
terms and the pressure have to be regularized as well.

• Finite-dimensional approximation (N -layer): the momentum equation has to
be solved by means of a Galerkin-approximation.

The first two layers are common in the theory of compressible Navier–Stokes
equations, see [21]. The third layer is needed additionally due to the low regularity
of the shell described by η. By (1.12) we have η ∈ W 2,2(M) such that Sobolev’s
embedding implies η ∈ W 1,q(M) for all q < ∞ but not necessarily η ∈ W 1,∞(M).
So, we do not have a Lipschitz boundary. In addition, it is necessary to regularize
the convective terms in (1.2) and (1.3) (see the comments on the N -layer below for
a detailed explanation).

On the last layer we are confronted with the problem that the function space
depends on the solution itself. As a consequence a finite-dimensional Galerkin
approximation is not possible, as the Ansatz functions depend on the solution itself.
Motivated by [32] we apply a fixpoint argument in η and u for a linearized problem.
(Roughly speaking we replace 
u ⊗ u in (1.3) by 
u ⊗ v and 
u in (1.2) by 
v
for v given, see Section 4.3 since it is crucial for our fixed point argument that the
momentum equation is linear in u. For (ζ, v) given we solve the system on the
domain �ζ . The domain still varies in time but is independent of the solution. Note
here that 
 is computed by solving the continuity equation with convective term
independent of u. The existence of a weak solution (η,u) to the decoupled system
can than be shown by the Galerkin approximation without further problems. This
is due to the good a-priori information for 
 from Theorem 3.1, see Theorem 4.4.
The next difficulty is to find a fixed point of the mapping (ζ, v) 
→ (η,u) in an
appropriate function space. The compactness of the mapping situated on the shell is
rather easy as we apply a proper regularizationwith arbitrary smoothness. Themain
issue is the compactness of the velocity. Inspired by ideas from [32] we can prove
compactness of un in L2(I ×R

3) (where un is extended by zero). This is based on
Lemma 2.8, where we prove a variant of the Aubin–Lions compactness theorem
for variable domains. It is noteworthy that we are unable to exclude a vacuum
even in the situation of a damped continuity equation. To prevent the problem with
the vacuum we replace on the κ-level the momentum ∂t (
u) by ∂t ((
 + κ)u) in
the momentum equation, which allows us to show that un is strongly compact in
L2(I × R

3).
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1.4. Outline of the Paper

In Section 2 we present basics concerning variable domains as well as the
functional analytic set-up. In Section 3 we study the continuity equation (with arti-
ficial viscosity) on variable domains. The renormalized formulation is of particular
importance. Section 4 is concerned with the decoupled system, its finite dimen-
sional approximation and the fixed point argument. The main result of this section
is the existence of a weak solution to the regularized system with artificial viscosity
and pressure. In Section 5 we pass to the limit in the regularization (of domain and
convective terms) and gain a weak solution to the system with artificial viscosity.
Compactness of the density can be shown as in the fixed point argument. Hence
we can pass to the limit in all nonlinearities without further difficulties. The pro-
ceeding Sections 6 and 7 deal with the vanishing artificial viscosity and vanishing
artificial pressure limit respectively. Both follow a similar scheme, where the major
difficulty is the strong convergence of the density. The argumentation is based on
the weak continuity of the effective viscous flux, oscillation defect measures and
the renormalized continuity equation. The main result of this paper (the existence
of weak solutions to (1.2)–(1.9)) follows after passing to the limit with δ → 0 in
Section 7. The full statement is given in Theorem 7.1.

Remark 1.2. The restriction γ > 12
7 in three space dimensions is needed to exclude

concentrations of the pressure near the moving boundary. Indeed, such concentra-
tions are excluded by constructing a test-function ϕn whose divergence explodes
at the boundary while

∫
p(
n) divϕn is still bounded. This requires, in particu-

lar, estimation of the integral
∫

I

∫
�ηn


nun ∂tϕn dx dt. Naturally, the function ϕn

depends on the distance to the boundary and as such on the shape of the moving
boundary which only has low regularity. Indeed, the given a priori estimates imply
that ∂tϕn can only be bounded in L2(I ; Lq) for all q < 4 (using (1.4)). Hence,
we need to know that 
nun is bounded in L2(I ; L p) uniformly in n for some
p > 4

3 . This follows from the a priori estimates provided we have γ > 12
7 (using

that 
nun ∈ L2(I ; L6γ /(γ+6)) in three dimensions). In the two dimensional case
we have instead ∂tϕn ∈ L∞(I ; Lq) for all q < ∞. Consequently, no additional
restrictions on γ are needed and the result holds for all γ > 1.

Remark 1.3. Our proof requires the bulk viscosity λ + 2
3μ to be strictly positive.

In case λ + 2
3μ = 0 it is necessary to control the full gradient by the deviatoric

part of the symmetric gradient. Such a Korn-type inequality is well-known for
Lipschitz domains, see [43]. In our context of domains with less regularity, a Korn-
type inequality for symmetric gradients is shown in [31, Prop. 2.9] following ideas
of [1]. The integrability of the full gradient is, however, less than the one of the
symmetric gradient. We believe that a corresponding trace-free version can be
shown following similar ideas. Thus, the case λ + 2

3μ = 0 could be included for
the price that the velocity only belongs to W 1,p for all p < 2.
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2. Preliminaries

The variable domain �η can be parametrized in terms of the reference domain
� via a mapping �η such that

�η : � → �η is invertible

and �η|∂� : ∂� → ∂�η is invertible.
(2.1)

The explicit construction can be found below in (2.8).
Throughout the paper we will make heavily use of Reynolds transport theorem,

which we will use without any further reference. This theorem says that

d

dt

∫
�η(t)

g dx =
∫

�η(t)

∂t g dx +
∫

∂�η(t)

∂tην ◦ �−1
η · νηg dH2, (2.2)

provided all terms are well-defined. The above can easily be justified by transpo-
sition and a chain rule. The heuristic beyond is that ν is the direction in which
the domain changes (which in our model is a fixed prescribed direction) and ∂tη

describes the velocity of change. Therefore, the scalar ∂tην ◦�−1
η ·νη is the deriva-

tive of the change of the domain; i.e. the forces acting in direction of the outer
normal of ∂�η(t). For a couple of functions (ϕ, b) which satisfy trη(ϕ) = b in the
sense of Lemma 2.4 we have∫

∂�η

ϕ dH2 =
∫

∂�

ϕ ◦ �η |det(D�η)| dH2 =
∫

∂�

b |det(D�η)| dH2.

2.1. Formal a Priori Estimates and Weak Solutions

We introduce the weak formulation of the momentum equation, which will be
coupled to the material law of the shell. This is motivated by the a priori estimates.
We will now derive these estimates formally. First, we multiply the momentum
equation by u and integrate with respect to space (at a fixed time). We multiply the

continuity equation by |u|2
2 and integrate with respect to space (at the same time).

Subtracting both and applying a chain rule yields

∫
�η

∂t

(



|u|2
2

)
dx

=
∫

�η

∂t (
u) · u dx −
∫

�η

∂t

|u|2
2

dx

=
∫

�η

( − div(
u ⊗ u) + μ	u + (λ + μ)∇ div u − a∇
γ + 
f
) · u dx

+
∫

�η

div(
u)
|u|2
2 dx

= −
∫

∂�η



|u|2
2 u · νη dH2 +

∫
�η

div τ · u dx +
∫

�η


f · u dx
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= −
∫

∂�η



|u|2
2 u · νη dH2 +

∫
∂�η

τu · νη dH2 −
∫

�η

τ : ∇u dx

+
∫

�η


f · u dx .

By Reynolds’ transport theorem we get

d

dt

∫
�η



|u|2
2

dx =
∫

M
τ (u · νη) ◦ �η|det D�η| dH2 − μ

∫
�η

|∇u|2 dx

− (λ + μ)

∫
�η

| div u|2 dx +
∫

�η

a
γ div u dx +
∫

�η


f · u dx .

To control the pressure term, we multiply the continuity equation by γ 
γ−1 and
gain

0 =
∫

�η

∂t

γ dx +

∫
�η

(
div u γ 
γ + u · ∇
γ

)
dx

=
∫

�η

∂t

γ dx + (γ − 1)

∫
�η


γ div u dx +
∫

�η

div
(
u
γ

)
dx .

We obtain by Reynold’s transport theorem and the assumed boundary values that

0 = d

dt

∫
�η


γ dx + (γ − 1)
∫

�η


γ div u dx .

Later we will make this step rigorous via the use of so-called renormalized formu-
lation of the continuity equation, see Section 3.1 below. Hence, we have

d

dt

∫
�η

(



|u|2
2

+ a

γ − 1

γ

)
dx

=
∫

M
τ (u · νη) ◦ �η|det D�η| dH2 − μ

∫
�η

|∇u|2 dx

− (λ + μ)

∫
�η

| div u|2 dx +
∫

�η


f · u dx .

The boundary term represents the forces which are acting on the shell. Naturally
these have to be in equilibrium with the bending and membrane potential of the
shell. Formally, this is achieved by multiplying the shell equation (1.7) with ∂tη.1

Using once more that u ◦ �η = ∂tην on M we find that

d

dt

∫
M

|∂tη|2
2

dx + d

dt
K (η) =

∫
M
F · ν∂tη dx =

∫
M
F · u ◦ �η dx .

1 Recall that we assume ε0ρS = 1.
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Thus, the right-hand sides of both equations cancel. Finally, we gain

∫
�η


(t)|u(t)|2
2

dx +
∫

�η

a

γ − 1

γ (t) dx + μ

∫ t

0

∫
�η

|∇u|2 dx dσ

+ (λ + μ)

∫ t

0

∫
�η

| div u|2 dx dσ +
∫

M

|∂tη|2
2

dH2 + K (η)

2

=
∫ t

0

∫
�η


f · u dx dσ +
∫ t

0

∫
M

g ∂tη dH2 dσ

+
∫

�η0

|q0|2
2
0

dx + K (η0)

2
+

∫
M

|η1|2
2

dH2.

This implies, by Hölder’s inequality and absorption, (1.12). In coherence with the
a-priori estimates we introduce the following weak formulation of the coupled
momentum equation:

∫
I

(
d

dt

∫
�η


u · ϕ dx −
∫

�η


u · ∂tϕ + 
u ⊗ u : ∇ϕ dx

)
dt

+
∫

I

∫
�η

(
μ∇u : ∇ϕ + (λ + μ) div u divϕ dx dt − a
γ divϕ

)
dx dt

+
∫

I

d

dt

∫
M

∂tηb dH2 −
∫

M
∂tη ∂t b dH2 +

∫
M

K ′(η) b dH2 dt

=
∫

I

∫
�η


f · ϕ dx dt +
∫

I

∫
M

g b dx dt

(2.3)

for all test-functions (b,ϕ) ∈ C∞
0 (M) × C∞(I × R

3) with trηϕ = bν.

2.2. Geometry

In this section we present the background for variable domains, see [32] for
further details. Let � ⊂ R

3 be a bounded domain with boundary ∂� of class C4

with outer unit normal ν. In the following � will be called the reference domain.
We define for α > 0 the set

Sα := {x ∈ R
3 : dist(x, ∂�) < α}.

There exists a positive number L > 0 such that the mapping

� : ∂� × (−L , L) → SL , �(q, s) = q + sν(q) (2.4)

is a C3-diffeomorphism. It is the so called Hanzawa transform. The details of
this construction may be found in [30]. This is due to the fact, that for C2-
domains the closest point projection is well defined in a strip around the bound-
ary. Indeed, its inverse �−1 will be written as �−1(x) = (q(x), s(x)). Here
q(x) = arg min{|q − x ||q ∈ ∂�} is the closest boundary point to x (which is
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an orthogonal projection) and s(x) = (x − q(x)) · ν(q(x)). For the sake of simpler
notation we assume with no loss of generality that

�(q, s) ∈ � for all s ∈ [−L , 0).

Hence, s(x) is the negative distance to the boundary if x ∈ � and the positive
distance, if x /∈ �. The orthogonality of the mapping is best characterized via the
equation ∇s(x) = ν(q(x)). For a continuous function η : ∂� → [−L , L] we
define the variable domain

�η := � \ SL ∪ {x ∈ SL : s(x) < η(q(x))}. (2.5)

Now

νη(x) is defined as the outer normal at the point x ∈ ∂�η. (2.6)

Definition 2.1. (Function spaces) For I = (0, T ), T > 0, and η ∈ C(I ×∂�)with
‖η‖ < L we set I × �η := ⋃

t∈I {t} × �η(t) ⊂ R
4. We define for 1 � p, r � ∞

L p(I ; Lr (�η)) := {
v ∈ L1(I × �η) : v(t, ·) ∈ Lr (�η(t))

for a.e. t, ‖v(t, ·)‖Lr (�η(t)) ∈ L p(I )
}
,

L p(I ; W 1,r (�η)) := {
v ∈ L p(I ; Lr (�η)) : ∇v ∈ L p(I ; Lr (�η))

}
.

Lemma 2.2. ([32], p. 210, 211 and references given there.) Let η : ∂� → (−L , L)

be a continuous function such that:

(a) There is a homomorphism �η : � → �η such that �η|�\SL is the identity;
(b) If η ∈ Ck(∂�) for k ∈ {1, 2, 3} then �η is a Ck-diffeomorphism.

As the impact of the geometry on the PDE is quite severe we will include an
explicit construction of�η. Since we will use the parametrisation below locally we
will assume Im(η) ⊂ [− L

2 , L
2 ], where L is a fixed size, such that � given in (2.4)

is well defined on the set ∂� × [−L , L]. We relate to any η : ∂� → (−L , L) the
mapping �η : � → �η, such that

�η : � → �η is invertible,

�η : ∂� → ∂�η is invertible.
(2.7)

This can be constructed as follows. Let ϕ ∈ C∞(
(− 3L

4 ,∞), [0, 1]) such that
ϕ ≡ 0 in [− 3L

4 ,− L
2 ] and ϕ ≡ 1 in [− L

4 ,∞). Moreover, we assume that ϕ is
a Ck diffeomorphism on [− L

2 ,− L
4 ] with ϕ(l)(− L

2 ) = 0 = ϕ(l)(− L
4 ) for all l ∈

{1, . . . , k}. We relate to any η : ∂� → (−L , L) the mapping �η : � → �η given
by

�η(x) =
{

q(x) +
(

s(x) + η(q(x))ϕ(s(x))
)
ν(q(x)), if dist(x, ∂�) < L ,

x, elsewhere
.

(2.8)
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Hence, the two one-to-one relations in (2.7) are satisfied.
If ‖η‖∞ < L

2 , the mapping �η can be extended such that

�η : � L
2 −η

→ � ∪ S L
2
is invertible. (2.9)

Due to the assumption ‖η‖∞ < L
2 we have that � ⊂ � L

2 −η
⊂ � ∪ SL . The

extension is obtained by setting

�η(x)

=

⎧⎪⎪⎨
⎪⎪⎩

q(x) + (s(x) + η(q(x)))ν(q(x)), if x �∈ � and s(x) + η(q(x)) � L
2 ,

q(x) +
(

s(x) + η(q(x))ϕ(s(x))
)
ν(q(x)), if x ∈ � and s(x) < L ,

x, elsewhere.

(2.10)

We collect a few properties of the above mapping �η.

Lemma 2.3. Let 1 < p � ∞ and σ ∈ (0, 1]. Then:

(a) If η ∈ W 2,2(∂�) with ‖η‖∞ < L, then the linear mapping v 
→ v ◦ �η

(v 
→ v ◦ �−1
η ) is continuous from L p(�η) to Lr (�) (from L p(�) to Lr (�η))

for all 1 � r < p;
(b) If η ∈ W 2,2(∂�) with ‖η‖∞ < L, then the linear mapping v 
→ v ◦ �η

(v 
→ v ◦ �−1
η ) is continuous from W 1,p(�η) to W 1,r (�) (from W 1,p(�) to

W 1,r (�η)) for all 1 � r < p;
(c) If η ∈ C0,1(∂�)with ‖η‖∞ < L, then the linear mapping v 
→ v◦�η (v 
→ v◦

�−1
η ) is continuous from W σ,p(�η) to W σ,p(�) (from W σ,p(�) to W σ,p(�η)).

The continuity constants depend only on �, p, r, σ and the respective norms of η.

Proof. The first two properties can be found in [32, Lemma2.6]. The third assertion
follows by transposition rule and the fact, that∇�η,∇�−1

η are uniformly bounded.
Indeed, let us assume that f ∈ W σ,p(�) for some σ ∈ (0, 1). Recall that this means
that

| f |p
W σ,p(�) =

∫
�

∫
�

| f (x) − f (y)|p

|x − y|3+pσ
dx dy < ∞. (2.11)

Then∫
�

∫
�

| f ◦ �η(x) − f ◦ �η(y)|p

|x − y|3+pσ
dx dy

=
∫

�η

∫
�η

| f (a) − f (b)|p

|�−1
η (a) − �−1

η (b)|3+rσ
| det(D�−1

η )| da | det(D�−1
η )| db

=
∫

�η

∫
�η

| f (a) − f (b)|p

|a − b|3+pσ

|�η(�
−1(a)) − �η(�

−1(b))|3+rσ

|�−1
η (a) − �−1

η (b)|3+rθ

| det(D�−1
η )| da | det(D�−1

η )| db
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� c‖det(D�−1
η )‖2∞‖∇�η‖∞

∫
�

∫
�

| f (a) − f (b)|p

|a − b|3+pσ
da db.

In case σ = 1, the result follows directly by the transposition rule. Since the
argument can be applied analogously to f ◦ �−1

η , the proof is completed. ��
The following lemma is a modification of [32, Cor. 2.9]:

Lemma 2.4. Let 1 < p < 3 and η ∈ W 2,2(∂�) with ‖η‖L∞(∂�) < L. Then the
linear mapping trη : v 
→ v◦�η|∂� is well defined and continuous from W 1,p(�η)

to W 1− 1
r ,r (∂�) for all r ∈ (1, p) and well defined and continuous from W 1,p(�η)

to Lq(∂�) for all 1 < q <
2p
3−p . The continuity constants depend only on �, p,

and ‖η‖W 2,2 .

