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Abstract

We seek to define statistical solutions of hyperbolic systems of conservation
laws as time-parametrized probability measures on p-integrable functions. To do
so, we prove the equivalence between probability measures on L p spaces and
infinite families of correlation measures. Each member of this family, termed a
correlation marginal, is a Young measure on a finite-dimensional tensor product
domain and provides information about multi-point correlations of the underlying
integrable functions. We also prove that any probability measure on a L p space is
uniquely determined by certain moments (correlation functions) of the equivalent
correlation measure. We utilize this equivalence to define statistical solutions of
multi-dimensional conservation laws in terms of an infinite set of equations, each
evolving a moment of the correlation marginal. These evolution equations can
be interpreted as augmenting entropy measure-valued solutions, with additional
information about the evolution of all possible multi-point correlation functions.
Our concept of statistical solutions can accommodate uncertain initial data aswell as
possibly non-atomic solutions, even for atomic initial data. For multi-dimensional
scalar conservation lawswe impose additional entropy conditions and prove that the
resulting entropy statistical solutions exist, are unique and are stable with respect
to the 1-Wasserstein metric on probability measures on L1.

1. Introduction

Systems of conservation laws are nonlinear partial differential equations of the
generic form

∂t u + ∇x · f (u) = 0 (1.1a)

u(x, 0) = ū(x). (1.1b)
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Here, the unknown u = u(x, t) : R
d × R+ → R

N is the vector of conserved
variables and f = ( f 1, . . . , f d) : RN → R

N×d is the flux function. We denote
R+ := [0,∞). The system is termed hyperbolic if the flux Jacobian matrix has real
eigenvalues [15]. Here and in the remainder, quantities with a bar (like ū) denote
prescribed initial data.

Hyperbolic systems of conservation laws arise in a wide variety of models
in physics and engineering. Prototypical examples include the compressible Eu-
ler equations of gas dynamics, the shallow water equations of oceanography, the
magneto-hydrodynamics (MHD) equations of plasma physics and the equations of
nonlinear elasticity [15].

It is well known that solutions of (1.1) can form discontinuities such as shock
waves, even for smooth initial data ū. Hence, solutions of systems of conservation
laws (1.1) are sought in the sense of distributions. These weak solutions are not
necessarily unique. They need to be augmented with additional admissibility crite-
ria, often termed entropy conditions, to single out the physically relevant solution.
Entropy solutions are widely regarded as the appropriate solution paradigm for
systems of conservation laws [15].

Global well-posedness (existence, uniqueness and continuous dependence on
initial data) of entropy solutions of scalar conservation laws (N = 1 in (1.1)), was
established in the pioneering work of Kruzkhov [39]. For one-dimensional systems
(d = 1, N > 1 in (1.1)), global existence, under the assumption of small initial total
variation, was shown by Glimm [32] and by Bianchini and Bressan [6]. Uniqueness
and stability of entropy solutions for one-dimensional systems has also been shown;
see [8] and references therein.

Although existence results have been obtained for some very specific examples
of multi-dimensional systems (see [4] and references therein), there are no global
existence results for any generic class of multi-dimensional systems. In fact, De
Lellis, Székelyhidi et al. have recently been able to construct infinitelymany entropy
solutions for prototypical multi-dimensional systems such as the Euler equations
for polytropic gas dynamics (see [16,17] and references therein). Their construction
involves a novel iterative procedure where oscillations at smaller and smaller scales
are successively added to suitably constructed sub-solutions of (1.1).

Given the lack of global existence and uniqueness results for entropy solutions
of multi-dimensional systems of conservation laws, it is natural to seek alternative
solution paradigms. One option, advocated for instance in [3], is to augment entropy
solutions with further admissibility criteria, such as the vanishing viscosity limit, in
order to rule out “unphysical” solutions. However, given the difficulties of obtaining
existence results for the weaker concept of entropy solutions, it is unclear if such a
narrowing of the solution concept would lead to any meaningful global existence
results.

The other alternative is to extend the solution concept beyond entropy solutions
(integrable functions) and seek possibly even weaker notions of solutions of (1.1),
together with suitable admissibility criteria to constrain these solutions and enforce
uniqueness. A recent paper [23] advocates such an approach. Based on the extensive
numerical simulations reported in [23] (see also [40]), the authors observe that
approximate solutions of (1.1) can feature oscillations at smaller and smaller scales
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as mesh is refined. Given this fact, they postulate that entropy measure-valued
solutionsmay serve as an appropriate solution paradigm for systems of conservation
laws in several space dimensions, particularly in characterizing limits of (numerical)
approximations.

Measure-valued solutions, originally proposed by DiPerna [20] (see also [21]),
are space-time-parametrized probability measures, or Young measures, defined on
the phase space R

N of (1.1). In defining entropy measure-valued solutions, one
requires consistency of certain functionals of this Young measure with the initial
data, with the weak (distributional) form of (1.1), and with a suitable (dissipative)
form of the entropy conditions (see also [18]).

In recent papers [23,24] (see also [34]), the authors were able to prove (global
in time) existence of entropy measure-valued solutions for a very large class of
systems of conservation laws, namely those endowed with a strictly convex entropy
function, by showing convergence of numerical approximations of (1.1) based on a
Monte Carlo algorithm. Numerical experiments presented in these papers suggest
that the measure-valued solution may be non-atomic, even when the initial data is
atomic, i.e. a Dirac Young measure concentrated on an integrable function. The
computed measure-valued solutions were observed to be stable with respect to the
choice of numerical method and with respect to perturbations of initial data.

However, one can readily construct counter-examples to uniqueness of entropy
measure-valued solutions. In particular, if the initial data is non-atomic then in-
finitely many entropy measure-valued solutions can be constructed, even for scalar
conservation laws (see [23,43]). This lack of uniqueness, even for the scalar case,
can be attributed to the fact that only certain functionals of themeasure-valued solu-
tion (essentially themean and the secondmoment) are required to be consistentwith
the initial data, the evolution equation (1.1) and the entropy conditions. Since the
mean and the second moment uniquely specifies a measure only when the measure
is atomic, one cannot expect uniqueness for generic (non-atomic) measure-valued
solutions as considered in [23].

On the other hand, numerical experiments presented in [23] clearly suggest that
one has to deal with non-atomic, “uncertain” measure-valued solutions of multi-
dimensional systems of conservation laws, even when the initial data is atomic. In
a wide variety of applications, even the initial data can be non-atomic, carrying
some uncertainty due to e.g. measurement errors. These measurements are inher-
ently uncertain and can only be specified probabilistically, and this uncertainty
inevitably propagates into the solution. The modeling, analysis and numerical ap-
proximation of uncertain solutions, given uncertain inputs (such as the initial data),
falls under the rubric of uncertainty quantification; see [7] and reference therein
for an extensive discussion of the very large body of recent research activity on
uncertainty quantification for systems of conservation laws. Thus, in general, one
has to deal with the possibility that physically relevant measure-valued solutions
are non-atomic.

Given these considerations, we seek to find a solution framework that can deal
with non-atomicmeasure-valued solutions ofmulti-dimensional systems of conser-
vation laws, and can provide further constraints on these measure-valued solutions
in order to enforce uniqueness and stability of the resulting solution concept.
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A natural choice for such a solution framework is the notion of statistical so-
lutions that was first proposed by Foiaş [27,28] (see also [29]) in the context of
the incompressible Navier–Stokes equations of fluid dynamics. As envisaged by
Foiaş and co-workers, statistical solutions of the Navier–Stokes equations are time-
parametrized probability measures on a given infinite-dimensional function space
(divergence-free L2 functions in the context of the Navier–Stokes equations). This
family of measures has to satisfy either a suitable infinite-dimensional Liouville
equation that governs the time evolution of a class of functionals in a manner con-
sistent with the Navier–Stokes dynamics, or equivalently, satisfy a Hopf equation,
where the time-evolution of the characteristic functional of the probability measure
(on L2) is prescribed. Both formulations result in evolution equations in infinite-
dimensional spaces. A detailed account of statistical solutions in the sense of Foiaş,
and their relation to the description of turbulent incompressible flows, can be found
in [29] and references therein.

However, it is far from straightforward to adapt the notion of statistical solutions
to the context of systems of conservation laws. There seems to be at least three main
difficulties in this regard. First, statistical solutions as defined in [27–29] are well
suited to problems with viscosity, as they require some regularity of the underlying
functions in order to define the infinite-dimensional Liouville or Hopf equations. It
is unclear how to extend them to inviscid problems such as systems of conservation
laws where solutions are generally discontinuous. Attempts to do so have been
made in [5,9,10] (see also [36,41]) for the special case of the one-dimensional
inviscid Burgers equation. The corresponding statistical solutions are probability
measures on the space of distributions, and the infinite-dimensional Hopf equation
iswell-defined by using compactly supported infinitely differentiable test functions.
Although existence results for such statistical solutions of the inviscid Burgers
equation have been obtained in the class of Levy processes with negative jumps,
it is not possible to obtain uniqueness of these statistical solutions, even for the
inviscid Burgers equation, in the class of probability measures on spaces as large
as the space of distributions.

The second difficulty with statistical solutions in the sense of Foiaş, lies in
the fact that the Liouville or Hopf equations are evolution equations on infinite-
dimensional function spaces. This makes the interpretation and computation of
statistical solutions very hard for viscous problems, and the solution concept is not
easily amenable to extension to inviscid PDEs such as systems of conservation laws.
Furthermore, probability measures on function spaces preclude a local (in space)
description of the resulting solution, as it is unclear how to interpret statistical
information at specific points (or collection of points) in space.

Finally, given our original motivation in constraining measure-valued solutions
to recover uniqueness in the non-atomic case, the relationship between statistical
solutions andmeasure-valued solutions is far from clear. The only known results are
presented in [11,12] where a sequence of statistical solutions of the incompressible
Navier–Stokes equations is shown to converge to a measure-valued solution of the
incompressible Euler equations, as defined in [21], when the viscosity vanishes.
However, we are interested in investigating the more abstract question of the re-
lationship between probability measures on function spaces (statistical solutions),
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and Young measures that represent one-point statistics (measure-valued solutions),
with the aim of imposing further constraints onmeasure-valued solutions to enforce
uniqueness.

With this background, the first aim of the current paper is to provide a novel
representation of a probability measure on an infinite-dimensional function space
(to be specific, L p space) in terms of an infinite hierarchy of Young measures
called a correlation measure, defined on tensor products of the (finite-dimensional)
spatial domain. Each member of this hierarchy of measures, termed a correlation
marginal, represents correlations (joint probabilities) in the values of the underlying
functions at any finite collection of points. Hence, this representation allows us to
interpret probability measures on infinite-dimensional spaces as containing infor-
mation about correlations across all possible finite collection of points in the spatial
domain. Consequently, we can “localize” any infinite-dimensional probabilitymea-
sure. In particular, the first correlation marginal of this equivalent representation
coincides with the classical notion of a Young measure. Thus, a probability mea-
sure on an L p space augments a Young measure with multi-point correlations and
provides significantly more information than the Young measure does. We believe
that this novel equivalence result could be of independent interest in stochastic
analysis; see e.g. [14].

Another consequence of the equivalence of probability measures on function
spaces and hierarchies of finite-dimensional correlation marginals, is the fact that
the probability measure can be uniquely determined by a family of moments of
the corresponding correlation marginals. Hence, the infinite-dimensional Liouville
or Hopf equation for statistical solutions, as proposed in [29], can be replaced by
an equivalent family of evolution equations (for moments) on finite-dimensional
(tensor-product) domains.

The second aim of this paper is to utilize this novel representation to define
a suitable notion of statistical solutions for systems of conservation laws (1.1).
In particular, certain moments (correlation functions) of the (time-parametrized)
correlation marginals are evolved in a manner consistent with the dynamics of
the conservation law (1.1). Consequently, statistical solutions need to satisfy an
infinite family of evolutionary PDEs, but each of these PDEs is defined on a finite-
dimensional spatial domain.

The final aim of this paper is to study the well-posedness of the proposed notion
of statistical solutions. We will do so in the specific context of scalar conservation
laws where we show existence of statistical solutions for a very large class of
initial probability measures. The harder issue of the uniqueness of statistical so-
lutions for scalar conservation laws is also addressed. To this end, we propose a
novel admissibility criterion that amounts to requiring stability of each admissible
statistical solution with respect to a specific set of stationary statistical solutions,
namely those probability measures supported on finite collections of constant func-
tions. Furthermore, we also show stability of the admissible statistical solution in
the Wasserstein metric, with respect to probability measure-valued initial data:
W1(μt , ρt ) � W1(μ̄, ρ̄). Thus, a complete characterization—existence, unique-
ness and stability—of statistical solutions for scalar conservation laws is provided.
The issues of the existence and stability of admissible statistical solutions for the
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general case of systems of conservation laws will be presented in forthcoming
papers in this series.

