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Abstract

For the gas–vacuum interface problem with physical singularity and the sound
speed being C1/2-Hölder continuous near vacuum boundaries of the isentropic
compressible Euler equations with damping, the global existence of smooth solu-
tions and the convergence to Barenblatt self-similar solutions of the corresponding
porous media equation are proved in this paper for spherically symmetric motions
in three dimensions; this is done by overcoming the analytical difficulties caused
by the coordinate’s singularity near the center of symmetry, and the physical vac-
uum singularity to which standard methods of symmetric hyperbolic systems do
not apply. Various weights are identified to resolve the singularity near the vacuum
boundary and the center of symmetry globally in time. The results obtained here
contribute to the theory of global solutions to vacuum boundary problems of com-
pressible inviscid fluids, for which the currently available results are mainly for
the local-in-time well-posedness theory, and also to the theory of global smooth
solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.

1. Introduction

Vacuum boundary problems with physical singularity in compressible fluids
have received much attention recently (cf. [11,13,14,23,24,31–34,46–50,62,64]),
due to their physical importance and their mathematical challenges. Significant
progress has been made on the local well-posedness theory (cf. [11,13,14,32,34,
49]). However, much less is known on the global existence and long time dynamics
of solutions, which are of fundamental importance in both physics and nonlinear
partial differential equations. This is the main issue we address in this work for
the spherically symmetric motions of three-dimensional isentropic compressible
inviscid flows with damping. The vacuum boundary with physical singularity (we
call it the physical vacuum for short) arises in many physical situations naturally,
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for example, in the study of the evolution and structure of gaseous stars (cf. [5,15]),
for which vacuum boundaries are natural boundaries. Another situation in which
the physical vacuum plays an important role is the gas–vacuum interface problem
of compressible isentropic Euler equations with damping (cf. [46–48,62,64]). In
three dimensions, this problem reads as

ρt + div(ρu) = 0 in �(t), (1.1a)

(ρu)t + div(ρu ⊗ u) + ∇x p(ρ) = −ρu in �(t), (1.1b)

ρ > 0 in �(t), (1.1c)

ρ = 0 on �(t) := ∂�(t), (1.1d)

V (�(t)) = u · n, (1.1e)

(ρ,u) = (ρ0,u0) on � := �(0). (1.1f)

Here (x, t) ∈ R
3 × [0,∞), ρ, u, and p denote, respectively, the space and time

variables, density, velocity and pressure;�(t) ⊂ R
3,�(t),V(�(t)) andn represent,

respectively, the changing volume occupied by a gas at time t , the moving interface
of fluids and vacuum states, the normal velocity of�(t) and the exterior unit normal
vector to �(t). We consider a polytropic gas; the equation of state is given by

p(ρ) = ργ for γ > 1. (1.2)

Equations (1.1a) and (1.1b) describe the balance laws of mass and momentum,
respectively; conditions (1.1c) and (1.1d) state that �(t) is the interface to be in-
vestigated; (1.1e) indicates that the interface moves with the normal component of
the fluid velocity; and (1.1f) is the initial conditions for the density, velocity and
domain.

Let c(ρ) = √
p′(ρ) = √

γργ−1 be the sound speed, and the condition

− ∞ < ∇n

(
c2(ρ)

)
< 0 on �(t) (1.3)

defines a physical vacuum boundary (cf. [11,14,34,46–48]). This yields from (1.1b)
that

Dtu + 1

γ − 1
∇x

(
c2(ρ)

)
= −u,

where Dtu = ∂tu + u · ∇xu is the acceleration. For a physical vacuum boundary,
the normal acceleration of the boundary �(t) is finite.

The physical vacuum that the sound speed is C1/2-Hölder continuous but not
C1-continuous near vacuum boundaries makes it extremely challenging in the
study of the well-poseness of isentropic Euler equations, since standard meth-
ods of symmetric hyperbolic systems developed by Friedrichs–Kato–Lax (cf.
[20,35,39]) do not apply. Indeed, for the Cauchy problem of isentropic Euler equa-
tions with damping in three dimensions with initial data being small perturba-
tions of constant states (ρ, 0) away from vacuum (i.e., ρ > 0), the transformation
ξ = 2(γ − 1)−1(c(ρ) − c(ρ)) was used in [54] to symmetrize the system so that
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energymethods could be employed to establish the global existence of smooth solu-
tions in the function space (ξ, u) ∈ C

([0,∞); H3(R3)
) ∩ C1

([0,∞); H2(R3)
)

and the decay estimates. (See also [9,19,53,57] for further results in the same
spirit.) For the Cauchy problems of isentropic Euler equations and Euler–Poisson
equations with initial data containing vacuum (e.g., initial densities have compact
supports), the local existence of smooth solutions were established in [51,52] in the
function space (w, u) ∈ C

([0, T ∗); H3(R3)
) ∩ C1

([0, T ∗); H2(R3)
)
for some

finite time T ∗, where w = 2(γ − 1)−1c(ρ) was used to symmetrize the systems
so that standard methods of symmetric hyperbolic systems could work. However,
since the Sobolev space H3(R3) can be embedded into C1(R3), the local existence
theory obtained in [51,52] cannot apply to the case of a physical vacuum for which
the sound speed is only C1/2- but not C1-continuous near vacuum states.

To capture a physical vacuum, one studies the gas–vacuum interface problem
for compressible inviscid flows with special attention to the behavior (1.3) near
vacuum boundaries. This is a challenging problem even for the local-in-time ex-
istence theory, since system (1.1) is a degenerate and characteristic hyperbolic
system which violates the uniform Kreiss–Lopatinskii condition (cf. [36]) due to
resonant wave speeds at vacuum boundaries. As realized in [14,34] for physical
vacuums, the appearance of the density functions as coefficients in a nonlinear
wave equation which governs the dynamics of the divergence of the velocity of
the gas, and weighted estimates, show that this wave equation loses derivatives
with respect to the non-degenerate case of a compressible liquid, wherein the den-
sity takes the value of a strictly positive constant on moving boundaries (cf. [43]).
Also, characteristic speeds of the compressible isentropic Euler equations become
singular with infinite spatial derivatives at vacuum boundaries due to (1.3). There-
fore, the physical singularity (1.3) creates rather severe difficulties in analyzing the
regularity near vacuum boundaries. Recently, important progress has been made
in the local-in-time well-posedness theory for the compressible Euler equations
(cf. [11,13,14,32,34]). On the other hand, this poses great challenges to extend
the local-in-time existence theory to a global one of smooth solutions. In the local
well-posedness theory mentioned above, suitable weights are found to resolve the
singularity near vacuum boundaries. To obtain the global-in-time regularity, one
has to find the resolution of the singularity near vacuum boundaries uniform in
time.

In order to understand physical vacuum phenomena for problem (1.1), a family
of explicit solutions with spherical symmetry was constructed in [46] to capture
the behavior (1.3) using the ansatz as follows:

�(t) = BR(t)(0), c2(x, t) = c2(r, t) = e(t) − b(t)r2 and u(x, t) = (x/r)u(r, t),
(1.4)

where r = |x|, R(t) = √
e(t)/b(t) and u(r, t) = a(t)r . In [46], a systemof ordinary

differential equations for (e, b, a)(t) was derived with e(t), b(t) > 0 for t � 0 by
substituting (1.4) into (1.1a) and (1.1b), and this family of explicit solutions was
proved to be time-asymptotically equivalent to the Barenblatt self-similar solution
(cf. [4]) with the same total mass. The Barenblatt solution solves the porous media
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equation
ρt = �p(ρ), (1.5)

when (1.1b) is simplified to Darcy’s law:

∇x p(ρ) = −ρu. (1.6)

(The equivalence can be seen formally by the rescaling x′ = εx, t ′ = ε2t,u′ =
u/ε.) The Barenblatt self-similar solution (cf. [4]) with a finite mass M > 0, which
is spherically symmetric, is given by

ρ̄(x, t) = ρ̄(r, t) = (1 + t)−
3

3γ−1

(
A − B(1 + t)−

2
3γ−1 r2

) 1
γ−1

with r = |x|,
(1.7)

where

B = γ − 1

2γ (3γ − 1)
and

(γ A)
3γ−1
2(γ−1) = Mγ

1
γ−1 (γ B)

3
2

(∫ 1

0
y2

(
1 − y2

) 1
γ−1

dy

)−1

. (1.8)

Clearly,

∫ R̄(t)

0
r2ρ̄(r, t) dr = M for t � 0, where R̄(t) = √

A/B(1 + t)1/(3γ−1).

(1.9)

The corresponding Barenblatt velocity ū is defined by ū(x, t) = (x/r)ū(r, t) in the
region {(r, t) : 0 � r � R̄(t), t > 0}, where

ū(r, t) = − p (ρ̄)r

ρ̄
= r

(3γ − 1)(1 + t)
satisfying ū(0, t) = 0 and

˙̄R(t) =ū
(
R̄(t), t

)
.

So, (ρ̄, ū) defined in the region {(r, t) : 0 � r � R̄(t), t > 0} solves (1.5)
and (1.6). The vacuum boundary r = R̄(t) of Barenblatt’s solution is clearly
physical. This is one of major motivations to study the physical vacuum boundary
problem of compressible Euler equations with damping. Indeed, the Barenblatt
solution of (1.5) and (1.6) can be obtained by the same ansatz as (1.4): c̄2(x, t) =
ē(t)− b̄(t)r2 and u(x, t) = ā(t)x. Substituting this into (1.5), (1.6) and (1.9) with
R̄(t) =

√
ē(t)/b̄(t) gives

ē(t) = γ A(1 + t)−3(γ−1)/(3γ−1), b̄(t) = γ B(1 + t)−1 and

ā(t) = (3γ − 1)−1(1 + t)−1,

where A and B are determined by (1.8). It was proved in [46] the time-asymptotic
equivalence:

(a, b, e)(t) = (ā, b̄, ē)(t) + O(1)(1 + t)−1ln(1 + t) as t → ∞.
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A question was raised in [46] whether this equivalence is still true for general
solutions to problem (1.1). Luo and the author (cf. [50]) studied this problem in
one-dimensional case and proved the global smooth solutions and the convergence
to Barenblatt solutions as time goes to infinity. However, it is well known that
the situation is more complicated and difficult in multiple dimensions. In a broader
context, there has been a relatively satisfactory understanding of hyperbolic systems
in one dimension, but the understanding is extremely poor in multiple dimensions.
CompressibleEuler equationswith damping fall into the class of hyperbolic systems
with lower-order dissipations. Although lower-order dissipations such as damping
or relaxation can have certain smoothing effects, most available results on the
global existence of smooth solutions are for strictly hyperbolic systems or systems
endowed with strict convex entropy (cf. [25–27,41,45,54,57,66–68]). Indeed, the
isentropic compressible Euler equations with damping are strictly hyperbolic or
endowed with strict convex entropy only away from vacuum states. To the best
knowledge of the author, in the presence of vacuum states, for any kind of time
evolutionary problems such as Cauchy problems, initial-boundary problems, or
free-boundary problems, there has been no result of the global existence of smooth
solutions to compressible Euler equations with damping in multiple dimensions,
even for the spherically symmetric case. The purpose of this paper also serves as a
step towards the resolution of this problem.

For the isentropic Euler equations (with or without damping) with data con-
taining a vacuum, the available results of the global existence of solutions are for
L∞-weak solutions or weak solutions with finite energy via the approach of com-
pensated compactness (cf. [6–8,16–18,40,44]), except the recent result in [50]. For
L∞-weak solutions to the Cauchy problem of the one-dimensional compressible
Euler equations with damping, the L p-convergence to Barenblatt solutions of the
porous media equations was given in [28] with p = 2 if 1 < γ � 2 and p = γ if
γ > 2 and in [29] with p = 1, respectively, using entropy-type estimates for the
solution itself without deriving estimates for derivatives. However, it seems diffi-
cult to adopt the approach of [28,29], which depends on the uniform L∞-bound
of solutions crucially, in the case of spherically symmetric motions in multiple di-
mensions. Indeed, there have been no uniform L∞-bounds available for spherically
symmetric weak solutions in multiple dimensions obtained via compensated com-
pactness in [8] and [40], respectively, for a cut-off domain excluding the origin and
a domain containing the origin. (The L∞-bound of weak solutions obtained in [8]
depends on time and may become unbounded as time goes to infinity; the case is
worse for that of weak solutions obtained in [40].) Even for spherically symmetric
weak solutions away from the vacuum in a cut-off domain excluding the origin,
the uniform L∞-bound is only available for a nonlinear model problem of com-
pressible Euler equations for which all the waves move at constant speeds obtained
via the Glimm scheme in [63]. These show the subtlety in the study of spheri-
cally symmetric solutions of compressible Euler equations in multiple dimensions.
Moreover, interfaces separating gases and a vacuum cannot be traced in the frame-
work of L∞-weak solutions. The aim of this work is to understand the behavior
and long time dynamics of physical vacuum boundaries for spherically symmetric
motions in a domain containing the origin in three dimensions, for which obtaining
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the global-in-time regularity of solutions is essential to the well-definiteness and
realization of the evolution of the vacuum boundary.

In between theone-dimensional theory in [50] and thegeneralmulti-dimensional
theory whichwewill pursue in the future, we study spherically symmetric solutions
of (1.1) with the motivation that the Barenblatt solution posses the same symmetry,
and it is expected that spherically symmetric solutions will provide insights on the
local and long time behaviors of solutions to the general three-dimensional problem
(1.1). Locally, at each point x in �(t), it might be plausible to rotate a solution in
all possible ways about x and average all rotations in the spirit of spherical mean.
In the long term, for a general three-dimensional problem, it is expected that the
geometry of the boundary becomesmore andmore symmetric due to the dissipation
of damping which dissipates the total energy. For this purpose, we seek solutions
with symmetry to problem (1.1) of the form:

�(t) = BR(t)(0), ρ(x, t) = ρ(r, t), u(x, t) = (x/r)u(r, t) with r = |x|.
Then problem (1.1) reduces to

(r2ρ)t + (r2ρu)r = 0 in (0, R(t)), (1.10a)

ρ(ut + uur ) + pr = −ρu in (0, R(t)), (1.10b)

ρ > 0 in [0, R(t)), (1.10c)

ρ (R(t), t) = 0, u(0, t) = 0, (1.10d)

Ṙ(t) = u(R(t), t) with R(0) = R0, (1.10e)

(ρ, u)(r, t = 0) = (ρ0, u0) (r) on (0, R0), (1.10f)

so that R(t) is the radius of the domain occupied by the gas at time t and r = R(t)
represents the vacuum boundary which issues from r = R0 and moves with the
fluid velocity.

In the spherically symmetric setting, the physical vacuum boundary condition
(1.3) reduces to −∞ < (c2)r < 0 in a small neighborhood of the boundary. To
capture this singularity, the initial domain is taken to be a ball {0 � r � R0} and
the initial density is assumed to satisfy

ρ0(r) > 0 for 0 � r < R0, ρ0(R0) = 0 and − ∞ <
(
ρ

γ−1
0

)

r
< 0 at r = R0.

(1.11)

We require that the initial total mass is the same as that of the Barenblatt solution,
that is,

∫ R0

0
r2ρ0(r) dr =

∫ R̄(0)

0
r2ρ̄0(r) dr = M. (1.12)

The conservation law of mass, (1.10a), and (1.9), give

∫ R(t)

0
r2ρ(r, t) dr =

∫ R0

0
r2ρ0(r) dr = M =

∫ R̄(t)

0
r2ρ̄(r, t) dr for t � 0.
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In the present work, we prove the global existence of smooth solutions to problem
(1.10) when initial data are small spherically symmetric perturbations of Barenblatt
solutions and they have the same total masses. Moreover, we obtain the pointwise
convergence with a rate of density which gives the detailed behavior of the den-
sity, the convergence rate of velocity in supreme norm and the precise expanding
rate of physical vacuum boundaries. The results obtained in this article also prove
the nonlinear asymptotic stability of both the Barenblatt solution and the explicit
solution (1.4) in the setting of physical vacuum boundary problems.

The key idea in obtaining the global-in-time higher-order regularity of solutions
to problem (1.10) is to construct nonlinear weighted functionals, and to perform
nonlinear weighted estimates and elliptic estimates. To obtain the global-in-time
regularity, the decay estimates are essential, which are achieved in the present
work by introducing suitable weights involving both space and time variables to
quantify the behavior of solutions both near the vacuum boundary and origin,
and in large time. There is a distinction between the weights constructed here
and those for the local-in-time well-posedness theory (cf. [11,13,14,32,34,49])
where only spatial weights are needed. Besides this, since the Barenblatt solution
to the porous media equation does not solve (1.10) exactly and an error appears,
we introduce a new higher-order correction with which the nonlinear weighted
energy estimates and elliptic estimates can be performed. Compared with the one-
dimensional case studied in [50], much more obstacles appear for solving problem
(1.10). Besides the difficulty of strong degeneracy of the equations at vacuum states,
the coordinates singularity at the origin which carries the true three-dimensional
nature is another one. Indeed, the difficulty of the coordinates singularity at the
origin was avoided in many previous studies of spherically symmetric motions in
multiple dimensions for compressible fluids due to the challenge of how to resolve
this singularity. In this paper, suitable weights are constructed carefully to resolve
the coordinates singularity. As an intermediate step passing from one-dimensional
theory in [50] to the general three-dimensional problem, (1.1), we believe the ideas
and estimates including the nonlinear weighted functionals and pointwise decay
estimates developed in this paper will contribute to a understanding of the behavior
of solutions to problem (1.1).

