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Abstract

For the three-dimensional full compressible Navier–Stokes system describing
the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic
fluid, we establish the global existence and uniqueness of classical solutions with
smooth initial data which are of small energy but possibly large oscillations where
the initial density is allowed to vanish. Moreover, for the initial data, which may
be discontinuous and contain vacuum states, we also obtain the global existence
of weak solutions. These results generalize previous ones on classical and weak
solutions for initial density being strictly away from a vacuum, and are the first
for global classical and weak solutions which may have large oscillations and can
contain vacuum states.

1. Introduction

The motion of a compressible viscous, heat-conductive, and Newtonian poly-
tropic fluid occupying a spatial domain � ⊂ R

3 is governed by the following full
compressible Navier–Stokes system:
⎧
⎪⎨

⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μ�u − (μ + λ)∇(divu) + ∇ P = 0,

(ρE)t + div(ρEu + Pu) = �
(
κθ + 1

2μ|u|2) + div(μu · ∇u + λudivu).

(1.1)
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Here t ≥ 0 is time, x ∈ � is the spatial coordinate, and ρ, u = (
u1, u2, u3

)tr
, e,

P(ρ, e), and θ represent respectively the fluid density, velocity, specific internal
energy, pressure, and absolute temperature, and E = e + 1

2 |u|2 is the specific total
energy. The constant viscosity coefficients μ and λ satisfy the physical restrictions

μ > 0, 2μ + 3λ ≥ 0; (1.2)

and positive constant κ is the ratio of the heat conductivity coefficient over the heat
capacity. The equations (1.1) then express respectively the conservation ofmass, the
balance of momentum, and the balance of energy under internal pressure, viscosity
forces, and the conduction of thermal energy. We study the ideal polytropic fluids
so that P and e are given by the state equations

P(ρ, e) = (γ − 1)ρe = Rρθ, e = Rθ

γ − 1
, (1.3)

where γ > 1 is the adiabatic constant, and R is a positive constant.
Let� = R

3 and ρ̃, θ̃ both be fixed positive constants. We look for the solutions
(ρ(x, t), u(x, t), θ(x, t)), to theCauchy problem for (1.1)with the far field behavior

(ρ, u, θ)(x, t) → (ρ̃, 0, θ̃ ), as |x | → ∞, t > 0, (1.4)

and initial data

(ρ, ρu, ρθ)(x, t = 0) = (ρ0, ρ0u0, ρ0θ0)(x), x ∈ R
3, (1.5)

with ρ0 ≥ 0, θ0 ≥ 0. Note here that for classical solutions, (1.1) can be rewritten
as

⎧
⎪⎨

⎪⎩

ρt + div(ρu) = 0,

ρ(ut + u · ∇u) = μ�u + (μ + λ)∇(divu) − ∇ P,
R

γ−1ρ(θt + u · ∇θ) = κ�θ − Pdivu + λ(divu)2 + 2μ|D(u)|2,
(1.6)

whereD(u) = (∇u + (∇u)tr)/2 is the deformation tensor. Moreover, for classical
solutions, we replace the initial condition (1.5) with

(ρ, u, θ)(x, t = 0) = (ρ0, u0, θ0), x ∈ R
3. (1.7)

There is a lot of literature on the large time existence and behavior of solutions
to (1.1). The one-dimensional problem with strictly positive initial density and
temperature has been studied extensively by many people, see [1,11,12] and the
references therein. For the multi-dimensional case, the local existence and unique-
ness of classical solutions are known in [16,19] in the absence of vacuum. Recently,
for the case that the initial density need not be positive and may vanish in open sets,
Cho–Kim [4] obtained the local existence and uniqueness of strong solutions. The
global classical solutions were first obtained byMatsumura–Nishida [15] for initial
data close to a non-vacuumequilibrium in someSobolev space Hs . In particular, the
theory requires that the solution has small oscillations from a uniform non-vacuum
state so that the density is strictly away from vacuum and the gradient of the den-
sity remains bounded uniformly in time. Later, Hoff [8] studied the global weak
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solutions with strictly positive initial density and temperature for discontinuous
initial data. On the other hand, in the presence of vacuum, this issue becomes much
more complicated. Concerning viscous compressible fluids in a barotropic regime,
where the state of these fluids at each instant t > 0 is completely determined by the
density ρ = ρ(x, t) and the velocity u = u(x, t), the pressure P being an explicit
function of the density, themajor breakthrough is due to Lions [14] (see also Feireisl
[5,7]), where he obtained global existence of weak solutions, defined as solutions
with finite energy, when the pressure P satisfies P(ρ) = aργ (a > 0, γ > 1) with
suitably large γ.Themain restriction on initial data is that the initial energy is finite,
so that the density vanishes at far fields, or even has compact support. Recently,
Huang–Li–Xin [10] established the global existence and uniqueness of classical
solutions to the Cauchy problem for the isentropic compressible Navier–Stokes
equations in three-dimensional space with smooth initial data which are of small
energy but possibly large oscillations; in particular, the initial density is allowed to
vanish, even has compact support. This result can be regarded as the uniqueness and
regularity theory of Lions–Feireisl’s weak solutions in [5,7,14] with small initial
energy.

However, the global well-posedness of classical solutions, even the global ex-
istence of weak solutions to (1.1), remains completely open in the presence of
vacuum. For specific pressure laws excluding the perfect gas equation of state, the
question of the existence of so-called “variational” solutions in dimension d ≥ 2
has been recently addressed in [5,6], where the temperature equation is satisfied
only as an inequality which justifies the notion of variational solutions. Recently,
for a very particular form of the viscosity coefficients depending on the density,
Bresch–Desjardins [3] obtained global stability of weak solutions. It is worth not-
ing here that Xin [20] first showed that in the case that the initial density has
compact support, any smooth solution to the Cauchy problem of the full compress-
ible Navier–Stokes system without heat conduction blows up in finite time. See
also the recent generalizations to the case for non-compact but rapidly decreasing
at far field initial densities [18].

Motivated by our previous work on the isentropic compressible Navier–Stokes
equations [10], we try to look for the global existence of classical and weak so-
lutions to the three-dimensional full compressible Navier–Stokes system (1.1); in
particular, the initial density is allowed to vanish.

Before stating the main results, we explain the notations and conventions used
throughout this paper. We denote

∫

f dx =
∫

R3
f dx .

For 1 ≤ p ≤ ∞ and integer k ≥ 0, we adopt the simplified notations for the
standard homogeneous and inhomogeneous Sobolev spaces as follows:

{
L p = L p(R3), W k,p = W k,p(R3), Hk = W k,2,

D1 = {
u ∈ L6

∣
∣ ‖∇u‖L2 < ∞}

, D1,p = {
u ∈ L1

loc(R
3)

∣
∣ ‖∇u‖L p < ∞}

.



998 Xiangdi Huang & Jing Li

Without loss of generality, we assume that ρ̃ = θ̃ = 1. We define the initial
energy C0 as follows:

C0 �1

2

∫

ρ0|u0|2dx + R
∫

(ρ0 log ρ0 − ρ0 + 1) dx

+ R

γ − 1

∫

ρ0 (θ0 − log θ0 − 1) dx .

(1.8)

Then the first main result in this paper can be stated as follows:

Theorem 1.1. For given numbers M > 0 (not necessarily small), q ∈ (3, 6), ρ̄ >

2, and θ̄ > 1, suppose that the initial data (ρ0, u0, θ0) satisfies

ρ0 − 1 ∈ H2 ∩ W 2,q , u0 ∈ H2, θ0 − 1 ∈ H2, (1.9)

0 ≤ inf ρ0 ≤ sup ρ0 < ρ̄, 0 ≤ inf θ0 ≤ sup θ0 ≤ θ̄ , ‖∇u0‖L2 ≤ M, (1.10)

and the compatibility conditions

− μ�u0 − (μ + λ)∇divu0 + R∇(ρ0θ0) = √
ρ0g1, (1.11)

κ�θ0 + μ

2
|∇u0 + (∇u0)

tr|2 + λ(divu0)
2 = √

ρ0g2, (1.12)

with g1, g2 ∈ L2. Then there exists a positive constant ε depending only on μ, λ,
κ , R, γ , ρ̄, θ̄ and M such that if

C0 ≤ ε, (1.13)

the Cauchy problem (1.6) (1.4) (1.7) admits a unique global classical solution
(ρ, u, θ) in R

3 × (0,∞) satisfying

0 ≤ ρ(x, t) ≤ 2ρ̄, θ(x, t) ≥ 0, x ∈ R
3, t ≥ 0, (1.14)

and
⎧
⎪⎨

⎪⎩

ρ − 1 ∈ C([0, T ]; H2 ∩ W 2,q), (u, θ − 1) ∈ C([0, T ]; H2),

u ∈ L∞(τ, T ; H3 ∩ W 3,q), θ − 1 ∈ L∞(τ, T ; H4),

(ut , θt ) ∈ L∞(τ, T ; H2) ∩ H1(τ, T ; H1),

(1.15)

for any 0 < τ < T < ∞. Moreover, the following large-time behavior holds:

lim
t→∞ (‖ρ(·, t) − 1‖L p + ‖∇u(·, t)‖Lr + ‖∇θ(·, t)‖Lr ) = 0, (1.16)

with any

p ∈ (2,∞), r ∈ [2, 6). (1.17)

The next result of this paper will treat the weak solutions with better regularity
due to the fact that discontinuous solutions are fundamental both in the physical
theory of nonequilibrium thermodynamics as well as in the mathematical theory
of inviscid models for compressible fluids. To begin with, we give the definition of
weak solutions.
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Definition 1.1. We say that (ρ, u, E = 1
2 |u|2+ R

γ−1θ) is a weak solution to Cauchy
problem (1.1) (1.4) (1.5) provided that

ρ − 1 ∈ L∞
loc([0,∞); L2 ∩ L∞(R3)), u, θ − 1 ∈ L2(0,∞; H1(R3)),

and that for all test functions ψ ∈ D(R3 × (−∞,∞)),
∫

R3
ρ0ψ(·, 0)dx +

∫ ∞

0

∫

R3
(ρψt + ρu · ∇ψ) dxdt = 0, (1.18)

∫

R3
ρ0u j

0ψ(·, 0)dx +
∫ ∞

0

∫

R3

(
ρu jψt + ρu j u · ∇ψ + P(ρ, θ)ψx j

)
dxdt

−
∫ ∞

0

∫

R3

(
μ∇u j · ∇ψ + (μ + λ)(divu)ψx j

)
dxdt = 0, j = 1, 2, 3,

(1.19)
∫

R3

(
1

2
ρ0|u0|2 + R

γ − 1
ρ0θ0

)

ψ(·, 0)dx

=
∫ ∞

0

∫

R3
(ρEψt + (ρE + P)u · ∇ψ) dxdt

−
∫ ∞

0

∫

R3

(

κ∇θ + 1

2
μ∇(|u|2) + μu · ∇u + λudivu

)

· ∇ψdxdt. (1.20)

Then, denoting by
⎧
⎪⎨

⎪⎩

ḟ � ft + u · ∇ f,

G � (2μ + λ)divu − R(ρθ − 1),

ω � ∇ × u,

(1.21)

which are the material derivative of f , the effective viscous flux, and the vorticity,
respectively, we state our second main result as follows:

Theorem 1.2. For given numbers M > 0 (not necessarily small), ρ̄ > 2, and
θ̄ > 1, there exists a positive constant ε depending only on μ, λ, κ , R, γ , ρ̄, θ̄ , and
M such that if the initial data (ρ0, u0, θ0) satisfies (1.10) and

C0 ≤ ε, (1.22)

with C0 as in (1.8), there is a global weak solution (ρ, u, E = 1
2 |u|2 + R

γ−1θ) to
the Cauchy problem (1.1) (1.4) (1.5) satisfying

ρ − 1 ∈ C([0,∞); L2 ∩ L p), (1.23)
(ρu, ρ|u|2, ρ(θ − 1)) ∈ C([0,∞); H−1), (1.24)

u ∈ C((0,∞); L2), θ − 1 ∈ C((0,∞); W 1,r ), (1.25)

u(·, t), ω(·, t), G(·, t), ∇θ(·, t) ∈ H1, t > 0, (1.26)

ρ ∈ [0, 2ρ̄] almost everywhere, θ ≥ 0 almost everywhere, (1.27)

and the following large-time behavior:

lim
t→∞ (‖ρ(·, t) − 1‖L p + ‖u(·, t)‖L p∩L∞ + ‖∇θ(·, t)‖Lr ) = 0, (1.28)
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with any p, r as in (1.17). In addition, there exists some positive constant C de-
pending only on μ, λ, κ , R, γ , ρ̄, θ̄ , and M such that, for σ(t) � min{1, t}, the
following estimates hold:

sup
t∈(0,∞)

‖u‖2H1 +
∫ ∞

0

∫

|(ρu)t + div(ρu ⊗ u)|2 dxdt ≤ C, (1.29)

sup
t∈(0,∞)

∫ (
(ρ − 1)2 + ρ|u|2 + ρ(θ − 1)2

)
dx

+
∫ ∞

0

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
dt ≤ CC1/4

0 , (1.30)

sup
t∈(0,∞)

(
σ 2‖∇u‖2L6 + σ 4‖θ − 1‖2H2

)

+
∫ ∞

0

(
σ 2‖ut‖2L2 + σ 2‖∇u̇‖2L2 + σ 4‖θt‖2H1

)
dt ≤ CC1/8

0 . (1.31)

Moreover, (ρ, u, θ) satisfies (1.6)3 in the weak form, that is, for any test function
ψ ∈ D(R3 × (−∞,∞)),

R

γ − 1

∫

ρ0θ0ψ(·, 0)dx + R

γ − 1

∫ ∞

0

∫

ρθ (ψt + u · ∇ψ) dxdt

= κ

∫ ∞

0

∫

∇θ · ∇ψdxdt + R
∫ ∞

0

∫

ρθdivuψdxdt

−
∫ ∞

0

∫ (
λ(divu)2 + 2μ|D(u)|2

)
ψdxdt.

(1.32)

The following Corollary 1.3, whose proof is similar to that of [10, Theorem
1.2], shows that we can obtain from (1.16) the following large time behavior of the
gradient of the density when vacuum states appear initially, which is completely in
contrast to the classical theory [15].

Corollary 1.3. In addition to the conditions of Theorem 1.1, assume further that
there exists some point x0 ∈ R

3 such that ρ0(x0) = 0. Then the unique global
classical solution (ρ, u, θ) to the Cauchy problem (1.6) (1.4) (1.7) obtained in
Theorem 1.1 has to blow up as t → ∞, in the sense that for any r > 3,

lim
t→∞ ‖∇ρ(·, t)‖Lr = ∞.

A few remarks are in order.

Remark 1.1. It follows from (1.15) that, for any 0 < τ < T < ∞,

(ρ − 1, ∇ρ, u, θ − 1) ∈ C(R3 × [0, T ]), (1.33)

and

∇u, ∇2u ∈ C([τ, T ]; L2) ∩ L∞(τ, T ; W 1,q) ↪→ C(R3 × [τ, T ]), (1.34)
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which together with (1.6)1 and (1.33) gives

ρt ∈ C(R3 × [τ, T ]). (1.35)

Similarly, we deduce from (1.15) that

∇θ, ∇2θ ∈ C([τ, T ]; H1) ∩ L∞(τ, T ; H2) ↪→ C(R3 × [τ, T ]),
which combined with (1.33)–(1.35) thus shows that the solution (ρ, u, θ) obtained
in Theorem 1.1 is in fact a classical one to the Cauchy problem (1.6) (1.4) (1.7) in
R
3 × (0,∞). Although it has small energy, yet its oscillations could be arbitrarily

large. In particular, initial vacuum states are allowed.

Remark 1.2. Theorem 1.1 is the first result concerning the global existence of clas-
sical solutions with vacuum to the full compressible Navier–Stokes system. More-
over, the conclusions in Theorem 1.1 generalize the classical theory ofMatsumura–
Nishida [15] to the case of large oscillations since in this case, the requirement
of small energy, (1.13), is equivalent to smallness of the mean-square norm of
(ρ0 − 1, u0, θ0 − 1). In addition, the initial density is allowed to vanish and the
initial temperature may be zero. However, although the large-time asymptotic be-
havior (1.16) is similar to that in [15], yet our solution may contain vacuum states,
whose appearance leads to the large time blowup behavior stated in Corollary 1.3,
this is in sharp contrast to that in [15] where the gradients of the density are suitably
small uniformly for all time.

Remark 1.3. It should be noted here that Theorem 1.2 is the first result concerning
the global existence of weak solutions to (1.1) in the presence of vacuum and
extends the global weak solutions of Hoff [8] to the case of large oscillations and
non-negative initial density. Moreover, the initial temperature is allowed to be zero.

Remark 1.4. It follows from (1.29) and Sobolev’s embedding theorem that u and
θ obtained in Theorem 1.2 are in fact Hölder continuous away from t = 0, that is,
for any 0 < τ < ∞,

sup
t∈[τ,∞)

‖u‖L∞ + 〈u〉1/2,1/8
R3×[τ,∞)

+ sup
t∈[τ,∞)

‖θ‖L∞ + 〈θ〉1/2,1/8
R3×[τ,∞)

< ∞,

where we employ the usual notation for Hölder norms:

〈w〉1/2,1/8Q = sup
(x,t),(y,s)∈Q
(x,t) �=(y,s)

|w(x, t) − w(y, s)|
|x − y|1/2 + |t − s|1/8 ,

for functions w : Q ⊆ R
3 × [0,∞) → R

m .

Remark 1.5. In fact, the weak solutions obtained by Theorem 1.2 have better reg-
ularity than just finite energy weak ones, and can be viewed as mild solutions to
the full compressible Navier–Stokes system (1.1).
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We now comment on the analysis of this paper. Note that though the local
existence and uniqueness of strong solutions to (1.6) in the presence of vacuumwas
obtained by Cho–Kim [4], the local existence of classical solutions with vacuum to
(1.6) still remains unknown. Some of themain newdifficulties to obtain the classical
solutions to (1.6) (1.4) (1.7) for initial data in the class satisfying (1.9)–(1.12) are
due to the appearance of vacuum. Thus, we take the strategy that we first extend the
standard local classical solutions with strictly positive initial density (see Lemma
2.1) globally in time just under the condition that the initial energy is suitably small
(see Proposition 5.1), then let the lower bound of the initial density go to zero. To
do so, one needs to establish global a priori estimates, which are independent of
the lower bound of the density, on smooth solutions to (1.6) (1.4) (1.7) in suitable
higher norms. It turns out that the key issue in this paper is to derive both the
time-independent upper bound for the density and the time-dependent higher norm
estimates of the smooth solution (ρ, u, θ). Compared to the isentropic case [10],
the first main difficulty lies in the fact that the basic energy estimate cannot yield
directly the bounds on the L2-norm (in both time and space) of the spatial derivatives
of both the velocity and the temperature since the super norm of the temperature
is just assumed to satisfy the a priori bound (min{1, t})−3/2 (see (3.6)), which in
fact could be arbitrarily large for small time. To overcome this difficulty, based on
careful analysis on the basic energy estimate, we succeed in deriving a new estimate
of the temperature which shows that the spatial L2-norm of the deviation of the
temperature from its far field value can be bounded by the combination of the initial
energy with the spatial L2-norm of the spatial derivatives of the temperature (see
(3.10)). Combining this estimate, which will play a crucial role in the analysis of
this paper, with elaborate analysis on the bounds of the energy, then yields the key
energy-like estimate, provided that the initial energy is suitably small (see Lemma
3.3).

Next, the second main difficulty is to obtain the time-independent upper bound
of the density. Based on careful initial layer analysis and making a full use of
the structure of (1.6), we succeed in deriving the weighted spatial mean estimates
of the material derivatives of both the velocity and the temperature, which are
independent of the lower bound of density, provided that the initial energy is suit-
ably small (see Lemmas 3.4 and 3.5). This approach is motivated by the basic
estimates of the material derivatives of both the velocity and the temperature,
which are developed by Hoff [8] in the theory of weak solutions with strictly
positive initial density. Having all these estimates at hand, we get the desired
estimates of L1(0,min{1, T }; L∞(R3))-norm and the time-independent ones of
L2(min{1, T }, T ; L∞(R3))-norm of both the effective viscous flux (see (1.21))
for the definition) and the deviation of the temperature from its far field value. Us-
ing these key estimates and a Grönwall-type inequality (see Lemma 2.5), we obtain
a time-uniform upper bound of the density which is crucial for global estimates
of classical solutions. This approach to estimate a uniform upper bound for the
density is new compared to our previous analysis on the isentropic compressible
Navier–Stokes equations in [10].

Then, the third main step is to bound the gradients of the density, the velocity,
and the temperature. Motivated by our recent studies [9] on the blow-up criteria



Global Classical and Weak Solutions 1003

of strong (or classical) solutions to the barotropic compressible Navier–Stokes
equations, such bounds can be obtained by solving a logarithmGrönwall inequality
based on a Beale–Kato–Majda-type inequality (see Lemma 2.6) and the a priori
estimates we have just derived. Moreover, such a derivation simultaneously yields
the bound for L3/2(0, T ; L∞(R3))-norm of the gradient of the velocity(see Lemma
4.1 and its proof). It should be noted here that we do not require smallness of the
gradient of the initial density which prevents the appearance of vacuum [15].

