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Abstract

We consider a family of porous media equations with fractional pressure, re-
cently studied by Caffarelli and Vázquez. We show the construction of a weak
solution as the Wasserstein gradient flow of a square fractional Sobolev norm. The
energy dissipation inequality, regularizing effect and decay estimates for the L p

norms are established. Moreover, we show that a classical porous medium equation
can be obtained as a limit case.

1. Introduction

We consider the evolution problem
⎧
⎪⎨

⎪⎩

∂t u − div(u∇v) = 0 in R
d × (0,+∞),

(−�)sv = u in R
d × (0,+∞),

u(0) = u0,

(1.1)

where the initial datum u0 is a Borel probability measure on R
d , d ≥ 1, and

0 < s < min{1, d
2 }. The linear operator (−�)s is the s-fractional Laplacian on R

d ,
defined by means of Fourier transform as

̂((−�)sv)(ξ) = |ξ |2s v̂(ξ).

We define the Riesz kernel Ks by the relation K̂s(ξ) = |ξ |−2s , that is,

Ks(x) = Cd,s |x |−d+2s,

where Cd,s is a normalization constant. With our convention for the Fourier trans-
form, that is, ϕ̂(ξ) = ∫

Rd e−i x ·ξ ϕ(x) dx, we have

Cd,s = π−d/22−2s�(d/2 − s)/�(s), (1.2)
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where � is the Euler Gamma function, see for instance [1, Section 1.2.2]. The
relation between u and v, in the second equation of (1.1), is understood as v =
Ks ∗ u. Therefore, problem (1.1) corresponds to an evolution repulsive interaction
equation, characterized by the Riesz kernel Ks .

Problem (1.1) has been studied by Caffarelli and Vázquez in [14], where the
existence of solutionswas proved for non-negative bounded initial datawhich decay
exponentially fast at infinity. The existence result of [14] has been generalized to L1

positive initial data in [11] and to positive finite measure data in [27,28]. Moreover,
[11,16] contain comprehensive results about the Hölder regularity of solutions.
Barenblatt profiles and asymptotic behavior are investigated in [15]. Exponential
convergence towards stationary states in one space dimension, after changing to self
similar variables, has been obtained in [18]. More general nonlocal porous media
equations are considered in [6,28–30]. See also [32] and the references therein.

The system (1.1) is derived by starting from the continuity equation

∂t u + div(uv) = 0,

which governs the evolution of the density distribution u, driven by a velocity vector
field v. Now, as happens for the classical porous medium equation, we suppose that
v is the gradient of a scalar function v, the pressure, which is assumed to be a
function of the density u. The system (1.1) emerges by choosing the nonlocal
closing relation v := −∇v = −∇(Ks ∗ u).

Let us briefly discuss the extreme cases s = 0 and s = 1. When s = 0, the
second equation formally reduces to the identity v = u and thus the system in (1.1)
becomes

∂t u − 1

2
�u2 = 0, (1.3)

which is a classical (local) porousmedium equation.Among the other results, in this
paper we will make this transition rigorous (see Theorem 1.3). The other extreme
situation corresponds to the case s = 1, d ≥ 2, where the second equation becomes
−�v = u. The resulting system (1.1) is related to the Chapman–Rubinstein–
Schatzman’s mean field model in superconductivity (see [17]) and to the E’s model
in superfluidity, at least for positive solutions (see [20]). Existence for this system
when s = 1was first proved in two space dimensions in [23].More recently, Serfaty
and Vázquez [27] proved that the solutions of the system (1.1) converge in a proper
way when s ↗ 1 to the solutions of the corresponding system with s = 1.

The gradient flow structure. Our main contribution is the rigorous construction
of non-negative solutions for the Cauchy problem (1.1) as trajectories of a gradient
flow. More precisely, we consider the space P2(R

d) of Borel probability measures
on R

d with finite second moment endowed with the 2-Wasserstein distance, here
denoted by W (see Sect. 2). For u ∈ P2(R

d) we define the energy functional

Fs(u) = 1

2
‖u‖2

Ḣ−s (Rd )
:= 1

2

1

(2π)d

∫

Rd
|ξ |−2s |û(ξ)|2 dξ,
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that is, Fs is the square norm of the homogeneous Sobolev space Ḣ−s(Rd), see
Sect. 2.2. We observe that this functional admits the alternative representation

Fs(u) = 1

2

∫

Rd

∫

Rd
Ks(x − y) du(x) du(y),

enlightening the structure of an interaction energy, characterized by the Riesz con-
volution kernel Ks . Within the gradient flow interpretation, we prove that a so-
lution to the Cauchy problem (1.1) can be obtained by means of the minimizing
movement approximation scheme, applied to the functional Fs in the metric space
(P2(R

d),W ). A general theory of minimizing movements in metric spaces and its
applications to the space (P2(R

d),W ) is contained in the book of Ambrosio, Gigli
and Savaré [2]. The gradient flow approach in (P2(R

d),W ) was first exploited by
Jordan–Kinderlehrer–Otto in the seminal paper [22]. Let us illustrate the strategy
in our case: given u0 ∈ Ḣ−s(Rd) ∩P2(R

d) and τ > 0 we introduce the following
time discretization scheme. We consider a uniform partition of size τ of the time
interval [0,+∞) and we let u0τ be a suitable approximation of the initial datum
(see (3.2)). Then, we recursively define

ukτ ∈ Argminu∈P2(Rd )

{

Fs(u) + 1

2τ
W 2
(
u, uk−1

τ

)}

, for k = 1, 2, . . . .(1.4)

If {ukτ }k∈N ⊂ P2(R
d) is a sequence defined by (1.4), we introduce the piecewise

constant interpolation

uτ (t) := u�t/τ�
τ , t ∈ [0,+∞),

where �a� := min{m ∈ N : m > a} is the upper integer part of the real number a.
We refer to uτ as discrete solution. We prove that this family of piecewise constant
curves admits limit points as τ → 0, and that a limit curve is a weak solution to
(1.1), satisfying some additional properties (see Theorem 1.1).

Nonlocal evolution equations with singular kernels appear in several mathe-
matical models. However, up until now the corresponding gradient flow approach
was limited to less singular interactions. Besides the works [3,4], dealing with
the Chapman–Rubinstein–Schatzman superconductivity model, gradient flows of
equations involving Newtonian interaction appear in the study of the Keller–Segel
model for chemotaxis, see [9] and the reviews [7,8]. The approach we propose here
is strictly related to the latter contributions, and problem (1.1), with the correspond-
ing functional Fs , turns out to be a remarkable example of Wasserstein gradient
flow.

The main result. We shall now state the results. The main one is Theorem 1.1,
which contains all the properties of the gradient flow solutions. Throughout the
paper we denote by H : P2(R

d) → (−∞,+∞] the entropy defined by H(u) :=∫

Rd u log u dx if u is absolutely continuous with respect to the Lebesgue measure
andH(u) = +∞ otherwise. We use the notation D(H) = {u ∈ P2(R

d) : H(u) <

+∞} for the domain of H. Moreover, in the statement of Theorem 1.1, the ap-
proximation u0τ of the initial datum u0 is not arbitrary, but given by the suitable
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Gaussian regularization defined in Sect. 3 below, see (3.2). See also Sect. 2.1 for
the definition of narrow convergence and Sect. 3.2 for the definition of the space
AC2([0,+∞); (P2(R

d),W )).

Theorem 1.1. Let d ≥ 1, 0 < s < min{1, d
2 } and u0 ∈ Ḣ−s(Rd) ∩ P2(R

d). Then
the following assertions hold:

(i) Existence and uniqueness of discrete solutions. For every τ > 0, after
having defined u0τ by (3.2), there exists a unique sequence {ukτ : k = 1, 2, . . .}
satisfying (1.4);

(ii) Convergence and regularity. For every vanishing sequence τn there exists a
(not relabeled) subsequence τn anda curve u ∈ AC2([0,+∞); (P2(R

d),W ))

such that

uτn (t) → u(t) narrowly as n → ∞, for any t ∈ [0,+∞).

Moreover, u ∈ L2((T0, T ); H1−s(Rd)) for every 0 < T0 < T , and

uτn → u strongly in L2((T0, T ); L2
loc(R

d)) as n → ∞ .

Defining vτ (t) := Ks ∗ uτ (t) and v(t) := Ks ∗ u(t) ∀ t > 0, we have that
∇v ∈ L2((T0, T ); L2(Rd)) for every 0 < T0 < T , and

∇vτn → ∇v weakly in L2((T0, T ); L2(Rd)) as n → ∞;

(iii) Solution of the equation. Given u, v from point ii), the first equation in (1.1)
is satisfied in the following weak form:
∫ +∞

0

∫

Rd
(∂tϕ − ∇ϕ · ∇v)u dx dt = 0, for all ϕ ∈ C∞

c ((0,+∞) × R
d);

(iv) Energy dissipation inequality. Given u, v from point ii), there holds

Fs(u(t)) +
∫ t

0

∫

Rd
|∇v(r)|2u(r) dx dr ≤ Fs(u0), ∀ t ∈ [0,+∞); (1.5)

(v) Regularizing effect and decay estimates. For every p ∈ [1,+∞] there is a
constant Cp depending only on p, d and s (independent of u0) such that

‖u(t)‖L p(Rd ) ≤ Cpt
−γp ∀t > 0,

where γp = p−1
p

d
d+2(1−s) for p < +∞ and γ∞ = d

d+2(1−s) . In particular

u(t) ∈ D(H) ∩ L p(Rd) for every t > 0;
(vi) Entropy estimates. If, in addition, u0 ∈ D(H), then

H(u(t)) ≤ H(u0), ∀t > 0.

If u0 ∈ L p(Rd) for some p ∈ [1,+∞], then
‖u(t)‖L p(Rd ) ≤ ‖u0‖L p(Rd ), ∀t > 0.
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Remark 1.2. The proof of Theorem 1.1 will be given as a collection of different
results throughout the paper. Let us give some comments here.

• If u0 ∈ D(H), then the results of point (ii) also hold for T0 = 0 and the results of
points (i)-(ii)-(iii)-(iv) do not require the approximation of the initial datum (that
is, we could define u0τ = u0 in this case).

• The value of the constant Cp in point (v) is explicit, see Lemma 4.10 below for
p ∈ (1,+∞) and Theorem 7.2 for p = +∞. If p = 1 we have C1 = 1 and
equality holds in points (v) and (vi) because mass conservation is an automatic
consequence of the Wasserstein gradient flow construction of solutions.

• For every p ∈ [1,+∞] the exponent γp in point (v) is sharp, since the Barenblatt-
type solutions constructed in [15] have the same decay rate.

• The solutions that we construct are weak energy solutions in the terminology
of Caffarelli and Vazquez. Consequently they are also Hölder continuous thanks
to [11, Theorem 5.1]. The finite speed of propagation is obtained by Caffarelly
and Vazquez in [14] and relies on their construction of weak solutions (see also
[21] and [29]). It would be an interesting problem to obtain the finite speed of
propagation directly from our discrete scheme.

• Theorem 1.1 holds if we consider positive measure data in Ḣ−s(Rd), with finite
secondmoment andmassM > 0. In such case, the constantCp frompoint (v) gets

multiplied by M
p where 
p = 2p(1−s)+d
2p(1−s)+dp if p ∈ [1,+∞) and 
∞ = 2(1−s)

2(1−s)+d .

This scaling is the same obtained in [11] for positive L1(Rd) data. See also
Remark 7.3 below.

Let us summarize the main techniques and the strategy that we shall use in the
paper. We start with the analysis of the discrete variational problem (1.4) proving
existence and uniqueness of the discrete solutions. Moreover we analyze the reg-
ularity of minimizers, which are indeed shown to belong to Ḣ1−s(Rd), and not
only to Ḣ−s(Rd). In order to do this we make use of the flow interchange tech-
nique, described by McCann, Matthes and Savaré in [24]. The improved regularity
of minimizers allows as to perform variations along transport maps and to derive
a corresponding Euler–Lagrange equation, which yields a discrete formulation of
problem (1.1). Moreover, the obtained regularity estimates entail sufficient com-
pactness in order to pass to the limit in such discrete formulation, obtaining a weak
solution to problem (1.1). Finally, in order to obtain the energydissipation inequality
of functional Fs along the solution we use the De Giorgi variational interpolation.
In these steps we often work in Fourier variables; this approach reveals useful and
appears quite natural, starting from the definition of the energy functional.

The other important features that we discuss are the regularizing effect and the
decay rate at infinity of L p norms stated in point v) of Theorem 1.1. We stress
that the regularizing effect allows as to treat the case of general P2 ∩ Ḣ−s initial
data. The decay rate of the L p norms was already obtained in [11]. From our point
of view, this relates to the interesting issue of finding general L p estimates at the
discrete level of the minimizing movements scheme, along with the corresponding
decay rates for large times, which is new in this framework. At the discrete level,
for p < +∞, we obtain an estimate of the form
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‖ukτ‖L p(Rd ) ≤ min
{
‖u0τ‖L p(Rd ),Cp(kτ)−γp

}
+ Rτ , k = 1, 2, 3, ...,

where γp = p−1
p

d
d+2(1−s) and Rτ is a suitable remainder term. Such an estimate

is proved by combining the flow interchange technique with Sobolev inequalities.
The term Rτ is then shown to vanish as τ → 0, thus yielding the desired decay
estimates of the L p norms for p < +∞. However, it is not possible to directly
pass to the limit as p → +∞, because the multiplicative constant Cp blows up.
We note that an analogous difficulty for the case of the porous medium equation
was observed for instance in [10], when trying to obtain the decay rate of the L∞
norm by making use of Sobolev inequalities.