The rest of the paper is organized as follows. In Section 2 we prove the equiv-
alence between probability measures on L p spaces and hierarchies of Young mea-
sures on finite-dimensional spaces. Statistical solutions for systems of conservation
laws are defined inSection 3 and thewell-posedness of statistical solutions for scalar
conservation laws is presented in Section 4.

2. Probability Measures on Function Spaces

The aim of this section is to establish the equivalence between probability
measures on a function space, and families of measures describing the correlation
of the values of underlying functions at different spatial points. The function spaces
that we have in mind are L p(D,U ) for 1 � p < ∞ for some domain D ⊂ R

d and
U := R

N (we will think of D as physical space andU as phase space). For ease of
notation we will denote

F := L p(D,U ).

Henceforth, we equip F with its Borel σ -algebra B(F).
A short summary of the contents this section follows. Given a probability mea-

sure μ on F = L p(D,U ), we might be interested in local quantities such as the
mean or the variance at a fixed point x ∈ D:

mean at x =
∫
F
u(x) dμ(u), variance at x =

∫
F

(
u(x) − mean

)2 dμ(u),

or we might be interested in joint probability distributions at points x, y ∈ D:

probability that u(x) ∈ A and u(y) ∈ B =
∫
F
1A(u(x))1B(u(y)) dμ(u).

However, expressions such as the above might be difficult to define or work with
because point values u(x) of ameasurable function u are not well-defined. Thus, we
would like an equivalent representation of μ in terms of locally defined probability
distributions ν1x or ν2x,y ; the above quantities could then be written as

∫
U

ξ dν1x (ξ),

∫
U

(
ξ − ∫U ξ ′ dν1x (ξ

′)
)2

dν1x (ξ),

∫
U2

1A(ξ)1B(ζ ) dν2x,y(ξ, ζ ) = ν2x,y(A × B),

respectively. As we will see, we will require all joint distributions across finitely
many points in order to determineμ uniquely. This gives rise to an infinite hierarchy
ννν = (ν1, ν2, . . .) of maps νk from Dk into P(Uk), the set of probability measures
on Uk . Such a hierarchy is termed a correlation measure and each map νk a
correlation marginal. The complete definition of correlation measures is given in
Section 2.2.
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A similar construction is found in the Kolmogorov Extension Theorem (see e.g.
[46, Theorem 2.1.5]). However, this approach considers measures on the product
spaceUD equipped with the cylinder σ -algebra, instead of measures on L p(D,U )

equipped with its Borel σ -algebra. In the former case, questions such as “is u
continuous” or “is u Lebesgue integrable” are not measurable, thus disqualifying
its use in our context.

2.1. Preliminaries

We begin by recalling several definitions and results in functional analysis,
measure theory and optimal transport theory.

Notation 2.1. If ξ, ζ ∈ U then ξ · ζ denotes their Euclidean inner product. If D is
a Borel set then

Dk := D × · · · × D︸ ︷︷ ︸
k times

and if x = (x1, . . . , xk) ∈ Dk then we denote |x | = |x1| + · · · + |xk |.
We denote the dual space of F by F∗ = L p′

(D,U ) (where 1
p + 1

p′ = 1), and
the duality pairing between ϕ ∈ F∗ and u ∈ F by

〈
ϕ, u

〉 = ϕ(u) =
∫
D

ϕ(x) · u(x) dx .

For any normed space X , we letCb(X) denote the space of bounded, continuous,
real-valued functionals on X , equipped with the supremum norm ‖ f ‖Cb(X) =
supx∈X | f (x)|. We let Cc(X) be the set of f ∈ Cb(X) that have compact support,
and we let C0(X) be the completion of Cc(X) in the supremum norm.

The k-dimensional Lebesgue measure of a Borel set A ⊂ R
k is denoted |A|.

The average of a function f over a set A is denoted

−
∫
A
f (x) dx = 1

|A|
∫
A
f (x) dx .

The Borel σ -algebra on a Polish space X (i.e., a complete, separable metric
space) is denoted by B(X). We letM(X) denote the space of finite, signed Radon
measures on (X, B(X)), and for μ ∈ M(X) and f ∈ L1(X;μ) we write

〈
μ, f

〉 =∫
X f (x) dμ(x). The set P(X) of probability measures on X consist of those μ ∈

M(X) satisfying μ � 0 and μ(X) = 1. 
�

2.1.1. The Wasserstein Distance

Definition 2.2. Let X be a separable Banach space and let μ, ρ ∈ P(X) have finite
pth moments, i.e.

∫
X |x |pdμ(x) < ∞ and

∫
X |x |pdρ(x) < ∞. The p-Wasserstein

distance between μ and ρ is defined as

Wp(μ, ρ) = inf
π∈
(μ,ρ)

∫
X2

|x − y|p dπ(x, y), (2.1)
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where the infimum is taken over the set 
(μ, ρ) ⊂ P(X2) of all transport plans
from μ to ρ, i.e. those π ∈ P(X2) satisfying

∫
X2

F(x) + G(y) dπ(x, y) =
∫
X
F(x) dμ(x) +

∫
X
G(y) dρ(y)

∀ F,G ∈ Cb(X)

(see e.g. [45]). When p = 1 we can write

W1(μ, ρ) = sup
�∈Cb(X)
‖�‖Lip�1

∫
X

�(x) d(μ − ρ)(x), (2.2)

where the supremum is taken over all Lipschitz continuous functions with Lipschitz
constant at most 1. 
�

It is straightforward to show that there always exists an optimal transport plan
π , i.e, one for which the infimum in (2.1) is attained [45, Theorem 1.3]. The fact that
(2.1) and (2.2) coincide when p = 1 is a theorem in optimal transport theory often
called the Kantorovich–Rubinstein theorem [45, Theorem 1.14]. The Wasserstein
distance is a complete metric on the set of probability measures with finite pth
moment, and metrizes the topology of weak convergence on this set [1, Proposition
7.1.5].

2.1.2. Cylinder Sets and Functions

Definition 2.3. Let X be a normed vector space. A function� : X → R is a cylin-
der function if there exist functionals ϕ1, . . . , ϕn ∈ X∗ and a Borel measurable
function ψ : Rn → R such that

�(u) = ψ
(
ϕ1(u), . . . , ϕn(u)

) ∀ u ∈ X. (2.3)

A set E ⊂ X is a cylinder set if the indicator function u → 1E (u) is a cylinder
function, or equivalently, if E is of the form

E = {u ∈ X : (ϕ1(u), . . . , ϕn(u)
) ∈ F

}
(2.4)

for a Borel set F ⊂ R
n and ϕ1, . . . , ϕn ∈ X∗. We let Cyl(X) denote the collection

of cylinder sets in X . 
�
Proposition 2.4. Let X be a separable normed vector space. Then:

(i) The σ -algebra generated by Cyl(X) is equal to B(X);
(ii) If μ is a (signed) measure on (X,B(X)) such that μ(A) = 0 for all cylinder

sets A, then μ ≡ 0.

Proof. See the “Appendix”. 
�
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2.2. Correlation Measures

Definition 2.5. A correlation measure is a collection ννν = (ν1, ν2, . . .) of maps
νk : Dk → P(Uk) satisfying the following properties:

(i) Weak* measurability: Each map νk : Dk → P(Uk) is weak*-measurable, in
the sense that the map x → 〈

νkx , f
〉
from x ∈ Dk into R is Borel measurable

for all f ∈ C0(Uk) and k ∈ N. In other words, νk is a Young measure from
Dk to Uk ;

(ii) L p-boundedness: ννν is L p-bounded, in the sense that∫
D

〈
ν1x , |ξ |p〉 dx < +∞; (2.5)

(iii) Symmetry: If σ is a permutation of {1, . . . , k} and f ∈ C0(R
k) then〈

νkσ(x), f (σ (ξ))
〉 = 〈

νkx , f (ξ)
〉
for a.e. x ∈ Dk . Here, we denote σ(x) =

σ(x1, x2, . . . , xk) = (xσ1 , xσ2 , . . . , xσk ). σ(ξ) is denoted analogously;
(iv) Consistency: If f ∈ C0(Uk) is of the form f (ξ1, . . . , ξk) = g(ξ1, . . . , ξk−1)

for some g ∈ C0(Uk−1), then
〈
νkx1,...,xk , f

〉 = 〈νk−1
x1,...,xk−1

, g
〉
for almost every

(x1, . . . , xk) ∈ Dk ;
(v) Diagonal continuity (DC): If Br (x) := {y ∈ D : |x − y| < r

}
then

lim
r→0

∫
D

−
∫
Br (x)

〈
ν2x,y, |ξ1 − ξ2|p

〉
dy dx = 0. (2.6)

Each element νk is called a correlation marginal. We let Lp = Lp(D,U ) denote
the set of all correlation measures from D to U . 
�
Remark 2.6. (i) By combining the properties of symmetry and consistency, the

expected value with respect to νkx of a function depending on l < k parameters
ξi1 , . . . , ξil , can be written in terms of νlxi1 ,...,xil

. Thus, the kth correlation

marginal νk contains all information about lower-order correlation marginals,
but not vice-versa. Hence, the family ννν = (νk)k∈N constitutes a hierarchy.

(ii) Any functionu ∈ L p(D,U )gives rise to a correlationmarginalννν ∈ Lp(D,U )

by defining νkx = δu(x1) ⊗ · · · ⊗ δu(xk ). Correlation marginals of this form are
called atomic.

(iii) It can be shown that the DC property is equivalent to

lim
r→0

∫
D

−
∫
Br (x)

〈
ν2x,y, g(x, y, ξ1, ξ2)

〉
dy dx =

∫
D

〈
ν1x,x , g(x, x, ξ1, ξ1)

〉
dx

for every g ∈ L1
(
D2,C0(U 2)

)
. After possibly redefining ν2 on the zero-

measure set {(x, y) ∈ D2 : x = y}, this is equivalent to
ν2x,x = ν1x for a.e. x ∈ D.

In particular,
〈
ν2x,x , ξ1ξ2

〉 = 〈ν1x , ξ2
〉
, that is, the covariance between the value

at the point x with itself is just the variance at x . Similarly, it can be shown
that if ψ ∈ Cb(Uk+1) is Lipschitz continuous then〈

νk+1
x1,...,xk ,xk , ψ(ξ1, . . . , ξk+1)

〉 = 〈νkx1,...,xk , ψ(ξ1, . . . , ξk, ξk)
〉
.
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We emphasize that diagonal continuity is an additional consistency require-
ment which is independent from consistency condition (iv) of Definition 2.5.

(iv) As an example of a “correlation measure” which is not diagonally continu-
ous, let ν1 : D → P(U ) be any Young measure satisfying (2.5), and define
νkx1,...,xk := ν1x1 ⊗ · · · ⊗ ν1xk for every k ∈ N. Then ννν = (ν1, ν2, . . .) satisfies
properties (i)–(iv) of Definition 2.5, but is DC if and only if ν1 is atomic.
Indeed, by Jensen’s inequality,

〈
ν2x,x , ξ1ξ2

〉 = 〈ν1x ⊗ ν1x , ξ1ξ2
〉 = 〈ν1x , ξ

〉2 �
〈
ν1x , ξ2

〉

for a.e. x ∈ D, with equality if and only if ν1 is atomic.
(v) In the definition of diagonal continuity, it is enough to require that (2.6) holds

for a subsequence r j → 0. The uniqueness part of Theorem 2.7 implies that
(2.6) holds for any sequence r → 0. 
�

2.3. The Main Theorem of Correlation Measures

For any k ∈ N, denote the space of Carathéodory functions from Dk to Uk

as Hk(D,U ) := L1
(
Dk,C0(Uk)

)
, i.e. all measurable functions g : x → g(x) ∈

C0(Uk) such that

‖g‖Hk =
∫
Dk

∥∥g(x)∥∥C0(Uk )
dx < ∞.

We will routinely write g(x, ξ) instead of g(x)(ξ). The proof of the following
theorem, which is the main theorem of Section 2, will depend crucially onHk and
its dual space; see Section 2.4.