There has been a recent explosion of interest in the analysis of free-boundary
problems for both compressible and incompressible inviscid fluids. (As for viscous
flows, there have been many results on the free-boundary Navier-Stokes equations
which cause quite different difficulties in analyses from those for inviscid flows,
so we do not discuss the works in that regime here.) For incompressible inviscid
flows, onemay refer to [2,3,10,12,38,42,55,58,59,69] for the local-in-time theory;
while the global-in-time theory is rather recent which is for both two-dimensional
and three-dimensional water wave problems of irrotational flows (cf. [21,22,30,
60,61]). For compressible inviscid flows, besides the aforementioned results on
vacuum boundary problems, the local-in-time existence and uniqueness for the
three-dimensional compressible Euler equations modeling a liquid rather than a gas
were established in [43] by using Lagrangian variables combined with Nash-Moser
iteration to construct solutions. (For a compressible liquid, the density is assumed
to be a strictly positive constant on the moving boundary. As such, the compressible
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liquid provides a strictly hyperbolic, but characteristic, system.)Analternative proof
for the existence of a compressible liquid was given in [56], employing a strategy
based on symmetric hyperbolic systems combinedwithNash-Moser iteration. From
the above discussions, one may see that the current available theories of free-
boundary problems for invscid flows, in particular for compressible invscid flows,
are mainly on local-in-time solutions. The results obtained in this paper are among
the first ones on the global solutions of free-boundary problems for compressible
inviscid fluids in the presence of vacuum states.

2. Reformulation of the Problem and Main Results

2.1. Fix the Domain and Lagrangian Variables

In this subsection, we adopt the the Lagrangian particle trajectory formulation
as used in [11,13,14,31,34] to reduce the original free-boundary problem (1.10)
to an initial boundary value problem. We make the initial domain of the Barenblatt
solution,

(
0, R̄(0)

)
, as the reference domain and define a diffeomorphism η0 :(

0, R̄(0)
) → (0, R0) by

∫ η0(r)

0
r2ρ0(r) dr =

∫ r

0
r2ρ̄0(r) dr for r ∈ (

0, R̄(0)
)
,

where ρ̄0(r) := ρ̄(r, 0) is the initial density of the Barenblatt solution. Clearly,

η20(r)ρ0(η0(r))η0r (r) = r2ρ̄0(r) for r ∈ (
0, R̄(0)

)
. (2.1)

Due to (1.11), (1.7) and the fact that the total mass of the Barenblatt solution is the
same as that of ρ0, (1.12), the diffeomorphism η0 is well defined. For simplicity of
presentation, set I := (0, R̄(0)) = (0,

√
A/B). To fix the boundary, we transform

system (1.10) into Lagrangian variables. For r ∈ I, we define the Lagrangian
variable η(r, t) by

ηt (r, t) = u(η(r, t), t) for t > 0 and η(r, 0) = η0(r), (2.2)

and set the Lagrangian density and velocity by

f (r, t) = ρ(η(r, t), t) and v(r, t) = u(η(r, t), t). (2.3)

Then the Lagrangian version of system (1.10) can be written on the reference
domain I as

(η2 f )t + r2 f vr/ηr = 0 in I × (0,∞), (2.4a)

f vt + ( f γ )r/ηr = − f v in I × (0,∞), (2.4b)

v(0, t) = 0 on (0,∞), (2.4c)

( f, v) = (ρ0(η0), u0(η0)) on I × {t = 0}. (2.4d)

It should be noted that we need ηr (r, t) > 0 for r ∈ I and t � 0 to make the
Lagrangian transformation sensible, which will be verified in (3.3). Indeed, ηr > 0
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implies η(r, t) > 0 for r ∈ I and t � 0, due to the boundary condition that the
center of the symmetry does not move, v(0, t) = 0. The map η(·, t) defined above
can be extended to Ī = [0, √

A/B]. In the setting, the vacuum boundaries for
problem (1.10) are given by

R(t) = η
(
R̄(0), t

) = η
(√

A/B, t
)

for t � 0. (2.5)

It follows from solving (2.4a) and using (2.1) that

f (r, t)η2(r, t)ηr (r, t) = ρ0(η0(r))η
2
0(r)η0r (r) = r2ρ̄0(r), r ∈ I. (2.6)

Thus, the initial density of the Barenblatt solution, ρ̄0, can be viewed as a parameter
and system (2.4) can be rewritten as

ρ̄0ηt t + ρ̄0ηt +
(η

r

)2
[(

r2

η2

ρ̄0

ηr

)γ
]

r

= 0 in I × (0,∞), (2.7a)

η(0, t) = 0, on (0,∞), (2.7b)

(η, ηt ) = (η0, u0(η0)) on I × (0,∞). (2.7c)

2.2. Ansatz

Define the Lagrangian variable η̄(r, t) for the Barenblatt flow in Ī by

∂t η̄(r, t) = ū(η̄(r, t), t) = η̄(r, t)

(3γ − 1)(1 + t)
for t > 0 and η̄(r, 0) = r, (2.8)

so that

η̄(r, t) = r (1 + t)1/(3γ−1) for (r, t) ∈ Ī × [0,∞) (2.9)

and

ρ̄0η̄t +
(

η̄

r

)2
[(

r2

η̄2

ρ̄0

η̄r

)γ
]

r

= 0 in I × (0,∞).

Since η̄ does not solve (2.7a) exactly, we introduce a correction h(t) which is a
solution of the following initial value problem of ordinary differential equations:

htt + ht − (η̄r + h)2−3γ /(3γ − 1) + η̄r tt + η̄r t = 0, t > 0,

h(t = 0) = ht (t = 0) = 0.
(2.10)

(Notice that η̄r , η̄r t and η̄r tt are independent of r .) The new ansatz is then given by

η̃(r, t) := η̄(r, t) + rh(t), (2.11)

so that

ρ̄0η̃t t + ρ̄0η̃t +
(

η̃

r

)2
[(

r2

η̃2

ρ̄0

η̃r

)γ
]

r

= 0 in I × (0,∞). (2.12)
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It should be noted that η̃r is independent of r .Wewill prove in the “Appendix” that η̃
behaves similar to η̄, that is, there exist positive constants K and C(n) independent
of time t such that for all t � 0,

(1 + t)1/(3γ−1) � η̃r (t) � K (1 + t)1/(3γ−1) , η̃r t � 0, (2.13a)
∣∣∣∣
dk η̃r (t)

dtk

∣∣∣∣ � C(n) (1 + t)
1

3γ−1−k
, k = 1, 2, · · · , n. (2.13b)

Moreover, there exists a certain constant C independent of t such that

0 � h(t) � C(1 + t)
1

3γ−1−1 ln(1 + t) and

|ht (t)| � C(1 + t)
1

3γ−1−2 ln(1 + t), t � 0.
(2.14)

The proof of (2.14) will also be given in the “Appendix”.

2.3. Main Results

To state the main theorem, we write equation (2.7a) in a perturbation form
around the Barenblatt solution. Let ζ(r, t) := η(r, t)/r − η̃(r, t)/r. Thus,

η(r, t) = η̃(r, t) + rζ(r, t) and ηr (r, t) = η̃r (t) + ζ(r, t) + rζr (r, t). (2.15)

It follows from (2.7a) and (2.12) that

r ρ̄0ζt t + r ρ̄0ζt + (η̃r + ζ )2
[
ρ̄

γ
0 (η̃r + ζ )−2γ (η̃r + ζ + rζr )

−γ
]

r
− η̃

2−3γ
r

(
ρ̄

γ
0

)
r = 0, (2.16)

Denote α := 1/(γ − 1), l := 3 + min {m ∈ N : m > α} = 4 + [α]. For j =
0, · · · , l and i = 0, · · · , l − j , we set

E j (t) := (1 + t)2 j
∫

I

[
r4ρ̄0

(
∂
j
t ζ

)2 + r2ρ̄γ
0

∣∣∣∂ j
t (ζ, rζr )

∣∣∣
2 + (1 + t)r4ρ̄0

(
∂
j
t ζt

)2]
dr,

E j,i (t) := (1+t)2 j
∫

I

[
r2ρ̄1+(i−1)(γ−1)

0

(
∂
j
t ∂ ir ζ

)2 +r4ρ̄1+(i+1)(γ−1)
0

(
∂
j
t ∂ i+1

r ζ
)2]

dr.

The higher-order norm is defined by

E(t) :=
l∑

j=0

⎛

⎝E j (t) +
l− j∑

i=1

E j,i (t)

⎞

⎠ .

It will be proved in Lemma 3.7 that

sup
r∈I

⎧
⎨

⎩

2∑

j=0

(1 + t)2 j
∣∣∣∂ j

t ζ(r, t)
∣∣∣
2 +

1∑

j=0

(1 + t)2 j
∣∣∣∂ j

t ζr (r, t)
∣∣∣
2

⎫
⎬

⎭
� CE(t)
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for some constantC independent of t . So the boundedness of E(t) gives the uniform
boundedness and decay of the perturbation ζ and its derivatives. In what follows,
we state our main result.

Theorem 2.1. Suppose that (1.12) holds. There exists a constant δ̄ > 0 such that
if E(0) � δ̄, then the problem (2.7) admits a global unique smooth solution in
I × [0,∞) satisfying for all t � 0,

E(t) � CE(0)

and

sup
r∈I

⎧
⎨

⎩

2∑

j=0

(1 + t)2 j
∣∣∣∂ j

t ζ(r, t)
∣∣∣
2 +

1∑

j=0

(1 + t)2 j
∣∣∣∂ j

t ζr (r, t)
∣∣∣
2 +

∑

i+ j�l−2, 2i+ j�3

(1 + t)2 j

×
∣∣∣∣ρ̄

(γ−1)(2i+ j−3)
2

0 ∂
j
t ∂ ir ζ(r, t)

∣∣∣∣

2

+
∑

i+ j=l−1

(1 + t)2 j
∣∣∣∣r ρ̄

(γ−1)(2i+ j−3)
2

0 ∂
j
t ∂ ir ζ(r, t)

∣∣∣∣

2

+
∑

i+ j=l

(1 + t)2 j
∣∣∣∣r

2ρ̄
(γ−1)(2i+ j−3)

2
0 ∂

j
t ∂ ir ζ(r, t)

∣∣∣∣

2
⎫
⎬

⎭
� CE(0),

(2.17)

where C is a positive constant independent of t .

It should be noticed that the time derivatives involved in the initial higher-order
energy norm, E(0), can be determined via the equation by the initial data ρ0 and
u0 (see [13,49] for instance).

As a corollary of Theorem 2.1, we have the following theorem for solutions to
the original vacuum boundary problem (1.10).

Theorem 2.2. Suppose that (1.12) holds. There exists a constant δ̄ > 0 such that
if E(0) � δ̄, then the problem (1.10) admits a global unique smooth solution
(ρ(η, t), u(η, t), R(t)) for t ∈ [0,∞) satisfying

|ρ (η(r, t), t) − ρ̄ (η̄(r, t), t)| �C
(
A − Br2

) 1
γ−1

(1 + t)−
4

3γ−1

×
(√

E(0) + (1 + t)−
3γ−2
3γ−1 ln(1 + t)

)
, (2.18)

|u (η(r, t), t)−ū (η̄(r, t), t)| �Cr(1 + t)−1

(√
E(0) + (1 + t)−

3γ−2
3γ−1 ln(1 + t)

)
, (2.19)

for all r ∈ I and t � 0; and for all t � 0,

c1(1 + t)
1

3γ−1 � R(t) � c2(1 + t)
1

3γ−1 , (2.20)
∣∣∣∣
dk R(t)

dtk

∣∣∣∣ � C(1 + t)
1

3γ−1−k
, k = 1, 2, 3, (2.21)

c3(1 + t)−
3γ−2
3γ−1 �

∣∣∣∣
(
ργ−1

)

η
(η, t)

∣∣∣∣�c4(1 + t)−
3γ−2
3γ−1 when

1

2
R(t) � η � R(t).

(2.22)
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Here C, c1, c2, c3 and c4 are positive constants independent of t .

The pointwise behavior of the density and velocity for the vacuum boundary prob-
lem (1.10) to that of the Barenblatt solution are given by (2.18) and (2.19), respec-
tively. It is also shown in (2.18) that the difference of density to problem (1.10) and
the corresponding Barenblatt density decays at the rate of (1 + t)−4/(γ+1) in L∞,
while the density of the Barenblatt solution, ρ̄, decays at the rate of (1+ t)−3/(γ+1)

in L∞ [see (1.7)]. (2.20) gives the precise expanding rate of the vacuum boundaries
of the problem (1.10), which is the same as that for the Barenblatt solution shown in
(1.9). Furthermore, it verifies in (2.22) that the vacuum boundary R(t) is physical
at any finite time.

3. Proof of Theorem 2.1

The proof is based on the local existence of smooth solutions (cf. [13,32,49])
and continuation arguments. The uniqueness of the smooth solutions can be ob-
tained as in Section 11 of [49]. In order to prove the global existence of smooth
solutions, we need to obtain the uniform-in-time a priori estimates on any given
time interval [0, T ] satisfying supt∈[0,T ] E(t) < ∞. For this purpose, we use a boot-
strap argument by making the following a priori assumption: Let ζ be a smooth
solution to (2.16) on [0, T ], there exists a suitably small fixed positive number
ε0 ∈ (0, 1) independent of t such that for t ∈ [0, T ],

2∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζ(·, t)

∥∥∥
2

L∞ +
1∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζr (·, t)

∥∥∥
2

L∞

+
∑

i+ j�l−2, 2i+ j�3

(1 + t)2 j ×
∥∥∥∥ρ̄

(γ−1)(2i+ j−3)
2

0 ∂
j
t ∂ ir ζ(·, t)

∥∥∥∥

2

L∞

+
∑

i+ j=l−1

(1 + t)2 j
∥∥∥∥r ρ̄

(γ−1)(2i+ j−3)
2

0 ∂
j
t ∂ ir ζ(·, t)

∥∥∥∥
2

L∞
� ε20 . (3.1)

This, in particular, implies, noting (2.13), that for 0 � θ1, θ2 � 1,

1

2
(1 + t)

1
3γ−1 � (η̃r + θ1ζ + θ2rζr )(r, t) � 2K (1 + t)

1
3γ−1 , (r, t) ∈ I × [0, T ].

(3.2)

Moreover, it follows from (2.15) and (3.2) that

1

2
(1 + t)

1
3γ−1 � ηr (r, t), r−1η(r, t) � 2K (1 + t)

1
3γ−1 , (r, t) ∈ I × [0, T ].

(3.3)

Here K is the positive constant appearing in (2.13a).
Under this a priori assumption, we prove in Section 3.2 the following elliptic

estimates: E j,i (t) � C
∑i+ j

ι=0 Eι(t), when j � 0, i � 1, i + j � l, where C
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is a positive constant independent of t . With the a priori assumption and elliptic
estimates,we show inSection 3.3 the followingnonlinearweighted energy estimate:
for some positive constant C independent of t , E j (t) � C

∑ j
ι=0 Eι(0), j =

0, 1, . . . , l. Finally, the a priori assumption (3.1) can be verified in Section 3.4 by
proving

2∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζ(·, t)

∥∥∥
2

L∞ +
1∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζr (·, t)

∥∥∥
2

L∞

+
∑

i+ j�l−2, 2i+ j�3

(1 + t)2 j
∥∥∥∥ρ̄

(γ−1)(2i+ j−3)
2

0 ∂
j
t ∂ ir ζ(·, t)

∥∥∥∥

2

L∞

+
∑

i+ j=l−1

(1 + t)2 j
∥∥∥∥r ρ̄

(γ−1)(2i+ j−3)
2

0 ∂
j
t ∂ ir ζ(·, t)

∥∥∥∥

2

L∞

+
∑

i+ j=l

(1 + t)2 j
∥∥∥∥r

2ρ̄
(γ−1)(2i+ j−3)

2
0 ∂

j
t ∂ ir ζ(·, t)

∥∥∥∥
2

L∞
� CE(t)

for some positive constant C independent of t . This closes the whole bootstrap
argument for small initial perturbations and completes the proof of Theorem 2.1.

3.1. Preliminaries

In this subsection, we list some embedding estimates for weighted Sobolev
spaces which will be used later and introduce some notations to simplify the pre-
sentation. For any bounded interval I , set d(r) = dist (r, ∂ I ). For any a > 0 and
nonnegative integer b, the weighted Sobolev space Ha,b(I ) is given by

Ha,b(I ) :=
{
da/2F ∈ L2(I ) :

∫

I
da |∂kr F |2dr < ∞, 0 � k � b

}

with the norm ‖F‖2
Ha,b(I )

:= ∑b
k=0

∫
I d

a |∂kr F |2dr. Then for b � a/2, it holds the

following embeddingofweightedSobolev spaces (cf. [37]):Ha,b(I ) ↪→ Hb−a/2(I )
with the estimate

‖F‖Hb−a/2(I ) � C‖F‖Ha,b(I ) (3.4)

for some positive constant C depending on a, b and I .
The following general version of theHardy inequalitywhose proof can be found

in [37] will also be used often in this paper. Let k > 1 be a given real number and F
be a function satisfying

∫ δ

0 rk
(
F2 + F2

r

)
dr < ∞, where δ is a positive constant;

then it holds that
∫ δ

0 rk−2F2dr � C(δ, k)
∫ δ

0 rk
(
F2 + F2

r

)
dr, where C(δ, k) is a

constant depending only on δ and k. As a consequence, one has
∫ √

A/B

√
A/(4B)

(√
A/B − r

)k−2
F2dr � C

∫ √
A/B

√
A/(4B)

(√
A/B − r

)k (
F2 + F2

r

)
dr,

(3.5)

where C is a constant depending on A, B and k.
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Notations:
(1) Throughout the rest of paper, C will denote a positive constant which only

depend on the parameters of the problem, γ and M , but does not depend on the
data. They are referred as universal and can change from one inequality to another
one. Also we use C(β) to denote a certain positive constant depending on quantity
β.

