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Abstract

It has long been suspected that the non-cutoff Boltzmann operator has similar
coercivity properties to the fractional Laplacian. This has led to the hope that
the homogenous Boltzmann equation enjoys similar regularity properties to the
heat equation with a fractional Laplacian. In particular, the weak solution of the
fully nonlinear non-cutoff homogenous Boltzmann equation with initial datum in
L1
2(R

d) ∩ L log L(Rd), i.e., finite mass, energy and entropy, should immediately
become Gevrey regular for strictly positive times. We prove this conjecture for
Maxwellian molecules.
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1. Introduction

It has long been suspected that the non-cutoff Boltzmann operator with a singu-
lar cross section kernel has similar coercivity properties to the fractional Laplacian
(−Δ)ν , for suitable 0 < ν < 1. This has been made precise by Alexandre,
Desvillettes, Villani, andWennberg [3], see also the reviews by Alexandre
[2] and byVillani [49] for the idea’s history. The suspicion has led to the hope that
the fully nonlinear homogenous Boltzmann equation enjoys regularity properties
similer to the heat equation with a fractional Laplacian given by{

∂t u + (−Δ)νu = 0
u|t=0 = u0 ∈ L1(Rd).

Using the Fourier transform one immediately sees that

û(t, ξ) = e−t (2π |ξ |)2ν û0(ξ) with û0 ∈ L∞(Rd),

so

sup
t>0

sup
ξ∈Rd

et |ξ |2ν |̂u(t, ξ)| � ‖u0‖L1(Rd ) <∞,

that is, the Fourier transform of the solution is extremely fast decaying for strictly
positive times.

Introducing the Gevrey spaces as in Definition 1.5, it is natural to expect (see,
for example, Desvillettes and Wennberg [23]):

Conjecture. (Gevrey smoothing)Any weak solution of the non-cutoff homogenous
Boltzmann equation with a singular cross section kernel of order ν and with initial
datum in L1

2(R
d) ∩ L log L(Rd), i.e., finite mass, energy and entropy, belongs to

the Gevrey class G
1
2ν (Rd) for strictly positive times.

The central result of our work is a proof of this conjecture for Maxwellian
molecules. In particular, we prove

Theorem. Assume that the non-cutoff Boltzman cross section has a singularity
1 + 2ν with 0 < ν < 1 and obeys some further technical conditions, which are
true in all physically relevant cases, for details see (3) and (16). Then, for initial
conditions f0 ∈ L log L ∩ L1

m with an integer

m ≥ max

(
2,

2ν − 1

2(2− 2ν)

)
,

any weak solution of the fully non-linear homogenous Boltzmann equation for

Maxwellian molecules belongs to the Gevrey class G
1
2ν for strictly positive times.

In particular, for ν ≤ log(9/5)/ log(2) 	 0, 847996, we have m = 2 and the
theorem does not require anything except the physically reasonable assumptions of
finite mass, energy and entropy. If log(9/5)/ log(2) < ν < 1 and we assume only

that f0 ∈ L log L∩ L1
2, then we prove that the solution is in G

log 2
2 log(9/5) , in particular,

that it is ultra-analytic.
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1. For a more precise formulation of our results, see Theorems 1.6, 1.9, and 1.10
for the case m = 2 and Theorems 3.1, 3.2, and 3.3 below.

2. We would like to stress that our results cover both the weak and strong singu-
larity regimes, where 0 < ν < 1/2, respectively 1/2 ≤ ν < 1.

3. The theorem above applies to all dimensions d � 1. The physical case for
Maxwellian molecules in dimension d = 3 is ν = 1/4.

The main problem for establishing Gevrey regularity is that, in order to use the
coercivity results of Alexandre, Desvillettes, Villani and Wennberg [3],
one has to bound a non-linear and non-local commutator of the Boltzmann kernel
with certain sub-Gaussian Fourier multipliers. The main ingredient in our proof is
a new way of estimating this non-local and nonlinear commutator.

1.1. The Non-cutoff Boltzmann and Kac Models

We study the regularity of weak solutions of the Cauchy problem{
∂t f = Q( f, f )

f |t=0 = f0
(1)

for the fully nonlinear homogeneous Boltzmann and Kac equation in d � 1 dimen-
sions [14,28].

For d � 2 the bilinear operator Q is given by

Q(g, f ) =
∫
Rd

∫
Sd−1

b(cos θ)
(
g(v′∗) f (v′)− g(v∗) f (v)

)
dσdv∗, (2)

that is, the Boltzmann collision operator for Maxwellian molecules with angular
collision kernel b depending only on the deviation angle cos θ = σ · v−v∗|v−v∗| for
σ ∈ S

d−1. Here we use the σ -representation of the collision process, in which

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, for σ ∈ S

d−1.

By symmetry properties of the Boltzmann collision operator Q( f, f ), the func-
tion b can be assumed to be supported on angles θ ∈ [0, π

2 ]; for otherwise (see
[49]) it can be replaced by

b̃(cos θ) = (b(cos θ)+ b(cos(π − θ))1{0�θ� π
2 }.

We will assume that the angular collision kernel b has the non-integrable sin-
gularity

sind−2 θ b(cos θ) ∼ κ

θ1+2ν
, as θ → 0+ (3)

for some κ > 0 and 0 < ν < 1, and satisfies
∫ π/2

0
sind θ b(cos θ) dθ <∞. (4)
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For inverse s-power forces (in three spatial dimensions), described by the poten-
tial U (r) = r1−s , s > 2, the collision kernel is of the more general form

B(|v − v∗|, cos θ) = b(cos θ)|v − v∗|γ , γ = s − 5

s − 1
,

where the angular collision kernel b is locally smooth with a non-integrable singu-
larity

sin θ b(cos θ) ∼ K θ−1−2ν, ν = 1

s − 1
.

