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Abstract

The global well-posedness of the Boltzmann equation with initial data of large
amplitude has remained a long-standing open problem. In this paper, by developing
a new LiOL}) N L7, approach, we prove the global existence and uniqueness of
mild solutions to the Boltzmann equation in the whole space or torus for a class
of initial data with bounded velocity-weighted L° norm under some smallness
condition on the L }CLSO norm as well as defect mass, energy and entropy so that
the initial data allow large amplitude oscillations. Both the hard and soft potentials
with angular cut-off are considered, and the large time behavior of solutions in the
L7, norm with explicit rates of convergence are also studied.
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1. Introduction

In this paper, we consider the Boltzmann equation
Fr4+v- Vi F=Q(F, F), (1.1)

where F(t, x, v) > 0 is the density distribution function for the gas particles with
position x € © = R3 or T? and velocity v € R? at time r > 0. The Boltzmann
collision term Q(F, F) on the right is defined in terms of the bilinear form

O(Fy, F>) E/ / B —u,0)F () F>,(v") dwdu
]R3 SZ

—/ / B —u,0)F1(u)F>(v)dwdu
R3 Js?
= 04 (F1, F2) — O_(F1, F2), (1.2)

where the relationship between the post-collison velocity (v', u’) of two particles
with the pre-collision velocity (v, u) is given by

W=u+[v—u) olo, V=v—[v-—u- oo,

for @ € S?, which can be determined by conservation laws of momentum and
energy:
WA =uto WP =l o+ ol

The Boltzmann collision kernel B = B(v — u, 8) in (1.2) depends only on |v — u|
and 0 with cos @ = (v —u) - w/|v — u|. Throughout this paper, we consider both the
hard and soft potentials under the Grad’s angular cut-off assumption, for instance,

B(v—u,0)=|v—ul"b®), (1.3)
with
—3 <y <1, 0<b@®) <C|cosb|

for a postive constant C > 0. We consider the Boltzmann equation (1.1) with the
following initial data
F(t, x,v)|i=0 = Fo(x, v). (1.4)

To look for a solution F (¢, x, v) to the Cauchy problem (1.1) and (1.4), let us
take a reference global Maxwellian

1 lv|?
n(v) = ——exp <——) ,
Q)2 2

which is normalized to have unit density, zero bulk velocity and unit temperature.
Formally, as introduced in [15], F (¢, x, v) satisfies the conservations laws of defect
mass, momentum, energy:

/ (F(t,x,v) — pu(v))dvdx = / / (Fo(x, v) — u(v))dvdx := My,
Q JR3 Q JR3 (L5)
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f / v(F(t,x,v) — u(v))dvdx = / / v(Fo(x, v) — uw(v))dvdx := Jo,
Q JR3 Q JR3

(1.6)
/ / [ (F(t, x,v) — p()dvdx = / / [v[*(Fo(x, v) — w(v))dvdx := Eo,
Q JR3 Q JR3
(1.7)
as well as the inequality of defect entropy
// !F(l,x,v)lnF(t,x,v)—,u(v)lnu(v)}dvdx
Q JR3
5// {FolnFo—,u(v)ln;L(v)}dvdx. (1.8)
Q JR3

By defining

E(F(1)) :=// {F(t,x,v)lnF(t,x,v)—ulnu}dvdx
Q JR3

3 1
—InQ2m) — 1| M, —Ey,
+[2 n(2m) } 0+2 0

it follows by a direct calculation that
E(F@) =0

for all + > 0. Note, in particular, that £(Fp) > 0 holds true for any function
Fo(x,v) = 0.

The Boltzmann equation is a fundamental model in the collisional kinetic the-
ory, and there is an enormous literature on its well-posedness theories, cf. [5] and
[27] and the references therein. Among these works we mention some only in the
spatially inhomogeneous framework; for the spatially homogenous Boltzmann e-
quation, interested readers may refer to CARLEMAN [4] as well as the recent work
[21] and references therein. For general initial data in L*° framework, the local
existence and uniqueness was firstly investigated by KANIEL and SHINBROT [18]
and the global existence was later obtained by ILLNER and SHINBROT [17] under
additional smallness assumption on velocity weighted L* norm. It is well known
that for general initial data with finite mass, energy and entropy, the global existence
of renormalized solutions was proved by DIPERNA and Lions [7]; the uniqueness
of such solutions, however, is unknown. Moreover, the convergence of a class of
large amplitude solutions toward the global Maxwellian with an explicit almost
exponential rate in large time was also obtained by DESVILLETTES and VILLANI
[8] conditionally under some assumptions on smoothness and polynomial moment
bounds of the solutions. The result has been recently improved by GUALDANI et al.
[12] to derive a sharp exponential time rate by developing an abstract semigroup
theory for linear operators which are non-symmetric in some Banach spaces.

On the other hand, in the perturbation framework, i.e., for the case when the so-
lution is sufficiently close to a global Maxwellian in some sense, due to the extensive
study of the linearized operator (GRAD [11], ELL1s and PiNsky [9], and Baranger
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and MouHor [1], for instance), the well-posedness theory of the Boltzmann equa-
tion is indeed well established in different kinds of settings since the pioneering
work by Ukar [24]. For instance, the energy method in smooth Sobolev spaces was
developed in Guo [13] and Liu et al. [20]. Another L>NL>® approach was found
by Guo [14,15] even for treating the Boltzmann equation on a general bounded
domain. Note that for the hard sphere model in the torus case, a non-symmetric
energy method was also developed in [12] to obtain the asymptotic stability of so-
lutions to the global Maxwellian with a sharp exponential time rate for initial data
Fy(x, v) such that Fp — u is small enough in L})Lio((l + |v))¥) with some k > 2;
see also the recent work [3] for an investigation of the Boltzmann equation on the
bounded domain in a similar functional setting. We also refer the interested reader
to [16] for the issue of the macroscopic regularity of Boltzmann equation.

We remark that in those works in the perturbation framework mentioned above,
initial data are required to have small amplitude around the global Maxwellian. To
the best of our knowledge, the global existence and uniqueness problem of solutions
to the Boltzmann equation with initial data of large amplitude still remains open.
The purpose of this paper is to develop a L;oL,l) N L, method for the well-
posedness theory of the Boltzmann equation when initial data are allowed to have
large amplitude. Precisely speaking, we prove the global existence and uniqueness
of solutions to the Boltzmann equation in the whole space or torus when

Fo— e L ((1+ w)Pu='7?)
with some 8 > max{3, 3 4 y} satisfying an additional smallness condition that

EF) + 1 Fo — il L1 oo (112

is small enough. In particular, initial data can have large amplitude oscillations.
Note that the result is valid for the full range of both the soft and hard potentials,
i.e., =3 < y < 1. Moreover, in the torus case, we also show that the solutions tend
to the global Maxwellian with exponential convergence rates for the hard potentials
and with algebraical rate for the soft potentials.

Now we begin to formulate the main results of the paper. As in [15], we define
a weight function

wp(v) == (1+ )%,

and look for solutions in the form
F(ta X, U) - M(U)

v ()

The Boltzmann equation (1.1) is then rewritten as

Jotv-Vof + Lf =T(f. ). (1.9)

where the linearised term is given by

ft, x,v) =

Lf =v)f = Kf = =—={ 0. VEN + WRf W],

1
7l



Global Well-Posedness of the Boltzmann Equation 379

with K := K, — K defined (cf. [8]) as

(K1 f)(v) = /R 3 /S B — 1, 0/ (0) () f ) doda,
(K2 f)(v) = fR 3 L B 1, 0)/E0u) f () doxdu,
+ /R 3 /S B — 1, 0)/RGR () f ) dodu,

v(v) = / / B(w —u, ) ) dodu ~ (1 + |v])Y,
R3 J§?

and the nonlinear term is given by

1

T(f, f) = ﬁQ(ﬂf, Vief)
1 1

= ﬁQ+(ﬂf, ViLf) — ﬁQf(«/ﬁf, Vief)

= F+(fv f)_r—(ff f)

Then, from (1.9), the mild form of the Boltzmann equation is given by
t
fx0) =e "V fo(x — vt v) + / e UK f) (s, x — vt — ), v)ds
0

t
+ / e—V(v)(f—S)F(f, s, x —v —s),v)ds (1.10)
0

fort >0,x € QvelR.
The first result of this paper is stated as follows:

Theorem 1.1. (Global existence) Let Q@ = T> or R3. For given > max{3, 3+y},
M>1, suppose the initial data Fy satisfies Fo(x, v) = n(v)++/ @) fo(x,v) =0
and |Jwg follLe < M. Then there is a small constant gy > 0 depending ony, B, M
such that if

E(F) + I follpi e = €o. (1.11)
the Boltzmann equation (1.1), (1.3), (1.4) has a global unique mild solution
F(t,x,v) = pn@) + /) f(, x,v) > 0 satisfying (1.5)—(1.8) and

lwg f (1)L < C1M?,

where Cy depends only on y, . Moreover, if the initial data fy is continuous in
(x,v) € Q x R3, then the solution f(t, x,v) is continuous in [0, 00) X 2 X R3.

Remark 1.2. It should be pointed out that initial data satisfying the smallness con-
dition (1.11) are allowed to have large amplitude oscillations in spatial variable.
For instance, one may take
o
Fotx, v) = poCop = 20 e (0 ) e @ xR,
(2m)2
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with po(x) > 0, pp € L, po— 1 € L}C and polnpg — po+1 € L)lc. Then, it is
straightforward to verify that (1.11) holds if || o0In oo — po + L1 + oo — 1|11
is small. Even though ||ppIn po — po + 1|1 + oo — 1|1 is requixred to be smalf,
initial data are allowed to have large amplitude oscillations.

Remark 1.3. From the proof of Theorem 1.1 later on, by the same argument, the
smallness condition (1.11) can be relaxed to

E(Fp)+  sup / e ") fo(x — v, v)|dv < ep,
R3

(t,x)€[t],00) X 2
where #; := (8Ca[1 + lwg follLe1)~ " is defined in Proposition 2.1 later on.

Remark 1.4. Under the assumptions of Theorem 1.1, and further let B suitably
large. Let the initial data fo(x, v) € CH(2xR3) and [|[ws V, follzc+llws Vo foll 2o
2 2

< 400, then the Boltzmann solution f(¢, x, v) obtained in Theorem 1.1 satisfies
ft,x,v) e C'(Ry x  x R?) and

lwg Va f @Ol + llws Vo f D> =< exp{C®)},

where C(t) > 0 is a continuous function of ¢ > 0, and depends only on M and
lwg Vi follLe + lwg Vy foll L. It should be pointed out that the above regularity
restilt can be proved by using similar arguments as in the proof of Proposition 2.1
in the appendix and Gronwall inequality.

It follows immediately from Theorem 1.1 that even if initial density po(x) :=
fR3 Fy(x, v)dv contains vacuum, then the macroscopic density function

p(t, x) ::/ F(t,x,v)dv
R3

must have uniformly positive lower bound in finite time. Indeed, one has

Corollary 1.5. (Positive lower bound of density) Under the same conditions of
Theorem 1.1, there exists a positive time Ty > 0 such that

3
ot =11 =| [ 170 = ] < 3,

forallt > Ty and x € Q.