(2) We will employ the notation a � b to denote a � Cb, a ∼ b to denote
C−1b � a � Cb and a � b to denote a � C−1b, whereC is the universal constant
as defined above.

(3) In the rest of the paper, we will use the notations
∫ =: ∫

I , ‖ · ‖ =:
‖ · ‖L2(I) and ‖ · ‖L∞ =: ‖ · ‖L∞(I).

(4) We set σ(r) := ρ̄
γ−1
0 (r) = A − Br2, r ∈ I. Then E j and E j,i can be

rewritten as

E j (t) = (1 + t)2 j
∫ [

r4σα
(
∂
j
t ζ

)2 + r2σα+1
∣∣∣∂ j

t (ζ, rζr )
∣∣∣
2

+(1 + t)r4σα
(
∂
j
t ζt

)2]
(r, t)dr,

E j,i (t) = (1 + t)2 j
∫ [

r2σα+i−1
(
∂
j
t ∂ ir ζ

)2 + r4σα+i+1
(
∂
j
t ∂ i+1

r ζ
)2]

(r, t)dr.

(5) We set Io := (
0,

√
A/(4B)

)
and Ib := (√

A/(4B),
√
A/B

)
. Then

I = Io ∪ Ib. Moreover, it gives from the Hardy inequality (3.5) that for k > 1,
∫

Ib
σ k−2(r)F2dr � C(A, B, k)

∫

Ib
σ k(r)

(
F2 + F2

r

)
dr, (3.6)

provided that the right-hand side of (3.6) is finite.

3.2. Elliptic Estimates

In this subsection, we prove the following elliptic estimates:

Proposition 3.1. Suppose that (3.1) holds for suitably small positive number ε0 ∈
(0, 1). Then it holds that for t ∈ [0, T ],

E j,i (t) �
i+ j∑

ι=0

Eι(t) when j � 0, i � 1, i + j � l. (3.7)

The proof of this proposition consists of Lemmas 3.2 and 3.3.

3.2.1. Lower-Order Elliptic Estimates Dividing equation (2.16) by ρ̄0, one has

rζt t + rζt + σ (η̃r + ζ )2
[
(η̃r + ζ )−2γ (η̃r + ζ + rζr )

−γ
]

r

+ γ

γ − 1
σr

[
(η̃r + ζ )2−2γ (η̃r + ζ + rζr )

−γ − η̃
2−3γ
r

]
= 0.
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Note that

(η̃r + ζ )2
[
(η̃r + ζ )−2γ (η̃r + ζ + rζr )

−γ
]

r

= −γ η̃
1−3γ
r (4ζr + rζrr ) + J1,

(η̃r + ζ )2−2γ (η̃r + ζ + rζr )
−γ − η̃

2−3γ
r

= −γ η̃
1−3γ
r (rζr ) + (2 − 3γ )η̃

1−3γ
r ζ + J2,

where

J1 : = −2γ
[
(η̃r + ζ )1−2γ (η̃r + ζ + rζr )

−γ − η̃
1−3γ
r

]
ζr

−γ
[
(η̃r + ζ )2−2γ (η̃r + ζ + rζr )

−γ−1 − η̃
1−3γ
r

]
(2ζr + rζrr ) ,

J2 : = (η̃r + ζ )2−2γ (η̃r + ζ + rζr )
−γ − η̃

2−3γ
r

+γ η̃
1−3γ
r (rζr ) − (2 − 3γ )η̃

1−3γ
r ζ. (3.8)

Then,

γ η̃
1−3γ
r

[
rσζrr + 4σζr + γ

γ − 1
rσrζr

]
= rζt t + rζt + γ (2 − 3γ )

γ − 1
σr η̃

1−3γ
r ζ

+σJ1 + γ

γ − 1
σrJ2. (3.9)

Lemma 3.2. Assume that (3.1) holds for suitably small positive number ε0 ∈ (0, 1).
Then,

E0,1(t) � E0(t) + E1(t), 0 � t � T .

Proof. Multiply equation (3.9) by η̃
3γ−1
r rσα/2 and square the spatial L2-norm of

the product to obtain
∥∥∥r2σ 1+ α

2 ζrr + 4rσ 1+ α
2 ζr + (1 + α) r2σ

α
2 σrζr

∥∥∥
2

� E1 + (1 + t)2
(∥∥∥rσ 1+ α

2 J1

∥∥∥
2 +

∥∥∥rσ
α
2 σrJ2

∥∥∥
2
)

+
∥∥∥rσ

α
2 ζ

∥∥∥
2

(3.10)

where we have used (2.13) and the definition of E1. It follows from the Taylor
expansion, (3.2) and (3.1) that

|J1| � (1 + t)−
3γ

3γ−1 (|rζr | + |ζ |) (|rζrr | + |ζr |) � (1 + t)−
3γ

3γ−1 ε0 (|rζrr | + |ζr |) ,

|J2| � (1 + t)−
3γ

3γ−1

(
|rζr |2 + |ζ |2

)
� (1 + t)−

3γ
3γ−1 ε0 (|rζr | + |ζ |) .

Thus,

(1 + t)2
(∥∥∥rσ 1+ α

2 J1

∥∥∥
2 +

∥∥∥rσ
α
2 σrJ2

∥∥∥
2
)

� ε20

(∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2 +

∥∥∥rσ
α
2 σrζ

∥∥∥
2
)

.

(3.11)
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Note that
∥∥∥rσ

α
2 ζ

∥∥∥
2 =

∫

Io
r2σαζ 2dr +

∫

Ib
r2σαζ 2dr

�
∫

Io
r2σ 1+αζ 2dr +

∫

Ib
r4σαζ 2dr � E0. (3.12)

Then, it is yielded from (3.10), (3.11) and (3.12) that
∥∥∥r2σ 1+ α

2 ζrr + 4rσ 1+ α
2 ζr + (1 + α) r2σ

α
2 σrζr

∥∥∥
2

� E0 + E1 + ε20

(∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2
)

. (3.13)

In what follows, we analyze the left-hand side of (3.13), which can be expanded
as

∥∥∥r2σ 1+ α
2 ζrr + 4rσ 1+ α

2 ζr + (1 + α) r2σ
α
2 σrζr

∥∥∥
2

=
∥∥∥r2σ 1+ α

2 ζrr

∥∥∥
2 + 16

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 + (1 + α)2

∥∥∥r2σ
α
2 σrζr

∥∥∥
2

+
∫ [

4r3σ 2+α+(1+α)r4σ 1+ασr

] (
ζ 2
r

)

r
dr+8(1 + α)

∫
r3σ 1+ασrζ

2
r dr.

(3.14)

With the help of the integration by parts and the fact σr = −2Br , one has
∫ [

4r3σ 2+α + (1 + α)r4σ 1+ασr

] (
ζ 2
r

)

r
dr

� −12
∫

r2σ 2+αζ 2
r dr − (1 + α)2

∫
r4σασ 2

r ζ 2
r dr − C

∫
r4σ 1+αζ 2

r dr.

Substitute this into (3.14) and use σr = −2Br to give
∥∥∥r2σ 1+ α

2 ζrr + 4rσ 1+ α
2 ζr + (1 + α) r2σ

α
2 σrζr

∥∥∥
2

�
∥∥∥r2σ 1+ α

2 ζrr

∥∥∥
2 + 4

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 − C

∫
r4σ 1+αζ 2

r dr.

In view of (3.13), we then see that
∥∥∥r2σ 1+ α

2 ζrr

∥∥∥
2 + 4

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2

� E0 + E1 + ε20

(∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2
)

. (3.15)

On the other hand, it follows from (3.13) and (3.15) that
∥∥∥(1 + α) r2σ

α
2 σrζr

∥∥∥
2

� E0

+ E1 + ε20

(∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2
)

.
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This, together with (3.15), gives

∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2

� E0 + E1 + ε20

(∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2
)

, (3.16)

which implies, with the aid of the smallness of ε0, that

∥∥∥r2σ 1+ α
2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r2σ
α
2 σrζr

∥∥∥
2

� E0 + E1.

In view of σr = −2Br , we then see that
∥∥∥r2σ 1+ α

2 ζrr

∥∥∥
2 +

∥∥∥rσ 1+ α
2 ζr

∥∥∥
2 +

∥∥∥r3σ
α
2 ζr

∥∥∥
2

� E0 + E1,

which implies

∥∥∥rσ
α
2 ζr

∥∥∥
2

�
∫

Io
r2σ 2+αζ 2

r dr +
∫

Ib
r6σαζ 2

r dr � E0 + E1. (3.17)

This finishes the proof of Lemma 3.2. ��

3.2.2. Higher-Order Elliptic Estimates For i � 1 and j � 0, it yields from
∂
j
t ∂ i−1

r (3.9) and σr = −2Br that

γ η̃
1−3γ
r

[
rσ∂

j
t ∂ i+1

r ζ + (i + 3)σ∂
j
t ∂ ir ζ + (α + i) rσr∂

j
t ∂ ir ζ

]

= r∂ j+2
t ∂ i−1

r ζ + r∂ j+1
t ∂ i−1

r ζ + P1 + P2,

(3.18)

where

P1 := − γ

j∑

ι=1

[
∂ι
t

(
η̃
1−3γ
r

)]
∂
j−ι
t

[
rσ∂ i+1

r ζ + (i + 3)σ∂ ir ζ + (α + i) rσr∂
i
r ζ

]

− γ ∂
j
t

{

η̃
1−3γ
r

[
i−1∑

ι=2

C ι
i−1

[
∂ι
r (rσ)

]
∂ i+1−ι
r ζ + 4

i−1∑

ι=1

C ι
i−1

(
∂ι
rσ

)
∂ i−ι
r ζ

+(α + 1)
i−1∑

ι=1

C ι
i−1

[
∂ι
r (rσr )

]
∂ i−ι
r ζ

]}

+ (i − 1)∂ i−2
r

(
∂
j+2
t ζ + ∂

j+1
t ζ

)

− 2γ (2 − 3γ )B

γ − 1
∂
j
t

[
η̃
1−3γ
r

(
r∂ i−1

r ζ + (i − 1)∂ i−2
r ζ

)]
, (3.19)

P2 := ∂ i−1
r

(
σ∂

j
t J1

)
+ (1 + α)∂ i−1

r

(
σr∂

j
t J2

)
. (3.20)

(Recall that J1 and J2 are defined in (3.8).) Here and thereafterC
j
m is used to denote

the binomial coefficients for 0 � j � m, C j
m = m!

j !(m− j)! and summations
∑i−1

ι=1

and
∑i−1

ι=2 should be understood as zero when i = 1 and i = 1, 2, respectively.
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Multiply equation (3.18) by η̃
3γ−1
r rσ (α+i−1)/2, square the spatial L2-norm of the

product and use (2.13) to give

∥∥∥r2σ
α+i+1

2 ∂
j
t ∂ i+1

r ζ + (i + 3)rσ
α+i+1

2 ∂
j
t ∂ ir ζ + (α + i) r2σ

α+i−1
2 σr∂

j
t ∂ ir ζ

∥∥∥
2

� (1 + t)2
(∥∥∥r2σ

α+i−1
2 ∂

j+2
t ∂ i−1

r ζ

∥∥∥
2 +

∥∥∥r2σ
α+i−1

2 ∂
j+1
t ∂ i−1

r ζ

∥∥∥
2
)

+ (1 + t)2
(∥∥∥rσ

α+i−1
2 P1

∥∥∥
2 +

∥∥∥rσ
α+i−1

2 P2

∥∥∥
2
)

.

Similar to the derivation of (3.16) and (3.17), we can then obtain

(1 + t)−2 jE j,i (t) =
∥∥∥r2σ

α+i+1
2 ∂

j
t ∂ i+1

r ζ

∥∥∥
2 +

∥∥∥rσ
α+i−1

2 ∂
j
t ∂ ir ζ

∥∥∥
2

�
∥∥∥r2σ

α+i
2 ∂

j
t ∂ ir ζ

∥∥∥
2 + (1 + t)2

(∥∥∥r2σ
α+i−1

2 ∂
j+2
t ∂ i−1

r ζ

∥∥∥
2

+
∥∥∥r2σ

α+i−1
2 ∂

j+1
t ∂ i−1

r ζ

∥∥∥
2
)

+(1 + t)2
(∥∥∥rσ

α+i−1
2 P1

∥∥∥
2 +

∥∥∥rσ
α+i−1

2 P2

∥∥∥
2
)

. (3.21)

We will use this estimate to prove the following lemma by the mathematical induc-
tion:

Lemma 3.3. Assume that (3.1) holds for suitably small positive number ε0 ∈ (0, 1).
Then for j � 0, i � 1 and 2 � i + j � l,

E j,i (t) �
i+ j∑

ι=0

Eι(t), t ∈ [0, T ]. (3.22)

Proof. We use the induction for i + j to prove this lemma. As shown in Lemma
3.2 we know that (3.22) holds for i + j = 1. For 1 � k � l − 1, we make the
induction hypothesis that (3.22) holds for all j � 0, i � 1 and i + j � k, that is,

E j,i (t) �
i+ j∑

ι=0

Eι(t), j � 0, i � 1, i + j � k. (3.23)

It then suffices to prove (3.22) for j � 0, i � 1 and i + j = k + 1. (Indeed, there
exists an order of (i, j) for the proof. For example, when i + j = k + 1 we will
bound Ek+1−ι,ι from ι = 1 to k + 1 step by step.)
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Before going to the estimate, we notice a fact that E j,0 � E j for j = 0, . . . , l.
Indeed, it follows from (3.6) that
∫

Ib
σα−1

(
∂
j
t ζ

)2
dr �

∫
Ib σα+1

[
r2

(
∂
j
t ζ

)2 +r4
(
∂
j
t ζr

)2]
dr � (1+t)−2 jE j (t),

which implies for j = 0, 1, · · · , l,

E j,0(t) = (1 + t)2 j
∫ [

r2σα−1
(
∂
j
t ζ

)2 + r4σα+1
(
∂
j
t ζr

)2]
(r, t)dr

� (1 + t)2 j
[∫

Io
r2σα+1

(
∂
j
t ζ

)2
(r, t)dr +

∫

Ib
σα−1

(
∂
j
t ζ

)2
(r, t)dr

]

+ E j (t) � E j (t). (3.24)

This, together with the induction hypothesis (3.23), gives

E j,i (t) �
i+ j∑

ι=0

Eι(t), j � 0, i � 0, i + j � k. (3.25)

In what follows, we assume j � 0, i � 1 and i + j = k + 1 � l. First, We
estimate P1 and P2 given by (3.19) and (3.20), respectively. For P1, it follows
from (2.13) and σr = −2Br that

|P1| �
j∑

ι=1

(1 + t)−1−ι
(∣∣∣rw∂

j−ι
t ∂ i+1

r ζ

∣∣∣ +
∣∣∣∂ j−ι

t ∂ ir ζ

∣∣∣
)

+
j∑

ι=0

i−1∑

m=1

(1 + t)−1−ι
∣∣∣∂ j−ι

t ∂mr ζ

∣∣∣ + (i − 1)

×
⎛

⎝
∣∣∣∂ j+2

t ∂ i−2
r ζ

∣∣∣ +
∣∣∣∂ j+1

t ∂ i−2
r ζ

∣∣∣ +
j∑

ι=0

(1 + t)−1−ι
∣∣∣∂ j−ι

t ∂ i−2
r ζ

∣∣∣

⎞

⎠

+
j∑

ι=0

(1 + t)−1−ι
∣∣∣r∂ j−ι

t ∂ i−1
r ζ

∣∣∣ ,

which implies

∥∥∥rσ
α+i−1

2 P1

∥∥∥
2

�
j∑

ι=1

(1 + t)−2−2ι
(∥∥∥r2σ

α+i+1
2 ∂

j−ι
t ∂ i+1

r ζ

∥∥∥
2 +

∥∥∥rσ
α+i−1

2 ∂
j−ι
t ∂ ir ζ

∥∥∥
2
)

+
j∑

ι=0

(1 + t)−2−2ι

(
i−1∑

m=1

∥∥∥rσ
α+i−1

2 ∂
j−ι
t ∂mr ζ

∥∥∥
2 +

∥∥∥r2σ
α+i−1

2 ∂
j−ι
t ∂ i−1

r ζ

∥∥∥
2
)

+ (i − 1)2

⎛

⎝
j+2∑

ι= j+1

∥∥∥rσ
α+i−1

2 ∂ι
t ∂

i−2
r ζ

∥∥∥
2 +

j∑

ι=0

(1 + t)−2−2ι
∥∥∥rσ

α+i−1
2 ∂

j−ι
t ∂ i−2

r ζ

∥∥∥
2

⎞

⎠ .
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So,
∥∥∥rσ

α+i−1
2 P1

∥∥∥
2

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 + t)−2−2 j

⎛

⎝
j−1∑

ι=0

Eι,1+
j∑

ι=0

Eι

⎞

⎠ (t), i = 1,

(1 + t)−2−2 j

⎛

⎝
j−1∑

ι=0

Eι,i+
j∑

ι=0

i−1∑

m=1

Eι,m +
j+2∑

ι=0

Eι,i−2

⎞

⎠ (t), i � 2.