The case of (physical) Maxwellian molecules corresponds to the values γ = 0,
s = 5, ν = 1

4 .
For d = 1 we set

Q(g, f ) = K (g, f ) =
∫
R

∫ π
2

−π
2

b1(θ)
(
f (w′∗)g(w′)− f (w∗)g(w)

)
dθdw∗,

(5)

which is the Kac operator for Maxwellian molecules, and angular collision kernel
b1 � 0. The pre- and post-collisional velocities are related by(

w′
w′∗

)
=
(
cos θ − sin θ

sin θ cos θ

)(
w

w∗

)
, for θ ∈ [−π

2 , π
2 ].

In the originalKacmodel b1 was chosen to be constant, whereaswewill assume,
as in [20], that b1 is an even function and has the non-integrable singularity

b1(θ) ∼ κ

|θ |1+2ν , for θ → 0, (6)

with 0 < ν < 1 and some κ > 0, and further satisfies

∫ π
2

−π
2

b1(θ) sin2 θ dθ <∞. (7)

Making use of symmetry properties of the collision operator K ( f, f ), we can
assume b1 to be supported on angles θ ∈ [−π

4 , π
4 ]; for otherwise it can be replaced

by its symmetrised version

b̃1(θ) = (b1(θ)+ b1(
π
2 − θ)

)
1{0�θ� π

4 } +
(
b1(θ)+ b1(−π

2 − θ)
)
1{− π

4 �θ�0}.

This simple observation will be very convenient for our analysis.
We will mainly work with the weighted L p spaces, defined as

L p
α(Rd) :=

{
f ∈ L p(Rd) : 〈·〉α f ∈ L p(Rd)

}
,

p � 1, α ∈ R, with norm

‖ f ‖L p
α (Rd ) =

(∫
Rd
| f (v)|p〈v〉αp dv

)1/p

, 〈v〉 := (1+ |v|2)1/2.
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We will also use the weighted (L2 based) Sobolev spaces

Hk
� (Rd) =

{
f ∈ S ′(Rd) : 〈·〉� f ∈ Hk(Rd)

}
, k, � ∈ R,

where Hk(Rd) are the usual Sobolev spaces given by

Hk(Rd) =
{
f ∈ S ′(Rd) : 〈·〉k f̂ ∈ L2(Rd)

}
, k ∈ R.

The inner product on L2(Rd) is given by 〈 f, g〉 = ∫
Rd f (v)g(v) dv.

It will be assumed that the initial datum f0 �≡ 0 is a non-negative density with
finite mass, energy and entropy, which is equivalent to

f0 � 0, f0 ∈ L1
2(R

d) ∩ L log L(Rd), (8)

where

L log L(Rd) =
{
f : Rd → R measurable : ‖ f ‖L log L <∞

}
,

where

‖ f ‖L log L =
∫
Rd
| f (v)| log (1+ | f (v)|) dv,

and the negative of the entropy is given by H( f ) := ∫
Rd f log f dv.

The space L1
2(R

d) ∩ L log L(Rd) is very natural, since we have

Lemma 1.1. Let f � 0. Then

f ∈ L1
2(R

d) ∩ L log L(Rd) ⇔ f ∈ L1
2(R

d) and H( f ) is finite.

This result is well-known to experts. For the reader’s convenience we will give
the proof in Appendix D. The following is the precise definition of weak solutions
which we use:

Definition 1.2. (Weak Solutions of the Cauchy Problem (1) [11,17,48]) Assume
that the initial datum f0 is in L1

2(R
d) ∩ L log L(Rd). f : R+ × R

d → R is called
a weak solution to the Cauchy problem (1), if it satisfies the following conditions:

(i) f � 0, f ∈ C (R+;D ′(Rd)) ∩ L∞(R+; L1
2(R

d) ∩ L log L(Rd));
(ii) f (0, ·) = f0;
(iii) For all t � 0, mass is conserved,

∫
Rd f (t, v) dv = ∫

Rd f0(v) dv, kinetic
energy is decreasing,

∫
Rd f (t, v) v2 dv �

∫
Rd f0(v) v2 dv, and the entropy

is increasing, that is, H( f (t, ·)) � H( f0);
(iv) For all ϕ ∈ C 1(R+;C∞0 (Rd)) one has

〈 f (t, ·), ϕ(t, v)〉 − 〈 f0, ϕ(0, ·)〉 −
∫ t

0
〈 f (τ, ·), ∂τ ϕ(τ, ·)〉 dτ

=
∫ t

0
〈Q( f, f )(τ, ·), ϕ(τ, ·)〉 dτ, for all t � 0, (9)
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where the latter expression involving Q is defined by

〈Q( f, f ), ϕ〉 = 1

2

∫
R2d

∫
Sd−1

b

(
v − v∗
|v − v∗| · σ

)
f (v∗) f (v)

× (ϕ(v′)+ ϕ(v′∗)− ϕ(v)− ϕ(v∗)
)
dσdvdv∗,

for test functions ϕ ∈ W 2,∞(Rd) in dimension d � 2, and in one dimension

〈Q( f, f ), ϕ〉 = 〈K ( f, f ), ϕ〉

=
∫
R2

∫ π
4

−π
4

b1(θ) g(w∗)g(w)
(
ϕ(w′)− ϕ(w)