In order to obtain the L∞ decay, a refined argument is indeed necessary. Here,
we adapt the techniques of Caffarelli–Soria–Vázquez [11] to the discrete setting.
Their approach for proving L∞ decay estimates was previously introduced by
Caffarelli and Vasseur [12,13] for the case of the semigeostrophic equation, and
it is based on the De Giorgi technique for elliptic equations. In order to apply
this technique within the discrete setting we introduce a sequence of minimizing
movements approximations on a smaller scale. This construction represents one of
the main novelties of the paper (see Section 7). The new approximation provides
the required information on the solution, allowing for an L2 to L∞ argument to get
L∞ decay with the expected rate γ∞ = lim p→+∞ γp, corresponding to the one
obtained in [6,11].

The limit as s → 0.Afinal result thatweprove is the convergenceof the constructed
solutions to a solution of the standard porousmediumequation (1.3) as the fractional
parameter s goes to zero. This complements the result of Serfaty and Vázquez
[27], where the limiting case as s → 1 (corresponding to the interaction with
the Newtonian potential) is analyzed. More precisely, the result is stated in the
following Theorem:

Theorem 1.3. Let u0 ∈ L2(Rd) and {us0}s∈(0,1) be a family of initial data such that
us0 ∈ D(Fs), us0 converges narrowly to u0 as s → 0, sups∈(0,1)

∫

Rd |x |2 dus0(x) <

+∞and lims→0 Fs(us0) = F0(u0)whereF0(·) := 1
2‖·‖L2(Rd ). For each s ∈ (0, 1),

let us be a solution to the corresponding equation (1.1), with initial datum us0, given
by Theorem 1.1. Moreover, let u be the unique solution of the Cauchy problem for
the porous medium equation

{
∂t u − 1

2�u2 = 0 in R
d × (0,+∞),

u(0) = u0
(1.6)

satisfying the energy identity

F0(u(T )) +
∫ T

0

∫

Rd
|∇u(t)|2u(t) dx dt = F0(u0), ∀ T > 0.

Then we have

us(t) → u(t) narrowly as s → 0 for every t ≥ 0,
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and, for every T0 and T such that T > T0 > 0,

us → u strongly in L2((T0, T ); L2
loc(R

d)) as s → 0,

∇us → ∇u weakly in L2((T0, T ); L2(Rd)) as s → 0.

Plan of the paper. Section 2 introduces the basic framework for gradient flows
in the Wasserstein space and for fractional Sobolev norms. Section 2 shows the
convergence of the scheme to some absolutely continuous curve in P2(R

d), owing
only to the general theory of minimizingmovements, and not relating to the specific
choice of functional Fs . Section 4 introduces the flow interchange, which will be
repeatedly used in order to obtain further regularity of minimizers, the regularizing
effect of the dynamics, and the L p decay estimates for p ∈ (1,∞). Section 5 is
devoted to the Euler–Lagrange equation for discrete minimizers, thus building up
the key element for the existence result. Section 6 proves existence, by showing
that the limit curve found in Step 3 is in fact regular enough for giving sense to the
term u∇v and satisfies equation (1.1). This is moreover a gradient flow solution, so
that (1.1) holds in the sense of distributions and an energy dissipation inequality for
functionalFs holds. Section 7 introduces the double scale approximation andproves
the L∞ decay estimates, thus completing the proof of Theorem 1.1 Eventually,
Section 8 contains the proof of Theorem 1.3.

2. Notation and Preliminary Results

2.1. Wasserstein Distance

We denote by P(Rd) the set of Borel probability measures on R
d . The narrow

convergence inP(Rd) is defined in duality with continuous and bounded functions
on R

d , that is, a sequence {un} ⊂ P(Rd) narrowly converges to u ∈ P(Rd)

if
∫

Rd φ dun → ∫

Rd φ du for every φ ∈ Cb(R
d), where Cb(R

d) is the set of
continuous and bounded functions defined on R

d .
We define P2(R

d) := {u ∈ P(Rd) : ∫
Rd |x |2 du(x) < +∞} the set of Borel

probability measure with finite second moment. The Wasserstein distance W in
P2(R

d) is defined as

W (u, v)

:= min
γ∈P(Rd×Rd )

{(∫

Rd×Rd
|x − y|2 dγ (x, y)

)1/2

: (π1)#γ = u, (π2)#γ = v

}

,

(2.1)

where πi , i = 1, 2, denote the canonical projections on the first and second factor
respectively. Denoting by I the identity map inR

d , when u is absolutely continuous
with respect to the Lebesgue measure, the minimum problem (2.1) has a unique
solution γ induced by a transport map T v

u in the following way: γ = (I, T v
u )#u. In

particular, T v
u is the unique solution of the Monge optimal transport problem

min
S:Rd→Rd

{∫

Rd
|S(x) − x |2du(x) : S#u = v

}

.
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Finally, we also recall that if v is absolutely continuouswith respect to Lebesgue
measure, then

T u
v ◦ T v

u = I u-a.e. and T v
u ◦ T u

v = I v-a.e.

The function W : P2(R
d) × P2(R

d) → R is a distance and the metric space
(P2(R

d),W ) is complete and separable. Moreover the distance W is sequentially
lower semi continuous with respect to the narrow convergence, that is,

un → u, vn → v, narrowly �⇒ lim inf
n→+∞ W (un, vn) ≥ W (u, v),

and bounded sets in (P2(R
d),W ) are narrowly sequentially relatively compact.

2.2. Fourier Transform and Fractional Sobolev Spaces

We denote by S(Rd) the Schwartz space of smooth functions with rapid decay
at infinity and by S ′(Rd) the dual space of tempered distributions. The Fourier
transform of u ∈ S(Rd) is defined by û(ξ) := ∫

Rd e−i x ·ξu(x) dx . The Fourier
transform is an automorphism of S(Rd) and by transposition it can be defined on
S ′(Rd). Moreover, the Plancherel formula holds:

∫

Rd
û(ξ)ŵ(ξ) dξ = (2π)d

∫

Rd
u(x)w(x) dx, ∀u, w ∈ L2(Rd).

Let r ∈ R. For every tempered distribution u ∈ S ′(Rd) such that û ∈ L1
loc(R

d),
we define

‖u‖2Hr (Rd )
:= 1

(2π)d

∫

Rd
(1 + |ξ |2)r |û(ξ)|2 dξ

and

‖u‖2
Ḣr (Rd )

:= 1

(2π)d

∫

Rd
|ξ |2r |û(ξ)|2 dξ.

The fractional Sobolev space Hr (Rd) is defined by

Hr (Rd) :=
{
u ∈ S ′(Rd) : û ∈ L1

loc(R
d), ‖u‖Hr (Rd ) < +∞

}
,

and the homogenous fractional Sobolev space Ḣr (Rd) is defined by

Ḣr (Rd) :=
{
u ∈ S ′(Rd) : û ∈ L1

loc(R
d), ‖u‖Ḣr (Rd ) < +∞

}
.

The next proposition summarizes some basic facts about fractional Sobolev spaces,
which will be used many times in the sequel. We refer for instance to [5, Sec-
tions 1.3, 1.4].

Proposition 2.1. The following assertions hold:



A Gradient Flow Approach to the Porous Medium Equation 575

• Interpolation. If r0 < r1 < r2 then

‖u‖Hr1 (Rd ) ≤ ‖u‖1−θ

Hr0 (Rd )
‖u‖θ

Hr2 (Rd )
and ‖u‖Ḣr1 (Rd ) ≤ ‖u‖1−θ

Ḣr0 (Rd )
‖u‖θ

Ḣr2 (Rd )
,

where θ is defined by r1 = (1 − θ)r0 + θr2;
• If r1 < r2 then ‖u‖Hr1 (Rd ) ≤ ‖u‖Hr2 (Rd ). If r > 0 then ‖u‖Ḣr (Rd ) ≤ ‖u‖Hr (Rd ).
If r < 0 then ‖u‖Hr (Rd ) ≤ ‖u‖Ḣr (Rd ). If r = 0 then ‖u‖Ḣ0(Rd ) = ‖u‖H0(Rd ) =
‖u‖L2(Rd );

• If φ ∈ S(Rd) and u ∈ Hr (Rd) then there exists a constant c, depending only on
φ, r and d, such that

‖φ u‖Hr (Rd ) ≤ c‖u‖Hr (Rd );
• If φ ∈ S(Rd), r1 < r2 and supn∈N ‖un‖Hr2 (Rd ) < +∞, then {φ un : n ∈ N} is
relatively compact in Hr1(Rd).

Let d ≥ 1 and r ∈ (0, d/2). Then the fractional Sobolev inequality

‖u‖Lq (Rd ) ≤ Sd,r‖u‖Ḣr (Rd ) (2.2)

holds for any u ∈ Ḣr (Rd), where q := 2d
d−2r > 2 and (see for instance [19])

Sd,r = 2−2rπ−r �(d/2 − r)

�(d/2 + r)

(
�(d)

�(d/2)

)2r/d

. (2.3)

From (2.2) and interpolation of L p norms we obtain that for q1, q2 such that 1 ≤
q1 < q2 < q = 2d

d−2r , the inequality

‖u‖Lq2 (Rd ) ≤ Sθ
d,r‖u‖1−θ

Lq1 (Rd )
‖u‖θ

Ḣr (Rd )

holds for any u ∈ Ḣr (Rd) ∩ Lq1(Rd), where θ = (q1−q2)q
(q1−q)q2

. In particular, for any

u ∈ Ḣr (Rd) ∩ L1(Rd) and q2 = 2 + 2r
d , there holds

‖u‖q2
Lq2 (Rd )

≤ S2d,r‖u‖2r/d
L1(Rd )

‖u‖2
Ḣr (Rd )

. (2.4)

Similarly, from (2.2) and the interpolation of L p norms between the exponents
1 < p <

d(p+1)
d−2r , for p ∈ (1,+∞) and nonnegative u ∈ L1(Rd) such that

u(p+1)/2 ∈ Ḣr (Rd), we have

‖u‖p+1
L p(Rd )

≤ S2θd,r‖u‖(1−θ)(p+1)
L1(Rd )

‖u(p+1)/2‖2θ
Ḣr (Rd )

, (2.5)

where θ = d(p2−1)
p(2r+dp) .

In dimension d = 1, for s ∈ (0, 1/2), we shall also need the following inequal-
ities:

‖u‖4−2s
L4−2s (R)

≤ S2−2s
1, 1−s

4−2s
‖u‖2−2s

L1(R)
‖u‖2

Ḣ1−s (R)
, (2.6)
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and

‖u‖pβp

L p(R)
≤ S8−4s

1, 1−s
4−2s

‖u‖(2p−2sp+1)/(p−1)
L1(R)

‖u(p+1)/2‖2
Ḣ1−s (R)

, (2.7)

where βp = 2(1−s)+p
p−1 and p ∈ (1,+∞). Indeed, by (2.2) and the interpolation

property of Proposition 2.1, we have

‖u‖
L

2
1−2r (R)

≤ S1,r‖u‖Ḣr (R) ≤ S1,r‖u‖(1−s−r)/(1−s)
L2(R)

‖u‖r/(1−s)
Ḣ1−s (R)

(2.8)

for every r, s ∈ (0, 1/2). Choosing r = 1−s
4−2s in (2.8) and interpolating the L

2 norm

between L1 and L
2

1−2r we obtain (2.6), whereas similar interpolation arguments and
(2.5) entail (2.7).

If d ≥ 1 and r ∈ (0, 1), the scalar product in the space Ḣr (Rd), defined by

〈v,w〉r := 1

(2π)d

∫

Rd
|ξ |2r v̂(ξ)ŵ(ξ) dξ,

can also be expressed as

〈v,w〉r = C̄d,r

∫

Rd

∫

Rd
(v(x) − v(y))(w(x) − w(y))|x − y|−d−2r dx dy. (2.9)

This equivalence follows from [5, Proposition 1.37]. The value of the positive
constant C̄d,r can be obtained through the following formal computation. Since the
Riesz kernel satisfies�Kr = −Kr−1, using the Plancherel formula and integration
by parts we have

〈v,w〉r = 1

(2π)d

∫

Rd
|ξ |−2(1−r)|ξ |2v̂(ξ)ŵ(ξ) dξ

=
∫

Rd
(K1−r ∗ ∇v)(x) · ∇w(x) dx

= 1

2

∫

Rd

∫

Rd
(�K1−r (x − y)) (v(x) − v(y)) (w(x) − w(y)) dx dy

= −1

2
Cd,−r

∫

Rd

∫

Rd
|x − y|−2r−d(v(x) − v(y))(w(x) − w(y)) dx dy,

thus (2.9) holds with C̄d,r = − 1
2Cd,−r , where Cd,−r < 0 is given by extending

formula (1.2) to values of the second index in (−1, 0).
We also have the following:

Proposition 2.2. Let d ≥ 1 and r ∈ (0, 1). Let v ∈ Ḣr (Rd). If F : R → R is
nondecreasing, then 〈v, F(v)〉r ≥ 0. If, in addition, F is Lipschitz continuous on
R
d , then F ◦ v ∈ Ḣr (Rd) and there hold

〈v, F(v)〉r ≤ L〈v, v〉r , 〈F(v), F(v)〉r ≤ L〈F(v), v〉r ,
where L is the Lipschitz constant of F. Moreover, if v is nonnegative and p ∈
(1,+∞), the following Stroock–Varopoulos inequality holds:

〈v, v p〉r ≥ 4p

(p + 1)2
‖v(p+1)/2‖2

Ḣr (Rd )
. (2.10)
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Proof. The first properties follow at once from the representation (2.9). (2.10) is
also a consequence of (2.9), by means of the elementary inequality

(a − b)(a p − bp) ≥ 4p

(p + 1)2

(
a(p+1)/2 − b(p+1)/2

)2
,

which holds for any couple of nonnegative numbers a, b. ��

3. Energy Functional and First Convergence Result

Henceforth it will be always assumed that d ≥ 1 and 0 < s < min{1, d
2 }.

