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Abstract

It is nowwell established that the homogenization of a periodic array of parallel
dielectric fibers with suitably scaled high permittivity can lead to a (possibly) neg-
ative frequency-dependent effective permeability. However this result based on a
two-dimensional approach holds merely in the case of linearly polarized magnetic
fields, reducing thus its applications to infinite cylindrical obstacles. In this paper
we consider a dielectric structure placed in a bounded domain of R3 and perform a
full three dimensional asymptotic analysis. The main ingredient is a new averaging
method for characterizing the bulk effective magnetic field in the vanishing-period
limit. We give evidence of a vectorial spectral problem on the periodic cell which
determines micro-resonances and encodes the oscillating behavior of the magnetic
field from which artificial magnetism arises. At a macroscopic level we deduce an
effective permeability tensor that we can make explicit as a function of the fre-
quency. As far as sign-changing permeability is sought after, we may foresee that
periodic bulk dielectric inclusions could be an efficient alternative to the very popu-
lar metallic split-ring structure proposed by Pendry. Part of these results have been
announced in Bouchitté et al. (C R Math Acad Sci Paris 347(9–10):571–576,
2009).
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1. Introduction and Description of the Model

Physical Background and Recent Mathematical Progress. The behavior of an
homogeneous material with respect to electromagnetic waves is characterized by
its electric permittivity ε(ω) and its magnetic permeability μ(ω): two physical
quantities which depend on the frequency ω. For frequencies of visible light, the
permittivity is a complex number ε := ε′ + iε′′ where ε′ ∈ R (can be negative for
some metals) and ε′′ � 0 (for passive media and if the harmonic time-dependence
is assumed to be e−iωt ). It is different for the permeability because all natural
materials present a non-magnetic behavior in the visible region of the spectrum,
that is their relative permeability is very close to one as in the vacuum.

For the past fifteen years, there has been much research on the realization of
artificial materials, generally periodically micro-structured, behaving as homoge-
neous media, that is described by effective tensors εeff andμeff . An important issue
is to design structures which allow a non-trivial permeability (possibly negative), a
negative permittivity, or both. The later case corresponds to a “left-handedmedium”
presenting a negative refractive index.

The firstmetamaterial possessing a negative effective permittivitywas proposed
by Pendry in 1996 [37] and consists in high conductivity parallel fibers occupying
a very small volume fraction. A rigorous proof of this effective behavior, based on
homogenization techniques, appeared in [19,37,42] in the case of infinitely long
fibers and under a polarization assumption. Surprisingly the same kind of behavior
does not hold for finite-length fibers as demonstrated in [9,13], where the result-
ing permittivity law is shown to be non-local. However by inserting such a finite
structure in a larger scale structure, a reiterated homogenization procedure makes
it possible mathematically to reach effective tensors εeff with negative eigenvalues
(see [7]).

In a similar way it is a challenging issue to design metamaterials able to display
an artificial magnetic activity that is μeff(ω) �= 1 and more specifically such that
�(μeff(ω)) < 0 in some range of frequencies. In photonic devices such a property
is usually explained by the ability of the structure to induce a local magnetic field
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presenting a Fano-like resonance [27]. The first and the most famous structure
illustrating this phenomenon was proposed by Pendry in [35,37] and consists in a
periodic set ofmetallic split-ring resonators. A field incident on this device induces
micro-currents looping in each ring from which results a macroscopic magnetic
moment. The mathematical study of this structure was made recently in [26] for
the 2D case and in [10] for the three dimensional general case.

Another way to produce artificial magnetism from dielectric structures was pro-
posed in [36]. Therein another kind of internal resonance is exploited, the so-called
Mie resonances. These resonances take place inside each dielectric inclusion and
generate loops of displacement current inside the obstacle. This phenomenon can
be evidenced experimentally on a composite structure with a much simpler geome-
try than the one of the split-rings: it consists of periodically disposed micro-cavities
filledwith a high dielectricmaterial [40]. Subsequent works have shown the interest
of Mie resonances to tailor the properties of dielectric metamaterials. These allow
for the control of the Purcell effect [24], the design of hyperbolic metamaterials
and perfect reflectors [30] or the realization of zero-index metamaterials [31]. It
has also been demonstrated [22,29] that the possibility of tailoring the artificial
magnetic activity was a key to the design of invisibility cloaks based on dielectric
materials. This has the great advantage of limiting the losses, as compared to metal-
lic structures where strong losses are unavoidable, apart at the price of inserting
active media [23].

The first mathematical study of this kind of dielectric metamaterials was made
in the particular case where the structure is invariant in one direction (see [8,18]
and [12] for a generalization to the random case). In these papers the inclusions are
infinite cylinders and the incident wave is polarized with a magnetic field parallel to
the axis of the cylinders. As a consequence, the original three dimensional-problem
problem can be reduced in a two-dimension setting, allowing a quite simple and
rigorous asymptotic analysis.

Meanwhile, based on the same infinite rods geometry, several very interest-
ing papers [15,20,21] appeared in which the band structure of the high contrasted
metamaterial is characterized through a power series with respect to the subwave-
length parameter. The leading order terms in this expansion allow one to recover
in a alternative way the effective permeability and permeability tensors. The cor-
responding dispersion relations are deduced as well from spectral problems in the
unit cell. However the method developed therein cannot be used for describing
the full diffraction problem in which the transmission conditions at the interface
between the composite structure and its exterior are of major importance. The same
comments apply to a recent paper [16] to which the first referee drew our attention.
In the latter one, the asymptotic of the Maxwell system is performed in the high
contrast case in the spirit of the Russian school [39].

Our contribution. In this paper we consider a dielectric structure placed in a
bounded domain of R3 and perform a full three dimensional asymptotic analysis.
The infinitesimal parameter denoted η represents the scale factor associated with
the distance between inclusions. As it was announced in the note [11], we will
prove that the structure behaves, when η → 0, as a local material described by a
frequency-dependent permeability tensor. Although this conclusion looks qualita-
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tively in perfect agreement with what is obtained in the 2D case, the mathematical
analysis reveals several novelties that we wish to emphasize here.

First in contrast with the 2D case, the fast oscillations of the magnetic field are
not anymore localized on the dielectric inclusions. It follows that the induced mag-
netic activity cannot result simply from the superposition of independent Helmholtz
micro-resonators as depicted in [18]. Interactions between the inclusions and the
substrate have to be well understood.

Second, the averaging procedure we need for the asymptotic analysis has to be
compatible with the classical transmission conditions across the boundary of the
structure, namely the continuity of the tangential components of the electromag-
netic field. This issue appears to be crucial regarding the magnetic field: as it will
be demonstrated, the bulk average (weak limit in L2

loc) will present tangential dis-
continuities. A key argument to overcome this difficulty will be the introduction of
a new averaging process for periodic magnetic fields that we handle as one-forms
on the complementary of the periodic inclusions.

Finally, the new spectral problem we have evidenced for describing the reso-
nance modes of the structure is quite interesting by its interaction with the geome-
try. It involves divergence free periodic vector fields on the three dimensional torus
which are curl free on the complementary of the inclusions. A direct numerical
approximation problem of it turns out to be very costly computationally. A lot
of attention has been devoted to finding equivalent formulations making possible
efficient numerical simulations for various type of shapes of dielectric inclusions.
Some of these simulations are presented in Section 3.

Notations.

• C
+ := {z ∈ C : �(z) � 0},

• z denotes the complex conjugate of complex number z,
• Y :=] − 1

2 ,
1
2 [3,

• �∗ := Y\�,
• BR = {x ∈ R

3 : |x | < R} ( |x | denotes the Euclidean norm),
• A ⊂⊂ B for subsets of R3 means that A is a compact subset of the

interior of B,
• |B| denotes the Lebesgue measure of a Borel set B ⊂ R

3,
• 1B(x) denotes the characteristic function of B,
• [ y] is the step function defined on R3 by [ y] := k for all y ∈ Y + k,
• 〈u〉 := ´

Y u(y) dy denotes the mean value of a fonction u ∈ L1(Y ),
• I3 is the identity matrix of order 3,
• M : N denotes the usual scalar product for 3 × 3 matrices ,
• u ∧ v denotes the cross product of vectors u, v ∈ R

3,
• u ⊗ v denotes the tensor product of two vectors in R3,

•
 

B
f (x) dx := 1

|B|
ˆ

B
f (x) dx for all f ∈ L1

loc(R
3) and Borel set

B ⊂ R
3,

• C∞(R3) (resp.C∞(K ) if K is a compact domain of R3), denotes the
space of functions which are C∞ on R

3 (resp.on K ),
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• C∞
c (D) for an open subset D ⊂ R

3, is the set of C∞-functions with
compact support in D,

• C∞
� (Y ) the subset of Y -periodic functions in C∞(R3),

• L2
�(Y ) :=

{
f ∈ L2

loc(R
3) : f Y -periodic

}
,

• 〈 f · g〉 := ´
Y f · g dy the standard scalar product in (L2

�(Y ))3,

• W 1,2
� (Y ) :=

{
f ∈ L2

�(Y ) : ∂i f ∈ L2
�(Y ), i = 1, 2, 3

}
(∂i f is meant

in the distributional sense),
• W 1,2

� (�∗) denotes the space of restrictions to �∗ of functions in

W 1,2
� (Y ),

• D′(A) denotes the distributions on the open subset A ⊂ R
3.

Geometrical assumptions. Throughout this paper the geometric domain of R3

in which the small dielectric inclusions are disposed will be denoted by �. This
domain � is assumed to be bounded, simply-connected with Lipschitz boundary.
For every value of the small parameter η > 0, we consider a diffracting obstacle
occupying a subregion �η ⊂ � which is obtained by periodization of a small
inclusion of size η (Fig. 1). More precisely �η is given by

�η :=
⋃
k∈Iη

η(k + �), Iη =
{
i ∈ Z

3 | η(i + Y ) ⊂ �
}
, (1.1)

Y :=] − 1
2 ,

1
2 [3 being the unit cell and � ⊂⊂ Y a reference inclusion.

The complexity of the diffracting obstacle is then encoded by the fast oscillating
behavior of �η as η becomes infinitesimal. Let us notice that the filling ratio of the
inclusions remains positive when η → 0 since it converges to |�| (the Lebesgue
measure of �).
It turns out that the topology of the inclusion � plays an important role in the
asymptotic analysis as η → 0. In this paper we will assume that:

(i) � is a connected compact subset of Y with Lipschitz boundary;
(ii) �∗ = Y\� is simply connected.

(1.2)

Constitutive parameters and scaling. The local behavior of the medium is repre-
sented by its relative permittivity and permeability tensors at every position x ∈ R

3.
In order to fit with the common use in the optical domain, we will assume the over-
all relative permeability to be a constant equal to 1. The dielectric properties of the
structure under study are described by a function εη of the form

εη(x) := εr

η2
1�η(x) + εe 1�\�η(x) + 1R3\�(x), (1.3)

where the parameters εe ∈ R
+ and εr

η2
∈ C

+ represent respectively the relative
permittivity in the matrix and in the inclusions. Here εr is a complex parameter
such that:

�(εr ) > 0, (1.4)
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while the scaling factor 1/η2 is responsible of a high contrast becoming larger and
larger as the period parameter η of the structure decreases to zero. The choice of this
scaling is not new in homogenization theory (see [4,8,12,18,39]). In our physical
context it means that the optical thickness of the inclusions remain constant and
therefore the Mie resonances of each dielectric inclusion appear at frequencies
which are independent of η (see [32]).

Diffraction problem. The structure is illuminated by (Einc, H inc) an incident
monochromatic wave travelling from infinity. We assume the harmonic time-
dependence to be e−iωt where ω > 0 is a fixed frequency. The total electromag-
netic field (Eη, Hη) satisfiesMaxwell equations given in distributional sense inR3

by
{
curl Eη = iωμ0Hη,

curl Hη = −iωε0 εηEη,
(1.5)

where ε0 > 0 andμ0 > 0 are, respectively, the permittivity and permeability in the
vacuum. The influence of the incident wave is encoded by the fact that the diffracted
field (Ed

η, Hd
η) := (Eη − Einc, Hη − H inc) satisfies the Silver-Müller’s condition

at infinity

(Ed
η, Hd

η) = O

(
1

|x|
)

, ωε0

(
x
|x| ∧ Ed

η

)
− k0Hd

η = o

(
1

|x|
)

. (1.6)

Remark 1.1. In this paper we will proceed in a dimensionless framework assum-
ing implicitly that the physical period of the composite is in fact η d being d the
unit of length. Thereby the adimensional wavelength of the electromagnetic waves
becomes λ/d (if λ is the real wavelength). In order to simplify notations this param-
eter d will not appear in the following, except in the presentation of numerical
simulations in Section 3.

2. Presentation of the Results

The asymptotic analysis as η → 0 of (Eη, Hη) solving (1.5) leads to a homog-
enized diffraction problem of the kind

η

YΣη

e1

e3

e2

Σ

η = r
η2

Ω

η = e

η = 1

Fig. 1. Diffracting structure and unit cell
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⎧
⎪⎪⎨
⎪⎪⎩

curl E = iωμ0 μ(x, ω) H

curl H = −iωε0 ε(x) E

(E − Einc, H − H inc) satisfies (1.6)

(2.1)

where

ε(x) := I3 1R3\�(x)+εeff 1�(x), μ(x, ω) := I3 1R3\�(x) + μeff(ω)1�(x).