)
dθdwdw∗

for test functions ϕ ∈ W 2,∞(R), making use of symmetry properties of the
Boltzmann and Kac collision operators and cancellation effects.1

Collecting results from the literature, the following is known regarding the
existence, uniqueness and further properties of weak solutions:

Theorem 1.3. (Arkeryd, Desvillettes,Mischler, Goudon, Villani,Wennberg) There
exists a weak solution of the Cauchy problem (1) in the sense of Definition 1.2. For
d � 2 momentum and energy are conserved,∫

Rd
f (t, v) v dv =

∫
Rd

f0(v) v dv,

∫
Rd

f (t, v) v2 dv =
∫
Rd

f0(v) v2 dv. (10)

In the one dimensional case (Kac equation), momentum is not conserved and energy
can only decrease and is conserved under the additional moment assumption f0 ∈
L1
2p for some p � 2.

Remark 1.4. d � 2: The existence of weak solutions of the Cauchy problem (1)
with initial conditions satisfying (8) for the homogeneous Boltzmann equation was
first proved by Arkeryd [10,11] (see also the articles by Goudon [27], Villani
[48], and Desvillettes [19,20]). Uniqueness in this case was shown by Toscani
and Villani [45], see also the review articles by Mischler and Wennberg [37]
(for the cut-off case) and Desvillettes [19].

d = 1: For the homogeneous non-cutoff Kac equation for Maxwellian
molecules existence of weak solutions was established by Desvillettes [17].

1.2. Higher Regularity of Weak Solutions

It has been pointed out by several authors [2,23,49] that, for singular cross-
sections, the Boltzmann operator essentially behaves like a singular integral opera-
tor with a leading term similar to a fractional Laplace operator (−Δ)ν . In terms of
compactness properties this has been noticed for the linearised Boltzmann kernel

1 Throughout the text, whenever not explicitly mentioned, we will drop the dependence
on t of a function, i.e. f (v) := f (t, v) etc.
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as early as in [42] and for the nonlinear Boltzmann kernel in [35,36]. Since the
solutions of the heat equation with a fractional Laplacian gain a high amount of
regularity for arbitrary positive times, it is natural to believe, as conjectured in [23],
that weak solutions to the non-cutoff Boltzmann equation gain a certain amount
of smoothness, and even analyticity, for any t > 0. This is in sharp contrast to the
fact that in the Grad’s cutoff case there cannot be any smoothing effect. Instead,
regularity and singularities of the initial datum get propagated in this case, see, for
example, [41].

The discussion about solutions of the heat equation with a fractional Lapla-
cian motivates the following definition of Gevrey spaces, which give a conve-
nient framework to describe this smoothing by interpolating between smooth and
(ultra-) analytic functions.

Definition 1.5. Let s > 0. A function f ∈ L1(Rd) belongs to the Gevrey class
Gs(Rd), if there exists an ε0 > 0 such that

eε0〈Dv〉1/s f ∈ L2(Rd) , where 〈Dv〉 =
(
1+ |Dv|2

)1/2
,

and we use the notation Dv = − i
2π∇v . Thus, G1(Rd) is the space of real analytic

functions, and Gs(Rd) for s ∈ (0, 1) the space of ultra-analytic functions.
Equivalently, f ∈ Gs(Rd) if f ∈ C∞(Rd) and there exists a constant C > 0

such that for all k ∈ N0 one has

‖Dk f ‖L2(Rd ) � Ck+1(k!)s,

where ‖Dk f ‖2
L2 = sup|β|=k ‖∂β f ‖2

L2 .
2

The first regularisation results in this direction were due to Desvillettes for
the spatially homogeneous non-cutoff Kac equation [17] and the homogeneous
non-cutoff Boltzmann equation for Maxwellian molecules in two dimensions [18],
where C∞ regularisation is proved. Later, Desvillettes and Wennberg [23]
proved under rather general assumptions on the collision cross-section (excluding
Maxwellian molecules, though) regularity in Schwartz space of weak solutions
to the non-cutoff homogeneous Boltzmann equation. By quite different methods,
using Littlewood–Paley decompositions, Alexandre and El Safadi [4] showed
that the assumptions on the cross-section (3)–(4) imply that the solutions are in
H∞ for any positive time t > 0. By moment propagation results for Maxwellian
molecules (see Truesdell [46]) this cannot be improved to regularity in Schwartz
space.

For collision cross-sections corresponding to Debye–Yukawa-type interaction
potentials,

sin θ b(cos θ) ∼ K θ−1(log θ−1)� for θ → 0 (with some K > 0, � > 0),

2 Regarding equivalency, see, for example, Theorem 4 in [33].
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Morimoto, Ukai, Xu and Yang [39] proved the same H∞ regularising effect
using suitable test functions in the weak formulation of the problem.

The question of the local existence of solutions in Gevrey spaces for Gevrey
regular initial data with additional strong decay at infinity was first addressed in
1984 byUkai [47], both in the spatially homogeneous and inhomogeneous setting.