Proof. The claim is a consequence of Lemma 2.3 and the continuity of the trace
operator on the reference domain �, which is assumed to be smooth. ��

The following lemma allows us to extend functions defined on the variable
domain to the whole space R

3 this is not trivial for η ∈ W 2,2(∂�) because the
boundary is notLipschitz continuous, however, it requires the additional assumption
‖η‖L∞(∂�) < L

2 :

Lemma 2.5. Let 1 � r < p < ∞ and η ∈ W 2,2(∂�) with ‖η‖L∞(∂�) < L
2 . There

is a continuous linear operator Eη : W 1,p(�η) → W 1,r (R3) such that Eη

∣∣
�η

= Id.

Proof. If η ∈ W 1,∞(∂�) the result is standard. There is a continuous linear oper-
ator

E p,A : W 1,p(A) → W 1,p(R3)

for any bounded Lipschtz domain A and 1 � p < ∞, see, for instance [2, Thm.
5.28], where even slightly less regularity of the boundary is required.

For the general case we use the extension above to transfer from a functions
space over the variable domain to a function from a functions space over the refer-
ence domain. Indeed Lemma 2.3 implies that the mapping

W 1,p(�η) � u 
→ uη ∈ W 1,r̃ (�), uη(x) = u(�η(x))

is continuous for any 1 � r̃ < p. Since � is assumed to have a uniform Lipschitz
boundary it is possible to extend the function uη to the whole space. Hence, using
the Extension operator on �, we find

Er̃ ,�(uη) ∈ W 1,r̃ (R3) and Er̃ ,�(uη)|� = uη.

In order to transform back we use the fact, that �η is invertible on �∗
η where

� ⊂ �∗
η due to the assumption ‖η‖L∞(∂�) < L

2 , cf. (2.9). By Lemma 2.3 we find
that the mapping

W 1,r̃ (�∗
η) � v 
→ vη ∈ W 1,r (� ∪ S L

2
), vη(x) = v(�−1

η (x))
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is continuous for any 1 � r < r̃ < p. Finally, we set

Eηu = Er,�∪S L
2

(
(Er̃ ,�uη)

∣∣
�∗

η

)
η

u ∈ W 1,p(�η).

It is now easy to check that Eη has the required properties. ��
Remark 2.6. If η ∈ L∞(I ; W 2,2(∂�)) we obtain non-stationary variants of the
results stated above.

2.3. Convergence on Variable Domains

Due to the variable domain the framework of Bochner spaces is not available.
Hence, we cannot use the Aubin–Lions compactness theorem. In this subsectionwe
are concerned with the question how to get compactness anyway. We start with the
following definition of convergence in variable domains. Convergence in Lebesgue
spaces follows from an extension by zero.

Definition 2.7. Let (ηi ) ⊂ C(I × ∂�; [−θ L , θ L]), θ ∈ (0, 1), be a sequence with
ηi → η uniformly in I × ∂�. Let p ∈ [1,∞] and k ∈ N0. Then:

(a) Wesay that a sequence (gi ) ⊂ L p(I, Lq(�ηi )) converges to g in L p(I, Lq(�ηi ))

strongly with respect to (ηi ), in symbols gi →η g in L p(I, Lq(�ηi )), if

χ�ηi
gi → χ�η g in L p(I, Lq(R3));

(b) Let p, q < ∞. We say that a sequence (gi ) ⊂ L p(I, Lq(�ηi )) converges
to g in L p(I, Lq(�ηi )) weakly with respect to (ηi ), in symbols gi ⇀η

g in L p(I, Lq(�ηi )), if

χ�ηi
gi ⇀ χ�η g in L p(I, Lq(R3));

(c) Let p = ∞ and q < ∞. We say that a sequence (gi ) ⊂ L∞(I, Lq(�ηi ))

converges to g in L∞(I, Lq(�ηi )) weakly∗ with respect to (ηi ), in symbols
gi ⇀∗,η g in L∞(I, Lq(�ηi )), if

χ�ηi
gi ⇀∗ χ�η g in L∞(I, Lq(R3)).

Note that in case of one single η (i.e. not a sequence) the space L p(I, Lq(�η))

(with 1 � p < ∞ and 1 < q < ∞) is reflexive and we have the usual duality
pairing

L p(I, Lq(�η)) ∼= L p′
(I, Lq ′

(�η)), (2.12)

provided that η is smooth enough, see [41]. Definition 2.7 can be extended in a
canonical way to Sobolev spaces.We say that a sequence (gi ) ⊂ L p(I, W 1,q(�ηi ))

converges to g ∈ L p(I, W 1,q(�ηi )) strongly with respect to (ηi ), in symbols

gi →η g in L p(I, W 1,p(�ηi )),

if both gi and∇gi converges (to g and∇g respectively) in L p(I, Lq(�ηi )) strongly
with respect to (ηi ) (in the sense of Definition 2.7 a)). We also define weak and
weak∗ convergence in Sobolev spaceswith respect to (ηi )with an obviousmeaning.
Note that an extension to higher order Sobolev spaces is possible but not needed
for our purposes.
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2.4. A Lemma of Aubin–Lions Type for Time Dependent Domains

For the next compactness lemma we require the following assumptions on the
functions describing the boundary:

(A1) The sequence (ηi ) ⊂ C(I × M; [−θ L , θ L]), θ ∈ (0, 1), satisfies

ηi ⇀∗ η in L∞(I, W 2,2
0 (M)),

∂tηi ⇀∗ ∂tη in L∞(I, L2(M));
(A2) Let (vi ) be a sequence such that for some p, s ∈ [1,∞) we have

vi ⇀η v in L p(I ; W 1,s(�ηi ));
(A3) Let (ri ) be a sequence such that for some m, b ∈ [1,∞) we have

ri ⇀η r in Lm(I ; Lb(�ηi )).

Assume further that there are sequences (H1
i ), (H2

i ) and (hi ), bounded in
Lm(I ; Lb(�ηi )), such that ∂t ri = div divH1

i + divH2
i + hi in the sense of

distributions, i.e.,∫
I

∫
�ηi

ri ∂tϕ dx dt =
∫

I

∫
�ηi

H1
i · ∇2ϕ dx dt +

∫
I

∫
�ηi

H2
i · ∇ϕ dx dt

+
∫

I

∫
�ηi

hi ϕ dx dt

for all ϕ ∈ C∞
0 (I × �ηi ).

Lemma 2.8. Let (ηi ), (vi ) and (ri ) be sequences satisfying (A1)–(A3) where 1
s∗ +

1
b = 1

a < 1 and 1
m + 1

p = 1
q < 1.2 Then there is a subsequence with

vi ri ⇀ vr weakly in Lq(I, La(�ηi )). (2.13)

Remark 2.9. Assumption (A3) in Lemma 2.8 can be extended in an obvious way
to the case of higher order distributional derivatives. We have chosen the version
above as it is most suitable for our applications.

Proof. Firstwe show local compactness.Consider a cube Q = J×B such that Q �
�I

ηi
for all i large enough. By (A3)we know that ri is bounded in Lm(I ; Lb(B)) and

that ∂t ri is bounded in Lm(I ; W −2,b(B)). We can apply the classical Aubin–Lions
compactness Theorem [35] for the triple

Lb(B) ↪→↪→ W −1,b(B) ↪→ W −2,b(B),

and gain

ri → r in Lm(J ; W −1,b(B)). (2.14)

2 Here,we set s∗ = 3s
3−s , if s ∈ (1, 3) andotherwise s∗ canbefixed in (1, ∞) conveniently.
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Note that we do not have to take a subsequence since the original sequence already
converges by (A3). Now note that (A1) implies

ηi → η in Cα(I × M)

for some α ∈ (0, 1) by interpolation. Consequently, for a given κ > 0 there is
i0 = i0(κ) such that

L4
(

I × (�η \ �l)
)

� κ ∀l � i0, (2.15)

where we have set

�l =
⋂
i�l

�ηi .

Now we fix a measurable set Aκ � I ×�l with L4
((

I ×�l
) \ Aκ

)
� κ and cover

it by at most countable many cubes Qk = Jk × Bk such that

Aκ ⊂
⋃

k

Qk �
(
I × �l

)
.

They can be chosen in such a way that we find a partition of unity (ψk) associated
to the family Qk such that ψk ∈ C∞

0 (Qk) and∑
ψk = 1 in Aκ .

In particular, by taking a diagonal sequence, we can assume that (2.14) holds with
Q = Qk . For w ∈ C∞

0 (I × R
3), we have∫

I

∫
R3

(
χ�ηi

rivi − χ�ηrv
)
w dx dt

=
∑

k

∫
I

∫
R3

(
rivi − rv

)
ψkw dx dt

+
∫

I

∫
R3

(
χ�ηi

rivi − χ�ηrv
) ∑

k

(1 − ψk)w dx dt.

On account of (2.14) (with Q = Qk) and (A2) the first integral on the right-hand
side converges to zero. Due to (2.15) the second integral can be bounded in terms
of κ . Here, we took into account the boundedness of χ�ηi

rivi in Lr (I × R
3) for

some r > 1 which is a consequence of the assumptions 1
s + 1

b < 1 and 1
m + 1

p < 1.
As κ is arbitrary we have shown

lim
i→∞

∫
I

∫
R3

(
χ�ηi

rivi − χ�ηrv
)
w dx dt = 0,

which means we have

χ�ηi
rivi → χ�ηrv in D′(I × R

3). (2.16)

However, our assumptions imply that χ�ηi
rivi converges weakly in Lq(I, La(R3))

at least after taking a subsequence. As a consequence of (2.16) we can identify the
limit and the claim follows. ��
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Remark 2.10. In the case ri = vi , we find that∫ T

0

∫
�ηi

|vi |2 dx dt →
∫ T

0

∫
�η

|v|2 dx dt.

Since weak convergence and norm convergence implies strong convergence, we
find (by interpolation) that

vi →η v strongly in L2(I, L2(�ηi )).

Showing such a result for the velocity field in the context of incompressible fluid
mechanics is the main achievement of the paper [32]. As opposed to (A3), the
time derivative is only a distribution acting on divergence-free test-functions in the
incompressible case. In contrast to the compactness arguments in [32], the proof
of Lemma 2.8 does not face this difficulty.

3. The Continuity Equation in Variable Domains

3.1. Renormalized Solutions in Time Dependent Domains

This subsection is concerned with the study of the continuity equation

∂t
 + div(
u) = 0 (3.1)

in a variable domain �η with η ∈ L∞(I ; W 2,2(∂�)) and u ∈ L2(I ; W 1,2(�η)).
Observe the following interplay of the two terms of the material derivative, that
shall be used many times within this work. A (strong) solution to (3.5) satisfies for
any ψ ∈ C∞(I × R

3)∫
�η

(
∂t
ψ + div(
u)ψ

)
dx

=
∫

�ζ

(
∂t (
ψ) + div(
uψ)

)
dx −

∫
�η

(

∂tψ + 
u · ∇ψ

)
dx

= d

dt

∫
�η


ψ dx +
∫

∂�η


ψ(u − (∂tην) ◦ �η) · νηdH2 dt

−
∫

�η

(

∂tψ + 
u · ∇ψ

)
dx .

In the case of our consideration we find, due to trζ (u) = ∂tην, that∫
I

d

dt

∫
�η


ψ dx dt −
∫

I

∫
�η

(

∂tψ + 
u · ∇ψ

)
dx dt = 0 (3.2)

for all ψ ∈ C∞(I ×R
3). Equation (3.2) will serve as a weak formulation of (3.1).

It is worth mentioning, that by taking ψ ≡ χ[0,t] in (3.2) we find that the total mass
is conserved in the sense that∫

�η(t)


(t) dx =
∫

�η(0)


(0) dx
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for all t ∈ I . FollowingDiPerna and Lions [15] we will introduce a renormalized
formulation which will be of crucial importance for the reminder of the paper.
An important observation is that the formulation in (3.2) can be extended to the
whole space despite the fact that u does not have zero boundary values (this will be
essential to prove strong convergence of the density, see Section 6.4). In fact, we
have ∫

I

d

dt

∫
R3


ψ dx dt −
∫

I

∫
R3

(

∂tψ + 
u · ∇ψ

)
dx dt = 0 (3.3)

for all ψ ∈ C∞(I × R
3) provided we extend 
 by zero. It is essential to introduce

the principle of normalized solutions on variable domains. To be explicit we wish
to study the family of solutions θ(
), where θ ∈ C2(R+;R+), such that θ ′′ = 0 for
large values and θ(0) = 0. In what follows we only argue formally. For a rigorous
derivation of the renormalized continuity equation we refer to the next subsection
and the derivations in Sections 6.3 and 7.2. We may use the test function θ ′(
)ψ

with ψ ∈ C∞(I × R
3) in (3.3) and hence find that

0 =
∫

I

d

dt

∫
R3


θ ′(
)ψ dx dt −
∫

I

∫
R3

(
∂t (
θ ′(
)ψ) − ∂t
θ ′(
)ψ

+ div(
θ ′(
)uψ)
)
dx dt +

∫
I

∫
R3

(
∇
θ ′(
) · uψ + 
θ ′(
) div u

)
dx dt

=
∫

I

d

dt

∫
R3


θ ′(
)ψ dx dt −
∫

I

∫
R3

(
∂t (
θ ′(
)ψ) + div(
θ ′(
)uψ)

)
dx dt

+
∫

I

∫
R3

(
∂tθ(
)ψ + div(θ(
)u) ψ

)
dx dt

+
∫
R3

(
θ ′(
) − θ(
)) div uψ dx dt.

Now, integration by parts and Reynolds’ transport theorem imply that the first line
vanishes. Again, integration by parts and Reynolds’ transport theorem transfer the
second line in the appropriate weak formulation. Hence, we find the renormalized
formulation is

0 =
∫

I

d

dt

∫
�η

θ(
)ψ dx dt −
∫

I

∫
�η

(
θ(
)∂tψ + θ(
)u · ∇ψ

)
dx dt

+
∫

I

∫
�η

(
θ ′(
) − θ(
)) div uψ dx dt
(3.4)

for all ψ ∈ C∞(I × R
3).

3.2. The Damped Continuity Equation in Time Dependent Domains

We will need very explicit a-priori information about our approximation of
the density 
. The necessary result is collected in Theorem 3.1 below. For the
analogous results for fixed in time domains see [21, section 2.1]. We will assume
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that the moving boundary is prescribed by a function ζ of class C3(I × M). For a
given function w ∈ L2(I ; W 1,2(�ζ )) and ε > 0 we consider the equation

∂t
 + div(
w) = ε	
 in I × �ζ , 
(0) = 
0 in �ζ(0),

∂νζ 

∣∣
∂�ζ

= 1
ε

(w − (∂tζν) ◦ �−1

ζ ) · νζ on I × ∂�ζ .
(3.5)

A solution to (3.5) satisfies (formally) for any ψ ∈ C∞(I × R
3)

∫
�ζ

(
∂t
ψ + div(
w)ψ

)
dx

=
∫

�ζ

(
∂t (
ψ) + div(
wψ)

)
dx −

∫
�ζ

(

∂tψ + 
w · ∇ψ

)
dx

= d

dt

∫
�ζ


ψ dx +
∫

∂�ζ


ψ(w − (∂tζν) ◦ �ζ ) · νζdH2 dt

−
∫

�ζ

(

∂tψ + 
w · ∇ψ

)
dx .

On the other hand, we have
∫

�ζ

ε	
 ψ dx =
∫

�ζ

ε∂ν
 ψ dH2 −
∫

I

∫
�ζ

ε∇
 · ∇ψ dx dt

=
∫

∂�ζ


ψ(w − (∂tζν) ◦ �ζ ) · νζdH2 dt

−
∫

I

∫
�ζ

ε∇
 · ∇ψ dx dt.

This motivates the choice of the Neumann boundary values in (3.5) which implies
the following neat weak formulation:

∫
I

d

dt

∫
�ζ


ψ dx dt −
∫

I

∫
�ζ

(

∂tψ + 
w · ∇ψ

)
dx dt

= −
∫

I

∫
�ζ

ε∇
 · ∇ψ dx dt (3.6)

for all ψ ∈ C∞(I × R
3). We wish to emphasize that this weak formulation is

canonical with respect to the moving boundary, as it is the only formulation which
preserves mass. This turns out to be the essential property to gain the necessary
estimates and correlations.

Theorem 3.1. Let ζ ∈ C3(I × M, [ L
2 , L

2 ]) be the function describing the boundary.
Assume that w ∈ L2(I ; W 1,2(�ζ )) ∩ L∞(I × �ζ ) and 
0 ∈ L2(�ζ(0)). Then:

(a) There is a unique weak solution 
 to (3.6) such that


 ∈ L∞(0, T ; L2(�ζ )) ∩ L2(0, T ; W 1,2(�ζ ));
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(b) Let θ ∈ C2(R+;R+) be such that θ ′(s) = 0 for large values of s and θ(0) = 0.
Then the following holds, for the canonical zero extension of 
 ≡ 
χ�ζ :

∫
I

d

dt

∫
R3

θ(
)ψ dx dt −
∫

I×R3
θ(
) ∂tψ dx dt

= −
∫

I×R3

(

θ ′(
) − θ(
)

)
divwψ dx +

∫
I×R3

θ(
)w · ∇ψ dx dt

−
∫

I×R3
εχ�ζ ∇θ(
) · ∇ψ dx dt

−
∫

I×R3
εχ�ζ θ

′′(
)|∇
|2ψ dx dt (3.7)

for all ψ ∈ C∞(I × R
3);

(c) Assume that 
0 � 0 a.e. in �ζ(0). Then we have 
 � 0 a.e. in I × �ζ .

Proof. In order to find a solution to (3.6) we discretise the system. It is standard to
find a smooth orthonormal basis (ω̃k)k∈N of W 1,2(�). Now define pointwise in t

ωk := ω̃k ◦ �−1
ζ .

By Lemma 2.2 we still know that ωk belongs to the class C3(�ζ (t)). Obviously,
(ωk)k∈N forms a basis of W 1,2(�ζ (t)). We fix the initial values as the L2(�ζ (0))-
projection onto WN = Span{ω1, . . . ωN } such that


N
0 → 
0 in L2(�ζ(0)).

We are looking for a function 
N = ∑
βkωk satisfying for all l = 1, . . . , N

d

dt

∫
�ζ


N ωl dx −
∫

�ζ

(

N ∂tωl + 
Nw · ∇ωl

)
dx

= −
∫

�ζ

ε∇
N · ∇ωl dx, (3.8)

with initial data 
N
0 . This is equivalent to

dβk

dt

∫
�ζ

ωkωl dx = −βk
d

dt

∫
�ζ

ωkωl dx + βk

∫
�ζ

(
ωk∂tωl + ωkw · ∇ωl

)
dx

− βk

∫
�ζ

ε∇ωk · ∇ωl dx, (3.9)

and βl(0) = βl
0. Here, the βk’s are the unknowns (as functions only on time). Now,

we define the matrices A,B ∈ R
N×N by

Ak,l =
∫

�ζ

ωkωl dx,

Bk,l = − d

dt

∫
�ζ

ωkωl dx +
∫

�ζ

(
ωk∂tωl + ωkw · ∇ωl

)
dx
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−
∫

�ζ

ε∇ωk · ∇ωl dx .

