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Abstract

In the N -body problem, a simple choreography is a periodic solution, where
all masses chase each other on a single loop. In this paper we prove that for the
planar Newtonian N -body problem with equal masses, N � 3, there are at least
2N−3+2[(N−3)/2] differentmain simple choreographies. This confirms a conjecture
given by Chenciner et al. (Geometry, mechanics, and dynamics. Springer, New
York, pp 287–308, 2002). All the simple choreoagraphies we prove belong to the
linear chain family.

1. Introduction

The Newtonian N -body problem describes the motion of N point masses under
the attraction of each other according to Newton’s gravitational law. When all the
masses are equal, there exist periodic solutions, where all the masses travel on a
single loop (it is still an open problem whether such a solution exists when the
masses are unequal [9]; throughout the paper we assume all the masses are equal
and that N � 3). Such solutions usually satisfy certain symmetric constraints, as
if they are dancing according to certain choreographies; this inspired Carles Simó
to name them simple choreographies.

A trivial example of simple choreographies is the rotating N-gon, where the N
point masses form a regular N -gon at each moment and rotate rigidly around the
center of mass at a constant angular velocity. The first non-trivial simple choreog-
raphy is the now famous Figure-Eight solution, which was discovered numerically
by Moore [23], and then independently and rigorously proved by Chenciner
and Montgomery [13]. This remarkable solution immediately got a lot of at-
tention and many simple choreographies were found numerically afterwards: the
Super-Eight solution of the 4-body problem by Gerver, as well as several families
of simple choreographies for different values of N by Simó [12,26]. Some more
recent numerical discoveries can be found in [20].
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On the other hand, to rigorously prove the existence of there choreographies
is a much harder task. Following [13], the idea is to find a simple choreography
as a minimizer of the Lagrangian action functional among loops satisfying certain
constraints. For Newtonian potential, as already noticed by Poincaré, when two or
more bodies collide, the action functional may still be finite. As a result, the desired
minimizer may contain a collision which prevents it from being a real solution.
This is the main obstacle to applying variational methods to the Newtonian N -
body problem.

A lot of progress has been made to overcome this difficulty since the proof of
the Figure-Eight solution. We briefly summarize them as follow:

• Local deformation assuming there is an isolated collision along the minimizing
path, one tries to show that after a small deformation near the isolated collision,
one gets a new path with strictly smaller action value, which gives a contra-
diction. For the details see [8,14,19,22,27,29]. In the last three references the
existence of such a local deformation is implied implicitly through Marchal’s
average method.

• Level estimate one gives a sharp lower bound estimate of the action functional
among all the collision paths in the admissible class and then tries to find a test
path within the admissible class such that its action value is strictly smaller than
the previous lower bound estimate. The Figure-Eight solution was originally
proved in [13] using this method. Results obtained using this method can also
be found in [2–7] and the references therein.

Despite of the above progress, to the best of our knowledge very few simple
choreographies have been rigorously proved. Besides the Figure-Eight, the Super-
Eightwasfirst proved in [18]with a rigorous numericalmethod and then analytically
in [25]. The best result so far was obtained by Ferrario and Terracini in [14],
where they proved that there is at least one Fight-Eight type simple choreography
for every odd N .

One way to bypass the difficulty have is to change the potential from a Newto-
nian to a strong force (for a precise definition see the end of Section 2). For a strong
force potential, the action value of a path with any collision must be infinity. It was
proven in [12] that there are infinitely many distinct main simple choreographies
when the potential is a strong force. By a main simple choreography, we mean one
that cannot can not be derived from a given simple choreography by some orthog-
onal transformation of the space, a reparameterization of time, a combination of
both, or just by traveling around a given one multiple times.1 For the Newtonian
potential, based on numerical discoveries, [12] made the following conjecture:

Conjecture. For every N � 3, there is a main simple choreography solution for
the equal mass Newtonian N-body problem different from the trivial circle one
(i.e., the rotating N-gon). The number of such distinct main simple choreographies
grows rapidly with N.

1 The definition of ‘main simple choreography’ in [12] is slightly different from ours,
where the possibility of obtaining a simple choreography fromagiven one by the continuation
of angular momentum was also considered.
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Let [·] denote the integer part of a real number. We confirm this conjecture by
proving the following result:

Main Theorem. For every N � 3, there are at least 2N−3 + 2[(N−3)/2] different
main simple choreographies for the equal mass Newtonian N-body problem.

We also remark here that we are not considering those solutions that are simple
choreographies in rotating coordinates. In such cases, the existence of infinitely
many simple choreographies has already been established by Chenciner and
Féjoz in [11].

In the rest of the paper, we will only consider the planar N -body problem.
For simplicity, we also assume m j = 1,∀ j ∈ N := {0, 1, . . . , N − 1}. If we
let z = (z j ) j∈N ∈ C

N represent the positions of the masses, then it satisfies the
following equations:

z̈ j =
∑

k∈N\{ j}
− z j − zk

|z j − zk |3 , j ∈ N. (1)

This is the Euler–Lagrange equation of the action functional

A(z, T1, T2) :=
∫ T2

T1
L(z, ż) dt, z ∈ H1

(
[T1, T2],CN

)
,

with L(z, ż) := K (ż) + U (z), where K (ż) is the kinetic energy and U (x) is the
(negative) potential energy:

K (ż) := 1

2

∑

j∈N
|ż j |2, U (z) :=

∑

{ j<k}⊂N

1

|z j − zk | .

Furthermore, we set A(z, T ) := A(z, 0, T ).

By the homogeneity of the potential, given a periodic solution, one can find
another with any prescribed period. Because of this, we will only consider periodic
solutions with a period N .

Following [12,13], the key idea here is to impose proper symmetric constraints
on the loop space, then obtain the simple choreographies as collision-free minimiz-
ers. We recall this briefly in the following.

Let �N = H1(R/NZ,CN ) be the space of Sobolev loops and Ĉ
N := {z ∈

C
N : z j �= zk, ∀{ j �= k} ⊂ N} be the space of collision-free configurations. Then

�̂N = H1(R/NZ, ĈN ) is the subspace of collision-free loops. Given a finite group
G, we can define its action on �N as the following:

g
(
z(t)

) = (
ρ(g)zσ(g−1)(0)(τ(g−1)t), . . . , ρ(g)zσ(g−1)(N−1)(τ(g−1)t)

)
, ∀g ∈ G,

(2)
where

(1) τ : G → O(2) representing the action of G on the time circle R/NZ,

(2) ρ : G → O(2) representing the action of G on the 2-dim Euclid space,
(3) σ : G → SN representing the action of G on the index set N.



904 Guowei Yu

�G
N := {z ∈ �N : g(z(t)) = z(t), ∀g ∈ G} is the space of G-equivariant

loops. As all masses are equal, the action functionalA is invariant under the above
group action. By the symmetric critical principle of Palais [24], a critical point of
A in �̂G

N (�̂G
N := �G

N ∩ �̂N ) is also a critical point of it in �̂N , and therefore a
solution of Eq. (1).

Consider the cyclical group ZN = 〈g| gN = 1〉 with the action
τ(g)t = t − 1, ρ(g) = identity, σ (g) = (0, 1, . . . , N − 1). (3)

Then the following holds for any z = (z j ) j∈N ∈ �
ZN
N :

z j (t) = z0( j + t), ∀t ∈ R, ∀ j ∈ N. (4)

This means any collision-free critical point ofA in�
ZN
N must be a simple choreog-

raphy. The most obvious critical point is of course the global minimizer. However
as was proved in [1], the globalminimizer in�

ZN
N is nothing but the rotating N-gon.

A possibleway to get non-trivial simple choreographies is to consider a groupG
with proper action, such that it contains ZN with action given in (3) as a subgroup;
meanwhile the symmetric constraints already rule out the rotating N -gon. This was
exactly the idea used in [13,14].

However the real gold deposits are located on the topological constraints. As
we can see, the space of collision-free loops �̂

ZN
N has infinitely many connected

components. A nice way of distinguishing these components is through the braids
group; for details of this see the beautiful paper by scMontgomery [22]. In principle,
it is possible to find a main choreography solution in each connected component.
For a strong force potential, this was indeed proved in [12].

Meanwhile for the Newtonian potential, it is much more difficult to show that
a minimizer is collision-free when topological constraints are involved. First, lo-
cal deformation usually fails in this case, because to be able to lower the action,
the possible directions of local deformation are restricted, and in many cases one
ends up in a topological class different from the required one. Second, although in
principle, the level estimate should work under topological constraints, in practice,
except for some special cases, it is very difficult to give an accurate lower bound
estimate of the action values of the collision paths.

To overcome the difficulty caused by the topological constraints, we propose to
introduce additional monotone constraints (see Definition 2.1). These constraints
provide further information regarding the relative positions of the masses. With
such information, first, we can rule out collisions involving more than two masses,
and second, when there is a binary collision, it allows us to make certain the global
deformation of the path in order to get a new one with a strictly lower action value
and to reach a contradiction. We believe that this is the first time such an idea has
been used in this classic problem. The details will be given in Section 2.

In the rest of this section, a proof of the Main Theorem will be given. Let’s
consider the dihedral group DN = 〈g, h| gN = h2 = 1, (gh)2 = 1〉 with the
action of g defined as in (3), and h as the following:

τ(h)t = −t + 1, ρ(h)q = q̄, σ (h) = (0, N − 1)(1, N − 2) . . . (n, N − 1− n),
(5)
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where q ∈ C, q̄ is its conjugate, and

n := [(N − 1)/2]. (6)

By the above definition, �
DN
N ⊂ �

ZN
N . However, the rotating N -gon is also

contained in �
DN
N . Hence the minimizer ofA in �

DN
N is again a trivial solution. In

order to get non-trivial simple choreographies, topological constraints need to be
added into the problem.

First, by the symmetric constraints, z = (z j ) j∈N ∈ �
DN
N must satisfy (4) and

z j (t) = z̄N−1− j (1 − t), ∀t ∈ R, ∀ j ∈ N. (7)

In particular,

z j (0) = z̄N− j (0), if j ∈ N\{0}; z j (1/2) = z̄N−1− j (1/2), if j ∈ N. (8)

The symmetric constraints also imply

z0(t) = z̄0(−t), ∀t ∈ R, (9)

z0( j + t) =
{
z j (t), ∀t ∈ [0, 1/2],
z̄N−1− j (1 − t), ∀t ∈ [1/2, 1] if j ∈ {0, 1, . . . , n}. (10)

As a result, if z ∈ �
DN
N is collision-free, it must satisfy the following:

Im(z0( j/2)) �= 0, ∀ j ∈ N\{0}. (11)

Based on the above observation, we set

�N := {ω = (ω j ) j∈N\{0} : ω j ∈ {±1}, ∀ j ∈ N\{0}}. (12)

Definition 1.1. For any ω ∈ �N , we say that a loop z ∈ �
DN
N satisfies the ω-

topological constraints, if

Im(z0( j/2)) = ω j | Im(z0( j/2))|, ∀ j ∈ N\{0}. (13)

Notice that if z ∈ �̂
DN
N , then

Im(z0( j/2)) �= 0 and
Im(z0( j/2))

| Im(z0( j/2))| = ω j , ∀ j ∈ N\{0}. (14)

Theorem 1.1. For each ω ∈ �N , there is at least one simple choreography zω =
(zωj ) j∈N ∈ �̂

DN
N satisfying (1), the ω-topological constraints and the following

monotone property along the real axis:

ẋω
0 (t) > 0, ∀t ∈ (0, N/2), and ẋω

0 (0) = ẋω
0 (N/2) = 0, (15)

where xω
0 (t) = Re(zω0 (t)).