(2.2)

Here the effective tensors εeff ,μeff describe for each frequency ω a homogeneous
medium occupying the domain �. They are described in a precise way in the next
subsection. The convergence of (Eη, Hη) to the solution of 2.1 will be specified in
our main Theorem (Theorem 2.2).

Let us point out that the two first equations in (2.1) are to be understood in the
distributional sense in R

3. In particular, under mild regularity assumptions, they
imply the following transmission conditions on ∂�:

[n ∧ E] = [n ∧ H] = 0, [n · μH] = [n · εE] = 0, (2.3)

with n denoting the outward unit vector and [·] the jump across ∂�.
The proof of the existence and uniqueness of the solution to (1.5), (1.6), under the
dissipativity condition (1.4), is classical and can be found for instance in [14]. The
existence for the limit problemwill be then a consequence of our main convergence
theorem 2.2. However, in order to handle a compactness argument based on the
subsequent a priori upper bound (7.1), we will need the following uniqueness
result:

Lemma 2.1. Assume that εeff is real symmetric positive and thatμeff is a symmetric
tensor whose imaginary part �(μeff) is positive definite. Then the solution to (2.1)
is unique.

Proof. By linearity, it is enough to check that if (E, H) solves (2.1) for a vanishing
(Einc, H inc), then (E, H) = (0, 0). Let R > 0 so large that � ⊂⊂ BR and denote
P(R) := ´

∂BR
(E ∧ H) · n the flux of the Poynting vector. As usual, the real

part of P(R) does not depend on R. Indeed exploiting the identity div E ∧ H =
curl E · H − curl H · E, we may integrate by parts and, by taking into account
(2.1), we get

P(R)=
ˆ

BR

(
curl E · H−curl H · E)= iω

(
μ0

ˆ

BR

μH · H−ε0

ˆ

BR

εE · E
)
.

(2.4)

In particular, since ε is real and μ agrees with the identity tensor outside �, by
identifying the real and imaginary parts, we deduce that:

� (P(R)) = −ωμ0

ˆ

�

�
(
μeffH · H

)
. (2.5)
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Now by exploiting the fact that (E, H) satisfies (1.6) with Einc = H inc = 0, we
easily deduce that the left hand member of (2.5) is non-negative. Therefore it holds
´
�

�
(
μeffH · H

)
� 0. As μeff is symmetric with �(μeff) > 0, we have for a

suitable constant c > 0:

�
(
μeffH · H

)
= �(μeff)H · H � c |H|2.

Thus H vanishes on�. By the second equation of (2.1) and recalling that ε is a real
positive tensor, it is also the case of E. It is then classical to deduce that the outgoing
wave (E, H) vanishes in the exterior domain R

3\� as solution of homogeneous
Helmholtz equations. ��

2.1. Effective Laws

The limit diffraction problem we wrote in the form (1.5) is completely deter-
mined by relations (2.2) once we know the effective permittivity tensor εeff and
the effective permeability tensor μeff . These tensors are described in a precise
way in the next two paragraphs. It turns out that εeff is real positive and does not
depend on the frequency and on the dielectric parameter εr . In contrast, the tensor
μeff = μeff(ω) depends on the frequency and exhibits resonances.

Effective permittivity law It depends only on the geometry of� and on the permit-
tivity in the matrix surrounding inclusions. The computation of εeff is similar to the
one used in the two-dimensional case (see [8,12]) where the classical ingredients of
homogenization theory for scalar Neumann problems on perforated domains can be
recognized (see [1,17]). The entries of the tensor εeff are given for (k, l) ∈ {1, 2, 3}2
by

εeffkl := εe

ˆ

Y
(ek + ∇χk).(el + ∇χl), (2.6)

χk ∈ W 1,2
� (Y ;R) being the unique solutions of

�yχk = 0 in �∗ and χk = −yk in �. (2.7)

As εe is a positive real term, it can be readily checked (see (5.10)) that the tensor
εeff is real symmetric positive. We notice that the same tensor appears in [25] in
the context of stiff problems in electromagnetism.

Effective Permeability Law The dependence of permeability tensor μeff with
respect to ω is ruled by the internal resonances of the composite structure which
are responsible for the magnetic activity. The description of the underlying spectral
problem is quite involved due to the fact that strong oscillations of the microscopic
magnetic field H0(x, ·) are allowed not only in � (in a similar way as in the 2D
case [8,12,18]), but also in the surrounding matrix. A nice way to circumvent this
difficulty consists in looking at the curl of the magnetic field which accounts for
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the magnetic activity. It turns out that this curl vanishes outside � (see (5.13)). We
therefore introduce the space Z0 ⊂ L2(Y ;R3) defined by

Z0 :=
{
f ∈ L2(Y ;R3) : div f = 0, f = 0 in �∗

}
. (2.8)

Let us notice that the elements of Z0 can be identified with divergence-free vector
fields in L2(�;R3)with vanishing normal trace on ∂�. Next, we associate to every
element f ∈ Z0 the unique solution ψ f in W 1,2

� (Y ;R3) of

− �ψ f = f in Y,

ˆ

Y
ψ f = 0. (2.9)

Then, as will be discovered later, the resonance frequencies for the microscopic
magnetic field are directly related to the following eigenvalue problem. Find
( f , α) ∈ Z0 × R such that for all g ∈ Z0:

ˆ

Y
∇ψ f : ∇ψg + 1

4

(ˆ

�

z ∧ f d z
)

·
(ˆ

�

z ∧ g d z
)

= α

ˆ

�

f · g.

(2.10)

The linear operator associated with the bilinear form in the left-hand side turns
out to be positive, compact and self-adjoint on the Hilbert space Z0 (embedded
with the L2(Y ;C3) scalar product). Therefore, it exists a sequence of eigenvalues
α0 � α1 � . . . � αn � · · · > 0 such that αn → 0 and an associated orthonormal
basis of eigenvectors { f n, n ∈ N} in Z0.

The effective permeability law we are going to establish for the limit diffraction
problem is described by a symmetric tensor μeff . This tensor can be then written
as the following series:

μeff(k0) := I3 +1

4

∑
n∈N

εr k20
1 − εrαnk20

(ˆ

�

y ∧ f n dy
)

⊗
(ˆ

�

y ∧ f n dy
)

.

(2.11)

In fact, it is convenient to present an alternative representation of μeff involving
periodic vector fields un on the unit cell which will be useful to describe the fast
oscillating magnetic field Hη. Let us define

λn = 1

αn
, un = 1√

αn

(
curl(ψ fn ) + 1

2

ˆ

�

y ∧ f n
)
. (2.12)

Then the following relation holds:

μeff(k0) = I3 +
∑
n∈N

εr k20
λn − εr k20

(ˆ

Y
un

)
⊗

(ˆ

Y
un

)
. (2.13)

As will be seen later in Section 6, the pair (un, λn) can be characterized directly as
solutions of the following spectral problem. Find (w, λ) ∈ Xdiv

0 × R such that for
all v ∈ Xdiv

0 :
ˆ

Y
curl un · curl v = λn

ˆ

Y
un · v, (2.14)
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where Xdiv
0 is a suitable subspace of W 1,2

� (Y ;C3) consisting of functions which
are curl-free in �∗ and divergence-free in Y (see (5.17)).

2.2. Main Convergence Result

In view of Lemma 2.1, we consider the unique solution (E, H) of (2.1) and denote
by Ek, Hk the k-th component of E, H respectively (k ∈ {1, 2, 3}). Next, we intro-
duce two important vector fields E0(x, y), H0(x, y) in L2(BR × Y ) (associated
with the two-scale analysis performed in Section 4) where x represents the macro-
scopic variable and where a Y -periodic dependence with respect to the fast variable
y is set in order to account for the oscillating behavior of the sequence (Eη, Hη).
The “two-scale electric field” is defined by

E0(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

3∑
k=1

Ek(x)
(
ek + ∇χk(y)

)
if x ∈ �

E(x) if x ∈ BR\�
, (2.15)

where the functions χk are the solutions of (2.7). Similarly, with the help of the
periodic vector fields un and positive numbers λn defined in (2.12), we define the
“two-scale magnetic field” by

H0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

3∑
k=1

Hk(x) Hk(y) if x ∈ �

H(x) if x ∈ BR\�
(2.16)

Hk(y) := ek +
∑
n∈N

〈ek, un〉 εr k20
λn − εr k20

un(y). (2.17)

We are now in a position to state the main result of the paper:

Theorem 2.2. Let us assume (1.2), (1.4) and let ε,μ be defined by (2.2), (2.6),
(2.13). Let (E, H) be the unique solution of (2.1). Then the solution (Eη, Hη) of
the diffraction problem (1.5) satisfies
ˆ

BR

∣∣∣Hη(x) − H0

(
x,

x

η

)∣∣∣
2
dx → 0,

ˆ

BR

∣∣∣Eη(x) − E0

(
x,

x

η

)∣∣∣
2
dx → 0.

(2.18)

where R is arbitrary large and E0, H0 are given by (2.15) and (2.16) respectively.
Futhermore it holds that (Eη, Hη) → (E, H) in C∞(K ) for every compact subset
K ⊂⊂ R

3\�.

The proof of Theorem 2.2 is quite long and involved; it is postponed to Section
7 where the arguments are presented along two steps. The most delicate issue is the
L2 upper-bound estimate (see (5.2)) for the electromagnetic field. This is proved a
posteriori in the last step by using a contradiction argument (in the same line as in
[9,10]). Before this proof, in Section 5, we assume a priori this L2-upper-bound
in order to prepare the two-scale analysis of the system.
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Remark 2.3. Let us emphasize that the convergence result in Theorem2.2 is unusual
in the classical framework of homogenization theory: the effective magnetic field
H that we use in order to describe the limiting diffraction problem (1.5) does not
agree inside the obstacle with the weak limit of Hη in L2

loc(R
3). Indeed in view

of (2.13), (2.16) and (2.17), it is easy to check that, for x ∈ �, this weak limit H̃
satisfies:

H̃(x) :=
ˆ

Y
H0(x, y) dy = μeff H(x), (2.19)

whereas H̃ = H inR3\�. As shown later, this tensor μeff differs from the identity
matrix.
There is a major reason in not using H̃ for describing the limit magnetic field: the
tangential trace of H̃ on ∂� turns out to differ from that of the field H outside.
This is a priori not physically reasonable and suggests that taking the asymptotic
bulk average of Hη would not be a good choice. Moreover, in view of Theorem 2.2
and of equations (2.1) solved by (E, H), we find a posteriori that the limit system
written in term of H̃ leads to

curl E = iωμ0 H̃, curl(μ−1(x) H̃) = −iωε0 ε(x) E,

wherewe lose the curl structure of the secondMaxwell and the fact that themagnetic
activity is encoded through the tensor μeff .
In order to obtain a proper notion of effective magnetic field, we will use a different
averaging recipe in which the periodic field H0(x, ·) is seen as a closed periodic
differential 1-form on\�. This allows to define at every point x ∈ � a circulation
vector H(x) = ¸

H0(x, ·) (see Lemma 4.5). Adopting this alternative definition
of H inside �, we will succeed in recovering the classical transmission conditions
across ∂� namely (2.3). We notice that in contrast, the limit magnetic induction
vector field B := μ0μ

effH agrees with the weak limit of Bη = μ0Hη. Roughly
speaking Bη can be seen as a closed 2-form and as η → 0 the local flux it generates
is represented by the bulk average B.

2.3. Frequency-Dependent Permeability and Band Gaps

According to Theorem 2.2, for infinitesimal η, the electromagnetic field
(Eη, Hη) outside the obstacle is close to the solution of a limit diffraction problem
in which domain � is occupied by a homogeneous medium whose permeability
and permittivity tensors are given in (2.6) and (2.13) respectively. In this asymp-
totic model, the most interesting issue with respect to applications stems from the
properties of tensor μeff , in particular its explicit dependence with respect to the
angular frequency ω = k0(ε0μ0)

−1/2 as well as its ability to exhibit eigenvalues
with a negative real part. To see this, it is convenient to introduce Vλ the eigenspace
associated with a eigenvalue λ of spectral problem (2.14). Then denoting by PVλ

the orthogonal projector on Vλ (with respect to the scalar product of L2(Y )3), we
may rewrite (2.13) as follows

μeff(ω) := 1 +
∑
λ∈σ0

εr k20
λ − εr k20

Mλ, (Mλ)kl := (PVλ(ek), el), (2.20)
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where

σ0 := {λ : λ eigenvalue of (2.14), Mλ �= 0} . (2.21)

For λ ∈ σ0, the real symmetric matrix satisfies 0 � Mλ � I3. It is of rank one if λ

is simple. In order for it to be of full rank we need at least that the multiplicity of
λ be not smaller than 3.

Let us assume for simplicity that εr is a positive real (lossless dielectric inclu-
sions). Then tensor μeff(ω) is real symmetric, continuous with respect to ω except
at the frequencies (Mie resonances) given by:

ωλ := √
λ(ε0μ0εr )

−1/2, λ ∈ σ0.