Main Theorem 2.7. For every correlation measure ννν ∈ Lp(D,U ) there exists a
unique probability measure μ ∈ P(F) satisfying

∫
F

‖u‖p
F dμ(u) < ∞ (2.7)

such that
∫
Dk

∫
Uk

g(x, ξ) dνkx (ξ)dx =
∫
F

∫
Dk

g(x, u(x)) dxdμ(u)

∀ g ∈ Hk(D,U ), ∀ k ∈ N (2.8)

(where u(x) denotes the vector (u(x1), . . . , u(xk))). Conversely, for every proba-
bility measure μ ∈ P(F) with finite moment (2.7), there exists a unique correlation
measure ννν ∈ Lp(D,U ) satisfying (2.8).

The relation (2.8) is also valid for any measurable g : D × U → R such that
|g(x, ξ)| � C |ξ |p for a.e. x ∈ D.
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For a g ∈ Hk(D,U ), define the functional Lg : F → R by

Lg(u) :=
∫
Dk

g(x, u(x)) dx . (2.9)

Denoting
〈
νk, g

〉 := ∫Dk

∫
Uk g(x, ξ) dνkx (ξ)dx , we can write (2.8) as

〈
νk, g

〉 = 〈μ, Lg
〉 ∀ g ∈ Hk(D,U ), ∀ k ∈ N. (2.8’)

To ensure that the terms appearing in (2.8’) (or equivalently (2.8)) are well-defined,
we need to check that νk is a continuous linear functional on Hk , and that Lg :
F → R is Borel measurable for every g ∈ Hk . This is done in Lemmas 2.9 and
2.10, respectively.

Remark 2.8. The finite moment requirement (2.7) is the direct analogue of the L p

bound (2.5). Indeed,
∫
F

‖u‖p
F dμ(u) =

∫
F

∫
D

|u(x)|p dxdμ(u) =
∫
D

∫
U

|ξ |p dν1x (ξ)dx .


�

2.4. The Spaces Hk and Hk∗

We letHk∗(D,U ) := L∞
w (Dk,M(Uk)) denote the space of weak* measurable

maps νk : x → νkx ∈ M(Uk) such that

‖νk‖Hk∗ = ess sup
x∈Dk

‖νkx‖M(Uk ) < ∞.

(Recall that νk is weak* measurable if the map x → 〈
νkx , f

〉
from Dk to R is mea-

surable for all f ∈ C0(Uk).) Note that if ννν = (ν1, ν2, . . .) is a correlation measure
then each correlation marginal νk is an element of Hk∗, because ‖νk‖Hk∗ = 1.

The following result justifies the notation Hk∗.

Lemma 2.9. For any k ∈ N, the space Hk∗(D,U ) is isometrically isomorphic to
the dual of Hk(D,U ) through the pairing

〈
νk, g

〉 =
∫
Dk

〈
νkx , g(x, ·)

〉
dx, g ∈ Hk(D,U ), νk ∈ Hk∗(D,U ).

Proof. See e.g. [22, Theorem 8.18.2] or [2, p. 211]. 
�
The next lemma is the key to the duality between correlation measures and

probability measures on F.

Lemma 2.10. For any g ∈ Hk(D,U ), the map Lg : F → R defined by (2.9) is
uniformly continuous and satisfies

‖Lg‖Cb(F) � ‖g‖Hk . (2.10)
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Proof. Since g ∈ Hk(D,U ) = L1(Dk,C0(Uk)), there are simple functions
ḡn(x) = ∑n

i=1 1An,i (x) f̄n,i for functions f̄n,i ∈ C0(Uk) and sets An,i ⊂ Dk

with positive and bounded Lebesgue measure, such that ḡn → g inHk . Let fn,i be
functions inC0(Uk)∩Lip(Uk) such that ‖ f̄n,i− fn,i‖C0(Uk) � 1

|An,i |n2 (constructed,
for instance, by mollification of f̄n,i ), and define gn(x) := ∑n

i=1 1An,i (x) fn,i . If
u, v ∈ F then

∣∣Lgn (u) − Lgn (v)
∣∣ �

n∑
i=1

∫
An,i

∣∣ fn,i (u(x)) − fn,i (v(x))
∣∣ dx

�
n∑

i=1

∫
An,i

‖ fn,i‖Lip(Uk)

(|u(x1) − v(x1)| + · · · + |u(xk) − v(xk)|
)
dx

� Cn‖u − v‖F
by Hölder’s inequality, where Cn > 0 depends on |An,i | and ‖ fn,i‖Lip(Uk ) for
i = 1, . . . , n. Thus, Lgn is Lipschitz continuous. Moreover,

|Lg(u) − Lgn (u)| �
∫
Dk

|g(x, u(x)) − gn(x, u(x))| dx

�
∫
Dk

‖(g − gn)(x)‖C0(Uk ) dx

= ‖g − gn‖Hk � ‖g − ḡn‖Hk + 1

n
→ 0 as n → ∞,

and so Lgn → Lg uniformly on F. Since every uniform limit of Lipschitz contin-
uous functions is uniformly continuous, we conclude that Lg is uniformly contin-
uous. Finally,

|Lg(u)| �
∫
Dk

|g(x, u(x))| dx �
∫
Dk

‖g(x)‖C0(Uk ) dx = ‖g‖Hk ∀ u ∈ F,

which proves (2.10). 
�

2.5. Existence and Uniqueness of ν

Proposition 2.11. Let μ ∈ P(F) satisfy (2.7). Then (2.8) uniquely defines a corre-
lation measure ννν ∈ Lp.

Proof. Wedefine each correlationmarginal νk as an element ofHk∗(D,U ) through
duality, and then show that it has the required properties. The relation (2.8) uniquely
defines νk as a linear functional on Hk(D,U ) which is continuous since

|〈νk, g〉| �
∫
F

∫
Dk

|g(x, u(x))| dxdμ(u) �
∫
Dk

‖g(x)‖C0(Uk ) dx = ‖g‖Hk .

Thus, νk is an element of the dual ofHk(D,U ), which by Lemma 2.9 isHk∗(D,U )

:= L∞
w (Dk,M(Uk)). Hence, we can view νk as a weak* measurable map from

x ∈ Dk to νkx ∈ M(Uk).
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We show next that νkx ∈ P(Uk) for Lebesgue-a.e. x ∈ Dk . For every 0 � f ∈
C0(Uk) and for every bounded Borel measurable A ⊂ Dk we have

〈
νk, 1A f

〉 =
∫
A

〈
νkx , f

〉
dx =

∫
F

∫
A
f (u(x1), . . . , u(xk)) dxdμ(u).

But the right-hand side always lies between 0 and |A| · ‖ f ‖C0 . It follows from
the arbitrariness of A that 0 �

〈
νkx , f

〉
� ‖ f ‖C0 for Lebesgue-a.e. x ∈ Dk . In

particular, letting f (ξ) ≡ 1, we find that ‖νkx‖M = 1 for a.e. x ∈ D, which proves
the claim.

Next, we show that ννν = (ν1, ν2, . . .) satisfies properties (ii)–(iv) of correlation
measures (cf. Definition 2.5). The properties of symmetry and consistency follow
directly from (2.8), so it remains to show L p-boundedness. By truncating the func-
tion g : D ×U → R defined by g(x, ξ) = |ξ1|p and applying Fatou’s lemma and
the dominated convergence theorem, we get that

∫
D

〈
ν1x , |ξ |p〉 dx = 〈ν1, |ξ |p〉 =

∫
F

∫
D

|u(x)|p dxdμ(u)

=
∫
F

‖u‖p
F dμ(u) < +∞.

This proves (2.5).
Finally, we show that ννν is diagonally continuous (cf. Definition 2.5 (v)). Indeed,

lim
r→0

∫
D

−
∫
Br (x)

〈
ν2x,y, |ξ1 − ξ2|p

〉
dy dx = lim

r→0

∫
F

∫
D

−
∫
Br (x)

|u(x) − u(y)|p dy dx dμ(u)

=
∫
F

∫
D

|u(x) − u(x)|p dx dμ(u)

= 0,

and the second equality following from Lebesgue’s differentiation theorem [33,
§2.1.10] and the dominated convergence theorem. This completes the proof of
existence of the correlation measure ννν. We emphasize that uniqueness of νk follows
directly from the explicit definition (2.8) of νk . 
�

2.6. Uniqueness of μ

Let now ννν ∈ Lp(D,U ) be a given correlation measure. We begin by proving
that there exists at most one probability measure μ corresponding to ννν.

Proposition 2.12. If μ, μ̃ ∈ P(F) both satisfy (2.7) and (2.8), then μ = μ̃.

Proof. By assumption we have
∫
F

∫
Dk

g(x, u(x)) dxdμ(u) =
∫
F

∫
Dk

g(x, u(x)) dxdμ̃(u)

∀ g ∈ Hk(D,U ) ∀ k ∈ N.
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Fix a number L > 0. By the dominated convergence theorem, Hölder’s inequality
and the L p-bound (2.7), this same equality holds for g of the form

g(x, ξ) = ϕ1(x1) · · · ϕk(xk)θL(x1, ξ1) · · · θL(xk, ξk),

θL(x, ξ) =

⎧⎪⎨
⎪⎩

ξ if |ξ | � L and |x | � L
ξ
|ξ | L if |ξ | > L and |x | � L

0 if |x | > L ,

where ϕ1, . . . , ϕk ∈ F∗. Denoting θL(u) = θL(·, u(·)) for the sake of simplicity,
we can write (2.8) with the above test function g as

∫
F

〈ϕ1, θL(u)〉 · · · 〈ϕk, θL(u)〉dμ(u) =
∫
F

〈ϕ1, θL(u)〉 · · · 〈ϕk, θL(u)〉dμ̃(u).

By repeating indices (i.e. choosing some of the ϕi ’s to be identical) and expanding
integrals over the spatial domain, one can show that the above identity implies

∫
F

〈ϕ1, θL(u)〉α1 · · · 〈ϕk, θL(u)〉αkdμ(u)

=
∫
F

〈ϕ1, θL(u)〉α1 · · · 〈ϕk, θL(u)〉αkdμ̃(u) (2.11)

for arbitrary α1, . . . , αk ∈ N0.
Define now

ϕ : L p(D) → R
k, ϕ(u) :=

(〈
ϕ1, u

〉
, . . . ,

〈
ϕk, u

〉)

and the truncation

ϕL : L p(D) → R
k, ϕL(u) :=

(〈
ϕ1, θL(u)

〉
, . . . ,

〈
ϕk, θL(u)

〉)
.

Since |〈ϕi , θL(u)
〉| � md/p

d L1+d/p‖ϕi‖F∗ for i = 1, . . . , k and with md denoting
the volume of the unit ball in Rd , the map ϕL takes values only in the compact set
KL := [−cL1+d/p, cL1+d/p

]k ⊂ R
k ,where c = md/p

d max
(‖ϕ1‖F∗ , . . . , ‖ϕk‖F∗

)
.

Let ψ ∈ C1
c (R

k). Then the restriction of ψ to KL can be approximated uni-
formly on KL by a sequence of polynomials

(
Pn
)∞
n=1. It follows that

Pn
(
ϕL(u)

)→ ψ
(
ϕL(u)

)
as n → ∞

uniformly in u. On the other hand, Eq. (2.11) implies that for each polynomial Pn ,
we have

∫
F
Pn
(
ϕL(u)

)
dμ(u) =

∫
F
Pn
(
ϕL(u)

)
dμ̃(u).
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From uniform convergence, we conclude that

∫
F

ψ
(
ϕL(u)

)
dμ(u) =

∫
F

ψ
(
ϕL(u)

)
dμ̃(u)

for any ψ ∈ C1
c (R

k).
Define now �L , � : F → R by

�L(u) := ψ
(
ϕL(u)

)
, �(u) := ψ

(
ϕ(u)

)
.

Clearly, |�L(u)|, |�(u)| � ‖ψ‖Cb(R
k) and limL→∞ �L(u) = �(u) for every

u ∈ F, so by the dominated convergence theorem,

∫
F

�(u)dμ(u) =
∫
F

�(u)dμ̃(u)

for any cylinder function �(u) = ψ
(〈
ϕ1, u

〉
, . . . ,

〈
ϕk, u

〉)
with ψ ∈ C1

c (R
k).

Given an open set A ⊂ R
k , we can find a sequence ψn ∈ C1

c (R
k) such that

0 � ψn � ψn+1 � 1A for all n ∈ N, and ψn converges pointwise to the indicator
function 1A. Again, by dominated convergence, we conclude that

∫
F
1A
(〈
ϕ1, u

〉
, . . . ,

〈
ϕk, u

〉)
dμ(u) =

∫
F
1A
(〈
ϕ1, u

〉
, . . . ,

〈
ϕk, u

〉)
dμ̃(u).