Finally, with these a priori estimates of the gradients of the solutions at hand,
one can obtain the desired higher order estimates by careful initial layer analysis
on the time derivatives and then the spatial ones of the density, the velocity and
the temperature. It should be emphasized here that all these a priori estimates are
independent of the lower bound of the density. Therefore, we can build proper
approximate solutions with strictly positive initial density then take appropriate
limits by letting the lower bound of the initial density go to zero. The limiting
functions having exactly the desired properties are shown to be the global classical
solutions to the Cauchy problem (1.6) (1.4) (1.7). In addition, the initial density is
allowed to vanish. We can also establish the global weak solutions almost the same
way as we established the classical one with a new modified approximating initial
data.

The rest of the paper is organized as follows: in Section 2, we collect some
elementary facts and inequalities which will be needed in later analysis. Section 3
is devoted to deriving the lower-order a priori estimates on classical solutions which
are needed to extend the local solution to all time. Based on the previous results,
higher-order estimates are established in Section 4. Then finally, the main results,
Theorems 1.1 and 1.2, are proved in Section 5.

2. Preliminaries

The following well-known local existence theory, where the initial density is
strictly away from vacuum, can be shown by the standard contraction mapping
argument (see for example [15,16], in particular, [15, Theorem 5.2]).

Lemma 2.1. Assume that (ρ0, u0, θ0) satisfies

(ρ0 − 1, u0, θ0 − 1) ∈ H3, inf
x∈R3

ρ0(x) > 0. (2.1)

Then there exist a small time T0 > 0 and a unique classical solution (ρ, u, θ) to
the Cauchy problem (1.6) (1.4) (1.7) on R

3 × (0, T0] such that

inf
(x,t)∈R3×(0,T0]

ρ(x, t) ≥ 1

2
inf

x∈R3
ρ0(x), (2.2)

{
(ρ − 1, u, θ − 1) ∈ C([0, T0]; H3), ρt ∈ C([0, T0]; H2),

(ut , θt ) ∈ C([0, T0]; H1), (u, θ − 1) ∈ L2(0, T0; H4),
(2.3)

and
{

(σut , σθt ) ∈ L2(0, T0; H3), (σutt , σθt t ) ∈ L2(0, T0; H1),

(σ 2utt , σ
2θt t ) ∈ L2(0, T0; H2), (σ 2uttt , σ

2θt t t ) ∈ L2(0, T0; L2),
(2.4)
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where σ(t) � min{1, t}. Moreover, for any (x, t) ∈ R
3 × [0, T0], the following

estimate holds

θ(x, t) ≥ inf
x∈R3

θ0(x) exp

{

−(γ − 1)
∫ T0

0
‖divu‖L∞dt

}

, (2.5)

provided inf
x∈R3

θ0(x) ≥ 0.

Proof. We only have to show (2.4) and (2.5), which are not given in [15, Theorem
5.2].

Without loss of generality, assume that T0 ≤ 1. We first prove (2.4)1. Differen-
tiating (1.6)2 with respect to t leads to

ρutt + ρt ut + ρt u · ∇u + ρut · ∇u + ρu · ∇ut + ∇ Pt

= μ�ut + (μ + λ)∇divut .
(2.6)

This shows that tut satisfies
{

ρ(tut )t − μ�(tut ) − (μ + λ)∇div(tut ) = F1,

(tut )(x, 0) = 0,
(2.7)

where

F1 � ρut − tρt ut − tρt u · ∇u − tρut · ∇u − tρu · ∇ut − Rt∇(ρtθ + ρθt )

satisfies F1 ∈ L2(0, T0; L2) due to (2.3). It thus follows from (2.3), (2.2), and
standard L2-theory for parabolic system (2.7) that

(tut )t ,∇2(tut ) ∈ L2(0, T0; L2). (2.8)

Similarly, we differentiate (1.6)3 with respect to t to get

−κ(γ − 1)

R
�θt + ρθt t

= −ρtθt − ρt (u · ∇θ + (γ − 1)θdivu) − ρ (u · ∇θ + (γ − 1)θdivu)t

+γ − 1

R

(
λ(divu)2 + 2μ|D(u)|2

)

t
, (2.9)

which implies that tθt satisfies
{

Rρ(tθt )t − κ(γ − 1)�(tθt ) = RF2,

(tθt )(x, 0) = 0,
(2.10)

with

F2 �ρθt − tρtθt − tρt (u · ∇θ + (γ − 1)θdivu)

− tρ (u · ∇θ + (γ − 1)θdivu)t + γ − 1

R
t
(
λ(divu)2 + 2μ|D(u)|2

)

t
.
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One derives from (2.3) that F2 ∈ L2(0, T0; L2), which together with (2.3), (2.2),
and standard L2-theory for parabolic system (2.10) implies

(tθt )t ,∇2(tθt ) ∈ L2(0, T0; L2). (2.11)

It thus follows from (2.3), (2.8), and (2.11) that

F1, F2 ∈ L2(0, T0; H1),

which together with (2.3), (2.2), (2.7), and (2.10) gives (2.4)1.
Next, we prove (2.4)2. Differentiating (2.6) with respect to t gives

ρuttt + ρu · ∇utt − μ�utt − (μ + λ)∇divutt

= 2div(ρu)utt + div(ρu)t ut − 2(ρu)t · ∇ut − (ρt t u + 2ρt ut ) · ∇u

−ρutt · ∇u − ∇ Ptt . (2.12)

This together with (2.4)1 and (2.3) implies that t2utt satisfies

{
ρ(t2utt )t − μ�(t2utt ) − (μ + λ)∇div(t2utt ) = F3,

(t2utt )(x, 0) = 0,
(2.13)

where

F3 �2tρutt − t2ρu · ∇utt + 2t2div(ρu)utt + t2div(ρu)t ut

− 2t2(ρu)t · ∇ut − t2(ρt t u + 2ρt ut ) · ∇u − t2ρutt · ∇u − t2∇ Ptt ,
(2.14)

satisfies F3 ∈ L2(0, T0; L2) due to (2.3) and (2.4)1. It follows from (2.2), (2.3),
(2.4)1, and standard L2-estimate for (2.13) that

(t2utt )t ,∇2(t2utt ) ∈ L2(0, T0; L2). (2.15)

Similarly, differentiating (2.9) with respect to t yields

ρθt t t + ρu · ∇θt t − κ(γ − 1)

R
�θt t

= 2div(ρu)θt t − ρt t (θt + u · ∇θ + (γ − 1)θdivu)

−2ρt (u · ∇θ + (γ − 1)θdivu)t

−ρ (utt · ∇θ + 2ut · ∇θt + (γ − 1)(θdivu)t t )

+γ − 1

R

(
λ(divu)2 + 2μ|D(u)|2

)

t t
. (2.16)

We thus obtain from (2.4)1, (2.3), and (2.16) that t2θt t satisfies

{
Rρ(t2θt t )t − κ(γ − 1)�(t2θt t ) = RF4,

(t2θt t )(x, 0) = 0,
(2.17)
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with

F4 �2tρθt t − t2ρu · ∇θt t + 2t2div(ρu)θt t − t2ρt t (θt + u · ∇θ + (γ − 1)θdivu)

− 2t2ρt (u · ∇θ + (γ − 1)θdivu)t − t2ρutt · ∇θ − 2t2ρut · ∇θt

− (γ − 1)t2ρ(θdivu)t t + γ − 1

R
t2

(
λ(divu)2 + 2μ|D(u)|2

)

t t
.

It thus follows from (2.3) and (2.4)1 that F4 ∈ L2(0, T0; L2), which together with
(2.2), (2.3), (2.4)1, and standard L2-estimate for (2.17) gives that

(t2θt t )t ,∇2(t2θt t ) ∈ L2(0, T0; L2). (2.18)

One thus obtain (2.4)2 directly from (2.3), (2.4)1, (2.15), and (2.18).
Finally, we will show the lower bound of θ, (2.5), by maximum principle. In

fact, it follows from (1.6)3 and (1.4) that

ρθt + ρu · ∇θ − κ(γ − 1)

R
�θ + (γ − 1)ρθdivu ≥ 0,

θ → 1 as |x | → ∞,

where we have used

2μ|D(u)|2 + λ(divu)2 ≥ 0. (2.19)

By (2.3), we have
∫ T0

0
‖divu‖L∞dt < ∞,

which together with the standard maximum principle thus gives (2.5). The proof
of Lemma 2.1 is completed.

Next, the followingwell-knownGagliardo–Nirenberg–Sobolev-type inequality
will be used later frequently (see [17]).

Lemma 2.2. For p ∈ (1,∞) and q ∈ (3,∞), there exists some generic constant
C > 0 which may depend on p and q such that for f ∈ D1(R3), g ∈ L p(R3) ∩
D1,q(R3), and ϕ,ψ ∈ H2(R3), we have

‖ f ‖L6 ≤ C‖∇ f ‖L2 , (2.20)

‖g‖
C

(
R3

) ≤ C‖g‖p(q−3)/(3q+p(q−3))
L p ‖∇g‖3q/(3q+p(q−3))

Lq , (2.21)

‖ϕψ‖H2 ≤ C‖ϕ‖H2‖ψ‖H2 . (2.22)

Then, the following inequality is an easy consequence of (2.20) and will play
an important role in our analysis.

Lemma 2.3. Let the function g(x) defined in R
3 be non-negative and satisfy g(·)−

1 ∈ L2(R3). Then there exists a universal positive constant C such that for r ∈
[1, 2] and any open set � ⊂ R

3, the following estimate holds
∫

�

| f |rdx ≤ C
∫

�

g| f |rdx + C‖g − 1‖(6−r)/3
L2(R3)

‖∇ f ‖r
L2(R3)

, (2.23)

for all f ∈ {
f ∈ D1(R3)

∣
∣ g| f |r ∈ L1(�)

}
.
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Proof. In fact, Sobolev’s inequality, (2.20), yields that

2
∫

�

| f |rdx ≤ 2
∫

�

g| f |rdx + 2
∫

�

|g − 1|| f |rdx

≤ 2
∫

�

g| f |rdx + 2‖g − 1‖L2(R3)‖ f ‖r(3−r)/(6−r)

Lr (�) ‖ f ‖3r/(6−r)

L6(R3)

≤ 2
∫

�

g| f |rdx +
∫

�

| f |rdx + C‖g − 1‖(6−r)/3
L2(R3)

‖∇ f ‖r
L2(R3)

,

which implies (2.23) directly. The proof of Lemma 2.3 is completed.

Next, it follows from (1.6)2 that G and ω, defined in (1.21), satisfy

�G = div(ρu̇), μ�ω = ∇ × (ρu̇). (2.24)

Applying the standard L p-estimate to the elliptic systems (2.24) together with
(2.20) yields the following elementary estimates (see [10, Lemma 2.3]):

Lemma 2.4. Let (ρ, u, θ) be a smooth solution of (1.6) (1.4). Then there exists
a generic positive constant C depending only on μ, λ, and R such that, for any
p ∈ [2, 6],

‖∇u‖L p ≤ C (‖G‖L p + ‖ω‖L p ) + C‖ρθ − 1‖L p , (2.25)

‖∇G‖L p + ‖∇ω‖L p ≤ C‖ρu̇‖L p , (2.26)

‖G‖L p + ‖ω‖L p ≤ C‖ρu̇‖(3p−6)/(2p)

L2

(‖∇u‖L2

+‖ρθ − 1‖L2
)(6−p)/(2p)

, (2.27)

‖∇u‖L p ≤ C‖∇u‖(6−p)/(2p)

L2

(‖ρu̇‖L2 + ‖ρθ − 1‖L6
)(3p−6)/(2p)

. (2.28)

Next, the following Grönwall-type inequality will be used to get the uniform
(in time) upper bound of the density ρ:

Lemma 2.5. Let the function y ∈ W 1,1(0, T ) satisfy

y′(t) + αy(t) ≤ g(t) on [0, T ], y(0) = y0, (2.29)

where α is a positive constant and g ∈ L p(0, T1)∩ Lq(T1, T ) for some p ≥ 1, q ≥
1, and T1 ∈ [0, T ]. Then

sup
0≤t≤T

y(t) ≤ |y0| + (1 + α−1)
(‖g‖L p(0,T1) + ‖g‖Lq (T1,T )

)
. (2.30)

Proof. Let p′ and q ′ denote the conjugate numbers of p and q respectively. Mul-
tiplying (2.29) by eαt and integrating the resulting inequality over (0, t) yield that

eαt y(t) ≤ y0 +
∫ min{t,T1}

0
eαs |g(s)|ds +

∫ t

min{t,T1}
eαs |g(s)|ds

≤ |y0| + ‖g‖L p(0,min{t,T1})‖eαs‖L p′
(0,t)

+ ‖g‖Lq (min{t,T1},t)‖eαs‖Lq′
(0,t)

≤ |y0| + (‖g‖L p(0,T1) + ‖g‖Lq (T1,T )

)
(1 + α−1)eαt ,
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due to ‖eαs‖Lr (0,t) ≤ (1 + α−1)eαt , for all r ∈ [1,∞]. This yields (2.30) directly
and finishes the proof of Lemma 2.5.

Finally, the following Beale–Kato–Majda-type inequality whose proof can be
found in [2,9] will be used later to estimate ‖∇u‖L∞ and ‖∇ρ‖L2∩L6 .

Lemma 2.6. [2,9]For 3 < q < ∞, there is a constant C(q) such that the following
estimate holds for all ∇u ∈ L2(R3) ∩ D1,q(R3):

‖∇u‖L∞(R3) ≤ C
(‖divu‖L∞(R3) + ‖∇ × u‖L∞(R3)

)
log(e + ‖∇2u‖Lq (R3))

+ C‖∇u‖L2(R3) + C.

3. A Priori Estimates (I): Lower-Order Estimates

In this section, we will establish a priori bounds for the smooth, local-in-time
solution to (1.6) (1.4) (1.7) obtained in Lemma 2.1. We thus fix a smooth solution
(ρ, u, θ) of (1.6) (1.4) (1.7) on R3 × (0, T ] for some time T > 0, with initial data
(ρ0, u0, θ0) satisfying (2.1).

For σ(t) � min{1, t}, we define Ai (T )(i = 1, . . . , 4) as follows:

A1(T ) = sup
t∈[0,T ]

‖∇u‖2L2 +
∫ T

0

∫

ρ|u̇|2dxdt, (3.1)

A2(T ) = R

2(γ − 1)
sup

t∈[0,T ]

∫

ρ(θ − 1)2dx +
∫ T

0

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
dt,

(3.2)

A3(T ) = sup
t∈(0,T ]

(

σ‖∇u‖2L2 + σ 2
∫

ρ|u̇|2dx + σ 2‖∇θ‖2L2

)

+
∫ T

0

∫ (
σρ|u̇|2 + σ 2|∇u̇|2 + σ 2ρ(θ̇)2

)
dxdt, (3.3)

A4(T ) = sup
t∈(0,T ]

σ 4
∫

ρ|θ̇ |2dx +
∫ T

0

∫

σ 4|∇ θ̇ |2dxdt. (3.4)

We have the following key a priori estimates on (ρ, u, θ).

Proposition 3.1. For given numbers M > 0 (not necessarily small), ρ̄ > 2, and
θ̄ > 0, assume that (ρ0, u0, θ0) satisfies

0 < inf ρ0 ≤ sup ρ0 < ρ̄, 0 < inf θ0 ≤ sup θ0 ≤ θ̄ , ‖∇u0‖L2 ≤ M. (3.5)

Then there exist positive constants K and ε0 both depending only on μ, λ, κ, R, γ,

ρ̄, θ̄ , and M such that if (ρ, u, θ) is a smooth solution of (1.6) (1.4) (1.7) on
R
3 × (0, T ] satisfying

0 < ρ ≤ 2ρ̄, A1(σ (T )) ≤ 3K , Ai (T ) ≤ 2C1/(2i)
0 (i = 2, 3, 4), (3.6)

the following estimates hold:

0 < ρ ≤ 3ρ̄/2, A1(σ (T )) ≤ 2K , Ai (T ) ≤ C1/(2i)
0 (i = 2, 3, 4), (3.7)
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provided

C0 ≤ ε0. (3.8)

Proof. Proposition 3.1 is an easy consequence of the following Lemmas 3.2, 3.3,
and 3.6–3.8, with ε0 as in (3.97).

In this section, we always assume that C0 ≤ 1 and let C denote some generic
positive constant depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M , and we write C(α)

to emphasize that C may depend on α.

First, the following elementary L2 bounds are crucial for deriving the desired
estimate on A2(T ) (see Lemma 3.3 below).

Lemma 3.1. Under the conditions of Proposition 3.1, there exists a positive con-
stant C = C(ρ̄) depending only on μ, λ, κ, R, γ, and ρ̄ such that if (ρ, u, θ) is
a smooth solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying 0 < ρ ≤ 2ρ̄, the
following estimates hold:

sup
0≤t≤T

∫ (
ρ|u|2 + (ρ − 1)2

)
dx ≤ C(ρ̄)C0, (3.9)

and

‖(θ − 1)(·, t)‖L2 ≤ C(ρ̄)C1/2
0 + C(ρ̄)C1/3

0 ‖∇θ(·, t)‖L2 , (3.10)

for all t ∈ (0, T ].
Proof. First, it follows from (3.5) and (2.5) that, for all (x, t) ∈ R

3 × (0, T ),

θ(x, t) > 0. (3.11)

Adding (1.6)2 multiplied by u to (1.6)3 multiplied by 1 − θ−1, we obtain after
integrating the resulting equality over R3 and using (1.6)1 that

d

dt

∫ (
1

2
ρ|u|2 + R(1 + ρ log ρ − ρ) + R

γ − 1
ρ(θ − log θ − 1)

)

dx

=
∫ [

−μ|∇u|2 − (λ + μ)(divu)2 − κθ−2|∇θ |2

+ (1 − θ−1)(λ(divu)2 + 2μ|D(u)|2)
]
dx

= −
∫ (

θ−1(λ(divu)2 + 2μ|D(u)|2) + κθ−2|∇θ |2
)
dx, (3.12)

where in the second equality we have used

2
∫

|D(u)|2dx =
∫ (

|∇u|2 + (divu)2
)
dx . (3.13)

Direct calculations yield that

ρ log ρ − ρ + 1 = (ρ − 1)2
∫ 1

0

1 − α

α(ρ − 1) + 1
dα

≥ 1

2(2ρ̄ + 1)
(ρ − 1)2,

(3.14)
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and

θ − log θ − 1 = (θ − 1)2
∫ 1

0

α

α(θ − 1) + 1
dα

≥ 1

8
(θ − 1)1(θ(·,t)>2) + 1

12
(θ − 1)21(θ(·,t)<3),

(3.15)

where we denote

(θ(·, t) > 2) �
{

x ∈ R
3
∣
∣
∣ θ(x, t) > 2

}
,

(θ(·, t) < 3) �
{

x ∈ R
3
∣
∣
∣ θ(x, t) < 3

}
.

Integrating (3.12) with respect to t over (0, T ) yields

sup
0≤t≤T

∫ (
1

2
ρ|u|2 + R(1 + ρ log ρ − ρ) + R

γ − 1
ρ(θ − log θ − 1)

)

dx

+
∫ T

0

∫ (
1

θ
(λ(divu)2 + 2μ|D(u)|2) + κ

|∇θ |2
θ2

)

dxdt ≤ 2C0, (3.16)

which together with (2.19), (3.11), (3.14), and (3.15) leads to

sup
0≤t≤T

∫ (
ρ|u|2 + (ρ − 1)2

)
dx

+ sup
0≤t≤T

∫ (
ρ(θ − 1)1(θ(·,t)>2) + ρ(θ − 1)21(θ(·,t)<3)

)
dx

≤ C(ρ̄)C0. (3.17)

This directly gives (3.9).
Next, we shall prove (3.10). Taking g(x) = ρ(x, t), f (x) = θ(x, t) − 1, r = 2

and � = (θ(·, t) < 3) in (2.23), we conclude after using (3.17) that

‖θ(·, t) − 1‖L2(θ(·,t)<3) ≤ C(ρ̄)C1/2
0 + C(ρ̄)C1/3

0 ‖∇θ(·, t)‖L2(R3). (3.18)

Similarly, taking g(x) = ρ(x, t), f (x) = θ(x, t)−1, r = 1 and� = (θ(·, t) > 2)
in (2.23), we obtain after using (3.17) that

‖θ(·, t) − 1‖L1(θ(·,t)>2) ≤ C(ρ̄)C0 + C(ρ̄)C5/6
0 ‖∇θ(·, t)‖L2(R3),

which together with Hölder’s inequality and (2.20) leads to

‖θ(·, t) − 1‖L2(θ(·,t)>2)

≤ ‖θ(·, t) − 1‖2/5
L1(θ(·,t)>2)

‖θ(·, t) − 1‖3/5
L6(R3)

≤ C(ρ̄)
(

C2/5
0 + C1/3

0 ‖∇θ(·, t)‖2/5
L2

)
‖∇θ(·, t)‖3/5

L2

≤ C(ρ̄)C1/2
0 + C(ρ̄)C1/3

0 ‖∇θ(·, t)‖L2 . (3.19)

Combining (3.18) and (3.19) yields (3.10) directly. The proof of Lemma 3.1 is
finished.
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Next, the following lemma will give an estimate on the term A1(σ (T )) :
Lemma 3.2. Under the conditions of Proposition 3.1, there exist positive constants
K ≥ M + 1 and ε1 ≤ 1 both depending only on μ, λ, κ, R, γ, ρ̄, and M such that
if (ρ, u, θ) is a smooth solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying

0 < ρ ≤ 2ρ̄, A2(σ (T )) ≤ 2C1/4
0 , (3.20)

the following estimate holds:

A1(σ (T )) ≤ 2K , (3.21)

provided A1(σ (T )) ≤ 3K and C0 ≤ ε1.