Such zω’s will be obtained as collision-free minimizers. The detailed proof of
the above theorem will be given in Section 2. For the moment, we use it to give a
proof of the Main Theorem.
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Proof. Although there are 2N−1 different ω’s in �N , when we try to count distinct
main simple choreographies, the number is smaller.

Given an ω ∈ �N , we first have that zω(−t) satisfies the (−ω)-topological
constraints, so we only need to count the ω’s from the set �+

N := {ω ∈ �n : ω1 =
1}.

Second, define ω∗ = (ω∗
j ) j∈N\{0} ∈ �N by ω∗

j = ωN− j . Then −zω(t + N
2 )

satisfies the ω∗-topological constraints. To exclude those, consider the disjoint
union �+

N = �
+,−
N ∪ �

+,+
N , where

�
+,−
N := {ω ∈ �+

N : ωN−1 = −1}, �
+,+
N := {ω ∈ �+

N : ωN−1 = 1}.

There are 2N−3 differentω’s in�
+,+
N . However, ifω ∈ �

+,+
N , thenω∗ ∈ �

+,+
N .

Meanwhile, notice that there are 2[(N−2)/2] different ω’s in �
+,+
N with ω∗ = ω. As

a result, the number of effective ω’s we can count from �
+,+
N is

2N−4 + 2[(N−4)/2] = 1

2

(
2N−3 + 2[(N−2)/2]). (16)

Now, for any ω ∈ �
+,−
N , we have although ω∗ /∈ �

+,−
N , −ω∗ is, so it needs

to be that excluded from our counting. If N is odd, there are 2[(N−2)/2] different
ω ∈ �

+,−
N with ω = −ω∗, and if N is even, there is no such ω. This is because

when N is even, ω = −ω∗ implies ωN/2 = −ωN/2, which can never happen, as
ωN/2 ∈ {±1}. As a result, the number of effective ω’s we can count from �

+,−
N is

{
2N−4, if N is even,

2N−4 + 2[(N−4)/2], if N is odd.
(17)

By (16) and (17), there are 2N−3 + 2[(N−3)/2] distinct main simple choreogra-
phies, and this finishes our proof. �

The number 2N−3 + 2[(N−3)/2] obtained above is the same as the number of
simple choreographies belonging to a special family called linear chains given in
[12, Proposition 5.1]. This is not a coincidence. The family of linear chains consists
of simple choreographies which look like a chain of consecutive bubbles placed
along the real axis (the rotating N -gon, the Figure-Eight and the Super-Eight all
belong to this family). As each zω ∈ �̂

DN
N obtained in Theorem 1.1 satisfies (9),

(14) and (15), they belong to the family of linear chains as well.
For each ω, the number of bubbles of the corresponding zω has a minimum

determined by ω. For example, if ω j = 1, ∀ j ∈ N\{0}, then the minimum is 1. In
fact, we know in this case that zω must be the rotating N -gon, which consists of
exactly one bubble. However, in general, we don’t know if the number of bubbles
of zω is exactly this minimum.

Our paper is organized as follows in Section 2, we give a proof of Theorem 1.1;
in Section 3, we consider simple choreographies with extra symmetries; in the last
section, the Appendix, the proof of a technical lemma will be given.
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Notations the following notation rules will apply through out the paper:

• i will always represent
√−1;

• Given a path z(t) of the N -body, then z j (t) is the corresponding path ofm j , for
any j ∈ N with z j (t) = x j (t) + iy j (t) and x j (t), y j (t) ∈ R;

• If, instead of z(t), a path of the N -body is denoted by z̃(t), zω(t), zε(t) . . . , then
the corresponding changes will be made on z j (t), x j (t) and y j (t);

• Given any two non-negative integers j0, j1:

{ j0, . . . , j1} :=
{

{ j ∈ Z : j0 � j � j1}, if j0 � j1,

∅, if j0 > j1;
• C1,C2, . . . , representing positive constants, vary from proof to proof.

2. Proof of Theorem 1.1

When there is no confusion, in this section �
DN
N , �̂

DN
N will simply be written

as �, �̂, respectively.
Due to the symmetric constraints, a loop z ∈ � is entirely determined by

z(t), t ∈ [0, 1/2], so it is enough to focus on the fundamental domain: [0, 1/2]. In
the rest of the paper, when we try to define a loop z ∈ �, only z(t), t ∈ [0, 1/2]
will be given explicitly (the rest will follow from the symmetric constraints). Fur-
thermore, in this section, we set A(z) := AK (z) + AU (z), where

AK (z) :=
∫ 1/2

0
K (ż) dt, AU (z) :=

∫ 1/2

0
U (z) dt.

First we will introduce the monotone constraints.

Definition 2.1. We say that a loop z ∈ � satisfies the monotone constraints if

x0( j/2) � x0( j/2 + t) � x0( j/2 + 1/2), ∀t ∈ [0, 1/2], ∀ j ∈ N

and that is satisfies the strictly monotone constraints if

x0(t1) < x0(t2), for any 0 � t1 < t2 � N/2.

Let �+ be the subset of all loops in � which satisfy the monotone constraints
and the following inequalities:

x0(0) � 0 � x0(N/2). (18)

For technical reasons, we will not fix the center of mass at the origin in our proof;
this could cause a lack of coercivity during the minimizing process. The above
inequality was introduced to overcome this.

By (7), (8) and (10), we have that z ∈ �, satisfying the monotone constraints,
is equivalent to the following:
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(a)

(b)

Fig. 1. a N = 2n, n = n − 1, b N = 2n, n = n

{
x j (0) � x j (t) � x j (1/2), if j ∈ {0, . . . , n},
x j (0) � x j (t) � x j (1/2), if j ∈ N\{0, . . . , n}, ∀t ∈ [0, 1/2]; (19)

x0(0) � x0(1/2) = xN−1(1/2) � xN−1(0) = x1(0) � · · ·
· · · � xn+1(0) = xn−1(0) � xn−1(1/2) = xn(1/2) � xn(0), if N = 2n; (20)

x0(0) � x0(1/2) = xN−1(1/2) � xN−1(0) = x1(0) � · · ·
· · · � xn−1(1/2) = xn+1(1/2) � xn+1(0) = xn(0) � xn(1/2), if N = 2n + 1,

(21)

For illuminating pictures, see Fig. 1. Roughly speaking, the masses are located
on the solid vertical lines when t = 0; on the dashed vertical lines when t = 1/2.
Furthermore, between t = 0 and t = 1/2, each mass is confined within the unique
vertical strip bounded by the neighboring vertical lines. Whether the masses are
above or below the real axis on each vertical line is determined by theω-topological
constraints. The pictures in Fig. 1 correspond to ω ∈ �N with ω j = 1, for any
j ∈ N\{0}.

To put the topological constraints back into the problem, for any ω ∈ �N , we
define�+

ω as the subset of loops in�+ which satisfy the ω-topological constraints.
Correspondingly, we set �̂+ := �+ ∩ �̂, �̂+

ω := �+
ω ∩ �̂.

Proposition 2.1. For each ω ∈ �N , there is a zω ∈ �+
ω which is a minimizer of

the action functional A in �+
ω .
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Proof. It is well known that the action functional A is weakly lower-semi contin-
uous with respect to the Sobolev norm H1. Meanwhile, �+

ω is weakly closed with
respect to the same norm. Therefore we just need to show thatA is coercive in �+

ω .
Choose a sequence of loops {zk ∈ �+

ω }with ‖zk‖H1 going to infinity; as k goes
to infinity, it is enough to show that A(zk, N ) goes to infinity as well.

Recall that zk0(t) = xk0 (t) + iyk0 (t). By (9), yk0 (0) = 0, so then

∣∣∣yk0 (t0)
∣∣∣ =

∣∣∣yk0 (t0) − yk0 (0)
∣∣∣ �

∫ N

0

∣∣∣ẏk0 (t)
∣∣∣ dt, ∀t0 ∈ [0, N ).

By Cauchy-Schwartz inequality,

|yk0 (t0)|2 �
(∫ N

0

∣∣∣ẏk0 (t)
∣∣∣ dt

)2

� N
∫ N

0

∣∣∣ẏk0 (t)
∣∣∣
2
dt, ∀t0 ∈ [0, N ).

Hence,

∫ N

0

∣∣∣yk0 (t)
∣∣∣
2
dt � N 2

∫ N

0

∣∣∣ẏk0 (t)
∣∣∣
2
dt.

Meanwhile, by (18), there is always a tk ∈ [0, N/2] such that xk0 (tk) = 0. Then,
by computations similar to these above,

∫ N

0

∣∣∣xk0 (t)
∣∣∣
2
dt � N 2

∫ N

0

∣∣∣ẋ k0 (t)
∣∣∣
2
dt.

As a result,
∫ N

0

∣∣∣zk0(t)
∣∣∣
2
dt � N 2

∫ N

0

∣∣∣żk0(t)
∣∣∣
2
dt. (22)

Because zk ∈ �+
ω , (4) is satisfied. Then

∥∥∥zk
∥∥∥
2

H1
=

∫ N

0

∑

j∈N

(∣∣∣zkj (t)
∣∣∣
2 +

∣∣∣żkj (t)
∣∣∣
2
)

dt = N
∫ N

0

∣∣∣zk0(t)
∣∣∣
2 +

∣∣∣żk0(t)
∣∣∣
2
dt.

(23)
Notice that the action functional satisfies

A
(
zk, N

)
� 1

2

∫ N

0

∑

j∈N

∣∣∣żkj (t)
∣∣∣
2
dt = N

2

∫ N

0

∣∣∣żk0(t)
∣∣∣
2
dt. (24)

Together (22), (23) and (24) imply

A
(
zk, N

)
� 1

2
(
N 2 + 1

)
∥∥∥zk

∥∥∥
2

H1
.

As a result, A(zk, N ) goes to infinity as k goes to infinity. �
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We need to prove that the action minimizer zω is collision-free. However, be-
cause of themonotone constraints, this does not necessarilymean that it is a solution
of Eq. (1). In addition, we also need to show that it satisfies the strictly monotone
constraints. As this property will be useful in showing that zω is collision-free, we
will prove it first.