By a standard argument, this equality also holds for any Borel measurable set
A ⊂ R

k . This means that μ and μ̃ agree on cylinder sets, so by Proposition 2.4,
they must coincide. 
�

2.7. Existence of μ for Bounded D

To prove the existence of a probability measure μ corresponding to a given
correlation measure ννν, we proceed in two steps, first proving the statement for
bounded domains D ⊂ R

d , and then extending the result to arbitrary D ⊂ R
d .

We assume first that D is bounded. Our construction will consist of a piecewise
constant approximation over successively finer partitions of D.

Definition 2.13. A collectionA = {A1, . . . , AN } of subsets of D is a partition of
D if

N⋃
i=1

Ai = D, Ai ∩ A j = ∅ and
∣∣ Āi ∩ Ā j

∣∣ = 0 for all i �= j

(where Āi denotes the closure of Ai ). Another partition A′ = {
A′

1, . . . , A′
M
}
is

a refinement ofA if for every j = 1, . . . , M , there is an i ∈ {1, . . . , N } such that
A′

j ⊂ Ai . 
�
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Given a partition A = {A1, . . . , AN } of D and a correlation measure ννν ∈
Lp(D,U ), define the probability measure ρA ∈ P(UN ) by

〈
ρA, ψ

〉 = −
∫
A1×···×AN

〈
νN
x , ψ

〉
dx, ψ ∈ C0(U

N ).

This is clearly a nonnegative, continuous linear functional on C0(UN ) with norm

‖ρA‖M(UN ) = sup
ψ∈C0

〈
ρA, ψ

〉
‖ψ‖C0

= 1, and hence is a well-defined element of P(UN ).

Next, define μA ∈ P(F) by

〈
μA, �

〉 = 〈ρA, �
(∑N

i=1 ξi1Ai

)〉
.

μA is the pushforward of ρA by the continuous function from UN to F which
maps ξ → ∑N

i=1 ξi1Ai ∈ F. Hence, μA is a well-defined element of P(F). Fi-
nally, let νννA ∈ Lp(D,U ) be the unique correlation measure corresponding to μA,
as constructed in Proposition 2.11. It is clear that μA is the probability measure
corresponding to νννA, in the sense of Theorem 2.7, and that it is unique, by Propo-
sition 2.12. Note that νννA and μA are piecewise constant, in the sense that each
correlation marginal νkA,x is constant on sets of the form x ∈ Ai1 × · · · × Aik , and

μA is concentrated on functions u : D → U of the form u(x) =∑N
i=1 ξi1Ai (x).

Definition 2.14. The correlation measure νννA ∈ Lp(D,U ) defined above is called
the projection of ννν onto A. 
�

It is not difficult to see that νννA can be equivalently defined as

〈
νkA,x , ψ

〉 := ∑
α∈[N ]k

1Aα (x) −
∫
A1×···×AN

〈
νN
y , ψ(ξα)

〉
dy,

∀ x ∈ Dk, ∀ k ∈ N. (2.12)

(Here, [N ] = {1, . . . , N }, Aα = Aα1 × · · · × Aαk and ξα = (ξα1, . . . , ξαk ).)
Given two partitions A and A′ of D, where A′ is a refinement of A, the

following lemma establishes an estimate for the distance between μA and μA′ .

Lemma 2.15. Let ννν ∈ Lp(D,U ) be given. LetA andA′ be partitions of D, where
A′ is a refinement of A, and let c, h > 0 be such that

|Ai | � chd , diam(Ai ) � h ∀ Ai ∈ A. (2.13)

Let μA, μA′ ∈ P(F) be the probability measures corresponding to the projections
of ννν onto A and A′, respectively. Then

W1
(
μA, μA′

)
� C

(∫
D

−
∫
Bh(y)

〈
ν2x,y, |ξ1 − ξ2|p

〉
dx dy

)1/p

,

where Bh(y) := {x ∈ D : |x − y| < h} and C > 0 only depends on c, p and d
(the dimension of D).
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Proof. Let � : F → R be a Lipschitz function with ‖�‖Lip = 1. Denote

A = {A1, . . . , AN
}
, A′ = {A′

1, . . . , A
′
M
}
.

By definition,

∫
F

�(u) d
(
μA − μA′

) = −
∫
A1×···×AN

〈
νN
x , �

(∑N
i=1ξi1Ai

)〉
dx

− −
∫
A′

1×···×A′
M

〈
νM
y , �

(∑M
j=1ζ j1A′

j

)〉
dy

= −
∫
A1×···×AN

〈
νN
x , �

(∑M
j=1ξi( j)1Ai( j)

)〉
dx

− −
∫
A′

1×···×A′
M

〈
νM
y , �

(∑M
j=1ζ j1A′

j

)〉
dy,

where for any j ∈ {1, . . . , M}, the index i( j) is the unique integer in {1, . . . , N },
such that A′

j ⊂ Ai( j), and ξ and ζ are the integration variables with respect to νN
x

and νM
x , respectively. Denote

A = A1 × · · · × AN , A′ = A′
1 × · · · × A′

M .

Then we can write

∫
F

�(u) d
(
μA − μA′

) = −
∫
A

〈
νN
x , �

(∑M
j=1ξi( j)1A′

j

)〉
dx

− −
∫
A′

〈
νM
y , �

(∑M
j=1ζ j1A′

j

)〉
dy

(consistency of ννν) = −
∫
A′

−
∫
A

〈
νN+M
x,y , �

(∑M
j=1ξi( j)1A′

j

)

− �
(∑M

j=1ζ j1A′
j

)〉
dx dy

(Lipschitz continuity) � −
∫
A′

−
∫
A

〈
νN+M
x,y ,

∥∥∥∑M
j=1ξi( j)1A′

j

− ∑M
j=1ζ j1A′

j

∥∥∥
F

〉
dx dy

= −
∫
A′

−
∫
A

〈
νN+M
x,y ,

(∑M
j=1|A′

j ||ξi( j) − ζ j |p
)1/p〉

dx dy

(Jensen’s inequality) � −
∫
A′

−
∫
A

⎛
⎝ M∑

j=1

|A′
j |
〈
νN+M
x,y , |ξi( j) − ζ j |p

〉
⎞
⎠

1/p

dx dy

(Jensen’s inequality) �

⎛
⎝−
∫
A′

−
∫
A

M∑
j=1

|A′
j |
〈
νN+M
x,y , |ξi( j) − ζ j |p

〉
dx dy

⎞
⎠

1/p
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(consistency of ννν) =
⎛
⎝ M∑

j=1

|A′
j | −
∫
A′

−
∫
A

〈
ν2xi( j),y j , |ξ − ζ |p〉 dx dy

⎞
⎠

1/p

=
⎛
⎝ M∑

j=1

|A′
j | −
∫
A′

j

−
∫
Ai( j)

〈
ν2xi( j),y j , |ξ−ζ |p〉 dxi( j) dy j

⎞
⎠

1/p

.

Renaming variables xi( j) → x and y j → y in this summation, we obtain the
estimate

∫
F

�(u) d
(
μA − μA′

)
�

⎛
⎝ M∑

j=1

∫
A′

j

−
∫
Ai( j)

〈
ν2x,y, |ξ − ζ |p〉 dx dy

⎞
⎠

1/p

,

valid for any 1-Lipschitz continuous � : F → R. Using (2.13) we get the estimate

∫
F

�(u) d
(
μA − μA′

)
�

⎛
⎝ M∑

j=1

1

|Ai( j)|
∫
A′

j

∫
Ai( j)

〈
ν2x,y, |ξ − ζ |p〉 dx dy

⎞
⎠

1/p

�

⎛
⎝ M∑

j=1

|Bh(y)|
chd

∫
A′

j

−
∫
Bh(y)

〈
ν2x,y, |ξ − ζ |p〉 dx dy

⎞
⎠

1/p

�
(
C
∫
D

−
∫
Bh(y)

〈
ν2x,y, |ξ − ζ |p〉 dx dy

)1/p

where C is given by the ratio of c to the unit ball in Rd . Taking the supremum over
all � with ‖�‖Lip � 1 on the left hand side and using the Kantorovich–Rubinstein
definition (2.2) of W1 yields the desired estimate. 
�

With this bound in place we can complete the proof of existence of μ.

Theorem 2.16. Foranyννν ∈ Lp(D,U ) there exists a probabilitymeasureμ ∈ P(F)

satisfying (2.7) and (2.8).

Proof. Let (Am)m∈N be a sequence of partitions of D such that

– Am+1 is a refinement of Am ,
– there exists a constant c > 0 and a sequence hm → 0, such that

|A| � chdm, diam(A) � hm ∀ A ∈ Am, ∀ m ∈ N.

We show first that the sequence of probability measures μAm ∈ P(F) converges
weakly to some μ ∈ P(F) satisfying (2.7). By Lemma 2.15, we have for any
m′ > m

W1
(
μAm , μAm′

)
� C

(∫
D

−
∫
Bhm (x)

〈
ν2x,y, |ξ − ζ |p〉 dy dx

)1/p

,
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where C > 0 does not depend on m. By the DC property (2.6), the right-hand
side vanishes as m → ∞. It follows that limm,m′→∞ W1

(
μAm , μAm′

) = 0, so the
sequence μAm is Cauchy in the W1 metric. Since the W1 metric turns P(F) into
a complete metric space (see [1, Proposition 7.1.5]), we conclude that μAm ⇀ μ

for some μ ∈ P(F). Moreover, from the fact that ννν satisfies (2.5), it follows that μ
satisfies (2.7).

We show next that the limit μ satisfies (2.8). Fix some m ∈ N and denote
A = Am = {A1, . . . , AN }. If x ∈ Dk then there is a unique index α ∈ [N ]k such
that x ∈ Aα := Aα1 × · · · × Aαk . If x is on the off-diagonal, i.e. αi �= α j for all
i �= j , then it follows from consistency that

〈
νkA,x , ψ

〉 = ∑
α∈[N ]k

1Aα (x) −
∫
Aα

〈
νky , ψ

〉
dy

(compare with (2.12)). Hence, Lebesgue’s differentiation theorem implies that〈
νkAm ,x , ψ

〉 → 〈
νkx , ψ

〉
as m → 0 for almost every point x ∈ Dk on the off-

diagonal
{
x ∈ Dk : xi �= x j for all i �= j

}
. But since the diagonal

{
x ∈ Dk : xi =

x j for some i �= j
}
has Lebesgue measure zero, we can conclude that

w*-lim
m→∞ νkAm

= νk inHk∗(D,U ) ∀ k ∈ N,

or in other words,

lim
m→∞

〈
νkAm

, g
〉 = 〈νk, g〉 ∀ g ∈ Hk(D,U ) ∀ k ∈ N. (2.14)

We know that μAm ⇀ μ in P(F), that is,

lim
m→∞

∫
F

�(u) dμAm (u) =
∫
F

�(u) dμ(u) ∀ � ∈ Cb(F). (2.15)

By Lemma 2.10, the functionals Lg lie in Cb(F), so the above holds for � = Lg

for any g ∈ Hk(D,U ). Thus, for any k ∈ N and g ∈ Hk(D,U ), we have〈
μ, Lg

〉 = lim
m→∞

〈
μAm , Lg

〉 = lim
m→∞

〈
νkAm

, g
〉 = 〈νk, g〉,

which is (2.8). 
�

2.8. Existence of μ for Unbounded D

The next step is to prove existence of a probability measure μ for a given
correlation measure ννν on an arbitrary domain D. To this end, we first construct μ

on a bounded set E ⊂ D, and then pass to the limit E ↑ D.

Lemma 2.17. Let E ⊂ D. Let r denote the restriction map

r : L p(D,U ) → L p(E,U ), r(u) = u
∣∣
E .

If μ ∈ P
(
L p(D,U )

)
has correlation measure ννν, then r#μ ∈ P

(
L p(E,U )

)
has

correlation measure

ννν
∣∣
E :=

(
ν1
∣∣
E , ν2

∣∣
E2 , ν3

∣∣
E3 , . . .

)
.
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Proof. Let g ∈ L1(Ek,C0(Uk)). Then the function x → 1E (x)g(x, ·) lies in
Hk(D,U ) = L1(Dk,C0(Uk)). Hence,
∫
L p(E,U )

∫
Ek

g(x, u(x)) dx d(r#μ)(u)=
∫
L p(D,U )

∫
Ek

g(x, u|E (x)) dx dμ(u)

=
∫
L p(D,U )

∫
Dk

1Ek (x)g(x, u(x)) dx dμ(u)

=
∫
Dk

〈
νkx , 1Ek (x)g(x, ·)〉 dx

=
∫
Ek

〈(
νk
∣∣
Ek

)
x , g(x, ·)

〉
dx .