Proof. First, multiplying (1.6)2 by 2ut and integrating the resulting equality over
R
3, we obtain after integration by parts that

d

dt

∫ (
μ|∇u|2 + (μ + λ)(divu)2

)
dx +

∫

ρ|ut |2dx

≤ −2
∫

∇ P · utdx +
∫

ρ|u · ∇u|2dx

= 2R
d

dt

∫

(ρθ − 1)divudx − 2
∫

Ptdivudx +
∫

ρ|u · ∇u|2dx

= 2R
d

dt

∫

(ρθ − 1)divudx − R2

2μ + λ

d

dt

∫

(ρθ − 1)2dx

− 2

2μ + λ

∫

Pt Gdx +
∫

ρ|u · ∇u|2dx, (3.22)

where in the last equality, we have used

divu = 1

2μ + λ
(G + R(ρθ − 1)), (3.23)

due to (1.21).

Next, it follows from Hölder’s inequality, (3.20), (2.20) and (3.9) that for p ∈
[2, 6],
‖ρθ − 1‖L p = ‖ρ(θ − 1) + (ρ − 1)‖L p

≤ ‖ρ(θ − 1)‖(6−p)/(2p)

L2 ‖ρ(θ − 1)‖3(p−2)/(2p)

L6 + ‖ρ − 1‖L p

≤ C(ρ̄)C (6−p)/(16p)
0 ‖∇θ‖3(p−2)/(2p)

L2 + C(ρ̄)C1/p
0 ,

(3.24)

which together with (2.28) yields

‖∇u‖L6 ≤ C(ρ̄)
(
‖ρ1/2u̇‖L2 + ‖∇θ‖L2 + C1/6

0

)
. (3.25)
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Noticing that (1.6) implies

Pt = − div(Pu) − (γ − 1)Pdivu + (γ − 1)κ�θ

+ (γ − 1)
(
λ(divu)2 + 2μ|D(u)|2

)
,

(3.26)

we obtain after integration by parts and using (3.20), (2.20), (2.26), (3.25), (3.24),
and (3.9) that
∣
∣
∣
∣

∫

Pt Gdx

∣
∣
∣
∣

≤ C
∫

P(|G||∇u| + |u||∇G|)dx +
∫ (

|∇θ ||∇G| + |∇u|2|G|
)
dx

≤ C
∫

ρ(|G||∇u| + |u||∇G|)dx + C
∫

ρ|θ − 1|(|G||∇u| + |u||∇G|)dx

+ C‖∇G‖L2‖∇θ‖L2 + C‖∇G‖L2‖∇u‖3/2
L2 ‖∇u‖1/2

L6

≤ C(ρ̄)(‖∇u‖L2 + ‖ρθ − 1‖L2)‖∇u‖L2 + C‖ρu‖L2‖∇G‖L2

+ C(ρ̄)‖ρ(θ − 1)‖1/2
L2 ‖∇θ‖1/2

L2 ‖∇G‖L2‖∇u‖L2 + C‖∇G‖L2‖∇θ‖L2

+ C(ρ̄)‖∇G‖L2‖∇u‖3/2
L2

(
‖ρu̇‖1/2

L2 + ‖∇θ‖1/2
L2 + C1/12

0

)

≤ C(δ, ρ̄)C1/4
0 + C(ρ̄, δ)‖∇u‖2L2 + δ‖∇G‖2L2 + C(ρ̄, δ)‖∇θ‖L2‖∇u‖2L2

+ C(δ, ρ̄)‖∇θ‖2L2 + δ‖ρ1/2u̇‖2L2 + C(δ, ρ̄)‖∇u‖6L2

≤ C(ρ̄)δ‖ρ1/2u̇‖2L2 + C(δ, ρ̄)
(
‖∇θ‖2L2 + ‖∇u‖2L2 + 1

)
+ C(δ, ρ̄)‖∇u‖6L2 .

(3.27)

Finally, it follows from (2.20) and (3.25) that
∫

ρ|u · ∇u|2dx ≤ C(ρ̄)‖u‖2L6‖∇u‖L2‖∇u‖L6

≤ δ‖ρ1/2u̇‖2L2 + C(ρ̄, δ)‖∇u‖6L2

+ C(ρ̄, δ)
(
‖∇u‖2L2 + ‖∇θ‖2L2

)
.

(3.28)

Substituting (3.27) and (3.28) into (3.22) and choosing δ suitably small, we get
after integrating (3.22) over (0, σ (T )) and using (3.20) that

sup
0≤t≤σ(T )

‖∇u‖2L2 +
∫ σ(T )

0

∫

ρ|u̇|2dxdt

≤ C M + C(ρ̄)C1/4
0 + C(ρ̄)C1/4

0 sup
0≤t≤σ(T )

‖∇u‖4L2

≤ K + C(ρ̄)C1/4
0 sup

0≤t≤σ(T )

‖∇u‖4L2 ,

where K is defined by

K � C M + C(ρ̄) + 1, (3.29)
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depending only on μ, λ, κ, R, γ, ρ̄, and M. We thus finish the proof of (3.21) by
choosing ε1 � min

{
1, (9C(ρ̄)K )−4

}
and K as in (3.29). The proof of Lemma 3.2

is completed.
Next, the following energy-like bound of the local smooth solutions will be

crucial for further estimates.

Lemma 3.3. Under the conditions of Proposition 3.1, there exists a positive con-
stant ε2 depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M such that if (ρ, u, θ) is a
smooth solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

A2(T ) ≤ C1/4
0 , (3.30)

provided C0 ≤ ε2.

Proof. First, multiplying (1.6)2 by u and integrating the resulting equality overR3

give

d

dt

∫ (
1

2
ρ|u|2 + R(1 + ρ log ρ − ρ)

)

dx

+μ

∫

|∇u|2dx + (μ + λ)

∫

(divu)2dx

≤ C(ρ̄)
(‖θ − 1‖L2 + ‖ρ − 1‖L2

) ‖∇u‖L2

≤ C(ρ̄)
(

C1/2
0 + C1/3

0 ‖∇θ‖L2

)
‖∇u‖L2

≤ C(ρ̄)C2/3
0 + C(ρ̄)C1/3

0

(
‖∇θ‖2L2 + ‖∇u‖2L2

)
, (3.31)

where in the second inequality we have used (3.9) and (3.10).
Then, multiplying (1.6)3 by θ − 1 and integrating the resulting equality over

R
3 lead to

R

2(γ − 1)

d

dt

∫

ρ(θ − 1)2dx + κ‖∇θ‖2L2

≤ C(ρ̄)

∫

θ |θ − 1||divu|dx + C
∫

|∇u|2|θ − 1|dx .

(3.32)

For the first term on the righthand side of (3.32), one has
∫

θ |θ − 1||divu|dx

≤
∫

(θ − 1)2|divu|dx +
∫

|θ − 1||divu|dx

≤ C‖θ − 1‖1/2
L2 ‖θ − 1‖3/2

L6 ‖∇u‖L2 + C‖θ − 1‖L2‖∇u‖L2

≤ C(ρ̄, M)
(

C1/4
0 + C1/6

0 ‖∇θ‖1/2
L2

)
‖∇θ‖3/2

L2

+C(ρ̄)
(

C1/2
0 + C1/3

0 ‖∇θ‖L2

)
‖∇u‖L2

≤ C(ρ̄, M)C1/2
0 + C(ρ̄, M)C1/6

0

(
‖∇θ‖2L2 + ‖∇u‖2L2

)
, (3.33)
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where we have used (2.20), (3.10), (3.6), and the following simple fact:

sup
t∈[0,T ]

‖∇u‖L2 ≤ A1(σ (T )) + A3(T ) ≤ C(ρ̄, M), (3.34)

due to (3.6). For the second one on the righthand side of (3.32), in light of (3.10),
(2.20), (2.28), (3.25), and (3.6), we have
∫

|∇u|2|θ − 1|dx

≤ C‖θ − 1‖1/2
L2 ‖θ − 1‖1/2

L6 ‖∇u‖L2‖∇u‖L6

≤ C(ρ̄, M)
(

C1/4
0 ‖∇θ‖1/2

L2 + C1/6
0 ‖∇θ‖L2

) (
‖ρu̇‖L2 + ‖∇θ‖L2 + C1/6

0

)

≤ C(ρ̄, M, δ)C1/3
0

(
‖ρ1/2u̇‖2L2 + 1

)
+ C(ρ̄, M)

(
δ + C1/6

0

)
‖∇θ‖2L2 . (3.35)

Substituting (3.33) and (3.35) into (3.32) leads to

R

2(γ − 1)

d

dt

∫

ρ(θ − 1)2dx + κ‖∇θ‖2L2

≤ C(ρ̄, M)
(
δ + C1/6

0

) (
‖∇θ‖2L2 + ‖∇u‖2L2

)

+C(ρ̄, M, δ)C1/3
0

(
‖ρ1/2u̇‖2L2 + 1

)
. (3.36)

Next, combining (3.31) and (3.36) yields

d

dt

∫ (
1

2
ρ|u|2 + R(1 + ρ log ρ − ρ) + R

2(γ − 1)
ρ(θ − 1)2

)

dx

+μ

∫

|∇u|2dx + (μ + λ)

∫

(divu)2dx + κ

∫

|∇θ |2dx

≤ C(ρ̄, M)
(
δ + C1/6

0

) (
‖∇θ‖2L2 + ‖∇u‖2L2

)

+C(ρ̄, M, δ)C1/3
0

(
‖ρ1/2u̇‖2L2 + 1

)
. (3.37)

Letting

C0 ≤ ε2,1 � min

{

1,
(
(4C(ρ̄, M))−1 min{μ, κ}

)6
}

,

choosing δ ≤ (4C(ρ̄, M))−1 min{μ, κ} and integrating (3.37) over (0, σ (T )), we
obtain after using (3.6) that

sup
0≤t≤σ(T )

∫ (

ρ|u|2 + (ρ − 1)2 + R

2(γ − 1)
ρ(θ − 1)2

)

dx

+
∫ σ(T )

0

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
dt ≤ C(ρ̄, M)C1/3

0 ,

(3.38)

due to
∫

ρ0(θ0 − 1)2dx ≤ 2(θ̄ + 1)
∫

ρ0 (θ0 − log θ0 − 1) dx .

��
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Next, applying the standard L2-estimate to the following elliptic problem

{
κ�θ = R

γ−1ρθ̇ + Rρθdivu − λ(divu)2 − 2μ|D(u)|2,
θ → 1 as |x | → ∞,

(3.39)

gives

‖∇2θ‖2L2 ≤ C
(
‖ρθ̇‖2L2 + ‖∇u‖4L4 + ‖θ∇u‖2L2

)

≤ C(ρ̄)
(
‖∇θ‖2L2 + ‖∇u‖2L2

) (
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2 + 1

)

+C
(
‖ρθ̇‖2L2 + ‖∇u‖4L4

)
, (3.40)

where we have used
∫

θ2|∇u|2dx ≤ C‖θ − 1‖2L6‖∇u‖L2‖∇u‖L6 + C‖∇u‖2L2

≤ C(ρ̄)
(
‖∇θ‖2L2 + ‖∇u‖2L2

) (
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2 + 1

)
,

(3.41)

due to (2.20) and (3.25). Note that (3.25) and (3.6) give

sup
0≤t≤T

σ‖∇u‖L6 ≤ C(ρ̄)C1/12
0 . (3.42)

Combining this with (3.40) and (3.6) leads to

sup
0<t≤T

σ 4‖∇2θ‖2L2 ≤ C(ρ̄) sup
0<t≤T

σ 2
(
‖∇θ‖2L2 + ‖∇u‖2L2

)
×

sup
0<t≤T

σ 2
(
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2 + 1

)

+ C sup
0<t≤T

(
σ 4‖ρθ̇‖2L2 + (

σ‖∇u‖L2
) (

σ‖∇u‖L6
)3

)

≤ C(ρ̄)C1/8
0 ,

(3.43)

which together with (2.20), (2.21), and (3.6) yields that

sup
0<t≤T

σ 2‖θ − 1‖L∞ ≤ sup
0<t≤T

σ 2
(
‖∇θ‖L2 + ‖∇2θ‖L2

)

≤ C(ρ̄)C1/16
0 ≤ 1/2,

(3.44)

provided C0 ≤ ε2,2 � min
{
1, (2C(ρ̄))−16

}
. Let C0 ≤ min{ε2,1, ε2,2}. It follows

from (3.44) that, for all (x, t) ∈ R
3 × [σ(T ), T ],

1/2 ≤ θ(x, t) ≤ 3/2,
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which as well as (2.19) and (3.13)–(3.16) gives

sup
σ(T )≤t≤T

∫ (

ρ|u|2 + (ρ − 1)2 + R

2(γ − 1)
ρ(θ − 1)2

)

dx

+
∫ T

σ(T )

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
dt ≤ C(ρ̄)C0.

(3.45)

Finally, the combination of (3.38) with (3.45) yields

sup
0≤t≤T

∫ (

ρ|u|2 + (ρ − 1)2 + R

2(γ − 1)
ρ(θ − 1)2

)

dx

+
∫ T

0

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
dt

≤ max
{

C(ρ̄)C0, C(ρ̄, M)C1/3
0

}
,

which in particular gives (3.30) provided

C0 ≤ ε2 � min
{
ε2,1, ε2,2, (C(ρ̄))−4/3, (C(ρ̄, M))−12

}
.

The proof of Lemma 3.3 is completed.
Next, to estimate A3(T ), we establish the following Lemmas 3.4 and 3.5 con-

cerning some elementary estimates on u̇ and θ̇ for the case that the density may
contain vacuum states. This approach is motivated by the basic estimates on u̇ and θ̇

developed byHoff [8] where the density is strictly away from vacuum. The estimate
of A3(T ) will be postponed to Lemma 3.6.

Lemma 3.4. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a smooth solu-
tion of (1.6) (1.4) (1.7) onR3×(0, T ] satisfying (3.6)with K as in Lemma 3.2. Then
there exist positive constants C and C1 both depending only on μ, λ, κ, R, γ, ρ̄, θ̄ ,
and M such that, for any β ∈ (0, 1], the following estimates hold:

(σ B1)
′(t) + 3

2

∫

σρ|u̇|2dx ≤ CC1/4
0 σ ′ + 2βσ 2‖ρ1/2θ̇‖2L2

+Cβ−1
(
‖∇θ‖2L2 + ‖∇u‖2L2

)

+Cσ 2‖∇u‖4L4 , (3.46)

and
(

σ 2
∫

ρ|u̇|2dx

)

t
+ 3μ

2

∫

σ 2|∇u̇|2dx

≤ 2σ
∫

ρ|u̇|2dx + C1σ
2‖ρ1/2θ̇‖2L2

+ C
(
‖∇θ‖2L2 + ‖∇u‖2L2

)
+ Cσ 2‖∇u‖4L4 ,

(3.47)

where

B1(t) � μ‖∇u‖2L2 + (λ + μ)‖divu‖2L2 + 2R
∫

divu(ρθ − 1)dx . (3.48)
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Proof. First,weprove (3.46).Multiplying (1.6)2 byσ u̇ and integrating the resulting
equality over R3 lead to

∫

σρ|u̇|2dx =
∫

(−σ u̇ · ∇ P + μσ�u · u̇ + (λ + μ)σ∇divu · u̇)dx

�
3∑

i=1

Mi .

(3.49)

Noticing that (1.6)1 leads to

Pt = Rρθ̇ − div(Pu), (3.50)

we get after integration by parts that, for any β ∈ (0, 1],

M1 =
∫

σ ((P − R)divu)t dx +
∫

σ (−Ptdivu + Pu · ∇divu) dx

+
∫

σ P∂i u
j∂ j u

idx

= R

(∫

σ(ρθ − 1)divudx

)

t
− Rσ ′

∫

(ρθ − 1)divudx

− R
∫

σdivuρθ̇dx +
∫

σdiv(Pudivu)dx

+
∫

σ P∂i u
j∂ j u

idx

≤ R

(∫

σ(ρθ − 1)divudx

)

t
+ Cσ ′‖∇u‖L2‖ρθ − 1‖L2

+ C(ρ̄)σ‖∇u‖L2‖ρ1/2θ̇‖L2 + C(ρ̄)σ

∫

θ |∇u|2dx

≤ R

(∫

σ(ρθ − 1)divudx

)

t
+ C(ρ̄)C1/4

0 σ ′ + βσ 2‖ρ1/2θ̇‖2L2

+ C(ρ̄)δ‖ρ1/2u̇‖2L2 + C(ρ̄, δ, M)β−1
(
‖∇u‖2L2 + ‖∇θ‖2L2

)
,

(3.51)

where in the last inequality we have used (3.24) and the following simple fact:

∫

θ |∇u|2dx ≤
∫

|θ − 1||∇u|2dx +
∫

|∇u|2dx

≤ C‖θ − 1‖L6‖∇u‖3/2
L2 ‖∇u‖1/2

L6 + ‖∇u‖2L2

≤ C‖∇θ‖L2‖∇u‖3/2
L2

(‖ρu̇‖L2 + ‖∇θ‖L2 + 1
)1/2 + ‖∇u‖2L2

≤ δ
(
‖∇θ‖2L2 + ‖ρ1/2u̇‖2L2

)
+ C(ρ̄, δ, M)‖∇u‖2L2 , (3.52)



1018 Xiangdi Huang & Jing Li

due to (2.20), (3.34), and (3.25). Integration by parts gives

M2 =
∫

μσ�u · u̇dx

= −μ

2

(
σ‖∇u‖2L2

)

t
+ μ

2
σ ′‖∇u‖2L2 − μσ

∫

∂i u
j∂i (u

k∂ku j )dx

= −μ

2

(
σ‖∇u‖2L2

)

t
+ μ

2
σ ′‖∇u‖2L2 − μσ

∫

∂i u
j∂i u

k∂ku jdx

+μ

2
σ

∫

|∇u|2divudx

≤ −μ

2

(
σ‖∇u‖2L2

)

t
+ C‖∇u‖2L2 + Cσ 2‖∇u‖4L4 . (3.53)

Similar to (3.53), we have

M3 ≤ −λ + μ

2

(
σ‖divu‖2L2

)

t
+ C‖∇u‖2L2 + Cσ 2‖∇u‖4L4 . (3.54)

Substituting (3.51), (3.53), and (3.54) into (3.49), we obtain (3.46) after choosing
δ suitably small.

It remains to prove (3.47). Form ≥ 0, operating σmu̇ j [∂/∂t +div(u·)] to (1.6) j
2

and integrating the resulting equality over R3, we obtain after integration by parts
that

(
σm

2

∫

ρ|u̇|2dx

)

t
− m

2
σm−1σ ′

∫

ρ|u̇|2dx

= −
∫

σmu̇ j [∂ j Pt + div(∂ j Pu)]dx

+μ

∫

σmu̇ j [�u j
t + div(u�u j )]dx

+(λ + μ)

∫

σmu̇ j [∂t∂ jdivu + div(u∂ jdivu)]dx

�
3∑

i=1

Ni . (3.55)

We get after integration by parts and using (3.50) that

N1 = −
∫

σmu̇ j [∂ j Pt + div(∂ j Pu)]dx

= −
∫

σmu̇ j (
R∂ j (ρθ̇) − ∂ jdiv(Pu) + div(∂ j Pu)

)
dx

= −
∫

σmu̇ j (
R∂ j (ρθ̇) − div(P∂ j u)

)
dx

≤ μ

8

∫

σm |∇u̇|2dx + C(ρ̄)σm
(

‖ρθ̇‖2L2 +
∫

θ2|∇u|2dx

)

. (3.56)
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Integration by parts leads to

N2 = μ

∫

σmu̇ j [�u j
t + div(u�u j )]dx

= −μ

∫

σm
(
∂i u̇

j∂i u
j
t + �u j u · ∇u̇ j

)
dx

= −μ

∫

σm
(
|∇u̇|2 − ∂i u̇

j uk∂k∂i u
j − ∂i u̇

j∂i u
k∂ku j + �u j u · ∇u̇ j

)
dx

= −μ

∫

σm
(
|∇u̇|2 + ∂i u̇

j∂i u
jdivu − ∂i u̇

j∂i u
k∂ku j − ∂i u

j∂i u
k∂k u̇ j

)
dx

≤ −7μ

8

∫

σm |∇u̇|2dx + C
∫

σm |∇u|4dx . (3.57)

Similarly, we have

N3 ≤ −7(μ + λ)

8

∫

σm(divu̇)2dx + C
∫

σm |∇u|4dx . (3.58)

Substituting (3.56)–(3.58) into (3.55) yields that there exists someC1 depending
only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M such that

(

σm
∫

ρ|u̇|2dx

)

t
+ 3μ

2

∫

σm |∇u̇|2dx

+ 7(μ + λ)

8

∫

σm(divu̇)2dx

≤ mσm−1σ ′
∫

ρ|u̇|2dx

+ C1σ
m‖ρ1/2θ̇‖2L2 + Cσm‖∇u‖4L4

+ C(ρ̄)σm‖θ∇u‖2L2 . (3.59)

Taking m = 2 in (3.59) and using (3.41), (3.6), and (1.2), we obtain (3.47) and
finish the proof of Lemma 3.4.