Because (ωk) is a basis of W 1,2(�ζ(t)) the matrixA is positive definite. Hence (3.9)
can be written as β ′ = A−1Bβ where β is the vector containing the βk’s. This is
a linear system of ODEs which has a unique solution. In order to pass to the limit
N → ∞ we need uniform a priori estimates. So, we multiply (3.9) by βl and sum
over l such that

d

dt

∫
�ζ

|
N |2
2

dx +
∫

�ζ

ε|∇
N |2 dx

=
∫

∂�ζ

|
N |2
2

(∂tζν) ◦ �−1
ζ · νζdH2 +

∫
�ζ


Nw · ∇
N dx

� c
∫

∂�ζ

|
N |2dH2 + c
∫

�ζ

|
N ||∇
N | dx =: (I )N + (I I )N .

We use Lemma 2.3 and the trace theorem W
1
2 ,2(�ζ ) → L2(∂�ζ ) (note that ζ is

Lipschitz continuous uniformly in time) to conclude that (see [2, Chapter 7.7])

(I )N = ‖
N ‖2L2(∂�ζ )
� c(ζ )

∥∥
N
∥∥2

W
1
2 ,2

(�ζ )
= c(ζ )

(∥∥
N
∥∥2

L2(�ζ )
+ ∣∣
N

∣∣2
W

1
2 ,2

(�ζ )

)
,

where | · |
W

1
2 ,2

(�ζ )
is given by (2.11). Interpolating W

1
2 ,2 between L2 and W 1,2

(see see [2, Chapter 7.3]) we obtain for κ > 0 arbitrary

(I )N =
∫

∂�ζ

|
N |2dH2 � κ

∫
�ζ

|∇
N |2 dx + c(κ)

∫
�ζ

|
|2 dx . (3.10)

The same estimate holds for (I I )N by a simple application of Young’s inequality.
Combining both and applying Gronwall’s lemma we have shown

sup
I

∫
�ζ

|
N |2 dx +
∫

I

∫
�ζ

ε|∇
N |2 dx dt � C
∫

�ζ(0)

|
0|2 dx

uniformly in N , where C depends on ξ , ‖w‖∞ and |I | only. Hence, we obtain the
existence of a limit function


 ∈ L∞(I ; L2(�ζ )) ∩ L2(I ; W 1,2(�ζ ))

using (2.12). Moreover, 
N converges weakly (weakly∗) to 
. The passage to the
limit in (3.8) is obvious as it is a linear equation. The uniqueness is shown in the
following way: assume that we have two solutions ρ1, ρ2. The differences of the
two solutions 
1 − 
2 and ρ2 − ρ1 are both solutions with zero initial datum. Now
we may take ϕ ≡ 1 as a test-function for both equations and find that

0 �
∫

�ζ (t)

(

1(t) − 
2(t)

)
dx � 0 for all t ∈ I.

Hence, a) is shown.
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Next we show b). We extend 
 by zero to I × R
3 and obtain

∫
I

d

dt

∫
R3


 ψ dx dt −
∫

I

∫
R3

(

 ∂tψ + 
w · ∇ψ

)
dx dt

= −
∫

I

∫
R3

εχ�ζ ∇
 · ∇ψ dx dt

for all ψ ∈ C∞(I × R
3). Now, we mollify the equation in space using a standard

convolutionwith parameter κ > 0. Thenwe find that the following PDE is satisfied:

∂t
κ + div
(

wχ�ζ

)
κ

= div
(
χ�ζ ∇


)
κ

in I × R
3. (3.11)

We observe that this equation implies in particular, that ∂t
κ is a smooth function in
space. To proceedwe need to use an extension operator onw. Since�ζ is uniformly
in C2 there exists a continuous linear extension operator

Eζ : W 1,2(�ζ ) → W 1,2(R3),

see, for instance, [2, Thm. 5.28]. Using this operator, we can reformulate (3.11) by:

∂t
κ + div
(

κEζw

) = rκ + ε div
(
χ�ζ ∇


)
κ

in I × R
3, (3.12)

where rκ = div(
κEζw)−div(
Eζw)κ . We infer from the commutator lemma (see
e.g. [36, Lemma 2.3]) that for a.e. t

‖rκ‖Lq (R3) � ‖w‖W 1,2(R3)‖
‖L10/3(R3),
1
q = 1

2 + 3
10 ,

as well as

rκ → 0 in Lq(R3) (3.13)

a.e. in I . Note that a) implies that 
 ∈ L10/3(I × �ζ ). Now we multiply (3.12) by
θ ′(
κ) and obtain

∂tθ(
κ) + div
(
θ(
κ)Eζw

) + (

κθ ′(
κ) − θ(
κ)

)
div Eζw

= rκθ ′(
κ) + div
(
ε
(
χ�ζ ∇


)
κ
θ ′(
κ)

)
− (

χ�ζ ∇

)
κ

· θ ′′(
κ)∇
κ. (3.14)

Due to the properties of the mollification and θ ∈ C2 we have (at least after taking
a subsequence)

θ(
κ) → θ(
) in Lq(I × R
3),

θ(
κ) ⇀∗ θ(
) in L∞(I × R
3)

for all q < ∞. The same is true for θ ′(
κ) and θ ′′(
κ). Consequently, we have
(
χ�ζ ∇


)
κ

· θ ′′(
κ)∇
κ ⇀ χ�ζ θ
′′(
)|∇
|2 in L1(I × R

3)

and
(
χ�ζ ∇


)
κ
θ ′(
κ) ⇀ χ�ζ θ

′(
)∇
 in L2(I × R
3).
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Hence, multiplying (3.14) byψ ∈ C∞(I ×R
3) and integrating over I ×R

3 implies
∫

I
∂t

∫
R3

θ(
)ψ dx dt −
∫

I×R3
θ(
) ∂tψ dx dt

+
∫

I×R3

(

θ ′(
) − θ(
)

)
div Eζwψ dx dt

=
∫

I×R3
θ(
)Eζw · ∇ψ

−
∫

I×R3
εχ�ζ ∇θ(
) · ∇ψ dx dt −

∫
I×R3

χ�ζ θ
′′(
)|∇
|2ψ dx dt.

This proves b) since Eζw ≡ w in�ζ . In order to prove c) we use (3.7) forψ = χ[0,t]
and θ = θn where θn is a smooth approximation to θ(z) = z− = −min{z, 0}. It is
possible to define θn as a convex function such that

θn → θ, θ ′
n → θ ′ (3.15)

pointwise as n → ∞ as well as

|θn(z)| � c (1 + |z|), |θ ′
n(z)| � c, (3.16)

uniformly in n and z. This yields
∫
R3

θn(
(t)) dx −
∫
R3

θn(
0) dx

= −
∫ t

0

∫
R3

(

θ ′

n(
) − θn(
)
)
divw dx −

∫ t

0

∫
R3

εχ�ζ θ
′′
n (
)|∇
|2 dx dt

� −
∫ t

0

∫
R3

(

θ ′

n(
) − θn(
)
)
divw dx .

On account of (3.15) and (3.16) we can pass to the limit by dominated convergence,
so we have

∫
R3

θ(
(t)) dx −
∫
R3

θ(
0) dx � −
∫ t

0

∫
R3

(

θ ′(
) − θ(
)

)
divw dx = 0,

which implies θ(
) = 0 a.e. by the definition of θ and the non-negativity assump-
tion on 
0. This implies c). ��

4. The Regularized System

The aim of this section is to prepare the existence of a weak solution to the
regularized system with artificial viscosity and pressure. In order to do so we have
to regularize the convective terms and the variable domain.We start by introducing a
suitable regularization. Here and in the following we will use, whenever necessary,
zero-extensions to the whole space for quantities which we wish to regularize via
convolution without further reference.
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4.1. Definition of the Regularized System

We will construct a mollification of both ζ and v. At first, for any

ζ ∈ C
(

I × ∂�;
[

− L

2
,

L

2

])
,

we introduce a standard regularizer. Since we cannot extend ζ to R in time, we
use convolution with half intervals. Firstly, we take τ−

κ ∈ C∞
0 ((−κ, 0],R+) and

τ+
κ ∈ C∞

0 ([0, κ),R+) with
∫

τ±
κ = 1. Secondly, we take ψ ∈ C∞([0, T ], [0, 1])

such thatψ = 0 on [0, T/4],ψ = 1 on [3/4T, T ]Thenwe define τκ = ψτ+
κ +(1−

ψ)τ−
κ . Now, we convolute ζ with the product of τκ and a standard mollification

kernel ϕκ on ∂� (i.e. a smooth function with ϕκ ⇀∗ δ0 and
∫

ϕκ = 1) and define
Rκζ(t, q) = (τκϕκ ∗ζ )(t, q).By classical theory we have the following properties:

Lemma 4.1. (a) We have Rκζ ∈ C4(I × M).
(b) If κ → 0 we have Rκζ → ζ uniformly.
(c) If ζ ∈ L2(I ; W 2,2

0 (M)) then we haveRκζ → ζ in L2(I ; W 2,2
0 (M)) for κ → 0.

(d) If ∂tζ ∈ L p(I × M) we have ∂tRκζ = Rκ(∂tζ ) → ∂tζ in L p(I × M) for
κ → 0.

(e) If ζ ∈ Cγ (I × M) for some γ ∈ (0, 1) we have Rκζ → ζ in Cγ (I × M) as
κ → 0.

(f) We have max |Rκζ | � max |ζ |.
On the other hand, for functions belonging to L2(I ; L2(R3))we defineψκ to be

the standard space-time mollification kernel with parameter κ . Note that functions
defined on the variable domain can be extended to the whole space by zero (i.e.
a smooth function with ψk ⇀∗ δ0 and

∫
ψκ = 1). To be precise, we will use the

definition for the regularization

(Rκv)(x) :=
∫
Rn+1

ψκ(t − s, y − x)χI×�R κ ζ
(s, y)v(s, y)dy dσ.

Since we may assume that ψκ is an even function, we find that, for u, v ∈
L1
loc(R

n+1),

∫
I×�R κ ζ

Rκ vu dx dt =
∫

I×�R κ ζ

vRκ u dx dt.

With no loss of generality, we assume that 
0,q0 are defined in the whole space
R
3. We also set u0 = q0


0
and assume that u0 ∈ L2(R3). Finally, in accordance with

(1.10), we assume that

trRκ η0u0 = η1ν.

This can be achieved as done in [32][p. 234, 235] (in fact, our situation is easier as
we do not have to take into account the divergence-free constraint).
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The aim is therefore to get a solution to the following system: we are looking
for a triple (η, 
,u) such that

∂t
 + div(
Rκ u) = ε	
 in I × �R κ η,

∂t ((
 + κ)u) + div(
Rκ u ⊗ u) = ε	(ρu) + μ	u + (λ + μ)∇ div u

− Rκ ∇(a
γ + δ
β) + 
f in I × �R κ η,

∂νR κ η

(·, · + Rκ ην) = 0, u(·, · + Rκ ην) = ∂tην in I × ∂�,


(0) = 
0, (
u)(0) = q0 in �R κ η(0),

∂2t η + K ′(η) = −ν · ( − τν
) ◦ �−1

R κ η| det D�R κ η| in I × M,

τ = ε∇(ρu) − 2μεD(u) − λ div u I

+ Rκ (a
γ + δ
β)I

η = 0, ∇η = 0 in I × ∂ M,

η(0) = η0, ∂tη(0) = η1 in M. (4.1)

The choice of the regularization of the above system will be clear by defining the
weak formulation. In fact, the weak form of the above system can be written in two
equations. Every other piece of information will be imposed upon by the choice
of convenient function spaces. For this reason we define the following function
spaces: we set

Y I := W 1,∞(I ; L2(M)) ∩ L∞(I ; W 2,2
0 (M))

and for ζ ∈ Y I with ‖ζ‖∞ < L we define

X I
ζ := L2(I ; W 1,2(�ζ(t))).

A weak solution to (4.1) is a triplet (η,u, 
) ∈ Y I × X I
Rκ η

× X I
Rκ η

that satisfies
the following:

(K1) The regularized weak momentum equation
∫

I

d

dt

∫
�R κ η

(
 + κ)u · ϕ dx dt − κ

∫
I

∫
�R κ η


u · ∂tϕ dx dt

−
∫

I

∫
�R κ η


Rκ u ⊗ u : ∇ϕ dx dt +
∫

I

∫
�R κ η

μ∇u : ∇ϕ dx dt

+
∫

I

∫
�R κ η

(λ + μ) div u divϕ dx dt

−
∫

I

∫
�R κ η

(a
γ + δ
β) divRκ ϕ dx dt

+
∫

I

(
d

dt

∫
M

∂tη b dH2 −
∫

M
∂tη ∂t b dH2 +

∫
M

K ′(η) b dH2
)
dt

= −
∫

I

∫
�R κ η

ε∇(
u) : ∇ϕ dx dt +
∫

I

∫
�R κ η


f · ϕ dx dt
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+
∫

I

∫
M

g b dx dt (4.2)

for all test-functions (b,ϕ) ∈ C∞
0 (M) × C∞(I × R

3) with trRκ ηϕ = bν.
Moreover, we have (
u)(0) = q0, η(0) = η0 and ∂tη(0) = η1.

(K2) The regularized continuity equation
∫

I

(
d

dt

∫
Rκη


ψ dx −
∫
Rκη

(

 ∂tψ + 
Rκu · ∇ψ

)
dx

)
dt

+ ε

∫
I

∫
�R κ η

∇
 · ∇ψ dx dt = 0
(4.3)

for all ψ ∈ C∞(
I × R

3
)
and we have 
(0) = 
0.

(K3) The boundary condition trRκ ηu = ∂tην holds in the sense of Lemma 2.4

For more details on the interplay of the convective term and the time derivative on
the boundary we refer to the next subsection.

4.2. Formal a Priori Estimates for the Regularized System

To understand the particular regularization we briefly discuss how to obtain

formal a priori estimates for (4.1). By taking |u|2
2 in the continuity equation and

subtracting it from the momentum equation tested by the couple (u, ∂tη) we find
∫

�R κ η

(
(t)

2
+ κ

)
|u(t)|2 dx +

∫ t

0

∫
�R κ η

(
μ|∇u|2 + (λ + μ)|div u|2) dx dσ

+
∫ t

0

∫
�R κ η

ε
|∇u|2 dx dt +
∫

M

|∂tη(t)|2
2

dH2 + K (η(t))

2

−
∫ t

0

∫
�R κ η

(
γ + δ
β) divRκ u dx dσ

=
∫

�R κ η(0)

|q0|2
2

dx +
∫

M

|η0|2
2

dH2 +
∫

M

|η1|2
2

dH2 + K (η0)

2

+
∫ t

0

∫
�R κ η


f · u dx dσ +
∫ t

0

∫
M

g ∂tη dH2 dσ. (4.4)

The right-hand side of the inequality is as wanted, since all dependencies on η,u
can be absorbed to the left hand side. Therefore, the only term that needs an extra
treatment is the pressure term. We multiply the continuity equation by 
γ−1 to
obtain

0 = d

dt

∫
�R κ η


γ dx +
∫

�R κ η

(γ − 1)
γ divRκ u dx

+ ε

∫
�R κ η

γ (γ − 1)
γ−2|∇
|2 dx .
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Repeating the above for θ(
) = 
β , we can estimate the pressure term in (4.4)
accordingly and deduce the following a priori estimate:

sup
t∈I

∫
�R κ η

(
 + κ)|u|2 dx + sup
t∈I

∫
�R κ η

(
a
γ + δ
β

)
dx +

∫
I

∫
�R κ η

|∇u|2 dx dt

+ ε

∫
I

∫
�R κ η


γ−2|∇
|2 + 
|∇u|2 dx dt + sup
t∈I

∫
M

|∂tη|2 dH2 + sup
t∈I

K (η)

� c

(∫
�R κ η(0)

|q0|2

0

dx +
∫
�R κ η(0)

(



γ
0 + δ


β
0

)
dx +

∫
I
‖f‖2L2(�R κ η)

dt

)

+ c

( ∫
M

|η0|2 dH2 +
∫

M
|η1|2 dH2 + K (η0) +

∫
I
‖g‖2L2(M)

dt

)
, (4.5)

with a constant c that is independent of κ, δ, ε. The rest of this section is now
dedicated to the proof of the following existence theorem:

Theorem 4.2. Suppose that η0, η1, 
0,q0, f and g are regular enough to give sense
to the right-hand side of (4.5), that 
0 � 0 a.e. and (1.10) is satisfied. Then there
exists a solution (η,u, 
) ∈ Y I × X I

Rκ η
× X I

Rκ η
to (K1)–(K3). Here, we have

I = (0, T∗), where T∗ < T only if limt→T ∗ ‖η(t, ·)‖L∞(∂�) = L
2 . The solution

satisfies the energy estimate (4.5).

Remark 4.3. The restriction ‖η‖∞ < L
2 is needed for the construction of our

extension operator, see Lemma 2.5. The latter one is used for the renormalized
continuity equation, see Theorem 3.1 b) and, in particular, Section 6.3. This is why
we keep the assumption ‖η‖∞ < L

2 during the whole construction and only relax
it at the very end in Section 7.4.

