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Abstract

The goal of this note is to show that, in a bounded domain � ⊂ R
n , with

∂� ∈ C2, any weak solution (u(x, t), p(x, t)), of the Euler equations of ideal
incompressible fluid in � × (0, T ) ⊂ R

n ×Rt , with the impermeability boundary
condition u · �n = 0 on ∂� × (0, T ), is of constant energy on the interval (0, T ),
provided the velocity field u ∈ L3((0, T ); C0,α(�)), with α > 1

3 .
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1. Introduction and Preliminary Remarks

The aim of this article is to prove the following:

Theorem 1.1. Let � ⊂ R
n be a bounded domain with C2 boundary, ∂�, and

let (u(x, t), p(x, t)) be a weak solution of the incompressible Euler equations in
� × (0, T ), that is,

u ∈ L∞((0, T ); L2(�)), ∇ · u = 0 in � × (0, T ), and

u · �n = 0 on ∂� × (0, T ), (1.1)

and for every test vector field �(x, t) ∈ D(� × (0, T )) :
〈u, ∂t�〉x + 〈u ⊗ u : ∇�〉x + 〈p,∇ · �〉x = 0, in L1(0, T ). (1.2)
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Assume that
u ∈ L3((0, T ); C0,α(�)), (1.3)

with α > 1
3 , then the energy conservation holds true, that is:

‖u(., t2)‖L2(�) = ‖u(., t1)‖L2(�), for every t1, t2 ∈ (0, T ). (1.4)

In the above statement 〈·, ·〉x denotes the distributional duality with respect to
the spatial variable x . For the justification of the weak formulation as it is stated
in the above theorem, see, for example, Lions and Magenes [13] page 8, and
Schwartz [15].

Notably, this theorem implies that to dissipate energy, a weak solution of Euler
equations must not be in the space more regular than L3((0, T ); C0,α(�)), with
α > 1

3 . Such a fact was observed, with a formal proof, by Onsager in 1949
[14]. Hence it carries the name Onsager conjecture. In the absence of a physical
boundary (that is, in the whole space � = R

d or for the case of periodic boundary
conditions in the torus� = T

n) this conjecturewas proven in 1994 byConstantin,
E and Titi [4], after a first preliminary result of Eyink [7] (see also [3] and [6]).
Moreover, the relevance of this issue has been underlined by a series of contributions
(cf. Isett [11], Buckmaster, De Lellis , Székelyhidi and Vicol [2] and references
therein) where weak solutions, u ∈ C0,α((0, T );Tn), with α < 1

3 , that dissipate
energy were constructed. These results concern the problem in domains without
physical boundaries. However, due to the well recognized dominant role of the
boundary in the generation of turbulence (cf. [1] and references therein) it seems
very reasonable to investigate the analogue of the Onsager conjecture in bounded
domains. Eventually, the need to localize in order to deal with the boundary effect,
as will be shown below, stimulates the construction of a direct proof which may
have further applications.

The proof of the theorem will consist of several fundamental steps presented in
the following propositions.

Proposition 1.2. Under the assumptions of Theorem 1.1 the pair (u, p) satisfies
the following regularity properties:

u ⊗ u ∈ L3((0, T ); L2(�)), p ∈ L
3
2 ((0, T ); C0,α(�)), (1.5a)

∂t u = −∇ · (u ⊗ u) − ∇ p ∈ L
3
2 ((0, T ); H−1(�)). (1.5b)

Proof. The first part of (1.5a) is an immediate consequence of the assumption that
u ∈ L∞((0, T ); L2(�)) ∩ L3((0, T ); C0,α(�)). For the second part of (1.5a) we
first observe that, from the definition of weak solutions of the Euler equations, the
pressure, p, is a solution of the following elliptic boundary-value problem:

−�p =
n∑

i, j=1

∂xi ∂x j (ui u j ) in �, and
∂p

∂ �n = −
n∑

i, j=1

u j u j∂xi �n j on ∂�.