Lemma 3.5. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a smooth
solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying (3.6) with K as in Lemma 3.2.
Then there exists a positive constant C depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and
M such that the following estimate holds

(
σ 2ϕ

)′
(t) + σ 2

∫ (
μ|∇u̇|2 + ρ(θ̇)2

)
dx

≤ C
(
‖∇u‖2L2 + ‖∇θ‖2L2

)

+ 2σ
∫

ρ|u̇|2dx + Cσ 2‖∇u‖4L4 ,

(3.60)

where ϕ(t) is defined by

ϕ(t) �
∫

ρ|u̇|2(x, t)dx + (C1 + 1)B2(t), (3.61)
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with C1 as in Lemma 3.4 and

B2(t) � γ − 1

R

(

κ‖∇θ‖2L2 − 2λ
∫

(divu)2θdx − 4μ
∫

|D(u)|2θdx

)

.

(3.62)

Proof. Form ≥ 0, multiplying (1.6)3 by σm θ̇ and integrating the resulting equality
over R3 yields that

κσm

2

(
‖∇θ‖2L2

)

t
+ Rσm

γ − 1

∫

ρ|θ̇ |2dx

= −κσm
∫

∇θ · ∇(u · ∇θ)dx + λσm
∫

(divu)2θ̇dx

+ 2μσm
∫

|D(u)|2θ̇dx − Rσm
∫

ρθdivuθ̇dx �
4∑

i=1

Ii .

(3.63)

First, it follows from (2.20) and (3.6) that

|I1| ≤ Cσm
∫

|∇u||∇θ |2dx

≤ Cσm‖∇u‖L2‖∇θ‖1/2
L2 ‖∇θ‖3/2

L6

≤ δσm‖ρθ̇‖2L2 + Cσm‖∇u‖4L4 + Cσm‖θ∇u‖2L2

+ C(ρ̄, δ, M)σm‖∇θ‖2L2 ,

(3.64)

where in the last inequality we have used (2.20) and (3.40).
Next, integration by parts yields that, for any η ∈ (0, 1],

I2 = λσm
∫

(divu)2θtdx + λσm
∫

(divu)2u · ∇θdx

= λσm
(∫

(divu)2θdx

)

t
− 2λσm

∫

θdivudiv(u̇ − u · ∇u)dx

+ λσm
∫

(divu)2u · ∇θdx

= λσm
(∫

(divu)2θdx

)

t
− 2λσm

∫

θdivudivu̇dx

+ 2λσm
∫

θdivu∂i u
j∂ j u

idx + λσm
∫

u · ∇
(
θ(divu)2

)
dx

≤ λ

(

σm
∫

(divu)2θdx

)

t
− λmσm−1σ ′

∫

(divu)2θdx

+ ησm‖∇u̇‖2L2 + Cη−1σm
∫

θ2|∇u|2dx + σm‖∇u‖4L4 .

(3.65)



Global Classical and Weak Solutions 1021

Then, similar to (3.65), we obtain that, for any η ∈ (0, 1],

I3 ≤ 2μ

(

σm
∫

|D(u)|2θdx

)

t

−2μmσm−1σ ′
∫

|D(u)|2θdx

+Cησm‖∇u̇‖2L2 + Cη−1σm
∫

θ2|∇u|2dx

+Cσm‖∇u‖4L4 . (3.66)

Finally, Cauchy’s inequality gives

|I4| ≤ C(ρ̄)σm
∫

θ2|∇u|2dx + R

4(γ − 1)
σm

∫

ρ|θ̇ |2dx . (3.67)

Substituting (3.64)–(3.67) into (3.63), we obtain after using (2.19), (3.11), (1.2)
and choosing δ suitably small that, for any η ∈ (0, 1],

(σm B2)
′(t) + σm

∫

ρ(θ̇)2dx ≤Cησm‖∇u̇‖2L2 + C(ρ̄, M)‖∇θ‖2L2

+ Cσm‖∇u‖4L4 + C(ρ̄, η)σm‖θ∇u‖2L2 ,

(3.68)

with B2 as in (3.62). For C1 as in Lemma 3.4 (see also (3.59)), adding (3.68)
multiplied by C1 + 1 to (3.59), we obtain after choosing η suitably small and using
(3.41) that, for ϕ as in (3.61) and for m ≥ 0,

(
σmϕ

)′
(t) + σm

∫ (
μ|∇u̇|2 + ρ(θ̇)2

)
dx

≤ C(ρ̄, M)
(
‖∇u‖2L2 + ‖∇θ‖2L2

) (
σm‖ρ1/2u̇‖2L2 + σm‖∇θ‖2L2 + 1

)

+mσ ′σm−1
∫

ρ|u̇|2dx + C(ρ̄, M)σm‖∇u‖4L4 . (3.69)

Taking m = 2 in (3.69) together with (3.6) gives (3.60). The proof of Lemma 3.5
is completed.

Next, we will use Lemmas 3.4 and 3.5 to obtain the following estimate on
A3(T ):

Lemma 3.6. Under the conditions of Proposition 3.1, there exists a positive con-
stant ε3 depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M such that if (ρ, u, θ) is a
smooth solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

A3(T ) ≤ C1/6
0 , (3.70)

provided C0 ≤ ε3.
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Proof. First, it follows from (2.25), (2.27), (2.20), (3.34), and (3.6) that

‖∇u‖4L4 ≤ C‖G‖4L4 + C‖ω‖4L4 + C‖ρθ − 1‖4L4

≤ C(ρ̄)
(‖∇u‖L2 + 1

) ‖ρ1/2u̇‖3L2 + C‖ρ(θ − 1)‖4L4 + C‖ρ − 1‖4L4

≤ C(ρ̄, M)‖ρ1/2u̇‖3L2 + C(ρ̄)‖ρ(θ − 1)‖L2‖∇θ‖3L2 + C‖ρ − 1‖4L4

≤ C(ρ̄, M)‖ρ1/2u̇‖3L2 + C(ρ̄)‖∇θ‖3L2 + C‖ρ − 1‖4L4 , (3.71)

which together with (3.6) yields

σ‖∇u‖4L4 ≤ C(ρ̄, M)C1/12
0 ‖ρ1/2u̇‖2L2 + C(ρ̄)‖∇θ‖2L2 + Cσ‖ρ − 1‖4L4 . (3.72)

Combining this with (3.60) gives that, for ϕ(t) as in (3.61),
(
σ 2ϕ

)′
(t) + σ 2

∫ (
μ|∇u̇|2 + ρ(θ̇)2

)
dx

≤ C(ρ̄, M)
(
‖∇u‖2L2 + ‖∇θ‖2L2

)

+
(

C(ρ̄, M)C1/12
0 + 2

)
σ

∫

ρ|u̇|2dx

+C(ρ̄, M)σ 2‖ρ − 1‖4L4

≤ C(ρ̄, M)
(
‖∇u‖2L2 + ‖∇θ‖2L2

)

+ 3σ
∫

ρ|u̇|2dx + C(ρ̄, M)σ 2‖ρ − 1‖4L4 , (3.73)

provided C0 ≤ ε3,1 � min
{
1, (C(ρ̄, M))−12} .

Next, to estimate the second term on the righthand side of (3.73), we substitute
(3.72) into (3.46) to obtain that, for B1(t) as in (3.48),

(σ B1)
′(t) +

∫

σρ|u̇|2dx

≤ C(ρ̄, M)C1/4
0 σ ′ + 2βσ 2‖ρ1/2θ̇‖2L2

+ C(ρ̄, M)β−1
(
‖∇θ‖2L2 + ‖∇u‖2L2

)

+ C(ρ̄, M)σ 2‖ρ − 1‖4L4 ,

(3.74)

provided C0 ≤ ε3,2 � min
{
1, (2C(ρ̄, M))−12

}
. From now on, we assume that

C0 ≤ min
{
ε3,1, ε3,2

}
. It follows from (3.61), (3.62), and (3.52) that

ϕ(t) ≥ 1

2

∫

ρ|u̇|2dx + κ(γ − 1)

2R
‖∇θ‖2L2 − C2(ρ̄, M)‖∇u‖2L2 , (3.75)

which together with (3.34) directly gives
∫

ρ|u̇|2(x, t)dx + ‖∇θ(·, t)‖2L2 ≤ 2

(
R

κ(γ − 1)
+ 1

)

ϕ(t)

+C(ρ̄, M). (3.76)
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For C2 as in (3.75), adding (3.74) multiplied by 2(C2 + 2μ + 1)/μ to (3.73), we
obtain after choosing β suitably small that

B ′
3(t) + 1

2

∫ (
σρ|u̇|2 + μσ 2|∇u̇|2 + σ 2ρ(θ̇)2

)
dx

≤ C(ρ̄, M)C1/4
0 σ ′ + C(ρ̄, M)

(
‖∇θ‖2L2 + ‖∇u‖2L2

)

+ C(ρ̄, M)σ 2‖ρ − 1‖4L4 ,

(3.77)

where

B3(t) � σ 2ϕ + 2(C2 + 2μ + 1)μ−1σ B1

satisfies

B3(t) ≥ σ 2

2

∫

ρ|u̇|2dx + κ(γ − 1)

2R
σ 2‖∇θ‖2L2

+ σ‖∇u‖2L2 − C(ρ̄, M)C1/4
0 , (3.78)

due to (3.75) and the following simple fact:

B1(t) ≥ μ

2
‖∇u‖2L2 + (λ + μ)‖divu‖2L2 − C(ρ̄)‖ρθ − 1‖2L2

≥ μ

2
‖∇u‖2L2 − C(ρ̄)C1/4

0 ,

which comes from (3.48) and (3.24).
Finally, we claim that

∫ T

0
σ 2‖ρ − 1‖4L4dt ≤ C(ρ̄, M)C1/4

0 . (3.79)

Combining this with (3.77), (3.78), and (3.6) yields

A3(T ) ≤ C(ρ̄, M)C1/4
0 ,

which implies (3.70) provided C0 ≤ ε3 � min
{
ε3,1, ε3,2, (C(ρ̄, M))−12

}
.

Then, it remains to prove (3.79). In fact, it follows from (1.6)1 and (3.23) that
ρ − 1 satisfies

(ρ − 1)t + R

2μ + λ
(ρ − 1)

= −u · ∇(ρ − 1) − (ρ − 1)divu − G

2μ + λ

− Rρ(θ − 1)

2μ + λ
.

(3.80)
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Multiplying (3.80) by 4(ρ − 1)3 and integrating the resulting equality over R3, we
obtain that

(
‖ρ − 1‖4L4

)

t
+ 4R

2μ + λ
‖ρ − 1‖4L4

= −3
∫

(ρ − 1)4divudx − 4

2μ + λ

∫

(ρ − 1)3Gdx

− 4R

2μ + λ

∫

(ρ − 1)3ρ(θ − 1)dx

≤ 2R

2μ + λ
‖ρ − 1‖4L4 + C(ρ̄)‖∇u‖2L2

+C‖ρ − 1‖3L4‖G‖1/4
L2 ‖∇G‖3/4

L2

+C(ρ̄)‖ρ − 1‖3L4‖ρ(θ − 1)‖1/4
L2 ‖∇θ‖3/4

L2

≤ 3R

2μ + λ
‖ρ − 1‖4L4 + C(ρ̄)‖∇u‖2L2

+C(ρ̄, M)
(
‖ρ1/2u̇‖3L2 + ‖∇θ‖3L2

)
, (3.81)

where in the last inequality, we have used (3.6), (3.34), (3.24), (2.26), and (3.9). It
thus follows from (3.81) that

(
‖ρ − 1‖4L4

)

t
+ R

2μ + λ
‖ρ − 1‖4L4

≤ C(ρ̄, M)
(
‖ρ1/2u̇‖3L2 + ‖∇θ‖3L2

)
+ C(ρ̄)‖∇u‖2L2 .

(3.82)

Multiplying (3.82) by σ n with n ≥ 1, integrating the resulting inequality over
(0, T ), we obtain by using (3.9) and (3.6) that

∫ T

0
σ n‖ρ − 1‖4L4dt

≤ C(ρ̄, M)A1/2
3 (T )

∫ T

0
σ n−1

(
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2

)
dt

+C(ρ̄)C1/4
0 + C

∫ σ(T )

0
‖ρ − 1‖4L4dt

≤ C(ρ̄, M)C1/4
0 + C(ρ̄, M)C1/12

0

∫ T

0
σ n−1‖ρ1/2u̇‖2L2dt, (3.83)

which together with (3.6) directly gives (3.79). We thus complete the proof of
Lemma 3.6.

We now proceed to derive a uniform (in time) upper bound for the density,
which turns out to be the key to obtain all the higher order estimates and thus to
extend the classical solution globally.

Lemma 3.7. Under the conditions of Proposition 3.1, there exists a positive con-
stant ε4 depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M such that if (ρ, u, θ) is a
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smooth solution of (1.6) (1.4) (1.7) on R
3 × (0, T ] satisfying (3.6) with K as in

Lemma 3.2, the following estimate holds:

sup
0≤t≤T

‖ρ(·, t)‖L∞ ≤ 3ρ̄

2
, (3.84)

provided C0 ≤ ε4.

Proof. First, taking n = 1 in (3.83) as well as (3.6) yields

∫ T

0
σ‖ρ − 1‖4L4dt ≤ C(ρ̄, M). (3.85)

Choosing m = 1 in (3.69) together with (3.76) and (3.72) yields that, for ϕ(t) as
in (3.61),

(σϕ)′(t) + σ

∫ (
μ|∇u̇|2 + ρ(θ̇)2

)
dx

≤ C(ρ̄, M)
(
‖∇u‖2L2 + ‖∇θ‖2L2

)
(σϕ) + C(ρ̄, M)

(
‖∇u‖2L2 + ‖∇θ‖2L2

)

+ C(ρ̄, M)

∫

ρ|u̇|2dx + C(ρ̄, M)σ‖ρ − 1‖4L4 ,

which combined with (3.6), (3.85), and Grönwall’s inequality yields that

sup
0≤t≤σ(T )

σϕ(t) +
∫ σ(T )

0
σ

∫ (
μ|∇u̇|2 + ρ(θ̇)2

)
dxdt ≤ C(ρ̄, M). (3.86)

The combination of (3.76) with (3.86) thus directly gives

sup
0≤t≤σ(T )

σ

(∫

ρ|u̇|2dx + ‖∇θ‖2L2

)

+
∫ σ(T )

0
σ

∫

(|∇u̇|2 + ρ(θ̇)2)dxdt ≤ C(ρ̄, M).

(3.87)

Next, it follows from (3.40), (3.87), (3.72) (3.6), and (3.85) that

∫ T

0
σ‖∇2θ‖2L2dt ≤ C(ρ̄, M)

∫ T

0

(
σ‖ρθ̇‖2L2 + ‖ρ1/2u̇‖2L2

)
dt

+ C(ρ̄, M)

∫ T

0

(
‖∇u‖2L2 + ‖∇θ‖2L2 + σ‖ρ − 1‖4L4

)
dt

≤ C(ρ̄, M),
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which together with (2.21), (2.20), and (3.6) gives

∫ σ(T )

0
‖θ − 1‖L∞dt

≤ C
∫ σ(T )

0
‖θ − 1‖1/2

L6 ‖∇θ‖1/2
L6 dt

≤ C
∫ σ(T )

0
‖∇θ‖1/2

L2

(
σ‖∇2θ‖2L2

)1/4
σ−1/4dt

≤ C

(∫ σ(T )

0
‖∇θ‖2L2dt

∫ σ(T )

0
σ‖∇2θ‖2L2dt

)1/4 (∫ σ(T )

0
σ− 1

2 dt

)1/2

≤ C(ρ̄, M)C1/16
0 , (3.88)

and
∫ T

σ(T )

‖θ − 1‖2L∞dt ≤ C
∫ T

σ(T )

‖∇θ‖L2‖∇2θ‖L2dt

≤ C

(∫ T

σ(T )

‖∇θ‖2L2dt

)1/2 (∫ T

σ(T )

‖∇2θ‖2L2dt

)1/2

≤ C(ρ̄, M)C1/8
0 .

(3.89)

Next, (2.21), (2.26), (3.87) and (3.6) lead to
∫ σ(T )

0
‖G‖L∞dt

≤ C
∫ σ(T )

0
‖∇G‖1/2

L2 ‖∇G‖1/2
L6 dt

≤ C(ρ̄)

∫ σ(T )

0
‖ρu̇‖1/2

L2 ‖∇u̇‖1/2
L2 dt

≤ C(ρ̄)

∫ σ(T )

0

(
σ‖ρu̇‖L2

)1/4
(
σ‖ρu̇‖2L2

)1/8 (
σ‖∇u̇‖2L2

)1/4
σ−5/8dt

≤ C(ρ̄, M)C1/48
0

(∫ σ(T )

0
σ‖∇u̇‖2L2dt

)1/4 (∫ σ(T )

0
σ−5/6dt

)3/4

≤ C(ρ̄, M)C1/48
0 , (3.90)

and
∫ T

σ(T )

‖G‖2L∞dt ≤ C
∫ T

σ(T )

‖∇G‖L2‖∇G‖L6dt

≤ C(ρ̄)

∫ T

σ(T )

(
‖ρ1/2u̇‖2L2 + ‖∇u̇‖2L2

)
dt

≤ C(ρ̄)C1/6
0 . (3.91)
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Finally, denoting Dtρ = ρt + u · ∇ρ and expressing (1.6)1 in terms of the
Lagrangian coordinates, we obtain by (3.23) that

(2μ + λ)Dtρ = −Rρ(ρ − 1) − Rρ2(θ − 1) − ρG

≤ −R(ρ − 1) + C(ρ̄)‖θ − 1‖L∞ + C(ρ̄)‖G‖L∞ ,

which gives

Dt (ρ − 1) + R

2μ + λ
(ρ − 1) ≤ C(ρ̄)‖θ − 1‖L∞ + C(ρ̄)‖G‖L∞ . (3.92)

Taking

y = ρ − 1, α = R

2μ + λ
,

g(t) = C(ρ̄)‖θ − 1‖L∞ + C(ρ̄)‖G‖L∞ , T1 = σ(T ),

in Lemma 2.5, we thus deduce from (3.92), (3.88)–(3.91), and (2.30) that

ρ ≤ ρ̄ + 1 + C
(‖g‖L1(0,σ (T )) + ‖g‖L2(σ (T ),T )

)

≤ ρ̄ + 1 + C(ρ̄, M)C1/48
0 ,

which gives (3.84) provided

C0 ≤ ε4 � min

{

1,

(
ρ̄ − 2

2C(ρ̄, M)

)48
}

.

We thus complete the proof of Lemma 3.7.

Next, the following Lemma will give an estimate on A4(T ), which together
with Lemmas 3.2, 3.3, 3.6 and 3.7 finishes the proof of Proposition 3.1:

Lemma 3.8. Under the conditions of Proposition 3.1, there exists a positive con-
stant ε0 depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M such that if (ρ, u, θ) is a
smooth solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

A4(T ) ≤ C1/8
0 , (3.93)

provided C0 ≤ ε0.