Lemma 2.1. For any ω ∈ �N , if zω ∈ �+
ω is an action minimizer ofA in �+

ω , then

xω
0 (t1) � xω

0 (t2), for any 0 � t1 < t2 � N/2.

Proof. For simplicity, let z = zω. As z ∈ �+
ω , by the definition of monotone

constraints, it is enough to show that, for any 0 � t1 � t2 � 1/2,

x0( j/2 + t1) � x0( j/2 + t2), ∀ j ∈ N.

By a contradiction argument, let’s assume that there is a j0 ∈ N and 0 � t1 < t2 �
1/2, such that

x0( j0/2 + s1) > x0( j0/2 + s2), for any t1 � s1 < s2 � t2.

By (10), depending on whether j0 is even or odd, this is equivalent to

for any t1 � s1 < s2 � t2,

{
xk(s1) > xk(s2), if j0 = 2k,
xN−k(1/2 − s1) > xN−k(1/2 − s2), if j0 = 2k − 1.

Let ε = x0( j0/2+ s1) − x0( j0/2+ s2) > 0. We discuss this in two corresponding
cases.

Case 1: j0 is even ( j0 = 2k). We define a new loop zε ∈ �+
ω as follows:

zεk(t) =

⎧
⎪⎨

⎪⎩

zk(t) − 2ε, ∀t ∈ [0, t1],(
2xk(t2) − xk(t)

) + iyk(t), ∀t ∈ [t1, t2],
zk(t), ∀t ∈ [t2, 1/2],

zεj (t) =
{
z j (t), if j ∈ {k + 1, . . . , N − 1 − k},
z j (t) − 2ε, if j ∈ N\{k, . . . , N − 1 − k}, ∀t ∈ [0, 1/2].

By the above definition of zε, AK (zε) = AK (z). Meanwhile, by the monotone
constraints, AU (zε) < AU (z). Therefore A(zε) < A(z), which is absurd.

Case 2: j0 is odd ( j0 = 2k − 1). Similarly, we define a new loop zε ∈ �+
ω as

follows:

zεN−k(t) =

⎧
⎪⎨

⎪⎩

zN−k(t), ∀t ∈ [0, 1/2 − t2],(
2xN−k(1/2 − t2) − xN−k(t)

) + iyN−k(t), ∀t ∈ [1/2 − t2, 1/2 − t1],
zN−k(t) − 2ε, ∀t ∈ [1/2 − t1, 1/2],

zεj (t) =
{
z j (t), if j ∈ {k, . . . , N − 1 − k},
z j (t) − 2ε, if j ∈ N\{k, . . . , N − k}, ∀t ∈ [0, 1/2].

The rest is the same as in Case 1. �
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Next we need to exclude the degenerate case, where the masses always stay on
a single vertical line.

Lemma 2.2. For any ω ∈ �N , if zω ∈ �+
ω is an action minimizer ofA in �+

ω , then
xω
0 (N/2) − xω

0 (0) > 0.

Our approach is to show that in the degenerate case, zω becomes a collinear
solution that contains at least one isolated collision. Then, by local deformations
near the isolated collision, we can find another loop from�+

ω whose action value is
strictly smaller than zω’s, which gives us a contradiction. The proof will be given
in the Appendix.

With the above two lemmas, the fact that zω satisfies the strictly monotone
constraints will be established by the following:

Lemma 2.3. When N = 2n, for any ω ∈ �N , if zω ∈ �+
ω is an action minimizer

of A in �+
ω , then xω

0 (t1) < xω
0 (t2) for any 0 � t1 < t2 � N/2.

Proof. For simplicity, let z = zω. By Lemma 2.1, it is enough to show that

x0( j/2 + t1) �= x0( j/2 + t2), for any 0 � t1 < t2 � 1/2, ∀ j ∈ N.

Let’s assume that there exists a j0 ∈ N, and that 0 � t1 < t2 � 1/2 such that

x0( j0/2 + t) = x0( j0/2 + t1), ∀t ∈ [t1, t2]. (25)

By Lemma 2.2, there exist t0 and δ1 > 0 small enough such that

xn(t) − x0(t) � δ1, ∀t ∈ [0, t0]. (26)

Meanwhile, we can always find a δ2 > 0 small enough such that

|zn(t) − z0(t)| � δ−1
2 , ∀t ∈ [0, 1/2]. (27)

Depending on the value of j0, two different cases will be considered.
Case 1: If j0 is even ( j0 = 2k), then (25) implies

xk(t) = xk(t1), ∀t ∈ [t1, t2].
Choosing a ε > 0 small enough, we define a new loop zε ∈ �+

ω as follows:

zεk(t) =

⎧
⎪⎨

⎪⎩

zk(t) − ε, ∀t ∈ [0, t1],
zk(t) − t2−t

t2−t1
ε, ∀t ∈ [t1, t2],

zk(t), ∀t ∈ [t2, 1/2];
(28)

zεj (t) =
{
z j (t), if j ∈ {k + 1, . . . , N − 1 − k},
z j (t) − ε, if j ∈ N\{k, . . . , N − 1 − k}, ∀t ∈ [0, 1/2]. (29)

By the above definition of zε and (25), we have

AK (żε) − Ak(ż) = 1

2

∫ t2

t1
|żε(t)|2 − |ż|2 dt = 1

2

∫ t2

t1

ε2

(t2 − t1)2
dt = ε2

2(t2 − t1)
.

(30)
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This shows the change in kinetic energy. For potential energy, notice that
∣∣∣zεj (t) − zεl (t)

∣∣∣ �
∣∣z j (t) − zl(t)

∣∣ , ∀t ∈ [0, 1/2], ∀{ j �= l} ⊂ N. (31)

When k > 0, by the definition of zε and (26), for any t ∈ [0, t0], we have
∣∣zεn(t) − zε0(t)

∣∣2 = |xn(t) − x0(t) + ε + i(yn(t) − y0(t))|2
= |zn(t) − z0(t)|2 + 2(xn(t) − x0(t))ε + ε2

� |zn(t) − z0(t)|2 + 2δ1ε + ε2.

Together with (27), for any t ∈ [0, t0],
∣∣zεn(t) − zε0(t)

∣∣−1 − |zn(t) − z0(t)|−1

� 1

|zn(t) − z0(t)|

⎛

⎝
(
1 + 2δ1ε

|zn(t) − z0(t)|2 + ε2

|zn(t) − z0(t)|2
)− 1

2

− 1

⎞

⎠

� − δ1ε

|zn(t) − z0(t)|3 + o(ε) � −δ1δ
3
2ε + o(ε).

Combine this with (31) to get

AU (zε) − AU (z) �
∫ t0

0
|zεn(t) − zε0(t)|−1 − |zn(t) − z0(t)|−1 dt

�
∫ t0

0
−δ1δ

3
2ε + o(ε) dt = −C1(δ1, δ2, t0)ε + o(ε).

(32)

When k = 0, if t0 < t1, the above estimates for potential energy will still hold.
However if t0 > t1, then things are slightly different. Assuming that k = 0 and
t0 > t1, by (26), for any t ∈ [t1, t3], where t3 = min{t0, t2}, we have
∣∣zεn(t) − zε0(t)

∣∣2 =
∣∣∣∣xn(t) − x0(t) + t2 − t

t2 − t1
ε + i(yn(t) − y0(t))

∣∣∣∣
2

= |zn(t) − z0(t)|2 + 2(xn(t) − x0(t))
t2 − t

t2 − t1
ε +

(
t2 − t

t2 − t1

)2

ε2

� |zn(t) − z0(t)|2 + 2δ1ε
t2 − t

t2 − t1
+ o(ε).

Combining the above with (27), we get, for any t ∈ [t1, t3],
|zεn(t) − zε0(t)|−1 − |zn(t) − z0(t)|−1

� 1

|zn(t) − z0(t)|

⎛

⎝
(
1 + 2δ1ε

t2−t
t2−t1

|zn(t) − z0(t)|2
)− 1

2

− 1

⎞

⎠

� − δ1ε
t2−t
t2−t1

|zn(t) − z0(t)|3 + o(ε) � −δ1δ
3
3ε

t2 − t

t2 − t1
+ o(ε).
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As a result,

AU (zε) − AU (z) �
∫ t3

t1
|zεn(t) − zε0(t)|−1 − |zn(t) − z0(t)|−1 dt

�
∫ t3

t1
−δ1δ

3
3ε

t2 − t

t2 − t1
+ o(ε) dt � −C2(δ1, δ2, t0, t1, t2)ε + o(ε).

(33)

Together, (30), (32) and (33) show that, for ε small enough,

A(zε) − A(z) � −C3(δ1, δ2, t0, t1, t2)ε + ε2

2(t2 − t1)
+ o(ε) < 0,

which is a contradiction. This finishes our proof of Case 1.
Case 2: If j0 is odd ( j0 = 2k − 1), then (25) implies

xN−k(t) = xN−k(1/2 − t1), ∀t ∈ [1/2 − t2, 1/2 − t1].
For ε > 0 small enough, we define a new loop zε ∈ �+

ω as follows:

zεN−k(t) =

⎧
⎪⎨

⎪⎩

zN−k(t) + ε, ∀t ∈ [0, 1/2 − t2],
zN−k(t) + 1/2−t1−t

t2−t1
ε, ∀t ∈ [1/2 − t2, 1/2 − t1],

zN−k(t), ∀t ∈ [1/2 − t1, 1/2];
(34)

zεj (t) =
{
z j (t) + ε, if j ∈ {k, . . . , N − 1 − k},
z j (t), if j ∈ N\{k, . . . , N − k}, ∀t ∈ [0, 1/2]. (35)

By estimates similar to these for Case 1, we can show that A(zε) − A(z) < 0 for
ε small enough, which is a contradiction. �
Lemma 2.4. When N = 2n+1, for anyω ∈ �N , if zω ∈ �+

ω is an actionminimizer
of A in �+

ω , then xω
0 (t1) < xω

0 (t2) for any 0 � t1 < t2 � N/2.

Proof. Let z = zω. As with the proof of Lemma 2.3, by a contradiction argument,
let’s assume that (25) holds for some j0 ∈ N and 0 � t1 < t2 � 1/2.

Notice that, by Lemmas 2.1 and 2.2,

max{x0(n) − x0(0), x0(n + 1/2) − x0(1/2)} > 0.

Hence there exist t0 and δ1 > 0 such that one of the following must hold:

xn(t) − x0(t) � δ1, ∀t ∈ [0, t0]; (36)

xn(t) − x0(t) � δ1, ∀t ∈ [1/2 − t0, 1/2]. (37)

First, let’s assume that (36) holds. Again we will consider two different cases
depending on the value of j0 (to separate them from the two cases considered in
the proof of Lemma 2.3, we will count them as Case 3 and Case 4).

