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Abstract

For the three-dimensional full compressible Navier—Stokes system describing
the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic
fluid, we establish the global existence and uniqueness of classical solutions with
smooth initial data which are of small energy but possibly large oscillations where
the initial density is allowed to vanish. Moreover, for the initial data, which may
be discontinuous and contain vacuum states, we also obtain the global existence
of weak solutions. These results generalize previous ones on classical and weak
solutions for initial density being strictly away from a vacuum, and are the first
for global classical and weak solutions which may have large oscillations and can
contain vacuum states.

1. Introduction

The motion of a compressible viscous, heat-conductive, and Newtonian poly-
tropic fluid occupying a spatial domain 2 C R? is governed by the following full
compressible Navier—Stokes system:

pr + div(pu) =0,
(pu); + div(pu @ u) — uAu — (u + A)V(divu) + VP = 0, (1.1)
(pE); +div(pEu + Pu) = A (KG + %/L|u|2) + div(uu - Vu + Audivu).
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. . . . . t
Here + > 0 is time, x € € is the spatial coordinate, and p, u = (ul, u?, u3) r e,

P(p, e), and 6 represent respectively the fluid density, velocity, specific internal
energy, pressure, and absolute temperature, and £ = e + %|u|2 is the specific total
energy. The constant viscosity coefficients i and A satisfy the physical restrictions

w>0, 2u+3%r>0; (1.2)

and positive constant « is the ratio of the heat conductivity coefficient over the heat
capacity. The equations (1.1) then express respectively the conservation of mass, the
balance of momentum, and the balance of energy under internal pressure, viscosity
forces, and the conduction of thermal energy. We study the ideal polytropic fluids
so that P and e are given by the state equations

RO

P(p,e) =(y — Dpe =Rpb, e= ST (1.3)
where y > 1 is the adiapatic constant, and R is a positive constant.
Let Q@ = R3 and §, 6 both be fixed positive constants. We look for the solutions

(p(x, 1), u(x,t),0(x,1)),tothe Cauchy problem for (1.1) with the far field behavior
(0, u,0)(x,1) = (5,0,6), as |x] > o0, 1 >0, (1.4)
and initial data

(0, pu, pO)(x, 1 = 0) = (po, pot0, pofo)(x), x € R, (1.5)

with pg > 0, 6y > 0. Note here that for classical solutions, (1.1) can be rewritten
as

pr +div(pu) =0,
p(us+u-Vu) = pAu + (u+ A)V(divu) — VP, (1.6)
%p(@, +u-V0) = kA0 — Pdivu 4+ A(divu)? + 241D (w)|?,

where D (u) = (Vu + (Vu)'') /2 is the deformation tensor. Moreover, for classical
solutions, we replace the initial condition (1.5) with

(p,u, ) (x,t = 0) = (po, ug, bp), x € R>. (1.7)

There is a lot of literature on the large time existence and behavior of solutions
to (1.1). The one-dimensional problem with strictly positive initial density and
temperature has been studied extensively by many people, see [1,11,12] and the
references therein. For the multi-dimensional case, the local existence and unique-
ness of classical solutions are known in [ 16, 19] in the absence of vacuum. Recently,
for the case that the initial density need not be positive and may vanish in open sets,
Cho-Kim [4] obtained the local existence and uniqueness of strong solutions. The
global classical solutions were first obtained by Matsumura—Nishida [15] for initial
data close to a non-vacuum equilibrium in some Sobolev space H*. In particular, the
theory requires that the solution has small oscillations from a uniform non-vacuum
state so that the density is strictly away from vacuum and the gradient of the den-
sity remains bounded uniformly in time. Later, Hoff [8] studied the global weak
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solutions with strictly positive initial density and temperature for discontinuous
initial data. On the other hand, in the presence of vacuum, this issue becomes much
more complicated. Concerning viscous compressible fluids in a barotropic regime,
where the state of these fluids at each instant ¢ > 0 is completely determined by the
density p = p(x, t) and the velocity u = u(x, t), the pressure P being an explicit
function of the density, the major breakthrough is due to Lions [14] (see also Feireisl
[5,7]), where he obtained global existence of weak solutions, defined as solutions
with finite energy, when the pressure P satisfies P(p) = ap?(a > 0,y > 1) with
suitably large y. The main restriction on initial data is that the initial energy is finite,
so that the density vanishes at far fields, or even has compact support. Recently,
Huang—Li—Xin [10] established the global existence and uniqueness of classical
solutions to the Cauchy problem for the isentropic compressible Navier—Stokes
equations in three-dimensional space with smooth initial data which are of small
energy but possibly large oscillations; in particular, the initial density is allowed to
vanish, even has compact support. This result can be regarded as the uniqueness and
regularity theory of Lions—Feireisl’s weak solutions in [5,7,14] with small initial
energy.

However, the global well-posedness of classical solutions, even the global ex-
istence of weak solutions to (1.1), remains completely open in the presence of
vacuum. For specific pressure laws excluding the perfect gas equation of state, the
question of the existence of so-called “variational” solutions in dimension d > 2
has been recently addressed in [5,6], where the temperature equation is satisfied
only as an inequality which justifies the notion of variational solutions. Recently,
for a very particular form of the viscosity coefficients depending on the density,
Bresch—Desjardins [3] obtained global stability of weak solutions. It is worth not-
ing here that Xin [20] first showed that in the case that the initial density has
compact support, any smooth solution to the Cauchy problem of the full compress-
ible Navier—Stokes system without heat conduction blows up in finite time. See
also the recent generalizations to the case for non-compact but rapidly decreasing
at far field initial densities [18].

Motivated by our previous work on the isentropic compressible Navier—Stokes
equations [10], we try to look for the global existence of classical and weak so-
lutions to the three-dimensional full compressible Navier—Stokes system (1.1); in
particular, the initial density is allowed to vanish.

Before stating the main results, we explain the notations and conventions used
throughout this paper. We denote

/fdx:/RSfdx.

For 1 < p < oo and integer k > 0, we adopt the simplified notations for the
standard homogeneous and inhomogeneous Sobolev spaces as follows:

LP = LP(RY), Wkr=whkr@®3), HF=wk?
D'={ueL®||Vul2 <oo}, D'P={ueL], ®R)|IVulLr <oc}.
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Without loss of generality, we assume that 5 = 6 = 1. We define the initial
energy Co as follows:

1
Co éz / poluol*dx + R / (0o log po — po + 1) dx
R (1.8)
+ m/po (6o —log6y — 1) dx.

Then the first main result in this paper can be stated as follows:

Theorem 1.1. For given numbers M > 0 (not necessarily small), q € (3,6), p >
2, and 0 > 1, suppose that the initial data (po, ug, 6o) satisfies

po—1le H*NW?>4, uge H>, 6y—1¢€ H?, (1.9)

0 <infpy <suppyp < p, 0<infly <supby <6, |Vuol,2 <M, (1.10)

and the compatibility conditions

— pAug — (u + A)Vdivug + RV (pobo) = /pog1, (L.11)
K Ay + %mo + (Vug)"? + A(divig)? = /poga, (1.12)

with g1, &> € L?. Then there exists a positive constant € depending only on i, A,
Kk, R, y, p,0 and M such that if

Co < e, (1.13)

the Cauchy problem (1.6) (1.4) (1.7) admits a unique global classical solution
(p,u,0) inR? x (0, 00) satisfying

0<p(x,1)<2p, 6O(x,1)>0, xR >0, (1.14)
and
p—1€C(0,T]; H*NW>9), (u,0—1) € C([0,T]; H?),
uelL®, T; H3NW>), 6 —1¢eL>®(,T; HY), (1.15)
(ur,60;) € L(r, T; H)N H'(x, T; HY),
forany 0 < v < T < o0o. Moreover, the following large-time behavior holds:
Am (o Cot) = Hir + IVuG, 0Ol +1VOC, Dlir) =0, (1.16)
with any
pe€2,00), rel26). (1.17)

The next result of this paper will treat the weak solutions with better regularity
due to the fact that discontinuous solutions are fundamental both in the physical
theory of nonequilibrium thermodynamics as well as in the mathematical theory
of inviscid models for compressible fluids. To begin with, we give the definition of
weak solutions.
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Definition 1.1. We say that (p, u, E = % lu|>+ %9) is a weak solution to Cauchy
problem (1.1) (1.4) (1.5) provided that

p—1€LZ(0,00); LENL®[RY), u,0— 1€ L0, 00; H (R?)),

and that for all test functions i € D(R>? x (—o00, 00)),
o0
/ oo (-, 0)dx + / / (oY + pu - Vi) dxdt =0, (1.18)
R3 0 JR3
/3 ,oou{)W(-, 0)dx +/ /3 (pu/w, + pulu -V + P(p, 9)%]-) dxdr
R o JRr

—/w/ (wuf-vw+(u+,\)(divu)wxj)dxdt:o, i=1,23,
0 R3
(1.19)

1 , R
=poluol” + oo | ¥ (-, 0)dx
R3 2 Y — 1

=/ / (PEY: + (0E + P)u - Vi) dxdt
0 R3

o0 1
—/ / </{V9 + EMV(|M|2) + uu - Vu + Audivu) - Vyrdxde. (1.20)
0 R3
Then, denoting by

fEfitu-V]
G £ u+ 1)divu — R(pb — 1), (1.21)
w2V xu,

which are the material derivative of f, the effective viscous flux, and the vorticity,
respectively, we state our second main result as follows:

Theorem 1.2. For given numbers M > 0 (not necessarily small), p > 2, and
0 > 1, there exists a positive constant € depending only on i, A, k, R, v, p, 0, and
M such that if the initial data (pg, uo, 6p) satisfies (1.10) and

Co <e, (1.22)

with Cy as in (1.8), there is a global weak solution (p,u, E = %Iul2 + %9) to
the Cauchy problem (1.1) (1.4) (1.5) satisfying

p—1¢€C(0,00); L>NLP), (1.23)

(pu, plul*, p(@ — 1)) € C([0, 00); H™), (1.24)

u e C(0,00); L%, 6—1¢C(0,00); W', (1.25)
u, 1), o(, 1), G-,1), Vo(,1)e H', t>0, (1.26)

p €[0,2p] almosteverywhere, 6 >0 almost everywhere, (1.27)
and the following large-time behavior:

lim (oG, 1) = UHier + lul, OllLrnr= + VO, Ollr) =0, (1.28)
—0o0
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with any p,r as in (1.17). In addition, there exists some positive constant C de-
pending only on u, A, k, R, v, p,0, and M such that, for o (t) = min{l, t}, the
following estimates hold:

o0
sup July + [ [ 1w +divpuowPasar ¢, (129

te(0,00)
sp [ (0= 1024 ol + 50— 1)
te(0,00)
> 1/4
+/0 (||W||§2 + ||ve||§2)dz <ccl, (1.30)

sup (o2 VulZs + o0 — 1%

te(0,00)

o
. 1/8
+/ (oznutuiz+oz||w||iz+a4||9t||§,l)dt <cc,/®. 13
0

Moreover, (p, u, 0) satisfies (1.6)3 in the weak form, that is, for any test function

R R o0
—/poeow<-,0>dx+—f fpe (Wr + 1 - Vi) dxdi
y—1 y—1Jo
o0 o0
=K/ /V9~thdxdt+Rf /pedivmpdxdt (132)
0 0

— /oo/ (A(divu)z +2/L|©(u)|2) Ydxdt.
0

The following Corollary 1.3, whose proof is similar to that of [10, Theorem
1.2], shows that we can obtain from (1.16) the following large time behavior of the
gradient of the density when vacuum states appear initially, which is completely in
contrast to the classical theory [15].

Corollary 1.3. In addition to the conditions of Theorem 1.1, assume further that
there exists some point xo € R> such that po(xg) = 0. Then the unique global
classical solution (p, u, ) to the Cauchy problem (1.6) (1.4) (1.7) obtained in
Theorem 1.1 has to blow up ast — oo, in the sense that for any r > 3,

Zl_iyg)lo Vo, DllLr = oo.
A few remarks are in order.
Remark 1.1. It follows from (1.15) that, forany 0 < 7 < T < o0,
(p—1, Vp, u, 6 —1)e C([R3 x [0, T]), (1.33)
and

Vu, Viue C([r, T LHNL®(r, T;: W) < C(R3 x [1, T]), (1.34)
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which together with (1.6); and (1.33) gives
o € CR3 x [, T)). (1.35)
Similarly, we deduce from (1.15) that
Vo, V26 € C([r, T]; H') N L™ (z, T; H?) < C(R3 x [1, T]),

which combined with (1.33)—(1.35) thus shows that the solution (p, u, 6) obtained
in Theorem 1.1 is in fact a classical one to the Cauchy problem (1.6) (1.4) (1.7) in
R? x (0, 00). Although it has small energy, yet its oscillations could be arbitrarily
large. In particular, initial vacuum states are allowed.

Remark 1.2. Theorem 1.1 is the first result concerning the global existence of clas-
sical solutions with vacuum to the full compressible Navier—Stokes system. More-
over, the conclusions in Theorem 1.1 generalize the classical theory of Matsumura—
Nishida [15] to the case of large oscillations since in this case, the requirement
of small energy, (1.13), is equivalent to smallness of the mean-square norm of
(po — 1, up, 6p — 1). In addition, the initial density is allowed to vanish and the
initial temperature may be zero. However, although the large-time asymptotic be-
havior (1.16) is similar to that in [15], yet our solution may contain vacuum states,
whose appearance leads to the large time blowup behavior stated in Corollary 1.3,
this is in sharp contrast to that in [ 15] where the gradients of the density are suitably
small uniformly for all time.

Remark 1.3. It should be noted here that Theorem 1.2 is the first result concerning
the global existence of weak solutions to (1.1) in the presence of vacuum and
extends the global weak solutions of Hoff [8] to the case of large oscillations and
non-negative initial density. Moreover, the initial temperature is allowed to be zero.

Remark 1.4. It follows from (1.29) and Sobolev’s embedding theorem that u and
6 obtained in Theorem 1.2 are in fact Holder continuous away from ¢ = 0, that is,
forany 0 < 7 < oo,

1/2,1/8
sup ullzos + () gy [+ sup 101l + (0)

te[r,00) t€[7,00)

1/2,1/8

R3x[7,00) < 0,

where we employ the usual notation for Hélder norms:

RN TEATL . |lw(x, 1) —w(y,s)|
¢ w0, (nyeo X = [V |t — 5|18’
(x,0)#(y,s)

for functions w : Q C R3 x [0, c0) — R™.