Proof. It follows from (3.40), (3.6), (3.72), and (3.79) that

∫ T

0
σ 2‖∇2θ‖2L2dt ≤ C(ρ̄, M)

∫ T

0

(
σ 2‖ρθ̇‖2L2 + σ‖ρu̇‖2L2

)
dt

+ C(ρ̄, M)

∫ T

0

(‖∇u‖2L2 + ‖∇θ‖2L2 + σ 2‖ρ − 1‖4L4

)
dt

≤ C(ρ̄, M)C1/6
0 . (3.94)
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Applying the operator ∂t + div(u·) to (1.6)3, we use (1.6)1 to get
R

γ − 1
ρ

(
∂t θ̇ + u · ∇ θ̇

)

= κ�θ̇ + κ (divu�θ − ∂i (∂i u · ∇θ) − ∂i u · ∇∂iθ)

+
(
λ(divu)2 + 2μ|D(u)|2

)
divu + Rρθ∂kul∂lu

k

− Rρθ̇divu − Rρθdivu̇ + 2λ
(
divu̇ − ∂kul∂lu

k
)
divu

+μ(∂i u
j + ∂ j u

i )
(
∂i u̇

j + ∂ j u̇
i − ∂i u

k∂ku j − ∂ j u
k∂kui

)
. (3.95)

Multiplying (3.95) by θ̇ , we obtain after integration by parts that

R

2(γ − 1)

(∫

ρ|θ̇ |2dx

)

t
+ κ‖∇ θ̇‖2L2

≤ C
∫

|∇u|
(
|∇2θ ||θ̇ | + |∇θ ||∇ θ̇ |

)
dx

+ C(ρ̄)

∫

|∇u|2|θ̇ | (|∇u| + |θ − 1|) dx

+ C(ρ̄)

∫ (
|∇u|2|θ̇ | + ρ|θ̇ |2|∇u|

)
dx + C

∫

|∇u̇|ρ|θ̇ |dx

+ C(ρ̄)

∫

ρ|θ − 1||∇u̇||θ̇ |dx + C(ρ̄)

∫

|∇u||∇u̇||θ̇ |dx

≤ C‖∇u‖1/2
L2 ‖∇u‖1/2

L6 ‖∇2θ‖L2‖∇ θ̇‖L2

+ C(ρ̄)‖∇u‖L2‖∇u‖L6
(‖∇u‖L6 + ‖∇θ‖L2

) ‖∇ θ̇‖L2

+ C(ρ̄)‖∇u‖1/2
L6 ‖∇u‖1/2

L2 ‖∇ θ̇‖L2
(‖∇u‖L2 + ‖ρθ̇‖L2

)

+ C(ρ̄)‖∇u̇‖L2‖ρθ̇‖L2 + C(ρ̄)‖√ρ(θ − 1)‖1/2
L2 ‖∇θ‖1/2

L2 ‖∇u̇‖L2‖∇ θ̇‖L2

+ C(ρ̄)‖∇u‖1/2
L2 ‖∇u‖1/2

L6 ‖∇u̇‖L2‖∇ θ̇‖L2 . (3.96)

Multiplying (3.96) by σ 4 and integrating the resulting inequality over (0, t), we
obtain after integration by parts and using (3.42), (3.6), (3.24), and (3.94) that

R

2(γ − 1)
σ 4

∫

ρ|θ̇ |2dx + κ

∫ t

0
σ 4‖∇ θ̇‖2L2ds

≤ C
∫ σ(t)

0
σ 2

∫

ρ|θ̇ |2dxds + C(ρ̄)

∫ t

0
σ 3‖∇2θ‖L2‖∇ θ̇‖L2ds

+ C(ρ̄)

∫ t

0
σ 2‖∇u‖L2‖∇ θ̇‖L2ds + C(ρ̄)

∫ t

0
σ 3‖∇ θ̇‖L2‖ρθ̇‖L2ds

+ C(ρ̄)

∫ t

0
σ 3‖∇u̇‖L2‖ρ1/2θ̇‖L2ds + C(ρ̄)

∫ t

0
σ 3‖∇u̇‖L2‖∇ θ̇‖L2ds

≤ C(ρ̄)

∫ t

0

(
σ 2‖∇2θ‖2L2 + ‖∇u‖2L2 + σ 2‖ρ1/2θ̇‖2L2 + σ 2‖∇u̇‖2L2

)
ds
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+ κ

2

∫ t

0
σ 4‖∇ θ̇‖2L2ds

≤ C(ρ̄, M)C1/6
0 + κ

2

∫ t

0
σ 4‖∇ θ̇‖2L2ds,

which yields that

sup
0≤t≤T

σ 4
∫

ρ|θ̇ |2dx +
∫ T

0
σ 4‖∇ θ̇‖2L2ds ≤ C(ρ̄, M)C1/6

0 .

This gives (3.93) provided

C0 ≤ ε0 � min{ε1, ε2, . . . , ε5}, (3.97)

with ε5 � (C(ρ̄, M))−24 . The proof of Lemma 3.8 is finished.
Finally, before closing this section, we summarize some estimates on (ρ, u, θ)

which will be useful for higher order ones in the next section.

Corollary 3.9. In addition to the conditions of Proposition 3.1, assume that (ρ0, u0,

θ0) satisfies (3.8) with ε0 as in Proposition 3.1. Then there exists a positive constant
C depending only on μ, λ, κ, R, γ, ρ̄, θ̄ , and M such that if (ρ, u, θ) is a smooth
solution of (1.6) (1.4) (1.7) on R

3 × (0, T ] satisfying (3.6) with K as in Lemma 3.2,
it holds that

sup
t∈(0,T ]

(
σ 2‖∇u‖2L6 + σ 4‖θ − 1‖2H2

)

+
∫ T

0
σ 2(‖∇u‖4L4 + ‖∇θ‖2H1 + ‖ut‖2L2 + σ 2‖θt‖2H1)dt

+
∫ T

0
σ 2‖ρ − 1‖4L4dt ≤ CC1/8

0 . (3.98)

Proof. It follows from (3.6), (2.23), (3.10), (3.42), (3.43), (3.72), (3.79) and (3.94)
that

sup
t∈(0,T ]

(
σ 2‖∇u‖2L6 + σ 4‖θ − 1‖2H2

)

+
∫ T

0
σ 2(‖∇u‖4L4 + ‖∇θ‖2H1 + ‖ρ − 1‖4L4)dt ≤ CC1/8

0 ,

(3.99)

which together with (3.6) and (2.23) gives
∫ T

0
σ 2‖ut‖2L2dt ≤ C

∫ T

0
σ 2‖u̇‖2L2dt + C

∫ T

0
σ 2‖u · ∇u‖2L2dt

≤ C
∫ T

0
σ 2

∫

ρ|u̇|2dxdt + C
∫ T

0
σ 2‖∇u̇‖2L2dt

+ C
∫ T

0
σ 2‖u‖2L6‖∇u‖2L3dt

≤ CC1/6
0 ,

(3.100)
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∫ T

0
σ 4‖θt‖2L2dt ≤ C

∫ T

0
σ 4‖θ̇‖2L2dt + C

∫ T

0
σ 4‖u · ∇θ‖2L2dt

≤ C
∫ T

0
σ 4

∫

ρ|θ̇ |2dxdt + C
∫ T

0
σ 4‖∇ θ̇‖2L2dt

+ C
∫ T

0
σ 4‖u‖2L6‖∇θ‖2L3dt

≤ CC1/8
0 + C

∫ T

0
‖∇u‖2L2dt

≤ CC1/8
0 ,

(3.101)

and

∫ T

0
σ 4‖∇θt‖2L2dt ≤ C

∫ T

0
σ 4‖∇ θ̇‖2L2dt + C

∫ T

0
σ 4‖∇(u · ∇θ)‖2L2dt

≤ CC1/8
0 + C

∫ T

0
σ 4 (‖∇u‖2L3 + ‖u‖2L∞

) ‖∇2θ‖2L2dt

≤ CC1/8
0 .

(3.102)

We thus obtain (3.98) directly from (3.99)–(3.102) and finish the proof of Corollary
3.9.

4. A Priori Estimates (II): Higher-Order Estimates

In this section, we will derive the higher order estimates of smooth solutions
(ρ, u, θ) of (1.6) (1.4) (1.7) on R

3 × (0, T ] with smooth (ρ0, u0, θ0) satisfying
(1.9) and (3.5). Moreover, we shall always assume that (3.6) and (3.8) both hold.
To proceed, we define g̃1 and g̃2 as

g̃1 � ρ
−1/2
0 (−μ�u0 − (μ + λ)∇divu0 + R∇(ρ0θ0)) (4.1)

and

g̃2 � ρ
−1/2
0

(
κ�θ0 + μ

2
|∇u0 + (∇u0)

tr|2 + λ(divu0)
2
)

, (4.2)

respectively. It thus follows from (1.9) and (3.5) that

g̃1 ∈ L2, g̃2 ∈ L2. (4.3)

From now on, the generic constant C will depend only on

T, ‖g̃1‖L2 , ‖g̃2‖L2 , ‖u0‖H2 , ‖ρ0 − 1‖H2∩W 2,q , ‖θ0 − 1‖H2 ,

besides μ, λ, κ, R, γ, ρ̄, θ̄ , and M.

We begin with the important estimates on the spatial gradient of the smooth
solution (ρ, u, θ).
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Lemma 4.1. The following estimates hold:

sup
0≤t≤T

(
‖ρ1/2u̇‖2L2 + ‖θ − 1‖2H1

)
+

∫ T

0

∫

ρ(θ̇)2dxdt

+
∫ T

0

(
‖∇u̇‖2L2 + ‖∇2θ‖2L2 + ‖divu‖2L∞ + ‖ω‖2L∞

)
dt ≤ C, (4.4)

sup
0≤t≤T

(‖ρ − 1‖H1∩W 1,6 + ‖u‖H2
) +

∫ T

0
‖∇u‖3/2L∞dt ≤ C. (4.5)

Proof. We first prove (4.4). Taking m = 0 in (3.69) gives that, for ϕ(t) as in (3.61),

ϕ′(t) +
∫ (

μ|∇u̇|2 + ρ(θ̇)2
)
dx

≤ C
(
‖∇u‖2L2 + ‖∇θ‖2L2

) (
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2 + 1

)

+ C‖∇u‖L2‖∇u‖3L6

≤ C
(
‖ρ1/2u̇‖4L2 + ‖∇θ‖4L2

)
+ C

≤ C
(
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2

)
ϕ(t) + C

(
‖ρ1/2u̇‖2L2 + ‖∇θ‖2L2

)
+ C,

(4.6)

due to (3.6), (3.25), and (3.76). It follows from (1.6)2, (3.5), and (4.1) that

lim
t→0+

√
ρu̇(x, t) = ρ

−1/2
0 (μ�u0 + (μ + λ)∇divu0 − R∇(ρ0θ0)) = −g̃1,

which together with (3.61), (3.62), (3.52), and (4.3) yields that

lim
t→0+ |ϕ(t)| ≤ C‖g̃1‖2L2 + C ≤ C. (4.7)

Grönwall’s inequality, together with (4.6), (4.7) and (3.6), leads to

sup
0≤t≤T

ϕ(t) +
∫ T

0

∫ (
|∇u̇|2 + ρ(θ̇)2

)
dxdt ≤ C,

which, as well as (3.76) and (3.10), implies

sup
0≤t≤T

(
‖ρ1/2u̇‖2L2 + ‖θ − 1‖2H1

)
+

∫ T

0

∫ (
|∇u̇|2 + ρ(θ̇)2

)
dxdt ≤ C. (4.8)

One thus deduces from (3.40), (4.8), (3.71) and (3.6) that

∫ T

0
‖∇2θ‖2L2dt ≤ C + C

∫ T

0
‖ρ1/2θ̇‖2L2dt ≤ C, (4.9)
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which, together with (1.21), (2.26), (2.20), (4.8) and (3.6), gives
∫ T

0

(
‖divu‖2L∞ + ‖ω‖2L∞

)
dt

≤ C
∫ T

0

(
‖G‖2L∞ + ‖ρθ − 1‖2L∞ + ‖ω‖2L∞

)
dt + C

≤ C
∫ T

0

(
‖G‖2W 1,6 + ‖θ − 1‖2L∞ + ‖ω‖2L6 + ‖∇ω‖2L6

)
dt + C

≤ C
∫ T

0

(
‖∇G‖2L2 + ‖ρu̇‖2L6 + ‖∇2θ‖2L2 + ‖∇ω‖2L2

)
dt + C

≤ C
∫ T

0

(
‖ρu̇‖2L2 + ‖∇2θ‖2L2 + ‖∇u̇‖2L2

)
dt + C

≤ C.

This fact, combined with (4.8) and (4.9), yields (4.4) directly.
Next, we will prove the key estimate (4.5). Standard calculations shows that for

2 ≤ p ≤ 6,

∂t‖∇ρ‖L p ≤ C(1 + ‖∇u‖L∞)‖∇ρ‖L p + C‖∇2u‖L p

≤ C
(
1 + ‖∇2θ‖L2 + ‖∇u‖L∞

)
‖∇ρ‖L p

+ C
(
1 + ‖∇u̇‖L2 + ‖∇2θ‖L2

)
,

(4.10)

where we have used

‖∇2u‖L p ≤ C (‖ρu̇‖L p + ‖∇ P‖L p )

≤ C
(‖ρu̇‖L2 + ‖∇u̇‖L2 + ‖∇θ‖L p + ‖θ‖L∞‖∇ρ‖L p

)

≤ C
(
1 + ‖∇u̇‖L2 + ‖∇2θ‖L2 + (‖∇2θ‖L2 + 1)‖∇ρ‖L p

)
,

(4.11)

which comes from the standard L p-estimate of the following elliptic system:

μ�u + (μ + λ)∇divu = ρu̇ + ∇ P, u → 0 as |x | → ∞. (4.12)

It follows from Lemma 2.6, (3.6) and (4.11) that

‖∇u‖L∞ ≤ C (‖divu‖L∞ + ‖ω‖L∞) log(e + ‖∇2u‖L6) + C

≤ C (‖divu‖L∞ + ‖ω‖L∞) log(e + ‖∇u̇‖L2 + ‖∇2θ‖L2)

+ C (‖divu‖L∞ + ‖ω‖L∞) log
(
e + ‖∇ρ‖L6

) + C.

(4.13)

Set
{

f (t) � e + ‖∇ρ‖L6 ,

g(t) � 1 + ‖divu‖2L∞ + ‖ω‖2L∞ + ‖∇u̇‖2
L2 + ‖∇2θ‖2

L2 .

Putting (4.13) into (4.10), where we set p = 6, gives

f ′(t) ≤ Cg(t) f (t) ln f (t),
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which implies

(ln f (t))′ ≤ Cg(t) ln f (t).

Combining this with Grönwall’s inequality and (4.4) yields that

sup
0≤t≤T

‖∇ρ‖L6 ≤ C, (4.14)

which together with (4.13) and (4.4) leads to
∫ T

0
‖∇u‖3/2L∞dt ≤ C. (4.15)

Finally, taking p = 2 in (4.10), we get by using (4.15), (4.4), and Grönwall’s
inequality that

sup
0≤t≤T

‖∇ρ‖L2 ≤ C, (4.16)

which gives

sup
0≤t≤T

‖∇ P‖L2 ≤ C sup
0≤t≤T

(‖∇θ‖L2 + ‖∇ρ‖L2 + ‖θ − 1‖L6‖∇ρ‖L3
) ≤ C,

due to (4.4) and (4.14). Combining this with (4.11) and (4.4) leads to

sup
0≤t≤T

‖∇2u‖L2 ≤ C sup
0≤t≤T

(‖ρu̇‖L2 + ‖∇ P‖L2
) ≤ C,

which together with (3.9), (3.6), (2.23) and (4.14)–(4.16) yields (4.5) and finishes
the proof of Lemma 4.1.

Lemma 4.2. The following estimates hold

sup
0≤t≤T

(‖ρt‖H1 + ‖θ − 1‖H2 + ‖ρ − 1‖H2 + ‖u‖H2
)

+
∫ T

0

(
‖ut‖2H1 + ‖θt‖2H1 + ‖ρut‖2H1 + ‖ρθt‖2H1

)
dt ≤ C, (4.17)

∫ T

0

(
‖(ρut )t‖2H−1 + ‖(ρθt )t‖2H−1

)
dt ≤ C. (4.18)

Proof. First, it follows from (1.21), (4.4), (4.5), (2.24) and (2.22) that

‖∇u‖H2 ≤ C
(‖divu‖H2 + ‖ω‖H2

)

≤ C
(‖G‖H2 + ‖ω‖H2 + ‖ρθ − 1‖H2

)

≤ C + C‖∇(ρu̇)‖L2 + C‖(ρ − 1)(θ − 1)‖H2

+C‖ρ − 1‖H2 + C‖θ − 1‖H2

≤ C + C(‖∇ρ‖L3‖u̇‖L6 + ‖∇u̇‖L2) + C‖ρ − 1‖H2‖θ − 1‖H2

+C‖∇2ρ‖L2 + C‖∇2θ‖L2

≤ C + C(1 + ‖∇2θ‖L2)‖∇2ρ‖L2 + C‖∇u̇‖L2 + C‖∇2θ‖L2 , (4.19)
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which together with simple computations and (1.6)1 gives

d

dt
‖∇2ρ‖2L2 ≤ C(1 + ‖∇u‖L∞)‖∇2ρ‖2L2 + C‖∇u‖2H2

≤ C(1 + ‖∇u‖L∞ + ‖∇2θ‖L2)‖∇2ρ‖2L2

+ C‖∇u̇‖2L2 + C‖∇2θ‖2L2 + C.

Combining this with (4.15), (4.4), and Grönwall’s inequality, yields

sup
0≤t≤T

‖∇2ρ‖L2 ≤ C. (4.20)

Next, it follows from (1.6)3, (3.5) and (4.2) that

R

γ − 1
lim

t→0+
√

ρθ̇(x, t) = −Rρ
1/2
0 θ0divu0 + g̃2. (4.21)

Integrating (3.96) over (0, T ) together with (4.5), (4.4), (3.25), and (4.21) leads to

sup
0≤t≤T

∫

ρ(θ̇)2dx +
∫ T

0
‖∇ θ̇‖2L2dt

≤ C
∫ T

0

(
‖∇2θ‖2L2 + ‖∇u‖2L2 + ‖ρ1/2θ̇‖2L2 + ‖∇u̇‖2L2

)
dt

+ 1

2

∫ T

0
‖∇ θ̇‖2L2dt + C

(
‖θ0 − 1‖2L6‖∇u0‖2L3 + ‖∇u0‖2L2

)
+ C‖g̃2‖2L2

≤ C + 1

2

∫ T

0
‖∇ θ̇‖2L2dt,

which shows

sup
0≤t≤T

∫

ρ(θ̇)2dx +
∫ T

0
‖∇ θ̇‖2L2dt ≤ C. (4.22)

One thus deduces from (3.40), (4.22), (4.5), and (4.4) that

sup
0≤t≤T

‖∇2θ‖L2 ≤ C. (4.23)

It follows from (4.4), (4.5) and (4.22) that

sup
0≤t≤T

∫

ρ
(
|ut |2 + θ2t

)
dx +

∫ T

0

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
dt

≤ C sup
0≤t≤T

∫

ρ
(
|u̇|2 + θ̇2

)
dx

+ C sup
0≤t≤T

∫

ρ
(
|u · ∇u|2 + |u · ∇θ |2

)
dx

+ C
∫ T

0

(
‖∇u‖2L3 + ‖u‖2L∞

) (
‖∇2u‖2L2 + ‖∇2θ‖2L2

)
dt

+ C
∫ T

0

(
‖∇u̇‖2L2 + ‖∇ θ̇‖2L2

)
dt ≤ C, (4.24)
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which together with (4.4) and (4.5) gives
∫ T

0

(
‖∇(ρut )‖2L2 + ‖∇(ρθt )‖2L2

)
dt

≤ C
∫ T

0

(
‖∇ut‖2L2 + ‖∇ρ‖2L3‖ut‖2L6 + ‖∇θt‖2L2 + ‖∇ρ‖2L3‖θt‖2L6

)
dt

≤ C.

(4.25)

Next, one deduces from (1.6)1 and (4.5) that

‖ρt‖L2 ≤ C‖u‖L∞‖∇ρ‖L2 + C‖∇u‖L2 ≤ C. (4.26)

Applying ∇ to (1.6)1 yields

∇ρt + ui∂i∇ρ + ∇ui∂iρ + ∇ρdivu + ρ∇divu = 0,

which leads to

‖∇ρt‖L2 ≤ C‖u‖L∞‖∇2ρ‖L2

+ C‖∇u‖L3‖∇ρ‖L6 + C‖∇2u‖L2 ≤ C, (4.27)

due to (4.5). Combining (4.26) with (4.27) implies

sup
0≤t≤T

‖ρt‖H1 ≤ C,

which together with (4.4), (4.20), (4.5), (4.23)–(4.25), and (2.23) gives (4.17).
Finally, differentiating (1.6)3 with respect to t yields that

R

γ − 1
(ρθt )t = − R

γ − 1
(ρu · ∇θ)t − R(ρθdivu)t + κ�θt

+ λ((divu)2)t + 2μ(|D(u)|2)t .