(1.6)
Observe that the boundary condition in (1.6) follows from simple calculations for
the case of classical solutions using the fact that u · �n = 0 (see, for example, [16]),
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which is considered here to be the suitable boundary condition in the definition of
weak solution for the pressure. Applying the classical theory of elliptic equations
in Hölder spaces applied to (1.6) (cf., for example, [12] chapters 5 and 6) implies
the estimate

‖p(., t)|‖C0,α � C‖u(., t)‖2C0,α , (1.7)

from which one infers the second part of (1.5a). Eventually, (1.5b) follows from
(1.2) and (1.5a). �

To investigate the boundary effect one introduces the distance to the boundary:

for any x ∈ �, d(x) = inf
y∈∂�

|x−y|, and the open set �h = {x ∈ �| such that d(x) < h}.

Since ∂� is assumed to be a C2 compact manifold, there exists h0(�) > 0 with
the following properties (for an explicit construction see, for example, [9] page 9):

1 For any x ∈ �h0 , the function x �→ d(x) belongs to C1(�h0);
2 for any x ∈ �h0 there exists a unique point σ(x) ∈ ∂� such that

d(x) = |x − σ(x)| and one has ∇d(x) = −�n(σ (x)). (1.8)

Then one introduces aC∞(R) nondecreasing function η : R �→ [0, 1], with η(s) =
0, for s ∈ (−∞, 1

2 ], and η(s) = 1, for s ∈ [1,∞). For h ∈ (0, h0), the function

θh(x) = η(
d(x)

h ) is a compactly supported C1(�) function. We will also denote by
θh its extension, by zero, outside �. Similarly, for any w ∈ L∞(�), the compactly
supported function θhw is well defined in �, and its extension, by zero outside �,
is also well defined over all Rn , and will be also denoted by θhw. Next, one has the
following:

Lemma 1.3. Let h ∈ (0, h0). For any vector field w ∈ C0,α(�), with w · �n = 0
on ∂�, one has the following estimates (with a constant C independant of h, but
might depend on �):

|w(x) · ∇θh(x)| � C‖w‖C0,α(�)h
α−1, for every x ∈ R

n, (1.9a)
∫

Rn
|w(x) · ∇θh(x)|dx � C‖w‖C0,α(�)h

α. (1.9b)

Proof. Observe that w(x) · ∇θh(x) = 0, for every x ∈ (�h)c. Moreover, for
x ∈ �h , thanks to (1.8), one has:

∇θh(x) = −1

h
η′

(
d(x)

h

)
�n(σ (x)). (1.10)

Then for every x ∈ �h , we use the fact that w(σ(x)) · �n(σ (x) = 0 to obtain

|w(x) · ∇θh(x)| = 1

h
η′

(
d(x)

h

)
|(w(x) − w(σ(x)) · �n(σ (x)|

� C

h
‖w‖C0,α |x − σ(x)|α � C‖w‖C0,α hα−1.

(1.11)

Combining all of the above we conclude with (1.9a). Estimate (1.9b) follows by
integrating (1.9a) over Rn , taking into account the facts that the support of ∇θh is
a subset of �h and that |�h | � Ch. �
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As in [4], we introduce a nonnegative radially symmetric C∞(Rn) mollifier, φ(x),
with support in |x | � 1, and

∫
Rn φ(x)dx = 1. Furthermore, for any ε > 0, we

denote by φε = 1
εn φ( x

ε
), and by vε = v � φε, for any v ∈ D′(Rn). Moreover, for

h ∈ (0, h0), the distributions (θhv)ε and ((θhv)ε)ε belong to D(Rn); in addition,
they are compactly supported inside �, whenever ε ∈ (0, h

4 ).