Remark 1.5. In fact, the weak solutions obtained by Theorem 1.2 have better reg-
ularity than just finite energy weak ones, and can be viewed as mild solutions to
the full compressible Navier—Stokes system (1.1).
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We now comment on the analysis of this paper. Note that though the local
existence and uniqueness of strong solutions to (1.6) in the presence of vacuum was
obtained by Cho—Kim [4], the local existence of classical solutions with vacuum to
(1.6) still remains unknown. Some of the main new difficulties to obtain the classical
solutions to (1.6) (1.4) (1.7) for initial data in the class satisfying (1.9)—(1.12) are
due to the appearance of vacuum. Thus, we take the strategy that we first extend the
standard local classical solutions with strictly positive initial density (see Lemma
2.1) globally in time just under the condition that the initial energy is suitably small
(see Proposition 5.1), then let the lower bound of the initial density go to zero. To
do so, one needs to establish global a priori estimates, which are independent of
the lower bound of the density, on smooth solutions to (1.6) (1.4) (1.7) in suitable
higher norms. It turns out that the key issue in this paper is to derive both the
time-independent upper bound for the density and the time-dependent higher norm
estimates of the smooth solution (p, u, 6). Compared to the isentropic case [10],
the first main difficulty lies in the fact that the basic energy estimate cannot yield
directly the bounds on the L>-norm (in both time and space) of the spatial derivatives
of both the velocity and the temperature since the super norm of the temperature
is just assumed to satisfy the a priori bound (min{l, t})_3/ 2 (see (3.6)), which in
fact could be arbitrarily large for small time. To overcome this difficulty, based on
careful analysis on the basic energy estimate, we succeed in deriving a new estimate
of the temperature which shows that the spatial L2-norm of the deviation of the
temperature from its far field value can be bounded by the combination of the initial
energy with the spatial L?-norm of the spatial derivatives of the temperature (see
(3.10)). Combining this estimate, which will play a crucial role in the analysis of
this paper, with elaborate analysis on the bounds of the energy, then yields the key
energy-like estimate, provided that the initial energy is suitably small (see Lemma
3.3).

Next, the second main difficulty is to obtain the time-independent upper bound
of the density. Based on careful initial layer analysis and making a full use of
the structure of (1.6), we succeed in deriving the weighted spatial mean estimates
of the material derivatives of both the velocity and the temperature, which are
independent of the lower bound of density, provided that the initial energy is suit-
ably small (see Lemmas 3.4 and 3.5). This approach is motivated by the basic
estimates of the material derivatives of both the velocity and the temperature,
which are developed by Hoff [8] in the theory of weak solutions with strictly
positive initial density. Having all these estimates at hand, we get the desired
estimates of L!(0, min{l, T}; L*®(R3))-norm and the time-independent ones of
Lz(min{l, T}, T, L (R3))-norm of both the effective viscous flux (see (1.21))
for the definition) and the deviation of the temperature from its far field value. Us-
ing these key estimates and a Gronwall-type inequality (see Lemma 2.5), we obtain
a time-uniform upper bound of the density which is crucial for global estimates
of classical solutions. This approach to estimate a uniform upper bound for the
density is new compared to our previous analysis on the isentropic compressible
Navier—Stokes equations in [10].

Then, the third main step is to bound the gradients of the density, the velocity,
and the temperature. Motivated by our recent studies [9] on the blow-up criteria
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of strong (or classical) solutions to the barotropic compressible Navier—Stokes
equations, such bounds can be obtained by solving a logarithm Gronwall inequality
based on a Beale-Kato—Majda-type inequality (see Lemma 2.6) and the a priori
estimates we have just derived. Moreover, such a derivation simultaneously yields
the bound for L3/2(0, T'; L (R3))-norm of the gradient of the velocity(see Lemma
4.1 and its proof). It should be noted here that we do not require smallness of the
gradient of the initial density which prevents the appearance of vacuum [15].

Finally, with these a priori estimates of the gradients of the solutions at hand,
one can obtain the desired higher order estimates by careful initial layer analysis
on the time derivatives and then the spatial ones of the density, the velocity and
the temperature. It should be emphasized here that all these a priori estimates are
independent of the lower bound of the density. Therefore, we can build proper
approximate solutions with strictly positive initial density then take appropriate
limits by letting the lower bound of the initial density go to zero. The limiting
functions having exactly the desired properties are shown to be the global classical
solutions to the Cauchy problem (1.6) (1.4) (1.7). In addition, the initial density is
allowed to vanish. We can also establish the global weak solutions almost the same
way as we established the classical one with a new modified approximating initial
data.

The rest of the paper is organized as follows: in Section 2, we collect some
elementary facts and inequalities which will be needed in later analysis. Section 3
is devoted to deriving the lower-order a priori estimates on classical solutions which
are needed to extend the local solution to all time. Based on the previous results,
higher-order estimates are established in Section 4. Then finally, the main results,
Theorems 1.1 and 1.2, are proved in Section 5.

2. Preliminaries

The following well-known local existence theory, where the initial density is
strictly away from vacuum, can be shown by the standard contraction mapping
argument (see for example [15,16], in particular, [15, Theorem 5.2]).

Lemma 2.1. Assume that (pg, ug, 6o) satisfies
(po — 1, ug, 00— 1) € H>, inf po(x) > O. 2.1
xeR3

Then there exist a small time Ty > 0 and a unique classical solution (p, u, 0) to
the Cauchy problem (1.6) (1.4) (1.7) on R3 x (0, Ty] such that

1
inf p(x, 1) > = inf po(x), (2.2)
(x,1)eR3x (0, T 2 xeR3

(p—1,u,0 —1) € C(0, Tol; HY), p; € C([0, Tol; H?), 2.3
(ur, 6,) € C(I0, Tol; HY), (u,0 — 1) € L*(0, Tp; HY), '
and
(ous, 00;) € L20, To; H3), (ousy, 06y) € L2(0, To; HY, 0.4
(0%us, 0%0y) € L2(0, To; H?), (0%up, 0%6i0) € L2(0, To; L?),
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where o (t) = min{l1, t}. Moreover, for any (x,t) € R3 x [0, Ty], the following
estimate holds

To
0(x,1) > inf 90(x)exp{—(y - 1)/ ||divu||Loodt}, 2.5)
xeR3 0

provided inf 6y(x) > 0.

xeR3

Proof. We only have to show (2.4) and (2.5), which are not given in [15, Theorem
5.2].

Without loss of generality, assume that 7o < 1. We first prove (2.4);. Differen-
tiating (1.6), with respect to ¢ leads to

puy + pruy + piu - Vu + puy - Vu + pu - Vuy + VP,

. (2.6)
= pnAu; + (n + A)Vdivu;.
This shows that ru; satisfies
ptu) — pA(tuy) — (n + 2)Vdiv(tu,) = Fi, @7
(tur)(x,0) =0, '

where
Fi £ pu, — tpjuy — tpsu - Vu — tpuy - Vu — tpu - Vu, — RtV (0,0 + pb;)

satisfies F; € L%(0, To; L?) due to (2.3). It thus follows from (2.3), (2.2), and
standard L>-theory for parabolic system (2.7) that

(tuy);, V> (tuy) € L*(0, Ty; L. (2.8)

Similarly, we differentiate (1.6)3 with respect to ¢ to get

k(y —1
_¥A9t + pett
= =06 —pr (u-VO + (y — DOdivu) — p (u - VO 4 (y — 1)0divu),
-1
R (A(divu)z 4 2u|©(u)|2) , (2.9)
R '
which implies that ¢0; satisfies
Rp(t6,), — — 1)A(t6;) = RF>,
o) — Kk (y VA (16,) 2 (2.10)
(t6:)(x,0) = 0,

with
Fr 206, — tp;6; — to; (u - VO + (y — 1)0divu)

1
1o -V + (y — Dodiv), + ©

t (k(divu)2 + 2/L|®(”)|2)

t
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One derives from (2.3) that F, € L*(0, Tp; L?), which together with (2.3), (2.2),
and standard L?-theory for parabolic system (2.10) implies

(t6,)s, V2 (16,) € L*(0, Ty; L?). (2.11)
It thus follows from (2.3), (2.8), and (2.11) that
Fi, F € L*(0, Tp; HY,

which together with (2.3), (2.2), (2.7), and (2.10) gives (2.4).
Next, we prove (2.4),. Differentiating (2.6) with respect to ¢ gives

sy + pu - Vi — wluye — (0 + A)Vdivg,
= 2div(pu)us + div(pu)rur — 2(pu); - Vur — (orett + 2p01ut) - Vu
—puyr - Vu — V Py, (2.12)

This together with (2.4); and (2.3) implies that 2u,, satisfies

ot ug)e — nA(Puy) — (0 + M)Vdiv(t?u,) = Fs,

(%) (x, 0) = 0, (2.13)

where

F3 £2tpuy, — tzpu -Vus + 212div(,0u)u,, + tzdiv(,ou),u, 2.14)
- 2f2(,0u)t - Vu, — t2(/0ttu +2psug) - Vu — fz,OMtt - Vu — ﬁvpm -

satisfies F3 € L2(0, To; L?) due to (2.3) and (2.4);. It follows from (2.2), (2.3),
(2.4)1, and standard L2-estimate for (2.13) that

(i), V2 (Puyr) € L*(0, To; L?). (2.15)
Similarly, differentiating (2.9) with respect to ¢ yields
k(y — 1)
00 + pu - VO — TAQn
= 2div(pu)b;; — py 6y +u - VO + (y — 1)0divu)
—2p; (u - VO + (y — 1)6divu),
—p (s - VO + 2u; - VO + (y — 1)(0divu)s)
-1
+VT ()\(divu)2 + 2,u|©(u)|2) . (2.16)

1t
We thus obtain from (2.4)1, (2.3), and (2.16) that 726,, satisfies

(2.17)

Rp(t26,1); — k(y — D)A(t%6;,) = RF4,
(t%0,)(x, 0) = 0,
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with
F4 22106, — 1% pu - VO + 262div(pu)by — 12 p1 O + u - VO + (y — 1)0divu)
—2t2p, (u - VO + (y — Dodivu), — 12 puy - VO — 2t puy - V6,

—1
— (y — D2p@divu), + L

2 (A(divu)z + 2M|®(u)|2)

tt

It thus follows from (2.3) and (2.4); that F4 € L*(0, Tp; L?), which together with
(2.2), (2.3), (2.4)1, and standard L>-estimate for (2.17) gives that

(20,1)¢, V2(t%0,,) € L*(0, To; L?). (2.18)

One thus obtain (2.4), directly from (2.3), (2.4)1, (2.15), and (2.18).
Finally, we will show the lower bound of 6, (2.5), by maximum principle. In
fact, it follows from (1.6)3 and (1.4) that

—1
p0, + pu - VO — %Ae + (7 — Dpbdivu > 0,

60— 1 as |x| = oo,
where we have used
201D w)|* + A(divu)? > 0. (2.19)
By (2.3), we have

To
/ ldive || Lodt < 00,
0

which together with the standard maximum principle thus gives (2.5). The proof
of Lemma 2.1 is completed.

Next, the following well-known Gagliardo—Nirenberg—Sobolev-type inequality
will be used later frequently (see [17]).

Lemma 2.2. For p € (1, 00) and q € (3, 00), there exists some generic constant
C > 0 which may depend on p and q such that for f € D' (R?), g € LP(R?*) N
DY (R3), and ¢, y € H*(R3), we have

I £llzs < CIV fllza, (2.20)
-3)/(3 -3 3q/3 -3

Ielle ) = Cllgl| gD/ CaIFPa=0) g g9/ CTer@=D - (2.21)

levlim: < Cllell g2 ¥l g2 (2.22)

Then, the following inequality is an easy consequence of (2.20) and will play
an important role in our analysis.

Lemma 2.3. Let the function g(x) defined in R be non-negative and satisfy g(-) —
1 € L?>(R?). Then there exists a universal positive constant C such that for r €
[1, 2] and any open set © C R>, the following estimate holds

6—r)/3
/ Ifl'dx < C / glfirdx +Clig = S IV sy, (223)
D) )

forall f € {f € D'RY) | glfI" e L'(D)} .
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Proof. In fact, Sobolev’s inequality, (2.20), yields that

2[ |f|'dx$2/ glfl’dX+2/ lg — 1[1f1"dx
z ) z

3— 6— 3r/(6—
<2 / ST + 208 — gz 155 1A
p))

< 2[2 ¢l /17 dx +/E FIdx + Cllg = WS 21V A1
which implies (2.23) directly. The proof of Lemma 2.3 is completed.
Next, it follows from (1.6); that G and w, defined in (1.21), satisfy
AG = div(pu), puAw =V x (pir). (2.24)

Applying the standard L?-estimate to the elliptic systems (2.24) together with
(2.20) yields the following elementary estimates (see [10, Lemma 2.3]):

Lemma 2.4. Let (p, u, 0) be a smooth solution of (1.6) (1.4). Then there exists
a generic positive constant C depending only on |, A, and R such that, for any
p €12,6]

IVullzr < C(IGlLr + l@llzr) + Cllod — iLr, (2.25)
IVGliLr + IVolzr < ClipitlLr, (2.26)
.13p—6)/12
IGILr + lllze < Clloil ¥~ (1 Vull 2
6— 2
Hlp6 — 1]12) P, (2.27)

6—p)/(2 . 3p—6)/(2
IVullr < CIVullS PP (lpill 2 + 1108 — 11,6) 2P~ (2.28)

Next, the following Gronwall-type inequality will be used to get the uniform
(in time) upper bound of the density p:

Lemma 2.5. Let the function y € W-1(0, T) satisfy
Y6 +ay®) <g)on[0.T], y(©0) =y, (2.29)

where « is a positive constantand g € LP (0, T\) NLY(Ty, T) for some p > 1,q >
1, and Ty € [0, T]. Then

sup y(@) < Y1+ (A +a Y (lglherom) + lgla, ) - (2.30)

0<t<T
Proof. Let p’ and ¢’ denote the conjugate numbers of p and ¢ respectively. Mul-
tiplying (2.29) by ¢’ and integrating the resulting inequality over (0, ) yield that

min{z, 77} t

¢S g(s)lds + f ¢ g(s)]ds

e y(1) < y°+/
0 min{z, T}
< 15°1 + llgl e ©mintr. i 1€ L1 0.0
+ ”g”L‘i(min{t,Tl 1.1) ”eas ”Lq’ 0,1)

< 151+ (Igllzro.m) + lglizacr,m) (1 +a™ e,
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due to [le**||zr0.n < (1 + a e forall r € [1, co]. This yields (2.30) directly
and finishes the proof of Lemma 2.5.

Finally, the following Beale—Kato—Majda-type inequality whose proof can be
found in [2,9] will be used later to estimate | Vu| o and Vol ;2qz6-

Lemma 2.6. [2,9] For3 < g < oo, there is a constant C(q) such that the following
estimate holds for all Vu € L>(R3) N D4 (R3):

”VMHLOO(]R3 <C (||diVM||L00(R3) + ||V X M”Lw(R})) log(e + ||V2u|qu(R3))

+ C”VM ||L2(R3) +C.
3. A Priori Estimates (I): Lower-Order Estimates

In this section, we will establish a priori bounds for the smooth, local-in-time
solution to (1.6) (1.4) (1.7) obtained in Lemma 2.1. We thus fix a smooth solution
(p,u,0)of (1.6) (1.4) (1.7) on R3 x (0, T'] for some time T > 0, with initial data
(po, ug, 6p) satistying (2.1).

For o (¢) £ min{1, ¢}, we define A;(T)(i = 1, ..., 4) as follows:

T
A(T) = sup ||Vu||i2+/ /p|ﬂ|2dxdt, 3.1
tel0,T] 0
Ax(T) = - sup /p(e—1>2dx+fT(||w||2z+||ve||22)dr
20y = 1 tefo,m 0 L L
3.2)
A3(T) = sup <o||wniz+02/p|u|2dx+oz||ve||iz>
te(0,7T]
T .
+ / / (onli? +o?Vi +0%p(9)) dxdr. (3.3)
0
T
_ 4 312 4 312
Ag(T)= sup o /,0|9| dx+/ /o |VO|“dxdz. 3.4
te(0,T] 0

We have the following key a priori estimates on (p, u, 6).