Moreover, for the global solutions obtained in Theorem 1.1 with Q = T3, one

can further obtain the explicit rates of convergence of solutions in L, . Therefore, it

shows that even if initial data fy(x, v) could be large in L;‘fv, the solution f (¢, x, v)

must tend to zero as time goes to infinity. In fact, one has
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Theorem 1.6. (Decay estimate for hard potentials) Ler Q@ = T3, 0 < y < 1, and
B > max{3,3 + y}. Assume (Mo, Jo, Eg) = (0,0,0), and g9 > O sufficiently
small, then there exists a positive constant oy > 0 such that the solution f(t, x, v)
obtained in Theorem 1.1 satisfies

lwg f ()| < Cae™, (1.12)

for all t > 0, where Cy>0isa positive constant depending only on the initial
data.

Theorem 1.7. (Decay estimate for soft potentials) Let @ = T3, —3 < y < 0, and
B > max{%, 4 4 |y|}. Let § be any given positive constant such that § € (0, %).
Assume (Mo, Jo, Eo) = (0, 0,0), and g9 > 0 is sufficiently small, then the solution
f(t, x,v) obtained in Theorem 1.1 satisfies

LF Ol < G314+~ "1+, (1.13)

forall t > 0, where C;>0isa positive constant depending only on the initial
data.

Now we explain the strategy of the proof of the above main results. As mentioned
before, the only global existence of large-data solutions to the Boltzmann equation
is due to DIPERNA AND LionNs [7] by the weak compactness argument, but the
uniqueness of these renormalized solutions is completely open due to the lack
of L°° a priori estimates. Indeed, it is difficult to establish the global L* bound
for the solutions of Boltzmann equations due to the nonlinear term I'(f, f)(z). In
those aforementioned references [14,15,19,22,25], one usually has to estimate the
nonlinear term in the following way:

lwg (T (f, £ < Co)|lwg f(0)]|3 0,

so that the smallness assumption on the L°°-norm is necessarily required.

To remove the above smallness assumption on the L°°-norm, we need a new
idea to control the nonlinear term I'(f, f). For this, we firstly establish a new
estimate for the nonlinear term (see Lemma 3.1 below), i.e., for § > l,

s x| < o O ([ 1 wian)’,

for some 0 < a < 1. Secondly, under the condition (1.11), we observe that
fR3 | f(¢, x, u)|du could be small after some positive time, even if it could be ini-
tially large due to the hyperbolicity of the Boltzmann equation. This observation
is the key point of this paper to control the nonlinear term I'(f, f). In such way,
through careful analysis one can finally obtain the following uniform estimate

sup [lwg f ()]l < CM?,
0<s<t
under smallness of || f(¢)]| Ler! uniformly for all # > #; with some #; > 0. In the
whole proof, we shall use only the smallness of £(Fp) + ||f0||L;Lﬁc so that initial
data are allowed to have large amplitude oscillations.
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The paper is organized as follows. In Section 2, we introduce the local existence
of solutions to the Boltzmann equation and list some properties on the kernel of
linearized operator, and the detailed proofs can be found in appendix. In Section 3,
we develop the L°L) N L°, estimate to prove the main Theorem 1.1. The time-
decay estimates of the Boltzmann equation on torus are established in Section 4.

Notations. Throughout this paper, C denotes a generic positive constant which
may depend on y, B and vary from line to line. C,, Cp, ... denote the generic
positive constants depending on a, b, ..., respectively, which also may vary from
line to line. || - ||,2 denotes the standard LZ(Q X Ri)-norm, and || - ||z~ denotes
the L (2 x Rf))-norm.

2. Preliminaries

As mentioned before, KANIEL-SHINBROT [18] investigated the local existence
and uniqueness of solutions to the Boltzmann equation for large initial data around
vacuum. Though, to prove Theorem 1.1, we need to figure out more quantitative
properties of the local existence regarding the lifespan of the local L°° solution in
terms of the L° bound of initial data. Therefore, we would give a representation of
the local existence and uniqueness of solutions to the Boltzmann equation applicable
for the global L™ estimates in our own setting. The proof of the following result
will be given in the appendix.

Proposition 2.1. (Local existence) Let @ = T2 or R?, =3 < y < 1, 8 > 3,
Fo(x,v) = n() + /() folx,v) > 0and |wfyllLe < o0, then there exists a
positive time

1= BCall + llwp foll L=~ >0, @.1)

such that the Boltzmann equation (1.1), (1.3), (1.4) has a unique solution F(t, x, v)

= u) + /) f(t, x,v) > 0 satisfying

sup flwg f (D)l < 2[lwg follLoe,

0<t<t

where the positive constant C4 > 1 depending only on y, B. Moreover, the con-
servations of defect mass, momentum, energy (1.5)—(1.7) as well as the additional
defect entropy inequality (1.8) hold. Finally, if initial data fy are continuous, then
the solution f(t, x, v) is continuous in [0, t1] X Q X R3.

For later use, we list the following result on the operator K, whose proof will be
given in the appendix. Interested readers may also refer to [2,10] for more details.

Lemma 2.2. For —3 < y < 1, the following Grad’s estimates hold

K1f(v)=/ ki(uv,m) f(m)dn, Kz f(v) =/ ka(v, ) f(n) dv,
R3 R3
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where ki (v, n) and k> (v, n) satisfy

_w? _mi?
0<ki(w,n) =cilv—n|Ye e 4,

and

N S e el
~leoai®

Sy e s (2.2)

3—y
[v—mn|2

0<ky(v,m) =

where ¢ > 0 is a given constant, and C,, is a constant depending only on y.

Remark 2.3. Note that the upper bound in (2.2) is not optimal, but it is enough for
the use of the later proof. Moreover, we will not make any effort on the optimal
estimates related to K in order to show Theorem 1.1.

From Lemma 2.2, one has that

k= [ kwmsmar= [ {awn - kwn]rma,
R3 R3

with

21,122
w2 _ o c, =y —lel=ll =

k(v,m| <cilv—nlYe” #e” + + ——5—e § e S . (23)
lv—n|2"

By the same calculations as in [2,10], it is straightforward to check that for « > 0,

/ ‘ (v, "‘( ; dn < C,(1+u)~". 2.4)

In order to deal with difficulties in the case of the soft potentials, as in [23] we
introduce a smooth cutoff function 0 < x,, < 1 with O < m < 1 such that

xm(s) =1 fors <m, xu(s)=0 fors >2m.

Then we define

(ng)(v) == /}‘Q} Lz B(U —Uu, G)Xm(lv - I/l|) M(”)M(M/)f(v/) d(,()du
+ /R} /S B — 1, 6) (10 — )y @) £ () dood

B /Rs /Sz B —u, 0) xm (v — ul)y/n()p(u) f (1) dodu
= K3'f () = K" f (v),

and
K¢ =K —K™. (2.5)

The following result on K and K¢ can be regarded as a refined version of [23,
Lemma 1], and its proof can be found in the appendix:
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Lemma 2.4. Let —3 < y < 1, then it holds that

R
I(K™g)(v)] < Cm*e™ 10 | g|| 1, (2.6)

and

(K°g)(v) = / 1, mg(n) di.
R3

Here the kernel [ (v, n) satisfies that for 0 < a < 1,

1o, < — S0 ! o2 nBebbf
’ o € c v—
v, 7N lv_n|1+<l;2a>(1fy) (1 + |v| + [p)hed=»
_P
+C|U—n|ye e A, (27)

where C,, is a constant depending only on y. It is worth to point out that C, is
uniformin a € [0, 1].

Since the constant C,, in (2.7) does not depend on a € [0, 1], we have the
following estimates on /(v, n) from Lemma 2.4 by takinga = 1 and a = 0,
respectively:

Lemma 2.5. Let —3 < y < 1, both the following two bounds on [(l, v) hold:

C,m’=! R [ W2 i
[[(v, n)| < | a _J;_ N e” W0 e 16 4 Clu— n|Ve’Te*nT’
v—r v n
(2.8)
and
C =y _lwP=inl WZ i
. < —25—e™ W e 1P 4 Clu—plfe” e . (29)
lv—mnl7"

Moreover, it holds that

.woz(v) y—1 y=2 _# y—1 v(v)
[ w2 an < cpmr = 1oy 20,6 <Cm T

and

Iv]

/ ‘Z(U n - w“(“))dn<c A+t + e <+ )l @1l
R wem T T Y -7 T

where a > 0 is an arbitrary positive constant.

Remark 2.6. Indeed, the estimate (2.9) and (2.11) are the same as the ones in (2.3)
and (2.4). On the other hand, the estimates (2.8) and (2.10) imply that one can get
more decay with respect to v, but at the cost of growth with respect to the parameter
%. All these properties will be used later.

Motivated by Guo [15], we have the following lemma which will be used later.
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Lemma 2.7. [15] Let F (¢, x, v) satisfy (1.5), (1.7) and the additional defect entropy
inequality (1.8), then it holds that

|F(t, x,v) — n()?
/Q/Rs 1(0) T F(t,x,0)— ()| < (v)ydvdx

1
+// —|F(, x,v) — w) U F@ x,0)—p)=n@)ydvdx
Q R3 4

3 1
< / / Foln Fp — p1n pdvdx + [— In2m) — 1i| My + = Ey = E(Fp).
Q JR3 2 2
(2.12)

Proof. By Taylor expansion, we have
1
meFm—Mmu=ﬂ+hwﬂﬂﬂ—m+5?F®—Mﬁ

where F is between F(t) and . Noting 1 +1Inpu = —[% In(2m7) — 1] — %|v|2, we
have

1
—|F (1) — pn|*dvdx
fsz/Rs 2F H

= / / [F(#)In F(t) — wln pn]dvdx
Q JR3

+ |:§1n(27t) — 1:|/ / [F(t) — n]dvdx
2 Q JR3

+1f/’wﬁnn—mmm
2QR3

3 1
< / [Foln Fy — pln pu]dvdx + |:— In(2m) — 1] My+ —Eg, (2.13)
Q JR3 2 2

where we have used (1.5), (1.7) and (1.8) in the last inequality. We note that |F —
w| > pyields that F > 2 or F = 0, thus we have

|Fj,U~| -

1
F —2

which, together with (2.13), yields (2.12). Therefore, the proof of this lemma is
completed. O

3. Global Estimates

In order to prove the global existence of solutions to the Boltzmann equation,
it suffices to get uniform estimates on solutions since one has already obtained in
Proposition 2.1 the local existence of unique solutions to the Boltzmann equation
with possibly large initial data. In this section, we devote ourselves to establish the
global uniform estimate for the obtained solutions to the Boltzmann equation.
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3.1. Weighted L°°-Estimate
Define
h(t,x,v) == wg) f(t,x,v).
Multiplying (1.9) by wg(v), one gets that
hi +v-Vih +v(@W)h — Kygh =Ty, (h, h), 3.1

where

ol = wﬁ(v)(Kwiﬁ)(”) = (”)(meiﬁ)(w + wﬂ<v>(KCwi,s><v)
= Kyh+ Ky h,

and

h h
Pyy (hy h) = wg ()l <— —)

wg Wg
h h h h
= wp()T'4 (—, —) — wp(n)I'— (—, —)
wp wg wg Wwg
=wpWIL(f. f) = wpT(f. /) —wpT_(£. ). (B2)

Then the mild solution of (3.1) can be written as

t
h(t, x,v) =e "W ho(x — vt, v) + / e V=) (Kgﬁh) (s,x —v(t —s),v)ds
0
1
+/ e V=s) (K;ﬂh) (s,x —v(t —s),v)ds
0
13
+/ e VWU, (h, b)) (s, x — v(t —5), V) ds. 3.3)
0

Firstly, we give estimates on the nonlinear term I'(f, f).
Lemma 3.1. Let —3 < y < 1. For o > 0, it holds that

4p+1

p—1
We@T=(f. )5, . ) = Cpr@) lwa f )l - IF ST - (/R F s, ywldu)

4p+1

aptl p-1
a4 (F, £ 3. < Cprlwa fOl -y F1 L ([ 176, vm01au) 7
(3.4)

where p > 1 is defined in (3.6).
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Proof. It is noted that

we (VT (f, (s, y,v)| < Cllwe f(s)lL /R} v —ul” V@) f (s, y, u)ldu.