Case 3: j0 is odd ( j0 = 2k − 1). Let zε ∈ �+
ω be defined as in Case 2, then, as

with case 2, a contradiction can reached.
Case 4: j0 is even ( j0 = 2k). In this case 0 � k � n. Let zε ∈ �+

ω be defined as
in Case 1; when k < n, a contradiction can be reached by the same argument given
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there. For when k = n, more needs to be said. First, the set {k + 1, . . . , N − 1− k}
in (29) is empty. By what we have proven so far in Case 4 and in Case 3, there is a
δ3 > 0, such that

xn(t) − x0(t) � δ3, ∀t ∈ [0, 1/2]. (38)

With (27) still holding, by computations similar to those given in Case 1,

AU (zε) − AU (z) �
∫ t2

t1
|zεn(t) − zε0(t)|−1 − |zn(t) − z0(t)|−1 dt

� −C4(t1, t2, δ1, δ3)ε + o(ε).

Since the change in kinetic energy is still given by (30), we get A(zε) −A(z) < 0
for ε small enough, which is absurd. This finishes our proof of Case 4.

Now let’s assume that (37) holds. The proof is almost the same as above, so we
will not repeat the details here. �

Let zω be an action minimizer of A in �+
ω (for simplicity, in the rest of this

section, we set z = zω). By Lemmas 2.3 and 2.4, this satisfies the strictly monotone
constraints. As a result, if z is collision-free, it must be a solution of (1). Notice that
Lemmas 2.3 and 2.4 already imply that z(t) and t ∈ (0, 1/2)must be collision-free,
and the only possible collisions are binary collisions at t = 0 or t = 1/2 between
certain pairs of masses determined by the symmetric constraints. To be precise,
when t = 0, a binary collision can only happen between the pairs of masses with
the indices

{1, N − 1}, {2, N − 2}, . . . , {n, N − n};
when t = 1/2, it is between the following pairs:

{0, N − 1}, {1, N − 2}, . . . , {n, N − n − 1}.
When N = 2n + 1, n = N − n − 1 = n, so in this case, there is no collision
between mn and mN−n−1 at t = 1/2.

In the following, we will show that none of the above binary collisions can
exist. First, let’s assume z j (0) = zN− j (0) for some j ∈ {1, . . . , n}. Notice that
y j (0) = yN− j (0) = 0 as z j (0) = z̄N− j (0). Without loss of generality, we may
further assume that z j (0) = zN− j (0) = 0.

For any t ∈ [0, 1/2] and k ∈ { j, N − j}, we set
ẑ(t) := x̂(t) + i ŷ(t) := (z j (t) + zN− j (t))/2, (39)

wk(t) := uk(t) + ivk(t) := zk(t) − ẑ(t). (40)

Here ẑ(t) is the center of mass of m j and mN− j , and wk(t) is the relative position
of mk with respect to ẑ. Putting wk(t) in polar coordinates,

wk(t) = ρk(t)e
iθk (t), (41)

and we have the following two results:
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Proposition 2.2. For any k ∈ { j, N − j}, when t > 0 is small enough,

ρk(t) = C1t
2
3 + o

(
t
2
3

)
, ρ̇k(t) = C2t

− 1
3 + o

(
t−

1
3

)
.

This is the well-known Sundman’s estimate; for a proof see [14, (6.25)].

Proposition 2.3. For any k ∈ { j, N − j}, there exist finite θ+
k satisfying the follow-

ing:
lim
t→0+ θk(t) = θ+

k , lim
t→0+ θ̇k(t) = 0, θ+

N− j = θ+
j + π. (42)

The above proposition is also well-known, and shows that m j and mN− j approach
the binary collision from two directions that are definitely in opposition to each
other (a proof can be found in [29, Proposition 4.2]).

By the strictly monotone constraints, x j (t) − xN− j (t) > 0, ∀t ∈ (0, 1/2].
Hence,

xN− j (t) − x̂(t) < 0 < x j (t) − x̂(t), ∀t ∈ (0, 1/2].
As a result, we may assume

θ j (t) ∈ (−π/2, π/2), θN− j (t) ∈ (π/2, 3π/2), ∀t ∈ (0, 1/2],
and this means

θ+
j ∈ [−π/2, π/2], θ+

N− j ∈ [π/2, 3π/2].

Depending on the values of θ+
j , two types of deformations will be applied to z

to get a contradiction. To make sure that the loop we obtained after the deformation
is still contained in �+

ω , we need to know the precise value of ω2 j . Without loss of
generality, let’s assume ω2 j = 1 in the following:

Lemma 2.5. If z j (0) = zN− j (0) and θ+
j ∈ (−π/2, π/2], then there is a z̃ ∈ �+

ω

with A(z̃) < A(z).

To prove the above lemma, we need the following local deformation result near
an isolated binary collision:

Proposition 2.4. If z j (0) = zN− j (0) and θ+
j ∈ (−π/2, π/2], then for ε > 0

and t0 = t0(ε) > 0 small enough, there is an zε ∈ H1([0, 1/2],CN ) (a local
deformation of z near t = 0) satisfying A(zε) < A(z) and the following:

(a) For any l ∈ N\{ j, N − j}, zεl (t) = zl(t), ∀t ∈ [0, 1/2];
(b) For any k ∈ { j, N − j},

{
zεk(t) = zk(t), when t ∈ [t0, 1/2];
|zεk(t) − zk(t)| � ε, when t ∈ [0, t0];

(c) zε(t), t ∈ (0, 1/2), is collision-free;
(d) zεk(0) �= zεl (0), for any k ∈ { j, N − j} and l ∈ N\{ j, N − j};
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(e) zεj (0) �= zεN− j (0), in particular

zεj (0) = z j (0) + iε, zεN− j (0) = zN− j (0) − iε.

Remark 2.1. A proof of the above proposition can be found in [29, Proposition
4.3]. The proof essentially relies on the following element of the Kepler problem:
the parabolic collision-ejection solution connecting two different points with the
same distance to the origin has an action value strictly smaller than the direct and
indirect Keplerian arcs joining them (with the same transfer time). This result was
attributed to Marchal in [10]. A proof can be found in [16,28].

Proof (Lemma 2.5). By Proposition 2.4, after a local deformation of z near the
isolated collision z j (0) = zN− j (0), we get a new path zε ∈ H1([0, 1/2],CN )with
A(zε) < A(z). After applying the action of the dihedral group DN defined before,
we get a loop which will be denoted by zε. Notice that, as a loop, zε is contained
in � and satisfies the ω-topological constraints. However, it is not so clear whether
it is also contained in �+

ω , as the monotone constraints may be violated after the
local deformation. Nevertheless we will show that, by further modification of zε,
we can always get a z̃ ∈ �+

ω satisfying A(z̃) � A(zε) < A(z).
Recall that z j (0) = zN− j (0) = 0. By Proposition 2.4(e), xε

j (0) = xε
N− j (0) =

0. Letting t0 be given as in Proposition 2.4, we define δ1, δ2 as follows:

δ1 = −min{xε
j (t) : t ∈ [0, t0]}, δ2 = max{xε

N− j (t) : t ∈ [0, t0]}.
Then δ1 � 0, as is δ2. Furthermore, let

t1 = min{t ∈ [0, t0] : xε
j (t) = −δ1}, t2 = min{t ∈ [0, t0] : xε

N− j (t) = δ2}
and

T1 = {t ∈ [0, t1] : xε
j (t) < 0}, T2 = {t ∈ [0, t2] : xε

N− j (t) > 0}.
Now we define a new path z̃(t) = (z̃k(t))k∈N as follows:

z̃ j (t) =

⎧
⎪⎨

⎪⎩

zεj (t) if t ∈ [0, t1]\T1,

−z̄ε j (t) if t ∈ T1,

zεj (t) + 2δ1, if t ∈ [t1, 1/2],

z̃N− j (t) =

⎧
⎪⎨

⎪⎩

zεN− j (t), if t ∈ [0, t2]\T2,

−z̄εN− j (t), if t ∈ T2,

zεN− j (t) − 2δ2, if t ∈ [t2, 1/2],

z̃k(t) =
{
zεk(t) + 2δ1, if k ∈ { j + 1, . . . , N − j − 1},
zεk(t) − 2δ2, if k ∈ N\{ j, . . . , N − j}, ∀t ∈ [0, 1/2].

We point out that for any k ∈ { j, N − j}, if δk = 0, then tk = 0 and Tk = ∅. In
particular, when δ1 = δ2 = 0, then z̃ = zε. See Fig. 2 for illuminating illustrations
of z̃ j (or z̃N− j ) for when δ1 > 0 (or δ2 > 0).
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Fig. 2. Deformation of the paths of mj and mN− j

For z̃ defined as above, the monotone constraints are satisfied and z̃ ∈ �+
ω .

Furthermore, A(z̃) � A(zε) < A(z), as AK ( ˙̃z) = AK (żε) and AU (z̃) � AU (zε),
where the estimate on potential energy follows from

|z̃k(t) − z̃l(t)| � |zεk(t) − zεl (t)|, ∀t ∈ [0, 1/2], ∀{k < l} ⊂ N.

�
We point out that Lemma 2.5 does not apply when θ+

j = −π/2. By Gordon’s
result on the Kepler problem (see [17]), an argument regarding the nature of local
deformation can never rule out the binary collision in this case; some type of
global estimate has to be involved, which generally is hard to do. The advantage
of our approach is that the necessary global estimate can be obtained based on the
monotone constraints. This estimate will be given in the next lemma.

Lemma 2.6. If z j (0) = zN− j (0) and θ+
j = −π/2, then for ε1 > 0 small enough,

there is a zε1 ∈ �+
ω with A(zε1) < A(z).

Proof. For ε1 > 0 small enough, define a new loop zε1 ∈ �+
ω as follows

zε1j (t) =
{
z j (t) + t (2ε1 − t), ∀t ∈ [0, ε1],
z j (t) + ε21, ∀t ∈ [ε1, 1/2],

zε1N− j =
{
zN− j (t) − t (2ε1 − t), ∀t ∈ [0, ε1],
zN− j (t) − ε21, ∀t ∈ [ε1, 1/2],

zε1k (t) =
{
zk(t) + ε21, if k ∈ { j + 1, . . . , N − j − 1},
zk(t) − ε21, if k ∈ N\{ j, . . . , N − j}, ∀t ∈ [0, 1/2].

WeclaimA(zε1) < A(z) for ε1 small enough.The abovedefinition immediately
implies

AK (żε1) > AK (ż), AU (żε1) < AU (z).
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However, to get the desired result, the above estimates have to be improved.
For AK , we need the estimates of ẋ j (t) and ẋN− j (t) when t goes to zero.

Let ẑ and wk , as well as k ∈ { j, N − j}, be defined as in (39) and (40). Then
ẋk(t) = u̇k(t) + ˙̂x(t). Meanwhile, by (41),

u̇k = ρ̇k cos θk − ρk θ̇k sin θk, ∀k ∈ { j, N − j}.
As θ+

j = limt→0+ θ j (t) = −π/2, by Propositions 2.2 and 2.3, we get that

|u̇ j (t)| � C1t
2
3 for t > 0 small enough. (43)

Similarly, since θ+
N− j = θ+

j π = π/2, we have that

|u̇N− j (t)| � C2t
2
3 for t > 0 small enough. (44)

Notice that although m j and mN− j collide at t = 0, there the center of mass
ẑ(t) is C2 at t = 0, and can we claim that

˙̂x(0) = 0.