4.3. Definition of the Decoupled System

The strategy for proving Theorem 4.2 is to first construct a weak solution to
a decoupled system and eventually apply a fixed point theorem. Let us consider a
given deformation ζ ∈ C(I × M) and a given function v ∈ L2(I ;R3). We will
decouple (4.1), by replacing there Rκ η with Rκ ζ and Rκ u by Rκ v. Firstly, we
find from Theorem 3.1 that there exists a unique 
 ∈ XRκ ζ that satisfies

∫
I

d

dt

∫
�R κ ζ


 ψ dx −
∫

�R κ ζ

(

 ∂tψ dx dt + 
Rκ v · ∇ψ

)
dx dt

+ ε

∫
I

∫
�R κ ζ

∇
 · ∇ψ dx dt = 0
(4.6)

for all ψ ∈ C∞(
I × R

3
)
. Observe that 
 exists independently of u, η.
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Secondly, we repeat the interplay of the boundary deformation with the con-
vective term for the momentum equation and find that smooth functions satisfy∫

�R κ ζ

(
∂t ((
 + κ)u) · ϕ + div(
Rκ v ⊗ u) · ϕ

)
dx

=
∫

�R κ ζ

(
∂t ((
 + κ)u · ϕ) + div(
Rκ v ⊗ uϕ)

)
dx

−
∫

�R κ ζ

(
(
 + κ)u · ∂tϕ + 
Rκ v ⊗ u : ∇ϕ

)
dx

= d

dt

∫
�R κ ζ

(
 + κ)u · ϕ dx −
∫

�R κ ζ

(

u · ∂tϕ + 
Rκ v ⊗ u : ∇ϕ

)
dx

+
∫

∂�R κ ζ


u · ϕ
(
Rκ v · νRκ ζ − (∂t Rκ ζν) ◦ �−1

Rκ ζ

)
dH2

+ κ

∫
∂�R κ ζ

u · ϕ ∂t Rκ ζν ◦ �−1
Rκ ζ

dH2 −
∫

�R κ ζ

κu · ∂tϕ dx dt. (4.7)

Observe that in the case of a fixed point u ≡ v, η ≡ ζ we find that(
Rκ u − (∂t Rκ ην) ◦ �−1

Rκ η

)
· νRκ η ≡ 0 on ∂�Rκ η,

which implies that the boundary integrals will vanish. For this reason, we will
solve the decoupled momentum equation with boundary values of u, which are
implicitly defined by removing the first boundary term (this is analogous to the
Neumann boundary data of the decoupled continuity equation, see Section 3). For
the same reason we neglect the second boundary integral as well as the very last
integral. Concerning the other terms of the momentum equation, when adapting
partial integration we get force terms acting on the boundary in normal direction
(pressure, diffusion, exterior forces). These are then assumed to be equalized by
the elastic forces of the shell. Observe here that τ is identical for the decoupled
system and the coupled system.

All together we require from (η,u, 
) ∈ X I
Rκ ζ

× X I
Rκ ζ

× Y I that it satisfies
the following:

(N1) The regularized decoupled momentum equation∫
I

d

dt

∫
�R κ ζ

(
 + κ)u · ϕ dx dt

−
∫

I

∫
�R κ ζ

(

u · ∂tϕ + 
Rκ v ⊗ u : ∇ϕ

)
dx dt

+
∫

I

∫
�R κ ζ

(
μ∇u : ∇ϕ + (λ + μ) div u divϕ

)
dx dt

−
∫

I

∫
�R κ ζ

(
(
γ + δ
β) divRκ ϕ − ε∇(
u) : ∇ϕ

)
dx dt

+
∫

I

(
d

dt

∫
M

∂tηb dH2 −
∫

M
∂tη ∂t b dH2 +

∫
M

K ′(η) b dH2
)
dt
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=
∫

I

∫
�R κ ζ


f · ϕ dx dt +
∫

I

∫
M

g b dx dt (4.8)

holds for all test-functions (b,ϕ) ∈ C∞
0 (M)×C∞(I ×R

3)with trRκ ζ ϕ =
bν. Moreover, we have (
u)(0) = q0, η(0) = η0 and ∂tη(0) = η1.

(N2) The decoupled regularized continuity equation (4.6) is satisfied with initial
datum 
(0) = 
0.

(N3) The boundary condition trRκ ζu = ∂tην holds in the sense of Lemma 2.4

The a priori estimates are formally available as before for the regularized system in
Section 4.2. First, one uses (u, ∂tη) as test-function in the momentum equation and

subtract the continuity equation tested with |u|2
2 . Second, one uses the renormalized

formulation (3.4) to estimate the pressure term.

Theorem 4.4. For any ζ ∈ C(I × M; [− L
2 , L

2 ])) and v ∈ L2(I ; L2(R3)) there
exists a solution (η,u, 
) ∈ Y I × X I

Rκ ζ
× X I

Rκ ζ
to (N1)–(N3). Here, we have

I = (0, T∗), where T∗ < T only if limt→T ∗ ‖η(t, ·)‖L∞(M) = L
2 . The solution

satisfies the energy estimate
∫

�R κ ζ

(
(t)

2
+ κ

)
|u(t)|2 dx

+
∫ t

0

∫
�R κ ζ

(
(μ + ε
)|∇u|2 + (λ + μ)|div u|2

)
dx dσ

+
∫

�R κ ζ

( a

γ − 1

γ (t) + δ

β − 1

β(t)

)
dx +

∫
M

|∂tη(t)|2
2

dH2 + K (η(t))

2

�
∫

I

∫
�R κ ζ

ρf · u dx dσ +
∫

I

∫
M

g∂tη dH2 dσ +
∫

�R κ ζ(0)

|q0|2

0

dx

+
∫

�R κ ζ (0)

( a

γ − 1



γ
0 + δ

β − 1



β
0

)
dx + K (η0)

2
+

∫
M

|η0|2
2

dH2

+
∫

M

|η1|2
2

dH2

for all t ∈ [0, T ∗], provided that η0, η1, 
0,q0, f and g are regular enough to
give sense to the right-hand side, that 
0 � 0 a.e and (1.10) is satisfied. Here, the
constant c is independent of all involved quantities; in particular, it is independent
of v and ζ .

Proof. In order to prove Theorem 4.4 we discretise the system. It is standard to
find a smooth orthonormal basis (X̃k)k∈N of W 1,2

0 (�) and a smooth orthonormal

basis (Ỹk)k∈N of W 2,2
0 (M). We define vector fields Ỹk by solving the homogeneous

Laplace equation on � with boundary datum Ỹkν (which is extended by zero to
∂�). Note that standard results on the inverse Laplace operator guarantee that Ỹk

is smooth. Now we define, pointwise in t ,

Xk := X̃k ◦ �−1
Rκ ζ

, Yk := Ỹk ◦ �−1
Rκ ζ

.
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By Lemma 2.2 we still know that Xk and Yk belong to the class C3(�Rκ ζ (t)).

Obviously, (Xk)k∈N forms a basis of W 1,2
0 (�Rκ ζ (t)). Now we choose an enumer-

ation (ωk)k∈N of Xk ⊕ Yk . In return we associate wk := ωk ◦ �Rκ ζ |∂�R κ ζ
· ν.

Analogous to the arguments in [32, p. 237] we find that

Z := span
{
(ϕwk, ϕωk) |ϕ ∈ C1(I ), k ∈ N

}

is dense in the solution space

ZRκ ζ :=
{
(ξ,ϕ) ∈ Y I × X I

Rκ ζ : ∂tξνRκ ζ = trRκ ζ ϕ
}
,

and in the space of test-functions

Z∗
Rκ ζ :=

{
(ξ,ϕ) ∈ C(I ; W 2,2

0 (M)) × L2(I, W 1,2(�Rκ ζ )) ∩ C(I ; L2(�Rκ ζ )) :
ξν = trRκ ζ ϕ

}
.

Now, we can begin with the construction of the solution. First, we fix 
 =

(Rκ ζ,Rκ v) as the unique solution to the continuity equations subject to the ini-
tial datum 
0 existence of which is guaranteed by Theorem 3.1, where ζ ≡ Rκ ζ

and w ≡ Rκ v. Next we seek for a couple of discrete solutions (ηN ,uN ) ∈ ZRκ ζ

of the form

ηN = η0 +
∑N

k=1

∫ t

0
αk N wk dσ, uN =

∑N

k=1
αk N ωk,

which solves the following discrete version of (4.8):
∫

�R κ ζ

(
(t) + κ)uN (t) · ωk(t) dx

−
∫ t

0

∫
�R κ ζ

(

uN · ∂tωk + 
Rκ v ⊗ uN : ∇ωk

)
dx dt

+
∫ t

0

∫
�R κ ζ

(
μ∇uN : ∇ωk + (λ + μ) div uN divωk

)
dx dσ

−
∫ t

0

∫
�R κ ζ

(
(
γ + δ
β) divRκ ωk − ε∇(
uN ) : ∇ωk

)
dx dσ

+
∫ t

0

∫
M

(
K ′(ηN )wk − ∂tηN ∂twk

)
dH2 dσ +

∫
M

∂tηN (t)wk(t) dH2

=
∫ t

0

∫
�R κ ζ


f · ωk dx dt +
∫ t

0

∫
M

g wk dx dt

+
∫

�R κ ζ(0)

q0 · ωk(0, ·) dx +
∫

M
η1 wk dH2.

(4.9)
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We can choose αk N (0) in such a way that uN (0) converges to q0/
0.
The system (4.9) is equivalent to a system of integro-differential equations for the
vector αN = (αk N )N

k=1; it reads as

A(t)αN (t) =
∫ t

0
B(σ )αN (σ ) dσ +

∫ t

0

∫ σ

0
B̃(s, σ )αN (s)ds dσ

+
∫ t

0
c(σ ) dσ + c̃, (4.10)

with

Ai j =
∫

�R κ ζ

(
(t) + κ)ωi (t) · ω j (t) dx +
∫

M
wi (t)w j (t) dH2

Bi j =
∫

�R κ ζ

(

ωi · ∂tω j + 
Rκ v ⊗ ωi : ∇ω j

)
dx

+
∫

�R κ ζ

(
μ∇ωi : ∇ω j + (λ + μ) divωi divω j

)
dx

−
∫

�R κ ζ

ε(∇
 ⊗ ωi + 
∇ωi ) : ∇ω j dx dσ −
∫

∂�R κ ζ

wi ∂tw j dH2

B̃i j =
∫

M
K ′(wi (s))w j (σ )) dH2,

ci =
∫

�R κ ζ

(
γ + δ
β) divRκ ωi dx +
∫

�R κ ζ


f · ωi dx dt +
∫

M
g wi dH2

c̃i =
∫

�R κ ζ(0)

q0 · ωi (0, ·) dx +
∫

M
η1 wi dH2.

As (
 + κ) is strictly positive (recall Theorem 3.1) and the ωk and wk from a
basis the matrix A is bounded (by the integrability of 
) and positive definite
(due to κ > 0). Hence the inverse A−1 exists and is bounded as well. We find
a continuous solution αN to (4.10) by standard arguments for ordinary integro-
differential equations. Since we wish to use it as a testfunction in the momentum
equation we have to show, that ∂tαN ∈ L2(I ), for some s > 1. The difficulty here
is that 
 is not weakly differentiable in time. This has to be circumvented. First
observe that by the Leibnitz rule, we find that

∂tα = A−1
(
∂t (Aα) − ∂tAα

)
.

Due to (4.10) and the integrability of 
 from Theorem 3.1 we have ∂t (AαN ) ∈
L∞(I ). Moreover, A−1 is uniformly bounded (due to κ > 0). Consequently, it
suffices to prove that ∂tAi, j ∈ L2(I ) to conclude the differentiability of αN . By
taking the test function ωi · ω j in (4.6) we find that

∂t

(
Ai, j −

∫
M

wiw j dH2
)

= d

dt

∫
�R κ ζ


 ωi · ω j dx + d

dt

∫
�R κ ζ

κ ωi · ω j dx
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=
∫

�R κ ζ



(
∂t (ωi · ω j ) + Rκ v · ∇(ωi · ω j ) + ε∇
 · ∇(ωi · ω j ) dx

+ κ

∫
�R κ ζ

(
∂tωi · ω j + ωi · ∂tω j

)
dx + κ

∫
∂�R κ ζ

∂t Rκ ζωi · ω j dx .

Since the right hand side is in L2(I ) (note that theωi are smooth also in time) and the
wi are smooths in timewefind that ∂tαN ∈ Ls(I ) and hence ∂tuN ∈ Ls(I ×�Rκ ζ ).
The a priori estimates are now achieved by differentiating (4.9) in time, testing
with (∂tηN ,uN ) and subtracting (4.6) tested by 1

2 |uN |2. The terms with the time
derivative and the convective terms cancel and we obtain

∫
�R κ ζ

(
(t) + κ)
|uN (t)|2

2
dx +

∫
M

|∂tηN (t)|2
2

dH2 + K (ηN (t))

2

+
∫ t

0

∫
�R κ ζ

(
(μ + ε
)|∇uN |2 + (λ + μ)|div uN |2

)
dx dσ

=
∫

I

∫
�R κ ζ

ρf · uN dx dσ +
∫

I

∫
M

g∂tηN dH2 dσ +
∫

�R κ ζ(0)

|q0|2 dx

+
∫

M

|η0|2
2

dH2 +
∫

M

|η1|2
2

dH2 + K (η0)

2

+
∫ t

0

∫
�R κ ζ

(a
γ + δ
β) divRκ uN dx dσ. (4.11)

Finally, we use Theorem 3.1 b) in order to rewrite the last integral. Choosing
ϕ = χ[0,t] yields

∫ t

0

∫
�R κ ζ

(

θ ′(
) − θ(
)

)
divRκ uN dx dt

�
∫

�R κ ζ (0)
θ(
(0)) dx dt −

∫
�R κ ζ

θ(
(t)) dx dt

for any convex θ ∈ C2(R+;R+) such that θ ′(s) = 0 for large values of s and
θ(0) = 0. We approximate the function s 
→ asγ

γ−1 + δsβ

β−1 by a sequence of such
functions and obtain

∫ t

0

∫
�R κ ζ

(a
γ + δ
β) divRκ uN dx dσ

�
∫

�R κ ζ (0)

( a

γ − 1



γ
0 + δ

β − 1



β
0

)
dx

−
∫

�R κ ζ

( a

γ − 1



γ
0 (t) + δ

β − 1

β(t)

)
dx .
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By Young’s inequality we can absorb the terms that depend on uN or ∂tηN in the
left hand side of (4.11) such that

sup
I

∫
�R κ ζ

(
 + κ)
|uN |2
2

dx + sup
I

∫
�R κ ζ

( a

γ − 1

γ + δ

β − 1

β

)
dx

+
∫

I

∫
�R κ ζ

|∇uN |2 dx dσ +
∫

I

∫
�R κ ζ

(μ + ε
)|∇uN |2) dx dσ

+
∫

I

∫
�R κ ζ

(λ + μ)|div uN |2 dx + sup
I

∫
M

|∂tηN |2 dH2 + sup
I

K (ηN )

2

� c

( ∫
I

∫
�R κ ζ

|f |2 dx dσ +
∫

I

∫
M

|g|2 dH2 dσ

)

+ c

( ∫
�R κ ζ(0)

|q0|2

0

dx +
∫

M
|η0|2 dH2

)
+ c

( ∫
M

|η1|2 dH2 + K (η0)

)

+ c
∫

�R κ ζ (0)

( a

γ − 1



γ
0 + δ

β − 1



β
0

)
dx . (4.12)

This implies that there is a subsequence such that

ηN ⇀∗ η in Y I , uN ⇀ u in X I
Rκ ζ

for some limit function (η,u). As (4.9) is linear in (ηN ,uN ) we can pass to the
limit and see that (η,u) solves (4.8). ��

4.4. A Fixed Point Argument

Now we are seeking for a fixed point of the solutions map (v, ζ ) 
→ (u, η)

on L2(I, L2(R3)) × C(I × ∂�) from Theorem 4.4. As we do not know about
uniqueness of the solutions constructed in Theorem 4.4 we will use the following
foxed point theorem for set-valued mappings:

Theorem 4.5. ([22]) Let C be a convex subset of a normed vector space Z and
let F : C → P(C) be an upper-semicontinuous set-valued mapping, that is, for
every open set W ⊂ C the set {c ∈ C : F(c) ∈ W } ⊂ C is open. Moreover, let
F(C) be contained in a compact subset of C, and let F(c) be non-empty, convex
and compact for all c ∈ C. Then F possesses a fixed point, that is, there exists some
c0 ∈ C with c0 ∈ F(c0).

4.5. Proof of Theorem 4.2

We will prove Theorem 4.2 by finding a fixed point of a suitable mapping
defined below. We denote I∗ = [0, T∗] with T∗ sufficiently small. We do not know
about the uniqueness of solutions. Hence, we apply Theorem 4.5 to get a fixed
point. We consider the sets

D :=
{
(ζ, v) ∈ C(I ∗ × ∂�) × L2(I∗, L2(R3)) :
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ζ(0) = η0, ‖ζ‖L∞ � M, ‖v‖L2(I∗;L2(R3)) � K
}

for M = (‖η0‖∞ + L)/2 and K > 0 to be chosen later. Note that the coupling
at the boundary between velocity and shell is not contained in the definition of D.
This is a feature which one only gains via the fixed point and not before. Let

F : D → P(D)

with

F : (v, ζ ) 
→
{
(u, η) : (u, η) solves (4.8)

with (v, ζ ) and satisfies the energy estimate
}
.

Note that we extend u and η by zero to R
3 and ∂� respectively. First, we have

to check that F(D) ⊂ D. We will use the a priori estimate from Theorem 4.4 to
conclude

sup
I∗

∫
�R κ ζ

(
 + κ)
|u|2
2

dx + sup
I∗

∫
�R κ ζ

(
a
γ + δ
β

)
dx

+
∫

I∗

∫
�R κ ζ

|∇u|2 dx dσ + sup
I∗

∫
M

(
|∂tη|2 + |∇2η|2

)
dH2

� c(f, g,q0, η0, η1, 
0)

independently of L , K and the size of I∗. This implies that η ∈ Cα(I × M), by
Sobolev embedding for some α > 0, with Hölder norm independent of L and K .
We obtain

|η(t, x)| � |η(t, x) − η0(0, x)| + |η0(0, x)| � c(T ∗)α + ‖η0‖∞. (4.13)

Therefore, we find for T ∗ small enough (but independent of v and ζ ) such that

‖η‖L∞(I∗×∂�) � M.