(3.9)
To estimate the integration term on the RHS of (3.5), we choose
3+y
p=l4—"—for -3 <y <1, (3.6)
49 —-v)
which yields that
9 -3
l<p<o. pei= >9, pl2s 3 py>-3 (37
8 p—1 2

Then it follows from (3.5), (3.7) and Holder inequality that

wa -/, )G, 7,v)]

1

1 p 1—
< Cllwaf(s)lle(/Rg v —ul?” /uwydu)” (fR VR, y 7 Tdu) T

< Cplua fO s ( [ 176307 ) T

4p+1 r—1

< Gl fOILF @I ([ 176 y0kdu) (33)
Next, we consider the gain term which needs much more care. We note that
|* < |u'|> + v,
which yields
1 1
either =|v|*> < |u)? or =|v|* < |V/|%.
2 2
Hence one obtains that

W (V)

V(v)
Swa(v)/ f B —u, 0)y/ u(u)
R3 JS§?

+w(x(v)/ / B(U—M,Q)V M(M)‘f(s, y’u/)f(s7 Vs v/)‘l{llu|2<|v/‘2}dudw

R3 Js2 Tlv2=<

sc [ [ Bo-wovuw
R3 JS2

+ C‘/H;% /S\Z B(U — U, Q)W)f(s, y, u/)wa(v/)f(s, v, U/)‘duda)
=hL+Db. (3.9)

w4 (f. )6, 3, 0)| = | 2= 04 (VIS s, 3, 0)|

F(s, v, u')f(s,y, U/)‘I[%|U|2§|H'\2]dudw

dudow

we (") (s, y,u’) f(s, y,v)
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To estimate 11, as in [2,10], we use the change of variables

I=u—v, z,=[z-0lw, 7. =2—2,, 1=v+72z,. (3.10)
Then it holds that
W =v+z, V=v+2z, (3.11)
and
B(v—u,0) < Clzul(jz| + lz2D" " (3.12)

Hence it follows from (3.6), (3.7), (3.10) and (3.11) that
I = C/ / B(w —u,0)y/u(u)
R3 J§?
1

< Clhwf e ( [ 1o =l Visturau)”

P 1-1

([, [Vawlso. s aua)

R3 JS§2

_‘U+Z”+ZJ_|2 . 1—%
< Cplua f Ol ( [ | [T 162017 d0)

we W) f(s, y, 1)) f(s,y,v)|dudw

-1

1 Intzg 2 N >
= el ( [ e "1 f s,y I P Tdz )
il

In —v|?

1+ |n|)‘4dn)§(1—}))

5
In —v|2
p—1

5

([ a+imise. vl an)
R3

< Gyl S &)l |

4p+1 p=1

< Cyv()lwa f$)lL= 11+ Inl)lf"ﬁ’%f(S)llL?(/W £, yomldn) ¥

4p+1 p=1
5

< Cprlwa f Oy SN2 ([ 176 yomian) 7

where in the last inequality, we have used the fact that % < % On the other
hand, it is noted that by a rotation, one obtains the interchange of v" and u’, and
then I, can be changed to a form similar to /1. Hence, for />, one can also obtain

the same estimate as above. Thus one can get that

wa(v)r+(f’ f)(s’ ) U)
p—1

4p+1 r-1
< Cpvlwa f @) lelwy F©I,Z (/R3|f<s,y, midn) . (3.13)

Then (3.4) follows from (3.8) and (3.13). The proof of Lemma 3.1 is
completed. O
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Lemma 3.2. Let 8 > 3 and —3 < y < 1, then it holds that

sup ()l = Ciflhollis + ol + VEFD) + ECFo)

0<s<t

v s oL ([ 176y min) 7

11<s<t, yeQ2

(3.14)

where the positive constant C1 > 1 depends only on y, B, the lifespan t| > 0 is
defined in (2.1), and p > 1 is defined in (3.6).

Proof. It follows from (3.3) that

t
|h(t, x,v)| 567V(U)t||h0||L00 +/ efv(v)(tfs)
0

t
+/ e—v(v)(t—x)

0

t
+/ V=)

0

=e "W hollpo + Iy + J2 + J5.

(Kgﬂh)(s,x —v(t —s), v)‘ds

(K,f)ﬁh)(s,x —v(t —s), v)‘ds

ds

(T (h, ) (s, x —v(t —s),v)

Using (2.6), one gets that

t
Iy = / e V) (1—5)
0

t MZ
< Cm? / ey ()™ T | £(5) | Loeds
0

wﬁ(v)(Kmf>(s,x —v(t —s), v)‘ds

vz
<Cm3re 50 sup £ ()]l (3.15)

0<s<t

For J3, it follows from (3.2) and (3.4) that for § > 1/2,

t
Jy = / e YOI, (h, h) (s, x — v(t — 5), v)|ds
0

9p+1 p-1
<C s {Ilh(s)llLié’ (/le(s,y,n)ldn) } (3.16)

0<s<t, yeQ

Let [y, (v, v’) be the corresponding kernel associated with K¢ 5 then we have
that

wg(v)
wg (V)
which together with (2.10) and (2.11), yield that

/ / y—1 U(v) /
/R3 [ (0. )| dv" < €y ™ L [y (0,0

lwﬁ (Ua U/) = l(v, v/)

dv' < C, (1+p)~ .
(3.17)
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For J,, denoting X := x — v(t — 5), we note that
t
b < / e VWi=9) / s (v, V)1 (s, %, v)|dv'ds.
0 R3
To bound the above term, similar as in [15,26], we use (3.3) again to get that

t
B < ol / e =) / layy (0, 0 ds
0 R3

t
+ f e V=) / 1l (v, )|
0 R3
N
e~V (K{Z'ﬂh> (z,% — V(s — 1), v')|drdv'ds
e V=D / [PACRS]
R3

N
e T[Ty (h, W) (r. & = v'(s — 7). v))|drdvds

13
0 [ [y 0,0, 01,

N
e VD iz, 5 — v/ (s — 1), v")|drdv/dv”ds

X

+

S S—— 35—

X

+

X

= Jo1 + Joo + Joz + Jo4. (3.13)

It follows from (3.16) and (3.17) that, for g > %,

9p+1 p—1
p L

D+ = C {Ilholle + s (2 ([ 176 mien) )}

0<s<t, yeQ

t
x/ e*““’)(’*”/ Iy (v, v))|d'ds
0 R3

9p+1

Cm? =" kol L hZT/ ,,dp;”].
< Cm {| ol + s (11 ([ £y midn) )}

0<s<t, yeQ

For J, using (3.15), one has that

t
1 /
Ty < Cm®™Y sup || £ (s)l|zo / e / Ly (0, V)™ dv'ds
0 R3

0<s<t
3
< Cm>*7 sup || f(s)lLe,
0<s<t
where we have used the fact that

v\z

1,12 Ul
/ s (v, V) ]e™ 2" dy' < Ce™ 0,
R3

which follows from (2.9) and similar arguments as in [10].
We now concentrate on the last term J>4 on the RHS of (3.18). As in [15], we
divide it into the following several cases.
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Case 1. For |v| > N, it follows from (3.17) that

Ll

which yields immediately that

v(v)

v<CmN25

t
Jo4 < G sup ()| L f e V(=) / s (v, V)]
0 R3

0<s<t

/
X /S e71}(1)/)(S7r)&drdv/ds
0 14+ v/)?

Cm

< —5 sup [[A(s)]lLee.
N2 O<s<t

Case 2. For either |[v| < N, |v/| > 2N or [v/| < 2N, |v”| > 3N. It is noted that

we have either [v — v'| > N or [v/ —v”| > N, and either one of the following is

valid

/2

2
Ly (0, 0)] < Ce™ 30 |1, (v, v)e 20

2 o (3.19)
g 0, V)] = Ce™ 50 |1, w)e 307 .
From (2.8), a direct calculation shows that
=o' v(v)
Ly, (v, v)e 20 ’dv’fC —_—
/Ra‘“”’( ) "1 Ju])?
W2 V(U/)
Ly, (), " ye 20 ‘d "< 3.20
/R_s‘wﬂ(” Ve vE e 320

Then it follows from (3.19)—(3.20) that

t
/ e—v(U)(f—S)H/ +/ }|lwﬂ (U, U/)lwﬁ (U/, v//)|
0 [v|<N,|v'|=2N [V/|<2N,|v"|>3N

N
x f e VW=D p(r, ¥ — /(s — 1), v")|drdv/dv"ds
0

N2
< Cpue” 20 sup |h(s)]|Lee.

0<s<t

Case3.|v| < N, |V/| < 2N, |v”| < 3N. This is the last remaining case. It is noted
that

t
[eee | gy (02 0y 0, 0]
0 [v/|<2N,|v"|<3N

)
X / e WIS, ¥ — V(s — 1), v")|drdv/dv"ds
0

t
S/ e*”(“)(”)/ s (v, V) (0, 07
0 [/|<2N,[v"|<3N
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N
X / e VW=D iz ¥ — /(s — 1), v")|drdv/dv"ds
S—A

t
+ / e VW= f g (0, 0y 0, 0]
0 [v'|<2N,|v"|<3N

S—A
X / e VW=D p(r, ¥ — /(s — 1), v”)|drdv/dv" ds. (3.21)
0
Using (3.17), we can bound the first term on the RHS of (3.21) by

t
Cph sup ||h(s)|| oo / e "Wy ()ds < Cph sup |h(s)|e.  (3.22)
0

0<s<t 0<s<t

Now we estimate the second term on the RHS of (3.21). Since lwﬁ (v, v’) has

1

a possible singularity of .

Iy (v, v") such that

we choose a smooth compact support function

C
dv' < N—"; (3.23)

sup / [ (P, 0) = I (p, )
[p|<3N J|V'|<3N

Noting

L (0, 0y (05 0") = (R (0, 0) = Iy (0, 0) Yy (0, 07

+ (lwﬁ W, ") =N, v”))lzv(v, V) iy (v, V)In (', 0",
(3.24)

and then using (3.23) and (3.24), we can bound the second term on the RHS of
(3.21) by

C t S—A ,
~7 sup ||h(5)||L°°/ e_”(v)(’_s)/ e VW=D qrds
N 0 0

0<s<t

X 1 sup / lws (W', v")|dv" + sup/ Iy (v, v)|dv
[V'|<2N J|v"|<3N [v|[<N Jv'|<2N

t
+ / ) / I (0, V) (' )]
0 [/|<2N, [ |<3N

S—A
X / e V6D p(r, & — v/ (s — 1), v")|drdv'dv"ds
0

Cim
< — h o)
= S 1A ()L

O<s<t

t s—A
+ CNm/ / e~ N (t=5)g—cN(s—T)
“Jo Jo

X / |h(t, ¥ — V(s — 1), v”)|dv'dv”dzds, (3.25)
[V'[<2N,[v"|<3N
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where we have used the facts that [y (v, v'){x (v’, v”) is bounded and
v(v) > cy for |v| < N, and v(v) > cy for |v/| < 2N.