Otherwise, let’s assume that ˙̂x(0) < 0. Then, by (43),

ẋ j (t) = u̇ j (t) + ˙̂x(t) < 0, for t > 0 small enough.

This, however, violates the monotone constraints. Similarly, if ˙̂x(0) > 0, then

ẋN− j (t) = u̇N− j (t) + ˙̂x(t) > 0, for t > 0 small enough,

which is again in contradiction to the monotone constraints. This proves our claim.
As a result, we have

| ˙̂x(t)| � C3t for t > 0 small enough. (45)

Combining this with (43) and (44) we get
|ẋk(t)| � C4t

2
3 for t > 0 small enough, ∀k ∈ { j, N − j}. (46)

By the definition of zε1 and (46), we have

AK (zε1) − AK (z) = 1

2

∫ ε1

0

∑

k∈{ j,N− j}

(|żε1k | − |żk |2
)
dt

=
∫ ε1

0
4(ε1 − t)2 + 2(ε1 − t)ẋ j (t) − 2(ε1 − t)ẋN− j (t) dt

� 4
∫ ε1

0
(ε1 − t)2 + C4t

2
3 (ε1 − t) dt � C5ε

8
3
1 + o(ε

8
3
1 ).

(47)

Now we will estimate the change in potential energy. By Lemmas 2.3 and 2.4,
we have this x j (1/2) − xN− j (1/2) > 0. Then for any δ > 0 small enough, there
exist positive constants C6 and C7 (both independent of ε1) such that

x j (t) − xN− j (t) � C6, |z j (t) − zN− j (t)|−1 � C7, ∀t ∈ [1/2 − δ, 1/2].
(48)
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Meanwhile for any t ∈ [1/2 − δ, 1/2],

|zε1j (t) − zε1N− j (t)|−1 = (|z j (t) − zN− j (t)|2 + 4ε21(x j (t) − xN− j (t)) + 4ε41
)− 1

2 .

By (48) and a simple computation, we get, for any t ∈ [1/2 − δ, 1/2],
1

|zε1j (t) − zε1N− j (t)|
− 1

|z j (t) − zN− j (t)| � −2(x j (t) − xN− j (t))

|z j (t) − zN− j (t)|3 ε21 + o(ε2).

Notice that the definition of zε1 implies

|zε1k (t) − zε1l (t)| � |zk(t) − zl(t)|, ∀t ∈ [0, 1/2], ∀{k �= l} ⊂ N. (49)

As a result,

AU (zε1) − AU (z) �
∫ 1

2

1
2−δ

1

|zε1j − zε1N− j |
− 1

|z j − zN− j | dt � −C8δε
2
1 .

Combining this with our estimate on AK obtained earlier, we get

A(zε1) − A(z) � −C8δε
2 + C5ε

8
3
1 < 0

for ε1 small enough, as C5,C8 are independent of ε1. �
By Lemmas 2.5 and 2.6, we have proven that there is no collision between m j

and mN− j at t = 0, for any j ∈ {1, . . . , n}. Similarly, it can be proven that there is
no collision between m j and mN−1− j at t = 1/2 for any j ∈ {0, . . . , n}; we will
not repeat it here. As a result, we have proven the following:

Proposition 2.5. For any ω ∈ �N , the action functional A has at least one min-
imizer zω ∈ �+

ω . Furthermore, every action minimizer zω satisfies the strictly
monotone constraints and is a collision-free solution of (1).

However,we still haven’t proven (15) inTheorem1.1. Thiswill be demonstrated
by the next lemma. Notice that this is not necessarily true, even when the strictly
monotone constraints are satisfied.

Lemma 2.7. For any ω ∈ �N , if zω ∈ �+
ω is a minimizer of A in �+

ω , then it
satisfies (15).

Proof. For simplicity, let z = zω. We give the details for N = 2n (for N = 2n+1,
it can be proven similarly). By (10), this is equivalent to proving the following:

ẋ0(0) = ẋn+1(0) = 0, (50)
{
ẋ0(t) > 0, ∀t ∈ (0, 1/2],
ẋ j (t) > 0, ∀t ∈ [0, 1/2], ∀ j ∈ {1, . . . , n}, (51)

{
ẋn+1(t) < 0, ∀t ∈ (0, 1/2],
ẋ j (t) < 0, ∀t ∈ [0, 1/2], ∀ j ∈ {n + 2, . . . , N − 1}. (52)
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Since z is a collision-free minimizer of A in �+
ω , z0(t) and zn+1(t) must be per-

pendicular to the real axis at t = 0, and (50) follows immediately.
Now let’s prove (51) (the proof of (52) is similarly); by a contradiction argument,

we assume that it does not hold. Then, by the strictlymonotone constraints, ẋ j (t0) =
0 for some t0 ∈ [0, 1/2], and j ∈ {0, . . . , n} (if t0 = 0, j �= 0). Depending on the
value of t0, three different cases will be considered.

Case 1: t0 = 0. For ε1 > 0 small enough, let zε1 ∈ �+
ω be the same path defined

in the proof of Lemma 2.6. Then

AU (zε1) − AU (z) � −C1ε
2
1 . (53)

Meanwhile, as ẋ j (0) = ẋN− j (0) = 0 (by the symmetric constraints, ẋN− j (0) =
−ẋ j (0)), we have

|ẋk(t)| � C2t for t > 0 small enough, ∀k ∈ { j, N − j}.
This, in fact, is a better estimate than (46). Then, by a computation similar to (47),
we get

AK (zε1) − AK (z) � C3ε
3
1. (54)

As a result,A(zε1) −A(z) < 0 for ε1 > 0 small enough, which is a contradiction.
This finishes our proof of Case 1.

For the remaining two cases, estimates similar to those above will give us
contradictions as well. We just give the definition of zε1 ∈ �+

ω and omit the details.
Case 2: t0 = 1/2. Let zε1 ∈ �+

ω be defined as follows:

zε1j (t) =
{
zε1j (t) − ε21, ∀t ∈ [0, 1/2 − ε1],
zε1j (t) − (1/2 − t)(2ε1 − (1/2 − t)), ∀t ∈ [1/2 − ε1, 1/2],

zε1N− j−1(t) =
{
zε1N− j−1(t) + ε21, ∀t ∈ [0, 1/2 − ε1],
zε1N− j−1(t) + (1/2 − t)(2ε1 − (1/2 − t)), ∀t ∈ [1/2 − ε1, 1/2],

zε1k (t) =
{
zε1k (t) + ε21, if k ∈ { j + 1, . . . , N − j − 2},
zε1k (t) − ε21, if k ∈ N\{ j, . . . , N − j − 1}, ∀t ∈ [0, 1/2].

Case 3: t0 ∈ (0, 1/2). Let zε1 ∈ �+
ω be defined as follows:

zε1j (t) =

⎧
⎪⎨

⎪⎩

zε1j (t) − ε21, ∀t ∈ [0, t0 − ε1],
zε1j (t) + (t − t0)(2ε1 − |t − t0|), ∀t ∈ [t0 − ε1, t0 + ε1],
zε1j (t) + ε21, ∀t ∈ [t0 + ε1, 1/2],

zε1k (t) =
{
zε1k (t) + ε21, if k ∈ { j + 1, . . . , N − j − 1},
zε1k (t) − ε21, if k ∈ N\{ j, . . . , N − j − 1}, ∀t ∈ [0, 1/2].

�
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We finish this section with a remark about the existence of these simple chore-
ographies in the general homogeneous potentials

Uα(z) =
∑

{ j<k}⊂N

1

|z j − zk |α , α > 0.

Such a potential is called a strong force if α � 2; a weak force if 0 < α < 2. The
Newtonian potential corresponds to α = 1.

All the results proved in this section hold for Uα with α � 1, but not when
0 < α < 1. The reason for this is that when α < 1, Proposition 2.4 only holds for
θ+
j ∈ (−π/2 + β(α), π/2], for some 0 < β(α) < π .

3. Simple Choreographies with Additional Symmetries

As we mentioned, all of the simple choreographies that were proven in Section
2 belong to the linear chain family, as are the Figure-Eight solution and the Super-
Eight solution. We would like to compare our results with those two. Recall that
there are several different figure eight type simple choreographies, depending on
the symmetric constraints, see [8,14]. Here, by the Figure-Eight solution, we only
mean the one proved by Chenciner and Montgomery in [13].

Example 3.1. The Figure-Eight solution, ze, is a collision-free minimizer of the
action functional A in �

D6
3 with the action of the dihedral group D6 defined as

τ(g)t = t − 1/2, ρ(g)q = −q̄, σ (g) = (0, 1, 2)2,

τ(h)t = −t + 1, ρ(h)q = q̄, σ (h) = (0, 2).

The corresponding loop ze0 ∈ H1(R/3Z,C) is in the shape of a figure eight sym-
metric with respect to the origin and the real and imaginary axes. Furthermore, it
was proved in [15,18] that each lobe of the eight is convex.

Example 3.2. The Super-Eight solution zs belongs to �
D4×Z2
4 , where D4 is the

dihedral group with the action defined as in Section 1, and Z2 = 〈 f | f 2 = 1〉 with
the action defined as follows:

τ( f )t = t, ρ( f )q = −q, σ ( f ) = (0, 2)(1, 3).

However, the action minimizer of A in �
D4×Z2
4 is not zs , but the rotating 4-gon.

Thus, zs is an action minimizer among all z ∈ �
D4×Z2
4 satisfying the following

topological constraints:

y0( j/2) = ω j |y2( j/2)|, ∀ j ∈ {1, 2, 3},
where ω = (ω1, ω2, ω3) = (1,−1, 1).

This was proved analytically by Shibayama in [25], who also confirmed nu-
merically that it should look like a super eight.
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(a) (b)

Fig. 3. a N = 3, ω = (1,−1), b N = 4, ω = (1, −1, 1)

Meanwhile, for any ω ∈ �N , let zω ∈ �
DN
N be a simple choreography obtained

by Theorem 1.1.

Example 3.3. When N = 3 and ω = (ω1, ω2) = (−1, 1), an illuminating picture
of zω can be found in Fig. 3a, where the solid curves represent the motion of the
masses between t = 0 and t = 1/2. Such a zω also looks like a figure eight. The
symmetric constraints only imply that the loop z0 is symmetric with respect to the
real axis. However, unlike the Figure-Eight solution, it is not clear whether the loop
is also symmetric with respect to the imaginary axis and the origin.