(3.26)

For P2, it follows from (2.13), (3.1), (3.2) and σr = −2Br that

|P2| �
j∑

n=0

i−1∑

m=0

Knm

(∣∣∣∂ j−n
t ∂ i−1−m

r (σrζrr )
∣∣∣ +

∣∣∣∂ j−n
t ∂ i−1−m

r (σζr )

∣∣∣

+
∣∣∣∂ j−n

t ∂ i−1−m
r (σr rζr )

∣∣∣ +
∣∣∣∂ j−n

t ∂ i−1−m
r (σrζ )

∣∣∣
)

�
j∑

n=0

i−1∑

m=0

Knm

(∣∣∣σr∂ j−n
t ∂ i−m+1

r ζ

∣∣∣ +
i−m∑

ι=0

∣∣∣∂ j−n
t ∂ι

rζ

∣∣∣

)

=:
j∑

n=0

i−1∑

m=0

P2nm,

where

K00 = ε0(1 + t)−1− 1
3γ−1 ; K10 = ε0(1 + t)−2− 1

3γ−1 ,

K01 = (1 + t)−1− 1
3γ−1

(
ε0 + |r∂2r ζ |

)
;

K20 = ε0(1 + t)−3− 1
3γ−1 + (1 + t)−1− 1

3γ−1

∣∣∣r∂2t ∂rζ

∣∣∣ ,

K11 = (1 + t)−2− 1
3γ−1

(
ε0 +

∣∣∣r∂2r ζ

∣∣∣
)

+ (1 + t)−1− 1
3γ−1

∣∣∣r∂t∂2r ζ

∣∣∣ ,

K02 = (1 + t)−1− 1
3γ−1

(∣∣∣∂2r ζ

∣∣∣ +
∣∣∣r∂3r ζ

∣∣∣
)

+ (1 + t)−1− 2
3γ−1

(
ε20 +

∣∣∣r∂2r ζ

∣∣∣
2
)

.

We do not list here Knm for n + m � 3 since we can use the same method to
estimateP2nm for n +m � 3 as that for n +m � 2. Easily,P200 andP210 can be
bounded by

∥∥∥rσ
α+i−1

2 P200

∥∥∥
2

� ε20(1 + t)−2

⎛

⎝
∥∥∥r2σ

α+i+1
2 ∂

j
t ∂ i+1

r ζ

∥∥∥
2 +

i∑

ι=0

∥∥∥rσ
α+i−1

2 ∂
j
t ∂ι

r ζ
∥∥∥
2
⎞

⎠

� ε20(1 + t)−2−2 j

⎛

⎝E j,i +
i−1∑

ι=0

E j,ι

⎞

⎠ (t),

∥∥∥rσ
α+i−1

2 P210

∥∥∥
2

� ε20(1 + t)−4

⎛

⎝
∥∥∥r2σ

α+i+1
2 ∂

j−1
t ∂ i+1

r ζ

∥∥∥
2 +

i∑

ι=0

∥∥∥rσ
α+i−1

2 ∂
j−1
t ∂ι

r ζ
∥∥∥
2
⎞

⎠

� ε20(1 + t)−2−2 j
i∑

ι=0

E j−1,ι(t).
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For P201, we use (3.1) to get |σ 1/2∂2r ζ | � ε0 and then obtain

∥∥∥rσ
α+i−1

2 P201

∥∥∥
2

� ε20(1 + t)−2

(∥∥∥r2σ
α+i
2 ∂

j
t ∂ ir ζ

∥∥∥
2 +

i−1∑

ι=0

∥∥∥rσ
α+i−2

2 ∂
j
t ∂ι

rζ

∥∥∥
2
)

� ε20(1 + t)−2−2 j
i−1∑

ι=0

E j,ι(t),

For P220, we use (3.1) again to get |rσ 1/2∂2t ∂rζ | � ε0(1 + t)−2 and then achieve

∥∥∥rσ
α+i−1

2 P220

∥∥∥
2

� ε20(1 + t)−6

(∥∥∥r2σ
α+i
2 ∂

j−2
t ∂ i+1

r ζ

∥∥∥
2 +

i∑

ι=0

∥∥∥rσ
α+i−2

2 ∂
j−2
t ∂ι

rζ

∥∥∥
2
)

� ε20(1 + t)−2−2 j
i+1∑

ι=0

E j−2,ι(t),

because it can be derived from (3.6) that

∥∥∥rσ
α+i−2

2 ∂
j−2
t ∂ ir ζ

∥∥∥
2 =

∫

Io
r2σα+i−2

∣∣∣∂ j−2
t ∂ ir ζ

∣∣∣
2
dr +

∫

Ib
r2σα+i−2

∣∣∣∂ j−2
t ∂ ir ζ

∣∣∣
2
dr

�
∫

Io
r2σα+i−1

∣∣∣∂ j−2
t ∂ ir ζ

∣∣∣
2
dr +

∫

Ib
σα+i

(
r2

∣∣∣∂ j−2
t ∂ ir ζ

∣∣∣
2 + r2

∣∣∣∂ j−2
t ∂ i+1

r ζ

∣∣∣
2
)
dr

�
∫

r2σα+i−1
∣∣∣∂ j−2
t ∂ ir ζ

∣∣∣
2
dr +

∫
r2σα+i

∣∣∣∂ j−2
t ∂ i+1

r ζ

∣∣∣
2
dr.

Similar to the estimate for P220, we can obtain

∥∥∥rσ
α+i−1

2 P211

∥∥∥
2

� ε20(1 + t)−4

(∥∥∥r2σ
α+i−1

2 ∂
j−1
t ∂ ir ζ

∥∥∥
2 +

i−1∑

ι=0

∥∥∥rσ
α+i−3

2 ∂
j−1
t ∂ι

rζ

∥∥∥
2
)

� ε20(1 + t)−2−2 j
i∑

ι=0

E j−1,ι(t),

∥∥∥rσ
α+i−1

2 P202

∥∥∥
2

� ε20(1 + t)−2

(∥∥∥r2σ
α+i−2

2 ∂
j
t ∂ i−1

r ζ

∥∥∥
2 +

i−2∑

ι=0

∥∥∥rσ
α+i−4

2 ∂
j
t ∂ι

rζ

∥∥∥
2
)

� ε20(1 + t)−2−2 j
i−1∑

ι=0

E j,ι(t).

It should be noted that P211 and P202 appear when i � 2 and i � 3, respectively.
This ensures the application of the Hardy inequality (3.6). Other cases can be done
similarly, since the leading term of Knm is
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n∑

q=0

(1 + t)−1− 1
3γ−1−q

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)

and

j∑

n=0

i−1∑

m=0

n∑

q=0

(1 + t)−2−2q
∥∥∥rσ

α+i−1
2

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣

+
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)(∣∣∣σr∂ j−n

t ∂ i−m+1
r ζ

∣∣∣
i−m∑

ι=0

∣∣∣∂ j−n
t ∂ι

rζ

∣∣∣

)∥∥∥∥∥

2

� ε20(1 + t)−2−2 j

⎛

⎝E j,i +
∑

0�ι� j, p�0, ι+p�i+ j−1

Eι,p

⎞

⎠ (t). (3.27)

(Estimate (3.27) will be verified in the “Appendix”.) Now, we may conclude that

∥∥∥rσ
α+i−1

2 P2

∥∥∥
2

� ε20(1 + t)−2−2 j
(
E j,i + ∑

0�ι� j, p�0, ι+p�i+ j−1 Eι,p

)
(t).

(3.28)

Substitute (3.26) and (3.28) into (3.21) gives, for suitably small ε0, that

E j,i (t) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E j (t) + E j+1(t)

+
∑

ι�0, p�0, ι+p� j

Eι,p(t) +
j∑

ι=0

Eι(t), i = 1,

E j,i−1(t) + E j+2,i−2(t) + E j+1,i−2(t)

+
∑

0�ι� j, p�0, ι+p�i+ j−1

Eι,p(t), i � 2.

(3.29)

Now, we use estimate (3.25), derived from the induction hypothesis (3.23), and
(3.29) to show that (3.22) holds for i + j = k + 1. First, choosing j = k and i = 1
in (3.29) gives

Ek,1(t) �
k+1∑

ι=0

Eι(t) +
∑

ι�0, p�0, ι+p�k

Eι,p(t) �
k+1∑

ι=0

Eι(t). (3.30)

We choose j = k − 1 and i = 2 in (3.29) and use (3.24)–(3.25) to show

Ek−1,2(t) � Ek−1,1(t) + Ek+1,0(t) + Ek,0(t)

+
∑

0�ι�k−1, p�0, ι+p�k

Eι,p(t) �
k+1∑

ι=0

Eι(t).
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For Ek−2,3, it follows from (3.29), (3.25) and (3.30) to obtain

Ek−2,3(t) � Ek−2,2(t) + Ek,1(t) + Ek−1,1(t)

+
∑

0�ι�k−2, p�0, ι+p�k

Eι,p(t) �
k+1∑

ι=0

Eι(t).

The other cases can be handled similarly. So we have proved (3.22) when i + j =
k + 1. This finishes the proof of Lemma 3.3. ��

3.3. Nonlinear Weighted Energy Estimates

In this section, we show that the weighted energy E j (t) can be bounded by the
initial date for all t ∈ [0, T ].
Proposition 3.4. Suppose that (3.1) holds for suitably small positive number ε0 ∈
(0, 1). Then it holds that for t ∈ [0, T ],

E j (t) �
j∑

ι=0

Eι(0), j = 0, 1, . . . , l. (3.31)

The proof of this proposition consists of Lemmas 3.5 and 3.6.

3.3.1. Basic Energy Estimates

Lemma 3.5. Assume that (3.1) holds for suitably small positive number ε0 ∈ (0, 1).
Then,

E0(t) +
∫ t

0

∫ [
(1 + s)−1r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)

+ (1 + s)r4ρ̄0ζ
2
s

]
drds

� E0(0), t ∈ [0, T ].
(3.32)

Proof. Multiplying (2.16) by r3ζt , and integrating the product with respect to the
spatial variable, we obtain, using the integration by parts, that

d

dt

∫
1

2
r4ρ̄0ζ

2
t dr +

∫
r4ρ̄0ζ

2
t dr +

∫
ρ̄

γ
0 L1dr = 0, (3.33)

where

L1 := − (η̃r + ζ )−2γ (η̃r + ζ + rζr )
−γ

[
r3 (η̃r + ζ )2 ζt

]

r
+ η̃

2−3γ
r

(
r3ζt

)

r

=: −L11 + L12.

For L11, note that
[
r3 (η̃r + ζ )2 ζt

]

r
= 2r2 (η̃r + ζ ) (η̃r + ζ + rζr ) ζt + r2 (η̃r + ζ )2 (ζ + rζr )t ,
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thus,

L11 = r2

1 − γ

[
(η̃r + ζ )2−2γ (η̃r + ζ + rζr )

1−γ
]

t

− r2
[
2 (η̃r + ζ )1−2γ (η̃r + ζ + rζr )

1−γ

+ (η̃r + ζ )2−2γ (η̃r + ζ + rζr )
−γ

]
η̃r t .

Clearly, L12 can be rewritten as

L12 = r2 (3ζ + rζr )t η̃
2−3γ
r = r2

[
(3ζ + rζr ) η̃

2−3γ
r

]

t

− (2 − 3γ )r2 (3ζ + rζr ) η̃
1−3γ
r η̃r t .

Substitute these calculations into (3.33) to give

d

dt

∫ (
1

2
r4ρ̄0ζ

2
t + r2ρ̄γ

0 Ẽ0

)
dr +

∫
r4ρ̄0ζ

2
t dr +

∫
r2ρ̄γ

0 η̃r tFdr = 0, (3.34)

where

Ẽ0 := 1

γ − 1

[
(η̃r + ζ )2−2γ (η̃r + ζ + rζr )

1−γ − η̃
3−3γ
r

+(γ − 1) (3ζ + rζr ) η̃
2−3γ
r

]
,

F := 2 (η̃r + ζ )1−2γ (η̃r + ζ + rζr )
1−γ + (η̃r + ζ )2−2γ (η̃r + ζ + rζr )

−γ

−3η̃2−3γ
r − (2 − 3γ ) (3ζ + rζr ) η̃

1−3γ
r .

It follows from the Taylor expansion, the smallness of ζ and rζr which is a conse-
quence of (3.1), and (2.13) that

Ẽ0 = η̃
1−3γ
r

[
3

2
(3γ − 2)ζ 2 + (3γ − 2)ζrζr + γ

2
(rζr )

2
]

+ O(1)η̃−3γ
r (|ζ | + |rζr |)

(
ζ 2 + (rζr )

2
)

∼ η̃
1−3γ
r

(
ζ 2 + (rζr )

2
)

∼ (1 + t)−1
(
ζ 2 + (rζr )

2
)

,

F � (3γ − 1)η̃−3γ
r

[
3

2
(3γ − 2)ζ 2 + (3γ − 2)ζrζr + γ

2
(rζr )

2
]

− C η̃
−3γ−1
r (|ζ | + |rζr |)

(
ζ 2 + (rζr )

2
)

� (1 + t)−
3γ

3γ−1

(
ζ 2 + (rζr )

2
)

� 0.

Here and thereafter the notation O(1) represents a finite number could be positive or
negative. We then have, by integrating (3.34) with respect to the temporal variable,
that

∫ (
1

2
r4ρ̄0ζ

2
t + r2ρ̄γ

0 Ẽ0

)
(r, s)dr

∣∣∣∣
t

s=0
+

∫ t

0

∫
r4ρ̄0ζ

2
s drds � 0
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and
∫ [

r4ρ̄0ζ
2
t + (1 + t)−1r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)]

(r, t)dr +
∫ t

0

∫
r4ρ̄0ζ

2
s drds

�
∫ [

r4ρ̄0ζ
2
t + r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)]

(r, 0)dr. (3.35)

Multiplying (2.16) by r3ζ , and integrating the product with respect to the spatial
variable, we have, using the integration by parts, that

d

dt

∫
r4ρ̄0

(
1

2
ζ 2 + ζ ζt

)
dr +

∫
ρ̄

γ
0 L2dr =

∫
r4ρ̄0ζ

2
t dr, (3.36)

where

L2 := − (η̃r + ζ )−2γ (η̃r + ζ + rζr )
−γ

[
r3 (η̃r + ζ )2 ζ

]

r
+ η̃

2−3γ
r

(
r3ζ

)

r
,

which can be rewritten as

L2 = r2
[
3η̃2−3γ

r − 2 (η̃r + ζ )1−2γ (η̃r + ζ + rζr )
1−γ

− (η̃r + ζ )2−2γ (η̃r + ζ + rζr )
−γ

]
ζ

+ r2
[
η̃
2−3γ
r − (η̃r + ζ )2−2γ (η̃r + ζ + rζr )

−γ
]
rζr .

Again, we use the Taylor expansion, (3.2) and (3.1) to obtain

L2 � r2(1 + t)−1

[
3(3γ − 2)ζ 2 + 2(3γ − 2)ζrζr + γ (rζr )

2 − Cε0

(
ζ 2 + (rζr )

2
)]

� r2(1 + t)−1
(
ζ 2 + (rζr )

2
)

,

provide that ε0 is suitably small. It then follows from (3.36), the Cauchy inequality
and (3.35) that
∫ (

r4ρ̄0ζ
2
)

(r, t)dr +
∫ t

0

∫
(1 + s)−1r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)
drds

�
∫ (

r4ρ̄0
(
ζ 2 + ζ 2

t

))
(r, 0)dr +

∫ (
r4ρ̄0ζ

2
t

)
(r, t)dr +

∫ t

0

∫
r4ρ̄0ζ

2
s drds

�
∫ [

r4ρ̄0
(
ζ 2 + ζ 2

t

)
+ r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)]

(r, 0)dr = E0(0). (3.37)

Next, we show the time decay of the energy norm. Multiply equation (3.34) by
(1+t) and integrate the product with respect to the temporal variable to get

(1 + t)
∫ (

1

2
r4ρ̄0ζ

2
t + r2ρ̄γ

0 Ẽ0

)
(r, t)dr +

∫ t

0
(1 + s)

∫
r4ρ̄0ζ

2
s drds

�
∫ (

1

2
r4ρ̄0ζ

2
t + r2ρ̄γ

0 Ẽ0

)
(r, 0)dr +

∫ t

0

∫ (
1

2
r4ρ̄0ζ

2
s + Ẽ0

)
drds

�
∫ [

r4ρ̄0
(
ζ 2 + ζ 2

t

)
+ r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)]

(r, 0)dr = E0(0),
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where estimates (3.35) and (3.37) have been used to derive the last inequality. This
means

∫ [
(1 + t)r4ρ̄0ζ

2
t + r2ρ̄γ

0

(
ζ 2 + (rζr )

2
)]

(r, t)dr

+
∫ t

0
(1 + s)

∫
r4ρ̄0ζ

2
s drds � E0(0),

which, together with (3.37), gives (3.32). This finishes the proof of Lemma 3.5. ��

3.3.2. Higher-Order Energy Estimates Equation (2.16) reads

r ρ̄0ζt t + r ρ̄0ζt +
[
ρ̄

γ
0 (η̃r + ζ )2−2γ (η̃r + ζ + rζr )

−γ
]

r
− η̃

2−3γ
r

(
ρ̄

γ
0

)
r

− 2ρ̄γ
0 (η̃r + ζ )1−2γ (η̃r + ζ + rζr )

−γ ζr = 0.