3.1. Energy Functional

After noticing that a Borel probability measure u is a tempered distribution with
û in L1

loc(R
d), we define the energy functional Fs : P2(R

d) → (−∞,+∞] by

Fs(u) := 1

2
‖u‖2

Ḣ−s (Rd )
.

We state a basic property of functional Fs :

Proposition 3.1. The following assertions hold:

• D(Fs) = Ḣ−s(Rd) ∩ P2(R
d);

• Fs(u) ≥ 0 for every u ∈ P2(R
d);

• Fs is sequentially lower semicontinuous with respect to the narrow convergence.

Proof. The first two points are obvious. In order to prove the third one, let {un} ⊂
P2(R

d) be a sequence, narrowly converging to u ∈ P2(R
d), and such that

supn Fs(un) < +∞. Using the notation Un(ξ) := |ξ |−s ûn(ξ), the previous as-
sumption reads as supn ‖Un‖L2(Rd ) < +∞. By L2 weak compactness there exists
a subsequence of {Un} that weakly converges in L2(Rd) to some U ∈ L2(Rd). By
the narrowconvergenceofun wehave that ûn(ξ) → û(ξ) for every ξ ∈ R

d , and then
Un(ξ) → |ξ |−s û(ξ) for every ξ ∈ R

d . By uniqueness of the weak limits and the
lower semicontinuity of the L2 norm we obtain that Fs(u) ≤ lim infn→∞ Fs(un)
and the statement holds. ��

3.2. Wasserstein Gradient Flow, Minimizing Movements

Let u0 ∈ P2(R
d), τ > 0. We let

�t (x) := 1

(4π t)d/2 e
−|x |2/4t , x ∈ R

d , t > 0, (3.1)

and we define a regularized initial datum as

u0τ := �ω(τ) ∗ u0, where ω(τ) :=
{

−1/ log τ if τ ∈ (0, 1/2)

−1/ log(1/2) if τ ∈ [1/2,+∞).
(3.2)
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We consider, for k = 1, 2, . . ., the problem

min
u∈P2(Rd )

Fs(u) + 1

2τ
W 2
(
u, uk−1

τ

)
. (3.3)

Proposition 3.2. For every τ > 0 and every u0 ∈ P2(R
d) there exists a unique

sequence {ukτ : k = 0, 1, 2, . . .} ⊂ D(Fs) satisfying u0τ = �ω(τ) ∗ u0 and such that
ukτ is a solution to problem (3.3) for k = 1, 2, . . ..

Proof. Let τ > 0 and k ∈ N. By Proposition 3.1 and the properties of the Wasser-
stein distance, the functional u �→ Fs(u) + 1

2τ W 2(u, uk−1
τ ) is nonnegative, lower

semicontinuous with respect to the narrow convergence and with narrowly com-
pact sublevels. The existence of minimizers follows by standard direct methods in
calculus of variations. The uniqueness of minimizers follows from the strict con-
vexity of the functional u �→ Fs(u)+ 1

2τ W 2(u, uk−1
τ )with respect to linear convex

combinations in P2(R
d), since Fs is a square Hilbert norm. ��

By Proposition 3.2, the piecewise constant curve

uτ (t) := u�t/τ�
τ (3.4)

is uniquely defined, where �a� := min{m ∈ N : m > a} is the upper integer part.
We say that a curve u : [0,+∞) → P2(R

d) is absolutely continuous with
finite energy, and we use the notation u ∈ AC2([0,+∞); (P2(R

d),W )), if there
existsm ∈ L2([0,+∞)) such thatW (u(t1), u(t2)) ≤ ∫ t2t1 m(r) dr for every t1, t2 ∈
[0,+∞), t1 < t2. If u ∈ AC2([0,+∞); (P2(R

d),W )), then there exists its metric
derivative defined by

|u′|(t) := lim
h→0

W (u(t + h), u(t))

|h| for a.e. t ∈ [0,+∞),

and |u′|(t) ≤ m(t) for almost every t ∈ [0,+∞).

Theorem 3.3. (First convergence result). Let u0 ∈ Ḣ−s(Rd) ∩P2(R
d) and uτ the

piecewise constant curve defined in (3.4). For every vanishing sequence τn there ex-
ists a subsequence (not relabeled) τn andacurveu ∈ AC2([0,+∞); (P2(R

d),W ))

such that

uτn (t) → u(t) narrowly as n → ∞, for any t ∈ [0,+∞). (3.5)

Proof. The proof is based on the compactness argument ofminimizingmovements,
stated in [2].

Since 0 < �̂τ (ξ) ≤ 1 we have |û0τ (ξ)| = |�̂ω(τ)(ξ)û0(ξ)| ≤ |û0(ξ)| and then

Fs

(
u0τ
)

≤ Fs(u0). (3.6)

The first estimate given by the scheme (3.3) is the following:

Fs

(
uN

τ

)
+ 1

2

N∑

k=1

τ
W 2
(
ukτ , u

k−1
τ

)

τ 2
≤ Fs

(
u0τ
)

≤ Fs (u0) , ∀ N ∈ N. (3.7)
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We show that for any T > 0 the set AT := {ukτ : τ > 0, N ∈ N, Nτ ≤ T } is
bounded in (P2(R

d),W ) and consequently sequentially narrowly compact.
Indeed, recalling that

∫

Rd |x |2 du(x) = W 2(u, δ0) for any u ∈ P2(R
d), using the

triangle inequality and Jensen’s discrete inequality we have
∫

Rd
|x |2uN

τ

(
x
)
dx = W 2

(
uN

τ , δ0

)
≤
(∑N

k=1 W
(
ukτ , u

k−1
τ

)
+ W

(
u0τ , δ0

))2

≤ 2
(∑N

k=1 τ
W

(
ukτ ,uk−1

τ

)

τ

)2 + 2W 2
(
u0τ , δ0

)

≤ 2Nτ
∑N

k=1 τ
W 2
(
ukτ ,uk−1

τ

)

τ 2
+ 2W 2

(
u0τ , δ0

)
.

(3.8)

Since, for suitable c > 0, we have

W 2
(
u0τ , δ0

)
≤ 2W 2

(
u0τ , �ω(τ)

)
+ 2W 2 (�ω(τ), δ0

)

= 2W 2 (�ω(τ) ∗ u0, �ω(τ) ∗ δ0
)+ 2W 2 (�ω(τ), δ0

)

≤ 2W 2 (u0, δ0) + 2W 2 (�ω(τ), δ0
) = 2W 2 (u0, δ0) + cω (τ) ,

it follows from (3.7) and (3.8), since Fs ≥ 0, that
∫

Rd
|x |2uN

τ (x) dx ≤ 4TFs(u0) + 4
∫

Rd
|x |2u0(x) dx + 2c, (3.9)

and the boundedness of AT follows.
We define the piecewise constant function mτ : [0,+∞) → [0,+∞) as

mτ (t) := W (uτ (t), uτ (t − τ))

τ
,

with the convention that uτ (t − τ) = uτ (0) if t − τ < 0. Since Fs ≥ 0, from (3.7)
it follows that

1

2

∫ +∞

0
m2

τ (t) dt ≤ Fs(u0).

It follows that there exists m ∈ L2(0,+∞) such that mτ weakly converges to m
in L2(0,+∞). Moreover for any t1, t2 ∈ [0,+∞), t1 < t2, setting k1(τ ) = [t1/τ ]
and k2(τ ) = [t2/τ ], by triangle inequality it holds that

W (uτ (t1) , uτ (t2)) ≤
k2(τ )−1∑

k=k1(τ )

W
(
ukτ , u

k−1
τ

)
≤
∫ k2(τ )τ

k1(τ )τ

mτ (t) dt.

By the L2 weak convergence of mτ the following equicontinuity estimate holds:

lim sup
τ→0

W (uτ (t1), uτ (t2)) ≤ lim
τ→0

∫ k2(τ )τ

k1(τ )τ

mτ (t) dt =
∫ t2

t1
m(t) dt. (3.10)
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Applying Proposition 3.3.1 of [2] we obtain the convergence (3.5). Passing to the
limit in (3.10) we obtain

W (u(t1), u(t2)) ≤
∫ t2

t1
m(t) dt, ∀ t1, t2 ∈ [0,+∞), t1 < t2,

and then u ∈ AC2([0,+∞); (P2(R
d),W )) and

∫ +∞

0
|u′|2(t) dt ≤ 2Fs(u0) (3.11)

holds. ��

4. Flow Interchange and Entropy Decay Estimates

We briefly review the flow interchange technique introduced by Matthes, Mc-
Cann and Savaré [24]. Then, with this technique, we obtain suitable regularity
estimates for solutions to (3.3).

Definition 4.1. (Displacement convex entropy). Let V : [0,+∞) → R be a
convex function with super linear growth at infinity, such that V (0) = 0, V ∈
C1(0,+∞), V is continuous at 0, limx↓0 V (x)

xα > −∞ for some α > d
d+2 and the

following McCann displacement convexity assumption (introduced in [25]) holds:

r �→ rdV (r−d) is convex and decreasing in (0,+∞).

If V satisfies the above assumptions, we say that the functional V : P2(R
d) →

(−∞,+∞], defined by

V(u) =
∫

Rd
V (u(x)) dx

if u is absolutely continuouswith respect to the Lebesguemeasure andV(u) = +∞
otherwise, is a displacement convex entropy. We say that V is the density function
of V .
As usual we denote by D(V) the set of all u ∈ P2(R

d) such that V(u) < +∞.

Remark 4.2. The condition on the behavior of V at 0 is needed as usual to have
the integrability of the negative part of V ◦ u, as soon as u is a probability density
with finite second moment. Moreover, if u0 ∈ P2(R

d) and u0τ is the regularization
defined by (3.2), it is clear that u0τ ∈ D(V) for any displacement convex entropy
V , since u0τ is bounded.

It is well known that a displacement convex entropy V generates a continu-
ous semigroup St : D(V) → D(V) satisfying the following family of Evolution
Variational Inequalities (see [2, Theorem 11.2.5]):

1

2
W 2(St (u), v) − 1

2
W 2(u, v) ≤ t (V(v) − V(St (u))) ∀u, v ∈ D(V), ∀t > 0,

(4.1)
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and St (ū) is the unique distributional solution of the Cauchy problem

∂t u = �(LV (u)), u(0) = ū,

where LV (u) := uV ′(u)−V (u), such that (4.1) holds. The semigroup is contractive
with respect toW and extends to D(V) = P2(R

d). Thanks to the regularizing effect
St (u) ∈ D(V) for any u ∈ P2(R

d) and any t > 0, we obtain that (4.1) holds for
every u, v ∈ P2(R

d).
If u ∈ D(Fs) we define the dissipation of Fs along the flow St of V by

DVFs(u) := lim sup
t↓0

Fs(u) − Fs(St (u))

t
.

Proposition 4.3. (Flow interchange). Let {ukτ : k = 0, 1, 2, . . .} be the sequence
given by Proposition 3.2 and V a displacement convex entropy. If

DVFs

(
ukτ
)

> −∞ for k ≥ 1, (4.2)

then ukτ ∈ D(V) and

DVFs

(
ukτ
)

≤ V (uk−1
τ

)− V (ukτ
)

τ
, k = 1, 2, . . . .

Proof. We have u0τ ∈ D(V), see Remark 4.2. For t > 0 and k > 0, by definition
of minimizer there holds

Fs

(
ukτ
)

+ 1

2τ
W 2
(
ukτ , u

k−1
τ

)
≤ Fs

(
St
(
ukτ
))

+ 1

2τ
W 2
(
St
(
ukτ
)

, uk−1
τ

)
,

that is,

τ
(
Fs

(
ukτ
)

− Fs

(
St
(
ukτ
)))

≤ 1

2
W 2
(
St
(
ukτ
)

, uk−1
τ

)
− 1

2
W 2
(
ukτ , u

k−1
τ

)
.

By using (4.1) we obtain

τ
Fs
(
ukτ
)− Fs

(
St
(
ukτ
))

t
≤ V

(
uk−1

τ

)
− V

(
St
(
ukτ
))

.