We are interested in the Gevrey smoothing effect, namely that under the (physi-
cal) assumptions of finitemass, energy and entropyof the initial data,weak solutions
of the homogeneous Boltzmann equation without cutoff are Gevrey functions for
any strictly positive time. This question was treated in the case of the linearised
Boltzmann equation in the homogeneous setting byMorimoto et al. [39], where
they proved that, given 0 < ν < 1, weak solutions of the linearized Boltzmann

equation belong to the spaceG
1
ν (R3) for any positive time. In [31], radially symmet-

ric perturbations g = g(|v|) around a global Maxwellian μ(v) = (2π)− 3
2 e−

|v|2
2 ,

that is, for f in (1),

f (v) = μ(v)+√μ(v) g(v), g(v) = g(|v|),
were studied by using eigenfunctions of the linearised Boltzmann operator L ,
where

L g = −μ−
1
2 Q(μ,μ

1
2 g)− μ−

1
2 Q(μ

1
2 g, μ).

In this setting, the authors obtained a Gelfand-Shilov smoothing effect, which
includes Gevrey regularity.

For the non-Maxwellian Boltzmann operator, Gevrey regularity was proved
under very strong unphysical decay assumptions on the initial datum in [34].

For radially symmetric solutions, the homogeneous non-cutoff Boltzmann
equation for Maxwellian molecules is related to the homogeneous non-cutoff Kac
equation. The non-cutoff Kac equation was introduced by Desvillettes in [17],
where first regularity results were established, see alsoDesvillettes’ review [20].
For this equation, the best available results so far are due to Lekrine and Xu [30]
and Glangetas and Najeme [26]: Lekrine and Xu [30] proved Gevrey regular-
isation of order 1

2α for mild singularities 0 < ν < 1
2 and all 0 < α < ν. Strong

singularities 1
2 � ν < 1 were treated by Glangetas and Najeme [26], where

they prove that for ν = 1
2 the solution becomes Gevrey regular of order 1

2α for any
0 < α < 1

2 and Gevrey regular of order 1, that is, analytic, when 1
2 < ν < 1. Thus,

in the critical case ν = 1
2 , the result of [26] misses the analyticity of weak solutions

and does not prove ultra-analyticity in the range 1/2 < ν < 1. Moreover, both
results are obtained under the additional moment assumption f0 ∈ L1

2+2ν(R).
Ultra-analyticity results have previously been obtained by Morimoto and Xu

[40] for the homogeneous Landau equation in the Maxwellian molecules case and
related simplified models in kinetic theory. The analysis of smoothing properties of
the Landau equation is quite different from the Boltzmann and Kac equations. The
Landau equation explicitly contains a second order elliptic term, which yields coer-
civity, and, more importantly, certain commutators with weights in Fourier space
are identically zero, which simplifies the analysis tremendously, see Proposition
2.2 in [40].
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For the nonlinear non-cutoff homogeneous Boltzmann equation some partial
results regarding Gevrey regularisation were obtained by Morimoto and Ukai
[38] including the non-Maxwellian molecules case, but under the strong additional
assumptions of Maxwellian decay and smoothness of the solution. Still with these
strong decay assumptions, Yin and Zhang [50,51] extended this result to a larger
class of kinetic cross-sections.

The non-Maxwellian case is considerably harder, since Bobylev’s identity has
a much more complicated form. Assuming that the Boltzmann collision kernel can
be factorised into a relative velocity (kinetic) part and an angular part,

B(|v − v∗|, cos θ) = Φ(|v − v∗|) b(cos θ),

the following smoothing results are known (for the precise assumptions in each
case we refer to the articles):

1. Using Littlewood–Paley theory, Alexandre and ElSafadi [5] were able to
prove H∞ smoothing ofweak solutions for a regularised kinetic factorΦ(v) =
〈v〉γ .

2. Alexandre,Morimoto, Ukai, Xu, Yang [9] proved H∞ smoothing of weak
solutions for the physically relevant kinetic factor Φ(v) = |v|γ .

3. Chen and He [15] showed H∞ smoothing, again in the physically relevant
case Φ(v) = |v|γ for the strong solutions constructed by Desvillettes and
Mouhot [22]. They were also able to generalise their result to show H∞
smoothing in the inhomomogeneous case [16].

In the spatially inhomogeneous case, the collision operator is highly degener-
ate, since it only acts on the velocity variable. Due to the presence of the transport
term −v · ∇x , one expects a transfer of regularity from the velocity variable to
the space variable, and therefore some hypoelliptic smoothing effect in both vari-
ables. This has been highlighted in terms of a generalised uncertainty principle for
kinetic equations byAlexandre,Morimoto,Ukai, Xu andYang [7] under strong
assumptions on the initial data and the solutions. For the one-dimensional inho-
mogeneous Kac equation, Lerner, Morimoto, Pravda-Starov and Xu obtained
Gelfand-Shilov smoothingwith respect to the velocity variable andGevrey smooth-
ing with respect to the space variable for fluctuations around the global equilibrium
[32].

We stress that for themain result of our paper the initial datum is only assumed to
obey the natural assumptions coming from physics, i.e., finiteness of mass, energy
and entropy.

Given β > 0 and α ∈ (0, 1)we define the GevreymultiplierG : R+×R
d → R

by

G(t, η) := eβt〈η〉2α

and for Λ > 0 the cut-off Gevrey multiplier GΛ : R+ × R
d → R by

GΛ(t, η) := G(t, η)1Λ(|η|),
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where1Λ is the characteristic function of the interval [0,Λ]. The associated Fourier
multiplication operator is denoted by GΛ(t, Dv),

(GΛ(t, Dv) f )(t, v) :=
∫
Rd

GΛ(t, η) f̂ (t, η) e2π iη·v dη = F−1 [GΛ(t, ·) f̂ (t, ·)
]
.

We use the following convention regarding the Fourier transform of a function f
in this article:

(F f )(η) = f̂ (η) =
∫
Rd

f (v) e−2π iv·η dv.