Thus, ννν|E is the correlation measure associated with r#μ. 
�
Let now ννν ∈ Lp(D,U ) for an arbitrary measurable set D ⊂ R

d . Given L > 0,
let DL := D∩ (−L , L)d . Let μ̃L ∈ P(L p(DL ,U )) be the unique probability mea-
sure associated with the restriction ννν|DL of ννν to DL , as constructed in Section 2.7.
Furthermore, let μL ∈ P(L p(D,U )) be the image of μ̃L under the inclusion map
obtained via extension by 0:

iL : L p(DL ,U ) → L p(D,U ), iL(u) = u1DL .

By Lemma 2.17, we expect the sequence (μ̃L)L>0 to be related to the restriction of
a probability measure μ with correlation measure ννν. In particular, we would then
expect the sequence μL to converge to a probability measure μ as L → ∞. The
following theorem shows that this is indeed the case.

Theorem 2.18. The sequence μL converges weakly as L → ∞ to some μ ∈ P(F)

satisfying (2.7) and (2.8).

Proof. Let � ∈ Cb(F) be an arbitrary 1-Lipschitz function. Let M < L , L ′. Then
∫
F

�(u) d
(
μL − μL ′

) =
∫
F

�(u) − �(1DMu) dμL

+
∫
F

�(1DMu) d
(
μL − μL ′

)

+
∫
F

�(1DMu) − �(u) dμL ′

The second term is zero as a consequence of Lemma 2.17. For the first and third
terms, we have the estimate

∣∣∣∣
∫
F

�(u) − �(1DMu) dμL

∣∣∣∣ �
∫
F

‖u − 1DMu‖L p dμL

�
(∫

F
‖1Dc

M
u‖p

L p dμL

)1/p
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=
(∫

DL∩Dc
M

〈ν1x , |ξ |p〉 dx
)1/p

�
(∫

D\DM

〈ν1x , |ξ |p〉 dx
)1/p

.

It follows that
∫
F

�(u) d
(
μL − μL ′

)
� 2

(∫
D\DM

〈ν1x , |ξ |p〉 dx
)1/p

.

Taking the supremum over all 1-Lipschitz � ∈ Cb(F) on the left, we obtain

W1(μL , μL ′) � 2

(∫
D\DM

〈ν1x , |ξ |p〉 dx
)1/p

.

By assumption,
∫
D〈ν1x , |ξ |p〉 dx is finite, so

∫
D\DM

〈ν1x , |ξ |p〉 dx goes to zero as
M → ∞. We conclude that W1(μL , μL ′) → 0 as L , L ′ → ∞. By complete-
ness under the 1-Wasserstein distance, the sequence μL converges to a limit μ =
w-limL→∞ μL .

We claim that the limit μ has correlation measure ννν, in the sense of Theorem

2.7. Indeed, we have νk
∣∣
DL

∗
⇀ νk , μL ⇀ μ and

〈
νk
∣∣
DL

, g
〉 = 〈

μL , Lg
〉
for all

g ∈ Hk(D,U ) and k ∈ N. It follows that
〈
νk, g

〉 = 〈μ, Lg
〉
. 
�

2.9. Moments

We have now established the equivalence between probability measures μ ∈
P(F) satisfying

∫
F

‖u‖p
Fdμ < ∞, (2.16)

and so-called correlation measures ννν ∈ Lp(D,U ). In this section we introduce
a third representation, that of moments. The moments of a correlation measure
ννν ∈ Lp(D,U ) are the functions

mk : Dk → U⊗k, mk(x) :=
∫
Uk

ξ1 ⊗ · · · ⊗ ξk dνkx (ξ), k ∈ N. (2.17)

Here, U⊗k refers to the tensor product space U ⊗ · · · ⊗U (repeated k times), and
ξ1 ⊗· · ·⊗ ξk is a functional defined by its action on the dual space

(
U⊗k

)∗ = U⊗k

through
(
ξ1 ⊗ · · · ⊗ ξk

) : (ζ1 ⊗ · · · ⊗ ζk
) = (ξ1 · ζ1) · · · (ξk · ζk).

In the case U = R, the moments can be written more simply as

mk : Dk → R, mk(x) =
∫
Rk

ξ1 · · · ξk dνkx (ξ), k ∈ N.
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In either case, we will assume that

∫
Dk

∫
Uk

|ξ1|p · · · |ξk |p dνkx (ξ)dx < ∞ ∀ k ∈ N, (2.18)

or equivalently, ∫
F

‖u‖pk
F dμ(u) < ∞ ∀ k ∈ N (2.18’)

(compare with (2.16)). This ensures that mk is a well-defined element of L p(Dk,

U⊗k).
The following result uniquely characterizes a correlation measure in terms of

the family of moments (mk)k∈N. This result will be essential to the contents of the
following sections.

Theorem 2.19. Letννν ∈ Lp(D,U ) satisfy (2.18). Then themoments (2.17) uniquely
identify ννν, in the sense that if another correlation measure ν̃νν has the same moments
(mk)k∈N, then ννν = ν̃νν.

Proof. Denote by μ, μ̃ ∈ P(F) the corresponding probability measures. Recall
that the characteristic functional of μ is the functional μ̂ : F∗ → R,

μ̂(ϕ) :=
∫
F
eiϕ(u) dμ(u), ϕ ∈ F∗,

and that μ and μ̃ coincide if and only if μ̂ = ˆ̃μ (see [14, Chapter 2.1]). Using
(2.18’) we can interchange integration and summation in the following and obtain

μ̂(ϕ)=
∫
F
1 +

∞∑
k=1

i k

k!ϕ(u)k dμ(u) = 1 +
∞∑
k=1

i k

k!
∫
F

(∫
D

ϕ(x) · u(x) dx

)k

dμ(u)

=1 +
∞∑
k=1

i k

k!
∫
F

∫
Dk

(
ϕ(x1) · u(x1)

) · · · (ϕ(xk) · u(xk)
)
dxdμ(u)

=1+
∞∑
k=1

i k

k!
∫
F

∫
Dk

(
u(x1) ⊗ · · · ⊗ u(xk)

) : (ϕ(x1) ⊗ · · · ⊗ ϕ(xk)
)
dxdμ(u)

=1 +
∞∑
k=1

i k

k!
∫
Dk

∫
Uk

(
ξ1 ⊗ · · · ⊗ ξk

) : (ϕ(x1) ⊗ · · · ⊗ ϕ(xk)
)
dνkxdx

=1 +
∞∑
k=1

i k

k!
∫
Dk

mk(x) : (ϕ(x1) ⊗ · · · ⊗ ϕ(xk)
)
dx .

Since the moments mk and m̃k of ννν and ν̃νν coincide, we conclude that μ = μ̃. 
�
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2.10. Gaussian Measures

As an example of the equivalence of probability measures on function spaces
and correlation measures, we present here a (somewhat formal) computation which
characterizes the correlation measure forGaussian measures, a class of probability
measures that is of great interest in stochastic analysis [14]. Although some of the
following computations are quite standard in the literature on stochastic analysis,
we include the details here for the sake of completeness.

We recall that a probability measure ρ ∈ P(R) isGaussian if there is a number

σ > 0 such that
〈
ρ, f

〉 = 1√
2πσ 2

∫
R
f (z)e− z2

2σ2 dz for any f ∈ C0(R). (We will
assume here that all measures have mean zero, since the more general case of a
nonzero mean can be easily obtained by translation.) Given a Banach space X , we
say that a probability measure μ ∈ P(X) is Gaussian if ϕ#μ ∈ P(R) is Gaussian
for every nonzero ϕ ∈ X∗, that is, if for every 0 �= ϕ ∈ X∗ there is a number
σ = σ(ϕ) > 0 such that

∫
X
f (ϕ(u)) dμ(u) = 1√

2πσ 2

∫
R

f (z) exp

(
− z2

2σ 2

)
dz ∀ f ∈ C0(R).

We easily find that the variance σ(ϕ)2 is given explicitly by

σ(ϕ)2 = Var(ϕ#μ) =
∫
R

y2 d(ϕ#μ)(y) =
∫
X

ϕ(u)2 dμ(u) = 〈μ, ϕ2〉.

Choose now the Banach space X = F = L p(D). For any k ∈ N and 0 �= ϕ ∈
F∗, the expected value of the function R � z → zk with respect to ϕ#μ is

1√
2πσ(ϕ)2

∫
R

zk exp

(
− z2

2σ(ϕ)2

)
dz = 〈μ, ϕk 〉

=
∫
F

∫
Dk

ϕ(x1)u(x1) · · · ϕ(xk)u(xk)

dxdμ(u)

=
∫
Dk

∫
Rk

ξ1 · · · ξkϕ(x1) · · · ϕ(xk)

dνkx (ξ)dx

=
∫
Dk

mk(x)ϕ(x1) · · · ϕ(xk) dx,

where mk(x) := ∫
Rk ξ1 · · · ξk dνkx (ξ) denotes the k-th moment of ννν. On the other

hand, it is well-known that the k-th moment E[zk] of a Gaussian distribution with
zero mean is 0 when k is odd, and (k − 1)!!σ k when k is even, where (k − 1)!!
denotes the double factorial (k − 1)!! = (k − 1)(k − 3) · · · 1 = k!

(k/2)!2k/2 . Using the
fact that mk(x1, . . . , xk) is symmetric in all arguments, we find that mk ≡ 0 when
k is odd. When k is even, i.e. k = 2l for some l ∈ N, we get
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∫
D2l

m2l(x)ϕ(x1) · · · ϕ(x2l) dx = (2l)!
l!2l

(
σ(ϕ)2

)l

= (2l)!
l!2l

(∫
D2

m2(x)ϕ(x1)ϕ(x2) dx

)l

= (2l)!
l!2l

∫
D2l

m2(x1, x2) · · ·
m2(x2l−1, x2l)ϕ(x1) · · · ϕ(x2l) dx .

The above implies that the first integrand must be given by the symmetric part of
the last integrand, i.e.

m2l(x) = Sym

(
(2l)!
l!2l m

2 ⊗ · · · ⊗ m2
)

(x)

= 1

l!2l
∑
s∈S2l

m2(xs(1), xs(2)) · · ·m2(xs(2l−1), xs(2l)
)
,

where Sk is the symmetric group on k symbols, consisting of all permutations of
{1, 2, . . . , k} (see e.g. [13]). Thus, all the moments—and thus all of μ (or, equiva-
lently,ννν)—is completely specified in terms of the secondmomentm2. (This general
rule is known as Isserlis’ theorem [37]; see also [30, p. 44].)

Finally, observe that

〈
ν1x , ξn1

〉 = mn(x, . . . , x) =
{
0 if n is odd,

(n − 1)!!m2(x, x)n/2 if n is even

(cf. Remark 2.6 (iii)). Thus, for any x ∈ D, the probability measure ν1x is a Gaussian
distribution with mean 0 and variance m2(x, x). More generally, for arbitrary k we
find that νkx1,...,xk is a multivariate Gaussian distribution with mean (0, . . . , 0) and
covariance m2(xi , x j ). Thus, any positive definite function m2 : D2 → R (see e.g.
[42, Chapter 4]) gives rise to a unique Gaussian measure μ ∈ P(L p(D)), and vice
versa. For instance, Brownian motion is obtained by letting m2(t, s) = min(t, s)
for t, s � 0.

3. Statistical Solutions

Equippedwith the equivalencebetweenprobabilitymeasures on function spaces
and correlation measures, we proceed in this section to define the concept of sta-
tistical solutions of multi-dimensional systems of conservation laws.

3.1. Motivation and Definition

To motivate the equations governing the time-evolution of statistical solutions,
we consider a scalar, one-dimensional conservation law

∂t u + ∂x f (u) = 0.
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This equation dictates the evolution of the quantityu(x, t)over time. For x1, x2 ∈ R,
consider the product u(x1, t)u(x2, t). Assuming for the moment that u is differen-
tiable, we obtain

∂t
[
u(x1, t)u(x2, t)

] = (∂t u(x1, t)
)
u(x2, t) + u(x1, t)

(
∂t u(x2, t)

)
= −∂x1 f (u(x1, t))u(x2, t) − ∂x2u(x1, t) f (u(x2, t)),

and for arbitrary k ∈ N,

∂t
[
u(x1, t) · · · u(xk, t)

]+
k∑

i=1

∂xi

[
u(x1, t) · · · f (u(xi , t)) · · · u(xk, t)

]
= 0.