As u0τ ∈ D(V), wemay now recursively apply the above inequality; thanks to (4.2),
by passing to the limit as t ↓ 0 and using the lower semicontinuity of V with respect
to the narrow convergence we conclude. ��

Remark 4.4. With the next lemmas we will characterize the dissipation and show
that (4.2) holds true for any displacement convex entropy V .
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4.1. Improved Regularity

The following result makes use of flow interchange with the choice V = H,
the entropy functional:

Lemma 4.5. Let u0 ∈ D(Fs) and {ukτ : k = 0, 1, 2, . . .} the sequence given by
Proposition 3.2. Then ukτ ∈ Ḣ1−s(Rd) ∩ D(H) for any k ≥ 0 and

‖ukτ‖2Ḣ1−s(Rd)
≤ H (uk−1

τ

)− H (ukτ
)

τ
, k = 1, 2, . . . . (4.3)

In particular,

H
(
ukτ
)

≤ H
(
uk−1

τ

)
, k = 1, 2, . . . .

Proof. By its definition in (3.2), it is clear that u0τ ∈ D(H).
We denote by St the heat semigroup on R

d , namely the flow generated by the
entropy H. For k ≥ 0 we have St (ukτ ) ∈ Ḣ1−s(Rd) for any t > 0. Indeed, by
the uniqueness of the solution of the heat equation the representation St (ukτ ) =
�t ∗ ukτ holds, where �t denotes the family of gaussian kernels (3.1). Then, using
the notation wt := St (ukτ ), since �̂t is a Gaussian, by (3.7) we have

∫

Rd
|ξ |2(1−s)|ŵt (ξ) |2 dξ =

∫

Rd
|ξ |2(1−s)|�̂t (ξ) |2|ûkτ (ξ) |2 dξ

≤ Ct‖ukτ‖2Ḣ−s(Rd)
≤ 2CtFs

(
ukτ
)

≤ 2CtFs (u0) < +∞,

where Ct := maxξ∈Rd |ξ |2|�̂t (ξ)|2. Since u0τ := �ω(τ) ∗ u0 (see (3.2)), a similar
argument shows that u0τ ∈ Ḣ1−s(Rd).

Next we let k > 0 and we consider the real function t �→ Fs(wt ) for t ∈
[0,+∞). We claim that this function is differentiable in (0,+∞) and continuous
at t = 0, and that

d

dt
Fs(wt ) = −

∥
∥
∥St
(
ukτ
)∥
∥
∥
2

Ḣ1−s (Rd )
= −‖wt‖2Ḣ1−s (Rd )

∀ t ∈ (0,+∞). (4.4)

To show this we recall that in Fourier variables the heat equation reads ∂t ŵt (ξ) +
|ξ |2ŵt (ξ) = 0 in R

d × (0,+∞). Taking into account the smoothness of wt we
obtain

d

dt
Fs(wt ) = 1

2(2π)d

d

dt

∫

Rd
|ξ |−2sŵt (ξ)ŵt (ξ) dξ

= 1

(2π)d

∫

Rd
|ξ |−2sŵt (ξ)∂t ŵt (ξ) dξ

= − 1

(2π)d

∫

Rd
|ξ |−2sŵt (ξ)|ξ |2ŵt (ξ) dξ = −‖wt‖2Ḣ1−s (Rd )

,
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and thus the desired differentiability and (4.4) follow. Now, we prove that the map
t �→ Fs(wt ) is continuous at t = 0. Indeed, since 0 < �̂t (ξ) ≤ 1 we have
|ŵt (ξ)|2 = |�̂t (ξ)ûkτ (ξ)|2 ≤ |ûkτ (ξ)|2 and it follows that Fs(wt ) ≤ Fs(ukτ ). Since
Fs is lower semi continuous with respect to the narrow convergence, the continuity
at 0 follows.

By Lagrange’s mean value Theorem, for every t > 0 there exists θ(t) ∈ (0, t)
such that

Fs
(
ukτ
)− Fs

(
St
(
ukτ
))

t
=
∥
∥
∥Sθ(t)

(
ukτ
)∥
∥
∥
2

Ḣ1−s(Rd)
.

By the lower semicontinuity of the Ḣ1−s norm with respect to the narrow conver-
gence it follows that

∥
∥
∥ukτ

∥
∥
∥
2

Ḣ1−s (Rd )
≤ DHFs

(
ukτ
)

.

Then, by Proposition 4.3, we obtain that ukτ ∈ D(H) ∩ Ḣ1−s(Rd) and (4.3) holds.
��

Integrating the estimate (4.3) with respect to time, we obtain the following
space-time bound on the discrete solution uτ . For the integer part of the real number
a we use the notation [a] := max{m ∈ Z : m ≤ a}.
Corollary 4.6. Let u0 ∈ D(Fs), {ukτ : k = 0, 1, 2, . . .} the sequence given by
Proposition 3.2 and uτ the corresponding discrete piecewise constant approximate
solution defined in (3.4). Then uτ (t) ∈ Ḣ1−s(Rd) for every t > 0 and
∫ T

T0
‖uτ (t)‖2Ḣ1−s (Rd )

dt ≤ H
(
uN0(τ )

τ

)
+ c
(
1 + TFs(u0) +

∫

Rd
|x |2 du0(x)

)

(4.5)

holds for any T0 ≥ 0 and T > T0, where N0(τ ) := [T0/τ ] and c is a constant
depending only on the dimension d.

Proof. Let T > 0, N = �T/τ� and N0 = N0(τ ). By (4.3) we obtain

∫ T

T0
‖uτ (t) ‖2

Ḣ1−s(Rd)
dt ≤

N∑

k=N0+1

τ‖ukτ‖2Ḣ1−s(Rd)
≤ H

(
uN0

τ

)
− H

(
uN

τ

)
.

By a Carleman type inequality there holds

−H(uN
τ ) ≤ c̃

(
1 +

∫

Rd
|x |2uN

τ (x) dx
)

for a suitable constant depending only on d. From (3.9) we obtain

−H(uN
τ ) ≤ c

(
1 + TFs(u0) +

∫

Rd
|x |2 du0(x)

)

for c depending only on the dimension d and we conclude. ��
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4.2. Decay of the Entropies

In the next Lemma we apply the flow interchange to a general displacement
convex entropyG andwe compute a lower bound for the dissipation of the functional
Fs along the flow of G. This result is useful for the regularizing effect and the L p

estimates.

Lemma 4.7. Let u0 ∈ D(Fs) and {ukτ : k = 0, 1, 2, . . .} the sequence given by
Proposition 3.2. Let G be a displacement convex entropy with density function G,
according to Definition 4.1. Then ukτ ∈ D(G) for any k ≥ 0 and there holds

0 ≤
〈
ukτ , LG

(
ukτ
)〉

1−s
≤ G (uk−1

τ

)− G (ukτ
)

τ
, k = 1, 2, . . . . (4.6)

In particular,

G
(
ukτ
)

≤ G
(
uk−1

τ

)
, k = 1, 2, . . . .

Proof. The proof is based on the same argument of Lemma 4.5. First of all, we
have u0τ ∈ D(G) by Remark 4.2.

For ε > 0 we consider the displacement convex entropy

V(u) := G(u) + εH(u).

We denote by St the flow associated to V with respect to the Wasserstein distance.
Let us fix k > 0 and define wt := St (ukτ ), thus wt satisfies the equation

∂twt = �LG(wt ) + ε�wt = ��(wt ), (4.7)

with initial datum ukτ , where LG(v) = vG ′(v) − G(v) and �(v) = LG(v) + εv.
Equation (4.7) is a quasilinear non degenerate parabolic equation since � satisfies
� ′ > 0. As a result, the solution wt is bounded, smooth and strictly positive
for t > 0 (see for example [31, Chapter 3]). Moreover since Lemma 4.5 gives
ukτ ∈ Ḣ1−s(Rd) for any k > 0 and ukτ ∈ L1(Rd) by construction, we have that
ukτ ∈ L2(Rd) thanks to the Sobolev embedding (2.2). Now, if we test equation (4.7)
with wt , we immediately get (recall that LG is monotone increasing)

‖wt‖L2(Rd ) ≤ ‖ukτ‖L2(Rd ), ∀t > 0. (4.8)

Thus, the estimate above combined with the lower semi continuity of the norm,
gives the strong continuity in L2(Rd) of the semigroup.

By making use of the transformed version of (4.7), there holds, for any t > 0,

d

dt
Fs(wt ) = 1

(2π)d

∫

Rd
|ξ |−2sŵt (ξ)∂t ŵt (ξ) dξ

= − 1

(2π)d

∫

Rd
|ξ |−2sŵt (ξ)|ξ |2

(
L̂G(wt )(ξ) + εŵt (ξ)

)

= −〈wt , LG(wt )〉1−s − ε〈wt , wt 〉1−s .
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Notice that LG is non decreasing and locally Lipschitz, and since wt is bounded
and wt ∈ H1−s(Rd) for t ∈ (0,+∞), from Proposition 2.2 we obtain LG ◦ wt ∈
Ḣ1−s(Rd) and 〈wt , LG(wt )〉1−s ≥ 0 for t in (0,+∞). In particular, t �→ Fs(wt )

is differentiable in (0,+∞).
Next we shall prove that t �→ Fs(wt ) is continuous at t = 0. Since wt is a

probability density, we have that |ŵt (ξ)| ≤ 1 for any ξ ∈ R
d . Thus, for every

t ∈ [0,+∞) and for some δ > 0 we have

‖St (ukτ )‖2Ḣ−s−δ(Rd )
=
∫

Rd
|ξ |−2s−2δ|ŵt (ξ)|2 dξ

≤
∫

{|ξ |≥1}
|ŵt (ξ)|2 dξ +

∫

{|ξ |<1}
|ξ |−2s−2δ dξ.

By (4.8) and Plancherel’s Theorem, for 0 < δ < d/2 − s the previous estimate
shows that ‖St (ukτ )‖Ḣ−s−δ(Rd ) ≤ c for every t ∈ [0, 1], where c is a constant
not depending on t . Then, for a suitable θ ∈ (0, 1) and 0 < δ < d/2 − s, by
interpolation we have
∥
∥
∥St
(
ukτ
)

− ukτ

∥
∥
∥
Ḣ−s(Rd)

≤
∥
∥
∥St
(
ukτ
)

− ukτ

∥
∥
∥
1−θ

L2(Rd)

∥
∥
∥St
(
ukτ
)

− ukτ

∥
∥
∥

θ

Ḣ−s−δ(Rd)

≤ (2c)θ
∥
∥
∥St
(
ukτ
)

− ukτ

∥
∥
∥
1−θ

L2(Rd)
,

and the obtained L2(Rd) strong continuity of St implies that t �→ Fs(wt ) is con-
tinuous at t = 0.

By the same argument of Lemma 4.5, based on Lagrange mean value theorem,
we obtain for suitable θ(t) ∈ (0, t)

Fs
(
ukτ
)− Fs

(
St
(
ukτ
))

t
= ε

∥
∥
∥Sθ(t)

(
ukτ
)∥
∥
∥
2

Ḣ1−s(Rd)

+
〈
Sθ(t)

(
ukτ
)

, LG

(
Sθ(t)

(
ukτ
))〉

1−s
.

Notice that the map u �→ 〈u, LG(u)〉1−s is lower semicontinuous with respect
to the strong L2(Rd) convergence. This follows by applying Fatou’s lemma to
the expression (2.9), where the integrand is nonnegative in this case, since LG is
nondecreasing (see Proposition 2.2). Therefore, by passing to the limit as t ↓ 0 we
obtain

0 ≤
〈
ukτ , LG

(
ukτ
)〉

1−s
≤ lim inf

t↓0
Fs
(
ukτ
)− Fs

(
St
(
ukτ
))

t
≤ DVFs

(
ukτ
)

.

The latter estimate, together with Proposition 4.3, entails ukτ ∈ D(V) and

τ
〈
ukτ , LG

(
ukτ
)〉

1−s
+ G

(
ukτ
)

+ εH
(
ukτ
)

≤ G
(
uk−1

τ

)
+ εH

(
uk−1

τ

)
,

k = 1, 2, . . . .

In particular, for k = 1, 2, . . . there is ukτ ∈ D(G) and 〈ukτ , LG(ukτ )〉1−s < +∞.
By letting ε → 0 we find that (4.6) holds. ��
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4.3. Regularizing Effect

In order to obtain a quantitative decay of a positive logarithmic entropy and of
the L p norms of the discrete solution we need the two following propositions.

Proposition 4.8. Let φ : R → R be a convex C1 function and τ > 0. If ak and bk
satisfies

ak − ak−1 ≤ −τφ′(ak), bk − bk−1 = −τφ′(bk), ∀k ∈ N

and a0 ≤ b0, then ak ≤ bk for every k ∈ N.

Proof. By induction, assuming that ak−1 ≤ bk−1 we have that

ak + τφ′(ak) ≤ ak−1 ≤ bk−1 = bk + τφ′(bk).
Since the function r �→ r + τφ′(r) is strictly increasing we conclude. ��
Proposition 4.9. Let φ : R → R be a convex C1 function and τ > 0. Let b0 ∈ R

and bk be satisfying

bk − bk−1 = −τφ′(bk), ∀k ∈ N

and b : [0,+∞) → R the solution of the Cauchy problem

b′(t) = −φ′(b(t)), b(0) = b0. (4.9)

Then |bk − b(kτ)| ≤ 1√
2
|φ′(b0)|τ .