Proposition 3.1. For given numbers M > 0 (not necessarily small), p > 2, and
0 > 0, assume that (pg, uo, ) satisfies

0 <infpy <suppo < p, 0<infy<supby <60, |[Vugl2<M. (3.5)

Then there exist positive constants K and gy both depending only on i1, ), k, R, y,

0,0, and M such that if (p,u,0) is a smooth solution of (1.6) (1.4) (1.7) on
R3? x (0, T] satisfying

0<p<2p, Ai(T) <3K, A(T)<2C)/? (i=2,3,4), (36)
the following estimates hold:

0<p<3p/2, Aio(T) <2K, A(T)<Cy? (=234, (37
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provided
Co < ¢o. (3.8)

Proof. Proposition 3.1 is an easy consequence of the following Lemmas 3.2, 3.3,
and 3.6-3.8, with &g as in (3.97).

In this section, we always assume that Cop < 1 and let C denote some generic
positive constant depending only on i, A, k, R, y, p, 9, and M, and we write C (o)
to emphasize that C may depend on «.

First, the following elementary L? bounds are crucial for deriving the desired
estimate on A, (7T) (see Lemma 3.3 below).

Lemma 3.1. Under the conditions of Proposition 3.1, there exists a positive con-
stant C = C(p) depending only on u, \,«, R, y, and p such that if (p,u,0) is
a smooth solution of (1.6) (1.4) (1.7) on R3 x (0, T] satisfying 0 < p < 2p, the
following estimates hold:

sup / (p|u|2 + (o — 1)2) dx < C(p)Co, (3.9)
0<t<T
and
16 = D, D2 < CHCY* + BT IVOC, )12, (3.10)

forallt € (0, T].
Proof. First, it follows from (3.5) and (2.5) that, for all (x, ) € R3 x (0, T),
O(x,t) > 0. (3.11)

Adding (1.6)> multiplied by u to (1.6)3 multiplied by 1 — 61, we obtain after
integrating the resulting equality over R? and using (1.6) that
d
dr

- / [—mvmz — O+ w(dive)? — k62| V62

1 R
(5,0|u|2 4+ R(1+plogp —p) + mp(@ —log6 — 1)) dx

+( =6~ Y (divu)? + 2,u|©(u)|2)] dx

= —f <9_1(A(divu)2 +2uD W) %) + K9—2|ve|2) dx, (3.12)
where in the second equality we have used
2/ 1D (u)2dx = / (|Vu|2+(divu)2) dx. (3.13)
Direct calculations yield that
plogp—p+1=(p 1)2/1—1_a d
— = —_ o
1
> AN A = 1< - l 27
Z 32510 (=1
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and
1
—1og9—1=(9—1)2/ %
) a(9—1)+1 3.15)
1

> —(0 — Dlge.ns-2 + 2(9 — 11 0.n<3)

oo

where we denote
O, 1) >2) 2 {x c R3)9(x,t) > 2} ,
O, 1) <3) 2 {x € Rﬂe(x,t) < 3}.

Integrating (3.12) with respect to ¢ over (0, T') yields

1 R
sup /<—p|u|2+R(1+plog,0—,0)+—p(@—log@—1)>dx
0<t<T -

2
/ /( A divi)? + 21D W)>) + « v |>dxdt<2C0, (3.16)

which together with (2.19), (3.11), (3.14), and (3.15) leads to

sup f(p|u|2+<p—1>2)dx
0<t<T

+ sup / (P(9 — Dl@cn>2) + 00 — 1)21(9(.,r)<3)) dx
0<t<T
=< C(p)Co. (3.17)

This directly gives (3.9).
Next, we shall prove (3.10). Taking g(x) = p(x, 1), f(x) =0(x,t)—1,r =2
and ¥ = (6(-, t) < 3) in (2.23), we conclude after using (3.17) that

16C, 1) = Ul 2000 <3) < CHICy + CHIC IVOC, Dl 2gsy. (B.18)

Similarly, taking g(x) = p(x, 1), f(x) =0(x,t)—l,r =1land X = (6(-, 1) > 2)
in (2.23), we obtain after using (3.17) that

10C, 1) = Ul ec.n=2) = C(BICo + CHCYIVOC, Dl 2z,

which together with Holder’s inequality and (2.20) leads to

1/3

5/6

16C, 1) = Uir2@.n>2)

2/5 3/5
S 10C 0 = 1o 10C D = gy,
= ) (65" + ¢ Ivoc. iys ) 1vec. ol

< C(PCY? +CBC VO, Dl 2 (3.19)

Combining (3.18) and (3.19) yields (3.10) directly. The proof of Lemma 3.1 is
finished.
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Next, the following lemma will give an estimate on the term A (o (7)) :

Lemma 3.2. Under the conditions of Proposition 3.1, there exist positive constants
K > M + 1 and e1 < 1 both depending only on , A, k, R, y, p, and M such that
if (0, u,0) is a smooth solution of (1.6) (1.4) (1.7) on R3 x (0, T] satisfying

0<p <25 Axo(T) <26y, (3.20)
the following estimate holds:
Ai(o(T)) = 2K, (3.21)
provided A1(o(T)) < 3K and Cy < &1.

Proof. First, multiplying (1.6)> by 2u, and integrating the resulting equality over
IR3, we obtain after integration by parts that

d .
—/(/L|Vu|2+(u+)»)(dlvu)2> dx+/p|u,|2dx
dt
< —2/VP~uldx+/,0|u . Vu|2dx
d . . 2
= 2Rd_t (p — Ddivudx — 2 | Pidivudx + | plu - Vu|“dx

d . R* d 2
=2R— [ (pf — Ddivudx — ———— | (p6 — 1)“dx
dr 2u+ A de
2
2+ A

/ P,Gdx + / plu - Vu|?dx, (3.22)
where in the last equality, we have used

divu =

T (G + R(pf — 1)), (3.23)

due to (1.21).

Next, it follows from Holder’s inequality, (3.20), (2.20) and (3.9) that for p €
(2, 6],

106 = e =196 — 1) + (o — Dl
<10@ — DI N0 = DR P 1o~ 1 (3.24)
< C(Ia)c(g6—P)/(16p)”V9”3L(2P—2)/(2p) + C([))Cé/p,

which together with (2.28) yields

1Vull e = €(o) (102l 2 + 19612 + C°) (3.25)
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Noticing that (1.6) implies
P, = —div(Pu) — (y — 1)Pdivu + (y — )k A0
o, 5 (3.26)
+ (= D (rdivin? + 2D )

we obtain after integration by parts and using (3.20), (2.20), (2.26), (3.25), (3.24),
and (3.9) that

‘fPtGdX

< C/P<|G||W|+|u||VG|>dx+/(|v0||VG|+|Vu|2|G|)dx

= C/p(IGIIVMI+IMIIVGI)dX+C/pI0— HAGIIVul + [u|[VG[)dx

3/2 1/2
+ CIIVG 21V 12 + CIIVG | 2] Va5 1Vl o

= CO)UVulip2 +1p0 = U2 Vul 2 + Clipull 2 VG 12

- 1/2 1/2

+C@ 0@ — DIV IVGI 21Vl 2 + CIVGI 21V,
- 3/2 . 1/2 1/2 1/12

+ COIVGINVulE (loal )7 + 1VoN}% + /%)

_ 1/4 - —
< C©, p)Cy + CB, DIIVul?, +8IVGI2, + C(5, OO 12 Vul2,

+CE.AIVONT, + 810 i, + C6, p)IVul,
= C(p)8lp 2il2 + €. 5) (IVOI3 + IVull}: + 1) + CG. p)]| Vul -

(3.27)
Finally, it follows from (2.20) and (3.25) that
/mu VulPdx < C(O) )2l Vull 2 Va6
< 8lp" i3, + C(B, O)IVul, (3.28)

+C5,8) (IVulz + IV6IZ).

Substituting (3.27) and (3.28) into (3.22) and choosing § suitably small, we get
after integrating (3.22) over (0, ¢ (T")) and using (3.20) that

o(T)
sup || Vull?, +/ /,olit|2dxdt
0<t=<o(T) 0

-\ ~1/4 -\ ~1/4
<CM+CHCY +C(mCy™ sup  [Vul,
0<t=<o(T)

-\ ~1/4
<K+C(HCY" sup  [[Vulls,
0<t<o(T)

where K is defined by
KE£CM+Cp)+1, (3.29)
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depending only on u, A, , R, v, p, and M. We thus finish the proof of (3.21) by
choosing &1 £ min {1, (9C(p)K)™*} and K as in (3.29). The proof of Lemma 3.2
is completed.

Next, the following energy-like bound of the local smooth solutions will be
crucial for further estimates.

Lemma 3.3. Under the conditions of Proposition 3.1, there exists a positive con-
stant &> depending only on u, A, k, R, vy, p, 0, and M such that if (p,u,0) isa
smooth solution of (1.6) (1.4) (1.7) on R3 x (0, T satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

ANT) < )", (3.30)
provided Cy < &;.

Proof. First, multiplying (1.6)> by u and integrating the resulting equality over R3
give
d

1
T <§,o|u|2 + R(1+plogp — p)> dx

b [ 19uPax -+ a2 [ v
= () (16 = U2 + o = Tz2) [ Va2
= o) (¢3* + ¢ 198112 ) Va2

= oS + ¢y (V013 + IVull, ) (3.31)

where in the second inequality we have used (3.9) and (3.10).
Then, multiplying (1.6)3 by 6§ — 1 and integrating the resulting equality over
R3 lead to

R d / 2 2

| PO —D7dx +«[IVO|2

2(y — 1) dt (3.32)
< C(ﬁ)/0|9 - 1||divu|dx+C/ IVul26 — 1|dx.

For the first term on the righthand side of (3.32), one has
/9|9 — 1||divu|dx

< f(e — 1)¥|divu|dx +/ 160 — 1]|divu|dx

1/2
L2

3/2
L/6 IVull2 + CllO = 1l 2 Vull 2

- 1/4 1/6 1/2 3/2
< 5. M) (¢t + ¢/ Iven) Ivels

= Clo = 15116 — 1]

1/3

- 1/2
+C(5) (Co/* + € Iv0lL2 ) 1Vul 2

= C(3, MCY* + €5, Ty (V013 + IVull:),  (3.33)
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where we have used (2.20), (3.10), (3.6), and the following simple fact:

sup [|[Vullzz < Ai(o(T)) + A3(T) < C(p, M), (3.34)
1€[0.T]

due to (3.6). For the second one on the righthand side of (3.32), in light of (3.10),
(2.20), (2.28), (3.25), and (3.6), we have

/|W|2|9 — 1|dx
1/2 1/2
< Cl6 = 11,516 — 1/ IVull 21Vl s
< (5, M) (g IVeNLE + Sy 1vol2 ) (Il 2 + 19012 + C°)
<C(p. M, 5)C)" (||,o‘/2u||L2 + 1) +C(5, M) (8 n c”6) IVOI2,. (3.35)
Substituting (3.33) and (3.35) into (3.32) leads to

R
— 0 —1)%d \Y
2(y—1)dt/ 6 — D2dx + V6|2,

= 5. M) (5+¢"°) (V012 + IVull,)
+C(, M, &), (11 ill2, + 1) (3.36)

Next, combining (3.31) and (3.36) yields

d

el 12
” p(6 1))dx

R
20y = 1
+u/|vu|2dx+(u+x)f(divu)2dx+K/|ve|2dx

1
(5,0|u|2 +R(1+plogp —p) +

= o.M (5+¢°) (V013 + IVull3,)
+C(p. M, 8)CP (||p1/2u|| + 1). (3.37)
Letting
6
Co < &2, 2 min {1, (4c, My~ minfu, ) } ,

choosing § < (4C(p, M)~} min{u, k} and integrating (3.37) over (0, o (T)), we
obtain after using (3.6) that

2 2 R 2
sup f(plul +p—-D"+——pO—-1 )dx
0<t<o (T) 2(y = D

1/3

(3.38)
o (T)
+/0 (Vs + 19012, ) dr < €5, MIC",

due to

/,0()(0() —1)2dx <20+ 1) f po (Bp — log By — 1) dx.
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Next, applying the standard L>-estimate to the following elliptic problem

{/;Aj 1: ﬁﬁ:iz,edivu — A(divi)? — 2u|Dw)|?, (339
gives
1V2012, = € (19613 + IVull}s + 16Vul?,)
= € (IV012, + 1Vul2,) (1023, + 1VOI3, +1)
+C (110612, + 1Vul}s ) (3.40)

where we have used
/92|W|2dx < Cl0 = 1i36lIVull 2Vull s + ClIVul,

= € (19612, + 1Vul2, ) (10"l + 19012, + 1),

(3.41)
due to (2.20) and (3.25). Note that (3.25) and (3.6) give
_ 1712
sup o||Vulle < C(p)Cy . (3.42)
0<t<T
Combining this with (3.40) and (3.6) leads to
sup a4 IV201%, = C(B) sup o (VoI + IVull, ) x
O0<t<T 0<t<T
sup_a? (1123, + VoI, +1)
0<r=T (3.43)
. 3
+C sup (o*10812, + (o Vull2) (o1 Vule)*)
0<t<T
< Cc(pCy'®,
which together with (2.20), (2.21), and (3.6) yields that
2 2 2
sup 020 — 1|z < sup o (||V9||Lz v 9||L2)
0<t<T 0<t<T (3.44)

<cpcy' <1y,

provided Co < 25 £ min {1, 2C(p))~'®} . Let Co < min{ez,1, &2,5}. It follows
from (3.44) that, for all (x, ) € R? x [o(T), T,

1/2 <0(x,t) <3/2,
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which as well as (2.19) and (3.13)—(3.16) gives

sup / (p|u|2 +p—-D*+ %p(e -~ 1)2) dx
oh==1 (3.45)

T

+ / (nwniz + ||ve||§z) dr < C(p)Co.
o(T)

Finally, the combination of (3.38) with (3.45) yields

sup /<p|u|2+ =12+ —2 o 1>2) d
26— 1)

0<t<T

T
+f (Vs + 19012, ) de
0

= max {C(5)Co, €5, MIC).
which in particular gives (3.30) provided

Co < &2 2 min {e21, 222, (C(E) ™2, (€5, M) 12}

The proof of Lemma 3.3 is completed.

Next, to estimate A3(7), we establish the following Lemmas 3.4 and 3.5 con-
cerning some elementary estimates on # and € for the case that the density may
contain vacuum states. This approach is motivated by the basic estimates on i and 6
developed by Hoff [8] where the density is strictly away from vacuum. The estimate
of A3(T) will be postponed to Lemma 3.6.