Let k � 1 be an integer and take the k-th time derivative of the equation above.
One has

r ρ̄0∂
k
t ζt t + r ρ̄0∂

k
t ζt +

[
ρ̄

γ
0

(
w1∂

k
t ζ + w2r∂

k
t ζr + K1

)]

r

+ρ̄
γ
0

[
(3w2 − w1)∂

k
t ζr + K2

]

−2ρ̄γ
0

(
w3ζr∂

k
t ζ + K3

)
+ ∂k−1

t

{
ρ̄

γ
0 η̃r t

[
w1 − (2 − 3γ )η̃

1−3γ
r

]}

r

−2ρ̄γ
0 ∂k−1

t (η̃r tw3ζr ) = 0. (3.38)

Here

w1 =(2 − 2γ ) (η̃r + ζ )1−2γ (η̃r + ζ + rζr )
−γ

− γ (η̃r + ζ )2−2γ (η̃r + ζ + rζr )
−γ−1 ,

w2 = − γ (η̃r + ζ )2−2γ (η̃r + ζ + rζr )
−γ−1 ,

w3 =(1 − 2γ ) (η̃r + ζ )−2γ (η̃r + ζ + rζr )
−γ

− γ (η̃r + ζ )1−2γ (η̃r + ζ + rζr )
−γ−1 ,

and

K1 =∂k−1
t (w1ζt + w2rζtr ) −

(
w1∂

k
t ζ + w2r∂

k
t ζr

)
,

K2 =∂k−1
t [(3w2 − w1)ζtr ]−(3w2 − w1)∂

k
t ζr , K3 = ∂k−1

t (w3ζrζt )−w3ζr∂
k
t ζ.

It should be noted that K1, K2 and K3 contain lower-order terms involving ∂ι
t (ζ, ζr )

with ι = 0, · · · , k−1; andw1,w2 andw3 can be expanded, according to the Taylor
expansion and the smallness of ζ and rζr which is a consequence of (3.1), as follows

w1 = (2 − 3γ )η̃
1−3γ
r + (3γ − 1)η̃−3γ

r
[
(3γ − 2)ζ + γ rζr

] + w̄1

w2 = −γ η̃
1−3γ
r + γ η̃

−3γ
r

[
(3γ − 1)ζ + (γ + 1)rζr

] + w̄2,

w3 = (1 − 3γ )η̃
−3γ
r + w̄3. (3.39)
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Here w̄i satisfies

|w̄1| + |w̄2| � η̃
−3γ−1
r

(
|ζ |2 + |rζr |2

)
, and |w̄3| � η̃

−3γ−1
r (|ζ | + |rζr |) .

(3.40)

In particular, K1 = K2 = K3 = 0 when k = 1.

Lemma 3.6. Assume that (3.1) holds for suitably small positive number ε0 ∈ (0, 1).
Then for all j = 1, . . . , l, and t ∈ [0, T ]

E j (t)+
∫ t

0

∫ [
(1 + s)2 j−1r2ρ̄γ

0

∣∣∣∂ j
s (ζ, rζr )

∣∣∣
2 +(1 + s)2 j+1r4ρ̄0

(
∂
j
s ζs

)2]
drds

�
j∑

ι=0

Eι(0). (3.41)

Proof. We use induction to prove (3.41). As shown in Lemma 3.5, we know that
(3.41) holds for j = 0. For 1 � k � l, we make the induction hypothesis that
(3.41) holds for all j = 0, . . . , k − 1, that is, for all j = 0, . . . , k − 1,

E j (t)+
∫ t

0

∫ [
(1 + s)2 j−1r2ρ̄γ

0

∣∣∣∂ j
s (ζ, rζr )

∣∣∣
2 +(1 + s)2 j+1r4ρ̄0

(
∂
j
s ζs

)2]
drds

�
j∑

ι=0

Eι(0). (3.42)

It suffices to prove (3.41) holds for j = k under the induction hypothesis (3.42).
Step 1. In this step, we prove that

d

dt

[∫
1

2
r4ρ̄0

(
∂kt ζt

)2
dr + Ek

]
+

∫
r4ρ̄0

(
∂kt ζt

)2
dr

� (ε0 + δ)(1 + t)−2k−2Ek(t) +
(
ε0 + δ−1

)
(1 + t)−2k−2

k−1∑

ι=0

Eι(t)

(3.43)

for any positive number δ > 0 which will be specified later, whereEk := ∫
r2ρ̄γ

0 Ẽk

dr +M2. Here Ẽk and M2 are defined by (3.49) and (3.47), respectively. Moreover,
we show that Ek satisfies the following estimates:

Ek � C−1(1 + t)−1
∫

r2ρ̄γ
0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr−C(1+t)−2k−1

k−1∑

ι=0

Eι(t),

(3.44)

Ek � (1 + t)−1
∫

r2ρ̄γ
0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr + (1 + t)−2k−1

k−1∑

ι=0

Eι(t). (3.45)
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We start with integrating the production of (3.38) and r3∂kt ζt with respect to
the spatial variable which gives

d

dt

∫
1

2
r4ρ̄0

(
∂kt ζt

)2
dr +

∫
r4ρ̄0

(
∂kt ζt

)2
dr + N1 + N2 = 0, (3.46)

where

N1 := −
∫

ρ̄
γ
0

(
w1∂

k
t ζ + w2r∂

k
t ζr

) (
r3∂kt ζt

)

r
dr

+
∫

r2ρ̄γ
0 (3w2 − w1)

(
r∂kt ζr

)
∂kt ζtdr

− 2
∫

r2ρ̄γ
0 w3 (rζr )

(
∂kt ζ

)
∂kt ζtdr,

N2 := −
∫

ρ̄
γ
0

{
K1 + ∂k−1

t

[
η̃r t

(
w1 − (2 − 3γ )η̃

1−3γ
r

)]} (
r3∂kt ζt

)

r
dr

+
∫

r2ρ̄γ
0

(
∂kt ζt

) [
r(K2 − 2K3) − 2∂k−1

t (η̃r tw3rζr )
]
dr.

Note that N1 and N2 can be rewritten as

N1 = − 1

2

d

dt

∫
r2ρ̄γ

0

[
(3w1 + 2w3rζr )

(
∂kt ζ

)2

+2w1

(
∂kt ζ

)
r∂kt ζr + w2

(
r∂kt ζr

)2]
dr + Ñ1,

N2 = d

dt
M2 +

∫
ρ̄

γ
0

{
K1t + ∂kt

[
η̃r t

(
w1 − (2 − 3γ )η̃

1−3γ
r

)]} (
r3∂kt ζ

)

r
dr

−
∫

r2ρ̄γ
0

(
∂kt ζ

) [
r(K2 − 2K3)t − 2∂kt (η̃r tw3rζr )

]
dr =: d

dt
M2 + Ñ2,

where

Ñ1 := 1

2

∫
r2ρ̄γ

0

[
(3w1 + 2w3rζr )t

(
∂kt ζ

)2 + 2w1t

(
∂kt ζ

)
r∂kt ζr + w2t

(
r∂kt ζr

)2]
dr,

M2 := −
∫

ρ̄
γ
0

{
K1 + ∂k−1

t

[
η̃r t

(
w1 − (2 − 3γ )η̃

1−3γ
r

)]} (
r3∂kt ζ

)

r
dr

+
∫

r2ρ̄γ
0

(
∂kt ζ

) [
r(K2 − 2K3) − 2∂k−1

t (η̃r tw3rζr )
]
dr. (3.47)

It then follows from equation (3.46) that

d

dt

[∫ (
1

2
r4ρ̄0

(
∂kt ζt

)2 + r2ρ̄γ
0 Ẽk

)
dr + M2

]
+

∫
r4ρ̄0

(
∂kt ζt

)2
dr

= −Ñ1 − Ñ2, (3.48)

where

Ẽk := −1

2

[
(3w1 + 2w3rζr )

(
∂kt ζ

)2 + 2w1

(
∂kt ζ

)
r∂kt ζr + w2

(
r∂kt ζr

)2]
,

(3.49)
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which satisfies

Ẽk = η̃
1−3γ
r

[
3

2
(3γ − 2)

(
∂kt ζ

)2 + (3γ − 2)
(
∂kt ζ

)
r∂kt ζr + γ

2

(
r∂kt ζr

)2]

+O(1)η̃−3γ
r (|ζ | + |rζr |)

((
∂kt ζ

)2 +
(
r∂kt ζr

)2)

∼ η̃
1−3γ
r

[(
∂kt ζ

)2 +
(
r∂kt ζr

)2] ∼ (1 + t)−1
[(

∂kt ζ
)2 +

(
r∂kt ζr

)2]
. (3.50)

Here we have used (3.39), (2.13) and the smallness of ζ and rζr which is a conse-
quence of (3.1) to derive the above equivalence. We will show later that M2 can be
bounded by the integral of Ẽk and lower-order terms, see (3.65).

In what follows, we analyze the terms on the right-hand side of (3.48). Clearly,
−Ñ1 can be bounded by

−Ñ1 � (1 − 3γ )

∫
r2ρ̄γ

0 η̃
−3γ
r η̃r t

[(
9

2
γ−3

)(
∂kt ζ

)2 +(3γ − 2)
(
∂kt ζ

) (
r∂kt ζr

)

+γ

2

(
r∂kt ζr

)2]
dr + C

∫
r2ρ̄γ

0 η̃
−3γ
r

[
η̃−1
r η̃r t (|ζ | + |rζr |)

+
(
1 + η̃−1

r (|ζ | + |rζr |)
)

(|ζt | + |rζr t |)
]((

∂kt ζ
)2 +

(
r∂kt ζr

)2)
dr.

It should be noted that the first integral on the right-hand side of the inequality
above is non-positive due to η̃r t � 0. Thus, we have by use of (2.13) and (3.1) that

−Ñ1 � ε0(1 + t)−2− 1
3γ−1

∫
r2ρ̄γ

0

((
∂kt ζ

)2 +
(
r∂kt ζr

)2)
dr. (3.51)

To control Ñ2, we may rewrite it as

Ñ2 =
∫

r2ρ̄γ
0

{(
3∂kt ζ + r∂kt ζr

)
∂kt

[
η̃r t

(
w1 − (2 − 3γ )η̃

1−3γ
r

)]

+2
(
∂kt ζ

)
∂kt (η̃r tw3rζr )

}
dr

+
∫

r2ρ̄γ
0

[
K1t

(
3∂kt ζ+r∂kt ζr

)
−r(K2 − 2K3)t

(
∂kt ζ

)]
dr =: Ñ21 + Ñ22.

For Ñ21, note that

∂kt

[
η̃r t

(
w1 − (2 − 3γ )η̃

1−3γ
r

)]
= (3γ − 1)η̃r t η̃

−3γ
r

(
(3γ − 2)∂kt ζ + γ r∂kt ζr

)

+ O(1)
k∑

ι=1

∣∣∣∂ι
t

(
η̃r t η̃

−3γ
r

)∣∣∣
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ + ∂kt (η̃r t w̄1) ,

∂kt (η̃r tw3rζr ) = (1 − 3γ )η̃r t η̃
−3γ
r

(
r∂kt ζr

)
+ O(1)

k∑

ι=1

∣∣∣∂ι
t

(
η̃r t η̃

−3γ
r

)∣∣∣
∣∣∣r∂k−ι

t ζr

∣∣∣

+ ∂kt (η̃r t w̄3rζr ) .
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Thus,

−Ñ21 � (1 − 3γ )

∫
r2ρ̄γ

0 η̃
−3γ
r η̃r t

[
(9γ−6)

(
∂kt ζ

)2 +(6γ − 4)
(
∂kt ζ

) (
r∂kt ζr

)

+γ
(
r∂kt ζr

)2]
dr + C

∫
r2ρ̄γ

0

(∣∣∣∂kt ζ

∣∣∣ +
∣∣∣r∂kt ζr

∣∣∣
)

×
[

k∑

ι=1

∣∣∣∂ι
t

(
η̃r t η̃

−3γ
r

)∣∣∣
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ +

∣∣∣∂kt (η̃r t w̄1, η̃r t w̄3rζr )
∣∣∣

]

dr. (3.52)

For Ñ22, note that

K1t =(k − 1)
(
w1t∂

k
t ζ + w2t r∂

k
t ζr

)
+ O(1)

k∑

ι=2

∣∣∂ι
t (w1, w2)

∣∣
∣∣∣∂k+1−ι

t (ζ, rζr )
∣∣∣ ,

r K2t =(k − 1) (3w2 − w1)t

(
r∂kt ζr

)
+ O(1)

k∑

ι=2

∣∣∂ι
t (w1, w2)

∣∣
∣∣∣∂k+1−ι

t (rζr )
∣∣∣ ,

r K3t =(k − 1) (w3rζr )t
(
∂kt ζ

)
+ O(1)

k∑

ι=2

∣∣∂ι
t (w3rζr )

∣∣
∣∣∣∂k+1−ι

t ζ

∣∣∣ .

Thus,

Ñ22 � 2(k − 1)Ñ1 − C
∫

r2ρ̄γ
0

(∣∣∣∂kt ζ

∣∣∣ +
∣∣∣r∂kt ζr

∣∣∣
)

×
k∑

ι=2

∣∣∂ι
t (w1, w2, w3rζr )

∣∣
∣∣∣∂k+1−ι

t (ζ, rζr )
∣∣∣ dr. (3.53)

In a similar way to dealing with Ñ1 shown in (3.51), we have, with the aid of (3.52)
and (3.53), that

−Ñ2 � ε0(1 + t)−2− 1
3γ−1

∫
r2ρ̄γ

0

((
∂kt ζ

)2 +
(
r∂kt ζr

)2)
dr

+
∫

r2ρ̄γ
0

(∣∣∣∂kt ζ

∣∣∣ +
∣∣∣r∂kt ζr

∣∣∣
)
Qdr, (3.54)

where

Q =
k∑

ι=1

∣∣∣∂ι
t

(
η̃r t η̃

−3γ
r

)∣∣∣
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ +

∣∣∣∂kt (η̃r t w̄1, η̃r t w̄3rζr )
∣∣∣

+
k∑

ι=2

∣∣∂ι
t (w1, w2, w3rζr )

∣∣
∣∣∣∂k+1−ι

t (ζ, rζr )
∣∣∣ . (3.55)
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Therefore, it is produced from (3.48), (3.51) and (3.54) that

d

dt

[∫ (
1

2
r4ρ̄0

(
∂kt ζt

)2 + r2ρ̄γ
0 Ẽk

)
dr + M2

]
+

∫
r4ρ̄0

(
∂kt ζt

)2
dr

� ε0(1 + t)−2− 1
3γ−1

∫
r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr +

∫
r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣ Qdr.

(3.56)

We are to bound the last term on the right-hand side of (3.56). It follows from
(2.13) and (3.1) that

Q �ε0(1 + t)−2− 1
3γ−1

∣∣∣∂kt (ζ, rζr )
∣∣∣ + Q̃, (3.57)

where

Q̃ :=
k∑

ι=1

(1 + t)−2−ι
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ + (1 + t)−1− 1

3γ−1

∣∣∣∂2t (ζ, rζr )
∣∣∣
∣∣∣∂k−1

t (ζ, rζr )
∣∣∣

+ (1 + t)−2− 1
3γ−1

∣∣∣∂2t (ζ, rζr )
∣∣∣
∣∣∣∂k−2

t (ζ, rζr )
∣∣∣

+ (1 + t)−1− 1
3γ−1

∣∣∣∂3t (ζ, rζr )
∣∣∣
∣∣∣∂k−2

t (ζ, rζr )
∣∣∣

+
[
(1 + t)−1− 1

3γ−1

∣∣∣∂4t (ζ, rζr )
∣∣∣ + (1 + t)−2− 1

3γ−1

∣∣∣∂3t (ζ, rζr )
∣∣∣

+(1 + t)−3− 1
3γ−1

×
∣∣∣∂2t (ζ, rζr )

∣∣∣ + (1 + t)−1− 2
3γ−1

∣∣∣∂2t (ζ, rζr )
∣∣∣
2
] ∣∣∣∂k−3

t (ζ, rζr )
∣∣∣ + l.o.t..

(3.58)

Here and thereafter the notation l.o.t. is used to represent the lower-order terms
involving ∂ι

t (ζ, rζr ) with ι = 2, · · · , k − 4. It should be noticed that the second
term on the right-hand side of (3.58) only appears as k − 1 � 2, the third term as
k − 2 � 2, the fourth term as k − 2 � 3, and so on. Clearly, we use (3.1) again to
obtain

Q̃ �
k∑

ι=1

(1 + t)−2−ι
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ + ε0σ

− 1
2 (1 + t)−3− 1

3γ−1

∣∣∣∂k−1
t (ζ, rζr )

∣∣∣

+ ε0σ
−1(1 + t)−4− 1

3γ−1

∣∣∣∂k−2
t (ζ, rζr )

∣∣∣

+ ε0σ
− 3

2 (1 + t)−5− 1
3γ−1

∣∣∣∂k−3
t (ζ, rζr )

∣∣∣ + l.o.t.,

if k � 7. Similarly, we can bound l.o.t. and achieve

Q̃ �
k∑

ι=1

(1 + t)−2−ι
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣

+ ε0

[(k−1)/2]∑

ι=1

σ− ι
2 (1 + t)−2−ι− 1

3γ−1

∣∣∣∂k−ι
t (ζ, rζr )

∣∣∣ ,
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which implies

∫
r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣ Q̃dr �

k∑

ι=1

(1 + t)−2−ι

∫
r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ dr

+ε0

[(k−1)/2]∑

ι=1

(1 + t)−2−ι

∫
r2ρ̄γ

0 σ− ι
2

∣∣∣∂kt (ζ, rζr )
∣∣∣
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ dr =: Q̃1 + Q̃2.