Proof. The result is the error estimate for the Euler implicit discretization scheme.
See for instance the general expression derived byNochetto–Savaré–Verdi [26] and
[2, Theorem 4.0.7]. ��

In the following of the paper we denote by K : P2(R
d) → [0,+∞] the

positive entropy defined by K(u) := ∫

Rd u(x) log(u(x) + 1) dx if u is absolutely
continuous with respect to the Lebesgue measure and K(u) = +∞ otherwise,
which is a displacement convex entropy according to Definition 4.1.

Lemma 4.10. Let {ukτ : k = 0, 1, 2, . . .} be the sequence given by Proposition 3.2.
There holds

K
(
ukτ
)

≤ min
{
K
(
u0τ
)

,C0 (kτ)−γ0
}

+ C̃0√
2

τ
(
K
(
u0τ
))β0

, k = 1, 2, . . . ,

(4.10)

where γ0 := 1
2

d
d+2(1−s) , β0 := 3d+4(1−s)

d , C̃0 := 2− 3d+4(1−s)
d Ad,s , C0 = (C̃0(β0 −

1))−γ0 , Ad,s := S−2
d,1−s if d ≥ 2, A1,s := S2s−2

1, 1−s
4−2s

and Sd,r is defined by (2.3).

Moreover, for every p ∈ (1,+∞) there holds
∥
∥
∥ukτ

∥
∥
∥
p

L p(Rd)
≤ min

{∥
∥
∥u0τ

∥
∥
∥
p

L p(Rd)
,C p

p (kτ)−pγp

}

+ C̃ p√
2

τ

∥
∥
∥u0τ

∥
∥
∥
pβp

L p(Rd)
,

k = 1, 2, . . . , (4.11)

whereγp := p−1
p

d
d+2(1−s) ,βp := pd+2(1−s)

(p−1)d , C̃ p := 4p(p−1)
(p+1)2

Bd,s ,Cp := (C̃ p(βp−
1))−γp , Bd,s := S−2

d,1−s if d ≥ 2 and B1,s := S4s−8
1, 1−s

4−2s
.
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Proof. We shall apply Lemma 4.7 to the particular cases G = K and G = Gp,
whereGp is the displacement convex entropywith power density functionGp(u) =
1

p−1u
p, for p ∈ (1,+∞).

Let us start with G = K, so that the density function is G(u) = u(log u + 1).
In this case LG(u) := uG ′(u) − G(u) = u2

u+1 . Since LG is increasing on [0,+∞)

and L ′
G(u) = u

u+1 < 1 by Proposition 2.2 we have, for any k ∈ N,

+ ∞ >
〈
ukτ , LG

(
ukτ
)〉

1−s
≥
〈
LG

(
ukτ
)

, LG

(
ukτ
)〉

1−s
=
∥
∥
∥LG

(
ukτ
)∥
∥
∥
2

Ḣ1−s(Rd)
.

(4.12)

Since 0 ≤ LG(u) < u we have ‖LG(ukτ )‖L1(Rd ) ≤ ‖ukτ‖L1(Rd ) = 1. Therefore
LG ◦ukτ ∈ Ḣ1−s(Rd)∩ L1(Rd). Using (2.4) in the case d ≥ 2 and (2.6) in the case
d = 1 we obtain

∥
∥
∥LG

(
ukτ
)∥
∥
∥
2

Ḣ1−s(Rd)
≥ Ad,s

∫

Rd

(
LG

(
ukτ
))q

dx (4.13)

for q := 2 + 2(1 − s)/d, where Ad,s := S−2
d,1−s if d ≥ 2, A1,s := S2s−2

1, 1−s
4−2s

. By

Jensen inequality we have

∫

Rd

(
LG

(
ukτ
))q

dx =
∫

Rd

(
ukτ
)2q−1

(
ukτ + 1

)q ukτ dx

≥
( ∫

Rd

ukτ
(
ukτ + 1

)q/(2q−1)
ukτ dx

)2q−1
,

and an elementary computation shows that, for any u ∈ [0,+∞), there holds

2u2

(u + 1)q/(2q−1)
≥ u log(u + 1),

then we have
∫

Rd

(
LG

(
ukτ
))q

dx ≥ 21−2q
(
K
(
ukτ
))2q−1

. (4.14)

Thanks to (4.12), (4.13) and (4.14) we find

〈
ukτ , LG

(
ukτ
)〉

1−s
≥ C̃0

(
K
(
ukτ
))2q−1

,

where C̃0 := 21−2q Ad,s = 2− 3d+4(1−s)
d Ad,s . By applying Lemma 4.7 we obtain

K
(
ukτ
)

+ C̃0τ
(
K
(
ukτ
))β0 ≤ K

(
uk−1

τ

)
, k = 1, 2, . . . , (4.15)

where β0 := 2q − 1 = 3d+4(1−s)
d .
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Let us now consider, for p ∈ (1,+∞) the case G = Gp, with density function
G = Gp. Taking into account that LGp (u) = u p, by Lemma 4.7 and the Stroock–
Varopoulos inequality (Proposition 2.2), we have (ukτ )

(p+1)/2 ∈ Ḣ1−s(Rd) and

τ
4p (p − 1)

(p + 1)2

∥
∥
∥
∥

(
ukτ
)(p+1)/2

∥
∥
∥
∥

2

Ḣ1−s(Rd)
+
∥
∥
∥ukτ

∥
∥
∥
p

L p(Rd)

≤
∥
∥
∥uk−1

τ

∥
∥
∥
p

L p(Rd)
k = 1, 2, . . . .

By (2.5) with r = 1 − s in the case d ≥ 2 and (2.7) in the case d = 1, both with
the choice u = ukτ , we obtain

τ
4p (p − 1)

(p + 1)2
Bd,s

(∥
∥
∥ukτ

∥
∥
∥
p

L p(Rd)

)βp

+
∥
∥
∥ukτ

∥
∥
∥
p

L p(Rd)

≤
∥
∥
∥uk−1

τ

∥
∥
∥
p

L p(Rd)
, k = 1, 2, . . . , (4.16)

where βp := pd+2(1−s)
(p−1)d , Bd,s := S−2

d,1−s if d ≥ 2 and B1,s := S4s−8
1, 1−s

4−2s
.

Now we are ready to conclude for both the cases G = K and G = Gp. Setting
ak := K(ukτ ) in the first case and ak := ‖ukτ‖p

L p(Rd )
in the second case, the relations

(4.15), (4.16) read

ak − ak−1 ≤ −τCaβ
k ,

where C = C̃0, β = β0 in the first case and C = C̃ p := 4p(p−1)
(p+1)2

Bd,s , β = βp

in the second case. In both cases, we apply Proposition 4.8 and Proposition 4.9
with the choice φ(a) = C

β+1a
β+1. The solution of the Cauchy problem (4.9) is

then b(t) = (b0 + C(β − 1)t)1/(1−β). Since β > 1, the function y �→ y1/(1−β) is
decreasing in (0,+∞). Consequentlywe have b(t) ≤ min{b0, (C(β−1)t)1/(1−β)}.
Finally

ak ≤ bk ≤ b(kτ) + |bk − b(kτ)| ≤ b(kτ) + 1√
2
φ′(b0)τ.

With the choice b0 = K(u0τ ) in the first case, we obtain (4.10). With the choice
b0 = ‖u0τ‖p

L p(Rd )
in the second case, we obtain (4.11). ��

We may now pass to the limit as τ → 0 and prove the decay estimates for the
solution.

Theorem 4.11. Let {ukτ : k = 0, 1, 2, . . .} be the sequence given by Proposition
3.2. If u ∈ AC2([0,+∞); (P2(R

d),W )) is a corresponding limit curve given by
Theorem 3.3, then

K(u(t)) ≤ C0t
−γ0 , t > 0,



A Gradient Flow Approach to the Porous Medium Equation 589

where C0, γ0 are positive constants, whose explicit value is found in Lemma 4.10,
and

K(u(t)) ≤ lim
τ→0

K(u0τ ) t > 0.

Moreover, for every p ∈ (1,+∞) there holds

‖u(t)‖L p(Rd ) ≤ Cpt
−γp , t > 0,

where the positive constants Cp, γp are found in Lemma 4.10 as well, and

‖u(t)‖L p(Rd ) ≤ lim
τ→0

‖u0τ‖L p(Rd ), t > 0.

Proof. With the choice of u0τ from Sect. 3.2 we immediately have that

lim
τ→0

τ
(
K
(
u0τ
))β0 = 0, lim

τ→0
τ 1/p

∥
∥
∥u0τ

∥
∥
∥

βp

L p(Rd)
= 0,

since the L p norms of u0τ diverge at most logarithmically as τ → 0. The proof
is now a consequence of Lemma 4.10, of the narrow convergence (3.5) and of
the lower semi continuity of K and of the L p norms with respect to the narrow
convergence. ��

5. Euler–Lagrange Equation for the Minimizers

Thanks to Lemma 4.5, we have enough regularity to obtain an Euler–Lagrange
equation for discrete minimizers. This necessary condition (5.1) on the minimizers
of the scheme is the first step towards a discrete version of a weak formulation of
the equation (1.1), (see (6.5)).

Lemma 5.1. Let u0 ∈ D(Fs). Let {ukτ : k = 0, 1, 2, . . .} be the solution sequence
to (3.3) given by Proposition 3.2 and vkτ := Ks ∗ ukτ . Then, for any integer k ≥ 1
there holds

∫

Rd
∇vkτ · η ukτ dx = 1

τ

∫

Rd

(

T
uk−1

τ

ukτ
− I

)

· η ukτ dx, ∀ η ∈ C∞
c (Rd ; R

d),

(5.1)

where T
uk−1

τ

ukτ
is the optimal transport map from ukτ to u

k−1
τ and I is the identity map

on R
d . Moreover, there holds

∫

Rd

∣
∣
∣∇vkτ

∣
∣
∣
2
ukτ dx = 1

τ 2
W 2
(
ukτ , u

k−1
τ

)
, k = 1, 2, 3, ... (5.2)
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Proof. Let η ∈ C∞
c (Rd ; R

d). For δ ≥ 0 we define �δ : R
d → R

d by �δ(x) =
x + δη(x). Clearly there exists δ0 > 0 such that

1

2
≤ det(∇�δ(x)) ≤ 3

2
∀x ∈ R

d , ∀δ ∈ [0, δ0],

and�δ is a global diffeomorphism. In this proof, for simplicity,we use the following
notation: u := ukτ and uδ := (�δ)#u.

By the minimum problem (3.3) we have, for δ > 0,

0 ≤ 1

δ
(Fs (uδ) − Fs (u)) + 1

δ

(
1

2τ
W 2
(
uδ, u

k−1
τ

)
− 1

2τ
W 2
(
u, uk−1

τ

))

.

(5.3)

A standard computation entails

lim
δ→0

1

δ

(
1

2τ
W 2
(
uδ, u

k−1
τ

)
− 1

2τ
W 2
(
u, uk−1

τ

))

= −1

τ

∫

Rd

(
T k

τ − I
)

· ηu dx .

(5.4)

We have to compute

lim
δ→0

1

δ
(Fs(uδ) − Fs(u)) . (5.5)

Since for a, b ∈ C it holds |a|2−|b|2 = (ā+b̄)(a−b)+āb−b̄a and ¯̂u(ξ) = û(−ξ),
we obtain

(2π)d (Fs(uδ) − Fs(u)) = 1

2

∫

Rd
|ξ |−2s(ûδ(−ξ) + û(−ξ)

)(
ûδ(ξ) − û(ξ)

)
dξ,

because
∫

Rd
|ξ |−2s ûδ(−ξ)û(ξ) dξ =

∫

Rd
|ξ |−2s ûδ(ξ)û(−ξ) dξ.

After defining v̂δ(ξ) = |ξ |−2s ûδ(ξ) and v̂(ξ) = |ξ |−2s û(ξ) we write

(2π)d

δ
(Fs(uδ) − Fs(u)) = 1

2

∫

Rd

(
v̂δ(−ξ) + v̂(−ξ)

)1

δ

(
ûδ(ξ) − û(ξ)

)
dξ

= 1

2

∫

Rd
|ξ |(v̂δ(−ξ) + v̂(−ξ)

)|ξ |−1 1

δ

(
ûδ(ξ) − û(ξ)

)
dξ. (5.6)

We show that |ξ |v̂δ(−ξ) converges to |ξ |v̂(−ξ) strongly in L2(Rd) as δ → 0. First
of all we observe that there exists a constant c such that

‖uδ‖H1−s (Rd ) ≤ c, ∀δ ∈ [0, δ0].
In order to obtain this bound we write uδ = φδu ◦ �−1

δ + u ◦ �−1
δ , where φδ =

det∇�−1
δ − 1. Since �−1

δ is a global diffeomorphism, close to the identity, and
clearly there exists a constant c̃ > 0 such that |�δ(x) − �δ(y)| ≥ c̃|x − y| for any
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x, y ∈ R
d and any δ ∈ [0, δ0], we get ‖u ◦ �−1

δ ‖H1−s (Rd ) ≤ c̃‖u‖H1−s (Rd ), see [5,
Corollary 1.60]. A similar estimate holds true as well if we multiply by the smooth
compactly supported function φδ , see also of [5, Theorem 1.62]. Then

‖uδ − u‖H1−s (Rd ) ≤ c + ‖u‖H1−s (Rd ), ∀δ ∈ [0, δ0].

Since supp(uδ − u) = suppη is compact we have that {uδ − u}δ∈[0,δ0] is strongly
compact in Hr (Rd) for any r < 1− s. Since uδ → u narrowly as δ → 0 we obtain
that ‖uδ − u‖Hr (Rd ) → 0 as δ → 0.