It follows from (2.12) and Holder inequality that

/ |h(t, X — V(s — 1), v")|dv'dv”
[v/|<2N, [v"|<3N

= CN,m/
[V'|<2N,]v"|<3N

|F (T, X —v/(S—‘L'), v”)_ﬂ(v//ﬂl dv'dv”
W {|F(r.3—v'(s—1),v")—p(")|<p(v)}dV dV

+Chm f (e, 5 —v/(s — 1), 0") — n (")
[v/|<2N,|v"|<3N

X (| F (2,50 (s—0) ") =) = (ryydv/dv”

3 7 7”12

1+ (s —1)2 [F(T,y,v") —u@")|
< CN,m 3 17
(s —1)2 a J<3n u@”)

1
2

x1I {|F(r,y,v”)—u(v”nsmw)}dv”dy}

T -1

) / / |F(t.y.0") = @) IF .y0m-pezpenydv”dy
[v"|<3N

<cCw. mux/é’(% 4+ Cnm O D ey, (3.26)
(s — ‘[)2 (s — T)

where we have made a change of variable y = X — v/(s — 7). From (3.26), we can
bound the second term on the RHS of (3.25) as follows:

CNm/ f N (1=5) g—cn(s—1)

/ |h(t, ¥ — V(s — 1), v”)|dv'dv"drds
[V/|<2N,Jv"|<3N

< Cnmh " 2EF) + Cymh3E(Fy). (3.27)

Combining (3.27), (3.25), (3.22) and (3.21), one gets that

t
f e V(=) / s (U, V) s (0, 0]
0 |[Vv/|<2N,|v"|<3N

N
X / e VD p(r, § — v/ (s — 1), v")|drdv'dv"ds
0
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1 3
< Cp (/\ + N) sup [1A(s) |2 + Cnmr ™ 2/E(Fo) + Cn mr > E(F).

O<s<t

Therefore, collecting all the above estimates, we have established that for any
A > 0andlarge N > 1,

C
sup [h(5)ll = Cunllhol +C (™7 + Cur+ =) - sup ()]l

O<s=<t 0<s<t

9p+1 p=1
+Cnsup {nh(s)n;.z (fR3|f<s,y,n>|dn)5”}

0<s<t, yeQ

+ Cnmh "2 E(Fo) + Cn A 3E(Fo).

Noting 3 + y > 0, first choosing m small, then A small, and finally letting N be

sufficiently large so that C <m3+y + CpA + %”) < % one obtains that for 8 > %

sup [h(5)llz < C{llhollz +VEF) + E(Fo) |

0<s<t

9157+1 ps;l
+Csup Ao, ([ 16 mian) T L

0<s<t, yeQ
(3.28)
Using Proposition 2.1, one has that for 8 > 3,
9p+1 g1
sup {nh(s)nLié’ (/ /G5, v, mldn) 7 }
0<s<t], yeQ R3
<C sup [[h(s)7 < Cllholl7e- (3.29)

0<s<nh

Substituting (3.29) into (3.28), one gets that for § > 3,

sup (1)l = Cifllholl + lhol o + VEFD) +E(Fo)

0<s<t

9157+1 Psi’l
v s HoL ([ 176ymian) 7

11 <s<t, yeQ

which yields immediately (3.14), where the positive constant C; depends only on
y, B. Thus the proof of Lemma 3.2 is completed. O

3.2. L°L} Estimate

In this subsection, we will concentrate on the estimate of

/ | f(t, x,v)|dv.
]R3

If E(Fo) + || foll, s is small, due to the hyperbolicity of the Boltzmann equation
one should be able to show that ng | (¢, x, v)|dvis small forz > ¢1, even though it
could be initially large, i.e., fR3 | fo(x, v)|dv is large. Indeed, we have the following
lemma which plays a key role in this paper.
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Lemma 3.3. Let —3 < y < 1 and B > max{3, 3 + y}, then it holds that

f | f(t, x,v)|dv < f e fo(x — v, v)|dv
R3 R3

+ CyATEVE(Fy) + CyaTE(Fy)
+C@pw+c[k+l+ : D

N = NB-3
x sup {1 + 1) 13}
0<s<t
_3 - 1+
+ AT (VEF) +EF) " sup )l

0<s<t

(3.30)

where .. > 0,m > 0and N > 1 are to be chosen later. Recall that p > 1 is defined
in (3.6).

Proof. It follows from (1.10) and (2.5) that
/ | f(¢, x,v)|dv
R3
< / 0| fox — vt, v)ldu
/ f e " OEI| (KM £y (5. x — vt —s), v)‘dvds
0 JR3

+/ / e W= (K"f)(s,x—v(t—s),v)’dvds
0 JR3

+/ f e PO P (s, x — vt —5), v)‘dvds
0 JR3

/ e "W fo(x — vt, v)|dv + Hy + H» + Hj. (3.31)
For Hj, it follows from (2.6) that

Hi < Cm™ sup £ ()l / / -9~ 4 dyds

O<s<t

< Cm> sup || f(5)]| L. (3.32)

O<s<t

For H,, we notice that

H _f / —v()(t—s)
t—x JR3
/ f —v(@)(t—s) / L(v, V) f(s,x —v(t —s),v)dv
R3

= Hy + Hp. (3.33)

/ I, V) f(s,x —v( —s), v)dV
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It is straightforward to obtain that for g > 2,

0<s<t

1
Ha < swp o)l [ [ O w00 avduds
t—x JR3 R},

< Ch sup |A(s)llzee,

0<s<t

where we have used (3.17) in the last inequality. For the term H>;, one notices that

t—A
sz :/ / e—v(v)(t—s)
0 [v|=N
t—A
n f / eV @)E=s)
0 [v|<N
t—A
n / / eV @)E=s)
0 [v|<N

= Hy1 + Hyo + Hoojs.

dvds

/ I, V) f(s,x —v(t —s),v)dv
R3,

dvds

/ I, V) f(s,x —v(t —s),v)dv
[V'[=2N

dvds

/ I, V) f(s,x —v(t —s), v)dV
[v'|<2N

It follows from (3.17) and (3.20) that for 8 > 2,

t—A
Hpi < sup [[h(s)]|Le - f f e‘““”"”wﬁ(vrl) / Ly (v, v")dv’|duds
0 [v|>N Ri,

0<s<t

t—A
< Cp sup ||h(s)|lze f / e W) (1 4 )72 Pu(v)duds
0<s<t 0 [v|=N
" sup [|h(s)llpe < Cn sup [[7(s)| Lo
- NA-I 0<s<t T N <<t '

and

_N?
Hyp <e” 20 sup |[A(s)]lLe
0<s<t

t—XA 72
lv=v']
x/ / e*”(”)(“s)wﬁ(v)*l‘/ Ly (v, v)e 20~ dv'|dvds
0 [v|<N [v/|[>2N

N2
< Cpe” 20 sup [lA(s)]ree.
0<s<t

Since 1y, (v, v’) has a possible singularity of ﬁ, as before we choose the

smooth compact support function Iy (v, v') satisfying (3.23). Then it follows from
(3.26) and (3.23) that

=
Hyz < / / e W)y ()71
0 lv|<N

X / |l (v, V") = Iy (v, V)] - [h(s, x — v(t = 5), v")|dv'dvds
[v'|<2N

=
+ / / e W= / ‘ZN(U, V)h(s, x —v(t —s),v")|dv'dvds
0 [v|<N [v'|<2N
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C
< == sup [lh(s)|lL>
0<s<t
t—A
+CN/ efCN(f*S)/ )h(s,x—v(t—s),v/) dv’dvds
0 [v|<N,|v|<2N
3
< W’" sup I7(5) | Lo + CyA~ I/ E(Fo) + CnA > E(Fy). (3.34)
<s<t

Hence, combining (3.33)—(3.34), one obtains that for § > 2

1
H, < C, <A + N) sup |[h(s)|lze + CNA’%,/E(FO) + CN)C3€(F0). (3.35)
0<s<t

Next we estimate H3. Firstly, we note that

t W2
Hi 5/ / e*“<”)(’*s)/ / Bv—u,0)e 't
0 JR3 R3 JS?

X ‘f(s, x—v(t—s),u)f(s,x —v(—ys), v)‘dudwdvds

/ / —v@)= “/ f Bo—u, o)+
R3 R3 J§?
X

= H31 + H3;.

(3.36)
For H3p, one has that for 8 > max{3,3 + y},

t
Hy < c/ / e @y ()wg () IA(s) |13 e dvds
t—x JR3

t—Ah
+C / / / I (s) | poce™ M=)
0 R3 JR3

Uz
X wﬂ(v)_1|v — u|ye_% |f(s,x —v( —s),u)|dudvds

l—)\
< Ch sup ||h(s)||%oc+C/ f f +f f }{~-~}dudvds
0<s<t v|>N JR3 R3 Jju|>N
t—XA
+C/ / / -+ }dudvds
|v|<N lu|<N

=1
C<A+ = 3> sup ||h(s)||Loo+C/ / / - - }dudvds.
N 0<s<t [l<N Jjul<N

(3.37)

To estimate the last term on the RHS of above, for p > 1 defined in (3.6), it follows
from the Holder inequality that
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t—A
/ f / - }dudvds
\v|<N lu|<N

sc/ &N | (s) | ¢ f
0 [v|<N Ju|<N

w,g(v)_1 v — u|”e_uT|f(s, x —v(t —s), u)|dudvds

t—A
< Cy / &N () |
0

1—1
X (/ / |f(S,X—v(t—s),u)|Pl‘dudv> pds
[v|<N J|u|<N

1

-1 1
< Cva (VER) + EFp) T sup A,

O<s<t

where in the last inequality we have used the following fact that
/ | f(s,x —v( —s),u)|dudv
[v|<N,|u|<3N

<Cy M /EFo) +CNM5(FO)
(t—s)z (t—s)3

Hence, from (3.37)—(3.38), one obtains, for 8 > max{3, 3 + y}, that

1
H3y <C A+ —— h(s)12
31 < ( Nﬂ—3>os<l£,” Iz
1 1

1 L
+ v (VEFR) +EFy) 7 sup 1)l

0<s<t

For Hsj, we notice, for 8 > max{3, 3 + y}, that

(3.38)

(3.39)

(3.40)

t |u|2
H3 < C/ / / e "Wy — yYwp(v)le™ F dudvds - sup [|A(s)]|7
t—» JR3 JR3

O<s<t

1—A
+/ //fB(v—u,@)e—”@)(’—”wﬁ(v)—l
0 R3 JR3 J§?