(4.28)

It follows from (4.17) that

‖(ρu · ∇θ)t‖L2

= ‖ρt u · ∇θ + ρut · ∇θ + ρu · ∇θt‖L2

≤ C‖ρt‖L6‖∇θ‖L3 + C‖ut‖L6‖∇θ‖L3 + C‖u‖L∞‖∇θt‖L2

≤ C + C‖ut‖H1 + C‖θt‖H1 ,

(4.29)

‖(ρθdivu)t‖L2 ≤ C + C‖ut‖H1 + C‖θt‖H1 , (4.30)

and

‖((divu)2)t‖L6/5 + ‖(|D(u)|2)t‖L6/5 ≤ C‖∇u‖L3‖∇ut‖L2

≤ C + C‖ut‖H1 .
(4.31)

Combining (4.28)–(4.31) with (4.17) shows
∫ T

0
‖(ρθt )t‖2H−1dt ≤ C. (4.32)
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Similarly, we have

∫ T

0
‖(ρut )t‖2H−1dt ≤ C,

which combined with (4.32) implies (4.18). The proof of Lemma 4.2 is completed.

Lemma 4.3. The following estimate holds:

sup
0≤t≤T

σ
(
‖∇ut‖2L2 + ‖ρt t‖2L2

)
+

∫ T

0
σ

∫

ρ|utt |2dxdt ≤ C. (4.33)

Proof. Multiplying (2.6) by utt , one gets after integrating the resulting equality by
parts that

1

2

d

dt

∫ (
μ|∇ut |2 + (μ + λ)(divut )

2
)
dx +

∫

ρ|utt |2dx

= d

dt

(

−1

2

∫

ρt |ut |2dx −
∫

ρt u · ∇u · utdx +
∫

Ptdivutdx

)

+1

2

∫

ρt t |ut |2dx +
∫

(ρt u · ∇u)t · utdx −
∫

ρut · ∇u · uttdx

−
∫

ρu · ∇ut · uttdx −
∫

(Ptt − κ(γ − 1)�θt ) divutdx

+κ(γ − 1)
∫

∇θt · ∇divutdx � d

dt
I0 +

6∑

i=1

Ii . (4.34)

We estimate each term on the righthand side of (4.34) as follows: first, it follows
from (1.6)1, (4.17), (4.24), and (2.23) that

|I0| =
∣
∣
∣
∣−

1

2

∫

ρt |ut |2dx −
∫

ρt u · ∇u · utdx

+
∫

Ptdivutdx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

div(ρu)|ut |2dx

∣
∣
∣
∣ + C‖ρt‖L3‖u · ∇u‖L2‖ut‖L6

+ C‖(ρθ)t‖L2‖∇ut‖L2

≤ C
∫

ρ|u||ut ||∇ut |dx + C(1 + ‖√ρθt‖L2

+ ‖ρt‖L2‖θ‖L∞)‖∇ut‖L2

≤ C‖u‖L6‖ρ1/2ut‖1/2L2 ‖ut‖1/2L6 ‖∇ut‖L2 + C‖∇ut‖L2

≤ μ

4
‖∇ut‖2L2 + C,

(4.35)
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2|I1| =
∣
∣
∣
∣

∫

ρt t |ut |2dx

∣
∣
∣
∣

≤ C‖ρt t‖L2‖ut‖1/2L2 ‖ut‖3/2L6

≤ C‖ρt t‖L2
(
1 + ‖∇ut‖L2

)1/2 ‖∇ut‖3/2L2

≤ C‖ρt t‖2L2 + C‖∇ut‖4L2 + C,

(4.36)

and

|I2| =
∣
∣
∣
∣

∫

(ρt u · ∇u)t · utdx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

(ρt t u · ∇u · ut + ρt ut · ∇u · ut + ρt u · ∇ut · ut ) dx

∣
∣
∣
∣

≤ C‖ρt t‖L2‖u · ∇u‖L3‖ut‖L6 + C‖ρt‖L2‖|ut |2‖L3‖∇u‖L6

+ C‖ρt‖L3‖u‖L∞‖∇ut‖L2‖ut‖L6

≤ C‖ρt t‖2L2 + C‖∇ut‖2L2 .

(4.37)

Next, Cauchy’s inequality gives

|I3| + |I4| =
∣
∣
∣
∣

∫

ρut · ∇u · uttdx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

ρu · ∇ut · uttdx

∣
∣
∣
∣

≤ C‖ρ1/2utt‖L2
(‖ut‖L6‖∇u‖L3 + ‖u‖L∞‖∇ut‖L2

)

≤ 1

4
‖ρ1/2utt‖2L2 + C‖∇ut‖2L2 .

(4.38)

Next, it follows from (4.17) that

‖∇ Pt‖L2 ≤ C‖∇(ρθt + θρt )‖L2

≤ C‖∇ρ‖L3‖θt‖L6 + C‖∇θt‖L2 + C‖∇θ‖L6‖ρt‖L3

+ C‖θ‖L∞‖∇ρt‖L2

≤ C + C‖∇θt‖L2

(4.39)

which together with (3.26) and (4.17) gives

‖Ptt − κ(γ − 1)�θt‖L2

≤ C‖(u · ∇ P)t‖L2 + C‖(Pdivu)t‖L2 + C‖|∇u||∇ut |‖L2

≤ C‖ut‖L6‖∇ P‖L3 + C‖u‖L∞‖∇ Pt‖L2 + C‖Pt‖L6‖∇u‖L3

+ C‖P‖L∞‖∇ut‖L2 + C‖∇u‖L∞‖∇ut‖L2

≤ C + C (1 + ‖∇u‖L∞) ‖∇ut‖L2 + C‖∇θt‖L2 .

This directly yields

|I5| =
∣
∣
∣
∣

∫

(Ptt − κ(γ − 1)�θt ) divutdx

∣
∣
∣
∣

≤ ‖Ptt − κ(γ − 1)�θt‖L2‖divut‖L2

≤ C + C (1 + ‖∇u‖L∞) ‖∇ut‖2L2 + C‖∇θt‖2L2 .

(4.40)
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Finally, it follows from (4.39), (4.17), and the standard L2-estimate for elliptic
system (2.6) that

‖∇2ut‖L2 ≤ C‖ρutt + ρt ut + ρt u · ∇u + ρut · ∇u + ρu · ∇ut + ∇ Pt‖L2

≤ C‖ρ1/2utt‖L2 + C‖ρt‖L3‖ut‖L6 + C‖ρt‖L3‖u‖L∞‖∇u‖L6

+ C‖ut‖L6‖∇u‖L3 + C‖u‖L∞‖∇ut‖L2 + C‖∇ Pt‖L2

≤ C + C‖ρ1/2utt‖L2 + C‖∇θt‖L2 + C‖∇ut‖L2 ,

(4.41)

which combined with Cauchy inequality thus leads to

|I6| =
∣
∣
∣
∣κ(γ − 1)

∫

∇θt · ∇divutdx

∣
∣
∣
∣

≤ C‖∇2ut‖L2‖∇θt‖L2

≤ C
(
1 + ‖ρ1/2utt‖L2 + ‖∇θt‖L2 + ‖∇ut‖L2

)
‖∇θt‖L2

≤ C + 1

4
‖ρ1/2utt‖2L2 + C‖∇θt‖2L2 + C‖∇ut‖2L2 .

(4.42)

Substituting (4.36)–(4.38), (4.40), and (4.42) into (4.34) gives

d

dt

∫ (
μ|∇ut |2 + (μ + λ)(divut )

2 − 2I0
)
dx +

∫

ρ|utt |2dx

≤ C‖ρt t‖2L2 + C(1 + ‖∇u‖L∞ + ‖∇ut‖2L2)‖∇ut‖2L2

+ C‖∇θt‖2L2 + C.

(4.43)

Then, differentiating (1.6)1 with respect to t shows

ρt t + ρtdivu + ρdivut + ut · ∇ρ + u · ∇ρt = 0,

which combined with (4.17) implies

‖ρt t‖L2 ≤ C
(‖ρt‖L6‖∇u‖L3 + ‖∇ut‖L2 + ‖ut‖L6‖∇ρ‖L3 + ‖∇ρt‖L2

)

≤ C + C‖∇ut‖L2 .
(4.44)

This yields

∫ T

0
‖ρt t‖2L2dt ≤ C, (4.45)

due to (4.24). One thus deduces from (4.43), (4.35), (4.17), (4.5), (4.45), and Grön-
wall’s inequality that

sup
0≤t≤T

σ‖∇ut‖2L2 +
∫ T

0
σ

∫

ρ|utt |2dxdt ≤ C,

which together with (4.44) gives (4.33). We complete the proof of Lemma 4.3.
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Lemma 4.4. For q ∈ (3, 6) as in Theorem 1.1, it holds that

sup
0≤t≤T

(
‖ρ − 1‖W 2,q + σ‖u‖2H3

)

+
∫ T

0

(
‖u‖2H3 + ‖∇2u‖p0

W 1,q + σ‖∇ut‖2H1

)
dt ≤ C,

(4.46)

where

p0 � 1

2
min

{
5q − 6

3(q − 2)
,
9q − 6

5q − 6

}

∈ (1, 7/6). (4.47)

Proof. First, it follows from (4.19), (4.17), and (4.33) that

sup
0≤t≤T

σ‖u‖2H3 +
∫ T

0
‖u‖2H3dt ≤ C. (4.48)

The standard H1-estimate for elliptic problem (3.39) together with (4.17) leads to

‖∇2θ‖H1 ≤ C‖∇(ρθt )‖L2 + C‖|∇u||∇2u|‖L2

+C‖∇(ρu · ∇θ)‖L2 + C‖∇(ρθdivu)‖L2 + C

≤ C
(‖∇ρ‖L3 + 1

) ‖∇θt‖L2 + C‖∇u‖L6‖∇2u‖1/2
L2 ‖∇2u‖1/2

L6

+C(1 + ‖ρ − 1‖H2 )(1 + ‖θ − 1‖H2)‖u‖H2 + C

≤ C‖∇θt‖L2 + C‖∇2u‖1/2
L6 + C, (4.49)

which combined with (4.17), (4.41), (4.33), and (4.48) yields that
∫ T

0

(
‖θ − 1‖2H3 + ‖u‖2H3 + σ‖∇ut‖2H1

)
dt ≤ C. (4.50)

Next, it follows from standard W 1,p-estimate for elliptic systems (2.24) that

‖∇2u‖W 1,q ≤ C‖u‖H3 + C‖∇2divu‖Lq + C‖∇2ω‖Lq + C

≤ C‖u‖H3 + C‖∇(ρu̇)‖Lq + C‖∇2(ρθ)‖Lq + C

≤ C‖u‖H3 + C‖∇(ρu̇)‖Lq + C‖θ∇2ρ‖Lq + C‖∇ρ∇θ‖Lq

+ C‖ρ∇2θ‖Lq + C

≤ C‖u‖H3 + C‖∇(ρu̇)‖Lq + C‖∇2ρ‖Lq + C‖∇2θ‖H1 + C.

(4.51)

Applying operator � to (1.6)1 gives

(�ρ)t + div(u�ρ) + div(ρ�u) + 2div(∂iρ · ∂i u) = 0. (4.52)

Multiplying (4.52) by q|�ρ|q−2�ρ and integrating the resulting equality over R3,
we obtain after using (4.17) and (4.51) that

(‖�ρ‖q
Lq )t ≤ C(1 + ‖∇u‖L∞)‖�ρ‖q

Lq

+C (‖∇ρ‖Lq + 1) ‖∇2u‖W 1,q ‖�ρ‖q−1
Lq

≤ C(1 + ‖u‖H3 + ‖∇(ρu̇)‖Lq + ‖∇2θ‖H1)
(‖�ρ‖q

Lq + 1
)
. (4.53)
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Note that (4.17) and (4.33) give

‖∇(ρu̇)‖Lq ≤ C‖∇ρ‖L6‖∇u̇‖
q

3(q−2)

L2 ‖∇u̇‖
2(q−3)
3(q−2)
Lq + C‖∇u̇‖Lq

≤ C‖∇u̇‖L2 + C‖∇ut‖Lq + C‖∇(u · ∇u)‖Lq

≤ C‖∇ut‖L2 + C + C‖∇ut‖
6−q
2q

L2 ‖∇ut‖
3(q−2)

2q

L6

+ C‖∇u‖
6−q

q

L6 ‖u‖
3(q−2)

q

H3 + C‖u‖L∞‖∇2u‖Lq

≤ Cσ− 1
2 + C‖u‖

3(q−2)
q

H3 + Cσ− 1
2

(
σ‖∇ut‖2H1

) 3(q−2)
4q

, (4.54)

which combined with (4.50) shows that, for p0 as in (4.47),
∫ T

0
‖∇(ρu̇)‖p0

Lqdt ≤ C. (4.55)

Applying Grönwall’s inequality to (4.53), we obtain after using (4.50) and (4.55)
that

sup
0≤t≤T

‖�ρ‖Lq ≤ C,

which combined with (4.17), (4.48), (4.51), (4.55), and (4.50) gives (4.46). We
finish the proof of Lemma 4.4.

Lemma 4.5. For q ∈ (3, 6) as in Theorem 1.1, the following estimate holds

sup
0≤t≤T

σ
(
‖θt‖H1 + ‖∇3θ‖L2 + ‖ut‖H2 + ‖u‖W 3,q

)

+
∫ T

0
σ 2‖∇utt‖2L2dt ≤ C.

(4.56)

Proof. First, multiplying (2.12) by utt and integrating the resulting equality over
R
3, one gets after integration by parts that

1

2

d

dt

∫

ρ|utt |2dx +
∫ (

μ|∇utt |2 + (μ + λ)(divutt )
2
)
dx

= −4
∫

ui
ttρu · ∇ui

ttdx −
∫

(ρu)t · [∇(ut · utt ) + 2∇ut · utt ] dx

−
∫

(ρt t u + 2ρt ut ) · ∇u · uttdx −
∫

ρutt · ∇u · uttdx

+
∫

Pttdivuttdx �
5∑

i=1

Ji .

(4.57)

Hölder’s inequality and (4.17) give

|J1| ≤ C‖ρ1/2utt‖L2‖∇utt‖L2‖u‖L∞

≤ μ

8
‖∇utt‖2L2 + C‖ρ1/2utt‖2L2 .

(4.58)
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It follows from (4.24), (4.17), (4.33) and (4.46) that

|J2| ≤ C
(‖ρut‖L3 + ‖ρt u‖L3

) (‖∇utt‖L2‖ut‖L6 + ‖utt‖L6‖∇ut‖L2
)

≤ C
(
‖ρ1/2ut‖1/2L2 ‖ut‖1/2L6 + ‖ρt‖L6‖u‖L6

)
‖∇utt‖L2‖∇ut‖L2

≤ μ

8
‖∇utt‖2L2 + C‖∇ut‖3L2 + C

≤ μ

8
‖∇utt‖2L2 + Cσ−3/2,

(4.59)

|J3| ≤ C
(‖ρt t‖L2‖u‖L6 + ‖ρt‖L2‖ut‖L6

) ‖∇u‖L6‖utt‖L6

≤ μ

8
‖∇utt‖2L2 + C‖ρt t‖2L2 + C‖∇ut‖2L2 ,

(4.60)

and

|J4| + |J5| ≤ C‖ρutt‖L2‖∇u‖L3‖utt‖L6

+ C‖(ρtθ + ρθt )t‖L2‖∇utt‖L2

≤ μ

8
‖∇utt‖2L2 + C‖√ρutt‖2L2 + C‖ρt tθ‖2L2

+ C‖ρtθt‖2L2 + C‖√ρθt t‖2L2

≤ μ

8
‖∇utt‖2L2 + C‖√ρutt‖2L2 + C‖ρt t‖2L2

+ C‖∇θt‖2L2 + C‖√ρθt t‖2L2 . (4.61)

Substituting (4.58)–(4.61) into (4.57) yields

d

dt

∫

ρ|utt |2dx + μ

∫

|∇utt |2dx

≤ Cσ−3/2 + C‖√ρutt‖2L2 + C‖ρt t‖2L2 + C‖∇θt‖2L2 + C3‖√ρθt t‖2L2 .

(4.62)

Then, to estimate the last term on the righthand side of (4.62), we multiply (2.9)
by θt t and integrate the resulting equality over R3 to get

(
κ(γ − 1)

2R
‖∇θt‖2L2 + H0

)

t
+

∫

ρθ2t tdx

= 1

2

∫

ρt t

(
θ2t + 2 (u · ∇θ + (γ − 1)θdivu) θt

)
dx

+
∫

ρt (u · ∇θ + (γ − 1)θdivu)t θtdx

−
∫

ρ (u · ∇θ + (γ − 1)θdivu)t θt tdx

−γ − 1

R

∫ (
λ(divu)2 + 2μ|D(u)|2

)

t t
θtdx �

4∑

i=1

Hi , (4.63)
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where

H0 �1

2

∫

ρtθ
2
t dx +

∫

ρt (u · ∇θ + (γ − 1)θdivu) θtdx

− γ − 1

R

∫ (
λ(divu)2 + 2μ|D(u)|2

)

t
θtdx

satisfies

|H0| ≤C
∫

ρ|u||θt ||∇θt |dx + C‖ρt‖L3‖θt‖L6
(‖∇θ‖L2 + ‖∇u‖L2

)

+ C‖∇u‖L3‖∇ut‖L2‖θt‖L6

≤ C‖ρθt‖L2‖u‖L∞‖∇θt‖L2 + C‖∇θt‖L2 + C‖∇θt‖L2‖∇ut‖L2

≤ κ(γ − 1)

4R
‖∇θt‖2L2 + Cσ−1,

(4.64)

due to (1.6)1, (4.17), (4.24) and (4.33). Note that (4.24) and (2.23) yield

‖θt‖L2 ≤ C + C‖∇θt‖L2 , (4.65)

which, as well as (4.17), gives

|H1| ≤ C‖ρt t‖L2

(
‖θt‖1/2L2 ‖θt‖3/2L6 + ‖θt‖L6

(‖u · ∇θ‖L3 + ‖θdivu‖L3
))

≤ C‖∇θt‖4L2 + C‖ρt t‖2L2 + C.

(4.66)

It follows from (4.17) that

‖ (u · ∇θ + (γ − 1)θdivu)t ‖L2

≤ C
(‖ut‖L6‖∇θ‖L3 + ‖u‖L∞‖∇θt‖L2

)

+ C
(‖θt‖L6‖∇u‖L3 + ‖θ‖L∞‖∇ut‖L2

)

≤ C‖∇θt‖L2 + C‖∇ut‖L2 ,

(4.67)

which together with (4.17) shows

|H2| + |H3| ≤ C(‖∇θt‖L2 + ‖∇ut‖L2)
(‖ρt‖L3‖θt‖L6 + ‖ρθt t‖L2

)

≤ 1

2

∫

ρθ2t tdx + C‖∇θt‖2L2 + C‖∇ut‖2L2 .
(4.68)

One deduces from (4.17) and (4.33) that

|H4| ≤ C
∫ (

|∇ut |2 + |∇u||∇utt |
)

|θt |dx

≤ C
(
‖∇ut‖3/2L2 ‖∇ut‖1/2L6 + ‖∇u‖L3‖∇utt‖L2

)
‖θt‖L6

≤ δ‖∇utt‖2L2 + C‖∇2ut‖2L2 + C(δ)‖∇θt‖2L2 + Cσ−2‖∇ut‖2L2 .

(4.69)
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Substituting (4.66), (4.68), and (4.69) into (4.63) gives
(

κ(γ − 1)

2R
‖∇θt‖2L2 + H0

)

t
+ 1

2

∫

ρθ2t tdx

≤ δ‖∇utt‖2L2 + C(δ)‖∇θt‖4L2 + C‖∇2ut‖2L2 + Cσ−2‖∇ut‖2L2

+ C‖ρt t‖2L2 + C.

(4.70)

Finally, for C3 as in (4.62), adding (4.70) multiplied by 2(C3 + 1) to (4.62), we
obtain after choosing δ suitably small that

(

2(C3 + 1)

(
κ(γ − 1)

2R
‖∇θt‖2L2 + H0

)

+
∫

ρ|utt |2dx

)

t

+
∫

ρθ2t tdx + μ

2

∫

|∇utt |2dx

≤ Cσ−3/2 + C‖∇θt‖4L2 + C‖∇2ut‖2L2 + Cσ−2‖∇ut‖2L2 + C‖ρt t‖2L2

+ C‖ρ1/2utt‖2L2 .

(4.71)

Multiplying (4.71) by σ 2 and integrating the resulting inequality over (0, T ), we
obtain by using (4.64), (4.46), (4.33), (4.24), and Grönwall’s inequality that

sup
0≤t≤T

σ 2
∫ (

|∇θt |2 + ρ|utt |2
)
dx +

∫ T

0
σ 2

∫ (
ρθ2t t + |∇utt |2

)
dxdt ≤ C,

(4.72)

which together with (4.41), (4.33), (4.49), (4.48), (4.51), and (4.54) gives

sup
0≤t≤T

σ
(
‖∇ut‖H1 + ‖∇3θ‖L2 + ‖∇2u‖W 1,q

)
≤ C. (4.73)

We thus derive (4.56) from (4.72), (4.65), (4.73), and (4.46). The proof of
Lemma 4.5 is completed.