Since −s < 1 − 2s < 1 − s, choosing r ∈ (1 − 2s, 1 − s) ∩ (0, 1 − s), by
interpolation we have

‖∇vδ − ∇v‖L2(Rd ) = ‖uδ − u‖Ḣ1−2s (Rd ) ≤ ‖uδ − u‖1−θ

Ḣ−s (Rd )
‖uδ − u‖θ

Ḣr (Rd )
,

where 1−2s = (1−θ)(−s)+θr . Since ‖uδ −u‖Ḣ−s (Rd ) is uniformly bounded for

δ ∈ (0, δ0) we obtain the strong convergence in L2(Rd) of |ξ |v̂δ(−ξ) to |ξ |v̂(−ξ).
For every ξ ∈ R

d the function gξ : [0,+∞) → R defined by gξ (δ) = ûδ(ξ) is
of class C1 and

g′
ξ (δ) = −iξ ·

∫

e−iξ ·(x+δη(x))η(x)u(x) dx .

The continuity of the derivative follows from its expression and dominated conver-
gence Theorem. Indeed, by definition of image measure, that is,

ûδ(ξ) =
∫

Rd
e−iξ ·(x+δη(x))u(x) dx,

we have

1

h

(
ûδ+h(ξ) − ûδ(ξ)

) =
∫

Rd

1

h

(
e−iξ ·(hη(x)) − 1

)
e−iξ ·(x+δη(x))u(x) dx

→ −iξ ·
∫

e−iξ ·(x+δη(x))η(x)u(x) dx

as h → 0, by dominated convergence Theorem.
By Lagrange Theorem for every ξ and δ > 0 there exist δξ ∈ [0, δ) such that

1
δ

(
ûδ(ξ)−û(ξ)

) = g′
ξ (δξ ). Since |g′

ξ (δξ )| ≤ |ξ |‖η‖L∞ weobtain that |ξ |−1 1
δ

(
ûδ(ξ)

− û(ξ)
)
converges to −i |ξ |−1ξ · (η̂u)(ξ) in the sense of distributions, but

g′
ξ (δ) = −iξ · (̂ηu)δ(ξ),

where (ηu)δ = (�δ)#(ηu), and‖(ηu)δ‖L2(Rd ) ≤ 2‖ηu‖L2(Rd ), so that |ξ |−1 1
δ

(
ûδ(ξ)

− û(ξ)
)
is bounded in L2(Rd). Consequently, |ξ |−1 1

δ

(
ûδ(ξ) − û(ξ)

)
converges to

−i |ξ |−1ξ · (η̂u)(ξ) weakly in L2(Rd) as well.
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Eventually, we may pass to the limit in (5.6) by strong vs weak convergence,
and using Plancherel Theorem we obtain

(2π)d lim
δ→0

1

δ
(Fs(uδ) − Fs(u)) = −i

∫

Rd
v̂(−ξ)ξ · (η̂u)(ξ) dξ

= −i
d∑

j=1

∫

Rd
v̂(−ξ)ξ j · (η̂ j u)(ξ) dξ

= (2π)d
d∑

j=1

∫

Rd
∂x j v(x)η j (x)u(x) dx

= (2π)d
∫

Rd
∇v(x) · η(x)u(x) dx . (5.7)

In conclusion, by combining (5.3), (5.4), (5.5), (5.6) and (5.7), we get

0 ≤
∫

Rd
∇v · ηudx − 1

τ

∫

Rd

(
T k

τ − I
)

· ηu dx .

The above inequality is valid also for−η instead of η, so that it is indeed an equality

and (5.1) holds. From (5.1), it follows that τukτ∇vkτ = (T
uk−1

τ

ukτ
− I )ukτ holds almost

everywhere in R
d . Since W 2(ukτ , u

k−1
τ ) = ∫

Rd |T uk−1
τ

ukτ
− I |2 ukτ dx , (5.2) follows as

well. ��

6. Convergence and Energy Dissipation

In this Section we prove that the limit curve obtained by means of Theorem 3.3
is indeed a gradient flow solution to problem (1.1): it satisfies (1.1) in the sense of
distributions and a corresponding energy dissipation inequality holds.

6.1. Convergence

Lemma 6.1. Let u0 ∈ Ḣ−s(Rd)∩P2(R
d), uτ the piecewise constant curve defined

in (3.4) and vτ (t) := Ks ∗ uτ (t) defined for t ≥ 0. Given a vanishing sequence τn,
let uτn be a narrowly convergent subsequence (not relabeled) given by Theorem
3.3, u its limit curve and v(t) := Ks ∗ u(t) for t ≥ 0.

Then, for any T0 > 0 and T > T0 we have u ∈ L2((T0, T ); H1−s(Rd)) and
∇v ∈ L2((T0, T ); L2(Rd)). Moreover the following convergences hold:

φuτn → φu strongly in L2((T0, T ); Hr (Rd)) as n → ∞, ∀φ ∈ S(Rd),

∀r < 1 − s,

uτn → u strongly in L2((T0, T ); L2
loc(R

d)) as n → ∞,

∇vτn → ∇v weakly in L2((T0, T ); L2(Rd)) as n → ∞. (6.1)

If, in addition, u0 ∈ D(H), then the above results also hold for T0 = 0.
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Proof. Let T0 > 0. By the definition of u0τ we have that the error in (4.10) vanishes
as τ → 0, that is, limτ→0 τ(K(u0τ ))

β0 = 0. As in Corollary 4.6 we let N0(τ ) =
[T0/τ ]. By (4.10) and the inequality H(u) ≤ K(u) we obtain that

lim sup
τ→0

H
(
uN0(τ )

τ

)
≤ C0T

−γ0
0 , (6.2)

where the value of the constants C0 and γ0 is stated in Lemma 4.10. Since by
interpolation, for θ = s, it holds

‖uτ (t)‖L2(Rd ) ≤ ‖uτ (t)‖1−s
Ḣ−s (Rd )

‖uτ (t)‖sḢ1−s (Rd )
,

then by Hölder’s inequality, (3.7) and (4.5), we obtain
∫ T

T0
‖uτ (t)‖2L2(Rd )

dt ≤
( ∫ T

T0
‖uτ (t)‖2Ḣ−s (Rd )

dt
)1−s(

∫ T

T0
‖uτ (t)‖2Ḣ1−s (Rd )

dt
)s

≤
(
2Fs(u0)(T − T0)

)1−s(
∫ T

T0
‖uτ (t)‖2Ḣ1−s (Rd )

dt
)s

≤
(
2Fs(u0)(T − T0)

)1−s(H
(
uN0(τ )

τ

)

+c
(
1 + TFs(u0) +

∫

Rd
|x |2 du0(x)

))s
. (6.3)

From (4.5) and the last estimate, by lower semicontinuity we obtain that u ∈
L2((T0, T ); H1−s(Rd)).

Taking into account that −s < 1− 2s < 1− s, by interpolation we obtain, for
θ = 1 − s,

‖uτ (t)‖Ḣ1−2s (Rd ) ≤ ‖uτ (t)‖sḢ−s (Rd )
‖uτ (t)‖1−s

Ḣ1−s (Rd )
,

then by Holder’s inequality, (3.7) and (4.5) we obtain, as above,
∫ T

T0
‖uτ (t)‖2Ḣ1−2s (Rd )

dt

≤
( ∫ T

T0
‖uτ (t)‖2Ḣ−s (Rd )

dt
)s(

∫ T

T0
‖uτ (t)‖2Ḣ1−s (Rd )

dt
)1−s

≤
(
2Fs(u0)(T − T0)

)s(H
(
uN0(τ )

τ

)
+ c
(
1 + TFs(u0) +

∫

Rd
|x |2 du0(x)

))1−s
.

(6.4)

Since v̂τ (t)(ξ) = |ξ |−2s ûτ (t)(ξ), byPlancherelTheoremwehave‖∇vτ (t)‖L2(Rd ) =
‖uτ (t)‖Ḣ1−2s (Rd ). From the previous estimate it follows that {∇vτ }τ>0 is weakly

compact in L2((T0, T ); L2(Rd)). Moreover ∇vτk converges to ∇v in the sense of
distributions in R

d × (T0, T ). Indeed for ϕ ∈ C∞
c (Rd × (T0, T ); R

d), denoting by
ϕt the function x �→ ϕ(x, t), by Plancherel’s Theorem we have

(2π)d
∫ T

T0

∫

Rd
∇vτk · ϕ dx dt = −i

∫ T

T0

∫

Rd
|ξ |−2s ûτk (t)(−ξ)ξ · ϕ̂t (ξ) dξ dt.
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Since ||ξ |−2s ûτk (t)(−ξ)ξ · ϕ̂t (ξ)| ≤ |ξ |1−2s |ϕ̂t (ξ)| and ϕ̂t ∈ S(Rd) for every
t ∈ (T0, T ), by (3.5) and Lebesgue dominated convergence the right hand side of
the above formula converges to

−i
∫ T

T0

∫

Rd
|ξ |−2s û(t)(−ξ)ξ · ϕ̂t (ξ) dξ dt = (2π)d

∫ T

T0

∫

Rd
∇v · ϕ dx dt.

For the stated compactness in L2((T0, T ); L2(Rd)) we obtain (6.1).
Letφ ∈ S(Rd), r ∈ [0, 1−s) and ε > 0. Since‖uτ (t)‖2H−s (Rd )

≤ ‖uτ (t)‖2Ḣ−s (Rd )

≤ 2Fs(u0), then {φuτ (t)}τ>0 is compact in H−s−ε(Rd) for any t . Thus, for any t
we can select a subsequence τnk(t) of τn such thatφuτnk(t)

(t) → wt strongly for some

wt ∈ H−s−ε(Rd). Actually, the subsequence is shown not to depend on t thanks to
(3.5) and the uniqueness of the limit. As a result, we have that φuτn (t) → φu(t) in
H−s−ε(Rd) for any t > 0 and for any φ ∈ S(Rd). By Proposition 2.1 there exists
a constant C such that

‖φuτ (t) − φu(t)‖2H−s−ε(Rd )
≤ C‖uτ (t) − u(t)‖2H−s−ε(Rd )

≤ C‖uτ (t) − u(t)‖2H−s (Rd )

≤ 2C‖uτ (t)‖2H−s (Rd )
+ 2C‖u(t)‖2H−s (Rd )

≤ 8CFs(u0).

Then by dominated convergencewe have that
∫ T
T0

‖φuτn (t)−φu(t)‖2
H−s−ε(Rd )

dt →
0 as n → +∞. For θ = (r + s + ε)/(1 + ε), by interpolation we have

∫ T

T0
‖φuτ (t) − φu(t)‖2Hr (Rd )

dt

≤
( ∫ T

T0
‖φuτ (t) − φu(t)‖2H−s−ε(Rd )

dt
)1−θ

( ∫ T

T0
‖φuτ (t) − φu(t)‖2H1−s (Rd )

dt
)θ

.

Since by Proposition 2.1 there holds
∫ T

T0
‖φuτ (t) − φu(t)‖2H1−s (Rd )

dt

≤ C
∫ T

T0
‖uτ (t) − u(t)‖2H1−s (Rd )

dt

≤ 4C
(
H
(
uN0(τ )

τ

)
+ c
(
1 + TFs(u0) +

∫

Rd
|x |2 du0(x)

)
,

the first convergence result follows.
In order to show the second convergence result let K ⊂ R

d be a compact and
we choose φ : R

d → R such that φ ∈ C∞
c (Rd), 0 ≤ φ ≤ 1, φ = 1 on K and

r = 0. Since ‖uτ (t) − u(t)‖2
L2(K )

≤ ‖φuτ (t) − φu(t)‖2
L2(Rd )

, we conclude.
If T0 = 0 then N0(τ ) = 0, and the last assertion follows from the previous

estimates taking into account that H(u0τ ) ≤ H(u0). ��
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Theorem 6.2. If u ∈ AC2([0,+∞); (P2(R
d),W )) is a limit curve given by The-

orem 3.3, and v(t) := Ks ∗ u(t) for t ≥ 0, then u satisfies the equation in (1.1) in
the following weak form:
∫ +∞

0

∫

Rd
(∂tϕ − ∇ϕ · ∇v)u dx dt = 0, for all ϕ ∈ C∞

c ((0,+∞) × R
d).

Proof. We fix ϕ ∈ C∞
c ((0,+∞) × R

d). By (5.1) with the choice of η = ∇xϕ

(depending on time) and integrating we obtain
∫ +∞

0

∫

Rd
∇vτ · ∇ϕ uτ dx dt = 1

τ

∫ +∞

0

∫

Rd
(Tτ − I ) · ∇ϕ uτ dx dt, (6.5)

where Tτ is defined as Tτ (t) = T
uk−1

τ

ukτ
if t ∈ ((k − 1)τ, kτ ]. By Lemma 6.1 along a

suitable sequence τn the left hand side of (6.5) converges to
∫ +∞

0

∫

Rd
∇ϕ · ∇v u dx dt

By a standard argument, the right hand side of (6.5) converges to
∫ +∞

0

∫

Rd
∂tϕ u dx dt,

see for instance [2, Theorem 11.1.6]. ��

6.2. De Giorgi Interpolant and Discrete Energy Dissipation

In order to obtain an energy dissipation estimate we introduce the so called
De Giorgi variational interpolant (see for instance [2, Section 3.2]) as follows:
ũτ (0) := u0τ and

ũτ (t) ∈ Argminu∈P2(Rd )

{
1

2(t − (k − 1)τ )
W 2
(
u, uk−1

τ

)
+ Fs(u)

}

for t ∈ ((k − 1)τ, kτ ], k = 1, 2, . . . .