Hence we gain F(D) ⊂ D for an appropriate choice of K ∈ R+.
Next, since the problem is linear and the left-hand side of the energy inequality

is convex, we find that F(ζ, v) is a convex and closed subset of Z. It remains to
show that F(D) is relatively compact. Consider (ηn,un)n ⊂ F(D). Then there
exists a corresponding sequence (ζn, vn)n ⊂ D, such that (ηn,un) solve (4.8), with
respect to (vn, ζn). Due to the energy estimate we may choose subsequences such
that

ηn ⇀∗ η in L∞(I∗, W 1,2
0 (M)), (4.14)

∂tηn ⇀∗ ∂tη in L∞(I∗, L2(M)), (4.15)

un ⇀∗,η u in L∞(I∗; L2(�Rκ ζ )), (4.16)

∇un ⇀η ∇u in L2(I∗; L2(�Rκ ζ ))). (4.17)
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Note also that we can extend un and u by zero to the whole space and gain

un ⇀∗ u in L∞(I∗; L2(R3)). (4.18)

The compactness of ηn in C(I ∗ × ∂�) follows immediately by Arcela–Ascoli’s
theorem, since we know that ηn is uniformly Hölder continuous. The proof of the
compactness of un is much more sophisticated. We first need to show compactness
of 
n , where 
n is the unique solution to (4.6) with v = vn . A direct application of
Theorem 3.1 a) shows


n ⇀η 
 in L2(I∗; W 1,2(�Rκ ζn )),


n ⇀∗,η 
 in L∞(I∗; L2(�Rκ ζn )),
(4.19)

at least after taking a subsequence. Firstly, we find for all k, l ∈ N that
‖∂ l

t ∇k Rκ ζn‖L∞(I×∂�) � c(κ, k, l). Hence, there is a (not relabeled) subsequence
such that

Rκ ζn → Rκ ζ C2(I ∗ × ∂�). (4.20)

Next, we claim that


n →η 
 in Lq(I∗; Lq�Rκ ζn ) (4.21)

for any q < 10
3 . In fact, the assumptions of Lemma 2.8 are satisfied due to (4.6). In

particular, (A3) holds with H1
n = 0, H2

n = Rκvn + ε∇
n and hn = 0. Due to the
uniform bounds on 
n in (4.19) and the bounds on vn encoded in the definition of D
we gain strong convergence of 
n in L2 by Remark 2.10 at least for a subsequence.
Combining this with (4.19) proves (4.21). Now, again by Lemma 2.8, we find for
the couple (κ + 
n)un and un , that

(κ + 
n)|un|2 ⇀ (κ + 
)|u|2 in Ls(I∗ × �Rκ ζn ) (4.22)

for some s > 1. To be precise, we infer from (4.8) that

∂t ((
n + κ)un) = − div(
nRκvn ⊗ un) + ε	(
nun) + μ	un + (λ + μ)∇ div un

− Rκ∇(

γ
n + δ
β

n ) + 
nf

holds locally in the sense of distributions. In particular, (A3) is satisfied with

H1
n = ε
nun + Run, H2

n = −
nRκvn ⊗ un − Rκ(

γ
n + δ
β

n )I, hn = 
nf,

choosing p = s = 2, m arbitrary and b ∈ ( 6
5 ,

10
3

)
. Here R ∈ R

3×3 is chosen
appropriately. We obtain (4.22). On account of (4.21) and (4.22) we conclude
(extending 
 with 0 outside of �Rκ ζ )

lim
n→∞

∫
I ∗

∫
R3

|un|2 dx dt = lim
n→∞

∫
I ∗

∫
R3

κ + 
n

κ + 

|un|2 dx dt

+ lim
n→∞

∫
I ∗

∫
R3


 − 
n

κ + 

|un|2 dx dt
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=
∫

I ∗

∫
R3

|u|2 dx dt.

Since strong norm convergence and weak convergence imply strong convergence
the compactness is shown and the existence of a fixpoint follows by Theorem 4.5.

This gives the claim of Theorem 4.2.

5. The Viscous Approximation

In this section we want to get rid of the regularization operator Rκ in order to
find a solution (η,u, 
) ∈ Y I × X I

η × X I
η to the viscous approximation satisfying

the following:

(E1) The regularized momentum equation holds in the sense that

∫
I

d

dt

∫
�η


u · ϕ dx dt −
∫

I

∫
�η

(

u · ∂tϕ + 
u ⊗ u : ∇ϕ

)
dx dt

+
∫

I

∫
�η

(
μ∇u : ∇ϕ + (λ + μ) div u divϕ

)
dx dt

−
∫

I

∫
�η

(
γ + δ
β) divϕ dx dt +
∫

I

∫
�η

ε∇(
u) : ∇ϕ dx dt

+
∫

I

d

dt

∫
M

∂tηb dH2 dt −
∫

I

∫
M

∂tη ∂t b dH2 dt

+
∫

I

∫
M

K ′(η) b dH2 dt

=
∫

I

∫
�η


f · ϕ dx dt +
∫

I

∫
M

g b dx dt

(5.1)

for all test-functions (b,ϕ) ∈ C∞
0 (M) × C∞(I × R

3) with trηϕ = bν.
Moreover, we have (
u)(0) = q0, η(0) = η0 and ∂tη(0) = η1.

(E2) The regularized continuity equation in the sense that

∫
I

(
d

dt

∫
�η


ψ dx −
∫

I

∫
�η

(

 ∂tψ + 
u · ∇ψ

)
dx

)
dt

+ ε

∫
I

∫
�η

∇
 · ∇ψ dx dt = 0
(5.2)

for all ψ ∈ C∞(I × R
3) and we have 
(0) = 
0.

(E3) The boundary condition trηu = ∂tην in the sense of Lemma 2.4.

Theorem 5.1. There is a solution (η,u, 
) ∈ Y I × X I
η × X I

η to (E1)–(E3). Here,

we have I = (0, T∗), where T∗ < T only if limt→T ∗ ‖η(t, ·)‖L∞(∂�) = L
2 . The
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solution satisfies the energy estimate

sup
t∈I

∫
�η


|u|2 dx + sup
t∈I

∫
�η

(
a
γ + δ
β

)
dx +

∫
I

∫
�η

|∇u|2 dx dt

+ ε

∫
I

∫
�η

(

γ−2|∇
|2 + 
|∇u|2) dx dt + sup

t∈I

∫
M

|∂tη|2 dH2 + sup
t∈I

K (η)

� c

( ∫
�η

|q0|2 dx +
∫

�η

(



γ
0 + δ


β
0

)
dx +

∫
I
‖f‖2L2(�η)

dt

)

+ c

( ∫
M

|η0|2 dH2 +
∫

M
|η1|2 dH2 + K (η0) +

∫
I
‖g‖2L2(M)

dt

)
, (5.3)

provided that η0, η1, 
0,q0, f and g are regular enough to give sense to the right-
hand side, that 
0 � 0 a.e. and (1.10) is satisfied. The constant c is independent of
δ, ε.

Lemma 5.2. Under the assumptions of Theorem 5.1, the continuity equation holds
in the renormalized sense that is

∫
I

d

dt

∫
�η

θ(
)ψ dx dt −
∫

I

∫
�η

(
θ(
)∂tψ + θ(
)u · ∇ψ

)
dx dt

� −
∫

I

∫
�η

(
θ ′(
) − θ(
n)) div uψ dx dt − ε

∫
I

∫
�η

∇
 · ∇ψ dx dt
(5.4)

for all ψ ∈ C∞(I × R
3, [0,∞)) and all convex θ ∈ C1(R), with θ(0) = 0 and

θ ′(z) = 0 for z � Mθ .

Proof (Proof of Theorem 5.1). In Theorem 4.2 we take κ := 1/n where 1/n is the
regularizing parameter. We call the corresponding solution (ηn,un, 
n). If n → ∞
then R1/n → id. Now we analyze the convergence of (ηn,un, 
n). The estimate
from Theorem 4.2 holds uniformly with respect to n. Additionally, by testing the
continuity equation with 
ε and using β � 4 we find that


n ∈ L∞(I ; L2(�R1/nηn )),∇
n ∈ L2(I ; L2(�R1/nηn )) uniformly. (5.5)

Hence, we find that there is a subsequence such that for some α ∈ (0, 1) fixed we
have

ηn ⇀∗ η in L∞(I ; W 2,2(M)) (5.6)

ηn ⇀∗ η in W 1,∞(I ; L2(M)), (5.7)

ηε → η in Cα(I × M), (5.8)

un ⇀η u in L2(I ; W 1,2(�R1/nηn )), (5.9)
1√
n
un →η 0 in L∞(I ; L2(�R1/nηn )), (5.10)


n ⇀∗,η 
 in L∞(I ; Lβ(�R1/nηn )). (5.11)
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Moreover, Remark 2.10 and (5.5) imply


n ⇀∗,η 
 in L∞(I ; L2(�R1/nηn )), (5.12)


n ⇀η 
 in L2(I ; W 1,2(�ηn )), (5.13)


n →η 
 in L2(I ; L2(�R1/nηn )). (5.14)

The last convergence, (5.9) and Lemma 2.8 imply


nun ⇀η 
u in L2(I ; L2(�R1/nηn )), (5.15)


nun ⊗ un ⇀η 
u ⊗ u in L1(I ; L1(R1/nηn)). (5.16)

Therefore, we can pass to the limit in the equation and obtain a weak solution
to the viscous approximation. The energy inequality is a consequence of lower
semi-continuity. ��
Proof of Lemma 5.2. First, observe that since 
n is a renormalized solution to the
continuity equation by Theorem 3.1 b), i.e. we have∫

I

d

dt

∫
R3

θ(
n)ψ dx dt −
∫

I

∫
R3

(
θ(
n)∂tψ + θ(
n)un · ∇ψ

)
dx dt

= −
∫

I

∫
R3

(
(
nθ

′(
n) − θ(
n)) div un ψ dx dt

−
∫

I

∫
R3

(
εθ ′′(
n)|∇
n|2ψ + ε∇
n · ∇ψ

)
dx dt.

As θ is convex this yields∫
I

d

dt

∫
R3

θ(
n)ψ dx dt −
∫

I

∫
R3

(
θ(
n)∂tψ + θ(
n)un · ∇ψ

)
dx dt

� −
∫

I

∫
R3

(
nθ ′(
n) − θ(
n)) div un ψ dx dt

− ε

∫
I

∫
R3

∇
n · ∇ψ dx dt

(5.17)

for all ψ ∈ C∞(I × R
3) and all θ ∈ C2(R) with θ(0) = 0 and θ ′(z) = 0 for

z � Mθ . By approximation its is easy to see that the assumption θ ∈ C1(R)

suffices for (5.17). Due to the convergences (5.8), (5.9), (5.13) and (5.14) we can
pass to the limit in (5.17). This implies (5.4). ��

6. The Vanishing Viscosity Limit

The aim of this Section is to study the limit ε → 0 in the approximate system
(5.1)–(5.2) and establish the existence of a weak solution (η, 
,u) to the system
with artificial viscosity in the following sense. We define

W̃ I
η = Cw(I ; Lβ(�η)).

A weak solution is a triple (η,u, 
) ∈ Y I × X I
η × W̃ I

η that satisfies the following:
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(D1) The momentum equation in the sense that∫
I

d

dt

∫
�η


u · ϕ dx −
∫

�η

(

u · ∂tϕ + 
u ⊗ u : ∇ϕ

)
dx dt

+
∫

I

∫
�η

(
μ∇u : ∇ϕ + (λ + μ) div u divϕ

)
dx dt

−
∫

I

∫
�η

(
γ + δ
β) divϕ dx dt

+
∫

I

(
d

dt

∫
M

∂tηb dH2 −
∫

M
∂tη ∂t b dH2 +

∫
M

K ′(η) b dH2
)
dt

=
∫

I

∫
�η


f · ϕ dx dt +
∫

I

∫
M

g b dx dt (6.1)

for all (b,ϕ) ∈ C∞
0 (M) × C∞(I × R

3) with trηϕ = bν. Moreover, we
have (
u)(0) = q0, η(0) = η0 and ∂tη(0) = η1.

(D2) The continuity equation holds in the sense that∫
I

d

dt

∫
�η


ψ dx dt −
∫

I

∫
�η

(

∂tψ + 
u · ∇ψ

)
dx dt = 0 (6.2)

for all ψ ∈ C∞(I × R
3) and we have 
(0) = 
0.

(D3) The boundary condition trηu = ∂tην holds in the sense of Lemma 2.4.

Theorem 6.1. There is a solution (η,u, 
) ∈ Y I × X I
η × W̃ I

η to (D1)–(D3). Here,

we have I = (0, T∗), where T∗ < T only if limt→T ∗ ‖η(t, ·)‖L∞(∂�) = L
2 . The

solution satisfies the energy estimate

sup
t∈I

∫
�η


|u|2 dx + sup
t∈I

∫
�η

(
a
γ + δ
β

)
dx

+
∫

I

∫
�η

|∇u|2 dx dt + sup
t∈I

∫
M

|∂tη|2 dH2 + sup
t∈I

K (η)

� c

( ∫
�η

|q0|2

0

dx +
∫

�η

(
a


γ
0 + δ


β
0

)
dx +

∫
I
‖f‖2L∞(�η) dt

)

+ c

( ∫
M

|η0|2 dH2 +
∫

M
|η1|2 dH2 + K (η0) +

∫
I
‖g‖2L2(M)

dt

)
,

provided that η0, η1, 
0,q0, f and g are regular enough to give sense to the right-
hand side, that 
0 � 0 a.e. and (1.10) is satisfied. The constant c is independent of
δ.

Lemma 6.2. Under the assumptions of Theorem 6.1 the continuity equation holds
in the renormalized sense that is∫

I

d

dt

∫
�η

θ(
)ψ dx dt −
∫

I

∫
�η

(
θ(
)∂tψ + θ(
)u · ∇ψ

)
dx dt

= −
∫

I

∫
�η

(
θ ′(
) − θ(
)) div uψ dx dt
(6.3)
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for all ψ ∈ C∞(I × R
3) and all θ ∈ C1(R) with θ(0) = 0 and θ ′(z) = 0 for

z � Mθ .

The proof will be split in several parts. For a given ε we gain a weak solutions
(ηε,uε, 
ε) to (5.1)–(5.2) by Theorem 5.1. The estimate from Theorem 5.1 holds
uniformly with respect to ε. In particular,

sup
t∈I

∫
�ηε


ε|uε|2 dx + sup
t∈I

∫
�ηε

(
a
γ

ε + δ
β
ε

)
dx +

∫
I

∫
�ηε

|∇uε|2 dx dt

+ sup
t∈I

∫
M

|∂tηε|2 dH2 + sup
t∈I

K (ηε)

� C(η1, g, f, 
0,q0)

(6.4)

is satisfied uniformly in ε for the time interval I . Hence, wemay take a subsequence
such that for some α ∈ (0, 1) we have

ηε ⇀∗ η in L∞(I ; W 2,2(M)) (6.5)

ηε ⇀∗ η in W 1,∞(I ; L2(M)), (6.6)

ηε → η in Cα(I × M)), (6.7)

uε ⇀η u in L2(I ; W 1,2(�ηε )), (6.8)


ε ⇀∗,η 
 in L∞(I ; Lβ(�ηε )). (6.9)

Now, using the a-priori estimates (6.4) and the bounds that one gains (using the
renormalized continuity equation from Lemma 5.2 with θ(z) = z2 and testing with
ψ ≡ 1) we find, due to β > 4, that

∫
I

∫
�ηε

ε|∇
ε|2 dx dt � C, (6.10)

with C independent of ε. This and (6.8) imply

ε∇
ε →η 0 in L2(I × �ηε), (6.11)

ε∇(uε
ε) →η 0 in L1(I × �ηε). (6.12)

We observe that the a-priori estimates (6.4) imply uniform bounds of 
εuε in

L∞(I, L
2β

β+1 ). Therefore, we may apply Lemma 2.8 with the choice vi ≡ uε,
ri = 
ε, p = s = 2, b = β and m sufficiently large to obtain


εuε ⇀η 
u in Lq(I, La(�ηε )), (6.13)

where a ∈ (1, 2β
β+1 ) and q ∈ (1, 2). We apply Lemma 2.8 once more with the

choice vi ≡ uε, ri = 
εuε, p = s = 2, b = 2β
β+1 and m sufficiently large to find

that


εuε ⊗ uε ⇀η 
u ⊗ u in L1(I × �ηε). (6.14)
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6.1. Equi-Integrability of the Pressure

First, we have to handle the problem that the pressure is merrily bounded in
L1 in space. Consequently, it might converge to a measure and not a measurable
function. This is usually excluded by showing that the pressure possesses higher
integrability properties. From this we deduce a weakly converging subsequence (in
some Lebesgue space) and hence get a function as a limit object. In the case of a
moving domain standard procedures do not apply and global higher integrability
on the moving domain can not be achieved. The solution is two divide the problem
in two steps: the first step is to improve the space integrability of the pressure inside
the moving domain; the second step is to show that the mass of the pressure can
not be concentrated on the boundary. Combining the two results will imply equi-
integrability of the pressure which is equivalent to weak compactness L1. The next
two lemmata settle that matter. The first one is happily a localized version of the
standard procedure.

Lemma 6.3. Let Q = J × B � I × �η be a parabolic cube. The following holds
for any ε � ε0(Q):

∫
Q

(
a
γ+1

ε + δ
β+1
ε

)
dx dt � C(Q), (6.15)

with constant independent of ε.

Proof. We consider a parabolic cube Q̃ = J̃ × B̃ with Q � Q̃ � I × �η. Due to
(6.7) we can assume that Q̃ � I × �I

ηε
(by taking ε small enough). Next we wish

to test with ψ∇	−1
B̃


ε where ψ ∈ C∞
0 (Q̃) with ψ = 1 in Q and 	−1

B̃

ε is defined

as the unique W 2,β(B̃) ∩ W 1,β∗
0 (B̃)-solution to the equation

−	v = 
ε in B̃. (6.16)

The test-function (ψ∇	−1
ε, 0) is indeed admissible in (5.1) sinceψ has compact
support. Moreover, regularity follows from local theory for the respective parabolic
equation. In order to deal with the term involving the time derivative we use the
continuity equation. We find that

−	∂tv = ∂t
ε = − div(
εuε + ε∇
ε) (6.17)

in the sense of distributions such that ∂tv = −∂t∇	−1
B̃


ε = ∇	−1
B̃

div(
εuε +
ε∇
ε). Hence, we have
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J0 :=
∫

I

∫
R3

ψ
(
a
γ+1

ε + δ
β+1
ε

)
dx dσ

= μ

∫
I

∫
R3

ψ∇uε : ∇2	−1
B̃


ε dx dσ

+ μ

∫
I

∫
R3

∇uε : ∇ψ ⊗ ∇	−1
B̃


ε dx dσ

+ (λ + μ)

∫
I

∫
R3

ψ div uε 
ε dx dσ

+ (λ + μ)

∫
I

∫
R3

div uε ∇ψ · ∇	−1
B̃


ε dx dσ

−
∫

I

∫
R3

ψ
εuε ⊗ uε : ∇2	−1
B̃


ε dx dσ

−
∫

I

∫
R3


εuε ⊗ uε : ∇ψ ⊗ ∇	−1
B̃


ε dx dσ

+ ε

∫
I

∫
R3

∇(uε
ε) : ∇2	−1
B̃


εψ dx dσ

+ ε

∫
I

∫
R3

∇(uε
ε) : ∇	−1
B̃


ε ⊗ ∇ψ dx dσ

−
∫

I

∫
R3

(
a
γ

ε + δ
β
ε

)∇ψ · ∇	−1
B̃


ε dx dσ

−
∫

I

∫
R3


εf · ∇	−1
B̃


ε dx dσ

+
∫

I

∫
R3

ψ
εuε∇	−1
B̃

div(
εuε + ε∇
ε) dx dσ

−
∫

I

∫
R3

∂tψ
εuε · ∇	−1
B̃


ε dx dσ

=: J1 + · · · + J12.