Example 3.4. When N = 4 and ω = (ω1, ω2, ω3) = (1,−1, 1), an illuminating
picture of zω can be found in Fig. 3b, where the solid curves represent the motion
of the masses between t = 0 and t = 1/2. Such a zω looks like a super eight that
is symmetric with respect to the real axis, but unlike the Super-Eight solution, we
don’t know if it is also symmetric with respect to the imaginary axis and the origin.

The similarities and differences between the above examples inspire us to intro-
duce the symmetric groups HN := DN ×Z2 and the define the actions as follows:
if N = 2n,

τ((g, 1))t = t − 1, ρ((g, 1))q = q, σ ((g, 1)) = (0, . . . , 2n − 1),

τ((h, 1))t = 1 − t, ρ((h, 1))q = q̄, σ ((h, 1)) = (0, 2n − 1) . . . (n − 1, n),

τ((1, f ))t = t, ρ((1, f ))q = −q, σ ((1, f )) = (0, n) . . . (n − 1, 2n − 1);
(55)

and if N = 2n + 1,

τ((g, f ))t = t − 1/2, ρ((g, f ))q = −q̄, σ ((g, f )) = (0, . . . , 2n)n+1,

τ((h, 1))t = 1 − t, ρ((h, 1))q = q̄, σ ((h, 1)) = (0, 2n) . . . (n − 1, n + 1).
(56)

Notice that when N = 2n + 1,

H2n+1 ∼= D4n+2

〈
(g, f ), (h, 1)|(g, f )4n+2 = (h, 1)2 = 1,

(
(g, f )(h, 1)

)2 = 1
〉
.

In particular, (g, 1) = (g, f )2n+2 and

τ((g, 1))t = t − (n + 1), ρ((g, 1))q = q, σ ((g, 1)) = σ((g, f )),
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As a result, for any N , the action of DN induced from HN is the same as the action
defined in Section 1.

Let�HN ,+
N be the subset of all loops in�

HN
N satisfying themonotone constraints

given in Definition 2.1. For each ω ∈ �N with

|ω j − ωN− j | =
{
2, if N = 2n + 1,

0, if N = 2n,
∀ j ∈ {1, . . . , n}, (57)

let �
HN ,+
N ,ω be the subset of all loops in �

HN ,+
N satisfying the ω-topological con-

straints. Then we have the following result:

Theorem 3.1. For each ω ∈ �N satisfying (57), the action functional A has at
least one minimizer zω ∈ �

HN ,+
N ,ω . Furthermore, zω is a collision-free simple chore-

ography of Eq. (1) satisfying all the properties in Theorem 1.1 and the following:

zω0 (t) =
{

−zω0 (N/2 − t), if N = 2n + 1,

−z̄ω0 (N/2 − t), if N = 2n,
∀t ∈ R/NZ.

Remark 3.1. (i) The above theorem can be proven by the same argument used
in the proof of Theorem 1.1. However, during the deformation one needs to
make sure that the additional symmetric constraints are satisfied afterwards.
Similar problems, and the detailed arguments there to appertaining, can be
found in another paper by the author [30].

(ii) Condition (57) is implied by the symmetric constraints of HN . For those
ω’s satisfying this condition, it will be interesting to see whether the simple
choreographies obtained by Theorems 1.1 and 3.1 are actually the same.
Similar questions were asked by Chenciner regarding the figure eight type
solutions in [8].

(iii) When N = 3, H3 ∼= D6 and the action of H3 defined above are identical to
that given in Example 3.1. Similarly, when N = 4, the action of H4 is the
same as the one given in Example 3.2. Hence, for N andω, given in Examples
3.3 and 3.4, the simple choreographies obtained by Theorem 3.1 are exactly
the Figure-Eight solution and the Super-Eight solution.

As we mentioned, in [25] the actual shape of the Super-Eight solution was
confirmed numerically. In the remainder of this section, we prove a result that
almost confirms the shape of the Super-Eight solution without any numerical result.

Proposition 3.1. Let zω be the simple choreography obtained in Theorem 3.1 with
N = 4 and ω = (−1, 1,−1). Then, between t = 0 and t = 1/2, zω1 (t), as well as
zω3 (t), has exactly one transversal intersection with the real axis; zω0 (t), as well as
zω2 (t), has at least one and at most two transversal intersections with the real axis.

Proof. For simplicity, let z = zω. The four masses always form a parallelogram:

z3(t) = −z1(t), z0(t) = z2(t), ∀t ∈ R.
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As a result, the kinetic and negative potential energy only depend on z1 and z2:

K (ż) = K (ż1, ż2) = |ż1|2 + |ż2|2;
U (z) = U (z1, z2) = 1

2|z1| + 1

2|z2| + 2

|z1 − z2| + 2

|z1 + z2| .

By Theorem 3.1,

y1(0) < 0 < y1(1/2), y2(0) = 0 > y2(1/2), (58)

0 = x1(0) < x1(t) < x1(1/2) = x2(1/2) < x2(t) < x2(0), ∀t ∈ (0, 1/2). (59)

The key to our proof is the following feature of the parallelogram 4-body prob-
lem that we borrowed from [25]:

U (z1, z2) > U (z̄1, z2) = U (z1, z̄2), if z1, z2 belongs to the same quadrant.
(60)

By (58), z1(t) has at least one transversal intersection with the real axis. We
claim that this is the only one. Otherwise, let’s assume that 0 < t0 < t1 < t2 < 1/2
are the three earliest moments that a transversal intersection occurs. We define two
subsets T1, T2 of [0, 1/2] as follows:

if y2(t1) � 0,

T1 := {t ∈ [t1, 1/2] : y1(t) < 0}, T2 := {t ∈ [t1, 1/2] : y2(t) > 0};
if y2(t1) > 0, y2(t0) � 0,

T1 := {t ∈ [t0, 1/2] : y1(t) < 0}, T2 := {t ∈ [t0, 1/2] : y2(t) > 0};
if y2(t1) > 0, y2(t0) > 0,

T1 := {t ∈ [t0, t1] : y1(t) > 0}, T2 := {t ∈ [t0, t1] : y2(t) < 0},

and a new path z̃(t) = (−z̃2(t), z̃1(t), z̃2(t),−z̃1(t)), as follows (see Fig. 4):

z̃ j (t) =
{
z̄ j (t) if t ∈ T j ;
z j (t) if t ∈ [0, 1/2]\T j ,

∀ j ∈ {1, 2}.

Obviously,
∫ 1/2
0 K (ż) dt = ∫ 1/2

0 K ( ˙̃z) dt . Meanwhile, (60) implies that

∫ 1/2

0
U (z1, z2) dt �

∫ 1/2

0
U (z̃1, z̃2) dt.

Hence, A(z̃) � A(z). This means that z̃ must be a collision-free minimizer and
then a smooth solution of (1). However, under our assumption, and the way that is
defined, z̃ cannot be smooth, which is a contradiction. This proves the first half of
the proposition. For the second half, as z2(t) already has an transversal intersection
with the real axis at t = 0, a similar argument as to that above shows that z2(t)
can have at most one transversal intersection with the real axis besides the one
at t = 0. �
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(a) (b)

(c)

Fig. 4. a y2(t1) � 0, b y2(t1) > 0, y2(t2) � 0, c y2(t1) > 0, y2(t2) > 0

4. Appendix

We give a proof of Lemma 2.2 in this section. Given a z ∈ H1([T1, T2],CN ),
we say it is a generalized solution of (1) if (z) := {t ∈ [T1, T2] : z(t) /∈ Ĉ

N } has
measure zero and z(t) is aC2 solution of (1) in [T1, T2]\(z). Assuming t0 ∈ (z),
then there is a subset of indices I ⊂ N, such that

z j (t0) = zk(t0),∀{ j �= k} ⊂ I, z j (t0) �= zk(t0),∀ j ∈ I, ∀k ∈ N\I.
If there is a δ > 0 such that ((t0 − δ, t0 + δ)∩[T1, T2])\{t0} ⊂ [T1, T2]\(z), then
t0 is an isolated (I-cluster) collision moment and z(t0) will be called an isolated
(I-cluster) collision.

Furthermore, let the Lagrange functional and the corresponding action func-
tional of the I-body sub-system be defined as

LI(z, ż) := KI(ż) +UI(z), AI(z, T ) :=
∫ T

0
LI(z, ż) dt,

KI(ż) := 1

2

∑

j∈I
|ż j |2, UI(z) :=

∑

{ j<k}∈I

1

|z j − zk | .

We define T ⊂ {0,±1}N as

T := {
τ = (τ j ) j∈N| τ j �= τk, for some { j �= k} ⊂ I and τl = 0, ∀l ∈ N\I}.

(61)
Then we have the following three local deformation lemmas:
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Lemma 4.1. Given a generalized solution z ∈ H1([T1, T2], (iR)N ), if t0 = T1 is an
isolated I-cluster collision moment, then for ε0 > 0 small enough and τ ∈ T, there
exists a h ∈ H1([t0, t0 + δ],R) and a path zε0 = (zε0j ) j∈N ∈ H1([t0, t0 + δ],CN ),

with zε0j (t) = z j (t) + ε0h(t)τ j , t ∈ [t0, t0 + δ], ∀ j ∈ N, satisfying A(zε0 , t0, t0 +
S) < A(z, t0, t0 + δ) and the following:

(a) h(t) = 1, ∀t ∈ [t0, t0 + δ1], for some 0 < δ1 = δ1(ε0) < δ small enough;
(b) h(t) = 0, ∀t ∈ [t0 + δ2, t0 + δ], for some δ1 < δ2 = δ2(ε0) < δ small enough;
(c) h(t) is decreasing for t ∈ [t0 + δ1, t0 + δ2].
Lemma 4.2. Given a generalized solution z ∈ H1([T1, T2], (iR)N ), if t0 = T2 is
an isolated I-cluster collision moment, then for ε0 > 0 small enough and τ ∈ T,
there exists a h ∈ H1([t0 − δ, t0],R) and a path zε0 = (zε0j ) j∈N ∈ H1([t0 −
δ, t0],CN ), with zε0j (t) = z j (t) + ε0h(t)τi , t ∈ [t0 − δ, t0] and ∀ j ∈ N, satisfying
A(zε0 , t0 − δ, t0) < A(z, t0 − δ, t0) and the following:

(a) h(t) = 1, ∀t ∈ [t0 − δ1, t0], for some 0 < δ1 = δ1(ε0) < δ small enough;
(b) h(t) = 0, ∀t ∈ [t0−δ, t0−δ2], for some δ1 < δ2 = δ2(ε0) < δ small enough;
(c) h(t) is increasing for t ∈ [t0 − δ2, t0 − δ1].
While the above two lemmas can be used on isolated collision moments at the
boundary moments of a fundamental domain, the next one is for the interior mo-
ments.