In the vicinity of this values,μeff blows up and we are led to different consequences
according to the rank of Mλ. Denote by μ± the largest (resp. the smallest) of the
eigenvalues of μeff . Clearly it follows from (2.20) that limω→ω+

λ
μ−(ω) = −∞.

The same holds true forμ+ if and only ifMλ has full rank. In this case, by continuity,
we obtain an interval of frequencies in which all eigenvalues of μeff are negative.
For such frequencies, since εeff is positive definite, the electromagnetic field cannot
propagate in any direction inside the obstacle. We may therefore conclude to the
existence of a photonic band gap. On the opposite side if Mλ is not of full rank,
then vectors in its kernel determine propagative directions for the electromagnetic
field. Such a partial band gap situationwas already observed in the context of elastic
waves [5,41].

3. Numerical Simulations

In this section we present a numerical approach in order to evaluate the tensor
μeff as a function of the frequency. To that aim it is convenient to use the represen-
tation (2.11) where we need to solve the three dimensional cell spectral problem
(2.10) in the space Z0 of divergence-free fields vanishing outside�. The advantage
to work with this representation rather than with (2.13) is that the space Z0 requires
a discretization on subset � only. The approximation of (2.10) is performed by
means of a Galerkin method making use of the piecewise affine edge-elements of
Nedelec (see [34]). The main drawback of the method with respect to the compu-
tation cost is that we need to handle the non-local three dimensional-cell problem
(2.9). For this problem we use an integral equation method with the help of the
Green kernel of the inverse Laplace operator on the 3-dimensional torus (we used
the explicit form given in [28]).

In order to give a nice description of μeff(ω) in the vicinity of the resonant
frequencies, we have computed some of the local displacement currents Jk, 1 �
k � 3 appearing in the periodic cell problem (see (5.21)). Recall that Jk represents
the vorticity of the shape magnetic field Hk and that it belongs to space Z0. By
solving the spectral problem (2.10), we obtain a sequence of pairs ( f n, αn) and
then we recover Jk = curl Hk from the following expansion:

Jk = 1

2

∑
n∈N

εr k20
1 − αn εr k20

〈ek, y ∧ f n〉 f n . (3.1)
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The equality above is a straightforward consequence of (2.17) taking into account
that, by (2.12), one has

curl un = f n√
αn

, 〈ek, un〉 = 1

2
√

αn
〈ek, y ∧ f n〉.

Then it follows from (2.11) and (3.1) that the entries of tensor μeff(ω) can be
deduced from the relations

μeff
kl = 1

2
〈 y ∧ Jk, el〉 k, l ∈ {1, 2, 3}. (3.2)

For a given frequency, the excited resonances are weighted by the strength factor´
�
y∧ f n so that, in practice, only a few of the eigenvectors f n will be contributing

in the expansion (3.1).We are going to represent them showing thus the significative
loops of displacement current Jk which take place in each periodic cell of the
composite structure.
In view of (3.1) and (3.2), numerical simulations for solving (2.10) have been
performed for two kind of geometries of the dielectric inclusion � that we will
discuss separately:

– the cubic one where � = �1 := (−0.3, 0.3)3;
– the L-shaped one where � = �2 := (−0.3, 0.3)3\([−0.3, 0.1]2 × R

)
.

In both cases the permittivity parameter εr characterizing the dielectric inclusion
is taken to be 100 + i , meaning that the structure is slightly dissipative.

Cubic geometry. As the faces of the cubic inclusion �1 and of the periodic
cell Y share the same orientation, many symmetry properties can be exploited,
namely the invariance of the structure under all rotations of angle ±π/2 with axis
ei , i ∈ {1, 2, 3}. In particular it is easy to deduce that μeff(= μeff I3) is a scalar
tensor. Moreover an eigenvalue α such that

´
�
y ∧ f �= 0 for any associated

eigenvector f has a multiplicity � 3. If this is not the case, that means that α is
not contributing in expansion (2.11) (equivalently λ = α−1 does not belong to σ0
defined in (2.21)). In Fig. 2, we represent on the left side the real and the imaginary
parts of μeff as a function of the normalized wavelength λ

d (see Remark 1.1). Band
gaps correspond to the frequency intervals in which the scalar permeability μeff

satisfies �(μeff) < 0. We represent only the part of the graph where the influence
of resonant frequencies is significant namely the part corresponding to λ

d ∈ [3, 10]
in which three oscillations of μeff can be observed. Two of them have a sufficiently
large amplitude in order to reach a negative �(μeff): the larger one corresponds
to the fundamental eigenvalue α1 while the second one is associated with eigen-
value α24 (here the αn are repeated accounting their multiplicity). The third one
associated with α17 corresponds to a resonance whose amplitude is too small to
force an additional change of sign for �(μeff). In fact the numerical computations
reveal that a very few of the αn contribute to the series: among the 49 first ones
only {α1, α2, α3, α17, α18, α19, α24, α25, α26} are such that α−1 ∈ σ0.

Now we turn to the description of the displacement current J3. In Fig. 3 an
horizontal section of this vector field J3 is given for two particular values ofλ/d (for
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Fig. 2. Tensor μeff as a function of λ/d for εr = 100 + i . On the left � = �1 is a cube
of size 0.6 and tensor μeff is scalar; on the right � = �2 is a L-shape inclusion (and
μeff
22 = μeff

11 ,μeff
13 = μeff

23 = 0)

Fig. 3. Horizontal section of J3 for the cubic geometry. Left side: λ/d = 7.5 (fundamental
resonance). Right side: λ/d = 3.76. (resonance associated with the 24th eigenvalue)

which J3 is horizontal and very slowly varying in y3). On the left, for λ/d = 7.5,
a single loop of current is obtained associated with the fundamental eigenvalue
α1. On the right, for λ/d = 3.76, the second important resonance α24 is excited
and it appears two concentric loops of current traveled in opposite directions. The
induced magnetic field H3 does not vanish but has much lower amplitude than in
the previous case.

Eventually, in Fig. 4, we draw the horizontal section of eigenvector f 4 whose
strength factor

´
�
y ∧ f 4 vanishes. It consists of two counter rotating loops. No

magnetic field is induced and the resonance α4 is not excited from the incident
wave.

L-shape geometry. In that case, the effective permeability tensor μeff is not scalar
anymore. However some symmetries are still present and it is possible to show that
μeff
11 = μeff

22 and μeff
13 = μeff

23 = 0. Thus μeff admits {e1 ± e2, e3} as eigenvectors
and its eigenvalues are

{
μeff
11 ± μeff

12 ,μeff
33

}
.
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Fig. 4. Left side horizontal section of eigenvector f 4 in the cubic geometry (mode that is not
excited). Right side horizontal section of field J3 for λ/d = 4.17 in the L-shape geometry

Fig. 5. Representation of field J1 in the case of a L-shape inclusion�. On the left,λ/d = 6.2
(first mode is excited) and on the Right λ/d = 5.7 (second mode is excited)

In the right hand side of Fig. 2, the real parts of coefficients μeff
11 ,μeff

12 ,μeff
13 are

represented in term of normalized wavelength λ/d varying in the interval [3, 10]
where most of the significant resonances are localized. The two peaks of resonance
on the right influence the response to horizontal magnetic fields. They are produced
by the displacement currents J1, J2 each of them being deduced form the other
by a rotation of angle π around axis e1 + e2. In Fig. 5 we represent J1 that we
draw only in the back faces of �1 and in a fictitious surface element located at
the junction part of the “L”. On the left we take λ/d = 6.2 which is close to the
first fundamental mode while on the right λ/d = 5.7 corresponds to the second
mode. In both cases J1 exhibits two loops which rotate in the same direction in the
first case (averaged induced magnetic field

´
Y H1 parallel to e1 + e2 ) and in the

opposite direction in the second one (
´
Y H1 parallel to e1 − e2).
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The next significative resonance is obtained for λ/d close to 4.17 and relies on
displacement current J3. This vector field depicted in the right hand side of Fig. 4
is horizontal and independent of y3. The averaged induced magnetic field

´
Y H3 is

vertical and contributes to μeff
33 only, producing a change sign of �(μeff

33 ).

4. Preliminary Background

4.1. Two-Scale Convergence

Our study is basedon thenotionof two-scale convergencewhich allows to keep a
precise description of the electromagnetic field in the periodic microstructure when
η tends to zero. We refer to Allaire [2] for a precise presentation of the method and
we recall here some principal points.

The definitions below are given on a fixed bounded domain D of R3 (in most
cases D will be a reference ball BR with radius R so large that � ⊂⊂ BR).

Definition 4.1 (Two-scale convergence).We say that a sequence fη ∈ L2(D) two-
scale converges to f0 ∈ L2(D × Y ), and we write fη(x) ⇀⇀ f0(x, y) if, for all
ϕ ∈ C∞

c (D;C∞
� (Y )), it holds that

lim
η→0

ˆ

D
fη(x) ϕ

(
x,

x

η

)
dx =

ˆ

D×Y
f0(x, y) ϕ(x, y) dx dy. (4.1)

The sequence is said to be strongly two-scale convergent (denoted fη →→ f0), if,
in addition,

lim sup
η→0

ˆ

D
| fη(x)|2 dx =

ˆ

D×Y
| f0(x, y)|2 dx dy. (4.2)

A key justification of definition (4.1) is that any sequence fη which is uniformly
bounded in L2(D) admits a two-scale converging subsequence. For such a sub-
sequence, the weak limit exists and is given by the bulk average 〈 f0〉(x) :=´
Y f0(x, y) dy. A consequence of the strong two-scale convergence (4.2) is the
following product rule:

fη →→ f0, gη ⇀⇀ g0 �⇒ lim
η→0

ˆ

D
fη gη ϕ dx =

ˆ

D
〈 f0g0〉ϕ dx, (4.3)

the latter convergence holding for every ϕ continuous with compact support. In
fact the assumption on the support of ϕ can be dropped once we know that f0
satisfies a suitable admissibility criterium. This is the case in particular if f0(x, y) =
θ(x) ψ(y) with θ ∈ L2(D) and ψ ∈ L2

�(Y ) (see Lemma 5.7 in [2]). Furthermore
the strong convergence fη →→ f0 for such an admissible f0 implies that

lim
η→0

ˆ

D

∣∣∣∣ fη(x) − f0
(
x,

x

η

)∣∣∣∣
2

dx = 0.

In particular, the strong two-scale convergence fη →→ f0 with f0(x, y) = f (x)
implies that fη → f strongly in L2(D).
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We begin by recalling a classical rule (see [2]) which applies to vector valued
functions uη : D → C

3 which are uniformly bounded in L2(D) aswell as η div uη.
We will its straightforward variant in which div uη is substituted with curl uη.

Proposition 4.2. Let (uη)η ⊂ L2(D;C3) a sequence of functions such that uη ⇀⇀

u0. Then,

(i) Assume that η div uη ⇀⇀ χ0. Then for almost everywhere x ∈ D, it holds
χ0(x, ·) = divy u0(x, ·);

(ii) Assume that η curl uη ⇀⇀ ξ0. Then for almost everywhere x ∈ D, it holds
ξ0(x, ·) = curly u0(x, ·).

Let us stress that the equalities above are meant in the sense of (Y - periodic)
distributions on R

3. On the other hand, this result can be localized as follows:
let � be an open subset of Y and �η defined as in (1.1); then the convergence
η 1�η curl uη ⇀⇀ ξ0 implies that ξ0(x, ·) = curly u0(x, ·) in D′(�). In the same
way we have χ0(x, ·) = divy u0(x, ·) in D′(�) provided that the convergence
η 1�η div uη ⇀⇀ χ0 holds.
Next we give an improved version of a classical result concerning a sequence of
scalar-valued functions uη which are uniformly bounded in W 1,2(D). For every
η > 0, let us set

Y k
η = η(Y + k), Iη := {k ∈ Z

3 : Y k
η ∩ D �= ∅}.

Then we define the step-wise approximation of uη given by

[uη]η(x) :=
∑
k∈Iη

(  

Y k
η

uη dx
)
1Y k

η
(x). (4.4)

Assume that uη converges weakly to u in W 1,2(D). Then by Rellich’s Theorem
and Poincaré inequality, we easily deduce that:

[uη]η → u in L2(D) and vη := uη − [uη]η
η

is bounded in L2(D).

(4.5)

Possibly passing to a subsequence, we may assume that vη ⇀⇀ v0. In the following
Proposition we make the link between v0 and the two-scale limit of the sequence
∇uη:

Proposition 4.3. Let (uη) be a bounded sequence in W 1,2(D) such that

uη → u weakly in W 1,2(D),
uη − [uη]η

η
⇀⇀ v0.

Let ψ0(x, y) := v0(x, y)−∇u(x) ·(y−[y]). Thenψ0 belongs to L2(D;W 1,2
� (Y ))

and it holds

∇uη ⇀⇀ ∇xu(x) + ∇yψ0(x, y). (4.6)

Moreover if uη is independent of η (that is uη = u), then ψ0 = 0 and we have the

strong two-scale convergence
u−[u]η

η
→→ ∇u(x) · (y − [y]).