2
e ()l h(s. x — v(t — s), ') |dudwdvds
< Ch sup [h(s)[7

0<s<t

t—A
+/ {/ f /+/ / /}{---}duda)dvds
0 [v|=N Rg S? R% lu|>N JS2?
t—A
+/ / f {---}dudwdvds
0 <N Ju|<N J§?
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1 2
C<A+ = 3) sup [|h(s)]I7 00

O<s<t

t—A
+ f / / {---}dudwdvds.
0 [v|<N Jju]<N JS2

To estimate the last term on the RHS of above, we utilize the changing of variables
(3.10), (3.11) and (3.12) to obtain that

t—A
/ f / {---}dudwdvds
0 \v|<N lu|<N JS?
<C / e~ N ()| oo / f wp(v)~!
0 lv|<N J|z]<2N JS§?

|zl w

(Iz| + |Z|||)17y

s 1 |ZJ_|VTI \n+zl\2
<C / e N h(s) |l oo / / wp(v)~ 7
0 [vI=N JIn|<3N Jz1 In— v|

X ‘h(s, x —v(t —s), n)‘dzLdndvds

‘h(s X —v(t—s) v+ zu)‘dzdwdvds

1=h 1+1
<y / N (s |57
0

X (/ / |f(s,x—v(t—s),n)|dndv) ds
[vI=N JIn|<3N

1

-1 1
< Cna (VER) + ERp) "+ sup KO (341)

0<s<t

where we have used (3.39) in the last inequality and recall that p > 1 is defined
in (3.6). Hence, combining (3.36) and (3.40)—(3.41), one obtains that for § >
max{3,3 + y},

1 2
Hy = C(%+ 55 ) sup 1)}

OSSS[
-3 =5 145
+Cha <\/5(Fo)+5(Fo)) Csup |hG)l <. (342)

0<s<t

Submitting (3.32), (3.35) and (3.42) into (3.31), one proves (3.30) for 8 > max{3, 3
+ y}. Hence the proof of Lemma 3.3 is completed. O

3.3. Global Existence and Uniqueness
Now we are in a position to give the

Proof of Theorem 1.1. Let 8 > max{3, 3 4 y}. In terms of (3.14), we make the
a priori assumption
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Ih@D)llL% <240 = 2C, {21\712 + JEF) + 5(F0)}, (3.43)

where the positive constant C; > 1 is defined in Lemma 3.2. Then it follows from
Lemma 3.2 and the a priori assumption (3.43) that

p—1

9p+1 p
Ih©ll < Ao+ C124g) - sup /R fGyoldn) T (344)

H<s<t, yeQ

To estimate the second term on the RHS of (3.44), we first notice that for @ = R3
andt > 11,

/R ot — vt v)ldv < 17 folly e < CMP N follyre. (345)

ForQ =T and ¢ > t1, it holds that

/ O fo G — vt v)ldo < ( / ) [ folx — vt v)ldv
R3 \v|>N lv|<N

C
< Clws foll} ||fo||L.Lm + 5ol
1

-3 _
cM? ||f0||L|Loo +CM foll e, (3:46)

l l
where we have chosen N = lwg fO”Loc ||f0||L1 Lo Then it follows from Lemma

3.3, (3.45), (3.46) and the a priori assumption (3 43) that

sup / [f(, y, v)|dv
f<s<t,yeR3 JR3

CM}HfOIILILoo for Q@ = R3 z
= + CNATIVE(F) + CyAT E(F))

-3
CMF¥| \fo||L1Lx+CM3||fo||L1Lw for @ = T°

m3ty +cm[

A T}ea0? +cni (VETD + )T @an' .

(3.47)
Note 8 > max{3,3 + y} and p > 1. One can firstly choose A sufficiently small,
then N > 1 large enough, and finally let £(Fp) + || foll LiLe < €0 with gp small
depending only on B, y and M, such that

p*l

e 3
4C1A,™" - sup (le(Syn)ldn) =7 (3.48)

H<s<t, yeQ

which together with (3.44), yield immediately that
7
1a @)L = 7 Ao, (3.49)

for all t+ > 0. Hence we have closed the a priori assumption (3.43). Therefore the
proof of Theorem 1.1 is completed. O



Global Well-Posedness of the Boltzmann Equation 401

3.4. Positive Lower Bound of Density

At the end of this section, we give the proof of Corollary 1.5. Noting C; > 1
and Ag > 1, it follows from (3.48) that for r > 11,

(3.50)

B w

f f (1, v)ldv <
R3

Then, using (3.50), it is straightforward to get that

AW

lo(t, x) = 1| =

’

f [F(r, x,v) — p(v)]dv
R3

5/ £ (. x, v)ldv <
]R3

which yields immediately that initial vacuum of the density function should disap-
pear for ¢t > Tj := t1. Therefore the proof of Corollary 1.5 is completed. O

4. Time-Decay Estimates in Torus

In this section, we consider the time-decay estimates for the global solution-
s obtained in Theorem 1.1. Let Q = T3, we consider the following linearized
Boltzmann equation

G+v-Vil +vw)e —Kg =0, ¢(0,x,v)=272(x,v). 4.1)
Denoting the semigroup of (4.1) by S(#), it holds that
(1) = St)¢o.
Let ¢ (¢, x, v) be the solution of the linearized equation (4.1), and denote
&, x,v) =wg(V)(, x,v).
Then it follows from (4.1) that
& +v-Vié +v()E — Kysé =0, &0, x,v) =&(x, v). 4.2)

For later use, we denote the semigroup of (4.2) by U (¢), and write the solution as

£(1) = U(t)éo.

4.1. Case of Hard Potentials

In this subsection, we consider the decay estimate for hard potentials on torus.
The following proposition is a starting point for further geting the exponential decay
in L* norm.

Proposition 4.1. [19] Let0 <y <1, Q = TS, Let ¢(t, x, v) be any solution to the
linearized Boltzmann equation (4.1) and satisfies the conservations of mass (1.5),
momentum (1.6) and energy (1.7) with (Mo, Jo, Eg) = (0,0,0) € R x R3 x R.
Then there exists positive constants ¢ > 0 and C > 0 such that
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IS oll2 = 1E@ll2 < Ce™ g0l 2.
forallt > 0.

Utilizing Proposition 4.1, we can obtain the following L* decay estimate for
the linearized Boltzmann equation.

Lemmad4.2. Let0 <y <1, Q2 = T3, Let ¢(t, x, v) be any solution to the linear
Boltzmann equation (4.1) and satisfies the conservations of mass (1.5), momentum
(1.6) and energy (1.7) with (Mo, Jo, Eg) = (0,0,0) € R x R3 x R. Then there
exists positive constants 0 < o1 < o and C > 0 such that

IU (&0l = IIE@ e < Ce ™ lwplollLe for t = 0. (4.3)

Proof. Notice that via Lemma 19 in [14], we only need to prove that there exist
02 > 0, T1 > 0 and Cr, such that

T
IET) NI~ < e 2 &L~ + Cry /o £ (s)lz2ds.
The rest of the proof is similar to Kim [19]; see also Guo [14]. Indeed, our case is

simpler than [14,19] since the the characteristic lines in case without forcing are
straight lines. Here we omit the details for brevity of presentations. 0O

Based on the above preparations, we utilize Lemma 4.2 to prove Theorem 1.6.

Proof of Theorem 1.6. Using the semigroup U (¢) for the weighted linearized
Boltzmann equation (4.2), by the Duhamel Principle, we have the solution for-
mula for the nonlinear weighted Boltzmann equation (3.1) as

t
h(t) = U(t)ho + /0 U — s)[w,gr'(f, f)(s)}ds.
Then it follows from (4.3) that
t
Il = ol + | [ va={wri pola] @
To bound the last term on the RHS of (4.4), we notice that
' t
[ ve=wsri nelas = [0 e, nelas
0 0
13 t
+ / / SR o [U(s1 — Sywpl' (/. f)(s)]dslds. (4.5)
0 Js
For the first term on the RHS of (4.5), it follows from (3.4) that

| /Ot e s IT (S, 19 s

p—1

t 9157+1 r—1
< C/ e—v(v)(t—s)v(v)”h(s)||Lo§ sup (/ | f(s,y, ;7)|d,7) s
0 R3

yeQ
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'
SC/ ef"(”)(tﬂ)v(v)ef%s
0

. apt 2ol
X sup {[ez'fnh(s)nm]-||h<s>||Liéi ([ 176 v mian) }d

0<s<t,yeQ

4p+1

=1
<ce™ ' aup {[eﬁs”h(s)”m].||h(s)||ng (/R}|f<s,y,n>|dn)5”}.

0<s<t,yeQ

(4.6)

To estimate the second term on the RHS of (4.5), as in [14] we define a new
semigroup U (¢) such that it solves

{at Tv-V, 4+ v(v) — K,,;}{U(t)fzo} =0, U)o = ho,

wg(v)

N

with w(v) = A direct calculation shows that

V14020 @),

also solves the original weighted hnearlzed Boltzmann equation (4.2). Then the
o0
uniqueness in L°° class with ho = m yields that

U(r)ho_\/1+|v|2U(r>[W}

Here we point out that (4.3) also holds for semigroup U (1). Then it follows from
(4.3) and (3.4) that

t t t t
[ [ ek e = susrcs pofasas < [ [ e
0 Js
up @ OWT P01 = 5)—=L—T (£, i) |av
| f o (619 == |

5/ / g0l =sD) f% kws (v, V)V 1+ [v'[2dv/
U(s1 — S)—
”{ / |v|2

f/ —v(t=s1) g—01(51-5)

(NG|, dnds

WW N, dsids
v

9p+1
<c// R U] (e G (Y YIE
ST+ Rl
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p—1

X sup (fw 1f(s,y, n)ldn) 7 dsyds

yeQ

Sl

. 4pi1 =
<ced sup {[eﬂﬂh(s)umo]||h(s)||LZ£ (A;{zlf(s,y,n)ldn) }

0<s<t,yeQ

4.7)

Combining (4.4)—(4.6) and (4.7) and using (3.49), one obtains that

sup {e () |

0<s<t
Ilg
<Clholi=+¢ swp|[eFIhoii]
0<s<t,yeQ

p—1

4p+l p=1
x Ih(s)l, % (/R £ (s, y.mldn) 7 ,

= {lihollz= + sup 1)1

0<s<l

9 Eiass =
+C s [eF o] sp T, L ( [ 176 midn)

1<s<t 1<s<t,yeQ

< Gl +Cy sup [ (o) 1 |

1<s<t

4p+1 1757*1
X sup {uh(s)nL;" (fR3|f(s,y,n)|dn) } (4.8)

1<s<t,yeQ

Then, using (3.47) and similar arguments as in (3.48), if g is small enough, one
can obtain that

p—1

4p+l e 1
C2  sup {Ilh(s)IILié’ (/R3|f(s,y,n)ldn) }55. “.9)

1<s<t,yeQ
Substituting (4.9) into (4.8), one gets that
e T () e < 2CaM*, Y1 > 0. (4.10)

Finally, choosing

[oa] ~ ~ 4
0'027 and C, =2C,M",

we then obtain (1.12) from (4.10). Therefore the proof of Theorem 1.6 is
completed. O
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4.2. Case of Soft Potentials

In this subsection, we consider the decay estimates for soft potentials on torus.
Firstly, we define the Fourier transformation as

C(t, k,v) = / e e (r, x, v)dx, keZ.
Q

Then the have the following estimate, whose proof can be found in [6,22].

Proposition 4.3. [6] Let —3 < y < 0, andletd > 0, r > 0 be given constants. Let
¢(t, x, v) be any solution to the linearized Boltzmann equation (4.1) and satisfies the
conservations of mass (1.5), momentum (1.6) and energy (1.7) with (Mg, Jo, Eo) =
(0,0,0) e R x R3 x R. Then the following estimate holds

VYO Bk, < CA+ 07 IV bk I,

forallt > 0 and k € 73, where ry. denotes the arbitrary constant which is strictly
greater than r.

Using Proposition 4.3 and Plancherel theorem, we have the following L? decay
estimate.

Lemma 4.4. Under the assumptions of Proposition 4.3, the following estimate
holds

IV /S0002 = IV cIZ < A+ I T l2,, @1
forallt > 0.

We have the following L°°-decay estimate for the solutions to the linearized
Boltzmann equation.

Lemma 4.5. Under the assumptions of Proposition 4.3, it holds that
1S®)¢ollLe = 1EM)ILe < CA+ 1) [[wagyirolle, (4.12)
for any givenr € (0, 1 + ﬁ).