Lemma 4.6. The following estimate holds

sup
0≤t≤T

σ 2
(
‖∇2θ‖H2 + ‖θt‖H2

)
+

∫ T

0
σ 4‖∇θt t‖2L2dt ≤ C. (4.74)

Proof. First, multiplying (2.16) by θt t and integrating the resulting equality over
R
3 yield that

1

2

d

dt

∫

ρ(θt t )
2dx + κ(γ − 1)

R

∫

|∇θt t |2dx

= −4
∫

θt tρu · ∇θt tdx −
∫

ρt t (θt + u · ∇θ + (γ − 1)θdivu) θt tdx

− 2
∫

ρt (u · ∇θ + (γ − 1)θdivu)t θt tdx

−
∫

ρ (utt · ∇θ + 2ut · ∇θt + (γ − 1)(θdivu)t t ) θt tdx

+ γ − 1

R

∫ (
λ(divu)2 + 2μ|D(u)|2

)

t t
θt tdx �

5∑

i=1

Ki .

(4.75)
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Then, Hölder’s inequality and (4.17) give

σ 4|K1| ≤ Cσ 4‖ρ1/2θt t‖L2‖∇θt t‖L2‖u‖L∞

≤ δσ 4‖∇θt t‖2L2 + C(δ)σ 4‖ρ1/2θt t‖2L2 .
(4.76)

It follows from (4.33), (4.56), and (4.17) that

σ 4|K2| ≤ Cσ 4‖ρt t‖L2‖θt t‖L6
(‖θt‖H1 + ‖∇θ‖L6‖u‖L6 + ‖∇u‖L3‖θ‖L∞

)

≤ Cσ 2‖∇θt t‖L2

≤ Cδσ 4‖∇θt t‖2L2 + C(δ),

(4.77)

σ 4|K4| ≤ Cσ 4‖θt t‖L6

(
‖∇θ‖L3‖ρutt‖L2 + ‖∇θt‖L2‖ρut‖1/2L2 ‖ut‖1/2L6

)

+ Cσ 4‖θt t‖L6

(
‖∇u‖L3‖ρθt t‖L2 +‖∇ut‖L2‖ρθt‖1/2L2 ‖θt‖1/2L6

)

+ Cσ 4‖θ‖L∞‖ρθt t‖L2‖∇utt‖L2

≤ δσ 4‖∇θt t‖2L2 + C(δ)σ 4
(
‖ρθt t‖2L2 + ‖∇utt‖2L2

)
+ C(δ),

(4.78)

and

σ 4|K5| ≤ Cσ 4‖θt t‖L6

(
‖∇ut‖3/2L2 ‖∇ut‖1/2L6 + ‖∇u‖L3‖∇utt‖L2

)

≤ δσ 4‖∇θt t‖2L2 + C(δ)σ 4‖∇utt‖2L2 + C(δ).
(4.79)

For K3, one deduces from (4.67), (4.56), and (4.17) that

σ 4|K3| ≤ Cσ 4‖ρt‖L3‖θt t‖L6
(‖∇ut‖L2 + ‖∇θt‖L2

)

≤ Cδσ 4‖∇θt t‖2L2 + C(δ).
(4.80)

Then,multiplying (4.75) byσ 4, substituting (4.76)–(4.80) into the resulting equality
and choosing δ suitably small lead to

d

dt

∫

σ 4ρ(θt t )
2dx + κ(γ − 1)

R
σ 4

∫

|∇θt t |2dx

≤ Cσ 2
(
‖ρ1/2θt t‖2L2 + ‖∇utt‖2L2

)
+ C,

which together with (4.72) gives

sup
0≤t≤T

σ 4
∫

ρ|θt t |2dx +
∫ T

0
σ 4

∫

|∇θt t |2dxdt ≤ C. (4.81)

Finally, applying the standard L2-estimate to (2.9), by (4.67), (4.17), (4.81),
and (4.56), we get

sup
0≤t≤T

σ 2‖∇2θt‖L2

≤ C sup
0≤t≤T

σ 2 (‖ρθt t‖L2 + ‖ρt‖L3‖θt‖L6 + ‖ρt‖L6
(‖∇θ‖L3 + ‖∇u‖L3

))

+ C sup
0≤t≤T

σ 2 (‖∇θt‖L2 + ‖∇ut‖L2 + ‖∇u‖L3‖∇ut‖L6
) + C

≤ C.

(4.82)
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Moreover, it follows from the standard H2-estimate of (3.39) that

‖∇2θ‖H2 ≤ C
(
‖ρθt‖H2 + ‖ρu · ∇θ‖H2 + ‖ρθdivu‖H2 + ‖|∇u|2‖H2

)

≤ C
((‖ρ − 1‖H2 + 1

) ‖θt‖H2 + (‖ρ − 1‖H2 + 1
) ‖u‖H2‖∇θ‖H2

)

+ C
(‖ρθ − 1‖H2 + 1

) ‖divu‖H2 + C‖∇u‖2H2

≤ C + C‖∇3u‖L2 + C‖∇3θ‖L2 + C‖θt‖H2 ,

due to (2.22) and (4.17). Combining this with (4.46), (4.56), (4.82), and (4.81)
shows (4.74). The proof of Lemma 4.6 is completed. ��

5. Proofs of Theorems 1.1 and 1.2

With all the a priori estimates in Sects. 3 and 4 at hand, we are ready to prove
the main results of this paper in this section.

Proposition 5.1. For given numbers M > 0 (not necessarily small), ρ̄ > 2, and
θ̄ > 1, assume that (ρ0, u0, θ0) satisfies (2.1), (3.5), and (3.8). Then there exists
a unique classical solution (ρ, u, θ) of (1.6) (1.4) (1.7) in R

3 × (0,∞) satisfying
(2.3)–(2.5) with T0 replaced by any T ∈ (0,∞). Moreover, (3.9), (3.6), and (3.98)
hold for any T ∈ (0,∞).

Proof. First, the standard local existence result (Lemma 2.1) shows that theCauchy
problem (1.6) (1.4) (1.7) with initial data (ρ0, u0, θ0) has a unique local solution
(ρ, u, θ), defined up to a positive T0 which may depend on inf

x∈R3
ρ0(x), and sat-

isfying (2.3)–(2.5), and inf
x∈R3

ρ0(x)/4 ≤ ρ ≤ 2ρ. One deduces from (3.1)–(3.5)

that

A1(0) ≤ M, A2(0) ≤ C0 ≤ C1/4
0 ,

A3(0) = A4(0) = 0, ρ0 < ρ̄, θ0 ≤ θ̄ .

Then there exists a T1 ∈ (0, T0] such that (3.6) holds for T = T1. We set

T ∗ = sup

{

T

∣
∣
∣
∣
∣

sup
t∈[0,T ]

‖(ρ − 1, u, θ − 1)‖H3 < ∞
}

,

and

T∗ = sup{T ≤ T ∗ | (3.6) holds}. (5.1)

Then T ∗ ≥ T∗ ≥ T1 > 0. We claim that

T∗ = ∞. (5.2)

Otherwise, T∗ < ∞. Proposition 3.1 implies that (3.7) holds for all 0 < T < T∗,
which together with (3.8) yields Lemmas 4.1–4.6 still hold for all 0 < T < T∗.
Note here that all constantsC in Lemmas 4.1–4.6 depend on T∗ and inf

x∈R3
ρ0(x), and
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are in fact independent of T . Then, we claim that there exists a positive constant C̃
which may depend on T∗ and inf

x∈R3
ρ0(x) such that, for all 0 < T < T∗,

sup
0≤t≤T

‖ρ − 1‖H3 ≤ C̃, (5.3)

which together with Lemmas 4.4–4.6 and (3.5) gives

‖(ρ(x, T∗) − 1, u(x, T∗), θ(x, T∗) − 1)‖H3 ≤ C̃, inf
x∈R3

ρ(x, T∗) > 0.

Lemma 2.1 thus implies that there exists some T ∗∗ > T∗, such that (3.6) holds
for T = T ∗∗, which contradicts (5.1). Hence, we obtain (5.2) which together with
Lemma 2.1 finishes the proof of Proposition 5.1.

Finally, it remains to prove (5.3). It follows from (3.5), (1.6)2, and (2.2) that
we can define

ut (·, 0) � −u0 · ∇u0 + ρ−1
0 (μ�u0 + (μ + λ)∇divu0 − R∇(ρ0θ0)) ,

which together with (2.1) gives

‖∇ut (·, 0)‖L2 ≤ C̃ . (5.4)

It thus follows from (4.43), (5.4), (4.35), (4.45), (4.17), (4.5), and Grönwall’s in-
equality that

sup
0≤t≤T

‖∇ut‖L2 +
∫ T

0

∫

ρ|utt |2dxdt ≤ C̃, (5.5)

which as well as (4.19) and (4.17) yields

sup
0≤t≤T

‖u‖H3 ≤ C̃ . (5.6)

Combining this with (4.49), (4.41), (5.5) and (4.17) gives
∫ T

0

(
‖∇3θ‖2L2 + ‖∇ut‖2H1

)
dt ≤ C̃ . (5.7)

Applying the H2-estimate to elliptic systems (2.24) leads to

‖∇2u‖H2 ≤ C̃‖∇divu‖H2 + C̃‖∇ω‖H2

≤ C̃‖ρu̇‖H2 + C̃‖∇ P‖H2

≤ C̃ + C̃‖∇2ut‖L2 + C̃‖∇3ρ‖L2 + C̃‖∇3θ‖L2 ,

(5.8)

where one has used (4.17) and the following simple facts:

‖ρut‖H2 ≤ C̃‖(ρ − 1)ut‖H2 + C̃‖ut‖H2

≤ C̃‖ρ − 1‖H2‖ut‖H2 + C̃‖∇2ut‖L2 + C̃

≤ C̃ + C̃‖∇2ut‖L2 ,
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‖ρu · ∇u‖H2 ≤ C̃
(‖(ρ − 1)u‖H2 + ‖u‖H2

) ‖∇u‖H2

≤ C̃‖ρ − 1‖H2‖u‖H2 + C̃

≤ C̃,

and

‖∇3(ρθ)‖L2 ≤C̃‖∇3ρ‖L2‖θ‖L∞ + C̃‖∇2ρ‖L6‖∇θ‖L3

+ C̃‖∇ρ‖L3‖∇2θ‖L6 + C̃‖∇3θ‖L2

≤C̃‖∇3ρ‖L2 + C̃‖∇3θ‖L2 ,

due to (2.22), (4.17), (5.5), (4.33), and (5.6). Then, standard calculations lead to

(
‖∇3ρ‖L2

)

t

≤ C̃
(
‖|∇3u||∇ρ|‖L2 + ‖|∇2u||∇2ρ|‖L2 + ‖|∇u||∇3ρ|‖L2 + ‖∇4u‖L2

)

≤ C̃
(
‖∇u‖H2‖∇ρ‖H2 + ‖∇2u‖L3‖∇2ρ‖L6

)

+ C̃
(
1 + ‖∇2ut‖L2 + ‖∇3ρ‖L2 + ‖∇3θ‖L2

)

≤ C̃ + C̃‖∇3ρ‖L2 + C̃‖∇2ut‖2L2 + C̃‖∇3θ‖2L2 ,

where we have used (4.17), (5.6), and (5.8). Combining this with (5.7) and Grön-
wall’s inequality yields

sup
0≤t≤T

‖∇3ρ‖L2 ≤ C̃,

which together with (4.17) gives (5.3). The proof of Proposition 5.1 is completed.
��

With Proposition 5.1 at hand, we are now in a position to prove our main results,
Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let (ρ0, u0, θ0) satisfying (1.9)–(1.12) be initial data as
described in Theorem 1.1. Assume that C0 satisfies (1.13), where

ε � ε0/2, (5.9)

with ε0 as in Proposition 3.1. For constants

δ, η ∈ (0,min{1, ρ̄ − sup
x∈R3

ρ0(x)}), (5.10)

we define

ρ
δ,η
0 � jδ ∗ ρ0 + η

1 + η
, uδ,η

0 � jδ ∗ u0, θ
δ,η
0 � jδ ∗ θ0 + η

1 + η
,
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where jδ is the standard mollifying kernel of width δ. Then, (ρδ,η
0 , uδ,η

0 , θ
δ,η
0 ) sat-

isfies
⎧
⎨

⎩

(ρ
δ,η
0 − 1, uδ,η

0 , θ
δ,η
0 − 1) ∈ H∞,

η

1 + η
≤ ρ

δ,η
0 ≤ ρ̄ + η

1 + η
< ρ̄,

η

1 + η
≤ θ

δ,η
0 ≤ θ̄ , ‖∇uδ,η

0 ‖L2 ≤ M,
(5.11)

and
⎧
⎪⎪⎨

⎪⎪⎩

lim
δ+η→0

(
‖ρδ,η

0 − ρ0‖H2∩W 2,q + ‖uδ,η
0 − u0‖H2 + ‖θδ,η

0 − θ0‖H2

)
= 0,

‖∇(ρ
δ,η
0 , uδ,η

0 , θ
δ,η
0 )‖H1 ≤ ‖∇(ρ0, u0, θ0)‖H1 ,

‖∇ρ
δ,η
0 ‖W 1,q ≤ ‖∇ρ0‖W 1,q ,

(5.12)

due to (1.9) and (1.10). Moreover, the initial norm Cδ,η
0 for (ρ

δ,η
0 , uδ,η

0 , θ
δ,η
0 ), i.e.,

the right hand side of (1.8) with (ρ0, u0, θ0) replaced by (ρ
δ,η
0 , uδ,η

0 , θ
δ,η
0 ), satisfies

lim
η→0

lim
δ→0

Cδ,η
0 = C0.

Therefore, there exists an η0 ∈ (0,min{1, ρ̄ − sup
x∈R3

ρ0(x)}) such that, for any

η ∈ (0, η0), we can find some δ0(η) > 0 such that

Cδ,η
0 ≤ C0 + ε0/2 ≤ ε0, (5.13)

provided that

0 < η ≤ η0, 0 < δ ≤ δ0(η). (5.14)

We assume that δ, η satisfy (5.14). Proposition 5.1 together with (5.13) and
(5.11) thus yields that there exists a smooth solution (ρδ,η, uδ,η, θδ,η) of (1.6) (1.4)
(1.7) with initial data (ρ

δ,η
0 , uδ,η

0 , θ
δ,η
0 ) on R

3 × [0, T ] for all T > 0. Moreover,
(3.9) and (3.6) both hold with (ρ, u, θ) being replaced by (ρδ,η, uδ,η, θδ,η).

Next, for the initial data (ρ
δ,η
0 , uδ,η

0 , θ
δ,η
0 ), g̃1 in (4.1) in fact is

g̃1 � (ρ
δ,η
0 )−1/2

(
−μ�uδ,η

0 − (μ + λ)∇divuδ,η
0 + R∇(ρ

δ,η
0 θ

δ,η
0 )

)

= (ρ
δ,η
0 )−1/2( jδ ∗ ρ0)

1/2g1 + (ρ
δ,η
0 )−1/2

(
jδ ∗ (

√
ρ0g1) − √

jδ ∗ ρ0g1
)

+ R(ρ
δ,η
0 )−1/2∇

(
jδ ∗ (ρ0θ0) − (1 + η)−2( jδ ∗ ρ0)( jδ ∗ θ0)

)

+ Rη(1 + η)−2(ρ
δ,η
0 )−1/2∇(ρ

δ,η
0 + θ

δ,η
0 ),

(5.15)

where in the second equality we have used (1.11). Similarly, g̃2 in (4.2) is

g̃2 � (ρ
δ,η
0 )− 1

2

(
κ�θ

δ,η
0 + μ

2
|∇uδ,η

0 + (∇uδ,η
0 )tr|2 + λ(divuδ,η

0 )2
)

= (ρ
δ,η
0 )− 1

2 ( jδ ∗ ρ0)
1
2 g2 + (ρ

δ,η
0 )− 1

2

(
jδ ∗ (

√
ρ0g2) − √

jδ ∗ ρ0g2
)

− μ

2
(ρ

δ,η
0 )− 1

2

(
jδ ∗ |∇u0 + (∇u0)

tr|2 − |∇( jδ ∗ u0) + (∇( jδ ∗ u0))
tr|2

)

− λ(ρ
δ,η
0 )− 1

2

(
jδ ∗

(
(divu0)

2
)

− (div( jδ ∗ u0))
2
)

,

(5.16)



Global Classical and Weak Solutions 1049

due to (1.12). Since g1, g2 ∈ L2, one deduces from (5.15), (5.16), (5.11), (5.12),
and (1.9) that there exists some positive constant C independent of δ and η such
that

{
‖g̃1‖L2 ≤ (1 + η)1/2‖g1‖L2 + Cη−1/2m1(δ) + C

√
η,

‖g̃2‖L2 ≤ (1 + η)1/2‖g2‖L2 + Cη−1/2m2(δ),
(5.17)

with 0 ≤ mi (δ) → 0 (i = 1, 2) as δ → 0. Hence, for any 0 < η < η0, there exists
some 0 < δ1(η) ≤ δ0(η) such that

m1(δ) + m2(δ) < η, (5.18)

for any 0 < δ < δ1(η). We thus obtain from (5.17) and (5.18) that there exists
some positive constant C independent of δ and η such that

‖g̃1‖L2 + ‖g̃2‖L2 ≤ 2‖g1‖L2 + 2‖g2‖L2 + C, (5.19)

provided that

0 < η < η0, 0 < δ < δ1(η). (5.20)

Now, we assume that η, δ satisfy (5.20). It thus follows from (5.13), Proposition
3.1, Corollary 3.9, (5.12), (5.19), and Lemmas 4.1–4.6 that for any T > 0, there
exists some positive constantC independent of δ and η such that (3.9), (3.6), (3.98),
(4.17), (4.18), (4.46), (4.56), and (4.74) hold for (ρδ,η, uδ,η, θδ,η). Then passing to
the limit first δ → 0, then η → 0, together with standard arguments yields that
there exists a solution (ρ, u, θ) of (1.6) (1.4) (1.7) on R

3 × (0, T ] for all T > 0,
such that (ρ, u, θ) satisfies (3.9), (3.6), (3.98), (4.17), (4.18), (4.46), (4.56) and
(4.74). Hence, (ρ, u, θ) satisfies (1.14), (1.15)2, (1.15)3, and

ρ − 1 ∈ L∞(0, T ; H2 ∩ W 2,q), (u, θ − 1) ∈ L∞(0, T ; H2). (5.21)

Moreover, (4.52) holds in D′(R3 × (0, T )).

Next, to finish the existence part of Theorem 1.1, it remains to prove

ρ − 1 ∈ C([0, T ]; H2 ∩ W 2,q), u, θ − 1 ∈ C([0, T ]; H2). (5.22)

Indeed, it follows from (4.17) and (5.21) that

ρ − 1 ∈ C([0, T ]; H1 ∩ W 1,∞) ∩ C([0, T ]; H2 ∩ W 2,q -weak), (5.23)

and for all r ∈ [2, 6),
u, θ − 1 ∈ C([0, T ]; H1 ∩ W 1,r ). (5.24)

Since (4.52) holds in D′(R3 × (0, T )) for all T ∈ (0,∞), one derives from
[13, Lemma 2.3] that, for jν(x) being the standard mollifying kernel of width ν,
ρν � ρ ∗ jν satisfies

(�ρν)t + div(u�ρν) = −div(ρ�u) ∗ jν − 2div(∂iρ · ∂i u) ∗ jν + Rν, (5.25)
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where Rν satisfies
∫ T

0
‖Rν‖3/2L2∩Lqdt ≤ C

∫ T

0
‖u‖3/2

W 1,∞‖�ρ‖3/2
L2∩Lqdt ≤ C, (5.26)

due to (4.5), (4.17), and (4.46). Multiplying (5.25) by q|�ρν |q−2�ρν , we obtain
after integration by parts that

(‖�ρν‖q
Lq )

′(t)

= (1 − q)

∫

|�ρν |qdivudx − q
∫

(div(ρ�u) ∗ jν)|�ρν |q−2�ρνdx

− 2q
∫

(div(∂iρ · ∂i u) ∗ jν)|�ρν |q−2�ρνdx + q
∫

Rν |�ρν |q−2�ρνdx,

which together with (4.17), (4.46), and (5.26) yields that, for p0 as in (4.47),

sup
t∈[0,T ]

‖�ρν‖Lq +
∫ T

0
|(‖�ρν‖q

Lq )
′(t)|p0dt

≤ C + C
∫ T

0

(
‖∇u‖p0

W 2,q + ‖Rν‖p0
L2∩Lq

)
dt ≤ C.

This combined with the Ascoli-Arzela theorem thus leads to

‖�ρν(·, t)‖Lq → ‖�ρ(·, t)‖Lq in C([0, T ]), as ν → 0+.