1250 Guy Bouchitté, Christophe Bourel & Didier Felbacq

Remark 4.4. The fact that ψ0(x, ·) belongs to W 1,2
� (Y ) indicates that the periodic

function v0(x, ·) shares on ∂Y the same jump as the piecewise affine function
∇u(x)(y−[y]). The existence of ψ0 satisfying (4.6) is proved in [2]. Here we give
an explicit construction which will be useful in Section 5.We refer to [3] for similar
results. Proof is given below for the reader’s convenience.

Proof. Step 1. We consider the linear map Aη : W 1,2(D) �→ L2(D) defined by

Aη(u) := u − [u]η
η

− ∇u(x) · x − [x]η
η

.

Since |x − [x]η| �
√
3
2 η, it follows from Poincaré inequality that for a suitable

positive C :

‖Aη(u)‖L2(D) � C ‖∇u‖L2(D) ∀u ∈ W 1,2(D). (4.7)

On the other hand, it can be easily checked by using a Taylor expansion that, for
u ∈ C2(D), ‖Aη(u)‖L2 � C η. Therefore by (4.7) and by the density of C2(D) in
W 1,2(D), we deduce that Aη converges strongly to 0 as η → 0. In particular, for

every u ∈ W 1,2(D), it holds Aηu → 0 in L2(D). Noticing that x−[x]η
η

→→ (y−[y]),
it follows that u−[u]η

η
→→ ∇u(x)·(y−[y]) (which is the last statement of Proposition

4.3).
Step 2. In this step we prove (4.6) assuming that u = 0. In this case ψ0 coincides
with the weak two-scale limit v0 of

uη−[uη]η
η

. Possibly passing to a subsequence we
may assume that

∇uη ⇀⇀ ξ0(x, y),
uη − [uη]η

η
⇀⇀ v0(x, y). (4.8)

The two-scale convergence of the whole sequence ∇uη will be deduced once we
can prove that, for almost everywhere x ∈ D, ξ0(x, ·) agrees with the distributional
gradient of v0(x, ·) on R3. As v0(x, ·) is periodic this amounts to showing that for
almost everywhere x ∈ D and for every test function θ(y) in C∞

� (Y ;C3) , it holds
that

−
ˆ

Y
v0(x, y) divy θ dy =

ˆ

Y
ξ0(x, y) · θ(y) dy. (4.9)

Let ρ an arbitrary localizing function in C∞
0 (D). Thanks to an integration by parts,

we obtain

ˆ

D
∇uη(x)ρ(x) · θ

( x
η

)
dx = −

ˆ

D
uη(x)∇ρ(x) · θ

( x
η

)
dx

−1

η

ˆ

D
uη(x)ρ(x) divy θ

( x
η

)
dx . (4.10)
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Using the piecewise constant approximation operator [·]η as defined in (4.4), we
split the last integral in the right-hand member of (4.10) as follows:

1

η

ˆ

D
uη(x)ρ(x) divy θ

( x
η

)
dx =

ˆ

D

(
uη(x) − [uη]η

η

)
ρ(x) divy θ

( x
η

)
dx

+
ˆ

D
[uη]η(x)

(
ρ(x) − [ρ]η

η

)
div θ

( x
η

)
dx

+1

η

ˆ

D
[uη]η(x)[ρ]η divy θ

( x
η

)
dx

= I 1η + I 2η + I 3η .

We observe that I 3η vanishes: indeed, the functions [uη]η and [ρ]η are constant on
each cell Y k

η where divy θ has a vanishing mean value. On the other hand, since

[uη]η strongly converges to u = 0 in L2(D), we infer that I 2η → 0 (indeed ρ−[ρ]η
η

is bounded in L2(D) whereas div θ ∈ L∞(D)).
Eventually passing to the limit η → 0 in (4.10) and taking into account the

two-scale convergences (4.8), we obtain the equality
ˆ

D×Y
ξ0(x, y) ρ(x) · θ(y) dx dy = −

ˆ

D×Y
v0(x, y) divy θ(y) ρ(x) dx dy,

from which follows the relation (4.9) by the arbitrariness of the test function ρ.

Step 3. We consider now a general sequence uη converging weakly to u and we

apply Step 2 to the translated sequence ũη = uη − u. Then ṽη := ũη−[ũη]η
η

=
vη − u−[u]η

η
. Thus, by Step 1, the two-scale limit ṽ0 of ṽη is given by ṽ0(x, y) =

v0(x, y) − ∇u(x) · ( y− [ y]) = ψ0(x, y). On the other hand, as ũη → 0, we know
by Step 2 that ∇ũη ⇀⇀ ∇y ṽ0. It follows that

∇uη = ∇ũη + ∇u ⇀⇀ ∇yψ0(x, y) + ∇u(x).

The proof of Proposition 4.3 is finished. ��

4.2. Geometric Averaging

Since the advent of gauge theories, it is now a classical idea in physics to see
magnetic fields as differential 1-forms inR3. In our case, in view of Lemma 5.3, the
magnetic field H0(x, ·) is curl-free in the simply-connected domain �∗ (closed 1-
form). It follows that the circulation of H0(x, ·) along curves in�∗ joining opposite
points of ∂Y is independent of the line and of the end points we chose. It is then
natural to define the “mean circulation” vector, denoted by

¸
H0, and characterized

by
(˛

H0(x, ·)
)

· ek :=
ˆ

k

H0(x, ·) · ek dH1, (4.11)
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wherek ⊂ �∗ is a curve joining two opposite points on the faces of ∂Y orthogonal
to ek .

A priori this definition makes sense only for regular functions. It can be
extended to functions in W 1,2

� (Y ) as follows:

Lemma 4.5. Let u ∈ L2
�(Y ;C3) such that curl u = 0 in �∗. Then there exists a

unique vector
¸
u ∈ C

3 and a function ψ ∈ W 1,2
� (�∗) (unique up to a constant)

such that

u = ∇ψ +
˛

u in �∗. (4.12)

Moreover this circulation vector satisfies the following properties:

(i) For all f ∈ L2
�(Y ;C3) such that div f = 0 in Y and f = 0 in � we have

ˆ

Y
u · f dy =

˛
u ·

ˆ

Y
f dy; (4.13)

(ii) If u is continuous, then for k ∈ {1, 2, 3}
(˛

u
)

· ek =
ˆ 1

0
u
(
γ (s)

) · γ ′(s) ds; (4.14)

for all γ ∈ C1([0, 1];�∗) such that γ k(1) − γ k(0) = ek .
(iii) There exists a constant C > 0 such that

∣∣∣
˛

u
∣∣∣ ≤ C‖u‖L2(Y ;C3). (4.15)

Remark 4.6. Note that if curl u = 0 in whole Y , then
¸
u = ´

Y u and we recover
from (4.13) a classical property (linked to “div-curl Lemma”). On the other hand,
by applying (4.13) to f := v ∧ z with z varying over C3, we get the following
variant of (4.13):

ˆ
(u ∧ v) dy =

˛
u ∧

ˆ
v dy, if curl v = 0, v = 0 in �. (4.16)

Proof. As �∗ is simply-connected, the existence of the unique vector
¸
u ∈ C

3

and of a function ψ ∈ W 1,2
� (�∗) such that (4.12) holds in the case of a smooth

function u is a classical result in differential geometry (see for instance [6] p. 197).
The extension to functions u ∈ L2(Y,C3) such that curl u = 0 in �∗ follows by
using a density argument.
Now we fix f ∈ L2

�(Y ;C3) such that div f = 0 in Y and f = 0 in �. Moreover

we consider ψ̃ ∈ W 1,2
� (Y ) to be the harmonic extension of ψ in �. Since f = 0

in �, we have
ˆ

Y
u · f dy =

ˆ

�∗
(∇ψ +

˛
u) · f dy =

ˆ

Y
∇ψ̃ · f +

˛
u ·

ˆ

Y
f dy

=
˛

u ·
ˆ

Y
f dy,



Homogenization Near Resonances and Artificial Magnetism 1253

where the last equality holds since div f = 0. Relation (4.13) is proved.
For u being continuous, the associated potential ψ is Lipschitzversions dŐfinitives
on �∗ and we get

ˆ 1

0
u
(
γ (s)

) · γ ′(s) ds =
ˆ 1

0
(∇ψ +

˛
u)

(
γ (s)

) · γ ′(s) ds

= ψ
(
γ (1)

) − ψ
(
γ (0)

) +
˛

u · ek .

The equality (4.14) follows thanks to the periodicity of ψ .
For the proof of (4.15) we consider three cylinders Ck ⊂ Y for k ∈ {1, 2, 3}. Each
of them is in direction ek , cross entirely the unit cell Y and is such that� ∩Ck = ∅.
We introduce functions f k ∈ L2

�(Y ;C3) given by f k(y) = 1
|Ck |1Ck (y)ek . By

construction those functions are admissible in (4.13) and satisfy
´
Y f k dy = ek .

Thanks to (4.13) and to the Cauchy-Schwartz inequality we deduce that
∣∣∣
˛

u · ek
∣∣∣ =

∣∣∣
˛

u ·
ˆ

Y
f k

∣∣∣ =
∣∣∣
ˆ

Y
u · f k

∣∣∣ ≤ 1√|Ck | ‖u‖L2(Y ;C3)

for k ∈ {1, 2, 3}.
The estimate (4.15) follows. ��

4.3. Miscellaneous Results

For the commodity of the reader we recall a classical result related Sobolev
space W 1,2

� (Y ;C3).

Lemma 4.7. Let u ∈ L2
�(Y ;C3) such that curl u ∈ L2

�(Y ;C3) and div u ∈ L2
�(Y ).

Then u ∈ W 1,2
� (Y ;C3) and

ˆ

Y
|∇u|2 =

ˆ

Y
| curl u|2 +

ˆ

Y
| div u|2. (4.17)

Proof. As elements of L2
�(Y ), the functions u, curl u and div u can be developed

in Fourier series. There exists therefore
{
ck ∈ C

3 : k ∈ Z
3
}
such that

u( y) =
∑

k∈Z3

e2iπk· yck, curl u( y) =
∑

k∈Z3

2iπe2iπk· y k ∧ ck

div u( y) =
∑

k∈Z3

2iπe2iπk· y k · ck .

with
∑

k∈Z3

|ck |2 = ‖u‖2L2(Y ;C3)
,

∑

k∈Z3

|k ∧ ck |2 = 4π2
ˆ

Y
| curl u|2

∑

k∈Z3

|k · ck |2 = 4π2
ˆ

Y
| div u|2.
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Since |k ∧ ck |2 + |k · ck |2 = |k|2|ck |2, we infer that ∑
k |k|2|ck |2 < +∞, thus u

belongs to W 1,2
� (Y ;C3) and relation (4.17) follows straightforwardly. ��

In order to establish the strong convergence in L2
loc of the field (Eη, Hη), we will

use the celebrated div-curl Lemma below for which we refer to [33,38].

Lemma 4.8. Let B be a bounded domain ofR3. Let (uη) and (vη) two sequences of
L2(B;R3) converging respectively to u and v weakly in L2(B;R3). If, moreover,
we have

(div uη)η is compact in W−1,2(B) and (curl vη)η is compact in (W−1,2(B))3,

then the sequence (uη · vη)η converges to u · v in the distributional sense in B.

For checking the strong compactness assumption inW−1,2(B), the following char-
acterization will be useful:

Lemma 4.9. Let (Tn)n ⊂ W−1,2(B) a bounded sequence. Then (Tn) is relatively
compact (for the topology of the norm) if and only if, for all sequence (ϕn)n such
that ϕn ⇀ 0 in W 1,2

0 (B), we have limn→+∞ < Tn, ϕn >= 0.

5. Two-Scale Analysis of the Electromagnetic Field

In this section we fix a ball BR such that � ⊂⊂ BR . We are going to identify
the two-scale limit of the electromagnetic field (Eη, Hη) under the assumption that
it is uniformly bounded in L2(BR). In fact this analysis includes the divergence-
free vector field Jη defined below which represents a normalized version of the
so-called “displacement current”:

Jη(x) = ηεηEη. (5.1)

Along this section, we will make the following hypothesis:

sup
η>0

(
‖Eη‖L2(BR) + ‖Hη‖L2(BR) + ‖Jη‖L2(BR)

)
< +∞. (5.2)

Thanks to the estimate (5.2), which will be established a posteriori in Section 7,
we may assume, possibly after extracting subsequences, that it holds that

Eη ⇀⇀ E0, Hη ⇀⇀ H0 and Jη ⇀⇀ J0 (5.3)

for suitable E0, H0 and J0 belonging to L2(BR × Y ;C3).

In view of the convergences in (5.3), we define the effective electromagnetic field
(E, H) to be

E(x) :=
ˆ

Y
E0(x, y) dy, H(x) :=

˛
H0(x, ·). (5.4)

Recall that under (5.3), E(x) represents theweak limit of Eη (bulk average)whereas
H(x) is associated with the new averaging procedure introduced in Section 4.2.
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In Section 5.1, we identify E0(x, ·) for x ∈ �. The characterization of vector fields
H0(x, ·), J0(x, ·) for x ∈ � is a quite involved issue developed along Section
5.2. Besides this, for x /∈ �, J0(x, ·) vanishes and is a direct consequence of
the uniform convergence issue developed in Section 7.1 that the fast oscillations of
(Eη, Hη) disappear at a positive distance from ∂�. Accordingly, E0(x, ·), H0(x, ·)
are constant and agree with their respective averages:

E0(x, ·) = E(x), H0(x, ·) = H(x) for almost everywhere x ∈ BR\�.