Proof. It is noted that

t
c(t,x,v) = e "Wl (x — vt v) + / e VW= Kmr(s x —v(t —s), v)ds
0

t
+ / efv(v)(tfs)ch-(s, x —v(t —s), v)ds, (4.13)
0
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which yields immediately that
t
2@, x,v)| < e (x — vt, )| +f e "WEIK" (s, x — v(t — 5), v)|ds
0
t
+/ e VWU KCr (s, x — v(t — 5), v)|ds
0

=L+ Ly+ L3,

where m > 0 is a small constant to be chosen later.
Firstly, it is easy to get that

Ly =CA+n"lv 7" ollres. (4.14)

It follows from (2.6) that

! v
Ly < Cm?* / e =5~ 12 (5) [ oods
0

v? !
<Ot [t =9 e s
0
V|2 !
< Cm3+ye_% sup {(1 +s)r||g‘(s)||Loo} / A+1—5)""""0+s5)"ds
0<s<t 0
v2
< Cm3+ye_%(1 +0)7" sup 1(1+ S)r||§(s)||Loo}. 4.15)

O<s<t

To bound L3, we use (4.13) again to get that

t
Ly < / e =9 / (v, )[e ™Y go(x — v(t — 5) — v's, v)|ds
0 R3,

t N
+ [[em oo [ puif [
0 R, 0

x |K™¢(z,x — v(t —s) — v/ (s — 1), v/)|dt]dv’ds

t s
+/ e—v(v)(t—s)/ / (v, v/)l(v/, v//)|f e—v(v/)(s—r)
0 R}, JR?, 0

x |C(x,x —v(t —s) — V' (s — 1), v")|drdv"dv'ds
= L3 + L3 + L33. (4.16)

For L3y, it follows from (2.10) that

t
Lyt < Clv" ol / W) (] 4 )T / (v, v)ldv'ds
0 R

U/

! 2
< Culv " G0l f e W (1 45y p(w) FiTds
0
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t 2
< Cullv™"¢0ll L / (I+1—5)""F(1+5)7"ds
0
<Cn(1+0)7"Iv "¢l Loe.

Using (2.6) and (2.11), one can obtain that

d N
Ly = Cm””/ e*”(”(f*”/ (v, v’)|/ eV =)
0 R}, 0

2
e” 10 [|1¢(7) |l pedTdu’ds

t
<cn” sup {1+ 07 le@li | [ +1-07

0<t<t

S
x/ A4+s—1)""7"(1 +1)"drds
0

<Cm*’(1+0)7" sup {(l—i—t)’llg“(r)”Loo}. 4.17)

0o<t<t
Now we concentrate on the term L33. As before, we divide it into several cases.
Case 1. For |v| > N, then it follows from (2.10) that

v(v)

t
Ly < Cy sup {(1+r)r||§(f)||Lm}f0 e—v(v)(l—s)(l +|U|)2

0<t<t

s 2
X / (14+s— 1—)_1_\7\(1 + 1) "dtds
0

<m o {<1+r>’|| @ } (A=) B

= o 2, A s
s

x/ (+s—1)" "B+ 1) "drds, (4.18)
0

where § > 0 is a small positive constant such that

2 2
0<r§1+ﬁ—8and1+——8>1. 4.19)
14 14

It is noted that such § > 0 must exist since r < 1 + Wl‘ Then, from (4.19) and a
direct calculation, one can get that

t Cm2ys [f 2 . B
/(l—i—t—s) 7 /(1+s—t) Mi(l+1)"drds <CA+1)7",
0 0
which together with (4.18), yield that

Cm —r r
Ly = o407 swp fa+0 k@l @20

O<tr<t
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Case 2. For either |[v| < N, |v/| > 2N or [v/| < 2N, |v”| > 3N. It is noted that
we have either [v — v'| > N or |[v' — v”| > N. Then it follows from (3.20) that

V2 t L =y ,
Ly <e” @ sup {<1+r>’||c<r)||Loo} / e VW= / 3 yz(v,v)eT’dv
0 R3,

O<t<t

N , |U/_U//|2
% / e—v(v)(s—r)(l —i—l’)_r/ ‘l(v’, U”)CT‘dUNdeS
0 R},

< Cue™ (407 sup {1+ D 1@l . @21)

0<t<t

Case 3. |v] < N, |V/| < 2N, |v”| < 3N. This is the last remaining case. Firstly,
we note that

1
e | 1w W )
0 [v/|<2N,[v"|<3N

S
X / e 6T e (g x —v(t — ) — V(s — 1), v")|drdv/dv"ds
0

t
< [feroe | 1w I )
0 [v/|<2N,[v"|<3N

N
X f e VW=D ez x — vt —5) — V(s — 1), v")|drdv'dv"ds
S—A

t
+/ efv(v)(tfs)'/ |l(v, v/)l(v/, U//)|
0 [v'|<2N,|v"|<3N

S—A
X / e D e (g x —v(t —5) — V(s — 1), v")|drdv/dv"ds.  (4.22)
0
We can bound the first term on the RHS of (4.22) by

t
CmA sup {(l+r)’||§(t)||Loo}/0 e~ V)(t=s)

0<t<t

X / [L(v, V)LV, v")|(1 +s) "dv'dv"ds
[/|<2N, |[v"| <3N

2
v(v) (L +5)7ds

t
r o —v(v)(t—s)
= o sup {1+ D16l }/O e T

0<t<t

= G407 swp {1+ 1@ .

O<t<t

Now we shall estimate the second term on the RHS of (4.22). Since [(v, V)
has singularity of [v — v'| 71, as before, we can choose a smooth compact support
function [y (v, v") such that

sup/ ‘l(p,v/)—iN(p,v/) dv' < C,, N¥5. (4.23)
[p|<3N J]V'[<3N
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Noting

(v, IO, V") = (l(v, V) = Iy (v, v/))l(v/, V")

+ (100" = In @) )T (0, 0) + Iy (0, V)N 0,
(4.24)

and then using (2.11), (4.23) and (4.24), we can bound the second term on the RHS
of (4.22) by

t
Cul? 5 sup {1+ D)@l [ eV 0
0

0<t<t

X / e N6 () 4 1) " deds
0

+/ e eN"(= Y)/‘ Iy (v, V)N ', 0"
0 [V/|<2N,|v"|<3N

% / —cNV(s—r)|§-(.,:7 x—v(t—s)— U/(S — 1), v”)|dtdv/dv"ds
0

<2040 s [+ 07 1@l

O<s<t

+Cy /t / e—cNV(l—s)e—ch(s—r)
\m
0 Jo

X / ez, x —v(t —s) — V' (s — 1), v")|dv'dv"dzds,
[v/|<2N,|v"|<3N

where we have used the facts that [y (v, v')Iy (v/, v) is bounded and
v(v) > cNY for |v| < N, and v(v') > cN? for |v/| < 2N.

As in Section 4, using the changing of variables, one obtains that

CN / / 7LNV(I s) 7LNV(.S 7)
m

/ [C(t,x —v(t —s) — V(s — 1), v")|dv/dv"drds
[v/|<2N,|v"|<3N

t s—A
<CN.ma / / e~ N 1=9)e=eN" =D |1 £ ()| ;2d1
0 JO

= Crama(1 407 swp {0+ D@2} = Cym(+ D7 IV 5ol

0<t<t

< Cnmp (L 4+ D)7 lwayyyrollzee, (4.25)

where we have used (4.11) with d = 0. Thus, combining (4.22)—(4.25), one gets
that
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t
/ efv(v)(tfs)/ |l(v, v/)l(v/, v//)|
0 [v/|[<2N,[v"|<3N

N
X / e VW=D ez x — vt —s) — V(s — 1), v")|drdv/dv"ds
0

<cm(x+ )(1+t) " sup {(1+r)r||§(t)||Loo}

0<t=<t

+ Cnma(L+ 07" - lwagpyprdolizes. (4.26)

Therefore, it follows from (4.20), (4.21) and (4.26) that

1 1 —r r
L33 = Cn (H <+ NSM) (07 sup {040 10 e~

+ Cnmp (1 +07" - lwagyyrdolliee,

where, together with (4.14), (4.15) and (4.16)—(4.17), it yields that

sup {14+ )7 ) 1 |

0<s<t

<clw +c, <x+ : +Nay)} sup { (14915l

<t<t

+ CN,m,A Il w2+|y|r§0“L°° .

Note —3 < y < 0. By first choosing m small, then A small, and finally letting N
sufficiently large so that C {m3+y + C(X + % + W)} < %, one obtains that

IE@llLe < CA+ 1) Nlwatpyirolicee,

for all > 0. This yields immediately (4.12). Thus we complete the proof of this
lemma. O

Based on the above preparations, we now use Lemma 4.5 to give the

Proof of Theorem 1.7. Using the semigroup S(7) for the linearized Boltzmann
equation (4.1), by the Duhamel Principle, we have the solution formula for the
nonlinear Boltzmann equation (1.9) as

t
10 =s0f+ [ sa-o{re.nolas

romnow on,wetaker :=1+4+ =~ —0 > 1 4+ — wit eing an arbitary sma
F k 1 |§| §>1 \;| ith § being bitary small

positive constant such that 0 < § < % Then it follows from (4.12) that
IfOllLee < CA+r) " lwagyr foll oo

! —
+C/0 At =97 [z [T @] ds
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= CA+r)" watpy folle

t
+c/ (I4+1—2s)"
0

e [P NG| s @2

To estimate the last term on the RHS of (4.27), we note, from (3.4), that

A+ )P Gox = v =), )]

4p+1 p—1

< Cllwaf®)llzllwy f &) 2 sup(f £, yomldn) 7
R3

yeQ

o s S L B 0)
< Cllwg f ) oo IF Dl oo Nlwp f () oo ™ I1F S oo

p—1

xsup ([ 176y mlan)
yeQ R3

,% 415';1( ,ﬁ) %"—4[57“% 1?5;1
< IOl s I sup ([ 1765 mlan)
yeQ R3
4p+1 17571
< CIF O lupf 1, sup ([ 176y mian) 7 (4.28)
yeQ3 R3

where we have used %(1 — 41—/3) —% >0dueto 8 > % and1 < p < %.Thenit

follows from (4.28) that

t
C/(l-l—t—s)*r
0

t
< C/ I+t—8)"A+s)""
0

A+ pp* e Hol| | ds

L

4p+1 p=1

X sup [(1+S)’Ilf(S)Ile]IIwﬁf(S)IIL?(/R}If(s,y,n)ldn) s

0<s<t,yeQ

<c+n~"

4p+1 1

x sup [+ IF Ol [lwp f @1, (/RSIf(s,y,n)ldn)S”

0<s<t,yeQ

which together with (3.49) and (4.27), yield that for § > max{%, 4+ |yvl},

sup {1+ 1)1 |

0<s<t
< Cllwg foll >

4ap+1 p—1

p—1
+ sup [[(1+s)’uf(s)nmo]||w,af<s>||Li.f ([ 16 mian) }

0<s<t,yeQ
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= M +Cs sup [ 49 1)1 |

I<s<t

p—1

4p+1 p—1!
X sup :nwﬂf(s)an ( fR 1F s,y mldn) } (4.29)

1<s<t,yeQ

Then, using (3.47) and similar arguments as in (3.48), if g is small enough, one
can obtain that

4§+1 1’57*1 1
i s oL ([ o) T =30 @30
1<s<t,yeQ R3 2
Substituting (4.30) into (4.29), one proves that for g > max{%, 4+ |yl},
I f(Olle <2C3M*(14+1)"", Vi =>0. (4.31)
Taking
63 = 2C3]l_44,

then we obtain (1.13) from (4.31). Therefore the proof of Theorem 1.7 is
completed. O
5. Appendix

5.1. Estimates on K

In this subsection, we give the proof of some lemmas in Section 2 for complete-
ness.