The Fourier transform of the Boltzmann operator for Maxwellian molecules
has the form (Bobylev identity, [13])

Q̂(g, f )(η) =
∫
Sd−1

b

(
η

|η| · σ
)[

ĝ(η−) f̂ (η+)− ĝ(0) f̂ (η)
]
dσ,

η± = η ± |η|σ
2

(11)

for d � 2. There is a similar Bobylev identity for the Kac operator [17]:

K̂ (g, f )(η) =
∫ π

4

− π
4

b1(θ)
[
ĝ(η−) f̂ (η+)− ĝ(0) f̂ (η)

]
dθ,

η+ = η cos θ, η− = η sin θ.

(12)

A simple, but in a sense important, consequence of Bobylev’s identity is that, for
all d � 1,

PΛQ(g, f ) = PΛQ(PΛg, PΛ f ), (13)

where, for convenience, we put PΛ := 1Λ(Dv) for the orthogonal projection onto
Fourier ‘modes’ |η| ≤ Λ.

Note also that, since GΛ(t, ·) has compact support in R
d
η for any t > 0, one has

GΛ f,G2
Λ f ∈ L∞([0, T0]; H∞(Rd))

for any finite T0 > 0 and Λ > 0, if f ∈ L∞([0, T0]; L1(Rd)). This holds, since

‖GΛ f ‖2Hs (Rd
v )

� ‖ f̂ ‖2L∞(Rd
η)
‖〈·〉sGΛ(t, ·)‖2L2(Rd

η)

� ‖ f ‖2L1(Rd
v )
‖〈·〉sGΛ(T0, ·)‖2L2(Rd

η)

for all s � 0. These functions, due to the cut-off in Fourier space, are even analytic
in a strip containing R

d
v .

Theorem 1.6. (Gevrey smoothing I) Assume that the cross-section b satisfies the
singularity condition (3) and the integrability condition (4) for d � 2, and for
d = 1, b1 satisfies the singularity condition (6) and the integrability condition (7)
for some 0 < ν < 1. Let f be a weak solution of the Cauchy problem (1) with
initial datum satisfying conditions (8). Then, for all 0 < α � min

{
α2,d , ν

}
,
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f (t, ·) ∈ G
1
2α (Rd) (14)

for all t > 0, where α2,d = log[(8+d)/(4+d)]
log 2 .

Remarks 1.7. (i) In numbers,

α2,1 	 0.847997, α2,2 	 0.736966, and α2,3 	 0.652077.

Thismeans, that underonly physically reasonable assumptions of finitemass,
energy, and entropy, weak solutions are analytic for ν � 1

2 and even ultra-
analytic if ν > 1

2 . It is easy to see that α2,d is decreasing in d and for
d = 6, α2,6 	 0.485427, hence, for d � 6, analyticity (respectively ultra-
analyticity) does not follow from this theorem.

(ii) For the proof of Theorem1.6 (and also 1.9 and 1.10 below) it is important that
the energy of f is bounded, which brings in the technical Lemma 2.13 and
its Corollary 2.14. A considerably simpler proof could be given using only
that f ∈ L1

1(R
d). In this case, α2,d is replaced by α1,d = log[(4+d)/(2+d)]

log 2
(see also Remark 1.11 below). However, α1,3 < 0.4855 in three dimensions,
thus we would not be able to conclude (ultra-)analytic smoothing of weak
solutions for strong singularities 1

2 � ν < 1.
(iii) As our theorem above shows, weak solutions of the homogenous Kac equa-

tion becomeGevrey regular for strictly positive times formoderately singular
collision kernels with singularity ν ∈ (0, 1

2 ), see (6) for the precise descrip-
tion of the singularity, for ν = 1

2 they become analytic, which improves
the result of Glangetas and Najeme [26] in this critical case, and even
ultra-anaytic for ν ∈ ( 12 , 1).

(iv) Rotationally symmetric solutions f corresponding to rotationally symmet-
ric initial conditions f0 are Gevrey regular for strictly positive times under
the same conditions as in the one-dimensional case d = 1. The proof is
exactly as the proof of Theorem 3.1 with some small changes in the proof
of Lemma 2.26 where the independence of the solution f on the angular
coordinates can be explicitly used with the n = 1 version of Corollary 2.14.

Remark 1.8. Applying the same strategy as the one we developed for the proof of
Theorem 1.6, we were able to show in [12] a strong smoothing effect also in the
case of Debye–Yukawa type interaction potentials,

sin θ b(cos θ) ∼ K θ−1(log θ−1)� for θ → 0 (with some K > 0, � > 0).

Note that this singularity is much weaker than the type of singularity considered in
the work at hand, which leads to a much weaker coercive term. Nevertheless, the
smoothing effect we prove in [12] corresponds to exactly what one would expect
from the analogy with a logarithmic heat equation ∂t f = −(log(1−Δ))�+1 f .

As already remarked, the result of Theorem 1.6 deteriorates in the dimension.
Under the same assumptions, but using quite a bit more structure of the Boltzmann
operator, we can prove a dimension independent version. Its proof is considerably
more involved than the proof of Theorem 1.6.
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Theorem 1.9. (Gevrey smoothing II) Let d ≥ 2. Assume that the cross-
section b satisfies the conditions of Theorem 1.6. Let f be a weak solution of
the Cauchy problem (1) with initial datum satisfying conditions (8).
Then, for all 0 < α � min

{
α2,2, ν

}
,

f (t, ·) ∈ G
1
2α (Rd) (15)

for all t > 0, where α2,2 = log(5/3)
log 2 	 0.736966. In particular, in contrast to

Theorem 1.6, the weak solution is real analytic if ν = 1
2 and ultra-analytic if ν > 1

2
in any dimension.