(5.5)

5.1. Oscillating Electric Field and Effective Permittivity

Our aim here is to identify, for x ∈ �, the two-scale limit E0 given in (5.3)
in term of its bulk average E(x) (see (5.4)). First we show that E0(x, ·) solves an
electrostatic problem in the unit cell.

Lemma 5.1. For almost every x ∈ �, the periodic function u := E0(x, ·) satisfies
in the distributional sense in Y

curly u = 0, divy u = 0 in � × �∗ , and u = 0 in � × �. (5.6)

In particular the restriction of E0(x, ·) to �∗ belongs to W 1,2
� (�∗;C3).

Proof. By (5.2) and the first equation in (1.5), we infer that η curl Eη → 0 in
L2(�). Thus by applying Proposition 4.2 (ii), we deduce that curly E0(x, ·) van-
ishes everywhere.
From the second Maxwell equation in (1.5), we deduce that div(εηEη) = 0 in
�. Since εη is constant in �\�η, it follows in particular that η div(Eη) = 0 in
�\�η. Passing to the limit η → 0 with the help of assertion (i) of Proposition 4.2
(and of the localized version indicated after the statement), we derive the equality
divy E0 = 0 holding in D′(Y\�).
Eventually, we observe that the equality η Jη = εr Eη holds in �η. By the bound
(5.2), we deduce that Eη1�η → 0 in L2(�). Accordingly E0(x, ·) vanishes in �.
��
We are now able to characterize the set of solutions of the cell problem (5.6).

Proposition 5.2. The set of solutions of (5.6) is a three dimensional vector space
spanned by the fields Ek ∈ L2(Y ;R3) defined for k = 1, 2, 3 by:

Ek = ek + ∇yχk . (5.7)

Functions χk are the unique elements of W 1,2
� (Y ) satisfying (2.7), that is:

�yχk = 0 in �∗ and χk = −yk in �.

In particular, E0 can be decomposed as

E0(x, y) =
3∑

k=1

Ek(x) Ek(y), (5.8)

with Ek(x) =
ˆ

E0(x, y) · ek dy.
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Proof. By construction E0 given in (5.8) satisfies (5.6) and the average condition´
Y E0(x, y) dx = E(x). More generally, if V denotes the subspace of W 1,2

� (Y )

consisting of all solutions to (5.6), we see that the linear map u ∈ V �→ ´
Y u dy ∈

C
3 is surjective. The uniqueness as well as the fact that dim(V ) = 3 will follow

if we show that this map is injective. Let u ∈ V such that
´
Y u = 0. Then as

curl u = 0 in Y , there exists ψ ∈ W 1,2
� (Y ) such that u = ∇ψ in Y . Thanks to

(5.6), it holds that �ψ = 0 in �∗ while ∇ψ = 0 in �. As � is connected, we may
assume that ψ vanishes in � as well as its trace on ∂�. It follows that ψ vanishes
everywhere, thus u = 0. ��
Effective permittivity tensor. The functions Ek(y) defined in (5.7) which, we call
shape electric fields, depend only on the geometry of �. They determine the oscil-
lating behavior of the electric field as well as the effective permittivity tensor εeff

given in (2.6) (up to the positive real permittivity factor εe which represents the
permittivity of thematrix). Indeed the tensor given in (2.6) can bewritten as follows:

εeffkl := εe

ˆ

Y
Ek · El . (5.9)

In particular we see that this tensor is real symmetric, positive-definite and inde-
pendent on the frequency. More precisely, by using Jensen’s inequality, we find
that

εeff z · z = εe

ˆ

Y
|

3∑
k=1

zk Ek |2 � εe |z|2 for all z ∈ C
3. (5.10)

As a consequence no specific effect (resonances, dispersion) is expected concerning
the permittivity law of the composite structure under study.

5.2. Oscillating Magnetic Field and Displacement Current

In this subsection, we are going to identify the two-scale limits H0 and J0
given in (5.3) in terms of the effective magnetic field H(x) defined in (5.4). We
start with the following result:

Lemma 5.3. For almost all x ∈ �, the periodic vector fields H0(x, ·) and J0(x, ·)
satisfy:

divy H0(x, ·) = 0, curly H0(x, ·) = −i ω ε0 J0(x, ·) in D′(R3), (5.11)

J0(x, ·) = 0 almost everywhere in �, curly J0(x, ·)
= iωμ0εr H0(x, ·) in D′(�). (5.12)

In particular, H0(x, ·) is an element of W 1,2
� (Y,C3).

Proof. Recalling that Hη is divergence-free, the first relation in (5.11) follows
from the assertion (i) of Proposition 4.2. Next, by the second equation in (1.5) and
(5.1), we have

η curl Hη = −iωε0ηεηEη = −iωε0 Jη.
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By taking the two-scale limit of the left-hand member exploiting the assertion (ii)
of Proposition 4.2, we are led to the second equation in (5.11). In particular we find
that curl H0(x, ·), div H0(x, ·) are elements L2

�(Y ). Therefore, by Lemma 4.7, we

conclude that H0(x, ·) belongs to W 1,2
� (Y,C3).

Next we observe that, by construction, the vector field Jη(x) vanishes outside �η,
thus obviously J0(x, ·) = 0 almost everywhere in �∗. On the other hand, by (1.3)
and (5.1), we have η Jη = εr Eη in�η so that by the first equation in (1.5), it holds
that

η curl Jη = i ω μ0 εr Hη in �η.

Passing to the limit η → 0 with the help of assertion (ii) of Proposition 4.2 (see the
localization argument after the statement), we derive the equality curly J0(x, ·) =
iωμ0εr H0(x, ·) holding in D′(�). The proof of Lemma 5.3 is complete. ��
We notice that, by eliminating J0 in relations (5.11) (5.12), we obtain for H0 a
system of equations similar to that obtained in (5.6) for E0(x, ·):
divy H0=0, in Y curly H0=0 in �∗, �yH0 + εr k

2
0 H0=0 in �.

(5.13)

However, as we have no information on the possible tangential jump of J0(x, ·)
across ∂�, it is no straightforward in this case to see that the set of W 1,2

� (Y,C3)

of solutions to (5.13) is still of dimension three or equivalently that the solution to
the system is unique for a given average H(x) (see (5.4)). This apparent difficulty
is overcome once we show that H0(x, ·) satisfies a suitable variational principle.
This is done in the next crucial Lemma.

Lemma 5.4. Let v ∈ W 1,2
� (Y,C3) such that curl v = 0 in �∗ and

˛
v = 0. Then

for almost all x ∈ �, the periodic field w = H0(x, ·) satisfies the equation
ˆ

�

curlw · curl v − εr k
2
0

ˆ

Y
w · v = 0. (5.14)

Proof. From the Maxwell system (1.5) and taking into account the definition of εη

in (1.3) and k20 = ε0 μ0 ω2, it is straightforward to deduce that the magnetic field
Hη satisfies the variational equality

1

εe

ˆ

�\�η

curl Hη · curlϕη + 1

εr

ˆ

�η

η2 curl Hη · curlϕη = k20

ˆ

�

Hη · ϕη,

(5.15)

which holds for every smooth vector field ϕη compactly supported in �.
Let ρ(x) ∈ C∞

c (�) and plug ϕη(x) := ρ(x)v(x/η) as a test function in (5.15)
with v satisfying the assumptions of the Lemma. Then, as v is curl-free in �∗, it
holds that

curl(ϕη) = ∇ρ(x) ∧ v
( x

η

)
+ ρ(x)

η

(
curly v

) ( x
η

)
.
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It follows that we have the following strong two-scale convergences:

ϕη →→ ρ(x) v(y), η curl(ϕη) →→ ρ(x) curly v.

Then, by applying (4.3) and recalling that Hη ⇀⇀ H0 and η curl Hη ⇀⇀ curly H0
(see Proposition 4.2), we have

lim
η→0

ˆ

�η

η2 curl Hη · curlϕη =
ˆ

�×�

ρ(x) curly H0 · curly v

lim
η→0

ˆ

�

Hη · ϕη =
ˆ

�×�

ρ(x) H0 · v.

In view of (5.15), it is then enough to prove that

lim
η→0

ˆ

�\�η

curl Hη · curlϕη = 0. (5.16)

Indeed, thanks to the convergences above, by passing to the limit in (5.15) , we
infer that

ˆ

�×�

ρ(x) curly H0(x, y) · curl v(y) dx dy = k20εr

ˆ

�×Y
ρ(x) H0(x, y) · v(y) dx dy,

and (5.14) follows by the arbitrariness of the test function ρ(x).
To prove claim (5.16), it is convenient to go back to the electric field eη through
the second Maxwell equation in (1.5). As εη = εe in �\�η, we have

lim
η→0

ˆ

�\�η

curl Hη · curlϕη = lim
η→0

−iωε0

ˆ

�\�η

Eη(x) · ∇ρ(x) ∧ v
( x

η

)

= −iωε0

ˆ

�×�∗
E0(x, y) ∧ ∇ρ(x) · v(y),

where in the last line we used the weak two-scale convergence Eη ⇀⇀ E0. Recall
that by (5.6), we have E0 = 0 in � and curly E0 = 0 in Y . In particular, for
almost everywhere x ∈ �, the periodic vector field f (y) = E0(x, ·) ∧ ∇ρ(x)
is divergence-free and vanishes in �. Therefore by applying (4.13), we obtain´
Y f (y) · v(y) = (

´
Y f ) · (

¸
v) = 0. The claim (5.16) follows and the proof of

Lemma 5.4 is complete. ��
Variational characterization of H0. For fixed x ∈ �, we look for a solution
H0(x, ·) to (5.14). Let H(x) = ¸

H0(x, ·). By exploiting the two first equations
in (5.13), we notice that the vector field u := H0(x, ·) − H(x) belongs to the
following subspace of W 1,2

� (Y ;C3)

Xdiv
0 :=

{
u ∈ W 1,2

� (Y ;C3) : curl u = 0 in �∗, div u = 0 in Y,

˛
u = 0

}
.

(5.17)
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Accordingly, H0(x, ·) has to be searched for inC3 ⊕ Xdiv
0 . Notice that the previous

sum is direct since non-zero constant functions have a non-vanishing circulation
vector (see Remark 4.5).
Nowwe rewrite the equality (5.14),whichwe intentionally restrict to those elements
v ∈ Xdiv

0 which are divergence-free (see Remark 5.8). With H0(x, ·) = z + u(y),
z = ¸

H0(x, ·), we find that u solves in Xdiv
0 the variational problem

b0(u, v) − εr k
2
0

ˆ

Y
u · v = εr k

2
0

ˆ

Y
z · v, ∀v ∈ Xdiv

0 , (5.18)

where b0 denotes the Hermitian product

b0(u, v) :=
ˆ

�

curl u · curl v
(

=
ˆ

Y
∇u : ∇v

)
. (5.19)

It is easy to check that Xdiv
0 is a closed subspace of the Hilbert space W 1,2

� (Y ;C3)

(thanks to (4.15)) and that b0 defined above is a scalar product on Xdiv
0 which

induces an equivalent norm to that W 1,2
� (Y ;C3). Indeed we have

Lemma 5.5. There exists a constant c > 0 such that

c ‖u‖2
W 1,2

� (Y ;C3)
� b0(u, u) � ‖u‖2

W 1,2
� (Y ;C3)

for all u ∈ Xdiv
0 .

Proof. In view of (4.17), it is enough to show the existence of a constant k > 0
such that

∀v ∈ Xdiv
0 , b0(v, v) =

ˆ

Y
|∇v|2 � k

ˆ

Y
|v|2. (5.20)

By contradiction, assume that (5.20) does not hold. Then we can find a sequence
(vn) ⊂ Xdiv

0 such that ‖vn‖L2 = 1, ∇vn → 0 strongly in L2(Y ;C3). Then, by
Rellich’s Theorem and possibly after extracting a subsequence, such a sequence
would converge strongly to some constant function v in (W 1,2

� (Y ))3 such that

‖v‖L2 = 1. As Xdiv
0 is a closed subspace of W 1,2

� (Y ;R3), we need also that this
constant function v satisfies

¸
v = 0. This is impossible unless v = 0. We get a

contradiction with the requirement that ‖v‖L2 = 1. ��
Lemma 5.6. Assume that �(εr ) > 0. Then, for every z ∈ C

3, equation (5.18)
admits a unique solution in Xdiv

0 .

Proof. Let β a positive real such that β�(εr ) − �(εr ) � 1 and let

b(u, v) := (1 + iβ)

[
b0(u, v) − εr k

2
0

ˆ

Y
u · v

]
.

Then (5.18) is equivalent to solving b(u, v) = Lz(v) for all v ∈ Xdiv
0 , with Lz

being the linear form on Xdiv
0 defined by Lz(v) = (1 + iβ)εr k20

´
Y z · v. Clearly
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Lz is continuous as well as b(·, ·) as a sequilinear form. On the other hand, b is
coercive since, for every u ∈ Xdiv

0 , it holds that

�
(
b(u, u)

)
=
ˆ

Y

(
|∇u|2 + k20

(
β�(εr ) − �(εr )

)|u|2
)

� b0(u, u).