Proof of Lemma 2.2. The estimate on k; (v, n) follows from a direct calculation.
We will mainly focus on K7 (v, n). It follows from [2,10] that

() R i Iz +¢0 12
0= koo = e Fe W [ By -l e e,
lv—nl IR2
(5.1)
and B*(|n — v|, |z1|) satisfies
ln — vl
B*(In — vl lz]) = C —. (5.2)

v

(In = vl>+1z11%) 2

where

z=u—v, zy=[z-0lo, z1=2—2z,, n=v+z,.
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Then, substituting (5.2) into (5.1), one obtains that

12 _1n1212 y—1 2
_‘U*’)‘z _ vl =Inl~] 5 _‘ZJ_+§J_|
k= —=—e™ e ot | (- 4lauf) TeT T da
lv—n R2
c T [ e yol e P
S———5¢ § e Sl lzo 27 e” 2 dzo
lv—n|72" R?
C S SO 1 e
< 14 e~ 8 e 8-l
- 3y
lv—n|—2

Thus the proof of Lemma 2.2 is completed. O

Proof Lemma 2.4. Firstly, it is straightforward to prove (2.6) due to the fact that

12

_lu? _w?
& < Ce 8 for |[v—u|<2m.

(S

Next, we shall prove (2.7). It is noted that

01

v2
(ki — KMy (. m) = v — g7 [1 = (v —ule™ 5 e~ %

<clv—n|'e” Fe 4. (5.3)
From [10], we have that
ky(v,m) < ¢ e’ﬁe’%m"z[ ! — e*%d@_,
In —vl R? (|n_v|z+|Zl|2)Ty
(5.4)
where
z=u—v, z,=[z-0lw, z1=2—2,, n=v+zg, (5.5)
¢ = %(v +n)=v+ %ZH, & =1¢ - w]o. (5.6)
Denote
Xm(s) =1 — xu(s) fors > 0.
Then, it follows from (5.4) that for 0 <a < 1,
(ko — K5') (v, )
PRI RS T
~n =l |
x /R o <\/|n — v+ |u|2) (In—vP+122P) T e 5 0,

1 _ In—vl?
g

=R

ezl
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3 1
X/ Xom (x/ln—v|2+lzﬂ2> =
R2

4

(1 In—vP + 12 P)" 2

—_ 2 2 L2
y (I+1n—vf*+ |zol )l Lo -l dz
(In—vP+1zP)*

1 _ln—v?
3 e

<C _%|§\||2

TR

-~ 1
xf Fon (\/|n—v|2+|u|2> —
R2

(14 Iy — 0P +12LP)"

V

(+|n—v|2+|u|)

2
PR | _ML'HL'
(1) Tt o=

T “lz1 7 dzy
(m?>+1m—v2+1zL12)" 2
a(y=1) .,
m — |’7 | |;-H|2
I — vl
(1-a) %5t 2
x_/ T ey
Al
1-y
B (14— vl2 + 1z 2)" 2
a(y—1) o
< m — e In=v|* | 1|§u|2
In — vt 2 4=
—1
/ L —zy |00 P
X (]
1-y
B (14— v+ e —z1?)" 2

where in the last inequality we have made a change of variable z; + ¢, — z.
Now we estimate the RHS of above term. Following [23], we split it into two cases.

Case I: For |z | > %|¢.], it holds that
(k2 — k5') (v, 1)

mu(yil) M AN | _\zJ_\ \[J_|2
—a) ¢ A6l [ ey — gy |00 T e e T dzy
U|1+ 7 (I=y) R2

mar=1

<
In

_l—v? 1y 2 _oyrsl il e
< =y bial /ZIQ—ZLI“ T
N R

mar—="D

_2
e_|']](')f\ e_%lgulz

IA

In — v|1+(1§a)(1—1/)
(1_(1)1’7*l _@ _L| _U‘Z_ﬁ
x [ 161 —z1] e 4 e Wl 6 dz] .
R2
It follows from (5.5) and (5.6) that

1 1
In—vl>+1¢12 =1n—v* + 2+ v)? > Z(|n|2 + vf?).
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This yields that
(kz — kén) (v, n)
ma=D e_%e_%|§u|2e_$(|"|2+|v|2)
= v|1+(1;a)(1_y)
x / [t — ZLl(lfa)yT_lerL
R2
< c,mar="1 J"Tglze %e 20 P+

In — v|1+(1 D (1—y)
where in the last inequality we have used the following fact

ZII

Gl = g - wlol =11z -l = |- =

(n—v) 2 _ 1(ul’ —[vP)?
In — vl 4 In—v?

1
= Z‘(ﬂ—i-v)' (5.7

Case 2: For |z | < %|¢.|, it holds that

(k2 — k5') (v, m)
Cm4v—D _a e
- e 8§ e 2/n
+ 59D (1—y)

In — !

-1
g1 — 2|00 _ P
X —e 2 dzg

Y

e

L+ In—v2+ 3eu2)" 2

Cmer—b _\n—gu@ g
e

-1
e — 20|95 2y 2
X —e 2 dzy

4

L+ n— v+ 182+ 1c )
Cma(y_l) _\77—”\2 _llé- ‘2
=) e g e 4'5n
|1+ 5~ (1=y)

n—v

—1
2) —zp |0 ey 2
< | —e 2 dzg
B

Y

L+ —v2+1¢2)" T
Cme(r=b 1 n—vl? v\ llmz

e
— (1—a) _ 1—71/
In — o2 0 (1 4 ]2 4 |p2) 2

-1 Iz 12
X/ e — 2|0 T e T dey
R2
C,ymar=b 1 ol _Hu\z—\n@z
T8 e 162 5.8
= = o (A ol o+ e 9
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where we have used (5.7) in the last inequality. Combining (5.3)—(5.8), one proves
(2.7). Therefore, the proof of Lemma 2.4 is completed. O

5.2. Local-in-Time Existence

In the following, we consider the local existence of unique solutions to the
Boltzmann equation (1.1) with large initial data in L°°-norm.

Proof of Proposition 2.1. To prove the local existence for the Boltzmann equation,
we consider the iteration that forn =0, 1,2, ...,

Frtlqpy . v il ol /ﬂ@ /Sz B(v—u, 0)F"(t, x, u)dwdu= Q. (F", F")
(5.9)
with
F' @, x, ”)’t:o = Fy(x,v) >0, and F°@t, x,v) = pn). (5.10)
Denote

Fn+l — i

Vi

fn+1 —
Then (5.9) can be written equivalently as

Ly v, g gt / / B(v —u, 9){u(u) + ﬁf”(r,x,u)}dwdu
R3 J§?

1
=Kf"+— " SIS 5.11
f +ﬁQ+(ﬁf V") (5.11)

withn =0,1,2,...and
£, x, v) 0=f0(x,v) and fO(t,x,v) =0. (5.12)
1=

It is a normal procedure to solve the approximated problems (5.9)—(5.10) (or equiv-

alently (5.11)—(5.12)) since they are linear at each step and the angular cutoff as-

sumption is posed. Then we get an approximation sequence F"*!, n =0,1,2,....
Firstly, we consider the positivity of F"*!. It is noted that

Fn+1([’ x,v) =e" fo " (wx—v(t—1)v)dr Fo(x — vt, v)

t ‘
+/ e~ J 8" Ex—0U=DNAT g (PN FY (5, x — u(t — 5), v)ds,
0
(5.13)
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with
g'(t,y,v) = / / B(w —u,0)F"(z,y,u)dudw
R3 J§?

- / / B —u.0) ) + VS (. .10 | dodu.
R3 JS2
By induction on n, we can prove that if " > 0, then it holds that
g"(s,x —v(t—s5),v) >0 and Q(F", F")(s,x —v(t —s),v) >0,
which together with (5.13) yield that
Fr (e, x,v) > el g mamvimmade gy ) > 0,

Therefore, we have proved the positivity of the approximation sequences, i.e.,
F'"'l'>0,n=0,1,....

Next, we consider the uniform estimate for the approximation sequence. And
it is more convenient to use the equivalent form f”*+!. Then, it follows from (5.11)
that

N X, v)

— o Jo 8" (Tx—v(t—1)v)dr Sfolx —vt,v)
t [
+/ e_fs g (t,x—v(t—1),v)dt (Kfn)(s’ x — U(I — S), v)ds
0
+ f o [ g x v 0)de
0
1

X —
Vi (v)
which yields that

Q-‘r(\/ﬁf”v \/ﬁfn)(sv-x_v(t_s)’v)ds9 (514)

t
s @) 1 x, V)] < s ) foll = + /0

wg (V) (Kf") (s, x —v(t — ), v)‘ds

! wﬂ(v) n n
+/0 0" VI = vt =),
(5.15)

It follows from (2.4) that

/

t
< fo lwp £ (s) ]| Leds /R W@k, Dl dn

wg (V) (Kf")(s, x —v(t — ), v)‘ds

t
SCy/O lwg f*(s)ll Lo ds. (5.16)
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To estimate the last term on the RHS of (5.15), by similar arguments as in (3.9),
one gets that

wﬁ(U) ’Q+(\/_f S x — v — ), v)’

SC]‘/‘Mv—m@Jﬂﬁ
R3 SZ

fW&x—v@—wﬂopmw

+Cf/B<v—u,9)W
R3 J§?

fn(s,
=1 + b. (5.17)

wg ') (s, x — vt —s),u’)

s, x — v —s), uHwp)

It follows from the change of variables (3.10)—(3.12) that for § > 3,

I < Cllwg f" ()l Lo

/ / |Z|| |U+L
w Js (zul + [z D7 v©

Y-

|ZL T g2
< C||w,3fn(s)||L°C/ / s
2y — v

(s, x—v(t—s), U+Zu)‘dZJ_d|Z|\|dw

f7Gs,x = vt = ), m)|dzLdy

< Cylwp Ol [

S| = ut =), m)|an
- vl

B
SCyllwﬁf"(S)II%oo/ ﬂd < C(y, Bllwg £ ()l - (5.18)
R | —v| 2

It is noted that by a rotation, one obtains the interchange of v’ and u’. Then, one
can change /5 to a similar form as /;. Thus, by similar arguments as above, one can
obtain that for 8 > 3,

L < Cy, Bllwg ()3,

which together with (5.18) and (5.17) yields that for 8 > 3,
t
f 0 (V" = =), 0o

=Co. B /0 g ) e ds. (5.19)
Substituting (5.19) and (5.16) into (5.15), one obtains that for 8 > 3,

lwp@) " Ol < lwg foll
+Cat{ sup wp S Ole=+ sup s/ ®lF<) (5200

0<s<t 0<s<t
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where the positive constant C4 > 1 depends only on y, 8. By induction on n, we
can prove that if

~1
sup [lwg f" ()l < 2|lwg follLe, @ = (8C4[1 + ||wﬂf0||L°°]) , (5.2D)

0<s<n

then it follows from (5.20) and (5.21) that for 8 > 3,

-1
sup [[wg £ ()l = 2w foll e with 1y = (8Call + wp foll=1)

0<s<n
(5.22)
foralln > 0.
Now we prove that f"*! n = 0,1,2,...is a Cauchy sequence. It follows
from (5.14) that

)W(fn+2 . fn+l)(f, X, v)]‘

t
< Iy wp@) folx = vr, v>|-/ "+ = g (xx — v = ), v)|de
/ IJws K" (s, x —v(t —5), v)|
<