We observe that by the argument in the proof of Proposition 3.2 this interpolant is
uniquely defined and ũτ (kτ) = ukτ for any k ∈ N.

Proposition 6.3. For every t > 0, ũτ (t) ∈ H1−s(Rd) and, denoting by ṽτ (t) :=
Ks ∗ ũτ (t), the following discrete energy identity holds for all N ∈ N and τ > 0:

1

2

∫ Nτ

0

∫

Rd
|∇vτ |2 uτ dx dt + 1

2

∫ Nτ

0

∫

Rd
|∇ṽτ |2 ũτ dx dt

+ Fs(uτ (Nτ)) = Fs

(
u0τ
)

.

(6.6)

Moreover,

W 2(ũτ (t), uτ (t)) ≤ 8τFs(u0), ∀t ∈ [0,+∞). (6.7)
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Proof. Fixing t > 0, by the definition of ũτ (t), the same proof of Lemma 4.5 shows
that ũτ (t) ∈ H1−s(Rd). For k such that t ∈ ((k − 1)τ, kτ ], the same argument of
Lemma 5.1 shows that

∫

Rd
|∇ṽτ (t) |2ũτ (t) dx = 1

(t − (k − 1) τ )2
W 2
(
ũτ (t) , uk−1

τ

)
. (6.8)

From [2, Lemma 3.2.2] we have the one step energy identity

1

2

W 2
(
ukτ , u

k−1
τ

)

τ
+ 1

2

∫ kτ

(k−1)τ

W 2
(
ũτ (t) , uk−1

τ

)

(t − (k − 1) τ )2
dt + Fs

(
ukτ
)

= Fs

(
uk−1

τ

)
.

Defining the function Gτ : (0,+∞) → R as

Gτ (t) = W
(
ũ (t) , uk−1

τ

)

t − (k − 1) τ
, t ∈ ((k − 1)τ, kτ ], k = 1, 2, . . .

and summing from k = 1 to N , we obtain

1

2

N∑

k=1

τ
W 2
(
ukτ , u

k−1
τ

)

τ 2
+ 1

2

∫ Nτ

0
G2

τ (t) dt + Fs

(
uN

τ

)
= Fs

(
u0τ
)

.

Finally 6.6 follows by (5.2) and (6.8).
The estimate (6.7) follows by the definition of ũ(t), (3.7), the non-negativity of

Fs and the triangle inequality (see also [2, Remark 3.2.3]). ��
In order to pass to the limit by lower semicontinuity in (6.6) we recall the

following result, see [2, Theorem 5.4.4].

Lemma 6.4. If {μn} is a sequence in P(Rd ×[0, T ]) that narrowly converges to μ

and {wn} is a sequence of vector fields in L2(Rd × [0, T ], μn; R
d) satisfying

sup
n

∫

Rd×[0,T ]
|wn|2 dμn < +∞, (6.9)

then there exists a vector fieldw ∈ L2(Rd ×[0, T ], μ; R
d) and a subsequence (not

relabeled here) such that

lim
n→∞

∫

Rd×[0,T ]
ϕ · wn dμn =

∫

Rd×[0,T ]
ϕ · w dμ, ∀ϕ ∈ C∞

c (Rd × [0, T ]; R
d),

and moreover

lim inf
n→∞

∫

Rd×[0,T ]
|wn|2 dμn ≥

∫

Rd×[0,T ]
|w|2 dμ. (6.10)

Theorem 6.5. If u ∈ AC2([0,+∞); (P2(R
d),W )) is a limit curve given by The-

orem 3.3, and v(t) := Ks ∗ u(t) for t ≥ 0, then u satisfies the following energy
dissipation inequality:

Fs(u(T )) +
∫ T

0

∫

Rd
|∇v(t)|2u(t) dx dt ≤ Fs(u0), ∀ T > 0.
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Proof. Let uτn be the sequence of Lemma 6.1. We fix T > 0 and we apply Lemma
6.4 to the sequences μn := 1

T uτn , wn := ∇vτn and μ̃n := 1
T ũτn , w̃n := ∇ṽτn . By

(6.6) with N = Nτn := �T/τn�, and by (3.6), the assumption (6.9) is satisfied for
both the couples (μn, wn) and (μ̃n, w̃n). By (3.5) and (6.7) we have thatμn and μ̃n

converge narrowly to μ := 1
T u. By (6.1) we have that the limit point of wn and w̃n

is the same w = w̃ = ∇v. Since limn→+∞ τnNτn = T , by (3.6), the lower semi
continuity of Fs , (6.10) and (3.6) we conclude. ��

7. Boundedness of Solutions and L∞ Decay

In this section we show how to get an L∞ decay rate starting from the discrete
variational approach. We have indeed to extend the estimate of Theorem 4.11 to
p = ∞. Notice that γp therein converges as p → ∞, but the constant Cp blows
up. Therefore, we have to go through a more refined argument.

We start by introducing a simple recursive estimate.

Proposition 7.1. Let Q > 0, R > 0 and q > 1. If a sequence of positive numbers
{A j }{ j≥0} satisfies A j ≤ QR j Aq

j−1 for every j ≥ 1, then

A j ≤ Qβ( j− j0,q)Rγ ( j− j0,q)Aq j− j0

j0
, ∀ j > j0 ≥ 0, (7.1)

where

β( j, q) = q j − 1

q − 1
, γ ( j, q) = q(q j − 1)

(q − 1)2
− j

q − 1
.

Proof. Let j0 = 0. By recursively using the assumption we obtain that

A j ≤
j−1∏

i=0

(QR j−i )q
i
Aq j

0 = Qβ( j,q)Rγ ( j,q)aq
j

0 , j > 0,

where indeed

β( j, q) =
j−1∑

i=0

qi = q j − 1

q − 1
,

γ ( j, q) =
j−1∑

i=0

( j − i)qi = 1

q − 1

j∑

i=1

(qi − 1) = q(q j − 1)

(q − 1)2
− j

q − 1
.

If j0 > 0 we apply the previous formula by shifting the indexes. ��
Theorem 7.2. If u ∈ AC2([0,+∞); (P2(R

d),W )) is a limit curve given by The-
orem 3.3, then there exists a constant C∞ depending only on d and s such that

‖u(t)‖L∞(Rd ) ≤ C∞t−γ∞ , t > 0,

where γ∞ := d
d+2(1−s) .
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Proof. Fix t > 0 throughout. We let τ > 0 and we define

Tj := t (1 − 2− j ), j = 0, 1, 2, . . .

and j (τ ) as the smallest integer j such that Tj > τ�t/τ�, where �a� := max{m ∈
Z : m < a} denotes the left continuous lower integer part of the real number a.
The sequence {Tj } satisfies

τ�t/τ� ≤ Tj (τ ) < Tj (τ )+1 < Tj (τ )+2 < · · · < lim
j→+∞ Tj = t,

and Tj − Tj−1 = t2− j . We recursively define ũτ, j by ũτ, j (τ ) := uτ (t) and

ũτ, j = argminu∈P2(Rd )

{

Fs(u) + 1

2(Tj − Tj−1)
W 2

2 (u, ũτ, j−1)

}

, j > j (τ )

(7.2)

For given M > 0 we define G(u) := (u−M)2+ and V as the displacement con-
vex entropy with density function G, according to Definition 4.1. By the definition
of ũτ, j in (7.2), Lemma 4.10 can be applied and yields

(Tj − Tj−1)〈ũτ, j , LG(ũτ j )〉1−s ≤ V(ũτ, j−1) − V(ũτ, j ), j > j (τ ). (7.3)

Since LG(u) = (u − M)2+ + 2M(u − M)+, u �→ (u − M)2+ is nondecreasing and
u �→ (u − M)+ is 1-Lipschitz continuous, by Proposition 2.2 we have

〈u, LG(u)〉1−s =
〈
u, (u − M)2+

〉

1−s
+ 2M〈u, (u − M)+〉1−s

≥ 2M〈u, (u − M)+〉1−s

≥ 2M〈(u − M)+, (u − M)+〉1−s = 2M‖(u − M)+‖2
Ḣ1−s (Rd )

.

Then, since V ≥ 0, from (7.3) we find
∫

Rd
(ũτ, j−1(x) − M)2+ dx ≥ 2M(Tj − Tj−1)‖(ũτ, j − M)+‖2

Ḣ1−s (Rd )
, j > j (τ ).

(7.4)

Next, we define

A j (τ ) := ‖ũτ, j (τ )‖2L2(Rd )
= ‖uτ (t)‖2L2(Rd )

and we separately treat the cases d ≥ 2 and d = 1 in the rest of the proof.

The case d ≥ 2. We let q := d/(d − 2 + 2s), so that 2q is the critical exponent
corresponding to the Sobolev inequality (2.2) with r = 1− s and constant denoted
by Sd,1−s . We define the constant

Mτ (t) :=
(
S2d,1−s

t

) q
3q−2 (

A j (τ ) 2
q(3q−2)
(q−1)2

) q−1
3q−2

= 2q/(q−1)S2q/(3q−2)
d,1−s A(q−1)/(3q−2)

j (τ ) t−q/(3q−2),
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and Mτ, j := (2 − 2− j )Mτ (t) for j > j (τ ). Finally we define

A j :=
∫

(ũτ, j − Mτ, j )
2+ dx, j > j (τ ).

Since f − Mτ, j > 0 implies f − Mτ, j−1 = f − Mτ, j + 2− j Mτ (t) >

2− j Mτ (t) > 0, a direct computation and the Sobolev inequality (2.2) entail, for
any j > j (τ )

A j ≤
(

2 j

Mτ (t)

)2q−2 ∫

Rd
(ũτ, j (x) − Mτ, j−1)

2q
+ dx

≤
(

2 j

Mτ (t)

)2q−2

S2qd,1−s ‖(ũτ, j − Mτ, j−1)+‖2q
Ḣ1−s (Rd )

.

(7.5)

Now we make use of (7.4), with Mτ, j in place of M , and we get for any j > j (τ ),
since Mτ ≤ Mτ, j ,

A j ≤
(

2 j

Mτ (t)

)2q−2

S2qd,1−s

(
2 j

tMτ (t)

)q (∫

Rd
(ũτ, j−1(x) − Mτ, j−1)

2+ dx

)q

≤ S2qd,1−s

tqMτ (t)3q−2 (23q−2) j Aq
j−1.

(7.6)

We may apply the recursion formula (7.1), with Q = S2qd,1−s t
−qMτ (t)2−3q and

R = 23q−2, starting from j0 = j (τ ), and we get

A j ≤
(

S2qd,1−s

tqMτ (t)3q−2

) q j− j (τ )−1
q−1 (

23q−2
) q(q j− j (τ )−1)

(q−1)2
− j− j (τ )

q−1
Aq j− j (τ )

j (τ )

=
⎛

⎝
S2qd,1−s 2

q(3q−2)/(q−1) Aq−1
j (τ )

tqMτ (t)3q−2

⎞

⎠

q j− j (τ )−1
q−1

2−( j− j (τ ))(3q−2)/(q−1) A j (τ )

= 2−( j− j (τ ))(3q−2)/(q−1) A j (τ ),

where we have used the definition of Mτ . As q > 1, we have lim j→+∞ A j = 0.
Notice that, for j > j (τ ), there holds as in Theorem 3.3 the basic estimate

Fs(ũτ, j ) + W 2(ũτ, j , ũτ, j−1)

2(Tj − Tj−1)
≤ Fs(ũτ, j−1) ≤ Fs(u0),

so that

W 2(ũτ, j , ũτ, j−1) ≤ 2Fs(u0)(Tj − Tj−1) = 2tFs(u0) 2
− j ,

then

W (ũτ,n, ũτ,m) ≤ √2tFs(u0)
n∑

j=m+1

2− j/2.
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Therefore, {ũτ, j } j≥ j (τ ) is a Cauchy sequence, converging in P2(R
d) as j → +∞

to a limit point that we denote by ũτ (t), such that

W (ũτ,m, ũτ (t)) ≤ √2tFs(u0)
+∞∑

j=m+1

2− j/2. (7.7)

Since ũτ, j narrowly converges to ũτ (t) as j → +∞, the lower semicontinuity
of V with respect to the narrow convergence entails (together with 2Mτ (t) > Mτ, j )
∫

Rd
(ũτ (t) − 2Mτ (t))

2+ dx ≤ lim inf
j→+∞

∫

Rd
(ũτ, j − 2Mτ (t))

2+ dx

≤ lim inf
j→+∞

∫

Rd
(ũτ, j − Mτ, j )

2+ dx = lim
j→+∞ A j = 0,

that is

‖ũτ (t)‖L∞(Rd ) ≤ 2Mτ (t) = 2(2q−1)/(q−1)S2q/(3q−2)
d,1−s A(q−1)/(3q−2)

j (τ ) t−q/(3q−2).