If the integrability condition (4) is replaced by the slightly stronger condition
that b(cos θ) is bounded away from θ = 0, that is,

for any 0 < θ0 < π
2 there exists Cθ0 <∞ such that

0 ≤ b(cos θ) ≤ Cθ0 for all θ0 ≤ θ ≤ π
2 ,

(16)

which is true in all physically relevant cases, we can prove an even stronger result.

Theorem 1.10. (Gevrey smoothing III) Let d ≥ 2. Assume that the cross-section b
satisfies the conditions of Theorem 1.6 and the condition (16), that is, it is bounded
away from the singularity. Let f be a weak solution of the Cauchy problem (1) with
initial datum satisfying conditions (8). Then, for all 0 < α � min

{
α2,1, ν

}
,

f (t, ·) ∈ G
1
2α (Rd) (17)

for all t > 0, where α2,1 = log(9/5)
log 2 	 0.847997.

Remark 1.11. (i) Since we do not rely on interpolation inequalities between
Sobolev spaces, our results also include the limiting case α = ν, at least if
ν � α2,n (n = d, 2, 1). This is in contrast to all previous results on smoothing
properties of the Boltzmann and Kac equations.

(ii) If higher moments of the initial datum are bounded (and thus stay bounded
eternally due to moment propagation results, see, for instance, Villani’s
review [49]), the results in Theorems 1.9 and 1.10 can be improved in the
high singularity case, where ν is close to one. Namely, let f0 ∈ L log L ∩
L1
m(Rd) for some integer m > 2, then the constants α2,d , α2,2, respectively

α2,1 are replaced by αm,n = log[(4m+n)/(2m+n)]
log 2 (n = d, 2, 1), which are

strictly increasing towards the limit α∞,n = 1 as m becomes large. See
Theorems 3.1, 3.2 and 3.3 below.

Moreover, we prove that for very strong singularities ν, we can prescribe precise

conditions on the initial datum such that we have f ∈ G
1
2ν (Rd).

Theorem 1.12. Given 0 < ν < 1, there is m(ν) such that, if m ∈ N and m ≥ m(ν)

and f0 ∈ L log L ∩ L1
m, the weak solution is in G

1
2ν (Rd) for all t > 0.
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Moreprecisely, under the conditions of Theorem1.6 havingm ≥ max
(
2, 2ν−1

2−2ν

)
yields Gevrey smoothing of order 1

2ν and under the slightly stronger conditions of

Theorem 1.10 having m ≥ max
(
2, 2ν−1

2(2−2ν )

)
is enough.

Remark 1.13. The proof of this Theorem follows directly from the results of The-
orems 3.1, 3.2, and 3.3 in Section 3, which extend Theorems 1.6, 1.9, and 1.10 to
the case of finite moments m ≥ 2.

The strategy of the proofs of our main results Theorems 1.6, 1.9 and 1.10 is
as follows: we start with the additional assumption f0 ∈ L2 on the initial datum.
We use the known H∞ smoothing of the non-cutoff Boltzmann and Kac equa-
tion to allow this. This yields an L2 reformulation of the weak formulation of the
Boltzmann and Kac equations which includes suitable growing Fourier multipliers.

The inclusion of sub-Gaussian Fourier multipliers leads to a nonlocal and non-
linear commutator of the Boltzmann and Kac kernels, which turns out to be a
three-linear expression in the weighted solution f̂ on the Fourier side. In order to
bound this expression with L2 norms, one of the three terms has to be controlled
pointwise, including a sub-Gaussian growing factor, see Proposition 2.8. The prob-
lem is that one has to control the pointwise bound with an L2 norm, which is in
general impossible. To overcome this obstacle there are several important technical
steps:

(1) When working on a ball of radius Λ, we need this uniform control only on a
ball of radius Λ/

√
2, which enables an inductive procedure.

(2) Using the additional a priori information that the kinetic energy is finite,
or, depending on the initial condition, even higher moments are finite, we
transformweighted L2 bounds into pointwise bounds on slightly smaller balls
with an additional loss of power in the weights in Fourier space. Here we rely
on Kolmogorov–Landau type inequalities, see Lemma 2.17 and appendix C.

(3) Use of strict concavity of the Fourier multipliers, see Lemma 2.5, in order to
compensate for this loss of power.

(4) Averaging over a codimension 2 sphere, in the proof of Theorem 1.9, which
allows us to get, in any dimension, the same results as for the two dimensional
Boltzmann equation.

(5) Averaging over a codimension 1 set constructed from a codimension 2 sphere
and the collision angles θ away from the singularity, and using the fact
that near the singularity, one of the three Fourier weights is not big due
to Lemma 2.5, enables us to get, in any dimension, the same results as for
the one-dimensional Kac equation under the conditions of Theorems 1.10
and 3.3.

Even though some of the auxiliary results which we use in this paper are well-
known to experts in the field of Boltzmann and Kac equation, we usually give the
complete proof of these results in the work at hand to keep it self-contained and
make it more accessible for non-specialists. 3

3 Like us.
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2. Gevrey Regularity and (Ultra-)Analyticity of Weak Solutions with L2

Initial Data

In this section, we will prove the Gevrey smoothing of weak solutions with
initial datum f0 satisfying (8) and, additionally, f0 ∈ L2(Rd).