Lemma 3.4. Under the conditions of Proposition 3.1, let (p, u, ) be a smooth solu-
tion of (1.6) (1.4) (1.7) on R3x (0, T] satisfying (3.6) with K as in Lemma 3.2. Then
there exist positive constants C and C| both depending only on u, A, k, R, v, p, 0,
and M such that, for any B € (0, 1], the following estimates hold:

3 . :
@B 0+ [ oplifax = ccy'a’ + 20710012,

+CB7 (IV012, + 1Vul?,)

+Co? || Vull} . (3.46)
and
2 .12 3u 21902
o plul“dx +7 |Vu|“dx
t
<20 / plil*dx + Cro?(p' %017, (3:47)
+C (IV012: + IVul,) + Co2Vullys,
where

Bi(t) & pulVull, + (L + wlldivul|7, + 2R / divu(pd — Ddx. (3.48)
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Proof. First, we prove (3.46). Multiplying (1.6); by ou and integrating the resulting
equality over R3 lead to

/a,o|b't|2dx = /(—mz VP + poAu - i+ (h+ p)o Vdivu - i)dx

3 (3.49)
23 M.
i=1
Noticing that (1.6); leads to
P, = Rpb — div(Pu), (3.50)
we get after integration by parts that, for any 8 € (0, 1],
M| = /0 ((P — R)divu), dx + / o (—Pidivu + Pu - Vdivu) dx
+ / aPaiujajuidx
=R (/ o(pb — 1)divudx> — Ro’ /(,09 — D)divudx
1
— R/adivupédx+/Udiv(Pudivu)dx
+ / o Pdu’dju'dx (3.51)

<R </o(p9 - 1)divudx> + Co'|Vul 2100 — 1]l 2
t

+C@OIVul a0 iz + CPo [ 019uiax

<R </0(p9 - 1)divudx> +C(HCy o' + Bo2l1p' %612,
t

+C(8Np' il + C(p. 8, M)B™! (||Vu||iz + ||ve||’iz) :

where in the last inequality we have used (3.24) and the following simple fact:

/0|Vu|2dx §/|9— 1||Vu|2dx+/|Vu|2dx

3/2 1/2 2
L2 Lo + ”VMHLQ

3/2 . 1/2
< CIVOl 2 1Vul} (Ipitl 2 + 19612 + 1) + [ Vul2,

= CllO = sl Vull2 I Vull

= 6 (IV0I% + 10" 2003, ) + C (5.8, M) VulZ, (352)
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due to (2.20), (3.34), and (3.25). Integration by parts gives

M, = /,uaAu - iudx

= 2 (oIVuls) + 5o IVulls — po / 0l 0, (u ol yx
1% 1% j j
=7 (0||Vu||iz>t + 50 IVulljs = po / diu 9t ! dx

+%a/|Vu|2divudx
w
< =5 (oIVul2) +CIVul: + Co?(IVulfs. (3:53)

Similar to (3.53), we have

p—”

My < —
=777

(a||divu||iz)t +CIVu2, + Co?[Vullty. (354
Substituting (3.51), (3.53), and (3.54) into (3.49), we obtain (3.46) after choosing
§ suitably small.

It remains to prove (3.47). For m > 0, operating o117 [ /3t +div(u-)] to (1 .6)%
and integrating the resulting equality over R3, we obtain after integration by parts

that
m
(%/phﬂzdx)t — %Um_la’/p|d|2dx

= _/amuf[ajpt + div(d; Pu)]dx
+u/amu1mu{ + div(uAu’)]dx
+(\ 4+ w) / a’"af[a,ajdivu + div(ud;divu)]dx
3
A Z N;. (3.55)
i=1
We get after integration by parts and using (3.50) that
Ny = _/amui[ajpt + div(d; Pu)]dx
= — f o™i (Rj(ph) — 3;div(Pu) + div(d; Pu)) dx
= _fama/ (R3;(p6) — div(Pd;u)) dx

< %/U”’szdx +C(p)o™ (||,oé||i2 +/92|W|2dx>. (3.56)
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Integration by parts leads to

No=p f o [Au! + div(usu’)]dx

—u/am (8,-b'tj8,-ulj + Aulu - Vﬂj) dx

—M/G’" (|vu|2 — gl u* o dyud — ;0 i ! + Audu - Wf') dx

—u/am (|vu|2 + 00 ;! divee — 9,019 9k pued — a,-ufa,-u"akuf) dx

7
< —%/amwmzdx+C/Um|Vu|4dx. (3.57)

Similarly, we have

N3 < _7(’“‘;’\) /am(divu)zdx + C/0m|Vu|4dx. (3.58)

Substituting (3.56)—(3.58) into (3.55) yields that there exists some C depending
only on u, A, k, R, y, p, 0, and M such that

3
(crm/,o|b't|2dx> +7“fom|vu|2dx
t

7 A
+% / o™ (divit)2dx

§mam_lo’/p|d|2dx
+Cia™p' 2012, + Co™ | Vull},
+C(P)o"10Vull3,. (3.59)

Taking m = 2 in (3.59) and using (3.41), (3.6), and (1.2), we obtain (3.47) and
finish the proof of Lemma 3.4.

Lemma 3.5. Under the conditions of Proposition 3.1, let (p, u,0) be a smooth
solution of (1.6) (1.4) (1.7) on R3x (0, T] satisfying (3.6) with K as in Lemma 3.2.

Then there exists a positive constant C depending only on w, A, k, R, y, p, 0, and
M such that the following estimate holds

/ .
(%) () 402 f (I Vil + p(@)?) dx
< ¢ (Ivul2, +1v612,) (3.60)
+20 / plil*dx + Co?||Vul|} 4,
where ¢ (t) is defined by

o) 2 /p|u|2<x,r>dx +(C1+ DB o), 3.61)
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with C1 as in Lemma 3.4 and

By(t) & % (K”V@”iz — 2A/(divu)29dx — 4#/ |©(u)|29dx) )
(3.62)

Proof. Form > 0, multiplying (1.6)3 by 0”6 and integrating the resulting equality
over R yields that

ko™ Ro™ .
= (19015:), + - [ i

= —ko™ / V6O -V(u-V0)dx + rc™ /(divu)zédx (3.63)

4
+2uo™ / |D(u)|*6dx — Ro™ / pOdivuddx £ Z I;.

i=1

First, it follows from (2.20) and (3.6) that

|I1] §Com/|Vu||V9|2dx

1/2 3/2
< Co" | Vul| 2 IVOI 2 IVOIYS (3.64)

< 86" |pB]17, + Co™||Vull;s + Co™ |0Vul?,
+C(p. 8, M)a™(|VO3 .

where in the last inequality we have used (2.20) and (3.40).
Next, integration by parts yields that, for any n € (0, 1],

I = Ao / (divu)26,dx + o™ f (divu)u - VOdx
= Ao </(divu)29dx> —2Ax0™ / Odivudiv(it — u - Vu)dx
‘
+ Ao f (divu)u - VOdx
= o™ (/(divu)zedx> — 2)»0'”/9divudiv1ftdx (3.65)
t
+ 240" / Odivud;u’dju’ dx + ro™ / u- v ((div?) dx
<A (am /(divu)%dx) —Amamfla’/(divu)zedx
t

00" Vil + Crla” [ 6Tuldx -+ " |Vl
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Then, similar to (3.65), we obtain that, for any 1 € (0, 1],

I <2u <am / |©(u)|29dx>
t

—Zumam_la/f 1D (u)|>0dx
+Cno™ | Vill3 +Cn—1am/92|W|2dx
+Co™ | Vull} 4. (3.66)

Finally, Cauchy’s inequality gives
—~\ _m 2 2 R m 312
[I4] < C(p)o 07| Vu|~dx + ﬁa pl0]dx. (3.67)
y —

Substituting (3.64)—(3.67) into (3.63), we obtain after using (2.19), (3.11), (1.2)
and choosing ¢ suitably small that, for any n € (0, 1],

©"By) (1) + o™ / p(6)*dx <Cna™||Vitl|7, + C(p. M)|VO|7, 68)

+Co™ | Vull s + C (5, mo™6Vull?,,
with B; as in (3.62). For C; as in Lemma 3.4 (see also (3.59)), adding (3.68)

multiplied by C1 + 1 to (3.59), we obtain after choosing n suitably small and using
(3.41) that, for ¢ as in (3.61) and form > 0,

(") @+ 0" [ (wiVil + p@)?) ax
= Co. M) (IVulZ, + 19612, (o™ 10 22, + o™ IV +1)

+mo’o" ! /plb't|2dx +C(p, M)a™ [ Vull} . (3.69)

Taking m = 2 in (3.69) together with (3.6) gives (3.60). The proof of Lemma 3.5
is completed.

Next, we will use Lemmas 3.4 and 3.5 to obtain the following estimate on
A3(T):

Lemma 3.6. Under the conditions of Proposition 3.1, there exists a positive con-
stant €3 depending only on u, A, k, R, vy, p,0, and M such that if (p,u,0) is a

smooth solution of (1.6) (1.4) (1.7) on R3 x (0, T] satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

A3(T) < C/°, (3.70)

provided Cy < 3.
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Proof. First, it follows from (2.25), (2.27), (2.20), (3.34), and (3.6) that

IVullt, < CIGI3. + Cllwllty + Cllod — 1113,

<€) (IVull2 + 1) 10"l + Cllp@® — DI+ + Cllo — 114
< CB, M)p" i3, + CP)p©O — DII2IIVOI 2 + Cllp — 11l
< C(p, M)||p' il + CPIVOIS. + Cllio — 1134, (3.71)
which together with (3.6) yields
- 1/12 . _
o lIVullt, < C(B. M)CY 1102112, + C(HIVOIZ, + Callp — 1[[4,. (3.72)

Combining this with (3.60) gives that, for ¢(¢) as in (3.61),
<02<p)/ (1) + 02/ (M|vu|2 1 p(é)2) dx
= 5. M) (IVul +1V612)
n (C(,é, mch? 4 2) o / plii]2dx
+C(p, M)o*|p — 1174
= (o, M) (IVul; + IVOI2.)

+30 / plil*dx + C (5, M)o?llp = 11I}4, (3.73)

provided Co < 3,1 £ min {1, (C(p, M))_lz} )

Next, to estimate the second term on the righthand side of (3.73), we substitute
(3.72) into (3.46) to obtain that, for Bi(¢) as in (3.48),

(0B (1) + / oplit|*dx
_ 4 :
< C(p. M)Cy/ o’ + 2B 0'%012,
+C(o, B~ (IV0I2 + 1 Vull,)

+C(p. M)a?|lp — 11134,

(3.74)

provided Co < 32 = min {1, (2C(p, M))~'?} . From now on, we assume that
Co < min {83’1, 83’2} . It follows from (3.61), (3.62), and (3.52) that

V612, — C2(B. M)IIVulZs  (3.75)

1 .2 k(y —1)
1) >~ dx + L — 7
(0()_2//0|M| X+ R

which together with (3.34) directly gives

[ plirnas + 1voc i, <2 (L + 1) p(0)
k(y —1)

+C(p, M). (3.76)
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For C; as in (3.75), adding (3.74) multiplied by 2(C> + 2 + 1)/ to (3.73), we
obtain after choosing 8 suitably small that

1 .
By(1) + 5 / (oplil? + uo? Vil +02p(é)?) dx

— 1/4 — .
< C5. Mo’ + (5, M) (IV612, + [ Vul?,) (3.77)
+C(p. M)o?|lp — 11|74
where
B3(t) £ 6% +2(Cr + 2+ D~ 'o B,
satisfies
o? .2 k(y —1) 2 2
B3(t) > > plul“dx + R ° Vol .
- 1/4
+ol|Vul?, - C(5. M)Cy', (3.78)
due to (3.75) and the following simple fact:
7 . _
Bi(1) = ZIVulg, + G+ wldivullp = C@)lIpo — 1117
% _\ 14
> ZIvalz, - c(p)Cy'*,
which comes from (3.48) and (3.24).
Finally, we claim that
o, 4 1/4
/ o’llp = 1l;4dt = C(p, M)Cyy" . (3.79)
0

Combining this with (3.77), (3.78), and (3.6) yields

A5(T) < C(5, M)Cy™,

which implies (3.70) provided Cy < 3 £ min {83’1, €32, (C(p, M))_IZ} .
Then, it remains to prove (3.79). In fact, it follows from (1.6); and (3.23) that
o — 1 satisfies

(o —Dr + (b =D

2+ A

= —u-V(p—1) — (p — Ddivu — (3.80)

2+ A
Rp(6 — 1)
2u 4+ A
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Multiplying (3.80) by 4(p — 1)? and integrating the resulting equality over R, we
obtain that

(1o = 1122) + 520 — 8
p = 2 +)\‘p L4

— _3/(,0 — D*divudx —

—1)’Gd
iy KR

2M+)\/(p—1) p (0 — Ddx

=< lp = 174 + COIVull7

T 2u 4+ A
1/4 3/4
+Cllp = H3LIGI L IVGI

1
+C@)p = 34l06 — DI 5 ;

4 3/4
Vel

<
T 2u 4+ A

+C(p, M) (1ol + 196135 ) (3.81)

lp — 1%, + COIVull,

where in the last inequality, we have used (3.6), (3.34), (3.24), (2.26), and (3.9). It
thus follows from (3.81) that

(1o = 1122) + 5o — 11}
o 2 +)\‘p L4

= C. M) (10" 2il3, + 19613, ) + CO)IVull2a.

(3.82)

Multiplying (3.82) by o" with n > 1, integrating the resulting inequality over
(0, T), we obtain by using (3.9) and (3.6) that

T
| o= titaar
0

T
- 1/2 _ .
< C(p, ) AYA(T) / 0"~ (Ip"2il2s + 176132 ar
0
1/4 o(T) 4
+ep)C, +cf o — 114 e
0

T
< CE MG+ ey [T oo i G83)
0

which together with (3.6) directly gives (3.79). We thus complete the proof of
Lemma 3.6.

We now proceed to derive a uniform (in time) upper bound for the density,
which turns out to be the key to obtain all the higher order estimates and thus to
extend the classical solution globally.

Lemma 3.7. Under the conditions of Proposition 3.1, there exists a positive con-
stant €4 depending only on u, A, k, R, vy, p,0, and M such that if (p,u,0) is a
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smooth solution of (1.6) (1.4) (1.7) on R3 x (0, T] satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

3p
sup llpC, t)llpe < > (3.84)

0<t<T
provided Cy < &4.

Proof. First, taking n = 1 in (3.83) as well as (3.6) yields

T
/0 ollp = 1l74dt < C(5, M). (3.85)

Choosing m = 1 in (3.69) together with (3.76) and (3.72) yields that, for ¢(t) as
in (3.61),

(09) (1) + 0 / (kIVal + p(6)?) dx
= C3. M) (IVul2, + 19612,) (09) + C3, M) (IVul2, + 1V612,)

+C(p. M) / plil*dx + C (5. Myollp — 1%,

which combined with (3.6), (3.85), and Gronwall’s inequality yields that

o(T) )
sup ogo(t)—i—/ a/(mvm%p(e)z) dxdr < C(p, M). (3.86)
0<t<o(T) 0

The combination of (3.76) with (3.86) thus directly gives

sup o (f plii|?dx + ||ve||iz)
0<t<o(T)

o) (3.87)
+/ a/(|w|2+p(é)2)dxdz <C(p, M).
0

Next, it follows from (3.40), (3.87), (3.72) (3.6), and (3.85) that

T T
/auvzenizdrscw,mf (o||p9||§2+||p”2u||iz)dt
0 0

T
@) [ (I9ul + 1901 + ol = 117.)