(3.1)

Since the above equation is in divergence form, it can be interpreted in the sense of
distributions as∫

R+

∫
Rk

∂tϕ(x, t) u(x1, t) · · · u(xk, t)

+
k∑

i=1

∂xi ϕ(x, t) u(x1, t) · · · f (u(xi , t)) · · · u(xk, t) dxdt

+
∫
Rk

ϕ(0, x)ū(x1) · · · ū(xk) dx = 0 (3.2)

for all ϕ ∈ C∞
c (Rk × R+).

For (multi-dimensional) systems, i.e. when u and f (u) are vectors, we evolve
the tensor product u(x1)⊗· · ·⊗ u(xk), and the resulting evolution Eq. (3.1) would
read

∂t
[
u(x1, t) ⊗ · · · ⊗ u(xk, t)

]

+
k∑

i=1

∇xi ·
[
u(x1, t) ⊗ · · · ⊗ f (u(xi , t)) ⊗ · · · ⊗ u(xk, t)

]
= 0. (3.3)

Interpreting the above in the sense of distributions, we obtain
∫
R+

∫
Rk

∂tϕ(x, t) : [u(x1, t) ⊗ · · · ⊗ u(xk, t)
]

+
k∑

i=1

∇xi · ϕ(x, t) :
[
u(x1, t) ⊗ · · · ⊗ f (u(xi , t)) ⊗ · · · ⊗ u(xk, t)

]
dxdt

+
∫
Rk

ϕ(0, x) : [ū(x1) ⊗ · · · ⊗ ū(xk)
]
dx = 0 (3.4)

for all ϕ ∈ C∞
c

((
R
d
)k × R+,

(
R

N
)⊗k
)
. The above calculations can be made

rigorous, as follows.
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Lemma 3.1. If u ∈ L1
loc(R

d ×R+, RN ) is a weak solution of (1.1) then (3.4) holds
for all k ∈ N.

Proof. For the sake of notational simplicity we present the proof only for the one-
dimensional, scalar case (d = N = 1), i.e. Eq. (3.2). The proof proceeds by
induction. Equation (3.2) with k = 1 is precisely the definition of a weak solution,∫

R+

∫
R

∂tψu + ∂xψ f (u) dxdt +
∫
R

ψ(x, 0)ū(x) dx = 0

∀ ψ ∈ C∞
c (R × R+). (3.5)

Assume that (3.2) holds for some k ∈ N. Let ωε : R → R be a symmetric mollifier
with suppωε ⊂ [−ε, ε], let ϕ̃ ∈ C∞

c (Rk+1 × R+) and define

ϕ(x, t) :=
∫
R+

∫
R

ωε(t − s)ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1ds

for x ∈ R
k and any 0 � ϕ̃ ∈ C∞

c (Rk+1 × R+). Then ϕ ∈ C∞
c (Rk × R+), and we

have

∂tϕ(x, t) =
∫
R+

∫
R

ω′
ε(t − s)ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1ds

=
∫
R+

∫
R

[
−∂s

(
ωε(t − s)ϕ̃(x, xk+1, s)

)
+ ωε(t − s)∂s ϕ̃(x, xk+1, s)

]

u(xk+1, s) dxk+1ds

=
∫
R+

∫
R

ωε(t − s)∂xk+1 ϕ̃(x, xk+1, s) f (u(xk+1, s)) dxk+1ds

+
∫
R

ωε(t)ϕ̃(x, xk+1, 0)ū(xk+1) dxk+1

+
∫
R+

∫
R

ωε(t − s)∂s ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1ds,

the last equality following from (3.5). Moreover, for j = 1, . . . , k we have

∂x j ϕ(x, t) =
∫
R+

∫
R

ωε(t − s)∂x j ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1ds.

Hence, inserting ϕ into (3.2) gives

0 =
∫
R+

∫
Rk

u(x1, t) · · · u(xk, t)

[∫
R+

∫
R

ωε(t − s)∂xk+1 ϕ̃(x, xk+1, s) f (u(xk+1, s)) dxk+1ds

+
∫
R

ωε(t)ϕ̃(x, xk+1, 0)ū(xk+1) dxk+1

+
∫
R+

∫
R

ωε(t − s)∂s ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1ds

]
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+
k∑
j=1

u(x1, t) · · · f (u(x j , t)) · · · u(xk, t)

∫
R+

∫
R

ωε(t − s)∂x j ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1dsdxdt

+
∫
Rk

ū(x1) · · · ū(xk)
∫
R+

∫
R

ωε(−s)ϕ̃(x, xk+1, s)u(xk+1, s) dxk+1dsdx .

In the limit ε → 0 we get

0 =
∫
R+

∫
Rk

∫
R

u(x1, t) · · · u(xk, t)∂xk+1 ϕ̃(x, xk+1, t) f (u(xk+1, t)) dxk+1dxdt

+ 1

2

∫
Rk

∫
R

ū(x1) · · · ū(xk)ϕ̃(x, xk+1, 0)ū(xk+1) dxk+1dx

+
∫
R+

∫
Rk

∫
R

u(x1, t) · · · u(xk, t)∂t ϕ̃(x, xk+1, t)u(xk+1, t) dxk+1dxdt

+
∫
R+

∫
Rk

∫
R

k∑
j=1

u(x1, t) · · · f (u(x j , t)) · · · u(xk, t)∂x j ϕ̃(x, xk+1, t)

u(xk+1, t) dxk+1dxdt

+ 1

2

∫
Rk

∫
R

ū(x1) · · · ū(xk)ϕ̃(x, xk+1, 0)ū(xk+1) dxk+1dx .

(The factors 1
2 come from integrating ωε(−s) over s ∈ R+ and not s ∈ R.) After

reorganizing terms, we obtain (3.2) for k + 1. 
�
Denoting the atomic correlation measure corresponding to u(·, t) by νννt =

(ν1t , ν
2
t , . . . ) (cf. Remark 2.6(ii)), we may write (3.3) equivalently as

∂t
〈
νkt,x , ξ1 ⊗ · · · ⊗ ξk

〉+
k∑

i=1

∇xi · 〈νkt,x , ξ1 ⊗ · · · ⊗ f (ξi ) ⊗ · · · ⊗ ξk
〉 = 0

(3.6)

for x ∈ R
k , t > 0 and any k ∈ N. Note that this expression makes sense even if νkt

is non-atomic. We take this as the definition of a (possibly non-atomic) statistical
solution. In order for the terms appearing in (3.6) to be well-defined, we need to
assume∫

Kk

〈
νkt,x , |ξ1| · · · |ξk |

〉
dx < ∞ ∀ k ∈ N and i = 1, 2, . . . , k,

for all compact subsets K ⊂ D. We can write this in terms of the corresponding
probability measure μt ∈ P(L1) as∫

L1
‖u‖L1(Kk ) dμt (u) < ∞ ∀ k ∈ N, (3.7)

and for all compact subsets K ⊂ D.
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Definition 3.2. Let μ̄ ∈ P
(
L1
(
R
d ,RN

))
satisfy the decay rate (3.7). A statisti-

cal solution of (1.1a) with initial data μ̄ is a weak*-measurable mapping t →
μt ∈ P

(
L1
(
R
d ,RN

))
such that each μt satisfies the decay rate (3.7), and such

that the corresponding correlation measures (νkt )k∈N satisfy (3.6) in the sense of
distributions, i.e.

∫
R+

∫
(Rd )k

〈
νkt,x , ξ1 ⊗ · · · ⊗ ξk

〉 : ∂tϕ

+
k∑

i=1

〈
νkt,x , ξ1 ⊗ · · · ⊗ f (ξi ) ⊗ · · · ⊗ ξk

〉 : ∇xiϕ dxdt

+
∫

(Rd )k

〈
ν̄kx , ξ1 ⊗ · · · ⊗ ξk

〉
ϕ
∣∣
t=0 dx = 0

for every ϕ ∈ C∞
c

((
R
d
)k × R+,

(
R

N
)⊗k
)
and for every k ∈ N. (Here, ν̄νν denotes

the correlation measure associated with the initial probability measure μ̄.) 
�

Remark 3.3. (i) A map μ : t → μt ∈ P
(
L1
(
R
d ,RN

))
is weak*-measurable if

the pairing
〈
μt , G

〉 = ∫
L1 G(u) dμt (u) with any G ∈ Cb

(
L1
(
R
d ,RN

))
is

Lebesgue measurable in t (see e.g. [19, Section II.1]).
(ii) Note carefully that the evolutionEq. (3.6) dictates the evolution of themoments〈

νkt,x , ξ1 ⊗ · · · ⊗ ξk
〉
(see Section 2.9). Recall from Theorem 2.19 that the

moments of a correlation measure uniquely identify the correlation measure.
Thus, instead of determining the time evolution of functionals on infinite-
dimensional function spaces as in the Liouville and Hopf equations of [29],
we reduce the problem to the evolution of functions

〈
νkt,x , ξ1⊗· · ·⊗ξk

〉
defined

on the finite-dimensional spaces (x, t) ∈ (Rd
)k × R+.

(iii) Equation (3.6) for k = 1 is simply the definition of ν1 being a measure-valued
solution of (1.1a), as introduced by DiPerna [20]. In light of the previous
remark, we see that—except when the correlation measure is atomic—the
evolution equation for measure-valued solutions (i.e., (3.6) with k = 1) never
uniquely determines the full correlation measure νννt (or equivalently, μt ). In
other words, except in the case of an atomic statistical solution, the evolution
equation for the (k + 1)th moment can contain strictly more information than
the equation for the kth moment. Thus, statistical solutions are much more
constrained than measure-valued solutions, with additional information being
provided by multi-point correlations. This additional information provided by
the correlation measures opens the possibility of enforcing uniqueness of the
statistical solutions, if necessary by augmenting them with further admissibil-
ity conditions.

(iv) If μ̄ = δū and μt = δu(t) with ū, u(t) ∈ L1
(
R
d ,RN

)
for a.e. t > 0, then

Definition 3.2 reduces to the classical definition of a weak solution of (1.1a).
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4. Statistical Solutions for Scalar Conservation Laws

In Section 3 we defined statistical solutions for multi-dimensional systems of
conservation laws. In this section we investigate the well-posedness of statistical
solutions of (multi-dimensional) scalar conservation laws. To this end, we can
utilize the well-posedness of the deterministic problem (1.1) to show the existence
of a statistical solution for a multi-dimensional scalar conservation law.

4.1. The Canonical Statistical Solution

Recall that for scalar conservation laws, the Cauchy problem (1.1) is well-posed
for any ū ∈ U := L1 ∩ L∞(Rd), and the entropy solution u(t) = St ū lies in U

for all t > 0 [39]. Here, St : U → U denotes the entropy solution semi-group.
Denote F := L1(Rd). Given initial data μ̄ ∈ P(F) with suppμ ⊂ U, we define the
canonical statistical solution by

μt := St#μ̄, t � 0,

where the pushforward operator # applies St to each element of the support of μ̄:∫
F
G(u) d (St#μ̄) (u) =

∫
F
G(Stu) dμ̄(u), G ∈ Cb(F).

Thus, the canonical statistical solution is concentrated on the entropy solutions of
every initial data in the support of μ̄, and each entropy solution is given the same
weight as μ̄ gives to the corresponding initial data.