(3.59)

Easily, it follows from the Cauchy inequality that for any δ > 0,

Q̃1 �δ(1 + t)−2−2kEk(t) + δ−1(1 + t)−2−2k
k−1∑

ι=0

Eι(t), (3.60)

Q̃2 �ε0(1 + t)−2
∫

r2ρ̄γ
0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr

+ ε0

[(k−1)/2]∑

ι=1

(1 + t)−2−2ι
∫

r2ρ̄γ
0 σ−ι

∣∣∣∂k−ι
t (ζ, rζr )

∣∣∣
2
dr. (3.61)

In view of the Hardy inequality (3.6), we see that for ι = 1, · · · , [(k − 1)/2],
∫

Ib
σα+1−ι

∣∣∣∂k−ι
t (ζ, ζr )

∣∣∣
2
dr �

∫

Ib
σα+3−ι

∣∣∣∂k−ι
t (ζ, ζr , ζrr )

∣∣∣
2
dr � · · ·

�
ι+1∑

i=0

∫

Ib
σα+1+ι

∣∣∣∂k−ι
t ∂ ir ζ

∣∣∣
2
dr �

ι+1∑

i=0

∫

Ib
r4σα+1+ι

∣∣∣∂k−ι
t ∂ ir ζ

∣∣∣
2
dr

� (1 + t)2ι−2k

(

Ek−ι +
ι∑

i=1

Ek−ι,i

)

(t) � (1 + t)2ι−2k
k∑

ι=0

Eι(t),

due to α + 1− ι � α − [([α] + 1)/2] � 0 for k � l, which ensures the application
of the Hardy inequality. Here the last inequality follows from the elliptic estimate
(3.7). Thus, we can obtain for ι = 1, . . . , [(k − 1)/2],

∫
r2ρ̄γ

0 σ−ι
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣
2
dr �

∫

Io
r2σα+1

∣∣∣∂k−ι
t (ζ, rζr )

∣∣∣
2
dr

+
∫

Ib
σα+1−ι

∣∣∣∂k−ι
t (ζ, ζr )

∣∣∣
2
dr

� (1 + t)2ι−2k
k∑

ι=0

Eι(t). (3.62)

This, together with (3.61), implies

Q̃2 � ε0(1 + t)−2−2k
k∑

ι=0

Eι(t). (3.63)
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So, it yields from (3.57), (3.59), (3.60) and (3.63) that for δ > 0,

∫
r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣ Qdr � (1 + t)−2k−2

×
[

(ε0 + δ)Ek(t) +
(
ε0 + δ−1

) k−1∑

ι=0

Eι(t)

]

.

Substitute this into (3.56) to give (3.43).
To prove (3.44) and (3.45), we adopt a similar but much easier way to dealing

with Ñ2 as shown in (3.54) to show

|M2| �
∫

r2ρ̄γ
0

(∣∣∣∂kt ζ

∣∣∣ +
∣∣∣r∂kt ζr

∣∣∣
)
Pdr, (3.64)

where

P =
k−1∑

ι=0

∣∣∣∂ι
t

(
η̃r t η̃

−3γ
r

)∣∣∣
∣∣∣∂k−1−ι

t (ζ, rζr )
∣∣∣ +

∣∣∣∂k−1
t (η̃r t w̄1, η̃r t w̄3rζr )

∣∣∣

+
k−1∑

ι=1

∣∣∂ι
t (w1, w2, w3rζr )

∣∣
∣∣∣∂k−ι

t (ζ, rζr )
∣∣∣ .

In view of (2.13) and (3.1), we have

P �
k−1∑

ι=0

(1 + t)−2−ι
∣∣∣∂k−1−ι

t (ζ, rζr )
∣∣∣

+
∣∣∣∂k−2

t (ζ, rζr )
∣∣∣ (1 + t)−1− 1

3γ−1

∣∣∣∂2t (ζ, rζr )
∣∣∣

+
∣∣∣∂k−3

t (ζ, rζr )
∣∣∣
[
(1 + t)−1− 1

3γ−1

∣∣∣∂3t (ζ, rζr )
∣∣∣

+(1 + t)−2− 1
3γ−1

∣∣∣∂2t (ζ, rζr )
∣∣∣
]

+ l.o.t.,

which implies

P �
k−1∑

ι=0

(1 + t)−2−ι
∣∣∣∂k−1−ι

t (ζ, rζr )
∣∣∣

+ ε0

[k/2]∑

ι=2

σ
1−ι
2 (1 + t)−1−ι− 1

3γ−1

∣∣∣∂k−ι
t (ζ, rζr )

∣∣∣ .

Similar to the derivation of (3.62), we can use theHardy inequality (3.6) and elliptic
estimate (3.7) to obtain
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∫
r2ρ̄γ

0 P
2dr � (1 + t)−2−2k

k−1∑

ι=0

Eι(t)

+ ε20

[k/2]∑

ι=2

(1 + t)−2−2ι
∫

r2ρ̄γ
0 σ 1−ι

∣∣∣∂k−ι
t (ζ, rζr )

∣∣∣
2
dr

� (1 + t)−2−2k
k−1∑

ι=0

Eι(t).

It then gives from the Cauchy inequality and (3.64) that for any δ > 0,

|M2| � δ(1 + t)−1
∫

r2ρ̄γ
0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr + δ−1(1 + t)−1−2k

k−1∑

ι=0

Eι(t).

(3.65)

This, together with (3.50), proves (3.44) (by choosing suitably small δ) and (3.45).
Step 2. To control the fist term on the right-hand side of (3.43), we will prove

that

d

dt
Ek +

∫ [
(1 + t)−1r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2 + r4ρ̄0

(
∂kt ζt

)2]
dr

� (1 + t)−1−2k
k−1∑

ι=0

(1 + t)2ι
∫ [

r2ρ̄γ
0

∣∣∂ι
t (ζ, rζr )

∣∣2 + (1 + t)r4ρ̄0
(
∂ι
t ζt

)2] dr,

(3.66)

where

Ek :=
∫

r4ρ̄0

[(
∂kt ζt

)2 +
(
∂kt ζ

)
∂kt ζt + 1

2

(
∂kt ζ

)2]
dr + 2Ek .

We start with integrating the product of (3.38) and r3∂kt ζ with respect to r to give

d

dt

∫
r4ρ̄0

((
∂kt ζ

)
∂kt ζt + 1

2

(
∂kt ζ

)2)
dr

−
∫

r4ρ̄0
(
∂kt ζt

)2
dr + M1 + M2 = 0, (3.67)

where M2 is defined in (3.47), and

M1 = −
∫

ρ̄
γ
0

(
w1∂

k
t ζ + w2r∂

k
t ζr

) (
r3∂kt ζ

)

r
dr

+
∫

r2ρ̄γ
0 (3w2 − w1)

(
r∂kt ζr

)
∂kt ζdr

− 2
∫

r2ρ̄γ
0 w3 (rζr )

(
∂kt ζ

)2
dr.
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A direct calculation shows that M1 is positive and can be bounded from below as
follows

M1 �
∫

r2ρ̄γ
0 η̃

1−3γ
r

{
(9γ − 6)

(
∂kt ζ

)2 + (6γ − 4)
(
∂kt ζ

) (
r∂kt ζr

)
+ γ

(
r∂kt ζr

)2

−C (|ζ | + |rζr |)
[(

∂kt ζ
)2 +

(
r∂kt ζr

)2]}
dr

�
∫

r2ρ̄γ
0 η̃

1−3γ
r

[(
∂kt ζ

)2 +
(
r∂kt ζr

)2]
dr

�(1 + t)−1
∫

r2ρ̄γ
0

[(
∂kt ζ

)2 +
(
r∂kt ζr

)2]
dr,

due to (3.39), the smallness of ζr and rζr and (2.13). We then obtain, by making a
summation of 2 × (3.43) and (3.67), that

d

dt
Ek +

∫
r4ρ̄0

(
∂kt ζt

)2
dr + (1 + t)−1

∫
r2ρ̄γ

0

[(
∂kt ζ

)2 +
(
r∂kt ζr

)2]
dr

� δ(1 + t)−1
∫

r2ρ̄γ
0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr + (ε0 + δ)(1 + t)−2k−2Ek(t)

+δ−1(1 + t)−1−2k
k−1∑

ι=0

Eι(t) +
(
ε0 + δ−1

)
(1 + t)−2k−2

k−1∑

ι=0

Eι(t), (3.68)

because of (3.65). Notice from the Hardy inequality (3.6) that for j = 0, 1, . . . , l,
∫

r4ρ̄0
(
∂
j
t ζ

)2
dr �

∫

Io
r2σα+1

(
∂
j
t ζ

)2
dr +

∫

Ib
σα+2

[(
∂
j
t ζ

)2 +
(
∂
j
t ζr

)2]
dr

�
∫

r2σα+1
(
∂
j
t ζ

)2
dr +

∫

Ib
σα+1

[
r2

(
∂
j
t ζ

)2 + r4
(
∂
j
t ζr

)2]
dr

�
∫

r2ρ̄γ
0

∣∣∣∂ j
t (ζ, rζr )

∣∣∣
2
dr.

Thus,

E j (t) � (1 + t)2 j
∫ [

r2ρ̄γ
0

∣∣∣∂ j
t (ζ, rζr )

∣∣∣
2 + (1 + t)r4ρ̄0

(
∂
j
t ζt

)2]
dr,

j = 0, · · · , l. (3.69)

This finishes the proof of (3.66), by using (3.68) and (3.69), choosing suitably small
δ and noting the smallness of ε0. Moreover, it follows from (3.44) and (3.45) that

Ek � C−1
∫

r4ρ̄0
∣∣∣∂kt (ζ, ζt )

∣∣∣
2
dr + C−1(1 + t)−1

∫
r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr

− C(1 + t)−2k−1
k−1∑

ι=0

Eι(t), (3.70)

Ek �
∫

r4ρ̄0
∣∣∣∂kt (ζ, ζt )

∣∣∣
2
dr
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+ (1 + t)−1
∫

r2ρ̄γ
0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
dr + (1 + t)−2k−1

k−1∑

ι=0

Eι(t). (3.71)

Step 3. In this step, we show the time decay of the norm. We integrate (3.66)
and use the induction hypothesis (3.42) to show, noting (3.70) and (3.71), that

∫ [
r4ρ̄0

∣∣∣∂kt (ζ, ζt )

∣∣∣
2 + (1 + t)−1r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
]

(r, t)dr

+
∫ t

0

∫ [
(1 + s)−1r2ρ̄γ

0

∣∣∣∂ks (ζ, rζr )
∣∣∣
2 + r4ρ̄0

(
∂ks ζs

)2]
drds

�
k∑

ι=0

Eι(0) +
k−1∑

ι=0

∫ t

0
(1 + s)2ι−1−2k

∫ [
r2ρ̄γ

0

∣∣∂ι
s (ζ, rζr )

∣∣2

+ (1 + s)r4ρ̄0
(
∂ι
sζs

)2] dr �
k∑

ι=0

Eι(0).

Multiply (3.66) by (1 + t)p and integrate the product with respect to the temporal
variable from p = 1 to p = 2k step by step to get

(1 + t)2k
∫ [

r4ρ̄0
∣∣∣∂kt (ζ, ζt )

∣∣∣
2 + (1 + t)−1r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
]

(r, t)dr

+
∫ t

0
(1 + s)2k

∫ [
(1 + s)−1r2ρ̄γ

0

∣∣∣∂ks (ζ, rζr )
∣∣∣
2 + r4ρ̄0

(
∂ks ζs

)2]
drds

�
k∑

ι=0

Eι(0) +
k−1∑

ι=0

∫ t

0
(1 + s)2ι−1

∫ [
r2ρ̄γ

0

∣∣∂ι
s (ζ, rζr )

∣∣2 + (1 + s)r4ρ̄0
(
∂ι
sζs

)2] dr

�
k∑

ι=0

Eι(0). (3.72)

With this estimate at hand, we finally integrate (1 + t)2k+1(3.43) with respect to
the temporal variable and use (3.69), (3.42) and (3.72) to show

(1 + t)2k
∫ [

(1 + t)r4ρ̄0
∣∣∣∂kt ζt

∣∣∣
2 + r2ρ̄γ

0

∣∣∣∂kt (ζ, rζr )
∣∣∣
2
]

(r, t)dr

+
∫ t

0
(1 + s)2k+1

∫
r4ρ̄0

(
∂ks ζs

)2
drds �

k∑

ι=0

Eι(0)

+
k∑

ι=0

∫ t

0
(1 + s)2ι−1

∫ [
r2ρ̄γ

0

∣∣∂ι
s (ζ, rζr )

∣∣2 + (1 + s)r4ρ̄0
(
∂ι
sζs

)2] dr

�
k∑

ι=0

Eι(0). (3.73)
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It finally follows from (3.72) and (3.73) that

Ek(t) +
∫ t

0

∫
(1 + s)2k−1

[
r2ρ̄γ

0

∣∣∣∂ks (ζ, rζr )
∣∣∣
2 + (1 + s)2r4ρ̄0

(
∂ks ζs

)2]
drds

�
k∑

ι=0

Eι(0).

This completes the proof of Lemma 3.6. ��

3.4. Verification of the a Priori Assumption

In this subsection, we prove the following lemma.

Lemma 3.7. Suppose that E(t) is finite, then it holds that

2∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζ(·, t)

∥∥∥
2

L∞ +
1∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζr (·, t)

∥∥∥
2

L∞

+
∑

i+ j�l−2, 2i+ j�3

(1 + t)2 j

×
∥∥∥σ

2i+ j−3
2 ∂

j
t ∂ ir ζ(·, t)

∥∥∥
2

L∞ +
∑

i+ j=l−1

(1 + t)2 j
∥∥∥rσ

2i+ j−3
2 ∂

j
t ∂ ir ζ(·, t)

∥∥∥
2

L∞

+
∑

i+ j=l

(1 + t)2 j
∥∥∥r2σ

2i+ j−3
2 ∂

j
t ∂ ir ζ(·, t)

∥∥∥
2

L∞ � E(t). (3.74)

Once this lemma is proved, the a priori assumption (3.1) is then verified and the
proof of Theorem 2.1 is finished, since it follows from the elliptic estimate (3.7)
and the nonlinear weighted energy estimate (3.31) that

E(t) � E(0), t ∈ [0, T ].
Proof. The proof consists of two steps. In Step 1, we derive the L∞-bounds away
from the boundary, that is,

∑

i+ j�l−2

∥∥∥∂
j
t ∂ ir ζ

∥∥∥
2

L∞(Io)
+

∑

i+ j=l−1

∥∥∥r∂ j
t ∂ ir ζ

∥∥∥
2

L∞(Io)

+
∑

i+ j=l−2

∥∥∥r2∂ j
t ∂ ir ζ

∥∥∥
2

L∞(Io)
� (1 + t)−2 jE(t). (3.75)

Away from the origin, we show in Step 2 the following L∞-estimates:

3∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζ

∥∥∥
2

L∞(Ib)
+

1∑

j=0

(1 + t)2 j
∥∥∥∂

j
t ζr

∥∥∥
2

L∞(Ib)
� E(t), (3.76)

∥∥∥σ
2i+ j−3

2 ∂
j
t ∂ ir ζ

∥∥∥
2

L∞(Ib)
� (1 + t)−2 jE(t) when 2i + j � 4. (3.77)
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We obtain (3.74) by using (3.75)–(3.77) and noting the facts l � 4 and I = Io∪Ib.
It suffices to show (3.75)–(3.77).

To this end, we first notice some facts. It follows from (3.24) that E j,0 � E j for
j = 0, · · · , l, which implies

l∑

j=0

⎛

⎝E j (t) +
l− j∑

i=0

E j,i (t)

⎞

⎠ � E(t). (3.78)

The following embedding (cf. [1]): H1/2+δ(I) ↪→ L∞(I) with the estimate

‖F‖L∞(I) � C(δ)‖F‖H1/2+δ(I), (3.79)

for δ > 0 will be used in the rest of the proof.
Step 1 (away from the boundary). It follows from (3.78) that for j = 0, 1, . . . , l,

(1 + t)2 j

⎡

⎣
l− j∑

i=0

∫

Io
r2

(
∂
j
t ∂ ir ζ

)2
dr +

∫

Io
r4

(
∂
j
t ∂

l− j+1
r ζ

)2
dr

⎤

⎦

�
l− j∑

i=0

E j,i (t) � E(t), (3.80)

which implies, using (3.4), that for j = 0, 1, . . . , l − 1,

∥∥∥∂
j
t ζ

∥∥∥
2

Hl− j−1(Io)
�

∥∥∥∂
j
t ζ

∥∥∥
2

H2,l− j (Io)
�

l− j∑

i=0

∫

Io
r2

(
∂
j
t ∂ ir ζ

)2
dr � (1 + t)−2 jE(t).

(3.81)

In view of (3.79) and (3.81), we see that for j = 0, 1, . . . , l − 2,

l− j−2∑

i=0

∥∥∥∂
j
t ∂ ir ζ

∥∥∥
2

L∞(Io)
�

l− j−2∑

i=0

∥∥∥∂
j
t ∂ ir ζ

∥∥∥
2

H1(Io)
�

∥∥∥∂
j
t ζ

∥∥∥
2

Hl− j−1(Io)
� (1 + t)−2 jE(t). (3.82)

It gives from (3.79), (3.80) and (3.81) that
∥∥∥r∂ j

t ∂
l− j−1
r ζ

∥∥∥
2

L∞(Io)
�

∥∥∥r∂ j
t ∂

l− j−1
r ζ

∥∥∥
2

H1(Io)
� (1 + t)−2 jE(t),

j = 0, 1, · · · , l − 1, (3.83)
∥∥∥r2∂ j

t ∂
l− j
r ζ

∥∥∥
2

L∞(Io)
�

∥∥∥r2∂ j
t ∂

l− j
r ζ

∥∥∥
2

H1(Io)
� (1 + t)−2 jE(t), j = 0, 1, . . . , l.