= C(p, M),
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which together with (2.21), (2.20), and (3.6) gives
o(T)
/ ||9 — 1||Loodt
0
o(T) 172 1/24
< c/o 16 — 11121 ve) ",
o(T) 1/4
sc [ iveng (o ||v29||iz) o Vas
0

o(T) o(T) Va1 ey \ M2
<C / ||ve||izdt/ o |[V?0]|7,dr / o 2ds
0 0 0

< c(p, M)Cy'"®, (3.88)

and

T T
/ 16 — 113ndr < C / IV6ll 21 V261 2ds
o

(T) o(T)
T 1/2 T 1/2 389
§C(/ ||ve||i2dr) (/ ||v20||izdr) -89
o(T) o(T)
< c(p, M)Cy®.

Next, (2.21), (2.26), (3.87) and (3.6) lead to

o(T)
/ 1G Lt
0
o(T) 12 124
scf VG121V G
o(1) 12 124
<c@ [ tein vy,

0<T> 1/8 1/4
_ . 1/4 . . _
< C(p) f (@lpil2)™ (allpil,) ™ (o 1Vil2,) o5 dr
0

s o(T) 1/4 o(T) 3/4
< C(p, M)C, / o || Vil ,dt / o /%ds
0 0

< C(p, M)Cy*, (3.90)

and

T T
/ IG|I7ds < C/ IVGIL2IVG]ledt
a(T) a(T)

T
=c [ (1o i+ Vi) o
o(T)

1/6

< C(pC, (3.91)
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Finally, denoting D;p = p; + u - Vp and expressing (1.6); in terms of the
Lagrangian coordinates, we obtain by (3.23) that

Qu+1)Dip =—Rp(p—1) — Rp*(0 — 1) — pG
<—=R(p—=1D+C@IO =1z + C(@)GlL>,

which gives

Di(p—1) + 7 (p=1D=CPINO—1lL=+CPIIGIr=. (3.92)
n+ A
Taking
| R
= — 1, o = .
y=nr 2+ A

g(0) =C(PIO — 1L + C(PIIG|Le, Ti =o0(T),
in Lemma 2.5, we thus deduce from (3.92), (3.88)—(3.91), and (2.30) that

p=p+1+C(IglLioomy + 18l20m.)

<p+1+CH MCy™,

which gives (3.84) provided

59 \%
Co < &4 2 min{l, 'Of .
2C(p, M)

We thus complete the proof of Lemma 3.7.

Next, the following Lemma will give an estimate on A4(7"), which together
with Lemmas 3.2, 3.3, 3.6 and 3.7 finishes the proof of Proposition 3.1:

Lemma 3.8. Under the conditions of Proposition 3.1, there exists a positive con-
stant &y depending only on u, A, k, R, vy, p, 0, and M such that if (p,u,0) isa
smooth solution of (1.6) (1.4) (1.7) on R3 x (0, T] satisfying (3.6) with K as in
Lemma 3.2, the following estimate holds:

Ay(T) < )%, (3.93)
provided Cy < ¢gp.

Proof. It follows from (3.40), (3.6), (3.72), and (3.79) that
T T )
/0 V6|2t < C(. M)f0 (21012, + o lpul,) dr

T
+C(5, M)/0 (IVull3, + V0172 + o2llp — 174) dt

< Cp, mcy®. (3.94)
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Applying the operator 9; + div(u-) to (1.6)3, we use (1.6); to get

1% (89 9)
- +u-V
1 t
= KAé + (diVLtA@ — 0; (Oju - VO) — dju - V9;6)

+ (A(divu)z + 2u|©(u)|2) divie + RpOu! ou*

— Rpbdivu — Rp6divii + 22 (divu — ol Bluk) divu

@l + 0july (94 + 00 — kol — 0k’ ).

Multiplying (3.95) by 6, we obtain after integration by parts that

R ) )
S 61%d Vo>
D (/m | x)[+x|| 12,

< C/|Vu| (|v20||é|+|ve||vé|)dx
+C(,5)/ [Vul?|0] (|Vul + 16 — 1]) dx
+C(,5)f(qu|2|é|+p|é|2|Vu|) dx + C/|W|p|é|dx

+C(,5)/p|9—IIIVﬂllélderC(ﬁ)/IVMIIVL'tIIéIdx

1/2 1/2
< CIVull IVl 1920121 VO ]l 2

+C@NVull 2Vl gs (IVull s + 1IVO 2) VO]l 2
1/2 1/2
+CP IVl s 1Vl 1V61 2 (IVul 2 + 106],2)

(3.95)

1/2 1/2
+C@OIVill 21106012 + CP)IVP®O = DIl 5 ! Ivel,s PIVil 211V6]] 2

1/2

1/2
+COIIVull 5 IVull s Vil 2 VOl 2.

(3.96)

Multiplying (3.96) by o* and integrating the resulting inequality over (0, 1), we
obtain after integration by parts and using (3.42), (3.6), (3.24), and (3.94) that

R 52 " diosn2
017 /p|9| dx—i—x/o o*IVOI12,ds

o(t) . t .
<c / o2 / pl6Pdxds + C(p) / V20112 IVl 2ds
0 0

t t
+C(p) /0 o2 Vull2IVO| 2ds + C(p) fo a3 IVOl 211001 2ds
t t
+C () /0 o3Vl 2 1026 12ds + C(5) fo o3 Vil 2] V6] 2ds

t
< C(p) / (2192012, + IVul?, + 020" 2012, + o2 Val?, ) ds
0
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K (" 4ionn2
+3 o VO3 .ds
t
_ K .
< C(p. MCy* + 5/ o*|VE|2,ds.
0
which yields that
. T . 1 6
sup 04/p|9|2dx+/ o*|Vé|3,ds < C(p, Mycy'°.
0<t<T 0
This gives (3.93) provided
Co < €0 = min{ey, &2, ..., &5}, (3.97)

with &5 £ (C(p, M))~** . The proof of Lemma 3.8 is finished.
Finally, before closing this section, we summarize some estimates on (p, u, 6)
which will be useful for higher order ones in the next section.

Corollary 3.9. In addition to the conditions of Proposition 3.1, assume that (po, ug,
0o) satisfies (3.8) with g as in Proposition 3.1. Then there exists a positive constant
C depending only on u, A, k, R, y, p, 0, and M such that if (p, u, 0) is a smooth
solution of (1.6) (1.4) (1.7) on R3 % (0, T satisfying (3.6) with K as in Lemma 3.2,
it holds that

sup (02||Vu||i6 +ot0 — llli,z)
te(0,T]

T
+/ (I Vull} 4 + IVOI3,1 + luell7, + 02116117, dr
0

T
+f o2llp — 1]44dr < €™ (3.98)
0

Proof. It follows from (3.6), (2.23), (3.10), (3.42), (3.43), (3.72), (3.79) and (3.94)
that

sup (o?1VulZ + 010 — 112,,)

te(0,T]
’ 2 4 2 4 1/8 59
+/ G2(IVulldy + IVOI3, + llp — 11 0dr < ccy’®,
0
which together with (3.6) and (2.23) gives
’ 2 2 ’ 201112 ! 2 2
/ o ||u,||L2dt§C/ o ||u||L2dt+C/ o flu- Vull;,dt
0 0 0
! 2 2 ! 2 2
<C o u dxdt—i—C/ o’ ||Val4,dt
| o [ o i

T
+ch o ull7 6l Vul7 de

<G,
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T T T
f a4||9t||2L2dt§C/ o4||9||2L2dt+Cf o*llu - VO3 ,dr
0 0 0

T T
< c/ 04/p|é|2dxdt+C/ ot VO[3 ,dr
0 0

T
3.101
+ Cfo ol V612 dr (3.101)

T
<cc)® + C/ IVul?,dr
0

and

T T T
/ ot V6, |17 ,dt < C/ U4||V9||izdt+C/ V- VO)|7,dt
0 0 0

T
1/8 3.102
<cc) +c£ ot (IVul2s + lul2 ) 1V26]2,dr (3.102)

<cc)t.

‘We thus obtain (3.98) directly from (3.99)—(3.102) and finish the proof of Corollary
3.9.

4. A Priori Estimates (II): Higher-Order Estimates

In this section, we will derive the higher order estimates of smooth solutions
(p,u,0) of (1.6) (1.4) (1.7) on R3 x (0, T] with smooth (pg, uo, 6p) satisfying
(1.9) and (3.5). Moreover, we shall always assume that (3.6) and (3.8) both hold.
To proceed, we define g| and g» as

- —-1/2 .
612 py 2 (—pdug — (i + V) Vdivug + RV (00p)) @.1)
and
AV K tr)2 N2
82 = Py K ABy + E|VHO + (Vup)™ |~ 4+ A(divug)“ ), 4.2)
respectively. It thus follows from (1.9) and (3.5) that
g1 € L2, & € L2, (4.3)
From now on, the generic constant C will depend only on

T, lgillz2, I82llz2, lluollg2, lleo — Ulgzaw2a. 160 — 1l g2,

besides u, A, k, R, ¥, P, 9, and M.
We begin with the important estimates on the spatial gradient of the smooth
solution (p, u, 0).
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Lemma 4.1. The following estimates hold:

T
sup (||p1/2u||iz+||9—1||§,1)+f fp(e)zdxdt
0<t<T 0

T
[ (19 + 1900 + a4 ol )ar =€ @)
0

T
3/2
sup (||p—1||HmW1,6+||u||Hz)+/0 IVl }2di < C. (4.5)

0<t<T
Proof. We first prove (4.4). Taking m = 0in (3.69) gives that, for ¢(¢) asin (3.61),
o) + / (wIVal + p@)?) dx
= C (IVulls + 19012, ) (11 2all2, + 1 V613, +1)
+ ClIVull 21 Vullys (4.6)
= C (o'}, +19613,) + €

= C (1022, +1V612:) 90 + € (10213, + 1V612,) + €,
due to (3.6), (3.25), and (3.76). It follows from (1.6),, (3.5), and (4.1) that
Tim /pi(x, 1) = py V2 (uAug + (u + 1) Vdivig — RV (pobo)) = —§1.
which together with (3.61), (3.62), (3.52), and (4.3) yields that
lim o) < Cliailz. +C = C. 4.7)

Gronwall’s inequality, together with (4.6), (4.7) and (3.6), leads to

T .
sup ¢<r>+/ /(|W|2+p<9)2) dxdr < C,
0

0<t<T

which, as well as (3.76) and (3.10), implies

T
sup (10"l + 10 =115 ) + [ [ (19 +p@?) axar < . 49

0<t<T

One thus deduces from (3.40), (4.8), (3.71) and (3.6) that

T T
/ IV2012,dr < C + c/ Ip'/2617,dr < C, (4.9)
0 0
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which, together with (1.21), (2.26), (2.20), (4.8) and (3.6), gives
T
/0 (||divu||%oc + ||w||’ioo) dr
r 2 2 2
< c/o (||G||Loo 16 — 13 + ||a)||Lm) dt +C
g 2 2 2 2
< c/ (161316 + 16 = 1 + lolZg + IV@l3 ) dr + €
0
r 2 2712 2
< c/o (IVGIZ: + llpils + V2612, + Vel ) dr + €
T
< C (

/0 lpall7, + 12017, + ||w||iz) dt+C
<C.

This fact, combined with (4.8) and (4.9), yields (4.4) directly.
Next, we will prove the key estimate (4.5). Standard calculations shows that for
2<p<6,

3 IVplie < C(L+ IVulz=)IVplzr + CIVullLo
= C (14 19%12 + [ Vullix) IV pllo 4.10)
+C (14 1Vidl2 + V%612
where we have used

IV2ullLe < C (lpitlLe + IV PllLr)
< C(llptlp2 + Vil 2 + 1VOlle + 1011V ollLe)  (@4.11)

= C (14 1Vitll 2 + 1926012 + (19260112 + DI Vpllzr )
which comes from the standard L”-estimate of the following elliptic system:
wAu + (u+ A)Vdivu = pu + VP, u — 0 as|x| — oo. 4.12)
It follows from Lemma 2.6, (3.6) and (4.11) that
IVullzee < € ([[divul|ze + o] L) log(e + [ V2ull6) + C
< C (lldivul| o + o]l L) logle + [ Vil 2 + V20l 2)  (4.13)
+ C (ldivu|| . + @] ) log (e + |Vl 16) + C.

Set

f@) £ e+11Vplle,
g(0) £ 14 ||divue|| 7o + llollfoe + IVEl7, + IV20]7,.

Putting (4.13) into (4.10), where we set p = 6, gives
() < Cg(m) f@)In f(1),
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which implies
(In f(1))" < Cg®)In f(0).
Combining this with Gronwall’s inequality and (4.4) yields that

sup [[Vpollpe < C, (4.14)

0<t<T

which together with (4.13) and (4.4) leads to
g 3/2
/ IVul32de < C. (4.15)
0
Finally, taking p = 2 in (4.10), we get by using (4.15), (4.4), and Gronwall’s
inequality that

sup [[Vpollp2 <C, (4.16)
0<t<T

which gives

sup VP2 < C sup ([IVOll2+ [VollL2 + 116 — Uil VollLs)

0<t<T 0<t<T

due to (4.4) and (4.14). Combining this with (4.11) and (4.4) leads to

<C,

sup [[V2ull,2 < C sup (llpitll 2 + IVP]2) < C,

0<t<T 0<t<T

which together with (3.9), (3.6), (2.23) and (4.14)—(4.16) yields (4.5) and finishes
the proof of Lemma 4.1.