(6.18)

Our goal is to find an estimate for the expectation of J0 which means that we have
to find suitable bounds for all the other terms. Using the continuity of the operator
∇	−1

B̃
and Sobolev’s embedding theorem, we obtain for some p > 3 that

‖∇	−1
B̃


ε‖L∞(B̃)
� C ‖∇2	−1

B̃

ε‖L p(B̃)

� C ‖
ε‖L p(B̃)
, (6.19)

using (6.9) and β > 3. Note that, in particular, we have shown that ψ∇	−1
B̃


ε ∈
L∞(I ×R

3) uniformly in ε. As 
ε ∈ L2(I × Q̃) uniformly due to β � 2 we deduce
that |J1| � C as a consequence of uniform bounds on uε in (6.8) and the continuity
of the operator ∇2	−1

B̃
. Similar arguments lead to the bound for J2, J3, J4. The

most critical is the convective term J5. It can be estimated using the continuity of
∇2	−1

B̃
, Sobolev’s embedding theorem (combined with Poincaré’s inequality and

the fact that uε = 0 on �), Hölder’s inequality and (6.4)

|J5| � C
∫

J̃
‖
ε‖L3(B̃)

‖uε‖2L6(B̃)
‖
ε‖L3(B̃)

ds

� C sup
J̃

‖
ε‖2L3(B̃)

∫
Q̃

|∇uε|2 dx ds � C.
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The term J6 is estimated similarly. For J7 we obtain

|J7| � sup
J̃

‖∇2	−1
B̃


ε‖L3(B̃)

∫
J̃

(
‖∇uε‖2L2(B̃)

+ ε2‖∇
ε‖2L2(B̃)
+ε2‖
ε‖2L6(B̃)

)
dt,

which is uniformly bounded due to (6.8), (6.9) and (6.10). Similarly, J8 is bounded
by

|J8| � sup
J̃

‖∇	−1
B̃


ε‖2L∞(B̃)

( ∫
J̃
‖∇uε‖2L2(B̃)

+ ‖uε‖2L6(B̃)

+ ε2‖∇
ε‖2L2(B̃)
+ ε2‖
ε‖2L6(B̃)

dt

)
,

taking into account (6.19). The terms of J9, J10 can be estimated using by the
bounds on the operator ∇	−1

B̃
and Hölder’s and Young’s inequalities. The same is

used to estimate

J11 � C
∫

Q̃
|
εuε|2 dx dt + εC

( ∫
Q̃

|
εuε|2 dx dt

) 1
2
(∫

Q̃
|∇
ε|2 dx dt

) 1
2

,

which is finite since we have uniformly in ε


εuε ∈ L2
(

J̃ ; L
6β

β+6 (Q̃)

)
. (6.20)

The latter bound is a consequence of the fact that


ε ∈ L∞( J̃ ; Lβ(B̃))), uε ∈ L2( J̃ ; L6(B̃)))

uniformly in ε. Finally, J12 can be estimated using (6.19) and (6.20). Plugging all
of this together we obtain (6.15) uniformly in ε. ��

The standard method as used in the proof of Lemma 6.15 does not apply up to
the boundary. Also, the usage of the Bogovskiı̆-operator—common in literature as
well—does not help (recall that our boundary depends on time and is not Lipschitz-
continuous). In the following Lemma we show equi-integrability at the boundary
related to the method from [29]:

Lemma 6.4. Let κ > 0 be arbitrary. There is a measurable set Aκ � I × �η such
that we have for all ε � ε0∫

I×R3\Aκ

(
a
γ

ε + δ
β
ε

)
χ�ηε

dx dt � κ. (6.21)

Proof. We construct a test-function which has a positive and arbitrarily large
divergence. For this let ϕ ∈ C∞

0 (SL ; [0, 1]), such that χS L
2

� ϕ � χ�0∪SL and

|∇ϕ| � c
L . Since we know that |ηε| � L

2 , we find that ϕ(x) ≡ 1 in S L
2

∩ �ηε . We

extend ϕ by zero to R
3 and define

ϕε(t, x) = ϕ min {K (s(x) − ηε(t, q(x))), 1}ν(q(x)),

where K > 0 will be chosen later. It is well defined, since ϕ �= 0 only in SL , where
the mapping x 
→ (q(x), s(x)) is well defined, see Section 2.2. Observe that we
take coordinates with respect to the reference geometry � and with respect to the
reference outer normal ν on ∂�. On account of ∇s(x) = ν(q(x)) we have
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∂ jϕ
l
ε(t, x) = ∂ jϕ(x)min {K (s(x) − ηε(t, q(x))), 1}νl(q(x))

+ Kχ{K (s(x)−ηε(t,q(x)))�1}ν j (q(x))νl(q(x))ϕ(x)

− Kχ{K (s(x)−ηε(t,q(x)))�1}∇ηε(t, q(x)) · ∂ j q(x)νl(q(x))ϕ(x)

+ ϕ(x)min {K (s(x) − ηε(t, q(x))), 1}∂ jνl(q(x))

= ξ1jl(t, x) + ξ2jl(t, x) + ξ3jl(t, x) + ξ4jl(t, x).

Observe that ξ1 and ξ4 are uniformly bounded by some constant cξ . Moreover, for
every p ∈ (1,∞), q > p, it holds that

(∫
I

∫
�ηε

|ξ3|p dx dt

) 1
p

� cK

( ∫
I

∫
�ηε

χ{K (s−ηε◦q)�1}|∇ηε|p dx dt

) 1
p

� cK

( ∫
I

∫
�ηε

|∇ηε|q dx dt

) 1
q ∣∣{K (s − ηε ◦ q) � 1}∣∣ 1

q′ p

� cp K
1− 1

pq′

uniformly in ε, cf. (6.5). Estimating ξ2 in a similar way we gain

( ∫
I

∫
�ηε

|∇ϕε|p dx dt

) 1
p

� cp
(
K

1− 1
pp′ + 1

)
(6.22)

for all p < ∞ uniformly in ε. Finally, we use the fact that ∇qi are all living in
the tangentplane of ∂� and are therefore orthogonal to ν(q(x)). Hence, we have
ξ3j j = 0. This implies that for every K > 0 there is a κ such that we have

divϕε � K − cξ in �ηε \ {
x ∈ �ηε : dist(∂�ηε ) � 1

K

}
. (6.23)

Finally, we calculate

∂tϕε(t, x) = −Kχ{K (s(x)−ηε(t,q(x)))�1}∂tηε(t, q(x))ν(q(x)).

Due to (6.6) we have

(
sup

I

∫
�ηε

|∂tϕε|r dx

) 1
r

� cK

(
sup

I

∫
�ηε

|∂tηε|2 dx dt

) 1
2

∣∣{K (s − ηε ◦ q) � 1}∣∣ 2−r
2r

� c K 1− 2−r
2r

(6.24)

for all r < 2, is a fashion similar to (6.22). Now, using ϕε as a test-function (note
that ϕε = 0 on ∂�ηε ), we obtain by smooth approximation that

∫
I

∫
�ηε

(
γ + δ
β) divϕε dx dt � −
∫

I

∫
�ηε


εuε ∂tϕε dx dt

+ C
(
K 1−λ + 1

)
(6.25)
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for some fixed C > 0 and λ ∈ (0, 1), where C, λ are independent of ε. Here, we
used the uniform integrability bounds of all other terms of the momentum equation
(5.3) and (6.22). Taking (6.20) and β > 3 into account we see that the remaining
integral in (6.25) is uniformly p-integrable for some exponent p > 1 in terms of
(6.24) cf. (6.4). This means we have∫

I

∫
�ηε

(
γ + δ
β) divϕε dx dt � C(K 1−λ + 1) (6.26)

uniformly for some λ ∈ (0, 1). Now, we set

Aκ = {
x ∈ �ηε : dist(∂�ηε ) � 1

K

}
,

where K = K (κ) is the solution to

C(K 1−λ + 1)

K − cξ

= κ

with C given in (6.26). Note that such a K always exists if κ is small enough. As
a consequence of (6.23) and (6.25) we gain∫

I×R3\Aκ

(
γ + δ
β) dx dt � 1

K − cξ

∫
I×R3\Aκ

(
γ + δ
β) divϕε dx dt

� C(K 1−λ + 1)

K − cξ

= κ.

The claim follows. ��
We connect Lemmas 6.3 and 6.4 to get the following corollary:

Corollary 6.5. Under the assumptions of Theorem 6.1 there existence of a function
p such that


γ
ε + δ
β

ε ⇀η p in L1(I ; L1(�ηε )),

at least for a subsequence. Additionally, for κ > 0 arbitrary, there is a measurable
set Aκ � I × �η such that p
 ∈ L1(Aκ) and

∫
(I×�η)\Aκ

p dx dt � κ. (6.27)

Combining Corollary 6.5 with the convergences (6.5)–(6.14) we can pass to the
limit in (5.1)–(5.2) and obtain the following. There is (η,u, 
, p) ∈ Y I × X I

η ×
W̃ I

η × L1(I × �η) that satisfies (in the sense of Lemma 2.4)

u(·, · + ην) = ∂tηνη in I × ∂�,

the continuity equation∫
I

d

dt

∫
�η


ψ dx dt −
∫

I

∫
�η

(

∂tψ + 
u · ∇ψ

)
dx dt = 0 (6.28)
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for all ψ ∈ C∞(I × R
3) and the coupled weak momentum equation

∫
I

d

dt

∫
�η


u · ϕ dx dt −
∫

I

∫
�η

(

u · ∂tϕ + 
u ⊗ u : ∇ϕ

)
dx dt

+
∫

�η

(
μ∇u : ∇ϕ + (λ + μ) div u divϕ

)
dx dt

−
∫

I

∫
�η

p divϕ dx dt

+
∫

I

d

dt

∫
M

∂tηb dH2 −
∫

M
∂tη ∂t b dH2 +

∫
M

K ′(η) b dH2 dt

=
∫

I

∫
�η


f · ϕ dx dt +
∫

I

∫
M

g b dx dt

(6.29)

for all (b,ϕ) ∈ C∞
0 (M) × C∞(I × R

3) with trη ϕ = bν.
It remains to show that p = a
γ + δ
β . This will be achieved in the following

two subsections.

6.2. The Effective Viscous Flux

We fix ε0 > 0 and consider in the following just ε ∈ (0, ε0). Next, we define

�ε0 =
⋂

ε�ε0

�ηε .

It is the aim of this subsection to show that for ψ ∈ C∞
0 (I × �ε0) we have∫

I×�ηε

ψ2(a
γ
ε + δ
β

ε − (λ + 2μ) div uε

)

ε dx dt

−→
∫

I×�η

ψ2(p − (λ + 2μ) div u
)

 dx dt

(6.30)

as ε → 0. Testing the momentum equation with ψ∇	−1(ψ
ε) implies

J0 :=
∫

I

∫
R3

ψ2(
γ
ε + δ
β

ε

)

ε dx dσ

= μ

∫
I

∫
R3

ψ∇uε : ∇2	−1(ψ
ε) dx dσ

+ μ

∫
I

∫
R3

∇uε : ∇ψ ⊗ ∇	−1ψ
ε dx dσ

+ (λ + μ)

∫
I

∫
R3

ψ2 div uε 
ε dx dσ

+ (λ + μ)

∫
I

∫
R3

div uε ∇ψ · ∇	−1(ψ
ε) dx dσ

−
∫

I

∫
R3


εuε ⊗ uε : ∇2	−1(ψ
ε) dx dσ



542 Dominic Breit & Sebastian Schwarzacher

−
∫

I

∫
R3


εuε ⊗ uε : ∇ψ ⊗ ∇	−1(ψ
ε) dx dσ

−
∫

I

∫
R3

(

γ

ε + δ
β
ε

)∇ψ · ∇	−1(ψ
ε) dx dσ

−
∫

I

∫
R3


εf · ∇	−1(ψ
ε) dx dσ

−
∫

I

∫
R3

∂tψ
εuε · ∇	−1(ψ
ε) dx dσ

−
∫

I

∫
R3

∇	−1(∂tψ
ε) · 
εuε dx dσ

+
∫

I

∫
R3

ψ
εuε · ∇	−1(ψ div(uε
ε)) dx dσ

+ ε

∫
I

∫
R3

ψ
εuε · ∇	−1(ψ	
ε

)
dx dσ

+ ε

∫
I

∫
R3

(
ψ∇(uε
ε) · ∇2	−1(ψ
ε)

+ ∇(uε
ε) : ∇	−1(ψ
ε) ⊗ ∇ψ
)
dx dσ

= J1 + · · · + J11 + E1 + E2.

We rewrite

J1 = μ

∫
I

∫
R3

ψ2 div uε ψ
ε dx dσ + J ′
1,

J ′
1 = μ

∫
I

∫
R3

(
uε · ∇ψ ψ
ε − uε ⊗ ∇ψ : ∇2	−1(ψ
ε)

)
dx dσ,

as well as

J11 =
∫

I

∫
R3

ψ
εuε · ∇	−1 div(ψuε
ε) dx dσ + J ′
11

J ′
11 = −

∫
I

∫
R3

ψ
εuε · ∇	−1(∇ψ · uε
ε) dx dσ.

We define the operator R byRi j := ∂ j	
−1∂i and obtain

∫
I

∫
R3

ψ2(a
γ
ε + δ
β

ε − (λ + 2μ) div uε

)

ε dx dt

= J ′
1 + J2 + J4 + J6 + · · · + J10 + J ′

11 + E1 + E2

+
∑
i, j

∫
I

∫
R3

ui
ε

(
ψ
εRi j [ψ
εu j

ε ] − ψ
εu j
εRi j [ψ
ε]

)
dx dσ.

(6.31)

Similarly, we obtain by testing the limit equation (6.29) by ψ∇	−1(ψ
)

K0 :=
∫

I

∫
R3

ψ2 p
 dx dσ
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= μ

∫
I

∫
R3

ψ∇u : ∇2	−1(ψ
) dx dσ

+ μ

∫
I

∫
R3

∇u : ∇ψ ⊗ ∇	−1(ψ
) dx dσ

+ (λ + μ)

∫
I

∫
R3

ψ2 div u
 dx dσ

+ (λ + μ)

∫
I

∫
R3

div u∇ψ · ∇(	−1(ψ
) dx dσ

−
∫

I

∫
R3


u ⊗ u:∇2	−1(ψ
) dx dσ

−
∫

I

∫
R3


u ⊗ u : ∇ψ ⊗ ∇	−1(ψ
) dx dσ

−
∫

I

∫
R3

p∇ψ · ∇	−1(ψ
)) dx dσ −
∫

I

∫
R3


f · ∇	−1(ψ
) dx dσ

−
∫

I

∫
R3

∂tψ
u · ∇	−1(ψ
) dx dσ −
∫

I

∫
R3

∇	−1(∂tψ
) · 
u dx dσ

+
∫

I

∫
R3

ψ
u · ∇	−1(ψ div(u
)) dx dσ = K1 + · · · + K11.

In a manner similar to (6.31) we obtain∫
I

∫
R3

ψ2(p − (λ + 2μ) div u
)

 dx dt

= K ′
1 + K2 + K4 + K6 + · · · + K10 + K ′

11

+
∑
i, j

∫
I

∫
R3

ui (ψ
Ri j [ψ
u j ] − ψ
u jRi j [ψ
]) dx dσ,

(6.32)

where

K ′
1 = μ

∫
I

∫
R3

(
u · ∇ψ ψ
 − u ⊗ ∇ψ : ∇2	−1(ψ
)

)
dx dσ,

K ′
11 = −

∫
I

∫
R3

ψ
u · ∇	−1(∇ψ · u
) dx dσ.

Hence we now have that∫
I×�ηε

ψ2(a
γ
ε + δ
β

ε − (λ + 2μ) div uε

)

ε dx dt

−
∫

I×�η

ψ2(p − (λ + 2μ) div u
)

 dx dt

= J ′
1 − K ′

1 + J2 − K2 + J4 − K4 + J6 − K6 + · · · + J10 − K10

+ J ′
11 − K ′

11 + E1 + E2

+
∑
i, j

∫
I

∫
R3

ui
ε

(
ψ
εRi j [ψ
εu j

ε ] − ψ
εu j
εRi j [ψ
ε]

)
dx dσ
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−
∫

I

∫
R3

ui (ψ
Ri j [ψ
u j ] − ψ
u jRi j [ψ
]) dx dσ. (6.33)

We will now show that the right hand side converges to 0 as ε → 0. Observe
that after this preparation everything is localized and the known approach can be
enforced to our problem. Nevertheless, to keep the result self contained we repeat
the main steps of the argument here.

First, by the assumption β > 3 and the continuity of ∇	−1 we find that

|E2| � C
√

ε
(
‖∇2	−1(ψ
ε)‖3L∞( Ĩ ,(L3(B̃))

+ ‖∇	−1(ψ
ε)‖3L∞( Ĩ ,(L3(B̃))

+ ‖∇uε‖3L2(Q̃)
+ ‖uε‖3L2( Ĩ ,(L6(B̃))

+ ‖√ε∇
ε‖3L2(Q̃)
+ ‖√ε
ε‖3L2( Ĩ ,(L6(B̃))

�
√

ε
(
‖
̃ε‖3L∞( Ĩ ;L3(B̃))

+ ‖∇uε‖3L2(Q̃)
+ ‖√ε∇
ε‖3L2(Q̃)

+‖√ε
ε‖3L2( Ĩ ,(L6(B̃))

)
,

� C
√

ε

using, additionally, the fact that
√

ε∇
ε,∇uε are uniformly bounded in L2, cf. (6.8)
and (6.10). Similarly, we find |E1| � C

√
ε as well. Hence, we have E1, E2 → 0.