The existence and uniqueness of the solution of (5.18) follows from the Lax-
Milgram Lemma. ��
Let us notice that the previous existence and uniqueness still holds if �(εr ) = 0
provided εr k20 does not belong to the discrete set {λn} defined in (2.12). This a
consequence of Fredholm’s alternative, since the resolvent associated with b0 as an
operator on L2

�(Y ) turns out to be compact (see Section 6).

Shape magnetic fields. By applying Lemma 5.6 to z = ek for k = 1, 2, 3, we
obtain three vector fields u1, u2, u3 in Xdiv

0 . We associate the following periodic
fields:

Hk(y) := ek + uk(y), Jk := curl Hk k ∈ {1, 2, 3}. (5.21)

By linearity, Hk is characterized as the unique vector fieldw ∈ C
3⊕Xdiv

0 satisfying
the variational equation (5.14) such that

¸
w = ek . It is now straightforward to

deduce

Proposition 5.7. The family
{
H1, H2, H3

}
is a basis of solutions for equation

(5.14). Accordingly the two-scale limits H0, J0 defined in (5.3) are uniquely deter-
mined in term of H(x) given in (5.4) as follows:

H0(x, y) =
3∑

k=1

Hk(x) Hk(y), J0(x, y) =
3∑

k=1

Jk(x) Jk(y)

almost everywhere (x, y) ∈ � × Y , (5.22)

with Hk(x) = H(x) · ek and Jk := − 1
iωε0

Hk.

Proof. Let V be the subspace ofC3⊕ Xdiv
0 consisting of all solutions to (5.14). Let

L : V �→ C
3 the linear map defined by L(w) := ¸

w. We are reduced to checking
that this map is bijective. The surjectivity is trivial since, as noticed before, it holds
that L(Hk) = ek . On the other hand, if L(w) = 0, then it means that w ∈ Xdiv

0 and
that it satisfies (5.18) for z = 0. Thanks to the uniqueness result in Lemma 5.6, we
conclude that w = 0. ��
Remark 5.8. If u ∈ Xdiv

0 solves (5.18), then the variational equality (5.14) is sat-
isfied by w = z + u even if the test function v is not divergence-free. Indeed any
admissible v for (5.14) can be decomposed as v = ṽ + ∇ p with ṽ ∈ Xdiv

0 and

p ∈ W 1,2
� (Y ) solving �p = div v (as

´
Y div v = 0 such a p exists and

¸ ∇ p = 0).
Therefore, by applying (5.18) to (u, ṽ), we see that (w, ṽ) satisfies (5.14). Since
curl v = curl ṽ and

´
Y w · ∇ p = 0 (w is divergence-free), we infer that (w, v)

satisfies (5.14).
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Remark 5.9. Let us stress that it is necessary that �∗ is simply-connected in order
to obtain a decomposition of the magnetic field H0 with three independent shape
functions like in (5.22). In fact the dimension d of the space of solutions to (5.18),
which is d = 3 in our case, can increase with the topological complexity of the
inclusion �. If for instance � is a torus, then d = 4 as it is shown in [10] where an
extra shape function H4 is needed.

5.3. Integral Representation and Properties of the Effective Permeability Tensor

As will be checked in Section 6, the shape functions Hk defined in (5.21)
coincide with that introduced in (2.17). Therefore, in view of (2.19), the symmetric
effective permittivity tensor μeff given by (2.13) can be recast componentwise
through the following integrals:

μeff
kl =

ˆ

Y
Hk · el , k, l ∈ {1, 2, 3}. (5.23)

The dissipativity property of μeff (needed for the uniqueness issue of Lemma 2.1)
and some other useful relations are given in Lemmas 5.10 and 5.11 below.

Lemma 5.10. Under (1.4), the real symmetric tensor�(μeff(ω)) is positive definite.

Proof. Let z = (zk) ∈ R
3 and uz := ∑

k zku
k be the unique solution of problem

(5.18). By using (5.21) and (5.23), we get

μeff z · z =
3∑

k,l=1

zk zl

ˆ

Y
Hk · el = |z|2 +

ˆ

Y
uz · z. (5.24)

By taking v = uz in (5.18) and dividing by εr k20, we infer that

1

εr k20
b0(uz, uz) −

ˆ

Y
|uz |2 =

ˆ

Y
z · uz .

Passing to the conjugate in the equality above and plugging in (5.24), we are led
to:

�(μeff)z · z = �(εr )

|εr |2k20
b0(uz, uz), (5.25)

which holds for every z ∈ R
3. As b0 is a scalar product (see Lemma 5.5) and

�(εr ) > 0, we conclude that �(μeff)z · z > 0 unless uz = 0 which, by looking at
equation (5.18), is clearly equivalent to z = 0. ��
Lemma 5.11. With the notations of Proposition 5.7, it holds for almost everywhere
x ∈ �:

μeffH(x) · H(x) =
ˆ

Y
|H0(x, ·)|2 − 1

εr

ε0

μ0

ˆ

Y
|J0(x, ·)|2. (5.26)
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Proof. We apply Lemma 5.4 with w = H0(x, ·) and v = H̄0(x, ·) − H(x) which
by construction has a vanishing circulation vector. Then after dividing by εr k20 and
taking into account (2.19), equation (5.14) becomes:

1

εr k20

ˆ

Y
| curly H0(x, ·)|2 =

ˆ

Y

(
|H0(x, ·)|2 − H0(x, ·) · H(x)

)

=
ˆ

Y
|H0(x, ·)|2 − μeffH(x) · H(x).

Then relation (5.26) follows by taking into account the second equation in (5.11)
and relation k20 = ε0 μ0ω

2. ��

6. Spectral Description of the Effective Permeability Tensor

The effective permeability tensor μeff was introduced in Section 2 with two
different expressions namely (2.11) and (2.13). The first one is related to a spectral
problem (2.10) set on the Hilbert space Z0 appearing in (2.8) that we recall here:

Z0 :=
{
f ∈ L2(Y ;R3) : div f = 0, f = 0 in �∗}.

It turns out that the spectral problem (2.10) is well suited to numerical approxima-
tions (see Section 3). The second expression (2.13) is related to another spectral
problem (2.14) where the underlying Hilbert space Xdiv

0 was constructed in the
previous Section (see (5.17))

Xdiv
0 :=

{
v ∈ W 1,2

� (Y ;C3) : curl v = 0 in �∗, div v = 0 in Y,

˛
v = 0

}
.

The aim of this construction was to represent the periodic magnetic shape functions
Hk which intervene in our main Theorem 2.2. It turns out that the entries of tensor
μeff can be also recovered from functions Hk by means of relations (5.23).

In this section we show that the spectral problems (2.10) and (2.14) are well-
posed and linked together. Then we deduce that all definitions given for μeff that
is (2.11) , (2.13) and (5.23) are in agreement.

6.1. Spectral Equivalence

Keeping the notations of section 2, we associate to every element f ∈ Z0 the
function  f defined by

 f := curlψ f + 1

2

ˆ

�

y ∧ f , (6.1)

with ψ f ∈ (W 1,2
� (Y ))3 the unique solution of (2.9), that is: −�ψ f = f in Y and

´
Y ψ f = 0.
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Lemma 6.1. The linear map f �→  f is a bijective from Z0 to Xdiv
0 and satisfies

(curl u) = u, curl( f ) = f for all ( f , u) ∈ Z0 × Xdiv
0 .

In particular, for all pairs ( f , g) ∈ Z2
0 it holds that b0( f , g) = ´

�
f g.

Therefore  is an isometry between Hilbert space Z0 endowed with the scalar
product of L2(Y ) and Hilbert space Xdiv

0 endowed with b0.

Proof. Let f ∈ Z0 and let us show that  f belongs to Xdiv
0 . Obviously it is

divergence-free. On the other hand ρ := divψ f vanishes as the unique periodic
solution of −�ρ = div f = 0 with

´
Y ρ = 0. It follows that

curl( f ) = curl(curl(ψ f ) = −�ψ f = f , (6.2)

from which follows in particular that curl f = 0 in �∗. It remains to check the
more tricky part, that is that

¸
 f = 0. Let z ∈ C

3 be arbitrary and denote by ϕz

a function in (W 1,2
� (Y ))3 such that ϕz( y) = − 1

2 z ∧ y in �. Then by construction
the periodic vector field g := curlϕz + z is divergence-free, vanishes in � and
satisfies

´
Y g = z. In view of the characterization (4.13), one therefore has

ˆ

Y
 f · g = z ·

˛
 f . (6.3)

By integrating by parts and taking into account that curl(curlψ f ) = f , one gets

ˆ

Y
curlψ f · g =

ˆ

Y
curlψ f · curlϕz =

ˆ

Y
f · ϕz = −1

2
z ·

ˆ

�

y ∧ f .

Then recalling definition (6.1), we deduce that
´
Y  f · g = 0. Thus, by applying

(6.3), we are led to
¸

 f = 0 and  f ∈ Xdiv
0 .

In view of (6.2), the Lemma is proved once we have checked that the relation
(curl u) = u holds for every u ∈ Xdiv

0 . We observe that, for such u, the function
curl u is divergence-free and vanishes in �∗, and thus belongs to Z0. Let v :=
(curl u). By applying (6.2) to f = curl u, we get the equality curl u = curl v
from which follows u = v (since b0(u − v, u − v) = 0). ��
Next we intoduce the sesquilinear form on Z0 defined by

a0( f , g) :=
ˆ

Y
 f · g=

ˆ

Y
∇ψ f : ∇ψg + 1

4

(ˆ

�

y ∧ f
)

·
(ˆ

�

y ∧ g
)

,

(6.4)

where in the second equality we used definition (6.1), the fact that the periodic
fields ψ f ,ψg are divergence-free (see the proof above) and that their curls have a
vanishing bulk average over Y . It is straightforward from Lemma 6.1 that a0 is a
scalar product on Z0. Moreover it holds that

a0( f , f ) � 1

k
‖ f ‖2L2(�)

, (6.5)
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where k is the positive constant appearing in (5.20). The spectral problem (2.10)
amounts to finding ( f , α) ∈ Z0 × R

∗+ such that

a0( f , g) = α

ˆ

Y
f · g, ∀g ∈ Z0. (6.6)

Then, in relation to the spectral problem (2.14), we obtain the following equivalence
principle holding for every (u, λ) ∈ Xdiv

0 × R
+:

b0(u, v) = λ

ˆ

Y
u · v, ∀v ∈ Xdiv

0 ⇐⇒ ( f , α)=
(
curl u,

1

λ

)
solves (6.6).

(6.7)

6.2. Reduction to the Diagonal Form

In view of the equivalence (6.7), we may limit ourselves to the study of the
spectral problem (6.6). Since by (6.5) the hermitian product a0 is continuous, we
may consider the bounded linear operator K : Z0 �→ Z0 such that

〈K f , g〉L2(Y ) = a0( f , g), for all ( f , g) ∈ Z0. (6.8)

We also introduce P0 : L2(Y ;R3) �→ Z0 the orthogonal projector on Z0 and the
finite-rank operator M : Z0 �→ L2(Y ;R3) defined for every f ∈ Z0 by setting

M f (z) = 1�(z)

4

(ˆ

�

y ∧ f
)

∧ z ∀z ∈ Y. (6.9)

Lemma 6.2. With the notations above the linear operator K : Z0 → Z0 is compact
positive and self-adjoint. For all f ∈ Z0, it holds that

K f = P0
(
ψ f + M f

)
. (6.10)

Proof. Since a0 is a continuous scalar product, K is a bounded positive self-adjoint
operator on Z0. Let us take f ∈ Z0 and establish the relation (6.10). In view of
(6.8), It is enough to show that for every element g ∈ Z0, it holds that

a0( f , g) =
ˆ

Y
(ψ f + M f ) · g. (6.11)

By (6.9) one has
´
Y M f · g = 1

4

(´
�
y ∧ f

) · (´
�
y ∧ g

)
. On the other hand,

by integrating by parts and taking into account that ψg satisfies −�ψg = g, we
obtain

´
Y ψ f ·g = ´

Y ∇ψ f : ∇ψg . Recalling the expression on the right-hand side
appearing in the definition (6.4) ofa0,we are led to (6.11). Thus (6.10) is established.
The compactness property of operator K is then straightforward. Indeed, let ( f n)
be a weakly convergent sequence of Z0. Then ψ fn is bounded (W 1,2

� (Y ))3 hence

strongly convergent in L2(Y )3. It is also the case of M f n since M is finite rank.
The conclusion follows by the continuity of P0 as an operator from L2(Y )3 to Z0.