(3.84)

So that we can derive (3.75) from (3.82)–(3.84).
Step 2 (away from the origin). We set

db(r) := dist (r, ∂Ib) �
√
A/B − r � σ(r), r ∈ Ib. (3.85)
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It follows from (3.4) and (3.85) that for j � 5 + [α] − α,
∥∥∥∂

j
t ζ

∥∥∥
2

H
5− j+[α]−α

2 (Ib)
=

∥∥∥∂
j
t ζ

∥∥∥
2

Hl− j+1− l− j+1+α
2 (Ib)

�
∥∥∥∂

j
t ζ

∥∥∥
2

Hl− j+1+α,l− j+1(Ib)

=
l− j+1∑

k=0

∫

Ib
dα+1+l− j
b (r)|∂kr ∂

j
t ζ |2dr �

l− j+1∑

k=0

∫

Ib
σα+1+l− j |∂kr ∂

j
t ζ |2dr

�
l− j+1∑

k=0

∫

Ib
r4σα+k |∂kr ∂

j
t ζ |2dr

� (1 + t)−2 j

⎛

⎝E j (t) +
l− j∑

k=1

E j,k(t)

⎞

⎠ � (1 + t)−2 jE(t).

This, together with (3.79), gives (3.76).

To prove (3.77), we denote ψ := σ
2i+ j−3

2 ∂
j
t ∂ ir ζ. In what follows, we assume

2i + j � 4 and i + j � l and show that

‖ψ‖2L∞(Ib) � (1 + t)−2 jE(t). (3.86)

The estimate (3.86) will be proved by separating the cases when α is or is not an
integer.
Case 1 (α �= [α]). When α is not an integer, we choose σ 2(l−i− j)+α−[α] as the
spatial weight. A simple calculation yields

|∂rψ | �
∣∣∣σ

2i+ j−3
2 ∂

j
t ∂ i+1

r ζ

∣∣∣ +
∣∣∣σ

2i+ j−3
2 −1∂

j
t ∂ ir ζ

∣∣∣ ,
∣∣∣∂2r ψ

∣∣∣ �
∣∣∣σ

2i+ j−3
2 ∂

j
t ∂ i+2

r ζ

∣∣∣ +
∣∣∣σ

2i+ j−3
2 −1∂

j
t ∂ i+1

r ζ

∣∣∣ +
∣∣∣σ

2i+ j−3
2 −2∂

j
t ∂ ir ζ

∣∣∣ ,

· · · · · ·
∣∣∣∂kr ψ

∣∣∣ �
k∑

p=0

∣∣∣σ
2i+ j−3

2 −p∂
j
t ∂

i+k−p
r ζ

∣∣∣ for k = 1, 2, . . . , l + 1 − j − i. (3.87)

It follows from (3.87) that for 1 � k � l + 1 − i − j ,

∫

Ib
σ 2(l−i− j)+α−[α]

∣∣∣∂kr ψ

∣∣∣
2
dr �

k∑

p=0

∫

Ib
σα+l− j+1−2p

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr

�
∫

Ib
σ l−i− j+1−k

1∑

p=0

σα+i+k−2p
∣∣∣∂ j

t ∂
i+k−p
r ζ

∣∣∣
2
dr

+
k∑

p=2

∫

Ib
σα+l− j+1−2p

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr

�
1∑

p=0

∫

Ib
r4σα+i+k−2p

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr
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+
k∑

p=2

∫

Ib
σα+l− j+1−2p

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr

� (1 + t)−2 jE j,i+k−1 +
k∑

p=2

∫

Ib
σα+l− j+1−2p

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr.

To bound the 2nd term on the right-hand side of the inequality above, notice that

α + l − j + 1 − 2p = 2(l + 1 − i − j − k) + 2(k − p)

+(α − [α]) + (2i + j − 4) − 1 > −1 (3.88)

for p ∈ [2, k], due to α > [α] and 2i + j � 4. We then have, with the aid of the
Hardy inequality (3.6), that for p ∈ [2, k],

∫

Ib
σα+l− j+1−2p

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr

�
∫

Ib
σα+l− j+1−2p+2

1∑

ι=0

∣∣∣∂ j
t ∂

i+k−p+ι
r ζ

∣∣∣
2
dr � · · ·

�
∫

Ib
σα+l− j+1

p∑

ι=0

∣∣∣∂ j
t ∂

i+k−p+ι
r ζ

∣∣∣
2
dr

=
p∑

ι=0

∫

Ib
σ (l+1−i− j−k)+(p−ι)σ α+i+k−p+ι

∣∣∣∂ j
t ∂

i+k−p+ι
r ζ

∣∣∣
2
dr

�
p∑

ι=0

∫

Ib
r4σα+i+k−p+ι

∣∣∣∂ j
t ∂

i+k−p+ι
r ζ

∣∣∣
2
dr �

i+k−1∑

ι=i+k−p

(1 + t)−2 jE j,ι.

That yields, for 1 � k � l + 1 − i − j ,
∫

Ib
σ 2(l−i− j)+α−[α]

∣∣∣∂kr ψ

∣∣∣
2
dr � (1 + t)−2 jE j,i+k−1

+
k∑

p=2

i+k−1∑

ι=i+k−p

(1 + t)−2 jE j,ι � (1 + t)−2 j
i+k−1∑

ι=i

E j,ι.

Therefore, it follows from (3.85) and (3.78) that

‖ψ‖2H2(l−i− j)+α−[α], l+1−i− j (Ib) =
l+1−i− j∑

k=0

∫

Ib
d2(l−i− j)+α−[α]
b

∣∣∣∂kr ψ

∣∣∣
2
dr

�
l+1−i− j∑

k=0

∫

Ib
σ 2(l−i− j)+α−[α]

∣∣∣∂kr ψ

∣∣∣
2
dr �

∫

Ib
σα+l− j+1

∣∣∣∂ j
t ∂ ir ζ

∣∣∣
2
dr

+ (1 + t)−2 j
l− j∑

ι=i

E j,ι
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�
∫

Ib
r4σα+i+1

∣∣∣∂ j
t ∂ ir ζ

∣∣∣
2
dr + (1 + t)−2 j

l− j∑

ι=i

E j,ι

� (1 + t)−2 j
l− j∑

ι=i

E j,ι � (1 + t)−2 jE(t).

When α is not an integer, α −[α] ∈ (0, 1). So, it follows from (3.79) and (3.4) that

‖ψ‖2L∞(Ib) � ‖ψ‖2
H1− α−[α]

2 (Ib)
� ‖ψ‖2H2(l−i− j)+α−[α], l+1−i− j (Ib) � (1 + t)−2 jE(t).

(3.89)

Case 2 (α = [α]). In this case α is an integer, we choose σ 2(l−i− j)+1/2 as the
spatial weight. As shown in Case 1, we have for 1 � k � l + 1 − i − j ,

∫

Ib
σ 2(l−i− j)+1/2

∣∣∣∂kr ψ

∣∣∣
2
dr � (1 + t)−2 jE j,i+k−1

+
k∑

p=2

∫

Ib
σα+l− j+1−2p+1/2

∣∣∣∂ j
t ∂

i+k−p
r ζ

∣∣∣
2
dr.

Note that for 1 � k � l + 1 − i − j and 2 � p � k,

α + l − j + 1 − 2p + 1

2
=2(l + 1 − i − j − k) + 2(k − p)

+ (2i + j − 4) − 1

2
� −1

2
.

We can then use the Hardy inequality (3.6) to obtain

∫

Ib
σ 2(l−i− j)+1/2

∣∣∣∂kr ψ

∣∣∣
2
dr�(1 + t)−2 j

i+k−1∑

ι=i

E j,ι, k = 1, 2, . . . , l − j + 1 − i,

which, together with (3.85) and (3.78), implies that

‖ψ‖2H2(l−i− j)+1/2, l+1−i− j (Ib) � (1 + t)−2 j
l− j∑

ι=i

E j,ι � (1 + t)−2 jE(t).

Therefore, it follows from (3.79) and (3.4) that

‖ψ‖2L∞(Ib) � ‖ψ‖2H3/4(Ib) � ‖ψ‖2H2(l−i− j)+1/2, l+1−i− j (Ib) � (1 + t)−2 jE(t).

(3.90)

In view of (3.89) and (3.90), we obtain (3.86) or equivalently (3.77). ��



74 Huihui Zeng

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. First, it follows from (2.3), (2.6), (1.7),
(2.9), (2.2) and (2.8) that for (r, t) ∈ I × [0,∞),

ρ(η(r, t), t) − ρ̄(η̄(r, t), t) = r2ρ̄0(r)

η2(r, t)ηr (r, t)
− r2ρ̄0(r)

η̄2(r, t)η̄r (r, t)
,

u(η(r, t), t) − ū(η̄(r, t), t) = ηt (r, t) − η̄t (r, t).

Then, we have, using (2.15), (2.11), (2.9), (3.2), (2.14) and (2.17) that

|ρ(η(r, t), t) − ρ̄(η̄(r, t), t)| � (A − Br2)
1

γ−1 (1 + t)−
4

3γ−1

×
[√

E(0) + (1 + t)−
3γ−2
3γ−1 ln(1 + t)

]
,

|u(η(r, t), t) − ū(η̄(r, t), t)| � r(1 + t)−1
[√

E(0) + (1 + t)−
3γ−2
3γ−1 ln(1 + t)

]
.

This gives the proof of (2.18) and (2.19).
For the boundary behavior, it follows from (2.5), (2.15), (2.11) and (2.9) that

R(t) =η
(√

A/B, t
)

= (η̃ + rζ )
(√

A/B, t
)

= (η̄ + rh + rζ )
(√

A/B, t
)

= [r (η̄r + h + ζ )]
(√

A/B, t
)

= √
A/B

[
(1 + t)1/(3γ−1) + h(t) + ζ(t)

]

which, together with (2.17) and (2.14), gives that

R(t) �
√
A/B

[
(1 + t)

1
3γ−1 − C

√
E(0)

]
,

R(t) �
√
A/B

[
(1 + t)

1
3γ−1 + C(1 + t)−

3γ−2
3γ−1 ln(1 + t) + C

√
E(0)

]
.

Thus, (2.20) follows from the smallness of E(0). Notice that for k = 1, 2, 3,

dk R(t)

dtk
= ∂kt η̃

(√
A/B, t

)
+

(
r∂kt ζ

) (√
A/B, t

)
.

Therefore, (2.21) follows from (2.13) and (2.17).
We are to verify the physical vacuum condition, (2.22). It follows from (2.3),

(2.6), (2.15) that

(
ργ−1

)

η
(η, t) =

(
f γ−1

)
r (r, t)

ηr (r, t)
= 1

ηr

[

ρ̄
γ−1
0

(
r2

η2ηr

)γ−1
]

r

= (1 − γ )ρ̄
γ−1
0

[
2
(η

r

)1−2γ
η

−γ
r ζr +

(η

r

)2−2γ
η

−γ−1
r (2ζr + rζrr )

]

− 2Br
(η

r

)2−2γ
η

−γ
r ,
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which implies, with the aid of (3.3) and (2.17), that
∣∣∣∣
(
ργ−1

)

η
(η, t)

∣∣∣∣ �(1 + t)−1
√
E(0) + r(1 + t)−1+ 1

3γ−1 , (4.1)
∣∣∣∣
(
ργ−1

)

η
(η, t)

∣∣∣∣ �2Br
(η

r

)2−2γ
η

−γ
r − C(1 + t)−1

√
E(0)

�C−1r(1 + t)−1+ 1
3γ−1 − C(1 + t)−1

√
E(0). (4.2)

In view of (3.3), we see that η(r, t) ∼ (1+ t)1/(3γ−1)r,which, together with (2.20),
(4.1) and (4.2), gives for R(t)/2 � η � R(t),

C−1(1 + t)−
3γ−2
3γ−1 − C(1 + t)−1

√
E(0) �

∣∣∣∣
(
ργ−1

)

η
(η, t)

∣∣∣∣

� (1 + t)−1
√
E(0) + (1 + t)−

3γ−2
3γ−1 .

Thus, (2.22) follows from the smallness of E(0). This finishes the proof of Theorem
2.2. ��
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Appendix

Proof of (2.13a). We may write (2.10) as the following system:

ht = z, zt = −z −
[
η̄
2−3γ
r − (η̄r + h)2−3γ

]
/(3γ − 1) − η̄r tt ,

(h, z)(t = 0) = (0, 0).
(A-1)

Recalling that η̄r (t) = (1+ t)1/(3γ−1), thus η̄r tt < 0. A simple phase plane analysis
shows that there exist 0 < t0 < t1 < t2 such that, starting from (h, z) = (0, 0) at
t = 0, h and z increases in the interval [0, t0] and z reaches its positivemaxima at t0;
in the interval [t0, t1], h keeps increasing and reaches its maxima at t1, z decreases
from its positive maxima to 0; in the interval [t1, t2], both h and z decrease, and z
reaches its negativeminima at t2; in the interval [t2,∞), h decreases and z increases,
and (h, z) → (0, 0) as t → ∞. This can be summarized as follows:

z(t) ↑0, h(t) ↑0, t ∈ [0, t0]; z(t) ↓0, h(t) ↑, t ∈ [t0, t1];
z(t) ↓0, h(t) ↓, t ∈ [t1, t2]; z(t) ↑0, h(t) ↓0, t ∈ [t2,∞).

We have from the above analysis that there exists a finite constant C = C(γ, M)

such that

0 � h(t) � C for t � 0. (A-2)
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In view of (2.9) and (2.11), we then see that (1 + t)1/(3γ−1) � η̃r (t) � K
(1 + t)1/(3γ−1) . On the other hand, equation (2.10) can be rewritten as

η̃r tt + η̃r t − η̃
2−3γ
r /(3γ − 1) = 0, t > 0,

η̃r (t = 0) = 1, η̃r t (t = 0) = 1/(3γ − 1).
(A-3)

Then, we have by solving (A-3), that

η̃r t (t) = 1

3γ − 1
e−t + 1

3γ − 1

∫ t

0
e−(t−s)η̃

2−3γ
r (s)ds � 0. (A-4)

��
Proof of (2.13b). We usemathematical induction to prove (2.13b). First, it follows
from (A-4) that

(3γ − 1)η̃r t (t) = e−t +
∫ t/2

0
e−(t−s)η̃

2−3γ
r (s)ds +

∫ t

t/2
e−(t−s)η̃

2−3γ
r (s)ds

� e−t + e−t/2
∫ t/2

0
(1 + s)

2−3γ
3γ−1 ds + (1 + t/2)

2−3γ
3γ−1

∫ t

t/2
e−(t−s)ds

� e−t + Ce−t/2 (1 + t/2)
1

3γ−1 + (1 + t/2)
2−3γ
3γ−1 � C (1 + t)

2−3γ
3γ−1 , t � 0,

(A-5)

for some constant C independent of t . This proves (2.13b) when k = 1. Suppose
that (2.13b) holds for all k = 1, 2, · · · ,m − 1, that is,

∣∣∣∣
dk η̃r (t)

dtk

∣∣∣∣ � C(m) (1 + t)
1

3γ−1−k
, k = 1, 2, . . . ,m − 1. (A-6)

It suffices to prove that (2.13b) holds for k = m. We derive from (A-3) that for
m = 1, . . . , k,

dm+1

dtm+1 η̃r (t) + dm

dtm
η̃r (t) − 1

3γ − 1

dm−1

dtm−1 η̃
2−3γ
r (t) = 0, t � 0,

so that

dm

dtm
η̃r (t) = e−t d

m

dtm
η̃r (0) + 1

3γ − 1

∫ t

0
e−(t−s) d

m−1η̃
2−3γ
r

dsm−1 (s)ds, t � 0,

(A-7)

where (dm/dtm)η̃r (0) is finite,which canbe determinedby the equation inductively.
In view of (2.13a) and (A-6), we see that

∣∣∣∣
d

dt
η̃
2−3γ
r (t)

∣∣∣∣ �
∣∣∣∣η̃

1−3γ
r (t)

d

dt
η̃r (t)

∣∣∣∣ � (1 + t)
1

3γ−1−2
,

· · · · · ·
∣∣∣∣
dm−1

dtm−1 η̃
2−3γ
r (t)

∣∣∣∣ � C(γ,m)(1 + t)
1

3γ−1−m
. (A-8)
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Similar to deriving (A-5), we can obtain, noting (A-7) and (A-8), that
∣∣∣∣
dm η̃r (t)

dtm

∣∣∣∣ � C(γ,m) (1 + t)
1

3γ−1−m
.

��
Proof of (2.14). We may write the equation for h, (2.10), as

ht + 1

3γ − 1
(1 + t)−

3γ−2
3γ−1

[
1 −

(
1 + (1 + t)−

1
3γ−1 h

)2−3γ
]

= −η̃r tt , t > 0.