2. Fundamental Steps Toward Proving Energy Conservation

In this section we work under the assumptions of Theorem 1.1, and we assume
throughout that the regularization parameters h and ε satisfy h ∈ (0, h0) and
ε ∈ (0, h

4 ). First observe that by virtue of Proposition 1.2, equation (1.2) remains
valid for test vector field � ∈ W 1,3((0, T ); H1

0 (�)). Therefore, we take in (1.2)
� = θh((θhu)ε)ε ∈ W 1,3((0, T ); H1

0 (�)) to obtain

〈u, ∂t (θh((θhu)ε)ε)〉x + 〈u ⊗ u : ∇(θh((θhu)ε)ε)〉x + 〈p,∇ · (θh((θhu)ε)ε)〉x = 0
(2.1)

in L1(0, T ). The last equation involves three terms:

J1 = 〈u, ∂t (θh((θhu)ε)ε)〉x , J2 = 〈u ⊗ u : ∇(θh((θhu)ε)ε)〉x , and

J3 = 〈p,∇ · (θh((θhu)ε)ε)〉x . (2.2)

For the term J1 we have the following:

Proposition 2.1. Let u be as in Theorem 1.1. Then for any (t1, t2) ∈ (0, T ) one
has

lim
h→0

∫ t2

t1
〈u, ∂t (θh((θhu)ε)ε)〉x dt = 1

2
‖u(t2)‖2L2(�)

− 1

2
‖u(t1)‖2L2(�)

. (2.3)

Proof. With the regularity estimates (1.5a) and (1.5b) the duality between

L3((0, T ); H1
0 (�)) and L

3
2 (0, T ; H−1(�)) gives:

〈u, ∂t (θh((θhu)ε)ε)〉x = 〈(θhu)ε, ∂t (θhu)ε〉x

= 1

2

d

dt

∫

Rn
|((θhu)ε|2dx, in L1(0, T ), (2.4)

and the result follows, after integration in time, from the Lebesgue Dominant Con-
vergence Theorem and the fact that ε ∈ (0, h

4 ). �
For the second term J2 = 〈u ⊗ u : ∇(θh((θhu)ε)ε)〉x one has the following:

Proposition 2.2. Let u be as in Theorem 1.1. Then

|J2| = |〈u ⊗ u : ∇ (
θh

(
(θhu)ε

)ε)〉x | � Chα‖u‖C0,α‖u‖2L∞

+ C‖u‖C0,α εα−1
(
‖u‖C0,α εα + ‖u‖L∞

ε

h

)2
. (2.5)
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Proof. One writes J2 = J21 + J22 with

J21 = 〈u ⊗ u : (∇θh) ⊗ ((θhu)ε)ε〉x

J22 = 〈u ⊗ u : θh∇(((θhu)ε)ε)〉x .
(2.6)

To estimate the term J21 one uses Lemma 1.3 to obtain

|J21| = ∣∣〈u ⊗ u : (∇θh) ⊗ ((θhu)ε))ε〉x
∣∣ = ∣∣

∫

�h

(u · ∇θh(x))(u(x) · ((θhu)ε)ε)dx

� Chα‖u‖C0,α‖u‖2L∞ . (2.7)

Next, we turn into estimating the term J22. First we observe that since uε(x) is a
divergence free smooth vector field for every x ∈ supp (θhu)ε ⊂⊂ �, therefore,
one has:

〈(uε ⊗ (θhu)ε) : ∇(θhu)ε〉x =
∫

�

(uε · ∇(θhu)ε) · (θhu)ε dx = 0. (2.8)

Consequently, thanks to (2.8), one has the following estimate for J22:

|J22| = ∣∣〈u ⊗ u : θh∇((θhu)ε)ε〉x
∣∣ = ∣∣〈(u ⊗ θhu) : ∇((θhu)ε)ε〉x

∣∣

= ∣∣〈(u ⊗ θhu)ε : ∇(θhu)ε〉x
∣∣

=
∣∣∣
〈(

(u ⊗ θhu)ε − (uε ⊗ (θhu)ε)
)

: ∇(θhu)ε
〉

x

∣∣∣ .
(2.9)