Lemma 4.3. Givenageneralized solution z ∈ H1([T1, T2], (iR)N ), if t0 ∈ (T1, T2)
is an isolated I-cluster collision moment, then for ε0 > 0 small enough and τ ∈ T,
there exists a h ∈ H1([t0 − δ, t0 + δ],R) and a path zε0 = (zε0j ) j∈N ∈ H1([t0 −
δ, t0 + δ],CN ), with zε0i (t) = zi (t) + iε0h(t)τi , t ∈ [t0 − δ, t0 + δ] and ∀ j ∈ N,
satisfying A(zε0 , t0 − δ, t0 + δ) < A(z, t0 − δ, t0 + δ) and the following:

(a) h(t) = 1, ∀t ∈ [t0−δ1, t0+δ1], for some 0 < δ1 = δ1(ε0) < δ small enough;
(b) h(t) = 0,∀t ∈ [t0−δ, t0−δ2] ∪ [t0+δ2, t0+δ], for some δ1 < δ2 = δ2(ε0) < δ

small enough;
(c) h(t) is increasing for t ∈ [t0 − δ2, t0 − δ1];
(d) h(t) is decreasing for t ∈ [t0 + δ1, t0 + δ2].
Remark 4.1. Although we only consider the planar problem here, for the general
N -body problem in R

d with d � 2, z(t) is a solution with an isolated collision,
satisfying z j (t) ∈ V , ∀t and ∀ j ∈ N, where V is a d−1 dimension linear subspace
of Rd . When we only try to deform the path z(t) along the directions orthogonal
to V , then results similar to those at Lemmas 4.1–4.3 can be proven following the
approach given below.

To prove the above lemmas, we combine a local deformation technique in-
troduced by Montgomery in [21] and a blow-up technique by Terracini (see
[14,27,29]). The main difference is that in our setting the configurations or τ ’s
that serve as the directions of deformation need not be a centered configuration
(see Definition 4.1), while in the above references this condition needs to be satis-
fied. In general, without this condition, the action value of the deformed path may
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not be strictly smaller than the original one. In our setting, however, all the masses
will be traveling on a single vertical line, and we are only making deformations
along directions that are orthogonal to this vertical line, so the desired results will
still hold.

We will only give a proof of Lemma 4.1 (Lemma 4.2 can be proven similarly
after reversing the time parameter, andLemma4.3 follows directly oncewe have the
previous two lemmas). Let z be a generalized solution satisfying all the conditions
given in Lemma 4.1. For simplicity, let’s assume t0 = T1 = 0. Then we have

Definition 4.1. We say thatw is an I-configuration ifw = (w j ) j∈I ∈ C
|I|, and that

is a centered I-configuration if
∑

j∈I w j = 0.

Let ẑ(t) = x̂(t) + i ŷ(t) = 1
|I|

∑
j∈I z j (t) be the center of mass of the I-body

sub-system. Since x j (t) ≡ 0, ∀ j ∈ I, we have the same for x̂(t). As a result, we
define iv(t) = i(v j (t)) j∈I with

v j (t) = y j (t) − ŷ(t), ∀ j ∈ I.

Each iv j (t) represents the relative position of m j , j ∈ I with respect to the center
of mass of the I-body sub-system.

Definition 4.2. For any 0 < λ < 1, we define zλ ∈ H1([0, S/λ],CN ), zλ(t) =
λ− 2

3 z(λt) as the λ-blow-up of z, and vλ ∈ H1([0, S/λ],R|I|), vλ(t) = λ− 2
3 v(λt)

as the λ-blow-up of v.

Letσ(t) = v(t)
|v(t)| be thenormalizationofv(t),where |v(t)| = (∑

j∈I |v j (t)|2
) 1
2 .

It is well known that as {tn} ↘ 0, the limit of iσ(tn), if it exists, is a central con-
figuration of the I-body problem; for a proof of this see [14]. Since the space of
all normalized I-configurations is compact, we can always find that a sequence of
positive numbers {λn} ↘ 0 with the following limits exist:

lim
n→∞ iσ(λn) = i σ̃ = i(σ̃ j ) j∈I, with σ̃ j ∈ R.

Then i σ̃ is a I-central configuration, and i ṽ(t), t ∈ [0,+∞), given below, is a
parabolic homothetic solution associated with i σ̃ :

i ṽ(t) = i(ṽ j (t)) j∈I, where ṽ j (t) = (κt)
2
3 σ̃ j , ∀ j ∈ I, (62)

where κ is a positive constant determined by i σ̃ .
The parabolic homothetic solution i ṽ(t) is related to the isolated collision so-

lution z(t) through the blow-up’s vλn (t) in the following way (for a proof see [14,
(7.4)]):

Proposition 4.1. For any T > 0, the sequences {vλn } and { dvλn

dt } converge to ṽ

and its derivative ˙̃v correspondingly. Furthermore, the convergences are uniform
on [0, T ] and on compact subsets of (0, T ] correspondingly.
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A local deformation lemma of the above parabolic homothetic solution will
be given first. The key to its proof is the following function first introduced by
Montgomery in [21]: for any T > ε > 0, let f ∈ C([0, T ],R) be defined as

f (t) =

⎧
⎪⎨

⎪⎩

1, if t ∈ [0, ε 3
2 ],

1 + (ε
3
2 − t)/ε, if t ∈ [ε 3

2 , ε
3
2 + ε],

0, if t ∈ [ε 3
2 + ε, T ].

(63)

For any τ ∈ T and ε > 0 small enough, define ṽε(t) = (ṽε
j (t)) j∈I as

ṽε
j (t) = i ṽ j (t) + ε f (t)τ j , t ∈ [0,+∞). (64)

Lemma 4.4. For any T > 0, we have thatAI(ṽ
ε, T ) < AI(i ṽ, T ), for ε > 0 small

enough.

Proof. By the definition of ṽε and f (t), we have

AI(ṽ
ε, T ) − AI(i ṽ, T ) =

∫ ε
3
2 +ε

ε
3
2

KI(ṽ
ε) − KI(i ṽ) +

∫ ε
3
2

0
UI(ṽ

ε) −UI(i ṽ)

+
∫ ε

3
2 +ε

ε
3
2

UI(ṽ
ε) −UI(i ṽ)

:= A1 + A2 + A3.

We estimate each A j separately in that which follows.
For A1, notice that | ˙̃vε

j |2 = |ε ḟ τ j |2 + | ˙̃v j |2,∀ j ∈ I. Then, by the definition of
f (t),

A1 = 1

2

∑

j∈I

∫ ε
3
2 +ε

ε
3
2

τ 2j dt = ε

2

∑

j∈I
τ 2j = C1ε. (65)

C1 is a positive constant, as τ j �= 0 for some j ∈ I.

To estimate A2, we introduce a new time parameter s = t
2
3 /ε, then

A2 =
∑

{ j<k}⊂I

∫ ε
3
2

0
|ε(τ j − τk) + i(ṽ j (t) − ṽk(t))|−1 − |ṽ j (t) − ṽk(t)|−1 dt

=
∑

{ j<k}⊂I

∫ ε
3
2

0

(
ε2(τ j − τk)

2 + (κt)
4
3 (σ̃ j − σ̃k)

2)− 1
2 − |(κt) 2

3 (σ̃ j − σ̃k)|−1 dt

= 3ε
1
2

2

∑

{ j<k}⊂I

∫ 1

0

{(
(τ j − τk)

2 + κ
4
3 s2(σ̃ j − σ̃k)

2)− 1
2

− |κ 2
3 s(σ̃ j − σ̃k)|−1}s

1
2 ds

= −C2ε
1
2 .
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The last equality holds for some positive constant C2, as τ j �= τk for some j �= k ∈
I.

For A3, notice that for any { j < k} ⊂ I,

Uj,k(ṽ
ε(t)) −Uj,k(i ṽ(t)) � 0, ∀t ∈ [ε 3

2 , ε
3
2 + ε].

Then A3 � 0. Combining the above estimates, we get, for ε > 0 small enough,

AI(ṽ
ε, T ) − AI(i ṽ, T ) � C1ε − C2ε

1
2 < 0.

�
Lemma 4.5. For any τ ∈ T and g(t) ∈ H1([0, T ],R), where g(t) is C1 in a
neighborhood of T , we define φ = (φ j ) j∈I ∈ H1([0, T ],R|I|) as φ j (t) = g(t)τ j ,
∀t ∈ [0, T ], ∀ j ∈ I , and {ψn ∈ H1([0, T ],C)}n∈Z+ as

ψn(t) =

⎧
⎪⎨

⎪⎩

i ṽ(t) − i ṽλn (t) if t ∈
[
0, T − 1

Nn

]
,

Nn(T − t)
(
i ṽ(t) − i ṽλn (t)

)
if t ∈

[
T − 1

Nn
, T

]
,

(66)

where {Nn} is a sequence of positive integers going to infinity, then

lim
n→∞A(zλn + φ + ψn, T ) − A(zλn , T ) = AI(φ + i ṽ, T ) − AI(i ṽ, T ).

Proof. For when φ(t) is a centered I-configuration, the above result was proved in
[14, (7.9)]. In this proof the condition was used to show that

LI(iv
λ + φ) − LI(iv

λ) = LI(z
λ + φ) − LI(z

λ), ∀λ > 0. (67)

In the following, we show that (67) still holds, even when φ(t) is not centered. It
is enough to demonstrate this for λ = 1; the others are the same.

Recall that iv j (t) = z j (t) − ẑ(t) = iy j (t) − i ŷ(t), ∀ j ∈ I. Hence,

UI(iv(t)) = UI(z), UI(φ(t) + iv(t)) = UI(φ(t) + z(t)), (68)

2KI(ż) =
∑

j∈I
|ż j |2 =

∑

j∈I
|iy j |2 =

∑

j∈I
|i v̇ j + i ˙̂y|2

=
∑

j∈I
|v̇ j |2 + |I|| ˙̂y|2 = 2KI(i v̇) + |I|| ˙̂y|2.

(69)

Meanwhile, by the fact that φ j (t) ∈ R, for any j ∈ I, we have

2KI(z + φ) =
∑

j∈I
|i v̇ j + i ˙̂y + φ̇ j |2 =

∑

j∈I
|i v̇ j + i ŷ|2 +

∑

j∈I
|φ̇ j |2

=
∑

j∈I
|v̇ j |2 +

∑

j∈I
|φ̇ j |2 + |I|| ˙̂y|2 =

∑

j∈I
|i v̇ j + φ̇ j |2 + |I|| ˙̂y|2

= 2KI(i v̇ + φ̇) + |I|| ˙̂y|2.

(70)
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Combining (68), (69) and (70), we get

LI(z + φ) − LI(iv + φ) = LI(z) − LI(iv) = 1

2
|I|| ˙̂y|2.

This establishes (67). The rest of the proof is exactly the same as [14, (7.9)]. We
will not repeat the details here. �

With the above results, we can now give a proof of Lemma 4.1.