Lemma 4.2. The following estimates hold

sup (ol + 16 — Uiz + 1l = U2 + llull42)

0<t<T

T
+ f (e 2y + 18,030 + Nowsl 2 + p0i1 % ) de < €, (@17)
0

T
fo (Hpu 2y + 1813, ) dr < €. (*.18)

Proof. First, it follows from (1.21), (4.4), (4.5), (2.24) and (2.22) that

IVull g2 < € (Idivull g2 + lloll 42)
< C(IGlg2 + loligz + 100 — 1] 42)
< C+ClIV(pi)z2 + Cli(p — DO — D 52
+Cllp = U2 + CllO — 1]l 2
< C+C(IVpligslille + Vil 2) + Cllp — U 52116 — 1|52
+C V2ol 2 + CIIVO| 2
< C+CU+ VO )IVPpl2 + ClIViil 2 4+ CIVO 2, (4.19)
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which together with simple computations and (1.6); gives

%uvzpniz < CA+ | VullL=)[V?pll72 + ClIVull3:
< C(L+ ||Vl + V0] .2) IV plI7 2

+ C|\Vil|7, + CIIV?0|3, + C.
Combining this with (4.15), (4.4), and Gronwall’s inequality, yields

sup [IV3pll2 < C. (4.20)
0<t<T

Next, it follows from (1.6)3, (3.5) and (4.2) that

. : 12, 1 -
lim 6(x,t) = —R Opdivigy + g2. 4.21
— H0+«/5 (x, 1) 0o~ Oodivig + &2 4.21)

Integrating (3.96) over (0, T') together with (4.5), (4.4), (3.25), and (4.21) leads to

T
sup /p(@)zdx—i-/ VO3 ,dr
0

0<t<T

T
< c/ (V2612 + 1Vull2 + 10" 2012 + IVal3, ) dr
0

1T . .
+5/0 1961124t + € (W0 = 113611 Vuols + IVuoll3: ) + 23

R
sc+§/0 IV6I2,dr,

which shows

T
sup fp(é)zdx—i-/ IV8]7,dt < C. (4.22)
0<t<T 0
One thus deduces from (3.40), (4.22), (4.5), and (4.4) that
sup [|V26] ;2 < C. (4.23)
0<t<T

It follows from (4.4), (4.5) and (4.22) that

T
sp [ o (1l +07)x+ [ (19l + 16,12, ) e
0

0<t<T

<C sup /p(|a|2+é2)dx

0<t<T

+C sup /p<|u-Vu|2+|u~V9|2>dx

0<t<T

T
+c/O (Vs + Nl ) (1922, + 192013, ) dr

T
e /O (172, + 19912, ) dr < . (4.24)
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which together with (4.4) and (4.5) gives

T
fo (IVoun 2 + 1V (o080 13: ) d

’ 2 2 2 2 2 2 (4.25)
< C | (IVuilye + IVP I o+ IV6 152 + 191G 1601 )

<C.
Next, one deduces from (1.6); and (4.5) that
loll2 < Cllulle=lIVellz + CliVull2 < C. (4.26)
Applying V to (1.6); yields
Vo, +u'0;Vo+ Vu'd;p + Vpdivu 4+ pVdivu = 0,
which leads to

IVpell 2 < Cllullzo V2 pll 2
+ClIVull31Vpllo + ClIVull2 < C, (4.27)

due to (4.5). Combining (4.26) with (4.27) implies

sup |loellgn = C,
0<r<T

which together with (4.4), (4.20), (4.5), (4.23)—(4.25), and (2.23) gives (4.17).
Finally, differentiating (1.6)3 with respect to ¢ yields that

R R
——(p01); = — ——(pu - VO); — R(pOdivu); + k Ab;
y—1 y—1

(4.28)
+ A((divi)?), + 20 (1D ) ).
It follows from (4.17) that
I (pu - VOl 2
= llpeu - VO + pu - VO + pu - Vo, | 12 (4.29)
< Clpillgs VOl s + Cllueli sl VOl 3 + Cllull Lo VO, |l 12 '
< C+ Cllugllgr + Cli6 g1,
| (pOdivie)||;2 < C + Cllus|l g1 + Cll6; || g1 (4.30)
and
I((diva)®)e | Loss + 1AD @) Pell oss < ClIVull 3 Vet |l 2 “31)

< C+ Cllusll -
Combining (4.28)—(4.31) with (4.17) shows

T
/ 1(p00): 17,-1d2 < C. (4.32)
0
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Similarly, we have

T
/0 (o) |13,-1dt < C,

which combined with (4.32) implies (4.18). The proof of Lemma 4.2 is completed.

Lemma 4.3. The following estimate holds:
2 2 r 2
sup o (19l +lpul) + [ o [ puaParar <. @33)
0<t<T 0

Proof. Multiplying (2.6) by u,,, one gets after integrating the resulting equality by
parts that

1d .
S | (Vi + G 2y aivan?) dx + / plusiPdx

d 1
= I (—5 /pt|u,|2dx — /p,u -Vu - udx + [P,divu,dx)
1
+5 /pnluzlzder/(ptu~Vu)r~uzdx—/pur~Vu~undx

— /pu -Vu; - uydx — /(P,[ —k(y — 1)A6;) divu,dx

6
, d
+k(y — 1) [V8, - Vdivu,dx 2 Jlo+ Z; L. (4.34)
1=

We estimate each term on the righthand side of (4.34) as follows: first, it follows
from (1.6);, (4.17), (4.24), and (2.23) that

1
[1o| = '_E/ptlut|2dx —/ptu -Vu - u,dx

~|—/ Pidivu,dx

< + Clipellgaliu - Vullp2llusll e

/div(pu)|ut|2dx
+ClO) N2 Ve 2 35)
<c f plulluee|[Vtsldx + C(L+ /6, 2

+ ol 2101 o) [ Vel 12

172, 1/2 1/2

< Cllulizello™“uel 5 lluell s IVuelip2 + CllVue | 12

"
= JIVullz. +C,
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211| = ‘fpnmtﬁdx

1/2 3/2
< Clipurl 2 lluell el

1/2
< Cllprell g2 (1 4+ 1Vuell2) 2 19
< Clpull3> + ClIVuell}, + C,

3/2
L2

and
L] = V (o - V), - updx

:‘/(pttu'vu'ut"‘pt“t‘Vu‘ut+ptu'vut'Mt)dx

2
=< Clipsel g2l - Vullpslluedips + Cllodll g2 el 3 1Vl o
+ Cllpell g3 llullpoe I Vugll 22 lull o

< Cllpul72 + ClIVul3.

Next, Cauchy’s inequality gives

[13] + |14] = ‘/Put - Vu - uydx

+ ‘/pu'Vut~undx

< Cllo"unll 2 (el o Vel 3 + Nl oo | Vot | 2)

1
< an”zunniz + Cl|Vugll3 .

Next, it follows from (4.17) that

VPl 2 <ClIV(pb: +0p)ll 12
=ClIVoll3lbilie + ClIVO 2 + ClIVOI Lelloeli 3
+ CllOll LIVl 12
<CH+C|IVO |2
which together with (3.26) and (4.17) gives
| Pre — k(y — 1)AO 12
< Cll - VP)llp2 + Cl[(Pdivu)ell 2 + CllIVul[Vuell 2
< CllugligsIVPI s + Cllullze IV Pell 2 + Cll Pl sl Vull g3
+ ClIPllL=lIVullp2 + CliVull Lo | Vg [l 2
= C+CU+Vullpe) IVurllz2 + ClIVO | 2.

This directly yields

|I5] = ’/(Pn - K()/ — I)AG,) divu,dx

< NPy — k(y — DA | 2 lldivue, || ;2
< C+C L+ |Vul=) [Vuel3, + CIVE |17,

1037

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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Finally, it follows from (4.39), (4.17), and the standard L2-estimate for elliptic
system (2.6) that
IV2ucll 2 < Cllpun + pote + pou - Vi + pug - Vu+ pu - Vg + V Pyl 2
<Clp"Pusll 2 + Cllpell 2 lluell s + Cllpell p lull Lo | Vaell s
+ Cllugll 61 Vull 3 + Cllull oo Vull 2 + CIIV Py 2
<C+Clip"ullp2 + ClIVO; |2 + ClIVugll 2,

4.41)

which combined with Cauchy inequality thus leads to

6| =

k(y —1) |V, - Vdivu,dx

< ClIVu,ll 21V ) 12
" (4.42)
<C (1 + 1o Pusll 2 + 1V 2 + ||w,||Lz) VOl 2
1
<C+ an”zunniz + ClIVO T, + ClI Vil .
Substituting (4.36)—(4.38), (4.40), and (4.42) into (4.34) gives
(i 1V P - G 2 ivie)® = 21 ) e + / plitgs Pdx

< Clpulis + CA+ [|Vull oo + 1V ll3 ) V|l
+ C|IV6, |13, + C.

dr
(4.43)

Then, differentiating (1.6); with respect to ¢ shows
o1 + pedivu + pdivu, +u; - Vo +u - Vo, =0,
which combined with (4.17) implies

lorellz2 < € (el s IVull s + 1 Vael 2+ Nuell oIVl s + 1Vl 2)

(4.44)
< C+ClIVuyl 2.

This yields

T
fo et 12dt < C, (4.45)

due to (4.24). One thus deduces from (4.43), (4.35), (4.17), (4.5), (4.45), and Gron-
wall’s inequality that

T
sup O'HVut”%z +/ 0/p|utt|2dth <C,
0<t<T 0

which together with (4.44) gives (4.33). We complete the proof of Lemma 4.3.
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Lemma 4.4. For g € (3, 6) as in Theorem 1.1, it holds that

sup_(llp = U2y + o llull}s)

0<t<T

T (4.46)
+/0 (Naliys + 19200y, + o1Vl ) dr < €,
where
1 . 5 —6 99 —6
A
== —_— € (1,7/6). 4.47
Po Zmln{3(q_2) 5q—6} (1,7/6) (4.47)
Proof. First, it follows from (4.19), (4.17), and (4.33) that
T
sup o lull?; +/ lull3,5dt < C. (4.48)
0<t<T 0

The standard H!-estimate for elliptic problem (3.39) together with (4.17) leads to

V20151 < CIV(e0) 12 + CllIVul|Vull 12
+C||V(pu - VO)|l;2 + ClIV(pbdivu)| ;2 + C
1/2
< C(IVollz + 1) IVl 2 + ClIVull L6 V2ull 5119 %u]
+CA+ o = Ug2)A 410 = U g2)llull 2 +C

< ClIV6lI 2 + CIV2ull & + C. (4.49)

1/2
L6

which combined with (4.17), (4.41), (4.33), and (4.48) yields that

T
fo (||e — 112+ lullss + a||wf||§,l) dr < C. (4.50)

Next, it follows from standard WP -estimate for elliptic systems (2.24) that
IV2ullwia < Cllullgs + CIIV2divullLe + Cl|V2w]e + C

< Cllullys + CIV (el + ClIV*(00) || a + C

<Cllullys + CIV(pi)l|La + COVpllze + CV VO L4 (4.51)

+CllpV?0lLa + C
<Cllullys + CIV(pi)llza + ClIV?pllzs + CV?0] 1 + C.
Applying operator A to (1.6); gives
(Ap); + div(uAp) + div(pAu) + 2div(9; p - 9ju) = 0. (4.52)

Multiplying (4.52) by ¢|Ap|?~2 Ap and integrating the resulting equality over R3,
we obtain after using (4.17) and (4.51) that

UAplF)e < CA+ I Vull=) | Apll,

—1
+C (IVpliLa + D IV ullyrallApll?,
< CU+ llullgs + IV(pillza + IV0l g1 (1AplIT, +1). (4.53)
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Note that (4.17) and (4.33) give

q 2(¢=3)

IV(pi) e < ClIVpllysl Vil 5 IVl + ClI Vil La

< ClIVitllz2 + ClIVuglia + CIV (- Vi) o
6—q 3(g=2)
< CIVurlp2 + C+ ClIVuell 3 Vel 6°
6—q 3(g=2)

+CIVul & llull .+ Clul o V2 o

3(g—2) 3(3—2)
q

1 1
< CoT 4+ Clullyd +Co™2 (alVulZ) ™ @54

which combined with (4.50) shows that, for pg as in (4.47),

T
f IV i) |17 dr < C. 4.55)
0

Applying Gronwall’s inequality to (4.53), we obtain after using (4.50) and (4.55)
that

sup [|[Apllpe = C,
0<t<T

which combined with (4.17), (4.48), (4.51), (4.55), and (4.50) gives (4.46). We
finish the proof of Lemma 4.4.

Lemma 4.5. For g € (3, 6) as in Theorem 1.1, the following estimate holds

sup o (118,11 + V26112 + sl 2 + el )
0<t<T

T (4.56)
+ [ o[ Vuyll7.dt < C.
0

Proof. First, multiplying (2.12) by u;; and integrating the resulting equality over

IR3, one gets after integration by parts that
1d
2 dt
= —4/ ul pu - Vu! dx — /(pu), Vg - ug) + 2Vuy - ug ] dx

plugPdx + / (11 Vs P + G+ 2 (@ivieg)?) dx

4.57)
- /(pnu +2pus) - Vu - ugdx —/pun - Vu - ugdx
5
+ / P[tdiVMndx £ Z Ji.
i=1
Holder’s inequality and (4.17) give
111 < Cllo Puge | 2 Vg g2 1w o
(4.58)
<

"
§||wn||iz + Clp"Pupll3 .
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It follows from (4.24), (4.17), (4.33) and (4.46) that

|2l < € (llouell s + llpruell 13) (Ve ll g2 el o + Nl o Ve |l 2)

1/2 1/2 1/2
C (0" 2ur 22 + el ol o ) 190121 Va2

IA

(4.59)

IA

y7i
S IVuulz, + ClIVulig, + €

IA

" _
gnwnniz +Co 32,

1751 < C (llorell g2l o + Npell 2 llute | o) 1V aell 6 llaare l

m (4.60)
= S IVuullzz + Cllpu Iz + ClI Va7,

and

[Jal + |J5] < Cllpug |l 2 IVullp3llugllze
+ Cll(p:0 + p0)ell 2| Vugll g2
< SIVuls + Cllpual}: + Clloud 13
+Cllpibi 172 + Cliv/POus 17
= SIVuul}s + Cllauall} + Clloul}:

+CIIVO 2, + Clly/pbr 2. 4.61)

Substituting (4.58)~(4.61) into (4.57) yields

d
5 )0|14n|2dx+ﬂ/|vuzt|2dx

< Co™ 2+ Cllpuslly> + Cllpills 2 + CIIVO T2 + C3ll/P0 |17
(4.62)

Then, to estimate the last term on the righthand side of (4.62), we multiply (2.9)
by 6;, and integrate the resulting equality over R to get

k(y — 1)
—=——|IV6,112, + Ho +/,09t2tdx
2R .

1
=3 / Dr: (9} F2(u- V6 + (y — 1odiva) 9,) dx
+ / pr (- VO + (y — 1)6divu), 6;dx

— / p -V 4+ (y — 1)divu), 6;;dx

4
_r=1 . > -
- f ()\(dwu) 21D W) )” f,dx 2 2—1: Hy,  (4.63)
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where

I
Hy %/ptgtzdx +/pt (u - VO + (y — 1)odivu) 6,dx

y—1 . 2 2
—Tf<k(d1vu) 201D W) )[thx

satisfies

| Ho SCf,OIMIIQtIIVGtIdx+C||,Oz||L3||9z|IL6(

+ ClIVull 31 Vgl 2110 1l o

VOl L2 + 1IVull.2)

(4.64)
<Cllpblip2llullLe VO L2 + ClIVO L2 + ClIVO | 2| Vurll 12
k(y —1) _
<=7 Vol +Co™,
due to (1.6)1, (4.17), (4.24) and (4.33). Note that (4.24) and (2.23) yield
1012 < C + ClIVO]l 12, (4.65)
which, as well as (4.17), gives
H L= Cllpullz (1601, 52060155 + 1601 s (- V6l 3 + 6divul ) w66
< ClIV&: |72 + Cllpully, + C.
It follows from (4.17) that
| (u-VO + (y — )odivu), |12
< C (lluellzslIVOl L3 + llullLe VO NI 2) 4.67)
+ C (116l oI Vall 23 + 101 oo [ Vuag |l 12)
< ClIVOlip2 + ClIVu |l 2,
which together with (4.17) shows
|Ha| + |H3| < C(IVOlz2 + I1Vueliz2) (1oell 310N s + 1106111 2)
1 (4.68)
= / p2dx + CIV6, 2, + ClI Vs |2,
One deduces from (4.17) and (4.33) that
21 = € [ (1930 + 19011V 11
3/2 1/2 (4.69)

<C (||wt||L2 IVl s + ||w||Ls||wn||Lz) 16: 11 .o
< 8IVuu |3, + CIVZuclls, + COIVO N7, + Co 2| Vi3,
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Substituting (4.66), (4.68), and (4.69) into (4.63) gives
k(y — 1) 5 1 2
(Tuvet”LZ + Hy t + 3 pO;dx
<8|IVuul7, + COIVOIT2 + ClIVZurl, + Co 2| Vi3,
+ Clloull}> + C.
Finally, for C3 as in (4.62), adding (4.70) multiplied by 2(C3 + 1) to (4.62), we

obtain after choosing § suitably small that

k(y —1)
(2(03 +1) (WTW@,H";Z + Ho> + fmunfdx)

(4.70)

t

"
+/p9ﬁdx+ 5/ Vg *dx 4.71)
< Co 24 C|VO |} + ClIVUelT . + Co 2 Vuyll7 2 + Cllpsll3 2
+ Clp" Punl3,.