To treat the term
〈(

(u ⊗ θhu)ε − (uε ⊗ (θhu)ε)
)

: ∇(θhu)ε
〉

x
,

one uses similar computations to those in [4] (cf. Remark 3.1 below) which relate
(u ⊗ θhu)ε to (uε ⊗ (θhu)ε). More precisely, for any two distributions, v,w ∈
D′(Rn), one has the following identity:

(v ⊗ w)ε(x)−(vε ⊗ wε)(x)=
∫

Rn
y

(δyv ⊗ δyw)(x)φε(y)dy + (v − vε)(x) ⊗ (w − wε)(x)

with (δyv)(x) = v(x − y) − v(x), and (δyw)(x) = w(x − y) − w(x).

(2.10)
Hence J22 = J221 + J222 with

J221 =
∫

Rn
x

((∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy

)
:
(∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

))
dx

=
∫

�

((∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy

)
:
(∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

))
dx

(2.11)
and

J222 =
∫

Rn
x

(
((u − uε) ⊗ ((θhu) − (θhu)ε)) : ∇(θhu)ε

)
dx

=
∫

�

(
((u − uε) ⊗ ((θhu) − (θhu)ε)) : ∇(θhu)ε

)
dx

(2.12)
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To estimate J221, first, one uses the facts that for every |y| � ε one has |(δyθh)(x)| �
C ε

h , and that the suppφε ⊂ {y| |y| � ε}, together with the C0,α regularity of u, to
obtain that

∣∣∣∣∣

∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy)

∣∣∣∣∣

=
∣∣∣∣∣

∫

Rn
y

(δyu)(x) ⊗ (θh(x − y)(δyu)(x) + (δyθh)(x)u(x − y))φε(y)dy

∣∣∣∣∣

� Cεα‖u‖C0,α

∫

Rn
y

(εα‖u‖C0,α + ε

h
‖u‖L∞)φε(y)dy

= Cεα‖u‖C0,α

(
εα‖u‖C0,α + ε

h
‖u‖L∞

)
. (2.13)

Second,
∣∣∣∣∣

∫

Rn
z

(
∇φε(z) ⊗ (θhu)(x − z)

)
dz

∣∣∣∣∣

=
∣∣∣∣∣

∫

Rn
z

(
∇φε(z) ⊗ ((θhu)(x − z) − (θhu)(x))

)
dz

∣∣∣∣∣

=
∣∣∣∣∣

∫

Rn
z

(
∇φε(z) ⊗ (δzθh(x)u(x − z) + θh(x)δzu(x))

)
dz

∣∣∣∣∣

� C
( ε

h
‖u‖L∞ + εα‖u‖C0,α

)∫

Rn
z

|∇φε(z)|dz � Cε−1
( ε

h
‖u‖L∞ + εα‖u‖C0,α

)
,

(2.14)
where in the last inequality we used the fact that

∫
Rn

z
|∇φε(z)|dz � Cε−1. Hence

from all the above one has

|J221| � Cεα−1‖u‖C0,α

( ε

h
‖u‖L∞ + εα‖u‖C0,α

)2
. (2.15)

To complete the proof of Proposition 2.2, it remains to estimate the term

J222 =
∫

Rn
x

((
(u − uε) ⊗ ((θhu) − (θhu)ε)

)
: ∇(θhu)ε

)
dx

=
∫

�

((
(u − uε) ⊗ ((θhu) − (θhu)ε)

)
: ∇(θhu)ε

)
dx .