(7.8)

However, we apply the estimate (4.11) for p = 2 to see that

A j (τ ) = ‖uτ (t)‖2L2(Rd )
≤ C2

2 (τ�t/τ�)−2γ2 + C̃2√
2

τ

∥
∥
∥u0τ

∥
∥
∥
2β2

2
,

where C2, C̃2, γ2, β2 are defined in Lemma 4.10 and where the right hand side
converges, as τ → 0, to C2

2 t
−2γ2 , see Theorem 4.11. Hence, from (7.8) we obtain

lim sup
τ→0

‖ũτ (t)‖L∞(Rd ) ≤ Ks,d t
−2γ2

(q−1)
3q−2 − q

3q−2 = Ks,d t
− d

d+2−2s ,

where

Ks,d := 2(2q−1)/(q−1)S2q/(3q−2)
d,1−s C2(q−1)/(3q−2)

2 ,

and where we used 2γ2 = d/(d + 2− 2s) and q = d/(d − 2+ 2s) to compute the
exponent of t .

By (7.7) with m = j (τ ) we have

W (uτ (t), ũτ (t)) ≤ √2tFs(u0)
+∞∑

j= j (τ )+1

2− j/2. (7.9)

Since j (τ ) → +∞ as τ → 0, by (7.9) it follows that along a sequence τn given by
Lemma 6.1 we have that {ũτn (t)}n∈N is tight and converges to the same limit point
u(t) of {uτn (t)}n∈N.

By lower semicontinuity we conclude that

‖u(t)‖L∞(Rd ) ≤ Ks,d t
−d/(d+2−2s).

The result is achieved with C∞ = Ks,d .
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The case d = 1 and 0 < s < 1/2. The argument is analogous to the previous
one for d ≥ 2, we shall only mention the main differences. Instead of defining
q = d/(d − 2 + 2s), we fix r ∈ (0, 1/2) and we let q := 1/(1 − 2r). We define
θ := r/(1 − s), and we change the definition of Mτ (t) by letting

Mτ (t) := 2q/(q−1)S2q/(2q−2+qθ)
1,r A(q−1)/(2q−2+qθ)

j (τ ) t−qθ/(2q−2+qθ).

Using (2.8) instead of (2.2), the analogue of (7.5) is

A j ≤
(

2 j

Mτ (t)

)2q−2 ∫

Rd
(ũτ, j (x) − Mτ, j−1)

2q
+ dx

≤
(

2 j

Mτ (t)

)2q−2

S2q1,r
∥
∥(ũτ, j − Mτ, j−1)+

∥
∥2q(1−θ)

L2(Rd )

∥
∥(ũτ, j − Mτ, j−1)+

∥
∥2qθ

Ḣ1−s (Rd )
.

(7.10)

Moreover by (7.3) we have

‖(ũτ, j − Mτ, j−1)+‖2L2(Rd )
≤ ‖(ũτ, j−1 − Mτ, j−1)+‖2L2(Rd )

= A j−1. (7.11)

Using (7.4) and (7.11) in (7.10) we obtain the analogue of (7.6):

A j ≤
(

2 j

Mτ (t)

)2q−2

S2q1,r

(
2 j

tMτ (t)

)qθ

Aq
j−1. (7.12)

Then we can apply the recursion formula with the choice of Q = S2q1,r t
−qθ

Mτ (t)2−2q−qθ and R = 22q−2+qθ and we obtain, recalling the choice of Mτ (t),

A j ≤ 2−( j− j (τ ))(2q−2+qθ)/(q−1) A j (τ ).

The rest of the proof carries over along the line of the case d ≥ 2. ��
Proof of Theorem 1.1. We collect all the results that give the proof of the main
Theorem. Point (i) follows from Proposition 3.2. Points (ii) and (iii) follow from
Theorem 3.3, Lemma 6.1 and Theorem 6.2. Theorem 6.5 yields point (iv). Point
(v) is a consequence of Theorem 4.11 and Theorem 7.2 for the case p < +∞ and
the case p = +∞, respectively. Finally, point (vi) follows from Lemma 4.5 and
Lemma 4.7 by letting τ → 0 and taking into account the lower semicontinuity ofH
and of the L p norms with respect to the narrow convergence. This gives the result
for p < +∞. The case p = +∞ follows by passing to the limit as p → +∞ in
the inequality ‖u(t)‖L p(Rd ) ≤ ‖u0‖L p(Rd ). ��
Remark 7.3. If we consider positive measure data with mass M > 0, according to
Remark 1.2, the constant Cp in point v) has to be multiplied by M
p , where 
p is
given therein. This scaling is deduced from Lemma 4.10 if p < +∞, when making
use of (2.5) and (2.7) for obtaining (4.16). We similarly obtain the value of 
∞,
since the constant C∞ in Theorem 7.2 depends on the mass only through C2.
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8. The Limit for s → 0

In this last section we are interested in the asymptotic analysis when s → 0.
We start by proving the following lemma which identifies the limit of the sequence
of solutions us of the equation in (1.1) as s → 0 with the solutions of the porous
medium equation (1.3):

Lemma 8.1. Let u0 ∈ L2(Rd) and {us0}s∈(0,1) be a family of initial data such that
us0 ∈ D(Fs), us0 converges narrowly to u0 as s → 0, sups∈(0,1)

∫

Rd |x |2 dus0(x) <

+∞ and lims→0 Fs(us0) = F0(u0). We denote by us a solution of problem (1.1)
with initial datum us0 given by Theorem 1.1.

If {sn}n∈N ⊂ (0, 1) is a vanishing sequence, then there exist a curve u ∈
AC2([0,+∞); (P2(R

d),W )) and a subsequence (not relabeled) {sn} such that

usn (t) → u(t) narrowly as n → ∞ for every t ≥ 0. (8.1)

Furthermore, for every T0, T such that T > T0 > 0 we have

usn → u strongly in L2((T0, T ); L2
loc(R

d)) as n → ∞, (8.2)

and, setting vsn = Ksn ∗ usn , we have

∇vsn → ∇u weakly in L2((T0, T ); L2(Rd)) as n → ∞. (8.3)

Moreover, the curve u is a solution of the porous medium equation (1.3) in the
following sense:
∫ +∞

0

∫

Rd
(∂tϕ − ∇ϕ · ∇u)u dx dt = 0, for all ϕ ∈ C∞

c ((0,+∞) × R
d),

and the following energy dissipation inequality holds:

F0(u(T )) +
∫ T

0

∫

Rd
|∇u(t)|2u(t) dx dt ≤ F0(u0), ∀ T > 0. (8.4)

Proof. Since lims→0 Fs(us0) = F0(u0) we fix s0 ∈ (0, 1) such that Fs(us0) ≤
F0(u0) + 1/2 for any s ∈ (0, s0). Denoting by |(us)′|(t) the Wasserstein metric
derivative of the curve t �→ us(t), by (3.11) it holds that

∫ +∞

0
|(us)′|2(r) dr ≤ 2Fs(u

s
0) ≤ 2F0(u0) + 1. (8.5)

We have tightness and equicontinuity of the family {us}s∈(0,s0). Indeed, fixing
T > 0, the estimate

W 2 (us (t) , δ0
) ≤ 2W 2 (us (t) , us0

)+ 2W 2 (us0, δ0
)

≤ 2t
∫ t

0
| (us)′ |2 (r) dr +2

∫

|x |2us0 (x) dx

≤ 2T (2F0 (u0) + 1) + 2 sup
s∈(0,s0)

∫

|x |2us0 (x) dx
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implies that the set {us(t) : s ∈ (0, s0), t ∈ [0, T ]} is tight, and consequently, by
the Prokhorov Theorem, narrowly compact.

By (8.5) there existsm ∈ L2(0,+∞) such that the sequence {|(usn )′|} converges
tom (up to subsequences) weakly in L2(0,+∞). Then, for every t1, t2 ∈ [0,+∞),
t1 < t2, it holds that

lim sup
n→∞

W (usn (t2), u
sn (t1)) ≤ lim

n→∞

∫ t2

t1
|(usn )′|(r) dr =

∫ t2

t1
m(r) dr, (8.6)

and the equicontinuity is proved. By the compactness argument of [2, Proposi-
tion 3.3.1], we obtain the existence of a continuous limit curve u such that (8.1)
holds. In particular, since for t > 0, us(t) is absolutely continuous with respect to
the Lebesgue measure, (8.1) translates (for t > 0) into

∫

Rd
usn (t, x)φ(x) dx →

∫

Rd
u(t, x)φ(x) dx, ∀t > 0 ∀φ ∈ Cb(R

d). (8.7)

Passing to the limit in (8.6) we obtain

W (u(t2), u(t1)) ≤
∫ t2

t1
m(r) dr, ∀ t1, t2 ∈ [0,+∞), t1 < t2,

and u ∈ AC2([0,+∞); (P2(R
d),W )).

We fix σ > 0 such that σ < min{s0, 1/2}. For s ∈ (0, σ ], the energy inequality
(1.5) yields

‖us(t)‖2H−σ (Rd )
≤ 2F0(u0) + 1, ∀s ∈ (0, σ ], ∀t ∈ [0,+∞). (8.8)

We fix a compact K ⊂ R
d and a compactly supported smooth cutoff function

φ : R
d → [0, 1] such that φ = 1 on K . By interpolation we have

‖us(t) − u(t)‖L2(K ) ≤ ‖φus(t) − φu(t)‖L2(Rd )

≤ ‖φus(t) − φu(t)‖1/2
H−1/2(Rd )

‖φus(t) − φu(t)‖1/2
H1/2(Rd )

≤ C‖φus(t) − φu(t)‖1/2
H−1/2(Rd )

‖us(t) − u(t)‖1/2
H1/2(Rd )

.

By (8.8), (8.7) and the compact embedding of Sobolev spaces it follows that (up to
subsequences) limn→+∞ ‖φusn (t) − φu(t)‖1/2

H−1/2(Rd )
= 0.

We fix T0 > 0 and T > T0. By (6.3), (4.5) and (6.2), for s ≤ 1/2 we have

∫ T

T0
‖us(t)‖2H1/2(Rd )

dt ≤
∫ T

T0
‖us(t)‖2H1−s (Rd )

dt

≤
(
1 + C0T

−γ0
0 + TFs

(
us0

)
+
∫

Rd
|x |2us0(x) dx

)

+
(
2Fs

(
us0

)
(T − T0)

)1−s(
C0T

−γ0
0

+ c
(
1 + TFs

(
us0

)
+
∫

Rd
|x |2 dus0(x)

))s
,
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where the dependence of the constants C0 and γ0 on s is stated in Lemma 4.10.
Since C0 is bounded with respect to s, it follows that

sup
n∈N

∫ T

T0
‖usn (t)‖2H1/2(Rd )

dt < +∞,

∫ T

T0
‖u(t)‖2H1/2(Rd )

dt < +∞.

By the previous estimates and dominated convergence theorem we obtain (8.2).
Analogously, from (6.4) we obtain

∫ T

T0
‖us(t)‖2

Ḣ1−2s (Rd )
dt

≤ (2Fs
(
us0
)
(T − T0)

)s
(
C0T

−γ0
0 + c

(
TFs

(
us0
)+

∫

Rd
|x |2us0(x) dx

))1−s
.

Since ‖∇vs(t)‖L2(Rd ) = ‖us(t)‖Ḣ1−2s (Rd ), taking into account that C0 is bounded
as s → 0, from the previous estimate it follows that {∇vs}s∈(0,σ ) is weakly compact
in L2((T0, T ); L2(Rd)). Moreover ∇vsn converges to ∇u in the sense of distribu-
tions in R

d × (T0, T ). Indeed for ϕ ∈ C∞
c (Rd × (T0, T ); R

d), denoting by ϕt the
function x �→ ϕ(x, t), by Plancherel’s Theorem we have

(2π)d
∫ T

T0

∫

Rd
∇vsn · ϕ dx dt = −i

∫ T

T0

∫

Rd
|ξ |−2sn ûsn (t)(−ξ)ξ · ϕ̂t (ξ) dξ dt.

Since ||ξ |−2sn ûsn (t)(−ξ)ξ · ϕ̂t (ξ)| ≤ max{1, |ξ |}|ϕ̂t (ξ)| and ϕ̂t ∈ S(Rd) for every
t ∈ (T0, T ), by (8.1) and Lebesgue dominated convergence the right hand side of
the above formula converges to

−i
∫ T

T0

∫

Rd
û(t)(−ξ)ξ · ϕ̂t (ξ) dξ dt = (2π)d

∫ T

T0

∫

Rd
∇u · ϕ dx dt.

For the stated compactness in L2((T0, T ); L2(Rd)) we obtain (8.3).
As a result, we can easily pass to the limit in the weak formulation of the

equation. Concerning the limit procedure in the energy inequality, we observe that
by (8.1) and Fatou’s lemma we obtain

lim inf
s→0

Fs(u
s(t)) ≥ F0(u(t)).

Moreover by Lemma 6.4 and the stated weak convergence we obtain

lim inf
s→0

∫ T

0

∫

Rd
|∇vs(t)|2us(t) dx dt ≥

∫ T

0

∫

Rd
|∇u(t)|2u(t) dx dt,

and we conclude. ��
Proof of Theorem 1.3. The proof follows by the previous Lemma and the unique-
ness of the solution of equation (1.6) with initial datum in L2(Rd) satisfying the
energy inequality (see [2, Theorem 11.2.5], which also shows that this unique so-
lution satisfies all the properties of [2, Theorem 11.2.1], in particular the energy
identity). ��
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