The semi-group St is a continuous map, so it is easy to see that the canonical
statistical solution is a weak*-measurable map from t ∈ R+ to P(F). Moreover, it
is in fact a statistical solution: For every k ∈ N and ϕ ∈ Cc(R

k × R+), we have

∫
R+

∫
(Rd )k

∂tϕ
〈
νkt,x , ξ1 · · · ξk

〉+
k∑

i=1

∇xi ϕ : 〈νkt,x , ξ1 · · · f (ξi ) · · · ξk
〉
dxdt

+
∫

(Rd )k
ϕ
∣∣
t=0

〈
ν̄kx , ξ1 · · · ξk

〉
dx

=
∫
R+

∫
F

∫
(Rd )k

∂tϕ u(x1) · · · u(xk)

+
k∑

i=1

∇xiϕ :
[
u(x1) · · · f (u(xi )

) · · · u(xk)
]
dxdμt (u)dt

+
∫
F

∫
(Rd )k

ϕ(0, x)ū(x1) · · · ū(xk) dxdμ̄(ū) (by (2.8))

=
∫
F

[∫
R+

∫
(Rd )k

∂tϕ St ū(x1) · · · St ū(xk)

+
k∑

i=1

∇xiϕ :
[
St ū(x1) · · · f (St ū(xi )

) · · · St ū(xk)
]
dxdt
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+
∫

(Rd )k
ϕ(0, x)ū(x1) · · · ū(xk) dx

]
dμ̄(ū)

= 0

by Lemma 3.1, since St ū is a weak solution of (1.1) for every ū ∈ U.
It is also quite easy to see that the canonical statistical solution is stable with

respect to the initial data. We measure this stability in the 1-Wasserstein metricW1
on F (cf. Definition 2.2). Let μ̄, ρ̄ ∈ P(F) be given initial data and let π̄ ∈ 
(μ̄, ρ̄)

be an optimal transport plan from μ̄ to ρ̄. For each t � 0we defineπt := (St , St )#π̄ ,
which lies in 
(μt , ρt ) (where μt , ρt are the corresponding canonical statistical
solutions). We find that

W1(μt , ρt ) �
∫
F2

‖u − v‖F dπt (u, v) =
∫
F2

‖St ū − St v̄‖F dπ̄(ū, v̄)

�
∫
F2

‖ū − v̄‖F dπ̄(ū, v̄) = W1(μ̄, ρ̄),

where the first inequality comes from picking a particular plan πt ∈ 
(μt , ρt ) in
(2.1), and the second inequality follows from the L1 contraction property of St . We
summarize these observations as follows.

Theorem 4.1. Let μ̄ ∈ P(F) be a probability measure on F satisfying (3.7), and
define the canonical statistical solutionμt := St#μ̄ for each t ∈ R+. Then t → μt

is a statistical solutionof (1.1a)with data μ̄, and ifρt is another canonical statistical
solution with initial data ρ̄ ∈ P(F) then

W1(μt , ρt ) � W1(μ̄, ρ̄). (4.1)

4.2. Well-Posedness of Statistical solutions

As shown in Section 4.1, there always exists a statistical solution for scalar
conservation laws, and this solution is stable with respect to initial data. This does
not imply, however, that the canonical solution is unique, in the same way that
there might exist several weak solutions for the deterministic Eq. (1.1). As in the
deterministic setting, entropy conditions must be imposed in order to single out a
unique solution.

Recall that the (Kruzkov) entropy condition for (1.1) is

∂t |u − c| + ∇x · q(u, c) � 0 inD′(Rd × R+) (4.2)

for all constants c ∈ R, where q(u, c) := sgn(u − c)( f (u) − f (c)). Although
not usually phrased as such, the Kruzkov entropy condition imposes stability with
respect to a certain family of stationary (steady-state) solutions, namely the constant
solutions. The key to proving uniqueness of statistical solutions lies in finding the
right family of stationary (time-invariant) solutions. A natural first attempt follows
from integrating (4.2) over the phase-space variable, which yields

∂t
〈
ν1, |ξ − c|〉+ ∇x · 〈ν1, q(ξ, c)

〉
� 0 inD′(Rd × R+). (4.3)
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This is the entropy condition enforced by DiPerna in the context of measure-valued
solutions [20]. By a standard doubling-of-variables argument (see [20, Theorem
4.1] and [23, Theorem 3.3]), this leads to the stability estimate

∫
Rd

〈
ν1t,x ,

∣∣ξ − u(x, t)
∣∣〉 dx �

∫
Rd

〈
ν̄1x ,

∣∣ξ − ū(x)
∣∣〉 dx (4.4)

for any entropy solution u. Thus, if ν̄1x = δū(x) then also ν1t,x = δu(x,t)—in other
words, (4.3) provides stability with respect to entropy solutions u(x, t), realized as
atomic entropy measure-valued solutions. Note, however, that if ν̄νν is non-atomic
then the right-hand side of (4.4) is O(1). Hence, (4.3) only imposes stability with
respect to atomic statistical solutions. We propose instead the following:

Entropy Condition: The physically meaningful statistical solution must be stable
not just with respect to single constant functions, but to any finite convex

combination of constant functions.

Since constant functions do not lie in L1(Rd), we need to introduce the following
auxiliary lemma, which characterizes the set of transport plans, 
(μ, ρ), when ρ

is a convex combination of Dirac measures.

Lemma 4.2. Let μ, ρ ∈ P(F) such that ρ is of the form ρ = ∑M
i=1 αiδui for

coefficients αi � 0,
∑

i αi = 1 and functions u1, . . . , uM ∈ F. Then a measure π

lies in 
(μ, ρ) if and only if there are μ1, . . . , μM ∈ P(F) such that

π =
M∑
i=1

αiμi ⊗ δui (4.5)

(and, in particular,
∑M

i=1 αiμi = μ).

Proof. Necessity is immediate. For sufficiency, letπ ∈ 
(μ, ρ) anddefineμi (A) :=
π(A×{ui })

αi
.Without loss of generality,wemayassume thatαi > 0 and thatu1, . . . , uM

are distinct. Since π(F × {ui }) = ρ({ui }) = αi we have μi ∈ P(F) for each i .
Moreover, π(A × {ui }) = αiμi (A) = αi (μi ⊗ δui )(A × {ui }) for each i , so (4.5)
follows. 
�
Based on this simple observation we conclude that whenever ρ is M-atomic with
weights αi , there is a one-to-one correspondence between transport plans π ∈

(μ, ρ) and elements of the set

�(α,μ) :=
{
(μ1, . . . , μM ) : μ1, . . . , μM ∈ P(F) and

∑M
i=1 αiμi = μ

}

for any α = (α1, . . . , αM ) ∈ R
M satisfying αi � 0 and

∑M
i=1 αi = 1. The set

�(α,μ) is never empty since (μ, . . . , μ) ∈ �(α,μ) for any coefficientsα1, . . . , αM .
Note that the set�(α,μ) depends on the target measure ρ only through the weights
α1, . . . , αM .
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Definition 4.3. A statistical solution μt is termed an entropy statistical solu-
tion if for every choice of coefficients αi > 0 with

∑M
i=1 αi = 1 and for every

(μ̄1, . . . , μ̄M ) ∈ �(α, μ̄), there exists a map t → (μ1,t , . . . , μM,t ) ∈ �(α,μt )

such that μi,0 = μ̄i and

M∑
i=1

αi

[∫
R+

∫
F

∫
Rd

∣∣u(x) − ci
∣∣∂tϕ + q

(
u(x), ci

) · ∇xϕ dxdμi,t (u)dt

+
∫
F

∫
Rd

∣∣ū(x) − ci
∣∣ϕ
∣∣∣
t=0

dxdμ̄i (ū)

]
� 0

(4.6)

for all 0 � ϕ ∈ C∞
c (Rd ×R+) and for all constants c1, . . . , cM ∈ R. (Here, q(u, c)

is the Kruzkov entropy flux function.) 
�
Lemma 4.4. The canonical statistical solution is an entropy statistical solution.

Proof. Select (μ̄1, . . . , μ̄M ) ∈ �(α, μ̄) for an arbitraryweight α and defineμi,t :=
St#μ̄i . Then (μ1,t , . . . , μM,t ) ∈ �(α,μt ), and

M∑
i=1

αi

[∫
R+

∫
F

∫
Rd

∣∣u(x) − ci
∣∣∂tϕ + q

(
u(x), ci

) · ∇xϕ dxdμi,t (u)dt

+
∫
F

∫
Rd

∣∣ū(x) − ci
∣∣ϕ
∣∣∣
t=0

dxdμ̄i (ū)

]

=
M∑
i=1

αi

∫
F

[∫
R+

∫
Rd

∣∣St ū(x) − ci
∣∣∂tϕ + q

(
St ū(x), ci

) · ∇xϕ dxdt

+
∫
Rd

∣∣ū(x) − ci
∣∣ϕ
∣∣∣
t=0

dx

]
dμ̄i (ū)

� 0,

since the map (x, t) → St ū(x) is an entropy solution of the deterministic
problem. 
�
Lemma 4.5. Let μt be an arbitrary entropy statistical solution with initial data
μ̄ ∈ P(F) satisfying supp μ̄ ⊂ U. Fix α1, . . . , αM > 0 with

∑M
i=1 αi = 1.

Let w1, . . . , wM : R+ → U be entropy solutions of (1.1a) with initial data
w̄1, . . . , w̄M ∈ U, respectively, and define

ρ̄ :=
M∑
i=1

αiδwi , ρt :=
M∑
i=1

αiδwi (t) ∀ t ∈ R+.

Then

W1(ρt , μt ) � W1(ρ̄, μ̄) ∀ t > 0. (4.7)
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Proof. Let (μ̄i )
M
i=1 ∈ �(α, μ̄) be an optimal transport plan from μ̄ to ρ̄. The

entropy condition for μt gives the existence of maps t → (
μi,t
)M
i=1 such that

M∑
i=1

αi

[∫
R+

∫
F

∫
Rd

∣∣u(x) − ci
∣∣∂tϕ + q

(
u(x), ci

) · ∇x ϕ dxdμi,t (u)dt

+
∫
F

∫
Rd

∣∣ū(x) − ci
∣∣ϕ
∣∣∣
t=0

dxdμ̄i (ū)

]
� 0 (4.8)

for any choice of ϕ ∈ C∞
c (Rd × R+) and ci ∈ R. Let ϕ = ϕ(x, y, t, s) ∈

C∞
c ((Rd)2 × R

2+). Set ci = wi (y, s) for some point (y, s) and integrate over
y ∈ R and s ∈ R+:

∫
R+

∫
Rd

M∑
i=1

αi

[∫
R+

∫
F

∫
Rd

∣∣u(x) − wi (y, s)
∣∣∂tϕ

+q
(
u(x), wi (y, s)

) · ∇xϕ dxdμi,t (u)dt

+
∫
F

∫
Rd

∣∣ū(x) − wi (y, s)
∣∣ϕ
∣∣∣
t=0

dxdμ̄i (ū)

]
dyds � 0. (4.9)

(The expression in the brackets is measurable with respect to (y, s) since (4.8) is
continuous with respect to ci .)

Next, since each wi is an entropy solution, we have for all ξ ∈ R and 0 � ϕ ∈
C∞
c (Rd × R+)

∫
R+

∫
Rd

∣∣ξ − wi (y, s)
∣∣∂sϕ + q

(
ξ,wi (y, s)

) · ∇yϕ dyds

+
∫
Rd

∣∣ξ − w̄i (y)
∣∣ϕ
∣∣∣
s=0

dy � 0.

Set ξ = u(x) for some u ∈ F and x ∈ R. Integrate the above over x ∈ R and over
u ∈ F with respect to μi,t for some t ∈ R+. Integrate over t ∈ R+, multiply by αi

and sum over i = 1, . . . , M :

M∑
i=1

αi

∫
R+

∫
F

∫
Rd

[∫
R+

∫
Rd

∣∣u(x) − wi (y, s)
∣∣∂sϕ + q

(
u(x), wi (y, s)

) · ∇yϕ dyds

+
∫
Rd

∣∣u(x) − w̄i (y)
∣∣ϕ
∣∣∣
s=0

dy

]
dxdμi,t (u)dt � 0. (4.10)
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Applying Fubini’s theorem to this and Eq. (4.9) and adding the two, we obtain

M∑
i=1

αi

[∫
R+

∫
R+

∫
F

∫
Rd

∫
Rd

∣∣u(x) − wi (y, s)
∣∣(∂t + ∂s)ϕ

+ q
(
u(x), wi (y, s)

) · (∇x + ∇y)ϕ dxdydμi,t (u)dtds

+
∫
R+

∫
F

∫
Rd

∫
Rd

∣∣u(x) − w̄i (y)
∣∣ϕ
∣∣∣
s=0

dxdydμi,t (u)dt

+
∫
R+

∫
F

∫
Rd

∫
Rd

∣∣ū(x) − wi (y, s)
∣∣ϕ
∣∣∣
t=0

dxdydμ̄i (ū)ds

]
� 0.