(2.16)

First, as in (2.14), one has

|∇(θhu)ε(x)| � Cε−1
( ε

h
‖u‖L∞ + εα‖u‖C0,α

)
. (2.17)

Moreover, following similar arguments as to the above estimates for J221 one can
show that for every x ∈ supp θh one has

|(u − uε)(x)| � εα‖u‖C0,α and |(θhu)(x) − (θhu)ε(x)|
� C

(
εα‖u‖C0,α + ε

h
‖u‖L∞

)
. (2.18)
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Summing up, one has the following estimate:

|J222| � Cεα−1‖u‖C0,α

( ε

h
‖u‖L∞ + εα‖u‖C0,α

)2
. (2.19)

Collecting the estimates on J2 from J21 and J22, one obtains (2.5). �
Eventually, the introduction of the localized cutoff-function θh affects the di-

vergence free property of the velocity field u of the solution (u, p). Therefore,
to estimate the term J3 in (2.2), which involves the pressure, p, one needs the
following:

Proposition 2.3. Let h ∈ (0, h0) and ε ∈ (0, h
4 ). Suppose (u, p) is a weak solution

of the Euler equations with u ∈ L3((0, T ); C0,α(�)). Then one has the following
estimate:

|〈p,∇ · (θh((θhu)ε)ε)〉x | � C‖u(t)‖3C0,α (hα + εα). (2.20)

Proof. Thanks to Proposition 1.2 one can write
〈
p,∇ ·

(
θh((θhu)ε)ε

)〉

x
=

∫

�

p ∇ ·
(
θh((θhu)ε)ε

)
dx = J31 + J32

with J31 =
∫

�

(p θh)∇ · ((θhu)ε)ε dx and J32 =
∫

�

p (∇θh) · ((θhu)ε)ε dx .

(2.21)
For the term J31 one obtains the following sequence of equalities by integration by
parts and successive use of the fact that ∇xφε(x − y) = −∇yφε(x − y):

J31 =
∫

�

(
(p(x)θh(x))∇x ·

( ∫

Rn
y

∫

Rn
z

u(z)θh(z)φε(z − y)φε(x − y)dzdy
))

dx

=
∫

�

(
p(x)θh(x)

∫

Rn
z

∫

Rn
y

u(z)θh(z)φε(z − y) · ∇xφε(x − y)dydz
)
dx

= −
∫

�

(
p(x)θh(x)

∫

Rn
z

∫

Rn
y

u(z)θh(z)φε(z − y) · ∇yφε(x − y)dydz
)
dx

=
∫

�

(
p(x)θh(x)

∫

Rn
z

∫

Rn
y

u(z)θh(z)φε(x − y) · ∇yφε(z − y)dydz
)
dx

= −
∫

�

p(x)θh(x)(

∫

Rn
z

∫

Rn
y

u(z)θh(z)φε(x − y) · ∇zφε(z − y)dydz) dx

= −
∫

�

(
p(x)θh(x)

∫

Rn
y

∫

Rn
z

u(z)φε(x − y) ·
(
∇z

(
θh(z)φε(z − y)

)

−φε(z − y)∇θh(z)
)
dzdy

)
dx . (2.22)

Observe that for every fixed y ∈ R
n , the function θh(z)φε(z − y), as a function of

z, is compactly supported in �, and that there exists a sequence χk(·, y) ∈ D(�),
k = 1, 2, · · · , such that

lim
k→∞ ‖χk(·, y) − θh(·)φε(· − y)‖C1(�) = 0. (2.23)
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Therefore, since ∇ · u = 0 in D′(�), one has:
∫

Rn
z

u(z) · ∇zχk(z, y)dz = 0. (2.24)

Thus, for every fixed y ∈ R
n , by virtue of (2.23) and the fact that u ∈ C0,α(�),

one infers from (2.24), by letting k → ∞, that
∫

Rn
z

u(z) · ∇z(θh(z)φε(z − y))dz = 0. (2.25)

Hence, as a result of (2.22) and (2.25) one has

J31 =
∫

�

(
p(x)θh(x)

∫

Rn
y

∫

Rn
z

φε(x − y)φε(z − y)u(z) · ∇θh(z)dzdy
)
dx .