��
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As a consequence of Lemma 6.2 and of the equivalent principle (6.7), we have the
following result:

Lemma 6.3. There exists a sequence of positive numbers such that α0 � α1 �
· · · � αn with αn → 0 and an orthonormal basis { f n}n∈N of Z0 consisting of real
valued functions such that

a0( f n, g) = αn

ˆ

Y
f n · g, ∀n ∈ N, ∀g ∈ Z0. (6.12)

Moreover, by setting for every n ∈ N

un = 1√
αn

 f n, λn = 1

αn
, (6.13)

we obtain an orthogonal basis {un} of real valued functions in Xdiv
0 endowed with

the scalar product b0 such that for all n ∈ N:

b0(un, v) = λn

ˆ

Y
un · v ∀v ∈ Xdiv

0 ,

ˆ

Y
un · um = δnm . (6.14)

Proof. In view of the compactness property obtained in Lemma 6.2, the existence
of the pairs ( f n, αn) satisfying (6.12) is obvious. As K f = K f for every f ∈ Z0,
we can chose the eigenvectors f n to be real. Then we deduce (6.14) by applying the
equivalence (6.7) to un given in (6.13). On the other hand, by the isometry property
inLemma6.1,weknow that { f n} is orthonormal basis of (Xdiv

0 , b0). Thus {un}n∈N
is an orthogonal basis of eigenvectors normalized so that b0(un, un) = λn and´
Y |un|2 = 1. ��

6.3. Power Series Representation of the Effective Permeability.

We are now in a position to express the effective permeability tensor μeff given
in (5.23) in terms of a power series expansion. This is done by projecting the
solution of the variational equation (5.18) on the orthogonal basis {un}n∈N. As a
byproduct, we recover representation formulas (2.11) and (2.13), making explicit
the dependence of μeff with respect to the incident wave number k0 = ω

√
ε0μ0.

Proposition 6.4. Let (λn, un) as in Lemma 6.3. Then the magnetic shape functions
Hk introduced in (5.21) are given by

Hk = ek +
∑
n∈N

〈ek, un〉 εr k20
λn − εr k20

un, k ∈ {1, 2, 3}. (6.15)

Accordingly the tensor μeff defined in (5.23) admits the representation

μeff
i j (k0) = δi j +

∑
n

εr k20
λn − εr k20

(ˆ

Y
un · ei

) (ˆ

Y
un · e j

)
, (6.16)

or alternatively, in terms of (αn, f n),

μeff
i j (k0) = δi j + 1

4

∑
n

εr k20
1 − εrαnk20

(ˆ

�

y ∧ f n

)

i

(ˆ

�

y ∧ f n

)

j
. (6.17)
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Proof. In view of (5.23) and (6.13), the two series expansions for μeff follow
straightforwardly from (6.15). Following (5.21), for k ∈ {1, 2, 3}, we write Hk =
ek + uk where uk is the unique element of Xdiv

0 solving (5.18) for z = ek , that is

b0(uk, v) − εr k
2
0

ˆ

Y
uk · v = εr k

2
0

ˆ

Y
ek · v, ∀v ∈ Xdiv

0 . (6.18)

As {un} is an orthogonal basis of Xdiv
0 , we may expand uk as

uk =
∑
n∈N

ckn un, where ckn =
ˆ

Y
uk · un = 1

λn
b0(uk, un). (6.19)

Note that the convergence of the series above holds with respect to the Sobolev
norm of W 1,2

� (Y ), thus also in L2(Y ). Plugging (6.19) into (6.18), where we take
v = un , we obtain the relations

(λn − εr k
2
0) c

k
n = εr k

2
0

ˆ

Y
ek · un, ∀n ∈ N,

from which follows (6.15). ��

7. Proof of the Main Result

This section is devoted to the proof of Theorem 2.2. We will proceed according
to the following steps:

• In a first step, we work under the following energy bound which will be proven
a posteriori in a second step:

sup
η>0

ˆ

BR

|Eη|2 + |Hη|2 < +∞, (7.1)

where BR is an open ball containing �.
– In Proposition 7.1 we start by establishing the uniform convergence of a

subsequence of (Eη, Hη) in every compact subset of R3\� from which
follows the convergence of the flux of Poynting vectors and a uniform
L2 estimate for the rescaled displacement current Jη (see Lemma 7.3).
This estimate together with hypothesis (7.1) legitimates, up to extracting a
subsequence, the two-scale analysis of the triple (Eη, Hη, Jη) performed
in Section 5.

– In Proposition 7.3, we establish that the effective electromagnetic field
(E, H) deduced from the analysis of Sections 5.1 and 5.2 and of Propo-
sition 7.1 satisfies the limit diffraction problem given in (2.1). Note that,
thanks to the results of Section 6, the tensor μeff defined therein (see (2.11)
or (2.13)) agrees with the expression obtained in (5.23). On the other hand
the uniqueness of the solution to (2.1) (see Lemma 2.1) ensures that the
whole sequence (Eη, Hη, Jη) is weakly two-scale convergent.
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– In the crucial Section 7.3, we improve the convergence above and establish
the strong two-scale convergence of the triple (Eη, Hη, Jη).

• In a second Step (Lemma 7.7), we establish the bound (7.1) by means of
a contradiction argument in which we use once again the uniqueness of the
solution of the limit problem and the strong two-scale convergence established
in the first step.

7.1. Behavior far From the Obstacle and Energy Estimate

This first step is related to the convergence of (Eη, Hη) at a positive distance
from �. We use the following result whose proof relies on the hypo-ellipticity of
the operator � + k0 (see for instance [9, Lemma 2.1]).

Proposition 7.1. Let (Eη, Hη) be the solution of problem (1.5) associated to an
incident wave (Einc

η , H inc
η ) such that (Einc

η , H inc
η ) → (Einc, H inc) uniformly as

η → 0. If (Eη, Hη) ⇀ (E, H) weakly in (L2(BR\�))3, then we can extend E
and H toR3\� so that both satisfy the Helmholtz equation�u+k20u = 0 inR3\�.
Moreover the convergence (Eη, Hη) → (E, H) holds in C∞(K ) for all compact
K ⊂⊂ R

3\� while (E − Einc, H − H inc) satisfies Silver-Müler condition (1.6).

A first consequence of the previous result is the boundedness (see Lemma below)
of the flux of the Poynting vector on ∂BR given by

Pη :=
ˆ

∂BR

Eη ∧ Hη · n dσ. (7.2)

It is useful to rewrite Pη as a bulk integral. Integrating by parts with the help of the
identity

div
(
Eη ∧ Hη

) = curl Eη · Hη − curl Hη · Eη

and taking into account equations (1.5), we obtain

Pη =
ˆ

BR

(curl Eη · Hη − curl Hη · Eη) = iω
ˆ

BR

(
μ0|Hη|2 − ε0εη|Eη|2

)
.

(7.3)

The real part of Pη is independent of the radius R and represents the energy dis-
sipated by the obstacle. Taking into account the definitions (1.3) and (5.1), this
dissipation can be recast in terms of the displacement currentJη as follows:

� (Pη

) = −ω ε0
�(εr )

|εr |2
ˆ

�η

|Jη|2. (7.4)

Lemma 7.2. Let (Eη, Hη) satisfy the uniformupper bound (7.1) and solve problem
(1.5). Then with Pη defined by (7.2) and Jη defined in (5.1), it holds that

sup
η

∣∣Pη

∣∣ < +∞, sup
η>0

‖Jη‖L2(BR) < +∞. (7.5)
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Proof. Up to passing to a subsequence, we can assume that lim supη

∣∣Pη

∣∣ =
limη

∣∣Pη

∣∣ and, by the uniform upper bound (7.1), that (Eη, Hη) does converge
weakly in L2(BR). We may therefore apply the convergence in C∞(K ) obtained
in Proposition 7.1 with K containing a neighbourhood of ∂BR . This shows that
lim supη

∣∣Pη

∣∣ < +∞. Then under (1.4), the second upper bound in (7.5) follows
directly from (7.4) (notice that in view of (7.1) and (7.3), we can reach the same
conclusion assuming merely that εr �= 0). ��

7.2. Weak Convergence to the Solution of the Homogenized Problem

Let ε,μ be defined by (2.2), (2.6) and (2.13). Let (E, H) be the unique solution
of (2.1) and let BR be any ball such that � ⊂⊂ BR . We associate the fields E0, H0
defined on BR×Y by (2.15)(2.16) as well as the field J0 determined in Lemma 5.3.
The flux of the Poynting vector through ∂BR (already used in the proof of Lemma
2.1) will be denoted as

P(= P(R)) :=
ˆ

∂BR

E ∧ H · n dσ. (7.6)

Proposition 7.3. Let us assume that the upper bound (7.1) holds and let (Eη, Hη)

be the solution of the diffraction problem (1.5) and Jη given by (5.1). Then we
have the weak two-scale convergence of the triple (Eη, Hη, Jη) ⇀⇀ (E0, H0, J0)
in BR, whereas (Eη, Hη) → (E, H) in C∞(K ) for every compact subset K ⊂⊂
R
3\�. In particular, it holds that Pη → P as η → 0.

Proof. Under the assumption (7.1) and thanks to Lemma 7.2 wemay, up to passing
to a subsequence, assume that the convergences (5.3) hold for suitable fields Ê0,
Ĥ0, Ĵ0 belonging to L2(BR × Y ) , namely

Eη ⇀⇀ Ê0, Hη ⇀⇀ Ĥ0 and Jη ⇀⇀ Ĵ0. (7.7)

We are done if we show that the triple (Ê0, Ĥ0, Ĵ0) agrees with the triple
(E0, H0, J0) appearing in our statement (that is given by (2.15), (2.16) and (5.11)
respectively). Let us define

Ê(x) =
ˆ

Y
Ê0(x, ·), Ĥ(x) =

˛

Y
Ĥ0(x, ·) for x ∈ �. (7.8)

By applying Propositions 5.2 and 5.7, we infer that

Ê0(x, y) =

⎧
⎪⎨
⎪⎩

Ê(x) in (BR\�) × Y
3∑

k=1

(Ê(x) · ek)Ek(y) in � × Y
,

Ĥ0(x, y) =

⎧
⎪⎨
⎪⎩

Ĥ(x) in (BR\�) × Y
3∑

k=1

(Ĥ(x) · ek)Hk(y) in � × Y
, (7.9)
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with Ek, Hk the periodic vector fields introduced in (5.7) and (5.21), respectively.
Accordingly we have that (Eη, Hη) → (Ê, Ĥ) weakly in L2(BR\�). Then, by
applying Proposition 7.1with a constant incidentwave (Einc, H inc), wemay extend
(Ê, Ĥ) to all R3\BR so that it satisfies radiation condition (1.6) and the Maxwell
system in the vacuum outside �. Furthermore, (Eη, Hη) → (Ê, Ĥ) in C∞(K )

for every compact subset of R3\�. In particular it follows that Pη → P̂ :=
´
∂BR

Ê ∧ Ĥ · n dσ.

Summarizing, we see that all conclusions of Proposition 7.3 hold, provided we can
establish that (Ê, Ĥ) agrees with the solution (E, H) to (2.1). As, by Lemma 2.1,
this solution is unique, we are thus reduced to checking that (Ê, Ĥ) satisfies the
two first equations in (2.1). In fact, as we already know that (Ê, Ĥ) satisfies these
equations outside �, we may restrict ourselves to BR .
The first equation is readily derived by passing to the distributional limit in the first
equation of (1.5). Indeed the weak limits in L2(BR) of Eη, Hη agree with their
bulk averages. In view of (7.8) and (5.23), these are given respectively by

ˆ

Y
Ê0(·, y) dy = Ê(x) and

ˆ

Y
Ĥ0(·, y) dy = μ Ĥ .

Thus we are led to

curl Ê = iωμ0 μ Ĥ in D′(BR).

In order to check the second equation, we consider ϕ ∈ C∞
c (BR) and, for fixed k ∈

{1, 2, 3}, the shape function Ek defined in (5.7). Multiplying the second equation
of (1.5) by ϕ(x)Ek(x/η) and integrating by parts the left-hand side (recall that
curly Ek = 0), we get

ˆ

BR

Hη(x) ·
[
∇φ(x) ∧ Ek

(
x

η

)]
= −iωε0

ˆ

BR

ϕ(x)Eη(x) · Ek
(
x

η

)
.

By exploiting (7.7), the strong two-scale convergence of Ek(x/η) and the product
rule (4.3) (and comments below), we may pass to the limit in the equality above
with
ˆ

BR×Y
Ĥ0(x, y) · [∇ϕ(x) ∧ Ek(y)] = −iωε0εe

ˆ

BR×Y
ϕ(x)Ê0(x, y) · Ek(y).

(7.10)

Next we observe that Ĥ0(x, ·) is curl-free in�∗ and∇ϕ(x)∧Ek is divergence-free
and vanishes in �. Therefore, thanks to (4.13), and taking into account (7.8), we
are led to

ˆ

Y
Ĥ0(x, y) · [∇ϕ(x) ∧ Ek(y)] dy = Ĥ(x) · [∇ϕ(x) ∧ ek].

On the other hand, in view of definitions (2.2) and (5.9), we have, for almost
everywhere x ∈ BR ,

εe

ˆ

Y
Ê0(x, ·) · Ek = ε(x)Ê(x) · ek .
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Then by applying Fubini’s formula to the left and right sides of (7.10), we are led
to

ˆ

BR

Ĥ(x) · [∇ϕ(x) ∧ ek] = −iωε0

ˆ

BR

ϕ(x)ε(x)Ê(x) · ek . (7.11)

Eventually, thanks to the identity div(ek∧ Ĥ) = − curl Ĥ ·ek , and by integrating by
parts the left-hand side of (7.11), we infer the following equality for all k ∈ {1, 2, 3}
and every test function ϕ ∈ C∞

c (BR):

ˆ

BR

curl Ĥ · ek ϕ = −iωε0

ˆ

BR

ε Ê · ek ϕ(x).