(A-9)

Notice that
(
1 + (1 + t)−

1
3γ−1 h

)2−3γ
� 1 + (2 − 3γ )(1 + t)−

1
3γ−1 h

+ (2 − 3γ )(1 − 3γ )

2
(1 + t)−

2
3γ−1 h2,

due to the fact that h � 0. We then obtain, in view of (2.13b), that

ht + 3γ − 2

3γ − 1
(1 + t)−1h � 3γ − 2

2
(1 + t)−

3γ
3γ−1 h2 + C(1 + t)

1
3γ−1−2

,

So

h(t) � C(1 + t)−
3γ−2
3γ−1

∫ t

0

(
(1 + s)−

2
3γ−1 h2(s) + (1 + s)−1

)
ds. (A-10)

We use an iteration to prove (2.14). First, since h is bounded due to (A-2), we have

h(t) � C(1 + t)−
3γ−2
3γ−1

∫ t

0
(1 + s)−

2
3γ−1 ds � C(1 + t)−

1
3γ−1 . (A-11)

Substituting this into (A-10), we obtain

h(t) � C(1 + t)−
3γ−2
3γ−1

∫ t

0

(
(1 + s)−

4
3γ−1 + (1 + s)−1

)
ds,

which implies h(t) � C(1 + t)−
3γ−2
3γ−1 ln(1 + t) if γ � 5/3, h(t) � C(1 + t)−

3
3γ−1

if γ > 5/3. If γ � 5/3, then the first part of (2.14) has been proved. If γ > 5/3,
we repeat this procedure and obtain

h(t) � C(1 + t)−
3γ−2
3γ−1

∫ t

0

(
(1 + s)−

8
3γ−1 + (1 + s)−1

)
ds,

which implies h(t) � C(1 + t)−
3γ−2
3γ−1 ln(1 + t) if γ � 3, h(t) � C(1 + t)−

7
3γ−1

if γ > 3. For general γ , we repeat this procedure k times to obtain h(t) � C(1 +
t)−

3γ−2
3γ−1 ln(1 + t). This, together with (A-2), proves the first part of (2.14), which

in turn implies the second part of (2.14), by virtue of (A-9) and (2.13b). ��
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Proof of (3.27). Recall that j � 0, i � 1 and i + j � l. Let n ∈ [0, j], m ∈
[0, i − 1] and q ∈ [0, n] be integers. Denote

H :=
∥∥∥rσ

α+i−1
2

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)

(∣∣∣σr∂ j−n
t ∂ i−m+1

r ζ

∣∣∣ +
i−m∑

ι=0

∣∣∣∂ j−n
t ∂ι

rζ

∣∣∣

)∥∥∥∥∥

2

.

Case 1. Assume 2n + 4m � 2i + j + q. We first note that

α + (2m + n) − (i + j) + 2 � α − j

2
+ q

2
+ 2 � α − l − 1

2
+ 2 � 0, (A-12)

i + j − (n + m) � l − 2. (A-13)

(Indeed, if i + j − (n + m) = l, then i + j = l and n + m = 0, so that it is a
contradiction due to 0 = 4(n + m) � 2n + 4m � 2i + j + q � i + j = l; if
i + j − (n + m) = l − 1, then i + j = l − 1 and n + m = 0 or i + j = l and
n+m = 1, so that it is also a contradiction because of 0 = 4(n+m) � 2n+4m �
2i + j + q � i + j = l − 1 > 0 or 4 = 4(n + m) � 2n + 4m � 2i + j + q �
i + i + j � 1 + l = 5 + [α] � 5. So, (A-13) holds.)
When 2i + j � 2m + n + 3, it follows from (3.1) and (A-13) that

H � ε20(1 + t)2n−2 j
∥∥∥rσ

α+i−1
2

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)∥∥∥

2

� ε20(1 + t)2q−2 j (En−q,m+1 + En−q,m
)
.

(A-14)

When 2i + j � 2m + n + 4, it follows from (3.1) and (A-13) that

H � ε20(1 + t)2n−2 j
∥∥∥rσ

α+i−1
2 − j+2i−(n+2m)−3

2

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)∥∥∥

2

= ε20(1 + t)2n−2 j
∥∥∥rσ

α+m+(n+m−(i+ j)+2)
2

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)∥∥∥

2
,

which implies for n + m − (i + j) + 2 � 0 that

H � ε20(1 + t)2n−2 j
∥∥∥rσ

α+m
2

(∣∣∣r∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)∥∥∥

2

� ε20(1 + t)2q−2 j (En−q,m+1 + En−q,m
)
,

(A-15)

and for n + m − (i + j) + 2 � −1, that

H � ε20(1 + t)2n−2 j

(∥∥∥r2∂n−q
t ∂m+1

r ζ

∥∥∥
2

L2(Io)
+

∥∥∥r∂n−q
t ∂mr ζ

∥∥∥
2

L2(Io)
+

∥∥∥σ
α+m+(n+m−(i+ j)+2)

2

×
(∣∣∣∂n−q

t ∂m+1
r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)∥∥∥

2

L2(Ib)

)
� ε20(1 + t)2q−2 j

i+ j−n+q−1∑

h=m

En−q,h .

(A-16)
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Here we have used (A-12) and the Hardy inequality (3.6) to derive
∥∥∥σ

α+m+(n+m−(i+ j)+2)
2

(∣∣∣∂n−q
t ∂m+1

r ζ

∣∣∣ +
∣∣∣∂n−q

t ∂mr ζ

∣∣∣
)∥∥∥

2

L2(Ib)

�
1∑

h=0

∥∥∥σ
α+m+(n+m−(i+ j)+2)

2 ∂
n−q
t ∂m+h

r ζ

∥∥∥
2

L2(Ib)

�
2∑

h=0

∥∥∥σ
α+m+(n+m−(i+ j)+2)+2

2 ∂
n−q
t ∂m+h

r ζ

∥∥∥
2

L2(Ib)

� . . . �
i+ j−(n+m)+q∑

h=0

∥∥∥σ
α+m+(n+m−(i+ j)+2)+2(i+ j−(n+m)+q−1)

2 ∂
n−q
t ∂m+h

r ζ

∥∥∥
2

L2(Ib)

�
i+ j−(n+m)+q∑

h=0

∥∥∥r2σ
α+i+ j−n+q

2 ∂
n−q
t ∂m+h

r ζ

∥∥∥
2

L2(Ib)

� (1 + t)2q−2n
i+ j−n+q−1∑

h=m

En−q,h,

which implies (A-16). Therefore, we have from (A-14), (A-15) and (A-16) that

H � ε20(1 + t)2q−2 j

⎛

⎝En−q,m + En−q,m+1 +
i+ j−n+q−1∑

h=m

En−q,h

⎞

⎠ . (A-17)

Case 2. Assume 2n+4m < 2i+ j+q. In this case, we can use ameans similar to the
way inwhichwe dealt with case 1 to obtainH � ε20(1+t)2q−2 j ∑i+n− j

h=0 E j−n,h(t).
This, together with (A-17), gives (3.27). ��

References

1. Adams, R.: Sobolev Spaces, Academic Press, New York, 1975
2. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves.

Invent. Math. 198, 71–163 2014
3. Ambrose, D.,Masmoudi, N.: The zero surface tension limit of three-dimensional water

waves. Indiana Univ. Math. J. 58, 479–521 2009
4. Barenblatt, G.: On one class of solutions of the one-dimensional problem of non-

stationary filtration of a gas in a porous medium. Prikl. Mat. i. Mekh. 17, 739–742
1953

5. Chandrasekhar, S.: Introduction to the Stellar Structure, University of Chicago Press,
Chicago, 1939

6. Chen, G.: Convergence of the Lax–Friedrichs scheme for the system of equations of
isentropic gas dynamics III. Acta Math. Sci. (Chinese) 8, 243–276 1988

7. Chen, G., LeFloch, P.: Compressible Euler equations with general pressure law, Arch.
Ration. Mech. Anal. 153 221–259 2000

8. Chen, G., Glimm, J.: Global solutions to the compressible Euler equations with geo-
metrical structure, Commun. Math. Phys. 180, 153–193 1996

9. Chen, Q., Tan, Z.: Time decay of solutions to the compressible Euler equations with
damping. Kinet. Relat. Models 7, 605–619 2014



80 Huihui Zeng

10. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid.
Commun. Pure Appl. Math. 53, 1536–1602 2000

11. Coutand, D., Lindblad, H., Shkoller, S.: A priori estimates for the free-boundary
3-D compressible Euler equations in physical vacuum.Commun.Math. Phys. 296, 559–
587 2010

12. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler
equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 2007

13. Coutand, D.,Shkoller, S.:Well-posedness in smooth function spaces for themoving-
boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl.
Math. 64, 328–366 2011

14. Coutand, D.,Shkoller, S.:Well-Posedness in smooth function spaces for themoving-
boundary three-dimensional compressible Euler equations in physical vacuum. Arch.
Ration. Mech. Anal. 206, 515–616 2012

15. Cox. J.,Giuli, R.: Principles of Stellar Structure, I.,II., Gordon and Breach, New York,
1968

16. Ding, X., Chen, G., Luo P.: Convergence of the Lax–Friedrichs scheme for the system
of equations of isentropic gas dynamics I. Acta Math. Sci. (Chinese) 7, 467–480 1987

17. Ding, X., Chen, G., Luo P.: Convergence of the Lax-Friedrichs scheme for the system
of equations of isentropic gas dynamics II. Acta Math. Sci. (Chinese) 8, 61–94 1988

18. DiPerna, R.: Convergence of the viscosity method for isentropic gas dynamics. Com-
mun. Math. Phys. 91, 1–30 1983

19. Fang, D., Xu, J.: Existence and asymptotic behavior of C1 solutions to the multi-
dimensional compressible Euler equations with damping. Nonlinear Anal. 70, 244–261
2009

20. Friedrichs, K.: Symmetric hyperbolic linear differential equations. Commun. Pure
Appl. Math. 7 345–392 1954

21. Germain, P.,Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves
equation in dimension 3. Ann. Math. 175, 691–754 2012

22. Germain, P., Masmoudi, N., Shatah, J.: Global existence for capillary water waves.
Commun. Pure Appl. Math. 68, 625–687 2015

23. Gu, X., Lei, Z.: Well-posedness of 1-D compressible Euler–Poisson equations with
physical vacuum. J. Diff. Equ. 252, 2160–2188 2012

24. Gu, X., Lei, Z.: Local Well-posedness of the three dimensional compressible Euler–
Poisson equations with physical vacuum. J. Math. Pures Appl. 105, 662–723 2016

25. HanouzetB.,NataliniR.: Global existence of smooth solutions for partially dissipa-
tive hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal. 169, 89–117
2003

26. Hsiao, L.:Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scien-
tific Publishing, Singapore, 1997

27. Hsiao, L., Liu, T.: Convergence to nonlinear diffusion waves for solutions of a system
of hyperbolic conservation laws with damping, Comm. Math. Phys. 143, 599–605 1992

28. Huang, F.,Marcati, P., Pan, R.: Convergence to the Barenblatt solution for the com-
pressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal. 176,
1–24 2005

29. Huang, H., Pan, R., Wang, Z.: L1 convergence to the Barenblatt solution for com-
pressible Euler equations with damping, Arch. Ration. Mech. Anal. 200, 665–689 2011

30. Ionescu, A., Pusateri, F.: Global solutions for the gravity water waves system in 2d,
Invent. Math. (forthcoming). doi:10.1007/s00222-014-0521-4

31. Jang, J.: Nonlinear instability theory of Lane–Emden stars.Commun. Pure Appl. Math.
67, 1418–1465 2014

32. Jang, J.,Masmoudi, N.: Well-posedness for compressible Euler with physical vacuum
singularity, Commun. Pure Appl. Math. 62, 1327–1385 2009

33. Jang, J.,Masmoudi, N.: Well and ill-posedness for compressible Euler equations with
vacuum. J. Math. Phys. 53, 115625, 11pp 2012

http://dx.doi.org/10.1007/s00222-014-0521-4


Global Resolution of the Physical Vacuum Singularity 81

34. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical
vacuum. Commun. Pure Appl. Math. 68, 61–111 2015

35. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch.
Ration. Mech. Anal. 58, 181–205 1975

36. Kreiss, H.: Initial boundary value problems for hyperbolic systems. Commun. Pure
Appl. Math. 23, 277–296 1970

37. Kufner, A.,Maligranda, L., Persson, L. E.: The Hardy inequality. About its History
and Some Related Results, Vydavatelsky Servis, Plzen, 2007

38. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–
654 2005

39. Lax, P.: Weak solutions of nonlinear hyperbolic equations and their numerical compu-
tation. Commun. Pure Appl. Math. 7, 159–193 1954

40. LeFloch, P., Westdickenberg, M.: Finite energy solutions to the isentropic Euler
equations with geometric effects. J. Math. Pures Appl. (9) 88, 389–429 2007

41. Li, T.: Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson/John
Wiley, New York, 1994

42. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free
surface boundary. Ann. Math. 162, 109–194 2005

43. Lindblad, H.: Well posedness for the motion of a compressible liquid with free surface
boundary. Commun. Math. Phys. 260, 319–392 2005

44. Lions, P., Perthame, B., Souganidis, P.: Existence and stability of entropy solutions
for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian co-
ordinates. Commun. Pure Appl. Math. 49, 599–638 1996

45. Liu, C., Qu, P.: Global classical solution to partially dissipative quasilinear hyperbolic
systems. J. Math. Pures Appl. 97, 262–281 2012

46. Liu, T.: Compressible flow with damping and vacuum. Jpn. J. Appl.Math. 13, 25–32
1996

47. Liu, T., Yang, T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140,
223–237 1997

48. Liu, T., Yang, T.: Compressible flow with vacuum and physical singularity. Methods
Appl. Anal. 7, 495–310 2000

49. Luo, T., Xin, Z., Zeng, H.: Well-posedness for the motion of physical vacuum of the
three-dimensional compressible Euler equations with or without self-gravitation. Arch.
Ration. Mech. Anal 213, 763–831 2014

50. Luo, T., Zeng, H.: Global existence of smooth solutions and convergence to Baren-
blatt solutions for the physical vacuum free boundary problem of compressible Euler
equations with damping. Commun. Pure Appl. Math. 69, 1354–1396 2016

51. Makino, T.,Ukai, S.: On the existence of local solutions of the Euler–Poisson equation
for the evolution of gaseous stars. J. Math. Kyoto Univ. 27, 387–399 1987

52. Makino, T., Ukai, S., Kawashima, S.: On the compactly supported solution of the
compressible Euler equation. Jpn. J. Appl. Math. 3, 249–257 1986

53. Pan, R., Zhao, K.: The 3-D compressible Euler equations with damping in a bounded
domain. J. Differ. Equ. 246, 581–596 2009

54. Sideris, T., Thomases, B.,Wang, D.: Long time behavior of solutions to the 3D com-
pressible Euler equations with damping. Comm. Partial Differ. Equ. 28, 795–816 2003

55. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of
the Euler equation. Commun. Pure Appl. Math. 61, 698–744 2008

56. Trakhinin,Y.: Local existence for the free boundaryproblem for the non-relativistic and
relativistic compressible Euler equations with a vacuum boundary condition. Commun.
Pure Appl. Math. 62, 1551–1594 2009

57. Wang W., Yang T.: The pointwise estimates of solutions for Euler equations with
damping in multi-dimensions. J. Differ. Equ. 173, 410–450 2001

58. Wu, S.: Well-posedness in Sobolev spaces of the full waterwave problem in 2-D. Invent.
Math. 130, 39–72 1997



82 Huihui Zeng

59. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J.
Am. Math. Soc. 12, 445–495 1999

60. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math.
177, 45–135 2009

61. Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184,
125–220 2011

62. Xu, C., Yang, T.: Local existence with physical vacuum boundary condition to Euler
equations with damping. J. Differ. Equ. 210, 217–231 2005

63. Yang, T.: A functional integral approach to shock wave solutions of Euler equations
with spherical symmetry. Commun. Math. Phys. 171, 607–638 1995

64. Yang, T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl.
Math. 190, 211–231 2006

65. Ying, L., Yang, T., Zhu, C.: Existence of global smooth solutions for Euler equations
with symmetry. Commun. Partial Differ. Equ. 22, 1361–1387 1997

66. YongW., Entropy and global existence for hyperbolic balance laws.Arch. Ration.Mech.
Anal. 172, 247–266 2004

67. ZengY.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with
relaxation. Arch. Ration. Mech. Anal. 150, 225–279 1999

68. Zeng Y.: Gas flows with several thermal nonequilibrium modes. Arch. Ration. Mech.
Anal. 196, 191–225 2010

69. Zhang, P.,Zhang, Z.: On the free boundary problem of three-dimensional incompress-
ible Euler equations, Commun. Pure Appl. Math. 61: 877–940 2008

Huihui Zeng
Mathematical Sciences Center,

Tsinghua University, Beijing, 100084, China.
e-mail: hhzeng@mail.tsinghua.edu.cn

and

Center of Mathematical Sciences and Applications,
Harvard University, Cambridge, MA 02318, USA

(Received October 20, 2015 / Accepted May 11, 2017)
Published online May 23, 2017 – © Springer-Verlag Berlin Heidelberg (2017)


	Global Resolution of the Physical Vacuum Singularity for Three-Dimensional Isentropic Inviscid Flows with Damping in Spherically Symmetric Motions
	Abstract
	1 Introduction
	2 Reformulation of the Problem and Main Results
	2.1 Fix the Domain and Lagrangian Variables
	2.2 Ansatz
	2.3 Main Results

	3 Proof of Theorem 2.1
	3.1 Preliminaries
	3.2 Elliptic Estimates
	3.2.1 Lower-Order Elliptic Estimates
	3.2.2 Higher-Order Elliptic Estimates

	3.3 Nonlinear Weighted Energy Estimates
	3.3.1 Basic Energy Estimates
	3.3.2 Higher-Order Energy Estimates

	3.4 Verification of the a Priori Assumption

	4 Proof of Theorem 2.2
	Acknowledgements.
	References