All other couples converge to 0 (by the known weak and strong convergences
we have) except for the last couple on the right hand side of (6.33). The crucial
point is to estimate the commutator term. We will prove that ψ
εR[ψ
εuε] −
ψ
εuεR[ψ
ε] converges strongly in L2(W −1,2). Then the crucial term converges,
since ψu converges weakly to 0 in L2(W 1,2). For the identification of the limit we
make use of the div-curl lemma. From (6.9) and (6.13) we obtain that


ε ⇀ 
 in Lβ(R3) a.e. in I,


εuε ⇀ 
u in L
2β

β+1 (R3) a.e. in I.

Hencewe can apply [21, Lemma3.4] (to the sequencesψ
ε andψ
εu j
ε ) to conclude

that

ψ
εRi j [ψ
εu j
ε ] − ψ
εu j

εRi j [ψ
ε]
⇀ ψ
Ri j [ψ
u j ] − ψ
u jRi j [ψ
] in Lr (R3)

a.e. in t, where

1

r
= 1

β
+ β + 1

2β
<

6

5
.

Therefore Lr (O) is compactly embedded into W −1,2(O) forO � R
3. As a conse-

quence we have

ψ
εRi j [ψ
εu j
ε ] − ψ
εu j

εRi j [ψ
ε) ⇀ ψ
Ri j [ψ
u j ]
−ψ
u jRi j [ψ
] in W −1,2(R3)

a.e. in t using the compact support of the involved functions.Moreover, it is possible
to show that for some p > 2,∫

I

∥∥ψ
εR[ψ
εuε] − ψ
εuεR[ψ
ε]
∥∥p

W−1,2(R3)
dt

� C
∫

Ĩ
‖
ε‖2pr

Lβ+1(B̃)
dt + C sup

t∈ Ĩ

‖
εuε‖2pr

L
2β

β+1 (B̃)

dt � C,
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using (6.13) and (6.15) together with β � 4. This gives the desired convergence

ψ
εR[ψ
εuε] − ψ
εuεR[ψ
ε] → ψ
R[ψ
u]
−ψ
uR[ψ
] in L2(I ; W −1,2(R3))

as ε → 0. Thus, we conclude that∫
I×R3

ψ
ε ui
ε

(Ri j [ψ
εu j
ε ] − ψ
εu j

εRi j [ψ
ε]
)
dx dt

→
∫

I×R3
ψ
 ui (Ri j [ψ
u j ] − ψ
u jRi j [ψ
]) dx dt,

(6.34)

and, accordingly,∫
I×R3

ψ2(a
γ
ε + δ
β

ε − (λ + 2μ) div uε

)

ε dx dt

−→
∫

I×R3
ψ2(p − (λ + 2μ) div u

)

 dx dt

(6.35)

as ε → 0.

6.3. Renormalized Solutions

The aim of this subsection is to prove Lemma 6.2. Similarly to Lemma 3.1 b)
the proof is based on mollification and Lions’ commutator estimate. Due to (6.7),
(6.9) and (6.13) it is easy to pass to the limit in (5.2). Hence, we obtain∫

I

d

dt

∫
�η


 ψ dx dt −
∫

I

∫
�η

(

 ∂tψ + 
u · ∇ψ

)
dx dt = 0

for all ψ ∈ C∞(I × R
3). We extend 
 by zero to I × R

3 and u by means of the
extension operator

Eη : W 1,2(�η) → W 1,p(R3),

constructed in Lemma 2.5 where 1 < p < 2 (but may be chosen close to 2). Hence,
we find that∫

I

d

dt

∫
R3


 ψ dx dt −
∫

I

∫
R3

(

 ∂tψ + 
Eηu · ∇ψ

)
dx dt = 0

for all ψ ∈ C∞(I × R
3). Now, analogous to the proof in Theorem 3.1 we mollify

the equation in space using a standard convolution with parameter κ > 0 in space.
The following holds:

∂t
κ + div
(

κEηu

) = rκ in I × R
3, (6.36)

where rκ = div(
κEηu) − div(
Eηu)κ . Due to β > 2 we can infer from the
commutator lemma (see e.g. [36, Lemma 2.3]) that for a.e. t

‖rκ‖Lq (R3) � ‖Eηu‖W 1,p(R3)‖
‖Lβ(R3),
1
q = 1

p + 1
β
,
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as well as

rκ → 0 in Lq(R3) (6.37)

a.e. in I . Now, we multiply (6.36) by θ ′(
κ) where θ , satisfies θ(0) = 0 and obtain

∂tθ(
κ) + div
(
θ(
κ)Eηw

) + (

κθ ′(
κ) − θ(
κ)

)
div Eηu = rκθ ′(
κ). (6.38)

Due to the properties of the mollification and θ ∈ C1 the terms θ(
κ) and θ ′(
κ)

converge to the correct limits (at least after taking a subsequence). Hence, multi-
plying (6.38) by ψ ∈ C∞(I × R

3) and integrating over I × R
3 implies∫

I

d

dt

∫
R3

θ(
)ψ dx dt −
∫

I×R3
θ(
) ∂tψ dx dt

+
∫

I×R3

(

θ ′(
) − θ(
)

)
div Eηuψ dx dt

=
∫

I×R3
θ(
)Eηu · ∇ψ.

(6.39)

6.4. Strong Convergence of the Density

In order to deal with the local nature of (6.35) we use ideas from [18]. First
of all, by the monotonicity of the mapping z 
→ azγ + δzβ , we find for arbitrary
non-negative ψ ∈ C∞

0 (�ε0) that

(λ + 2μ) lim inf
ε→0

∫
I×R3

ψ
(
div uε 
ε − div u 


)
dx dt

= lim inf
ε→0

∫
I×�ηε

(
ψ

(
p − (λ + 2μ) div u

)



− ψ
(
a
γ

ε + δ
β
ε − (λ + 2μ) div uε

)

ε

)
dx dt

+ lim inf
ε→0

∫
I×�ηε

ψ
(
a
γ+1

ε + δ
β+1
ε − p


)
dx dt

= lim inf
ε→0

∫
I×�ηε

ψ
(
a
γ

ε + δ
β
ε − p

)(

ε − 


)
dx dt � 0,

using (6.35). As ψ is arbitrary we conclude

div u 
 � div u 
 a.e. in I × �η, (6.40)

where

div uε 
ε ⇀η div u 
 in L1(�; L1(�ηε ));
recall (6.8) and (6.9). Now, we compute both sides of (6.40) by means of the
corresponding continuity equations. Due to Lemma 5.2 with θ(z) = z ln z and
ψ = χ[0,t] we have∫ t

0

∫
R3

div uε 
ε dx dσ �
∫
R3


0 ln(
0) dx −
∫
R3


ε(t) ln(
ε(t)) dx . (6.41)
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Similarly, equation (6.39) yields

∫ t

0

∫
R3

div u 
 dx dσ =
∫
R3


0 ln(
0) dx −
∫
R3


(t) ln(
(t)) dx . (6.42)

Combining (6.40)–(6.42) shows

lim sup
ε→0

∫
R3


ε(t) ln(
ε(t)) dx �
∫
R3


(t) ln(
(t)) dx

for any t ∈ I . This gives the claimed convergence 
ε → 
 in L1(I × R
3) by

convexity of z 
→ z ln z. Consequently, we have p̃ = a
γ + δ
β and the proof of
Theorem 6.1 is complete.

7. The Vanishing Artificial Pressure Limit

A weak solution to (1.2)–(1.9) is a triple (η,u, 
) ∈ ×Y I × X I
η × W I

η , where

W I
η = Cw(I ; Lγ (�η)),

which satisfies the following:

(O1) The momentum equation is satisfied in the sense that

∫
I

d

dt

∫
�η


u · ϕ dx −
∫

�η

(

u · ∂tϕ + 
u ⊗ u : ∇ϕ

)
dx dt

+
∫

I

∫
�η

(
μ∇u : ∇ϕ + (λ + μ) div u divϕ

)
dx dt

−
∫

I

∫
�η

a
γ divϕ dx dt

+
∫

I

(
d

dt

∫
M

∂tηb dH2 −
∫

M
∂tη ∂t b dH2 +

∫
M

K ′(η) b dH2
)
dt

=
∫

I

∫
�η


f · ϕ dx dt +
∫

I

∫
M

g b dx dt (7.1)

holds for all (b,ϕ) ∈ C∞
0 (M)×C∞(I ×R

3)with trη(ϕ) = bν. Moreover,
we have (
u)(0) = q0, η(0) = η0 and ∂tη(0) = η1.

(O2) The continuity equation is satisfied in the sense that

∫
I

d

dt

∫
�η


ψ dx dt −
∫

I

∫
�η

(

∂tψ + 
u · ∇ψ

)
dx dt = 0 (7.2)

holds for all ψ ∈ C∞(I × R
3) and we have 
(0) = 
0.

(O3) The boundary condition trηu = ∂tην holds in the sense of Lemma 2.4.



548 Dominic Breit & Sebastian Schwarzacher

Theorem 7.1. Let γ > 12
7 (γ > 1 in two dimensions). There is a weak solution

(η,u, 
) ∈ Y I × X I
η × W I

η to (1.2)–(1.9) in the sense of (O1)–(O3). Here, we have
I = (0, T∗), with T∗ < T only in case �η(s) approaches a self intersection with
s → T∗. The solution satisfies the energy estimate

sup
t∈I

∫
�η


|u|2 dx + sup
t∈I

∫
�η

a
γ dx +
∫

I

∫
�η

|∇u|2 dx dt

+ sup
t∈I

∫
M

|∂tη|2 dH2 + sup
t∈I

K (η)

� c

( ∫
�

|q0|2

0

dx +
∫

�

a

γ
0 dx +

∫
I
‖f‖2L∞(�η) dt +

∫
I
‖g‖L2(M) dt

)

+ c

( ∫
M

|η0|2 dH2 +
∫

M
|η1|2 dH2 + K (η0)

)
,

provided that η0, η1, 
0,q0, f and g are regular enough to give sense to the right-
hand side, that 
0 � 0 a.e. and (1.10) is satisfied.

Lemma 7.2. Under the assumptions of Theorem 7.1, the continuity equation holds
in the renormalized sense that is

∫
I

d

dt

∫
�η

θ(
)ψ dx dt −
∫

I

∫
�η

(
θ(
)∂tψ + θ(
)u · ∇ψ

)
dx dt

= −
∫

I

∫
�η

(
θ ′(
) − θ(
)) div uψ dx dt
(7.3)

for all ψ ∈ C∞(I × R
3) and all θ ∈ C1(R) with θ(0) = 0 and θ ′(z) = 0 for

z � Mθ .

For a given δ we gain a weak solutions (ηδ,uδ, 
δ) to (6.1)–(6.2) by Theo-
rem 6.1. It is defined in the interval [0, T∗], where T∗ is restricted by the data only.
The estimate from Theorem 6.1 holds uniformly with respect to δ. Hence we may
take a subsequence, such that for some α ∈ (0, 1) we have

ηδ ⇀∗ η in L∞(I ; W 2,2
0 (M)) (7.4)

ηδ ⇀∗ η in W 1,∞(I ; L2(M)), (7.5)

ηδ → η in Cα(I × M), (7.6)

uδ ⇀η u in L2(I ; W 1,2(�ηδ )), (7.7)


δ ⇀∗,η 
 in L∞(I ; Lγ (�ηδ )). (7.8)

By Lemma 2.8 we find for all q ∈ (1, 6γ
γ+6 ) that


δuδ ⇀η 
u in L2(I, Lq(�ηδ )) (7.9)


δuδ ⊗ uδ ⇀η 
u ⊗ u in L1(I ; L1(�ηδ )). (7.10)

Also we have, as before in Proposition 6.3, higher integrability of the density.
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Lemma 7.3. Let γ > 3
2 (γ > 1 in two dimensions). Let Q = J × B � I × �η be

a parabolic cube and 0 < � � 2
3γ − 1. The following holds for any δ � δ0(Q):

∫
Q

(
a


γ+�
δ + δ


β+�
δ

)
dx dt � C(Q) (7.11)

with constant independent of δ.

Proof. The proof follows the lines of Lemma 6.3 with the difference that we test
with ψ∇	−1

B̃

�

δ . We only show how to handle the most critical integral

J =
∫

Q
ψ
δuδ ⊗ uδ : ∇2	−1

B̃

�

δ dx dt

arising from the convective term. The bound � � 2
3γ − 1 is needed to estimate it.

It can be estimated using the continuity of ∇2	−1
B̃

and Hölder’s inequality by

|J | � c
∫ T

0
‖
δ‖γ ‖uδ‖26‖
θ

δ ‖r dt,

where r := 3γ
2γ−3 . We proceed, using Sobolev’s inequality (note that uδ = 0 on �),

by

|J | � C
(

sup
0�t�T

‖
δ‖γ

)(
sup

0�t�T
‖
�

δ ‖r

) ∫ T

0
‖∇uδ‖22 dt.

We need to choose r such that �r � γ which is equivalent to � � 2
3γ − 1. Now,

the various a-priori bounds yield |J | � c uniformly in δ. ��
In a fashion similar to Lemma 6.4we can exclude concentrations of the pressure

at the moving boundary. However, we have to assume γ > 12
7 for this.

Lemma 7.4. Let γ > 12
7 (γ > 1 in two dimensions). Let κ > 0 be arbitrary. There

is a measurable set Aκ � I × �η such that we have for, all δ � δ0,
∫

I×R3\Aκ

(
a


γ
δ + δ


β
δ

)
χ�ηδ

dx dt � κ. (7.12)

Proof. We follow the approach of Proposition 6.4 replacing ε by δ, so we test with

ϕδ(t, x) = ϕ min {K (s(x) − ηδ(t, q(x))), 1}ν(q(x)).

The critical term is again ∫
I

∫
�ηδ


δuδ ∂tϕδ dx dt. (7.13)

Following the proof of Proposition 6.4 this can be estimated provided γ > 3. We
want to improve on this. In order to do so we write

∂tϕδ = −Kχ{K (s(x)−ηδ(t,q(x)))�1}∂tηδ(t, q(x))ν(q(x))
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= −Kχ{K (s(x)−ηδ(t,q(x)))�1}uδ ◦ �δ(t, 0, q(x)).

By Lemma 2.4 and since ∇uδ is uniformly bounded in L2 (recall (7.7)) we find
that

uδ ◦ �δ|∂� ∈ L2(I ; Lq(∂�)) ∀q < 4 (7.14)

uniformly in δ (q < ∞ in two dimensions). In a manner similar to (6.24) we obtain

( ∫
I

( ∫
�ηδ

|∂tϕδ|r dx

) 2
r
) 1

2

� cK

( ∫
I

(∫
�ηδ

|uδ ◦ �δ(t, 0, q(x))|q dx

) 2
q

∣∣{x ∈ �ηδ : K (s − ηδ(t, q)) � 1}∣∣ 2(q−r)
qr dt

) 1
2

� cK

( ∫
I

(∫
∂�ηδ

|uδ ◦ �δ(t, 0, q(x))|q dH2
) 2

q

dt

) 1
2

sup
I

∣∣{x ∈ �ηδ : K (s − ηδ(t, q)) � 1}∣∣ q−r
qr

� c K 1− q−r
qr

(7.15)

for all r < q < 4 (all r < q < ∞ in two dimensions) uniformly in δ. Now, the
proof can be finished as in Proposition 6.4. We take


δuδ ∈ L2
(

I ; L
6γ

γ+6 (R3)
)

(7.16)

into account (which follows from the uniform a-priori bounds) and γ > 12
7 (which

yields 6γ
γ+6 > 4

3 ). We see that the integral in (7.13) is uniformly bounded by

K 1−λ for some λ ∈ (0, 1) using Hölder’s inequality and (7.15) (choosing r and q
appropriately). ��

Lemmas 7.3 and 7.4 imply equi-integrability of the sequence 

γ
δ χ�ηδ

. This
yields the existence of a function p such that (for a subsequence)

a

γ
δ + δ


β
δ ⇀ p in L1(I × R

3), (7.17)

δ

β
δ → 0 in L1(I × R

3). (7.18)

Similarly to Corollary 6.5 we have

Corollary 7.5. Let κ > 0 be arbitrary. There is a measurable set Aκ � I × �η

such that ∫
I×R3\Aκ

p dx dt � κ. (7.19)
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Using (7.17) and the convergences (7.4)–(7.10) we can pass to the limit in
(6.1)–(6.28) and obtain

−
∫

I

∫
�η


u · ∂tϕ dx dt −
∫

I

∫
M


∂tη ∂tη b γ (η) dH2 dt

+
∫

I

∫
�η

div(
u ⊗ u) · ϕ dx dt + μ

∫
I

∫
�η

∇u : ∇ϕ dx dt

+ (λ + μ)

∫
I

∫
�η

div u divϕ dx dt −
∫

I

∫
�η

p divϕ dx dt

−
∫

I

∫
M

∂tη ∂t b dH2 dt + 2
∫

I

∫
M

K ′(η) b dH2 dt

=
∫

I

∫
�η


f · ϕ dx dt +
∫

I

∫
M

g b dH2 dt

+
∫

�η0

u0 · ϕ(0, ·) dx +
∫

M
η0 b dH2

(7.20)

for all test-functions (b,ϕ)with trηϕ = bν,ϕ(T, ·) = 0 and b(T, ·) = 0.Moreover,
it holds that∫

I

∫
�η


 ∂tψ dx dt −
∫

I

∫
�η

div(
 u) ψ dx dt =
∫

�η0


0 ψ(0, ·) dx (7.21)

for all ψ ∈ C∞(I × �η). It remains to show that p = a
γ .

7.1. The Effective Viscous Flux

We define the L∞-truncation

Tk(z) := k T
( z

k

)
z ∈ R, k ∈ N. (7.22)

Here T is a smooth concave function on R such that T (z) = z for z � 1 and
T (z) = 2 for z � 3. It is the aim of this subsection to show that

∫
I×�ηδ

(
a


γ
δ + δ


β
δ − (λ + 2μ) div uδ

)
Tk(
δ) dx dt

−→
∫

I×�η

(
p − (λ + 2μ) div u

)
T 1,k dx dt.

(7.23)

For this step we are able to use the theory established in [37] on a local level. We
fix a small δ0 and consider an arbitrary cube Q̃ = J̃ × B̃ � I × ⋃

δ∈[0,δ0] �ηδ . To
this end, we can choose θ = Tk in the renormalized continuity equation for 
̃δ , cf.
Lemma 6.2. Hence, we find

∂t Tk(
δ) + div
(
Tk(
δ)uδ

) + (
T ′

k(
δ)
δ − Tk(
δ)
)
div uδ = 0, (7.24)

in the sense of distributions in I ×R
3. In order to pass to the limit in this equation,

let T 1,k denote the weak limit of Tk(
δ) and let T 2,k denote the weak limit of
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(
T ′

k(
δ)
δ − Tk(
δ)
)
div uδ (here it might be necessary to pass to a subsequence).