In particular, we have

‖∇2ρ(·, t)‖Lq ∈ C([0, T ]). (5.27)

Similarly, one can obtain

‖∇2ρ(·, t)‖L2 ∈ C([0, T ]),
which together with (5.23) and (5.27) shows

∇2ρ ∈ C([0, T ]; L2 ∩ Lq). (5.28)

To prove the second part of (5.22), it follows from (4.17) and (4.18) that

ρut , ρθt ∈ C([0, T ]; L2), (5.29)

which together with (4.12), (5.23), (5.24), and (5.28) gives

u ∈ C([0, T ]; H2). (5.30)

Combining this with (3.39), (5.29), (5.28), (5.24), and (4.17) leads to

θ − 1 ∈ C([0, T ]; H2),

which as well as (5.23), (5.28), and (5.30) gives (5.22).
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Finally, since the proof of the uniqueness of (ρ, u, θ) is similar to that of [4,
Theorem 1], to finish the proof of Theorem 1.1, it remains to prove (1.16). We will
only show

lim
t→∞ ‖∇u‖L2 = 0, (5.31)

since the other terms in (1.16) follow directly from (1.28). It follows from (3.98)
and (3.6) that

∫ ∞

1
|(‖∇u‖2L2)

′(t)|dt

= 2
∫ ∞

1

∣
∣
∣
∣

∫

∂ j u
i∂ j u

i
tdx

∣
∣
∣
∣ dt

= 2
∫ ∞

1

∣
∣
∣
∣

∫

∂ j u
i∂ j (u̇

i − uk∂kui )dx

∣
∣
∣
∣ dt

=
∫ ∞

1

∣
∣
∣
∣

∫

(2∂ j u
i∂ j u̇

i − 2∂ j u
i∂ j u

k∂kui + |∇u|2divu)dx

∣
∣
∣
∣ dt

≤ C
∫ ∞

1

(
‖∇u‖L2‖∇u̇‖L2 + ‖∇u‖3L3

)
dt

≤ C
∫ ∞

1

(
‖∇u̇‖2L2 + ‖∇u‖2L2 + ‖∇u‖4L4

)
dt ≤ C,

which together with (3.6) implies (5.31). We finish the proof of Theorem 1.1. ��
Proof of Theorem 1.2. We will prove Theorem 1.2 in three steps.

Step 1: Construction of approximate solutions Let (ρ0, u0, θ0) satisfying (1.10)
be initial data as described in Theorem 1.2. Assume that C0 satisfies (1.22) with ε

as in (5.9). Let δ and η be as in (5.10) and jδ be the standard mollifier. We define

ρ̂
δ,η
0 � jδ ∗ ρ0 + η

1 + η
, ûδ,η

0 � jδ ∗ u0, θ̂
δ,η
0 � jδ ∗ (ρ0θ0) + η

jδ ∗ ρ0 + η
.

Then, (ρ̂δ,η
0 , ûδ,η

0 , θ̂
δ,η
0 ) satisfies

⎧
⎨

⎩

(ρ̂
δ,η
0 − 1, ûδ,η

0 , θ̂
δ,η
0 − 1) ∈ H∞,

η

1 + η
≤ ρ̂

δ,η
0 ≤ ρ̄ + η

1 + η
< ρ̄,

η

ρ̄ + η
≤ θ̂

δ,η
0 ≤ θ̄ , ‖∇ûδ,η

0 ‖L2 ≤ M,
(5.32)

due to (1.10). Moreover, it follows from (1.10) and (1.22) that

lim
η→0

lim
δ→0

(
‖ρ̂δ,η

0 − ρ0‖L2 + ‖ûδ,η
0 − u0‖H1 + ‖ρ̂δ,η

0 θ̂
δ,η
0 − ρ0θ0‖L2

)
= 0.

(5.33)

We claim that the initial norm Ĉδ,η
0 for (ρ̂

δ,η
0 , ûδ,η

0 , θ̂
δ,η
0 ), i.e., the right hand side of

(1.8) with (ρ0, u0, θ0) replaced by (ρ̂
δ,η
0 , ûδ,η

0 , θ̂
δ,η
0 ), satisfies

lim
η→0

lim
δ→0

Ĉδ,η
0 ≤ C0, (5.34)
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which yields that there exists an η̂ > 0 such that, for any η ∈ (0, η̂), there exists
some δ̂(η) > 0 such that

Ĉδ,η
0 ≤ C0 + ε0/2 ≤ ε0, (5.35)

provided

0 < η ≤ η̂, 0 < δ ≤ δ̂(η). (5.36)

We assume that δ, η always satisfy (5.36). Proposition 5.1 as well as (5.32) and
(5.35) thus yields that there exists a smooth solution (ρ̂δ,η, ûδ,η, θ̂ δ,η) of (1.6) (1.4)
(1.7) with initial data (ρ̂

δ,η
0 , ûδ,η

0 , θ̂
δ,η
0 ) on R3 ×[0, T ] for all T > 0. Moreover, for

any T > 0, (ρ̂δ,η, ûδ,η, θ̂ δ,η) satisfies (3.9), (3.6), and (3.98) with (ρ, u, θ) replaced
by (ρ̂δ,η, ûδ,η, θ̂ δ,η).

It remains to prove (5.34). In fact, we only have to show

lim
η→0

lim
δ→0

∫

ρ̂
δ,η
0

(
θ̂

δ,η
0 − log θ̂

δ,η
0 − 1

)
dx ≤

∫

ρ0 (θ0 − log θ0 − 1) dx,

(5.37)

since the other terms in (5.34) can be proved in a similar and even simpler way.
Noticing that

ρ̂
δ,η
0

(
θ̂

δ,η
0 − log θ̂

δ,η
0 − 1

)

= ρ̂
δ,η
0 (θ̂

δ,η
0 − 1)2

∫ 1

0

α

α(θ̂
δ,η
0 − 1) + 1

dα

= ( jδ ∗ (ρ0θ0 − ρ0))
2

1 + η

∫ 1

0

α

α( jδ ∗ (ρ0θ0) − jδ ∗ ρ0) + jδ ∗ ρ0 + η
dα

∈
[
0, η−1( jδ ∗ (ρ0θ0 − ρ0))

2
]
,

we deduce from (5.33) and Lebesgue’s dominated convergence theorem that

lim
δ→0

∫

ρ̂
δ,η
0

(
θ̂

δ,η
0 − log θ̂

δ,η
0 − 1

)
dx

=
∫

ρ0 + η

1 + η

(
ρ0θ0 + η

ρ0 + η
− log

ρ0θ0 + η

ρ0 + η
− 1

)

dx

= 1

1 + η

∫

(ρ0θ0<1/2)∪(ρ0θ0>2)

(

ρ0θ0 − ρ0 − (ρ0 + η) log
ρ0θ0 + η

ρ0 + η

)

dx

+ 1

1 + η

∫

(1/2≤ρ0θ0≤2)
(ρ0 + η)

(
ρ0θ0 + η

ρ0 + η
− log

ρ0θ0 + η

ρ0 + η
− 1

)

dx

� 1

1 + η
(I1 + I2),

(5.38)

where we have used the following simple fact that, for f ∈ L p(1 ≤ p < ∞),

lim
δ→0

‖ jδ ∗ f − f ‖L p = 0, lim
δ→0

jδ ∗ f (x) = f (x), almost everywherex ∈ R
3.
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It follows from (1.22) that

|(ρ0θ0 < 1/2) ∪ (ρ0θ0 > 2)| ≤ 4
∫

(ρ0θ0 − 1)2dx

≤ 8
∫

(ρ0θ0 − ρ0)
2dx + 8

∫

(ρ0 − 1)2dx

≤ C,

which combined with Lebesgue’s dominated convergence theorem yields

I1 =
∫

(ρ0θ0<1/2)∪(ρ0θ0>2)
(ρ0θ0 − ρ0 log(ρ0θ0 + η) − η log(ρ0θ0 + η)) dx

+
∫

(ρ0θ0<1/2)∪(ρ0θ0>2)
((ρ0 + η) log(ρ0 + η) − ρ0) dx

≤
∫

(ρ0θ0<1/2)∪(ρ0θ0>2)
(ρ0θ0 − ρ0 log(ρ0θ0) − η log η) dx

+
∫

(ρ0θ0<1/2)∪(ρ0θ0>2)
(ρ0 log(ρ0 + η) + η log(ρ0 + η) − ρ0) dx

→
∫

(ρ0θ0<1/2)∪(ρ0θ0>2)
ρ0 (θ0 − log θ0 − 1) dx, as η → 0.

(5.39)

Noticing that

(ρ0 + η)

(
ρ0θ0 + η

ρ0 + η
− log

ρ0θ0 + η

ρ0 + η
− 1

)

= (ρ0θ0 − ρ0)
2
∫ 1

0

α

α(ρ0θ0 − ρ0) + ρ0 + η
dα

∈
[
0, 2 (ρ0θ0 − ρ0)

2
]
,

providedρ0θ0 ≥ 1/2,wededuce fromLebesgue’s dominated convergence theorem
that

lim
η→0

I2 =
∫

(1/2≤ρ0θ0≤2)
ρ0 (θ0 − log θ0 − 1) dx,

which together with (5.38) and (5.39) gives (5.37). ��

Step 2: Compactness results For the approximate solutions (ρ̂δ,η, ûδ,η, θ̂ δ,η)

obtained in the previous step, we will pass to the limit first δ → 0, then η → 0 and
apply (3.6) and (3.98) to obtain the global existence of weak solutions. Since the
two steps are similar, we will only sketch the arguments for δ → 0. Thus, we fix
η ∈ (0, η̂) and simply denote (ρ̂δ,η, ûδ,η, θ̂ δ,η) by (ρδ, uδ, θδ). For R ∈ (0,∞), let
BR(x0) � {x ∈ R

3||x − x0| < R} denote a ball centered at x0 ∈ R
3 with radius R.
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We claim that there exists some appropriate subsequence δ j → 0 of δ → 0 such
that, for any 0 < τ < T < ∞ and 0 < R < ∞, we have

{
θδ j − 1 ⇀ θ − 1 weakly in L2(0, T ; H1(R3)),

uδ j ⇀ u weakly star in L∞(0, T ; H1(R3)),
(5.40)

{
ρδ j − 1 → ρ − 1 in C([0, T ]; L2(R3)-weak),

ρδ j − 1 → ρ − 1 in C([0, T ]; H−1(BR(0))),
(5.41)

{
ρδ j uδ j → ρu, ρδ j (θδ j − 1) → ρ(θ − 1) in C([0, T ]; L2(R3)-weak),

ρδ j uδ j → ρu in C([0, T ]; H−1(BR(0))),
(5.42)

ρδ j |uδ j |2 → ρ|u|2 in C([0, T ]; L3-weak), (5.43)

and

{
uδ j → u, Gδ j → G, ωδ j → ω, ∇θδ j → ∇θ in C([τ, T ]; H1(R3)-weak),

uδ j → u, Gδ j → G, ωδ j → ω, ∇θδ j → ∇θ in C([τ, T ]; L2(BR(0))).
(5.44)

We thus write (1.1) in the weak forms for the approximate solutions (ρδ, uδ, θδ),
then let δ = δ j and take appropriate limits. Standard arguments as well as (5.40)–
(5.44) thus yield that the limit (ρ, u, θ) is a weak solution of (1.1) (1.4) (1.5) in the
sense of Definition 1.1 and satisfies (1.23)–(1.27) except ρ − 1 ∈ C([0,∞), L2)

which in fact can be obtained by similar arguments leading to (5.28). In addition, the
estimates (1.29)–(1.31) follows directly from (3.9), (3.98), (3.6), and (5.40)–(5.44).

It remains to prove (5.41)–(5.44) since (5.40) is a direct consequence of (3.6).
It follows from (3.9), (3.6), and (1.6)1 that

sup
t∈[0,∞)

‖ρδ
t ‖H−1(R3) ≤ C,

which as well as (3.6), [13, Lemma C.1], and the Aubin-Lions lemma yields that
there exists a subsequence of δ j → 0, still denoted by δ j , such that (5.41) holds.
Moreover, one deduces from (3.98) that (extract a subsequence)

ρδ j − 1 ⇀ ρ − 1, ∇uδ j ⇀ ∇u weakly in L4(R3 × (1,∞)),

with ρ − 1 and ∇u satisfying

∫ ∞

1

(
‖ρ − 1‖4L4 + ‖∇u‖4L4

)
dt ≤ C. (5.45)

Then, simple calculations together with (3.6) yield that, for any 0 < T < ∞,
there exists some C(T ) independent of δ and η such that

‖(ρδuδ)t‖L2(0,T ;H−1(R3)) + ‖(ρδθδ)t‖L2(0,T ;H−1(R3)) ≤ C(T ), (5.46)

which together with (3.6), (5.41), and (5.40) gives (5.42).
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Next, to prove (5.43), one deduces from (3.6) and (1.6)1 that, for any ζ ∈
H1(R3),

∣
∣
∣
∣

∫

(ρδ|uδ|2)tζdx

∣
∣
∣
∣

=
∣
∣
∣
∣−

∫

div(ρδuδ)|uδ|2ζdx + 2
∫

ρδuδ · uδ
t ζdx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

ρδuδ · ∇(|uδ|2ζ )dx + 2
∫

ρδuδ · (u̇δ − uδ · ∇uδ)ζdx

∣
∣
∣
∣

≤ C
∫

ρδ|uδ|3|∇ζ |dx + C
∫

ρδ|uδ|2|∇uδ||ζ |dx + C
∫

ρδ|uδ||u̇δ||ζ |dx

≤ C‖uδ‖3L6‖∇ζ‖L2 + C‖uδ‖2L6‖∇uδ‖L2‖ζ‖L6

+ C‖uδ‖L6‖(ρδ)1/2u̇δ‖L2‖ζ‖L3

≤ C
(
‖∇uδ‖L2 + ‖(ρδ)1/2u̇δ‖L2

)
‖ζ‖H1 ,

which together with (3.6) gives

∫ ∞

0
‖(ρδ|uδ|2)t‖2H−1dt ≤ C. (5.47)

It follows from (3.6) that

sup
t∈[0,∞)

‖ρδ|uδ|2‖L1∩L3 ≤ C,

which combined with (5.47), (5.40), and (5.42) yields (5.43).
Finally, we prove (5.44) which implies the strong limits of uδ and θδ.Wededuce

from (3.6), (2.26), (5.46), and (3.98) that

sup
t∈[0,∞)

(‖uδ‖H1 + σ 2‖Gδ‖H1 + σ 2‖ωδ‖H1 + σ 2‖∇θδ‖H1) ≤ C, (5.48)

and

∫ T

0
σ 4

(
‖uδ

t ‖2L2(R3)
+ ‖Gδ

t ‖2H−1(R3)
+ ‖ωδ

t ‖2H−1(R3)
+ ‖θδ

t ‖2H1(R3)

)
dt ≤ C.

(5.49)

The Aubin-Lions lemma together with (5.48) and (5.49) thus gives (5.44).
Step 3: Proofs of (1.32) and (1.28) We first prove that (ρ, u, θ) satisfies (1.32).

We rewrite the energy equation (1.6)3 in the form

R

γ − 1
((ρθ)t + div(ρuθ)) − κ�θ

= Gdivu − Rdivu + 2μdiv(u · ∇u − udivu) + μ

2
|ω|2.

(5.50)
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Thus, for any ϕ ∈ D(R3 × (0,∞)), we have

R

γ − 1

∫ ∞

0

∫

ρδθδ
(
ϕt + uδ · ∇ϕ

)
dxdt − κ

∫ ∞

0

∫

∇θδ · ∇ϕdxdt

= −
∫ ∞

0

∫

Gδdivuδϕdxdt + R
∫ ∞

0

∫

divuδϕdxdt

+ 2μ
∫ ∞

0

∫
(
uδ · ∇uδ − uδdivuδ

) · ∇ϕdxdt − μ

2

∫ ∞

0

∫

|ωδ|2ϕdxdt.

(5.51)

Letting δ = δ j in (5.51) and taking appropriate limits, we thus deduce from (5.41),
(5.40), (5.42), and (5.44) that

R

γ − 1

∫ ∞

0

∫

ρθ (ϕt + u · ∇ϕ) dxdt − κ

∫ ∞

0

∫

∇θ · ∇ϕdxdt

= −
∫ ∞

0

∫

Gdivuϕdxdt + R
∫ ∞

0

∫

divuϕdxdt

+ 2μ
∫ ∞

0

∫

(u · ∇u − udivu) · ∇ϕdxdt − μ

2

∫ ∞

0

∫

|ω|2ϕdxdt

= −
∫ ∞

0

∫

(λdivu − P)divuϕdxdt − 2μ
∫ ∞

0

∫

|D(u)|2ϕdxdt

+ 2μ
∫ ∞

0

∫ (
∂kui∂i (u

kϕ) − div(uϕ)divu
)
dxdt

=
∫ ∞

0

∫

Pdivuϕdxdt −
∫ ∞

0

∫ (
λ(divu)2 + 2μ|D(u)|2

)
ϕdxdt,

(5.52)

where in the last equality, we have used the following simple fact that, for standard
mollifier jν(x),

∣
∣
∣
∣

∫ ∞

0

∫ (
∂kui∂i (u

kϕ) − div(uϕ)divu
)
dxdt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ∞

0

∫

∂k(u
i − ui ∗ jν)∂i

(
ukϕ

)
dxdt

+
∫ ∞

0

∫ (
∂k(u

i ∗ jν)∂i (u
kϕ) − div(uϕ)divu

)
dxdt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ∞

0

∫ (
∂k(u

i − ui ∗ jν)∂i (u
kϕ) + div(uϕ)div(u ∗ jν − u)

)
dxdt

∣
∣
∣
∣

≤ C
∫ ∞

0

∫

|∇(uϕ)||∇(u − u ∗ jν)|dxdt → 0, as ν → 0,

due to (1.30). We thus derive (1.32) directly from (5.52), (5.42), and (5.41).
Finally, to finish the proof of Theorem 1.2, it remains to prove (1.28). Since

(ρ, u) satisfies (1.18), for the standard mollifier jν(x)(ν > 0), ρν � ρ ∗ jν satisfies
{

ρν
t + div(uρν) = rν,

ρν(x, t = 0) = ρ0 ∗ jν,
(5.53)
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where rν satisfies, for any T > 0,

lim
ν→0+

∫ T

0
‖rν‖2L2dt = 0, (5.54)

due to (3.9), (3.6), and [13, Lemma 2.3]. Multiplying (5.53) by 4(ρν − 1)3, we
obtain after integration by parts that, for t ≥ 1,

(‖ρν − 1‖4L4 )
′

= −4
∫

(ρν − 1)3divudx − 3
∫

(ρν − 1)4divudx + 4
∫

rν(ρν − 1)3dx

≤ C‖ρν − 1‖4L4 + C‖∇u‖4L4 + C‖rν‖L2 ,

which implies that, for all 1 ≤ N ≤ s ≤ N + 1 ≤ t ≤ N + 2,

‖ρν(·, t) − 1‖4L4 ≤ ‖ρν(·, s) − 1‖4L4

+ C
∫ N+2

N

(
‖ρν − 1‖4L4 + ‖∇u‖4L4

)
dt

+ C
∫ N+2

N
‖rν‖L2dt.

(5.55)

Letting ν → 0+ in (5.55) together with (5.54) and (1.23) yields that

‖ρ(·, t) − 1‖4L4 ≤‖ρ(·, s) − 1‖4L4 + C
∫ N+2

N

(
‖ρ − 1‖4L4 + ‖∇u‖4L4

)
dt. (5.56)

Integrating (5.56) with respect to s over [N , N + 1] leads to

sup
t∈[N+1,N+2]

‖ρ(·, t) − 1‖4L4 ≤ C
∫ N+2

N

(
‖ρ − 1‖4L4 + ‖∇u‖4L4

)
dt

→ 0, as N → ∞,

due to (5.45). Combining thiswith (1.27) and (1.30) implies that, for all p ∈ (2,∞),

lim
t→∞

∫

|ρ − 1|pdx = 0. (5.57)

Finally, we will prove

lim
t→∞

(‖u‖L4 + ‖∇θ‖L2
) = 0, (5.58)
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which, combined with (5.57), (1.27), (1.29)–(1.31) and the Gagliardo-Nirenberg
inequality, thus gives (1.28). In fact, one deduces from (1.29)–(1.31) that

∫ ∞

1

(
‖u‖4L4 + ‖∇θ‖2L2

)
dt ≤ C

∫ ∞

1
‖u‖L2‖∇u‖3L2dt

+
∫ ∞

1
‖∇θ‖2L2dt ≤ C,

(5.59)

∫ ∞

1

∣
∣
∣
∣
d

dt

(
‖u(·, t)‖4L4

)∣
∣
∣
∣ dt = 4

∫ ∞

1

∣
∣
∣
∣

∫

|u|2u · utdx

∣
∣
∣
∣ dt

≤ C
∫ ∞

1
‖u‖L∞‖u‖2L4‖ut‖L2dt

≤ C,

(5.60)

and
∫ ∞

1

∣
∣
∣
∣
d

dt

(
‖∇θ(·, t)‖2L2

)∣
∣
∣
∣ dt = 2

∫ ∞

1

∣
∣
∣
∣

∫

∇θ · ∇θtdx

∣
∣
∣
∣ dt

≤ C
∫ ∞

1
‖∇θ‖L2‖∇θt‖L2dt

≤ C.

(5.61)

Thus, we derive (5.58) easily from (5.59)–(5.61). The proof of Theorem 1.2 is
finished.
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