Thus we can conclude that curl Ĥ = −iωε0ε Ê holds in D′(BR). The proof of
Proposition 7.3 is finished. ��

7.3. Strong Two-Scale Convergence

In the following, we keep all assumptions and notations of Section 7.2. We are
going to improve the convergence result of Proposition 7.3 by showing that the two-
scale convergence of the triple (Eη, Hη, Jη) holds strongly. This is done within
the three next Lemmas. We begin with the field Jη, whose strong convergence is a
straightforward consequence of the fact that Pη → P (see Proposition 7.3).

Lemma 7.4. The following convergence holds:

lim
η→0

∥∥∥∥Jη(x) − J0
(
x,

x

η

)∥∥∥∥
L2(BR)

= 0. (7.12)

Proof. As �(Pη) → �(P), by (7.4) and (2.5) and recalling that Jη = 0 outside
�η , one has

lim
η

ˆ

�

|Jη|2 = − |εr |2
ω ε0�(εr )

lim
η

�(Pη) = − |εr |2
ω ε0�(εr )

�(P)

= μ0

ε0

|εr |2
�(εr )

ˆ

�

�
(
μeffH · H

)
=

ˆ

�×Y
|J0|2 dx dy,

where in the last equality we used (5.26). The strong two-scale convergence Jη →
→ J0 follows. On the other hand, in view of the decomposition (5.22), it is easy
to check that J0(x, x/η) →→ J0(x, y) (J0 is admissible) and we are led to (7.12).
�� ��
Proposition 7.5. The following convergence holds:

lim
η→0

∥∥∥∥Hη(x) − H0

(
x,

x

η

)∥∥∥∥
L2(BR)

= 0. (7.13)



Homogenization Near Resonances and Artificial Magnetism 1271

Proof. Our strategy is based on the argument of compensated compactness in
Lemma 4.8, which we apply on the open set BR to the pair (uη, vη) defined by

uη = vη := Hη(x) − H0

(
x,

x

η

)
.

By (2.19), it is clear that uη ⇀ 0 weakly in (L2(BR))3. We need only to prove the
following claims:

aη := div[Hη − H0(x, x/η)] → 0 strongly in W−1,2(BR), (7.14)

bη := curl[Hη − H0(x, x/η)] → 0 strongly in W−1,2(BR). (7.15)

Indeed, under (7.14) and (7.15), we infer from Lemma 4.8 that the sequence of
non-negative functions |uη|2 converges to zero in D′(BR). On the other hand, we
know from Lemma 7.1 that uη → 0 uniformly at a positive distance from �. By
using a trivial localization argument, we may readily conclude that |uη|2 → 0 in
L1(BR), that is, (7.13). Notice that, by the bound (7.1), aη and bη are bounded and
thus weakly convergent to 0 in W−1,2(BR).

Proof of Claim (7.14). Let {ϕη} be a sequence such that ϕη ⇀ 0 weakly in
W 1,2

0 (BR). In view of Lemma 4.9, we need only to show the convergence to zero
of the duality bracket 〈aη, ϕη〉. Since div Hη = 0, we have

〈aη, ϕη〉 = −
ˆ

BR

H0

(
x,

x

η

)
· ∇ϕη(x) dx . (7.16)

Up to passing to a subsequence, we can assume that ∇ϕη ⇀⇀ ξ0 for a suitable
element of (L2(� × Y ))3. Furthermore, by Proposition 4.3 (see (4.6)), there exists
ψ0 ∈ L2(BR;W 1,2

� (Y )) such that ξ0 = ∇yψ0. As H0 = ∑
k Hk(x)Hk(y) is a

finite sum of admissible functions (see the comments after (4.3)), we may pass to
the limit in (7.16) applying (4.3)) for ϕ = 1. We obtain

lim
η→0

〈aη, ϕη〉 = −
ˆ

BR

(ˆ

Y
H0(x, ·) · ∇yψ0(x, ·) dy

)
dx .

Recalling that H0(x, ·) is divergence-free (see (5.11)), we see that the right-hand
side vanishes by integrating by parts over Y and by taking into account the period-
icity of H0(x, ·) and ψ0(x, ·). ��
Proof of Claim (7.15). This is themost delicate part. In a fashion similar to before,
we consider a sequence {ϕη} such that ϕη ⇀ 0 weakly in (W 1,2

0 (BR))3. We need
to show that 〈bη,ϕη〉 → 0 where

〈bη,ϕη〉 =
ˆ

BR

curl Hη · ϕη −
ˆ

BR

H0

(
x,

x

η

)
· curlϕη

= −iωε0
1

η

ˆ

BR

Jη · ϕη −
ˆ

BR

H0

(
x,

x

η

)
· curlϕη. (7.17)
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Here, in the second equality, we use equation (1.5) and the definition (5.1). It is
now useful to consider the piecewise constant function

[ϕη]η(x) := 1

η3

∑
k∈Iη

(ˆ

Y k
η

ϕη

)
1Y k

η
(x), Y k

η = η(Y + k),

Iη := {k ∈ Z
3 : Y k

η ⊂ BR}.
By applying Proposition 4.3 to each component of ϕη, we are ensured of the exis-

tence of an element ψ0 ∈ W 1,2(BR;W 1,2
� (Y ;C3)) such that

ϕη − [ϕη]η
η

⇀⇀ ψ0, curly ϕη ⇀⇀ curly ψ0.

In view of (7.17), let us write 〈bη,ϕη〉 = rη + sη where

rη := −iωε0

ˆ

BR

Jη · ϕη − [ϕη]η
η

−
ˆ

BR

H0

(
x,

x

η

)
· curlϕη, (7.18)

sη := −iωε0

ˆ

BR

Jη

η
· [ϕη]η. (7.19)

Thanks to the strong two-scale convergences H0

(
x, x

η

)
→→ H0 and Jη →→ J0

(see Lemma 7.4), we may apply twice the multiplication rule (4.3) (and subsequent
comments). We are led to

lim
η→0

rη = −
ˆ

BR×Y

[
iωε0 J0 · ψ0 + H0 · curly ψ0

]
dx dy.

Here we use the fact that H0 is an admissible function and also that Jη is compactly
supported in BR (so that (4.3) can be applied with a localizing test function ϕ such
that ϕ = 1 in �). Eventually, as curly H0(x, ·) = −iωε0 J0(x, ·) (see (5.11)),
by integrating by parts on Y and taking into account the periodicity of ψ0(x, ·),
we readily deduce that the right-hand member in the equality above vanishes, thus
rη → 0.
In order to conclude, it remains to show that sη defined in (7.19) vanishes as η → 0.
To that end we consider, for k ∈ {1, 2, 3}, a function θk ∈ C∞

c (Y ) verifying
∇θk = ek in � and extended by periodicity in R

3. Then we consider the potential
wk defined by

wη(x) := η

k=3∑
k=1

([ϕη]η(x) · ek
)

θk

( x
η

)
.

By construction, and recalling that [ϕη]η is piecewise constant, it holds that

∇wη = [ϕη]η on �η. (7.20)
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On the other hand, since the θk’s are Lipschitzian, one checks easily thatwη belongs
to W 1,2

0 (BR) and satisfies |∇wη| � C
∣∣[ϕη]η

∣∣ for a suitable constant C > 0. In
particular, as [ϕη]η → 0 strongly in L2(BR), we have that

lim
η→0

‖∇wη − [ϕη]η‖L2(BR) = 0. (7.21)

Thanks to (7.20) and noticing that Jη

η
agrees with εe Eη in BR\�η, we have

sη = 1

η

ˆ

BR

Jη · ∇wη + εe

ˆ

BR

Eη · ([ϕη]η − ∇wη

)
.

Clearly the first integral above vanishes (since Jη is divergence-free) while the
second one converges to zero by Cauchy-Schwarz inequality and by taking into
account (7.21) and the upper bound (7.1). Summarizing, we have proved that
〈bη,ϕη〉 = rη + sη → 0 and our claim (7.15) follows. The proof of Proposition
7.5 is finished. ��
Proposition 7.6. The following convergence holds:

lim
η→0

∥∥∥∥Eη(x) − E0

(
x,

x

η

)∥∥∥∥
L2(BR)

= 0. (7.22)

Proof. First we observe that |Eη|2 = η2

|εr |2 |Jη|2 holds in �η and then, thanks to
the strong two-scale convergence of Jη obtained in Lemma 7.4, we have

lim
η→0

1

η2

ˆ

�η

|Eη|2 = 1

|εr |2
ˆ

�×Y
|J0|2. (7.23)

In particular, it holds
´
�η

|Eη|2 → 0. Thus , recalling that E0(x, ·) = E(x) for
x ∈ BR\� and that E0 = 0 in � × �, the convergence (7.22) is proved once we
have shown that

lim sup
η

ˆ

BR\�
|Eη|2 �

ˆ

BR\�
|E|2, lim sup

η

ˆ

�\�η

|Eη|2 �
ˆ

�×Y
|E0|2.

(7.24)

As in Lemma 7.4, the main argument is the convergence Pη → P established in
Proposition 7.3. It is convenient to rewrite Claim (7.24) in the following equivalent
form:

α := lim sup
η

(ˆ

BR\�
|Eη|2 + εe

ˆ

�\�η

|Eη|2
)

�
ˆ

BR\�
|E|2

+εe

ˆ

�×Y
|E0|2 =

ˆ

BR

ε E · E, (7.25)

where in the last equality we used (2.2) and (5.9). It is trivial that (7.24) implies
(7.25). The converse implication follows from the fact that one has

lim inf
η

ˆ

BR\�
|Eη|2 �

ˆ

BR\�
|E|2, lim inf

η

ˆ

�\�η

|Eη|2 �
ˆ

�×Y
|E0|2.
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Now, by taking the imaginary parts in (7.3) and after dividing by ωε0, we obtain
the relation
ˆ

BR\�
|Eη|2 + εe

ˆ

�\�η

|Eη|2 = −�(Pη)

ωε0
+ μ0

ε0

ˆ

BR

|Hη|2 − �(εr )

η2

ˆ

�η

|Eη|2.

Letting η → 0, with the convergence ofPη toP and thanks to (7.23) and the strong
two-scale convergence Hη →→ H , we see that the left-hand member α of (7.25) is
actually a limit and it holds that

α = −�(P)

ωε0
+ μ0

ε0

ˆ

BR×Y
|H0|2 − �(εr )

|εr |2
ˆ

�×Y
|J0|2

= −�(P)

ωε0
+ μ0

ε0

ˆ

BR

�
(
μ(x)H · H

)
, (7.26)

where μ is defined in (2.2) and in the last equality we took the integral over � of
the real parts of the terms appearing in equality (5.26), while for x ∈ BR\� we
used the fact that H0(x, ·) = H(x) and J0(x, ·) = 0. Now it remains to evaluate
�(P). In view of the second equality in (2.4) in which we take the imaginary parts
and where ε is real, we get

�(P) = ω

(
μ0

ˆ

BR

�
(
μ(x)H · H

)
− ε0

ˆ

BR

ε(x)E · E
)

. (7.27)

Putting (7.26) and (7.27) together, we can conclude that α = ´
BR

ε E · E. Thus the
claim (7.24) holds and the proof of Proposition 7.6 is finished. ��

7.4. End of the Proof

Collecting the results of Proposition 7.3, Lemma7.4, Proposition 7.5 andPropo-
sition 7.6, we see that the proof of ourmain Theorem2.2 is achieved once the energy
bound (7.1) has been established. The following final Lemma allows us to conclude.

Lemma 7.7. Under the assumptions of Theorem 2.2, the energy bound given in
(7.1) holds.

Proof. Let us assume by contradiction that (Eη, Hη) solving (1.5) is not uniformly
bounded in L2(BR)3. Then there exists a subsequence (still denoted η) such that
limη(

´
BR

|Eη|2 + ´
BR

|Hη|2) = +∞. For such a subsequence we denote

tη :=
(ˆ

BR

|Eη|2 +
ˆ

BR

|Hη|2
) 1

2 → +∞, Êη := Eη

tη
and Ĥη := Hη

tη
.

(7.28)

By construction, (Êη, Ĥη) satisfies (7.1), whereas, by linearity, it is the solution

of (1.5) when the incident wave is given by ( Einc

tη
, H inc

tη
). We can then apply Propo-

sition 7.3: the limit of (Êη, Ĥη) is characterized in term of the unique solution
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(Ê, Ĥ) to the diffraction problem (2.1) in which the incident wave ( ˆEinc, Ĥinc) =
limη→0(

Einc

tη
, H inc

tη
) = (0, 0).Therefore, by the uniqueness Lemma 2.1, it holds that

(Ê, Ĥ) = (0, 0) and the two-scale limit (Ê0, Ĥ0) of (Êη, Ĥη) vanishes as well
on BR ×Y . Then, by applying the strong convergence results (7.13) and (7.22), we
are led to

lim
η→0

ˆ

BR

|Êη|2 = lim
η→0

ˆ

BR

|Ĥη|2 = 0.

This is impossible since, by (7.28), we have
´
BR

|Êη|2 + ´
BR

|Ĥη|2 = 1. ��
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