Multiplying (4.71) by o and integrating the resulting inequality over (0, T), we
obtain by using (4.64), (4.46), (4.33), (4.24), and Gronwall’s inequality that

T
sup 02/(|v0,|2+p|un|2) dx+/ 02/<p6’,2t+|Vun|2> dxdr < C,
0

0<t<T

4.72)

which together with (4.41), (4.33), (4.49), (4.48), (4.51), and (4.54) gives
sup o (||W,||H1 +1V36],2 + ||V2u||W1.q) <C. (4.73)
0<t<T

We thus derive (4.56) from (4.72), (4.65), (4.73), and (4.46). The proof of
Lemma 4.5 is completed.

Lemma 4.6. The following estimate holds
2 2 Ty 2
sup_o? (112612 + 161112) + f oHIVOlTadr < C. (@474)
0<t<T 0

Proof. First, multiplying (2.16) by 6, and integrating the resulting equality over
RR3 yield that

k(y —1)
3 pGr)dx + —)/R /|V9tt|2dx

= —4/0ttpu . V@t,dx — f Prt (0{ +u-Vo + ()/ — l)eleI/l) G,tdx

- / p (s - VO + 2u; - VO + (v — 1)(0divu),,) 0, dx

5
y — 1 9 2 a _
+ I /(A(dlvu) 21D )| )” Oudx £ Y K.

i=1
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Then, Holder’s inequality and (4.17) give
1K1l = Cot 1020, 1 21V s 2l oo
< 80| VO, 117, + C@®)a* 10" 0 117
It follows from (4.33), (4.56), and (4.17) that
o*1Kal < Co*lpull 1216 |l 16 (16: 11 g1 4+ 1Vl Lo llueli o + I Vull 31011 L)
< Co? ||Vl 2 4.77)
< C80*||VOy |72 + C(6),

1/2
o* 1Kyl < Co* (10l 6 <||V9||L3||pun||L2 + ||V9z||L2||pMzIIL2 |l s | )

(4.76)

1/2 1/2
+ Co0ulls (1Vull 06l 2+ IVl 2110601, 216,117

(4.78)
+ CoH 1011108101l 2 [ Va2
< 80419612, + C@* (106,413 + Vi 2,) + C®),
and
3/2 1/2
o*1K51 = Co 6wl (V219 + IVl NV lzz) o
<80 IVOu 13, + C@E)a* | Vuy |3, + C(6).
For K3, one deduces from (4.67), (4.56), and (4.17) that
o*|K31 < Co*lloill 116l e (IVugll 2 + V6,112 ws0)

< €80V |72 + C(9).

Then, multiplying (4.75) by o'#, substituting (4.76)—(4.80) into the resulting equality
and choosing § suitably small lead to

1
—/opwn)d + (R )4/|V9zt|dx

= Co? (11020413 + IVunll3 ) +C.
which together with (4.72) gives

T
sup 64/p|9t,|2dx+/ 04/|V9n|2dxdt <C. (4.81)
0<t<T 0

Finally, applying the standard L?-estimate to (2.9), by (4.67), (4.17), (4.81),
and (4.56), we get

sup o2||V26;]| 2

0<t<T
<C sup o’ (Ilpenlle + ol 31601 zs + Nl zs (VO L3 + IIVMIILS))
O=t=T (4.82)
+C sup o2 (V0,2 + IVur |l 12 + [Vull 131 Vil 6) + C

0<t<T
<C.
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Moreover, it follows from the standard H2-estimate of (3.39) that

192012 = € (106112 + llpu - V6 2 + llpOdivull o + Vel
< C((Ile = g2+ 1) 102 + (o = Ul g2 + 1) Il g2l VOl y2)
+C (1p0 — Ul g2 + 1) [ldivael| g2 + Cl|Vuell3,
< C+CIVZullp2 4+ CIV0ll 2 + Cl6 2.

due to (2.22) and (4.17). Combining this with (4.46), (4.56), (4.82), and (4.81)
shows (4.74). The proof of Lemma 4.6 is completed. O

5. Proofs of Theorems 1.1 and 1.2

With all the a priori estimates in Sects. 3 and 4 at hand, we are ready to prove
the main results of this paper in this section.

Proposition 5.1. For given numbers M > 0 (not necessarily small), p > 2, and
0 > 1, assume that (po, ug, 0p) satisfies (2.1), (3.5), and (3.8). Then there exists
a unique classical solution (p, u, 0) of (1.6) (1.4) (1.7) in R3 x (0, oc0) satisfying
(2.3)~(2.5) with Ty replaced by any T € (0, 00). Moreover, (3.9), (3.6), and (3.98)
hold for any T € (0, 00).

Proof. First, the standard local existence result (Lemma 2.1) shows that the Cauchy

problem (1.6) (1.4) (1.7) with initial data (pg, ug, 8p) has a unique local solution

(p, u,0), defined up to a positive Ty which may depend on inf3 po(x), and sat-
xeR

isfying (2.3)-(2.5), and inf3 po(x)/4 < p < 2p. One deduces from (3.1)—(3.5)
xeR
that
A1(0) = M. Ay (0) < Co = Cy/*,
A3(0) = A4(0) =0, po<p, 6 =<6.

Then there exists a 71 € (0, Tp] such that (3.6) holds for T = T;. We set

T*=supT | sup [[(p—1L,u,8 —1)|ys <ooy,
t€[0,7T]
and
T, = sup{T < T* | (3.6) holds). (5.1)

Then T* > T, > T; > 0. We claim that
T, = oo. (5.2)

Otherwise, Ty, < 00. Proposition 3.1 implies that (3.7) holds for all 0 < T < T,

which together with (3.8) yields Lemmas 4.1-4.6 still hold for all 0 < T < T.

Note here that all constants C in Lemmas 4.1-4.6 depend on T and inf3 po(x), and
xeR
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are in fact independent of 7. Then, we claim that there exists a positive constant C
which may depend on T, and inf3 po(x) such that, forall 0 < T < T,
xeR

sup flp— 1y < C, (5.3)
0<t<T
which together with Lemmas 4.4—4.6 and (3.5) gives

||(10(x’ T*) - 17 u(x’ T*)5 Q(X’ T*) - 1)”[—[3 S éy in]:é‘3 ,O(x, T*) > O.
xXe

Lemma 2.1 thus implies that there exists some 7** > T, such that (3.6) holds
for T = T**, which contradicts (5.1). Hence, we obtain (5.2) which together with
Lemma 2.1 finishes the proof of Proposition 5.1.

Finally, it remains to prove (5.3). It follows from (3.5), (1.6)2, and (2.2) that
we can define

(-, 0) £ —ug - Vuo + py ' (Aug + ( + 1) Vdivig — RV (pof0)) ,
which together with (2.1) gives
IVue (-, 0 2 < C. (5:4)
It thus follows from (4.43), (5.4), (4.35), (4.45), (4.17), (4.5), and Gronwall’s in-

equality that

T
sup [|Vugll 2 + / f plug[*dxdt < C, (5.5)
0<t<T 0

which as well as (4.19) and (4.17) yields
sup [lullys < C. (5.6)

0<t<T

Combining this with (4.49), (4.41), (5.5) and (4.17) gives

T
[ (19003 + 19l ar < €. 57)

Applying the H2-estimate to elliptic systems (2.24) leads to
IV2ull 2 < C||Vdivul| 2 + Cl|Voll 2
< Cllpiill g2 + ClIVPll g2 (5.8)
< C+CIViull 2+ ClIV2pllzz + ClIIVO 2,
where one has used (4.17) and the following simple facts:
louellzz < Clito = Dugll gz + Cllugll 2
< Cllp = Ul gz + ClIVZull 2 + €
< C+CIVull 2,
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llou - Vil gz < € (1o = Dl gz + lull g2) 1 Vel g2
< Clp = Ugllully2 + C

IA
Qe

and

IV3 (001l 2 <CIV3pll 211011 + CIIVZpll 16 IVO]l 3
+ ClIVoll31IV?0l 6 + CIVOl 2
<CIV3plip2 + CIV3O 2.

due to (2.22), (4.17), (5.5), (4.33), and (5.6). Then, standard calculations lead to

(19°011.2)
~ 3 2 2 3 4
< € (IIVullVplll 2 + NVl V21l 2 + N1VulVpll 2 + 9l 12)

< C (IVullg2 9ol 2 + IVull 5191l )
+C (1 1Vl 2 + IVl 2 + 199611 2)
< C+CIV3pl2+ ClIViu 3, + CIV30IT,.

where we have used (4.17), (5.6), and (5.8). Combining this with (5.7) and Gron-
wall’s inequality yields

3 ~
sup [[Vopll2 = C,
0<t<T

which together with (4.17) gives (5.3). The proof of Proposition 5.1 is completed.
0

With Proposition 5.1 at hand, we are now in a position to prove our main results,
Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let (pq, ug, 8o) satisfying (1.9)—(1.12) be initial data as
described in Theorem 1.1. Assume that Cy satisfies (1.13), where

&= g0/2, (5.9
with &g as in Proposition 3.1. For constants

8,n € (0, min{1, p — sup po(x)}), (5.10)

xeR3
we define

5,ngj6*00+fl VN 8,n£j5*90+77
I+n 1+7

’
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where js is the standard mollifying kernel of width §. Then, (pg’", ug’", 93 ") sat-
isfies

(oo™ = 1, ug", 05" — 1) € H*,

_ 5.11
< g < PEN 5 < 00" <8, Vuy |l 2 < M, G-I
1471 1471 147
and
tim (115" = poll o + lug™ = woll g2 + 169" = 6ollz2) =0,
§+n—0 0 0 0

5, S8, 8,
IV (g™, uy”, 8yl gt < 11V (pos o, 00) 15 (5.12)

3,
IVoy  llwre < IVoollwias

due to (1.9) and (1.10). Moreover, the initial norm Cg’" for (,og’", ug’", 93”7), i.e.,

the right hand side of (1.8) with (pg, ug, 6p) replaced by (,08”7, ug’n, 93’"), satisfies

lim lim C)" = Co.
n—085—0

Therefore, there exists an g € (0, min{l, p — sup po(x)}) such that, for any

xeR3
n € (0, ng), we can find some &9(n) > 0 such that

Cy" < Co+0/2 < 0, (5.13)
provided that
0<n=<no 0<8=<3Mm. (5.14)

We assume that §, n satisfy (5.14). Proposition 5.1 together with (5.13) and
(5.11) thus yields that there exists a smooth solution (p®7, u®", 6%1) of (1.6) (1.4)
(1.7) with initial data (,og’", ug’", 6’3’") on R? x [0, T] for all T > 0. Moreover,
(3.9) and (3.6) both hold with (p, u, #) being replaced by (p®, u®", §5:1).

Next, for the initial data (pg’", ug’n, 93’"), g1 in (4.1) in fact is

. S s, s 8.1.8,
X s (—;,LAMO T (A WVdivi T + RV (00 ”))

= (05" ™2 (s p0) 1 + (g™ 2 (s * (VpogD) = Vs * pog1)

5.15
+ R(oy ™)™ 29 (s * (pofo) = (1 4+ )2 (s % p0) (s * 60) ) o
+ Ry(L+ 20002V (b "+ 60,
where in the second equality we have used (1.11). Similarly, g> in (4.2) is
822 (077 (k860" + S 1Vug" + (Vug )P + acdivieg”)? )
= (pg’")_%(js * po)%gz + (pg'n)_% (J's * (V/P0g2) — v/ Js * ,0082) (5.16)

W sl (. . .
— o™ (Js + V0 + (Vug)™ 2 = Vs xug) + (Vs *ug) ")

= 2oy ™72 (s + ((ivig)?) = @ivjs +uo))?)
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due to (1.12). Since g1, g2 € L2, one deduces from (5.15), (5.16), (5.11), (5.12),
and (1.9) that there exists some positive constant C independent of § and 1 such
that

{nglan < A +0"2lgill2 + Cn ' 2my(8) + C i, 517

122012 < (A +m 2 gall 2 + Cn=12ma(8),

with0 <m;(§) - 0 (i =1,2)asé — 0. Hence, for any 0 < n < 7o, there exists
some 0 < §1(n) < §o(n) such that

mi(8) +ma(8) < n, (5.18)

for any 0 < § < 81(n). We thus obtain from (5.17) and (5.18) that there exists
some positive constant C independent of § and n such that

gl + 182l = 2llg1llz2 + 2lig2ll2 + C, (5.19)
provided that
O0<n<mny, 0<d8<d81(n). (5.20)

Now, we assume that 7, § satisfy (5.20). It thus follows from (5.13), Proposition
3.1, Corollary 3.9, (5.12), (5.19), and Lemmas 4.1-4.6 that for any T > 0, there
exists some positive constant C independent of § and 1 such that (3.9), (3.6), (3.98),
(4.17), (4.18), (4.46), (4.56), and (4.74) hold for (p%", u®",6%1). Then passing to
the limit first § — 0, then n — 0, together with standard arguments yields that
there exists a solution (p, u, 0) of (1.6) (1.4) (1.7) on R3 x (0, T] forall T > 0,
such that (p, u, 0) satisfies (3.9), (3.6), (3.98), (4.17), (4.18), (4.46), (4.56) and
(4.74). Hence, (p, u, 0) satisfies (1.14), (1.15);, (1.15)3, and

p—1€L®0,T: HHNW>?), (u,0 —1)€ L®0,T; H>). (5.21)

Moreover, (4.52) holds in D'(R? x (0, T)).
Next, to finish the existence part of Theorem 1.1, it remains to prove

p—1eC(0,T: H>*NW?>?), u, 6 —1€C(0,T]; H?). (5.22)
Indeed, it follows from (4.17) and (5.21) that
p—1e€C(0,T: H nwW"®)n 0, TT; H> N W>9 -weak), (5.23)
and for all » € [2, 6),
u, 6 —1eC(0, Tl H' nWw'r). (5.24)

Since (4.52) holds in D' (R3 x (0, T)) for all T € (0, 00), one derives from
[13, Lemma 2.3] that, for j,(x) being the standard mollifying kernel of width v,
" £ px j, satisfies

(Ap"); +div(uAp’) = —div(pAu) x j, — 2div(9;p - d;ju) * j, + R, (5.25)
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where R, satisfies

T T

3/2 3/2 3/2

/ IR}, dt < C / Il Sl ApIS, dr < C, (5.26)
0 0

due to (4.5), (4.17), and (4.46). Multiplying (5.25) by ¢|Ap”|9~>Ap”, we obtain
after integration by parts that

(1Ap"11,) (1)

—(1-q) / |Ap" ["divudx — g / (div(pAu)  jn)| Ap" |92 Ap"dx
—2q / (div(d;p - diu) * ju)|Ap" 192 ApVdx + ¢ / Ry|Ap" 972 Ap dx,

which together with (4.17), (4.46), and (5.26) yields that, for pg as in (4.47),

T
sup IIAp”Iqu+/ [(IARY 11T ()]0 dr
te[0,T] 0

T
<c+ c/o (1valls, + IR, ) di < C.