Consequently, by virtue of Lemma 1.3, one has

|J31| � C‖p‖L∞‖u‖C0,α hα. (2.26)

Concerning the term J32, observe again that the support of ∇θh is contained in �h ,
therefore, one has

J32 =
∫

�h

(
p(x)∇θh(x) ·

∫

Rn
z

∫

Rn
y

θh(x − y + z)u(x − y + z)φε(y)φε(z)dydz

)
dx

=
∫

�h

p(x)

(∫

Rn
y

∫

Rn
z

φε(y)φε(z)θh(x − y + z) (u(x − y + z) − u(x))

·∇θh(x)dydz

)
dx

+
∫

�h

p(x)

(∫

Rn
y

∫

Rn
z

φε(y)φε(z)u(x) · ∇θh(x)dydz

)
dx =: J321 + J322.

(2.27)
In order to estimate the term J321, one observes that for the relevant x, y, z for which
the integrand in the definition of J321 is not zero, one has |(u(x − y + z)−u(x))| �
C‖u‖C0,α εα , and that

∫
�h

|∇θh(x)| dx < C . As a result, one obtains

|J321| � C‖p‖L∞‖u‖C0,α εα. (2.28)

As for estimating J322, Lemma 1.3 is used to obtain

|J322| �
∫

�h

|p(x)|
∫

Rn
y

∫

Rn
z

|u(x) · ∇θh(x)|φε(y)φε(z)dydz dx

� C‖p(x)‖L∞‖u(t)‖C0,α hα. (2.29)

�
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Now we are ready to complete the proof of Theorem 1.1. Let us integrate
equation (2.1) over the interval (t1, t2) ⊂ (0, T ) to obtain

∫ t2

t1
〈u, ∂t (θh((θhu)ε)ε)〉x dt = −

∫ t2

t1
〈u ⊗ u,∇(θh((θhu)ε)ε)〉x dt

−
∫ t2

t1
〈p,∇(θh((θhu)ε)ε)〉x dt. (2.30)

At this stage we choose ε = o(h
2

1+α ), and since α > 1
3 , Theorem 1.1 follows from

Propositions 1.2, 2.1, 2.2 and 2.3 by letting h → 0.

3. Remarks

Remark 3.1. The proof of Proposition 2.2 is an adaptation, to a domain with a
boundary, of the main argument of [4]. The proof involves the expression

((u ⊗ θhu)ε − (uε ⊗ (θhu)ε),

which is reminiscent of the Reynolds stress tensor as it appears in statistical theory
of turbulence, or in the vanishing viscosity weak limit of solutions of the Navier-
Stokes equations according to the formula

(uε ⊗ vε) − uε ⊗ vε = (uε − uε) ⊗ (vε − vε)). (3.1)

However, in the present work the localization and regularization do not exactly
behave as an average and this is the reason for the presence (both in [4] and in this
work) of the term

J221 =
∫

Rn
x

((∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy

)
:
(∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

))
dx,

(3.2)
which has to be estimated.

Remark 3.2. As expected, the impermeability boundary condition (u · �n = 0 on
∂�) plays an essential role in the arguments presented in this work. It is the main
hypothesis in Lemma 1.3, which is then used for the estimation of J21, in formula
(2.7), and in the estimation of the pressure contribution term in formula (2.29).

Remark 3.3. Besides corresponding to physical situations that appear in nature, the
introduction of boundary and boundary conditions is a stimulus for the construction
of a direct proof avoiding the use of, for instance, the Besov space. However, the ar-
guments presented in this workmaywell be adapted to provide similar results while
replacing the Hölder spaces C0,α by some “exotic” function spaces. Moreover, the
ideas introduced in this article may also be well adapted to considering Onsager’s
conjecture for compressible fluids in bounded domains, and hence extending some
preliminary results of [5,8,10,17] and references therein.
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Remark 3.4. It is worth mentioning that, with a comparable amount of effort and
similar ideas to the ones presented in this work, one should be able to extend the
Duchon and Robert [6] local energy approach to the case of Euler equations
with physical boundaries, and consequently establish our result. The authors are
thankful to the anonymous referee for suggesting this alternative approach.
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