Y
</

(8" = g") (@, x = v(t = 7), v)|deds
t
+ / | wp) (K™ — Kf™) (s, x — v(t — s), v)|ds
0
" Jwp(v) n+1 ntl
s \(Q+(ﬂf VR

= QLIS M) (55 = vt = 5), v)|ds
=L+ 14+ Is+ Ig+ I7. (5.23)

" — g x —v(t —1), v)‘drds

1O+ (Vi " i (s, x — v(t — 5), )

A direct calculation shows that
@ =@y 0] = OIS = @,

which, together with (5.16) and (5.19), yields that, for 0 <t < 1,

I+ L+ 1s = C{llv /g foll L

t
+ K n+1 X — — ), d
/0 ),/wﬁ(v)v(v) f" (s, x —v(t — ), v)|ds
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/ wﬂ(v)V(v)‘Q+(«/_fn+l VI x = vt —s), v)‘ds}

x /0 I = ™))l pedt

= Ci{lwp follu +1 sup Twp f" @l +1 sup g ")}

0<s<t 0<s<t

x sup [[(f"T = (@)L

0<tr<t
< Ctllwg follz - sup I(f"" = fM(@)l L, (5.24)

0<t<t

with 8 > 3, where we have used the uniform estimate (5.22) in the last inequality.
By the same arguments as (5.16), one can obtains that

I < Ct sup | Jwp(f™™ — ")) 1. (5.25)

0<t<t
To prove 17, we note that
(VI P = Qe (VRS ™) (5.% = 0t = 5),0)

= | Qe (VP I = ) s x = 0 = 5),0)|
| QR = G x = v =), ). (5.26)

Denoting y = x — v(t — ), by similar arguments as in (5.17), we have that

,/wlg(v

T | QRS VEGT = x = via =), )|
sc/ [ B =@l sy
R3 Js2

x [ Jup @) (= s, .0

%u wg TN - 1w = ). (5:27)

To estimate the first term on the RHS of (5.27), by a rotation, we interchange v’
and u’, then using the same arguments as in (3.10)—(5.18), one can obtain that

dudw

C/ / B —u, )/ @)l £ (s, y, u')|
R3 SZ

X ‘ wp W) (T — (s, y, v/)‘duda)
< Cllywa(f™ = ()L
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bd 2 _Intz 2
// =4 e | sy, m)|dzdy
B e — o)

< Cllwg f"* ()= - II\/w_ﬂ(f"H — M) e,
with 8 > 3, which together with (5.27) yield that
: w’g( Ty | RS VR = 6 x = v =), )
< Cllwﬁf”+] )L - I wp(f" T = ) L, (5.28)
for B > 3. Similarly, one can gets that for 8 > 3,
‘/T\Q+<f<f"“ SRS x = 0l = ), )

< Clwg ")l - L Jwg(f" = ()| oo (5.29)
Then it follows from (5.26), (5.28) and (5.29) that for 0 <t < 11,

1=t sup flwg £ ) e + g 176l

0<s<t

x sup ||l Jwg(f" T = M)l

0<s<t

< Ctlwg foll L o LW = ()L, (5.30)
<s<t

with 8 > 3, where we have used the uniform estimate (5.22) in the last inequality.
Substituting (5.24), (5.25) and (5.30) into (5.23), one obtains that for 0 < ¢ < 7y,

sup |l wg(f" — ()|l

0<s<T
< Cti(1+ wp follee) - sup | Jwg(f™ — f")() Iz
<v< 1
C
< —— sup [Jwp(f" = M)l
8C4 0<s<1
1
<5 sup LW £ = M) L,
O§S§t|

where we have chosen Cy4 suitably large such that % % Thus, by induction on
n, it is direct to obtain that

sup [l ywg(f" T = ol < 27" Hywa(f! = Ol < 27 Jwp foll e,

0<s<t

which yields immediately that f ntl 5 —0,1,2,...isa Cauchy sequence. There-
fore, there exists a limit f such that

sup [l ywg(f" = f)()llLe — 0 as n — +oo.

0<s<t
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The limit function f is indeed a mild solution to the Boltzmann equation (1.1) and
(1.4). It follows from (5.22) that

sup Jlwg f(®)llLe < 2llwg follLe.

0<t<n

Now we consider the uniqueness. Let f (¢, x,v) be another solution of the
Boltzmann equation (1.1) and (1.4) with the bound supy ., -, |wg f () [|L> < +o00,
by similar arguments as (5.23)—(5.30), it is directly obtained that

Iywg(f — )l
~ t -~
< C(+ lwg fliree + llwg flizee) - /0 I Jwg(f — F)(s)llLds,

which together with the Gronwall inequality yields the uniqueness, i.e., f = f.
Multiplying (5.9) by 1, v, |v|? and F™!, integrating by parts and then taking
the limit m — 400, one can directly obtain (1.5)—(1.8).
Finally, if F{ (orequivalent fj)is continuous, itis direct to check that F n+lt, x, v)
(or equivalent f"*1(¢, x, v)) is continuous in [0, c0) x © x R3. The continuous of
Sz, x,v) is an immediate consequence of supy, -, || (f" — £)($) e — Oas
n — +o00. Therefore the proof of Proposition 2.1 is completed. 0O

Acknowledgements. Renjun Duan is partially supported by the General Research Fund
(Project No. 14301515) from RGC of Hong Kong. Feimin Huang is partially supported
by National Center for Mathematics and Interdisciplinary Sciences, AMSS, CAS and NSFC
Grant Nos. 11371349 and 11688101. Yong Wang is partially supported by National Natu-
ral Sciences Foundation of China No. 11401565. Tong Yang is partially supported by the
General Research Fund of Hong Kong, CityU 11302215.

Conflict of interest The authors declare that they have no conflict of interest.

References

1. BARANGER, C.,MouHoT, C.: Explicit spectral gap estimates for the linearized Boltzman-
n and Landau operators with hard potentials. Rev. Mat. Iberoamericana 21(3), 819-841,
2005

2. BELLOMO, N., PALCZEWSKI, A., TOSCANI, G.: Mathematical Topics in Nonlinear Kinetic
Theory. World Scientific Publishing, Singapore, 1988

3. BRrIANT, M., GUo, Y.: Asymptotic stability of the Boltzmann equation with Maxwell
boundary conditions. J. Differ: Equ. 261(12), 7000-7079, 2016

4. CARLEMAN, T.: Sur la théorie de 1’équation intégrodifférentielle de Boltzmann. Acta
Math. 60(1), 91-146, 1933

5. CERCIGNANI, C., ILLNER, R., PULVIRENTI, M.: The Mathematical Theory of Dilute
Gases. Springer, New York, 1994

6. DuaN, R.J., YANG, T., ZHAO, H.J.: The Vlasov—Poisson—Boltzmann system for soft
potentials. Math. Models Methods Appl. Sci. 23(6), 979-1028, 2013

7. DIPERNA, R.J., LiONS, P.-L.: On the Cauchy problem for Boltzmann equation: global
existence and weak stability. Ann. Math. 130, 321-366, 1989



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Global Well-Posedness of the Boltzmann Equation 423

. DESVILLETTES, L., VILLANI, C.: On the trend to global equilibrium for spatially in-

homogeneous kinetic systems:The Boltzmann equation. Invent. Math. 159, 243-316,
2005

. ELLis, R., PINskY, M.A.: The first and second fluid approximations to the linearized

Boltzmann equation. J. Math. Pures Appl. 54(9), 125-156, 1975

GLASSEY, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, 1996

GraD, H.: Asymptotic theory of the Boltzmann equation. In: Laurmann, J.A. (ed.)
Rarefied Gas Dynamics, vol. 1, pp. 26-59. Academic Press, New York, 1963
GUALDANI, M.P.,, MISCHLER, S., MoUHOT, C.: Factorization for Non-symmetric Oper-
ators and Exponential H-Theorem. arXiv:1006.5523

Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular
cutoff. Arch. Ration. Mech. Anal. 169(4), 305-353, 2003

Guo, Y.: Decay and continuity of the Boltzmann equation in Bounded domains. Arch.
Rational. Mech. Anal. 197, 713-809, 2010

Guo, Y.: Bounded solutions for the Boltzmann equation. Q. Appl. Math. 68(1), 143-148,
2010

Huang, EM., WANG, Y.: Macroscopic Regularity for the Boltzmann Equation.
arXiv:1512.08608

ILLNER, R., SHINBROT, M.: Global existence for a rare gas in an infinite vacuum. Comm.
Math. Phys. 95, 217-226, 1984

KANIEL, S., SHINBROT, M.: The Boltzmann equation I: uniqueness and local existence.
Comm. Math. Phys. 58, 65-84, 1978

Kim, C.: Boltzmann equation with a large potential in a periodic box. Comm. Partial
Differ. Equ. 39, 1393-1423, 2014

Liu, T., YaNG, T., Yu, S.H.: Energy method for the Boltzmann equation. Phys. D 188,
178-192, 2004

Lu, X.-G., MouHoOT, C.: On measure solutions of the Boltzmann equation, part II: rate
of convergence to equilibrium. J. Differ. Equ. 258(11), 3742-3810, 2015

STrRAIN, R.M.: Optimal time decay of the non cut-off Boltzmann equation in the whole
space. Kinet. Rel. Models 5, 583-613, 2012

STRAIN, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch.
Rational. Mech. Anal. 187, 287-339, 2008

Ukal, S.: On the existence of global solutions of mixed problem for non-linear Boltz-
mann equation. Proc. Jpn. Acad. 50, 179-184, 1974

UkAL S., YANG, T.: The Boltzmann equation in the space L?n L}’}O: global and time-

periodic solutions. Anal. Appl. 4, 263-310, 2006

VIDAvV, L.: Spectra of perturbed semigroups with applications to transport theory. J. Math.
Anal. Appl. 30, 264-279, 1970

VILLANI, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook
of Mathematical Fluid Dynamics, vol. I, pp. 71-305. North-Holland, Amsterdam, 2002


http://arxiv.org/abs/1006.5523
http://arxiv.org/abs/1512.08608

424 RENJUN DUAN ET AL.

RENJUN DUAN
Department of Mathematics,
The Chinese University of Hong Kong,
Shatin, Hong Kong.
e-mail: rjduan @math.cuhk.edu.hk

and

FeEmMIN HUANG
School of Mathematical Sciences,
University of Chinese Academy of Sciences,
Beijing 100049,
People’s Republic of China.

and

Institute of Applied Mathematics,
AMSS, CAS, Beijing 100190,
People’s Republic of China.
e-mail: thuang@amt.ac.cn

and

YONG WANG
Institute of Applied Mathematics,
AMSS, CAS,
Beijing 100190,
People’s Republic of China.
e-mail: yongwang @amss.ac.cn

and

TONG YANG
Department of Mathematics,
City University of Hong Kong,
Kowloon, Hong Kong.
e-mail: matyang @cityu.edu.hk

(Received December 9, 2016 / Accepted March 10, 2017)
Published online March 30, 2017 — © Springer-Verlag Berlin Heidelberg (2017)



	Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
	Abstract
	1 Introduction
	2 Preliminaries
	3 Global Estimates
	3.1 Weighted Linfty-Estimate
	3.2 LinftyxL1v Estimate
	3.3 Global Existence and Uniqueness
	3.4 Positive Lower Bound of Density

	4 Time-Decay Estimates in Torus
	4.1 Case of Hard Potentials
	4.2 Case of Soft Potentials

	5 Appendix
	5.1 Estimates on K
	5.2 Local-in-Time Existence

	Acknowledgements.
	References