Proof (Lemma 4.1). Without loss of generality, we set t0 = 0. Now we choose
T ∈ (0, δ). Letting f (t) and {λn}n∈Z+ ↘ 0 be defined as above, for ε > 0 small,
we set φ(t) = (φ j (t)) j∈I as φ j (t) = ε f (t)τ j , ∀t ∈ [0, T ], ∀ j ∈ I. By Lemma 4.5,
there is a sequence of functions {ψn}n∈Z+ defined by (66) satisfying

lim
n→∞A(zλn + φ + ψn, T ) − A(zλn , T ) = AI(i ṽ + φ, T ) − AI(ṽ, T ).

For each n, define a z̃λn ∈ H1([0, δ/λn],CN ) as follows:

z̃λn (t) =
{
zλn (t) if t ∈ [T, δ/λn],
zλn (t) + φ(t) + ψ(t) if t ∈ [0, T ].

By the definition of z̃λn and Lemma 4.5, we have

lim
n→∞A(z̃λn , δ/λn) − A(zλn , δ/λn) = AI(i ṽ + φ, T ) − AI(i ṽ, T ).

For any j ∈ I, by (64), we have ṽε
j (t) = i ṽ j (t) + ε f (t)τ j = i ṽ j (t) + φ j (t). By

Lemma 4.4,

lim
n→∞A(z̃λn , δ/λn) − A(zλn , δ/λn) = AI(ṽ

ε, T ) − AI(i ṽ, T ) < 0,

so for n large enough,

A(z̃λn , δ/λn) < A(zλn , δ/λn). (71)

Now define z̃n ∈ H1([0, δ],CN ) as z̃n(t) = λ
2
3
n z̃λn (t/λn). By (71), a straight-

forward computation shows that A(z̃n, δ) < A(z, δ), for n large enough. Notice
that for any t ∈ [λnT, δ], we have that z̃n(t) = z(t), and for any t ∈ [0, λnT ],

z̃n(t) = z(t) + λ
2
3
n
(
φ(t/λn) + ψ(t/λn)

) = z(t) + λ
2
3
n ε f (t/λn)τ + λ

2
3
n ψ(t/λn).

By the definitions of f and ψ , for n large enough, z̃n satisfies all of the conditions
that are required for zε0 . This finishes our proof. �

The following result will be needed in our proof of Lemma 2.2:

Lemma 4.6. For any ω ∈ �N , let z ∈ �+
ω ∩ H1(R/NZ, (iR)N ) be a generalized

solution of (1), and if t0 ∈ (0, 1/2) is an isolated I-cluster collision moment, then
there is a z̃ ∈ �+

ω satisfying A(z̃, 1/2) < A(z, 1/2).
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(a) (b)

Fig. 5. Deformation of the path of mk

Proof. If there is a k ∈ I ∩ {0, . . . , n} �= ∅, choose a τ ∈ T satisfying

τk = −1, and τ j = 0, ∀ j ∈ N\{k}.
A new path zε0 ∈ H1([0, 1/2],CN )withA(zε0 , 1/2) < A(z, 1/2) can be obtained
by applying Lemma 4.3 with the above τ . Since only the path of mk was deformed
in a small neighborhood of t0 and t0 ∈ (0, 1/2), zε0 still satisfies the symmetric and
topological constraints, but not the monotone constraints. Because of this we make
a further deformation of zε0 as follows to get a new path z̃ ∈ H1([0, 1/2],CN ):

z̃k(t) =
{
2xε0

k (t0) − xε0
k (t) + iyε0

k (t), ∀t ∈ [0, t0],
zε0k (t), ∀t ∈ [t0, 1/2],

z̃ j (t) =
{
zε0j (t), if j ∈ {k + 1, . . . , N − 1 − k},
zε0j (t) + x̃k(0), if j ∈ N\{k, . . . , N − 1 − k}, ∀t ∈ [0, 1/2].

Figure 5a shows how the path of mk was deformed in the above process. It is
not hard to see that z̃ satisfies the monotone constraints and belongs to �+

ω . Mean-
while, the above deformation preserves the kinetic energy and does not increase
the potential energy, so A(z̃, 1/2) � A(zε0 , 1/2) < A(z, 1/2).

If there is a k ∈ I ∩ {n + 1, . . . , N − 1} �= ∅, then we choose a τ ∈ T with

τk = 1, and τ j = 0, ∀ j ∈ N\{k}.
The rest of the proof is exactly the same as above, except z̃ j , j �= k should be
defined as follows:

z̃ j (t) =
{
zε0j (t), j ∈ N\{N − k, . . . , k},
zε0j (t) + x̃k(0), j ∈ {N − k, . . . , k − 1}, ∀t ∈ [0, 1/2];

see Fig. 5b for an illuminating picture. �
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Now we are ready to prove Lemma 2.2.

Proof (Lemma 2.2). For simplicity, let z = zω. By a contradiction argument, let’s
assume that x0(N/2) − x0(0) = 0. By (18), x0(t) ≡ 0, ∀t ∈ R. This means that
the masses stay on the imaginary axis all the time.

Since z is a minimizer of the action functionalA in �+
ω ∩ H1(R/NZ, (iR)N ),

it is a generalized solution of (1) (see [14]). We will show that such a z has at least
one isolated collision and cannot be a minimizer.

First let’s assume N = 2n. Then z0(0) = zn(0) = 0, and z has an I-cluster
collision with {0, n} ⊂ I, at t = 0. If such a collision is isolated, then choose a
τ ∈ T with

τ0 = −1, τn = 1 and τ j = 0, ∀ j ∈ N\{0, n}. (72)

By Lemma 4.1, there is a zε0 ∈ H1([0, 1/2],CN ) which is a local deformation
of z satisfying A(zε0 , 1/2) < A(z, 1/2) for ε0 > 0 small enough. Since only the
paths of m0 and mn were deformed, by the properties listed in Lemma 4.1, zε0

satisfies the monotone constraints and as a loop is contained in �+
ω . This gives us a

contradiction. If 0 is not an isolated collison moment, then there must be an isolated
collision moment t0 ∈ (0, 1/2) close to 0 (see [14, Section 5]) and a contradiction
can be reached by Lemma 4.6.

For the rest, we assume that N = 2n+1. The precise value ofω1 will be needed
in the what follows. Without loss of generality, let’s assume ω1 = 1. Then

y0(0) = 0, y0(1/2) � 0. (73)

Meanwhile, if ω j = 1, ∀ j ∈ N\{0, 1}, and then

yn(0) � 0, yn(1/2) = 0. (74)

On the other hand, if there is a 1 � j0 � N −2 such thatw j = 1, ∀ j ∈ {1, . . . , j0}
and w j0+1 = −1, then, by (10),

{
y j0/2(0) � 0, y j0/2(1/2) � 0, if j0 is even,

y
N− j0+1

2
(0) � 0, y

N− j0+1
2

(1/2) � 0, if j0 is odd.
(75)

As x j (t) ≡ 0, ∀ j ∈ N, (73), (74) and (75) show that there must be a k ∈ N\{0} and
t0 ∈ [0, 1/2] such that z0(t0) = zk(t0). In other words, there must be a I-cluster
collision at t = t0, with {0, k} ⊂ I.

First, when t0 ∈ (0, 1/2), we have that either t0 or a moment close enough must
be an isolated collision moment; in this case Lemma 4.6 gives us a contradiction.

Hence we only need to consider the cases with t0 ∈ {0, 1/2}. Furthermore we
may always assume that t0 is isolated, as otherwise there is an isolated collision
moment in (0, 1/2) and again Lemma 4.6 gives a contradiction. Depending on the
value of k and t0, four different cases need to be considered.

As with the above, the local deformation lemmas will be used to find a new path
zε0 ∈ H1([0, 1/2],CN ) with A(zε0 , 1/2) < A(z, 1/2) for ε0 > 0 small enough.
However zε0 may not satisfy themonotone constraints, which prevents it frombeing
a member of �+

ω . Fortunately, after some proper modification, if needed, we can
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(a) (b)

Fig. 6. a Case 2, b Case 4

always get a z̃ ∈ �+
ω with A(z̃, 1/2) � A(zε0 , 1/2) < A(z, 1/2), which gives us

a contradiction.
Case 1: k ∈ {1, . . . , n} and t0 = 0. By (8), we have that z0(0) = zk(0) =

zN−k(0), so {0, k, N − k} ⊂ I. Choose a τ ∈ T with

τ0 = −1 and τ j = 0, ∀ j ∈ N\{0}.
By Lemma 4.1, for ε0 > 0 small enough, there is a zε0 ∈ H1([0, 1/2],CN ) which
is a local deformation of z satisfyingA(zε0 , 1/2) < A(z, 1/2). Since only the path
ofm0 is deformed, with the properties listed in Lemma 4.1, we have zε0 ∈ �+

ω . We
set z̃ = zε0 .

Case 2: k ∈ {1, . . . , n} and t0 = 1/2.By (8), z0(1/2)= zk(1/2)= zN−k−1(1/2),
so {0, k, N − k − 1} ⊂ I. Choose a τ ∈ T with

τk = τN−k−1 = 1 and τ j = 0,∀ j ∈ N\{k, N − k − 1}.
By Lemma 4.2, there is a zε0 ∈ H1([0, 1/2],CN ) which is a local deformation of
z satisfying A(zε0 , 1/2) < A(z, 1/2). Here, only the paths of mk and mN−k−1 are
deformed. However xε0

N−k−1(0) < xε0
N−k−1(1/2) violates (19), so we define a new

path z̃(t), t ∈ [0, 1/2] as follows:

z̃ j (t) =

⎧
⎪⎨

⎪⎩

2xε0
j (1/2) − xε0

j (t) + iyε0
j (t), if j = N − k − 1,

zε0j (t) + 2xε0
N−k−1(1/2), if j ∈ {k + 1, . . . , N − k − 2},

zε0j (t), if j ∈ N\{k + 1, . . . , N − k − 1}.

Figure 6a shows how the paths ofmk andmN−k−1 were defomred in the above pro-
cess. By the above definition,A(z̃, 1/2) � A(zε0 , 1/2). Furthermore, this satisfies
the monotone constraints and as a loop is contained in �+

ω .
Case 3: k ∈ {n + 1, . . . , N − 1} and t0 = 0. By (8), z0(0) = zk(0) = zN−k(0),

so {0, k, N −k} ⊂ I. The rest follows from using the same τ and a similar argument
as to that of Case 1.
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Case 4: k ∈ {n + 1, . . . , N − 1} and t0 = 1/2. The rest follows from using the
same τ and a similar argument as to that of Case 2, the only difference being that
z̃(t), t ∈ [0, 1/2], has to be defined as follows (see Fig. 6b):

z̃ j (t) =

⎧
⎪⎨

⎪⎩

2xε0
j (1/2) − xε0

j (t) + iyε0
j (t), if j = k,

zε0j (t) + 2zε0k (1/2), if j ∈ {N − k, . . . , k − 1},
zε0j (t), if j ∈ N\{N − k, . . . , k}.

This finishes our proof for N = 2n + 1, as well as the entire lemma. �
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