2.1. L2-Reformulation of the Homogeneous Boltzmann Equation for Weak
Solutions and Coercivity

The following is our starting point for the proof of the regularizing properties
of the homogenous Boltzmann equation:

Proposition 2.1. Let f be a weak solution of the Cauchy problem (1) with initial
datum f0 satisfying (8), and let T0 > 0. Then for all t ∈ (0, T0], β > 0, α ∈ (0, 1),
and Λ > 0 we have GΛ f ∈ C

([0, T0]; L2(Rd)
)
and

1

2
‖GΛ(t, Dv) f (t, ·)‖2L2 − 1

2

∫ t

0

〈
f (τ, ·),

(
∂τG

2
Λ(τ, Dv)

)
f (τ, ·)

〉
dτ

= 1

2
‖1Λ(Dv) f0‖2L2 +

∫ t

0

〈
Q( f, f )(τ, ·),G2

Λ(τ, Dv) f (τ, ·)
〉
dτ.

(18)

Informally, equation (18) follows from using ϕ(t, ·) := G2
Λ(t, Dv) f (t, ·) in the

weak formulation of the homogenous Boltzmann equation.
Recall that G2

Λ f ∈ L∞([0, T0]; H∞(Rd)) for any finite T0 > 0, so it misses
the required regularity in time needed to be used as a test function. The proof of
Proposition 2.1 is analogous toMorimoto et al. [39], for the sake of completeness
and the convenience of the reader, we prove it in appendix A.

The coercive properties of the non-cutoff Boltzmann bilinear operator which
play the crucial role in the smoothing of solutions are made precise in the following
sub-elliptic estimate byAlexandre, Desvillettes, Villani andWennberg [3].
We remark that, while the proof there is given for the Boltzmann equation, it equally
applies to the Kac equation.

Lemma 2.2. (Sub-elliptic Estimate, [3]) Let g ∈ L1
2(R

d) ∩ L log L(Rd), g � 0
(g �≡ 0). Assume that the collision cross-section b satisfies (3)–(4) or (6)–(7)
respectively, with 0 < ν < 1. Then there exists a constant Cg > 0 (depending only
on the dimension d, the collision kernel b, ‖g‖L1

2
and ‖g‖L log L) and a constant

C > 0 (depending only on d and b), such that for any f ∈ H1(Rd) one has

−〈Q(g, f ), f 〉 � Cg‖ f ‖2Hν − C‖g‖L1
2
‖ f ‖2L2 .

Remark 2.3. As explained in, for instance [8], the constant Cg is an increasing
function of ‖g‖L1 , ‖g‖−1

L1
2
and ‖g‖−1L log L . In particular, if g is a weak solution of

the Cauchy problem (1) with initial datum g0 ∈ L1
2(R

d) ∩ L log L(Rd), we have
‖g‖L1 = ‖g0‖L1 , ‖g‖L1

2
� ‖g0‖L1

2
and ‖g‖L log L � log 2‖g0‖L1 + H(g0) +

Cδ,d‖g0‖1−δ

L1
2
, for small enough δ > 0 (see (85)). This implies that Cg � Cg0 and

thus
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−〈Q(g, f ), f 〉 � Cg‖ f ‖2Hν − C‖g‖L1
2
‖ f ‖2L2 � Cg0‖ f ‖2Hν − C‖g0‖L1

2
‖ f ‖2L2

uniformly in t ≥ 0.

Together with Proposition 2.1 the coercivity estimate Lemma 2.2 implies

Corollary 2.4. (A priori bound for weak solutions) Let f be a weak solution of the
Cauchy problem (1) with initial datum f0 satisfying (8), and let T0 > 0. Then there
exist constants C̃ f0 ,C f0 > 0 (depending only on the dimension d, the collision
kernel b, ‖ f0‖L1

2
and ‖ f0‖L log L) such that for all t ∈ (0, T0], β > 0, α ∈ (0, 1),

and Λ > 0 we have

‖GΛ f ‖2L2 � ‖1Λ(Dv) f0‖2L2 +
∫ t

0
2
(
−C̃ f0‖GΛ f ‖2Hν + C f0‖GΛ f ‖2L2

)
dτ

+
∫ t

0
2 |〈Q( f,GΛ f )− GΛQ( f, f ),GΛ f 〉| dτ

+
∫ t

0
2β‖GΛ f ‖2Hα dτ. (19)

Proof. Wewant to apply the coercivity result fromLemma2.2 to the second integral
on the right hand side of Proposition 2.1. Therefore, we write

〈Q( f, f ),G2
Λ f 〉 = 〈GΛQ( f, f ),GΛ f 〉

= 〈Q( f,GΛ f ),GΛ f 〉 + 〈GΛQ( f, f )− Q( f,GΛ f ),GΛ f 〉
� −C̃ f0‖GΛ f ‖2Hν + C‖ f0‖L1

2︸ ︷︷ ︸
=:C f0

‖GΛ f ‖2L2

+ 〈GΛQ( f, f )− Q( f,GΛ f ),GΛ f 〉.
Moreover,

∂τG
2
Λ(τ, η) = 2β〈η〉2αG2

Λ(t, η).

Inserting those two results into (18), we obtain

‖GΛ f ‖2L2 � ‖1Λ(Dv) f0‖2L2 + 2β
∫ t

0
‖GΛ f (τ, ·)‖2Hα dτ

+ 2
∫ t

0

(
−C̃ f0‖GΛ f ‖2Hν + C f0‖GΛ f ‖2L2

)
dτ

+ 2
∫ t

0
〈GΛQ( f, f )− Q( f,GΛ f ),GΛ f 〉 dτ.