This combined with the Ascoli-Arzela theorem thus leads to
1A ¢ D)llze = 1APC, Dllze in C([0, T1), asv — 07
In particular, we have
IV20 (. Dllze € €10, T). (5.27)
Similarly, one can obtain
IV20 (. )2 € €10, T,
which together with (5.23) and (5.27) shows
V2p e C([0, T]; L> N LY). (5.28)
To prove the second part of (5.22), it follows from (4.17) and (4.18) that
pur, pf; € C([0, TT; L?), (5.29)
which together with (4.12), (5.23), (5.24), and (5.28) gives
ueC(0,T]; H?). (5.30)
Combining this with (3.39), (5.29), (5.28), (5.24), and (4.17) leads to
0—1eC(0,T]; HY),

which as well as (5.23), (5.28), and (5.30) gives (5.22).
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Finally, since the proof of the uniqueness of (p, u, 6) is similar to that of [4,
Theorem 1], to finish the proof of Theorem 1.1, it remains to prove (1.16). We will
only show

lim [[Vull,2 =0, (5.31)
11— o0

since the other terms in (1.16) follow directly from (1.28). It follows from (3.98)
and (3.6) that

/1 (IVal2) (1) de

w . .
:2/ ‘/Bjulaju;dx dr
1

:2/ ‘/8ju’8j(d’ — ukopuydx| dr
1

oo
=/ V(zaju'ajul — 20’ 3jut du’ + |Vul>divu)dx | dr
1

o

< [ (Ivulia it + 1vulis) o
* <12 2 4 d

< [ (19l + 19l + 19uld) dr < .
1

which together with (3.6) implies (5.31). We finish the proof of Theorem 1.1. O

Proof of Theorem 1.2. We will prove Theorem 1.2 in three steps.

Step 1: Construction of approximate solutions Let (pg, uo, 8o) satisfying (1.10)
be initial data as described in Theorem 1.2. Assume that Cy satisfies (1.22) with &
asin (5.9). Let § and n be as in (5.10) and js be the standard mollifier. We define

S JSXP0+N sy s AJa*(P090)+77
o e DT T T G0 A s, 607A R T

l+n Jsxpo+m

Then, (,60 ”0 , 90 7y satisfies
P = 1,007,607 —1) € H™,
.32

iy gy . Ry L T ST IS VA
1417 1+n p+n

due to (1.10). Moreover, it follows from (1.10) and (1.22) that
A8, ~8,1m A8,
lim lim (||p0 — pollz2 + g™ — uoll gt + 11550y " — ,0090||L2) =0.
(5.33)

We claim that the initial norm Co " for (/00 , ’40 ", 00 ", i.e., the right hand side of
(1.8) with (po, ug, 6p) replaced by (,oo ", ﬁg ", 90 T, satisfies

lim lim ¢y < Co, (5.34)
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which yields that there exists an n > 0 such that, for any n € (0, 1), there exists
some §(n) > 0 such that

C2" < Co+ £0/2 < £0, (5.35)
provided
0<n<h 0<38=<dm. (5.36)

We assume that 8, n always satisfy (5.36). Proposition 5.1 as well as (5.32) and

(5.35) thus yields that there exists a smooth solution (5%, %", 631y of (1.6) (1.4)
(1.7) with initial data (,68’", ﬁg’", ég’") onR3 x [0, T] forall T > 0. Moreover, for
any T > 0, (p7, %", 675"7) satisfies (3.9), (3.6), and (3.98) with (p, u, ) replaced
by (5, a1, 4.

It remains to prove (5.34). In fact, we only have to show

S ~8.1 (A8 48,1
lim 1 (9 —19—1)d<f 8o — log o — 1) dx,
p=nacn | 70\ TIoe v =) oo loetm D

(5.37)

since the other terms in (5.34) can be proved in a similar and even simpler way.
Noticing that

~8,m (A8, Ads
A (80 —10g8)" — 1)

8,1n /A8 2 ! o
= Ao’n(QO’r] — 1) Tda
0 a@y" —1)+1
_m*m%—mﬂfl «
I+ o a(js * (pofo) — js * po) + js * po +1n

e [0, 7! (s + (oot — po?].

do

we deduce from (5.33) and Lebesgue’s dominated convergence theorem that
gir%f ,53"7 (ég’" - 10g9Ag’77 - 1) dx

/po+n (p000+7] ) 0060 + 1 )
= — log —1)dx
I+n \ po+n o+ 1

1 pobo + 1
=— (ﬁ)o@o —po — (po +n)log ———— ) dx (5.38)
L4+ 1 J oot <1/2)U(p060>2) oo +1n

ot + 1 0t + 1
— (po + 1) —lo —1)dx
L+n Ja2<pmb0<2) o+ 1 o+ 1

o ! (I + D)
71"”71 2)s

where we have used the following simple fact that, for f € LP(1 < p < 00),

gin%) ljs * f— fllLr =0, girr%) js % f(x) = f(x), almost everywherex € R>.
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It follows from (1.22) that

[(Poflo < 1/2) U (oo > 2)] < 4 / (poflo — 1%dx

<3 f (polo — po)2dx + 8 / (po — 1)2dx
S C’

which combined with Lebesgue’s dominated convergence theorem yields

I = f (poflo — po log(pobo + 1) — nlog(pofo + 1) dx
(pobo<1/2)U(pobo>2)

+ / ((po + m) log(po + 1) — po) dx
(pobo<1/2)U(pobo>2)

<

/ (poflo — po log(pobo) — nlog ) dx (5.39)
(pobo<1/2)U(pobo>2)

+ / (0o log(po + n) + nlog(po + 1) — po) dx
(PoBo<1/2)U(pob>2)

— po (B —logbhy — 1)dx, asn— 0.
(P00 <1/2)U(pobo>2)
Noticing that
pofo + 1 pofo + 1
(00 + ) <__10 ——1)
PO+ 1 PO+ 1

¢ do
a(pofo — po) + po +1n
€ [0, 2 (pobo — 00)2] ,

1
= (pofo — p0)2/0

provided ppfp > 1/2, we deduce from Lebesgue’s dominated convergence theorem
that

lim I, = / po (Bp —log6y — 1) dx,
n—0 (1/2=p0b0=2)

which together with (5.38) and (5.39) gives (5.37). m|

Step 2: Compactness results For the approximate solutions (5%, 457, %)
obtained in the previous step, we will pass to the limit first § — 0, then  — 0 and
apply (3.6) and (3.98) to obtain the global existence of weak solutions. Since the
two steps are similar, we will only sketch the arguments for 6 — 0. Thus, we fix
n € (0, ) and simply denote (5%, 4", g3y by (%, u®, 6%). For R € (0, 00), let
Br(x0) £ {x € R3||x — x| < R} denote a ball centered at xy € R? with radius R.
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We claim that there exists some appropriate subsequence §; — 0 of § — 0 such
that, forany 0 <t < T <ooand 0 < R < oo, we have

0% —1 —60 —1 weaklyin L2(0,T; H'(R%)), (5.40)
u®i — u weakly starin L>®(0, T; H'(R?)), .
0% —1— p—1 in C([0, T]; L>(R?)-weak), (5.41)
0% —1— p—1 in C(0,T); H ' (Br(0))), '
pliubi — pu, p% (0% — 1) > p(@ — 1) in C([0, T]; L*(R?)-weak), (5.42)
0%5ubi — pu in C([0, T]; H~'(Br(0))), '
%1 udi > = plu)® in C([0, T]; L3-weak), (5.43)
and
ubi - u, G - G, 0% — w, V8% — VO in C([r, T]; H'(R?)-weak), (5.44)

Wi —u, G% - G, &% - w, V0% — VO in C([zr, T]; L*(Br(0))).

We thus write (1.1) in the weak forms for the approximate solutions (p°, u®, 6%),
then let § = §; and take appropriate limits. Standard arguments as well as (5.40)—
(5.44) thus yield that the limit (p, u, 6) is a weak solution of (1.1) (1.4) (1.5) in the
sense of Definition 1.1 and satisfies (1.23)—(1.27) except p — 1 € C([0, o0), L?)
which in fact can be obtained by similar arguments leading to (5.28). In addition, the
estimates (1.29)—(1.31) follows directly from (3.9), (3.98), (3.6), and (5.40)—(5.44).

It remains to prove (5.41)—(5.44) since (5.40) is a direct consequence of (3.6).
It follows from (3.9), (3.6), and (1.6); that

8
sup ||pf lg-1w3y < C,
tel0,00)

which as well as (3.6), [13, Lemma C.1], and the Aubin-Lions lemma yields that
there exists a subsequence of §; — 0, still denoted by 4, such that (5.41) holds.
Moreover, one deduces from (3.98) that (extract a subsequence)

p% —1 = p—1, Vub — Vu weaklyin L*R> x (1, o0)),

with p — 1 and Vu satisfying

o0
/1 (lo = 13s + IVul}s ) dr < €. (5.45)

Then, simple calculations together with (3.6) yield that, for any 0 < T < oo,
there exists some C(7T') independent of § and 1 such that

12 u®)ell 20711 ®3y) + 120l 20,7 -1 @3y < C(T),  (5.46)

which together with (3.6), (5.41), and (5.40) gives (5.42).
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Next, to prove (5.43), one deduces from (3.6) and (1.6); that, for any ¢ €
H'(RY),

’ / (O lu® Pt dx

= '—/div(p‘su‘s)|u‘s|2§dx —|—2/‘/o’3u‘S ~u,8§dx

— 'fp%ﬁ (Wl 2o)dx +2/p5u‘S @ —u® - Vul)rdx

< c/p8|u5|3|vz|dx +c/p5|us|2|w5||;|dx +Cfp‘*|u“|m5||;|dx
< Clul36lIVE 2 + Clul76IVUl [l 2112 Nl o

+ Cll sl V2 1 2 ¢ 5
= C (19612 + 16D i1 12) 1€ i,

which together with (3.6) gives

o
/0 1G0° 11 ) 13,-1d2 < C. (5.47)

It follows from (3.6) that

8,812
sup |lp%|u”["llpinzs = C,
1€[0,00)

which combined with (5.47), (5.40), and (5.42) yields (5.43).
Finally, we prove (5.44) which implies the strong limits of #° and 6°. We deduce
from (3.6), (2.26), (5.46), and (3.98) that

sup (|t g1 + a2 NG g1 + 210 1 + 02V 1) < €, (5.48)

t€[0,00)

and

T
fo ot (||u?||iz(R3) FUG 1 @y + 1071131 ) + ||9f||§11(R3)) dr < C.
(5.49)

The Aubin-Lions lemma together with (5.48) and (5.49) thus gives (5.44).
Step 3: Proofs of (1.32) and (1.28) We first prove that (p, u, 0) satisfies (1.32).
We rewrite the energy equation (1.6)3 in the form

R
— ((p0); + div(pub)) — k A6
vy = (5.50)
= Gdivu — Rdivu + 2udiv(u - Vu — udivu) + %|a)|2.
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Thus, for any ¢ € D(R3 x (0, 00)), we have

1/ / 695 (p +u’ ng) dxdt—/c/ /V@a Vodxdr
y [—
- f / G?divu’ pdxdr + R / / divi® pdxds (5.51)
0 0
o M oo
+ ZM/ / (u‘s Vi — u‘sdivu‘s) - Vodxdr — E/ / |w8|2<pdxdt.
0 0

Letting § = §; in (5.51) and taking appropriate limits, we thus deduce from (5.41),
(5.40), (5.42), and (5.44) that

- 1/ /p@ (pr +u - Vo) dxdt —K/ /V@ Vodxdt
—/ /Gdivu<pdxdt+R/ /divmpdxdt
+2M/ /(u Vu — udivy) - Vedxdr — —/ /|a)| odxdt
= —/0 f(kdivu — P)divugpdxdr — Z/L/() / 1D (u) |2 pdxdt

w .
+2u f / (aku'ai p) — diV(mp)diVM) dxdr
0

o0 o0
= f / Pdivugdxdr — f / (A(divu)2+2u|©(u)|2) @dxdr,
0 0

where in the last equality, we have used the following simple fact that, for standard
mollifier j, (x),

(5.52)

(akui&- (uk(p) — div(mp)divu) dxdt

8k(ui —ul % Jv)0i (uk<p> dxdt

+ f - / (ak(u" % )3 k) —diV(u(p)divu) dxds
0

(ak(u" — 5 )3 (@) + div(ue)div(u * ju — u)) dxds

o0
§C/ /|V(u<p)||V(u—u>kj,,)|dxdt—>0, asv — 0,
0

due to (1.30). We thus derive (1.32) directly from (5.52), (5.42), and (5.41).
Finally, to finish the proof of Theorem 1.2, it remains to prove (1.28). Since
(p, u) satisfies (1.18), for the standard mollifier j,(x)(v > 0), p” = p * j, satisfies

,O,: +div(up®) = ry, . (5.53)
p"(x,t=0) = po* ju,
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where r, satisfies, for any 7 > 0,

T
lim | i Iryll3,dt =0, (5.54)

v—0

due to (3.9), (3.6), and [13, Lemma 2.3]. Multiplying (5.53) by 4(p"” — 1)3, we
obtain after integration by parts that, for > 1,

(lp” =117
- —4/(p” — 1)3divudx — 3 /(p” — D*divudx +4f ro(p’ — 13dx

< Cllp” = 1} + CIVul}s + Clirvl 2,
which implies that, forall ] < N <s <N+ 1<t <N +2,
Vo) =114, < [1p"C,5) — 1]14,
L L

N+2 4 4
v
[ (" i) a5,

N+2
+C/ |7yl 2dt.
N

Letting v — 07 in (5.55) together with (5.54) and (1.23) yields that

N+2
||p<~,z)—1||‘;4s||p(-,s)—1||i4+c/N (o = 1154+ 1Vul}s ) dr. (5.56)

Integrating (5.56) with respect to s over [N, N + 1] leads to

4 N+2 4 A
sup oo =1 =€ [ (o = g+ I9ulf) a
te[N+1,N+2] N

— 0, as N — oo,

due to (5.45). Combining this with (1.27) and (1.30) implies that, forall p € (2, 00),
t—>0o0

lim f lp — 11Pdx = 0. (5.57)

Finally, we will prove

Jim. (llullgs + VO] 2) =0, (5.58)
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which, combined with (5.57), (1.27), (1.29)—(1.31) and the Gagliardo-Nirenberg
inequality, thus gives (1.28). In fact, one deduces from (1.29)—(1.31) that

o0

oo
[ (e + 1veiz)ar < ¢ [ eVl sar

. (5.59)
+/ IVO|7.dt < C,
1
/1 ‘5 (huC 0l )| dr = 4/1 ‘f julu - wydx| dt
o 5.60
< c/l el oo Nl 2l 2 60
E C?
and
/1 ‘d—t (||V9(-,t)||L2) dr =2/1 ‘/V9~V9,dx dr
[o)0]
<C /1 1V6 12 1ve 0 OO
<C.
Thus, we derive (5.58) easily from (5.59)—(5.61). The proof of Theorem 1.2 is
finished.
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