To be more precise, the following holds:

Tk(
δ) ⇀ T 1,k in Cw(I ; L p(R3)) ∀p ∈ [1,∞), (7.25)(
T ′

k(
δ)
δ − Tk(
δ)
)
div uδ ⇀ T 2,k in L2(I × R

3). (7.26)

Thus, letting δ → 0 in (7.24) yields

∂t T
1,k + div

(
T 1,ku

) + T 2,k = 0 (7.27)

in the sense of distributions on I × R
3. Note that we used

Tk(
δ)uδ ⇀ T 1,ku in L2(I × R
3).

This, in turn, is a consequence of the convergences

Tk(
δ) → T 1,k in L2(I ; W −1,2(R3)),

uδ ⇀ u in L2(I ; W 1,2(R3)).
(7.28)

We remark that the former one follows from the compactness of the embedding
Cw(I ; L p(O)) ↪→ L2(I ; W −1,2(O)) for O � R

3 and (7.25) (with p > 6
5 ). Note

that uδ is extended to R3 by means of Lemma 2.5.
Next, we take Q with Q � Q̃ � I × �ηn δ and a cut off function ψ ∈

C∞
0 (Q̃) with 0 � ψ � 1 and ψ ≡ 1 in Q = J × B. Now, we test (6.1) with

ψ∇	−1(ψT k(
δ)) and (7.20) with ψ∇	−1(ψT 1,k). Using similar arguments as
in Section 6.2 we find that

∫
I×R3

ψ2(a

γ
δ − (λ + 2μ) div uδ

)
Tk(
δ) dx dt

−→
∫

I×R3
ψ2(p − (λ + 2μ) div u

)
T 1,k dx dt.

(7.29)

We have to remove ψ in order to conclude. For some given κ > 0 we choose a
measurable set in accordance to Lemma 7.4 and Corollary 7.5 for δ0 small enough
(using the fact that ηδ → η uniformly, cf. (7.6)). Without loss of generality we
can assume that ∂ Aκ is regular. Hence we can cover Aκ with parabolic cubes
Qi = Ji × Bi such that

Aκ ⊂
⋃

i

Qi �
⋂

δ∈[0,δ0]

(
I × �ηδ

)
.

They can be chosen in a way that we find a partition of unity (ψi ) with respect to
the family Qi such that ψi ∈ C∞

0 (Qi ) and

∑
ψi = 1 in Aκ .
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In particular, (7.29) holds with ψ = ψi . We gain

∫
I×�ηδ

(



γ
δ + δ


β
δ − (λ + 2μ) div uδ

)
Tk(
δ) dx dt

=
∫

I×�ηδ

((
1 −

∑
i

ψi

)



γ
δ + δ


β
δ − (λ + 2μ) div uδ

)
Tk(
δ)

)
dx dt

+
∑

i

∫
Qi

ψi
(



γ
δ + δ


β
δ − (λ + 2μ) div uδ

)
Tk(
δ) dx dt.

Using (7.7) and (7.12) the first integral on the right-hand side is bounded in terms
of κ . Using (7.29) and (7.19) we find that

lim
δ→0

∣∣∣∣∣
∫

I×�ηδ

(



γ
δ + δ


β
δ − (λ + 2μ) div uδ

)
Tk(
δ) dx dt

−
∫

I×�η

(
p(λ + 2μ) div u

)
T 1,k dx dt

∣∣∣∣∣
is bounded bin terms of κ . As κ is arbitrary we finally conclude that (7.23) holds.

7.2. Renormalized Solutions

The aim of this section is to prove Lemma 7.2. In order to do so it suffices to
use the continuity equation and (7.23) again on the whole space.

First, we observe that 
δ is renormalized solution to the continuity equation by
Lemma 6.2, i.e. we have

∂tθ(
δ) + div
(
θ(
δ)uδ

) + (
θ ′(
δ)
δ − θ(
δ)

)
div uδ = 0 (7.30)

in the sense of distributions on I × R
3. Note that (7.30) holds in particular for

θ(z) = z, which implies that the continuity equation can be regarded as a PDE
on the whole-space. We are interested in the particular choice θ = Tk , where the
cut-off functions Tk are given by (7.22).

We have to show that, similar to (7.30), equation (7.27) actually holds globally.
Thus, choosing θ = Tk in (7.30) letting δ → 0 yields

0 = d

dt

∫
R3

T 1,kψ dx −
∫
R3

(
T 1,k∂tψ + T 1,ku · ∇ψ

)
dx

+
∫
R3

T 2,kψ dx
(7.31)

for all ψ ∈ C∞(I × R
3). This means that we have

∂t T
1,k + div

(
T 1,ku

) + T 2,k = 0 (7.32)
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in the sense of distributions on I ×R
3. Note that we extended 
 by zero to R3. The

next step is to show

lim sup
δ→0

∫
I×R3

|Tk(
δ) − Tk(
)|γ+1 dx dt � C, (7.33)

where C does not depend on k. The proof of (7.33) follows exactly the arguments
from the classical setting with fixed boundary (see [21, Lemma 4.4] and [17]) using
(7.23) and the uniform bounds on u. We explain the details for the convenience of
the reader. First, note that we have

lim
δ→0

∫
I

∫
R3

(
(


γ
δ + δ


β
δ )Tk(
δ) − pT 1,k

)
dx dt

= lim
δ→0

(∫
I

∫
R3

(



γ
δ + δ


β
δ − (
γ + δ
β)

)(
Tk(
δ) − Tk(
)

)
dx dt

+
∫

I

∫
R3

(
p − (
γ + δ
β)

)(
Tk(
) − T 1,k) dx dt

)
.

By convexity of z 
→ zγ + δzβ we conclude that

lim
δ→0

∫
I

∫
R3

(
(


γ
δ + δ


β
δ )Tk(
δ) − pT 1,k) dx dt

� lim
δ→0

∫
I

∫
R3

(



γ
δ − 
γ

)(
Tk(
δ) − T 1,k) dx dt

�
∫

I

∫
R3

|Tk(
δ) − Tk(
)|γ+1 dx dt. (7.34)

Moreover, we have

lim sup
δ→0

∫
I

∫
R3

(
div uδ Tk(
δ) − div u T 1,k) dx dt

= lim sup
δ→0

∫
I

∫
R3

(
Tk(
δ) − T 1,k) div uδ dx dt

� c lim sup
δ→0

‖Tk(
δ) − T 1,k‖L2(I×R3)

� c lim sup
δ→0

‖Tk(
δ) − Tk(
)‖L2(I×R3). (7.35)

Now we combine (7.34) end (7.35) with (7.23) to conclude (7.33).
By a standard smoothing procedure we can consider “renormalized solutions”

for T 1,k and deduce from (7.32) that

∂tθ(T 1,k) + div
(
θ(T 1,k)u

) + (
θ ′(T 1,k)T 1,k − θ(T 1,k)

)
div u

+ θ ′(T 1,k)T 2,k = 0 (7.36)

in the sense of distributions I × R
3. Here, we use that θ ′(z) = 0 for z � Mθ . We

want to pass to the limit k → ∞. On account of (7.8), we have, for all p ∈ (1, γ ),
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‖T 1,k − 
‖p
L p(I×R3)

� lim inf
δ→0

‖Tk(
δ) − 
δ‖p
L p(I×R3)

� 2p lim inf
δ→0

∫
[|
δ |�k]

|
δ|p dx dt

� 2pk p−γ lim inf
δ→0

∫
I×R3

|
δ|γ dx dt −→ 0, k → ∞,

so we have

T 1,k → 
 in L p(I × R
3) (7.37)

as k → ∞. Therefore, we are left to show that

θ ′(T 1,k)T 2,k → 0 in L1(I × R
3) with k → ∞. (7.38)

Recall that θ has to satisfy θ ′(z) = 0 for all z � M for some M = Mθ . We define

Qk,M := {
(t, x) ∈ I × R

3; T 1,k � M
}

and gain by weak lower semicontinuety that
∫

I×R3
|θ ′(T 1,k)T 2,k | dx dt � sup

z�M
|θ ′(z)|

∫
Q

χQk,M |T 2,k | dx dt

� C lim inf
δ→0

∫
I×R3

χQk,M

∣∣(T ′
k(
δ)
δ − Tk(
δ)) div uδ

∣∣ dx dt

� C sup
δ

‖ div uδ‖L2(I×R3) lim inf
δ→0

‖T ′
k(
δ)
δ − Tk(
δ)‖L2(Qk,M ).

It follows from interpolation that

‖T ′
k(
δ)
δ − Tk(
δ)‖2L2(Qk,M )

� ‖T ′
k(
δ)
δ − Tk(
δ)‖α

L1(I×R3)
‖T ′

k(
δ)
δ − Tk(
δ)‖(1−α)(γ+1)
Lγ+1(Qk,M )

, (7.39)

where α = γ−1
γ

. Moreover, we can show similarly to the proof of (7.37) that

‖T ′
k(
δ)
δ − Tk(
δ)‖L1(I×R3) � C k1−γ sup

δ

∫
I×R3

|
δ|γ dx dt

−→ 0, k → ∞.

(7.40)

Thus, it is enough to prove

sup
δ

‖T ′
k(
δ)
δ − Tk(
δ)‖Lγ+1(Qk,M ) � C (7.41)

independently of k. As T ′
k(z)z � Tk(z) it holds by the definition of Qk,M that

‖T ′
k(
δ)
δ − Tk(
δ)‖Lγ+1(Qk,M )

� 2
(
‖Tk(
δ) − Tk(
)‖Lγ+1(I×R3) + ‖Tk(
δ)‖Lγ+1(Qk,M )

)

� 2
(
‖Tk(
δ) − Tk(
)‖Lγ+1(I×R3) + ‖Tk(
δ) − T 1,k‖Lγ+1(I×R3)
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+ ‖T 1,k‖Lγ+1(Qk,M )

)
.

� 2
(
‖Tk(
δ) − Tk(
)‖Lγ+1(I×R3) + ‖Tk(
δ) − T 1,k‖Lγ+1(I×R3)

)
+ C M.

Firstly we find that (7.33) and (7.25) imply (7.41). Secondly, (7.39)–(7.41) imply
(7.38), so we can pass to the limit in (7.36) and gain

∂tθ(
) + div
(
θ(
)u

) + (
θ ′(
)
 − θ(
)

)
div u = 0 (7.42)

in the sense of distributions on I × R
3. The proof of Lemma 7.2 is complete.

7.3. Strong Convergence of the Density

We introduce the functions Lk by

Lk(z) =
{

z ln z, 0 � z < k

z ln k + z
∫ z

k Tk(s)/s2 ds, z � k.

We can choose θ = Lk in (7.42) such that

∂t Lk(
) + div
(
Lk(
)u

) + Tk(
) div u = 0 (7.43)

in the sense of distributions on I × R
3. We also have that

∂t Lk(
δ) + div
(
Lk(
δ)uδ

) + Tk(
δ) div uδ = 0

in the sense of distributions, cf. Lemma 6.2.
Using the testfunction ψ ≡ 1 in both equations implies∫

R3
Lk(
δ) dx −

∫
R3

Tk(
δ(0))ϕ(0) dx

−
∫ t

0

∫
R3

Tk(
δ) div uδ dx dσ � 0 (7.44)

and ∫
R3

Lk(
) dx −
∫
R3

Lk(
(0))ϕ(0) dx

−
∫ t

0

∫
R3

Tk(
) div u dx dσ = 0. (7.45)

The difference of both equations reads as∫
R3

(
Lk(
δ)(t) − Lk(
)(t)

)
dx �

∫
R3

(
Lk(
δ)(0) − Lk(
)(0)

)
dx

+
∫ t

0

∫
R3

(
Tk(
) div u − Tk(
) div u

)
dx dσ.

We have the following convergences for all p ∈ (1, γ ):

Lk(
δ) → L1,k in Cw(I ; L p(R3)), δ → 0,
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δ ln(
δ) → L2,k in Cw(I ; L p(R3)), δ → 0,

which is a consequence of the fundamental theorem on Young measures (see,
for instance, [40, Thm. 4.2.1, Cor. 4.2.19]) and the convergence of 
δ in
Cw(I ; Lβ(R3)). The latter one follows from the a-priori information on 
 from
(7.8) in combination with the control of the distributional time derivative of 
δ

coming from the continuity equation (considered on the whole-space), so we gain
(using also the fact, that 
δ(0) = 
0 = 
(0))
∫
R3

(
L1,k(t) − Lk(
)(t)

)
dx � lim sup

δ→0

∫ t

0

∫
R3

(
Tk(
) div u − Tk(
δ) div uδ

)
dx dσ

�
∫ t

0

∫
R3

(
Tk(
) − T 1,k) div u dx dσ, (7.46)

using (7.23) together with the monotonicity of the pressure. Due to (7.37) the right-
hand side tends to zero if k → ∞ such that

lim
k→∞

∫
R3

(
L1,k(t) − Lk(
)(t)

)
dx � 0.

Thus, we have shown

lim
δ→0

∫
I

∫
R3


δ ln 
δ dx dt �
∫

I

∫
R3


 ln 
 dx dt.

Byweak lower semi-continuity for convex functionals the converse inequality holds
as well. This finally means that

∫
I

∫
R3


δ ln 
δ dx dt −→
∫

I

∫
R3


 ln 
 dx dt.

Convexity of z 
→ z ln z yields strong convergence of 
δ . Hence, due to (7.20), the
proof of Theorem 7.1 is shown, for the time interval [0, T∗], with T∗ depending on
the data only (such that ‖η(t)‖∞ < L

2 in (0, T ∗)). In the next section we will show
how the interval of existence can be prolongated by a change of coordinates.

7.4. Maximal Interval of Existence

The interval of existence in Theorem 7.1 is restricted by the quantities of the
given data, aswell as the geometry of ∂�. By our assumption on the initial geometry
we find that �η(T∗) has no self intersections. We define η∗ = (η(T∗))κ , where κ is
a convolution operator in space. We define �̃ = �η∗ ∈ C4. If κ is conveniently
small, then also �̃ has no self intersection either. In particular, there exists some
L̃ > 0 such that on

S̃L̃ := {x ∈ R
3 : dist(x, ∂�η∗) � L̃},

the function (see the beginning of Section 2.2)

�̃ : ∂�̃ × (−L̃, L̃) → S̃L̃ , �̃(q̃, s̃) = q̃ + s̃ν(q)
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is well defined. Here we have (q, s) = �−1(q̃) and ν is the outer normal of the
initial geometry ∂�. This implies that for ζ̃ : ∂�̃ → [−L̃, L̃], we may associate

�ζ̃ := �̃ \ S̃L̃ ∪ {x ∈ S̃L̃ : s̃(x) < ζ̃ (q̃(x))}.

By the definition of L̃ , there exists a diffeomorphism

� ζ̃ : �̃ → �ζ̃ ,

cf. Lemma 2.2. In particular, we may define the function

ζ : ∂� → R, q 
→ ζ̃ (q + νη∗(q)) + η∗(q)

as satisfying

ζ(q) ∈ [η∗(q) − L̃, η∗(q) + L̃] for all q ∈ ∂�,

where (q, s) = �−1(q̃). This implies that the mapping

�ζ := � ζ̃ ◦ �η∗ : � → �ζ = �ζ̃

is a well-defined diffeomorphism. The transformation can also be inverted. For any
η : ∂� → R with

η(q) ∈ [η∗(q) − L̃, η∗(q) + L̃] for all q ∈ ∂�,

we may define

η̃ : ∂�̃ → [−L̃, L̃], q̃ 
→ η(q̃ − ν(q)η∗(q)) − η∗(q).

By this construction we have changed the coordinate set �η since

�η = � η̃ ◦ �η∗ : � → �η = �η̃.

This transformation can be used to extend the solution. To be precise, we set:

• η̃0 = η(T∗),
• η̃1 = ∂tη(T ∗),
• 
̃0 = 
(T ∗),
• q̃0 = 
(T ∗)u(T ∗).

By the construction above, we can associate to any ζ̃ ∈ C
([T ∗, T ∗∗] ×

∂�̃, [− L̃
2 , L̃

2 ]) a function ζ ∈ C([T ∗, T ∗∗] × ∂�) such that

η(q) ∈
[
η∗(q) − L̃

2
, η∗(q) + L̃

2

]
for all q ∈ ∂�.

Moreover, the mappings �ζ : � → �ζ and �Rκ ζ : � → �Rκ ζ are both well
defined, provided we choose κ small enough. Now, first Theorem 4.4 provides a
solution (η,u) to any given pair

(ζ, v) ∈ C([T ∗, T ∗∗] × ∂�,R) × L2([T ∗, T ∗∗] × R
3).
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Second, we wish to get a fixpoint by applying Theorem 4.2. The only modification
is that the fixpoint mapping has to be adjusted slightly. Indeed, the fixed point has
to be found in the set

D :=
{
(ζ̃ , v) ∈ C([T ∗, T ∗∗] × ∂�̃) × L2([T ∗, T ∗∗] × R

3)) :

ζ̃ (0) = η̃(T ∗), ‖ζ̃‖L∞ � L̃

2
, ‖v‖L2([T ∗,T ∗∗]×R3) � K

}
.

Here K has to be adjusted to T ∗∗ in accordance with the proof of Theorem 4.2.
Finally, we set F : D → P(D),

F : (ζ̃ , v) 
→
{
(η̃,u) : (η,u) solves (4.8)

with (ζ, v) and satisfies the energy bounds
}
,

where η̃ is defined via the solution η by η̃ = η(q̃−ν(q)η∗(q))−η∗(q) as introduced
above. The rest of the argument of Theorem 4.2 does not change, since the L∞
bounds of η, ζ (which are critical for the fixed point argument) do not change by
coordinate transformations. Once the fixed point is established, we may pass to the
limit with κ, ε and δ as before. Observe, that in Section 6.3 one has to use the exten-
sion operator from Lemma 2.5 with respect to the coordinate transformation � η̃ as

it satisfies ‖η̃‖∞ < L̃
2 (here we use the fact that �η̃ = �η by our construction).

We remark that the solution η and�Rκ η are defined via the same reference coor-
dinates ∂�. This means it truly extends the solution and we can extend the interval
of existence. Finally, the above procedure can be iterated until a self intersection is
approached. This finishes the proof of Theorem 7.1.
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