Now set ϕ(x, y, t, s) := ψ
(
x+y
2 , t+s

2

)
ωε(x − y)ωε′(t − s) for some nonnegative

ψ ∈ C∞
c (Rd ×R+) and a mollifier ωε. Using the dominated convergence theorem

on the integrals over F, we find that as ε → 0, the above converges to

M∑
i=1

αi

[∫
R+

∫
R+

∫
F

∫
Rd

∣∣u(x) − wi (x, s)
∣∣(∂t + ∂s)ϕ̃

+ 2q
(
u(x), wi (x, s)

) · ∇x ϕ̃ dxdμi,t (u)dtds

+
∫
R+

∫
F

∫
Rd

∣∣u(x) − w̄i (x)
∣∣ϕ̃
∣∣∣
s=0

dxdμi,t (u)dt

+
∫
R+

∫
F

∫
Rd

∣∣ū(x) − wi (x, s)
∣∣ϕ̃
∣∣∣
t=0

dxdμ̄i (ū)ds

]
� 0,

where ϕ̃(x, t, s) := ψ
(
x, t+s

2

)
ωε′(t − s). Finally, letting ε′ → 0 we get

M∑
i=1

αi

[∫
R+

∫
F

∫
Rd

∣∣u(x)−wi (x, t)
∣∣∂tψ+q

(
u(x), wi (x, t)

) · ∇xψ dxdμi,t (u)dt

+
∫
F

∫
Rd

∣∣ū(x) − w̄i (x)
∣∣ψ
∣∣∣
t=0

dxdμ̄i (ū)

]
� 0.

We now set ψ(x, τ ) := 1[0,t](τ ) for some t ∈ R+ to get

M∑
i=1

αi

[
−
∫
F

∥∥u − wi (t)
∥∥
F
dμi,t (u) +

∫
F

∥∥ū − w̄i
∥∥
F
dμ̄i (ū)

]
� 0.

Using the fact that (μ̄i ) is an optimal transport plan from μ̄ to ρ̄, we end up with
(4.7). 
�

To complete our proof of well-posedness of statistical solutions we need the
following well-known result, whose proof is included in the “Appendix” for the
sake of completeness.
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Lemma 4.6. Let X be a Polish space equipped with its Borel σ -algebra. Then the
convex hull of Dirac measures on X is dense in P(X) with respect to the topology
of weak convergence. In other words, for every μ ∈ P(X), there is a sequence
ρn ∈ P(X) of convex combinations of Dirac measures such that ρn ⇀ μ as
n → ∞.

Theorem 4.7. Let μ̄ ∈ P(F) with supp μ̄ ⊂ U := L1 ∩ L∞(Rd). Then the entropy
statistical solution with initial data μ̄ is unique and coincides with the canonical
statistical solution. Any two entropy statistical solutions μt , ρt satisfy

W1(μt , ρt ) � W1(μ̄, ρ̄). (4.11)

Proof. Let μt be an entropy statistical solution with initial data μ̄. By Lemma 4.6,
the convex hull of Dirac measures is dense in P(F), so we can find a sequence
μ̄n ∈ P(F) (n ∈ N) of convex combinations of Dirac measures such that μ̄n ⇀ μ̄

in P(F) as n → ∞. Let μn,t := St#μ̄n be the corresponding canonical statistical
solutions, and note that also μn,t ⇀ St#μ̄ as n → ∞. From Lemma 4.5 we find
that

W1(μt , μn,t ) � W1(μ̄, μ̄n) → 0 as n → ∞.

Thus, μt = w-limn→∞ μn,t = St#μ̄, whence μt is the canonical statistical solu-
tion. 
�

5. Discussion

Given the lack of global in time existence results, and the recent non-uniqueness
results of [16,17], the acceptance of entropy solutions as the standard solution
paradigm for multi-dimensional systems of conservation laws is being increasingly
questioned. Based on extensive numerical results, recent papers such as [23] have
advocated entropy measure-valued solutions (MVS), as defined by DiPerna [20],
as an appropriate solution paradigm for systems of conservation laws. However,
entropy MVS are not necessarily unique, even for scalar conservation laws, if the
MVS is non-atomic. Since numerical results of [23] strongly hint at the possibility of
non-atomicMVS even when the initial data is atomic, it is natural to seek additional
constraints on entropy MVS to enforce uniqueness.

Given this background, and the need for developing a solution concept that can
accommodate uncertain initial data (and corresponding uncertain solutions) that
arise frequently in the area of uncertainty quantification (UQ), we seek to adapt the
notion of statistical solutions, originally developed in [27,28] for the incompress-
ible Navier–Stokes equations, to systems of conservation laws. Statistical solutions
are time-parametrized probability measures on some (infinite-dimensional) func-
tion space. Infinite-dimensional Liouville or Hopf equations track the evolution of
the time-parametrized measure. However, the extension of statistical solutions as
defined in [27–29], to systems of conservation laws, is highly non-trivial as the
“natural” function spaces for the dynamics of conservation laws consists merely of
integrable functions, and may lack the regularity required to define the Liouville or
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Hopf equations. Although one can work with probability measures on distributions
in the specific case of the inviscid Burgers equation (as suggested in [5,9,10]), it is
very difficult to enforce uniqueness on such a large space of measures. Another dis-
advantage of probability measures on functions is that they do not readily provide
any local (statistical) information at specific (collections of) points in the spatial
domain.

We define statistical solutions for systems of conservation laws in a different
manner. To this end, we prove a novel equivalence theorem between probability
measures on L p spaces (1 � p < ∞) and a family (hierarchy) of Young measures,
the so-called correlation measures, on finite-dimensional tensor product spatial do-
mains. For all k ∈ N, the k-th member of this hierarchy, the so-called k-point
correlation marginal, is a Young measure that provides information on correlations
of the underlying functions at k distinct points in the spatial domain. In particular,
the first correlation marginal is classical one-point Young measure. Thus, a prob-
ability measure on an L p space can be realized as a Young measure, augmented
with multi-point correlations on the spatial domain. This representation enables us
to localize probability measures on function spaces and view them as a collection
of all possible multi-point correlation marginals. We also show that moments of the
correlation marginals uniquely determine the corresponding probability measure
on the infinite-dimensional function space. We believe that this representation of
probability measures will be of independent interest in stochastic analysis, partic-
ularly stochastic partial differential equations [14], in uncertainty quantification of
evolutionary PDEs [31] and in Bayesian inversion and data assimilation for time-
dependent PDEs [44]. In particular, the use of statistical solutions will provide a
framework for uncertainty quantification that does not depend on any particular
parametrization of the solution in terms of random fields, as is customary in UQ
[31].

In this paper, we use the equivalence between probability measures on L p

and families of correlation measures to define statistical solutions of systems of
conservation laws. In particular, we utilize the fact that moments of correlation
measures uniquely determine the underlying probability measure, to evolve these
moments in a manner consistent with the dynamics of the system (1.1a). Thus, a
statistical solution has to satisfy an (infinite) family of nonlinear PDEs, but each
of these PDEs is defined on a finite-dimensional (tensor-product) spatial domain.
This should be contrasted with the infinite-dimensional Liouville or Hopf equations
that the statistical solutions of [27–29] need to satisfy. Moreover, our notion of
statistical solutions restricts the class of probabilitymeasures to those on L p spaces,
rather than on distributions (as in [10]) and makes it more amenable to analysis,
particularly from the point of view of uniqueness. At the same time, our notion
of statistical solutions augment the standard concept of measure-valued solutions,
with additional information in the form of multi-point correlations, and paves the
way for constraining the solutions sufficiently to guarantee uniqueness.

We investigate the well-posedness of the proposed concept of statistical solu-
tions in the specific context of multi-dimensional scalar conservation laws in this
paper. We show existence by proving that the push forward of the initial probability
measure on L1 ∩ L∞ by the Kruzkhov entropy solution semi-group is a statistical
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solution, and we term this solution the canonical statistical solution. We propose a
novel admissibility criteria, based on stability with respect to a suitable stationary
statistical solution, namely probability measures supported on finite collections of
constant functions. These entropy statistical solutions are a generalization of the
standardKruzkhov entropy solutions for scalar conservation laws.We show that the
canonical statistical solution is the unique entropy statistical solution. Furthermore,
we show that it is contractive with respect to the 1-Wasserstein metric on probabil-
ity measures on L1. Thus, entropy statistical solutions for multi-dimensional scalar
conservation laws are shown to be well-posed and are thus completely character-
ized.

This article is the first in a series of papers investigating statistical solutions of
multi-dimensional systems of conservation laws. We lay out the measure theoretic
basis, define statistical solutions for systems and show well-posedness in the scalar
case. Forthcoming papers in the series will deal with numerical approximation of
entropy statistical solutions of scalar conservation laws [25] and global existence of
statistical solutions for a large class of multi-dimensional systems of conservation
laws by showing convergence of a Monte Carlo based numerical approximation
algorithm [26]. Admissibility criteria that single out physically relevant statistical
solutions are the topic of current and future work.
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A Appendix

For completeness we provide the proofs of Proposition 2.4 and Lemma 4.6. The
proof of Proposition 2.4 relies on the following two lemmas.

Lemma A.1. Cyl(X) is a ring.1

Proof. Clearly, ∅ ∈ Cyl(X), and if A1, A2 ∈ Cyl(X) are of the form

Ai =
{
u ∈ X : (ϕi

1, . . . , ϕ
i
ni

)
(u) ∈ Fi

}
, i = 1, 2

then both

A1 ∪ A2 =
{
u∈ X : (ϕ1

1 , . . . , ϕ
1
n1 , ϕ

2
1 , . . . , ϕ

2
n2

)
(u)∈(F1 × R

n2
) ∪ (Rn1 × F2

)}

and

A1\A2 =
{
u ∈ X : (ϕ1

1 , . . . , ϕ
1
n1 , ϕ

2
1 , . . . , ϕ

2
n2

)
(u) ∈ F1 × (F2)c

}

are cylinder sets. 
�

1 A collection of sets X ⊂ 2X is a ring if ∅ ∈ X and if both A ∪ B and A\B lie in X
whenever A, B ∈ X.
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Lemma A.2. If X is a separable normed vector space then there exists a countable
family {ϕn}n∈N ⊂ X∗ such that

‖u‖X = sup
n∈N

ϕn(u) for every u ∈ X . (A.1)

Proof. Let {un}n∈N ⊂ X be a countable dense subset of the unit sphere ∂B1(0) ⊂
X . For each n ∈ N, let ϕn ∈ X∗ satisfy ϕn(un) = 1 and ‖ϕn‖X∗ = 1. If u ∈ ∂B1(0)
is arbitrary and ε > 0, find an un such that ‖u − un‖X < ε. Then

1 � ϕn(u) = ϕn(un) − ϕn(un − u) � 1 − ε,

so ‖u‖X = 1 can be approximated from below by ϕn(u). Equation (A.1)
follows. 
�
Proof of Proposition 2.4. Let {ϕn}n∈N be as in Lemma A.2. For a u0 ∈ X and
r > 0, the open ball of radius r with centre u0 can be written

Br (u0) =
{
u ∈ X : ϕn(u − u0) < r ∀ n ∈ N

}

=
⋂
n∈N

{
u ∈ X : ϕn(u) ∈ (−∞, ϕn(u0) + r

)}
,

which is a countable intersection of cylinder sets. It follows that σ(Cyl(X)), the
σ -algebra generated by Cyl(X), contains the σ -algebra generated by the open balls
in X , which is precisely B(X). But every cylinder set is a Borel set; hence the two
σ -algebras coincide, and (i) follows.
By Lemma A.1, Cyl(X) is a ring which, by (i), generatesB(X). Assertion (ii) then
follows from the fact that (signed) measures vanishing on a ring, vanish on the
σ -algebra generated by the ring. 
�
Proof of Lemma 4.6. Recall that the topology of weak convergence on P(X) for
a Polish metric space X is the coarsest topology for which the map μ → ∫

ϕ dμ

is continuous for every ϕ ∈ Cb(X) [38, Remark 13.14(ii)]. Thus, the topology of
weak convergence is generated by the open sets

Uϕ,μ,ε :=
{
ρ ∈ P(X) :

∣∣∣
∫

ϕ dμ −
∫

ϕ dρ
∣∣∣ < ε

}

for μ ∈ P(X), ε > 0 and ϕ ∈ Cb(X). It suffices to show that every open set
Uϕ,μ,ε contains a measure which is a convex combination of Dirac measures. Let
ϕ̄(x) =∑n

i=1 ai1Ai (x) be a simple function such that supx∈X |ϕ(x)−ϕ̄(x)| < ε/2.
Fix xi ∈ Ai and define ρ := ∑n

i=1 μ(Ai )δxi . Since |ϕ(xi ) − ϕ(x)| < ε for every
x ∈ Ai , we find that

∣∣∣∣
∫
X

ϕ dρ −
∫
X

ϕ dμ

∣∣∣∣ =
∣∣∣∣

n∑
i=1

∫
Ai

ϕ(xi ) − ϕ(x) dμ

∣∣∣∣

�
n∑

i=1

∫
Ai

|ϕ(xi ) − ϕ(x)| dμ < ε.

Hence, ρ ∈ Uϕ,μ,ε. 
�
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