��
The term 〈GΛQ( f, f )− Q( f,GΛ f ),GΛ f 〉 is called commutation error.
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2.2. Bound on the Commutation Error

Next, we prove a new bound on the commutation error. An important ingredient
is the following elementary observation:

Lemma 2.5. (Strict concavity bound) Let α ∈ (0, 1] be fixed. The map
0 � u �→ ε(α, u) := (1+ u)α − uα has the following properties:

(i) If α ∈ (0, 1), then ε(α, ·) is strictly decreasing on [0,∞) with
limu→∞ ε(α, u) = 0.
In particular, for any γ � 1 and 0 � γ s− � s+ one has

ε
(
α, s+

s−
)
≤ ε (α, γ ) ≤ ε(α, 1) = 2α − 1 < 1. (20)

Moreover, for all α ∈ (0, 1) and all u > 0

ε (α, u) ≤ uα−1;
(ii) If u > 0, then ε(·, u) is strictly increasing on [0, 1];
(iii) For all s−, s+ ≥ 0

(1+ s− + s+)α ≤ ε
(
α, s+

s−
)

(1+ s−)α + (1+ s+)α.

Proof. Since

∂

∂u
ε(α, u) = α

(
(1+ u)α−1 − uα−1) < 0 for α ∈ (0, 1)

ε(α, ·) is strictly decreasing. Furthermore, for fixed u > 0 we have

∂

∂α
ε(α, u) = (1+ u)α log(1+ u)− uα log u > 0,

which shows that ε(·, u) is strictly increasing.
For α ∈ (0, 1) and u � 0 we estimate

ε(u, α) = α

∫ 1+u

u
rα−1 dr � αuα−1 � uα−1.

In particular, limu→∞ ε(α, u) = 0. By monotonicity, the chain of inequalities (20)
follows.

Let s−, s+ ≥ 0. Then

(1+ s− + s+)α = (s−)α
[(

1+ 1+s+
s−
)α −

(
1+s+
s−
)α]+ (1+ s+)α

� ε
(
α, 1+s+

s−
)

(1+ s−)α + (1+ s+)α

� ε
(
α, s+

s−
)

(1+ s−)α + (1+ s+)α,

where we made use of the monotonicity of ε(α, ·) in the last inequality. ��
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Remark 2.6. The proof of Lemma 2.5 is so simple that one might wonder whether
it could be of any use. In fact, it is crucial. It’s usefulness is hidden in the fact that it
enables us to gain a small exponent in the commutator estimates, see Proposition 2.8
and Lemma 2.10 below. Furthermore, ε(α, γ ) can be made as small as we like if γ

can be chosen large enough, which will be important in the proof of Theorem 1.10.

Corollary 2.7. Let G̃(s) := eβt (1+s)α for s � 0, α ∈ (0, 1]. Then, for all
s−+s+=s with 0 � s− � s+,

|G̃(s)− G̃(s+)| � 2αβt (1+ s+)α
(
1− s+

s

)
G̃(s−)

ε
(
α,

s+
s−
)
G̃(s+)

with ε(α, u) from Lemma 2.5.

Proof. Since s+ � s and α ∈ (0, 1],

|G̃(s)− G̃(s+)| �
∫ s

s+

∣∣∣∣ ddr G̃(r)

∣∣∣∣ dr = αβt
∫ s

s+
(1+ r)α−1G̃(r) dr

� αβt (1+ s+)α−1(s − s+)G̃(s).

In addition, since s � 2s+,

s − s+

1+ s+
=
(
1− s+

s

)
s

1+ s+
� 2

(
1− s+

s

)
.

Moreover, since s = s+ + s−, the strict concavity Lemma 2.5 gives

G̃(s) � G̃(s−)
ε
(
α,

s+
s−
)
G̃(s+),

which completes the proof. ��
Proposition 2.8. (Bound on Commutation Error) Let f be a weak solution of the
Cauchy problem (1) with initial datum f0 satisfying (8). Recall
ε(α, u) = (1 + u)α − uα . Then for all t ∈ (0, T0], β > 0, α ∈ (0, 1), and
Λ > 0 we have

|〈Q( f,GΛ f )− GΛQ( f, f ),GΛ f 〉|

≤ 2αβt
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)(

1− |η
+|2
|η|2

)
G(η−)ε(α,|η+|2/|η−|2)| f̂ (η−)|

× GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| 〈η+〉2α dσdη, (21)

for d � 2, and

|〈Q( f,GΛ f )− GΛQ( f, f ),GΛ f 〉|

≤ 2αβt
∫
R

∫ π
4

− π
4

b1 (θ) sin2 θ G(η−)ε(α,|η+|2/|η−|2)| f̂ (η−)|

× GΛ(η+)| f̂ (η+)|GΛ(η)| f̂ (η)| 〈η+〉2α dθdη, (22)

in the one-dimensional case.
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Remark 2.9. If the weight G was growing polynomially, the term G(η−) in the
integral (21), respectively (22), would be replaced by 1. In this case, the “bad terms”
which contain η− can simply be bounded by ‖ f̂ ‖L∞ ≤ ‖ f ‖L1 = ‖ f0‖L1 and the
rest can be bounded nicely in terms of ‖GΛ f̂ ‖L2 and ‖GΛ f̂ ‖Hα , see the discussion
in appendix B.

If the weight G is exponential, the estimate of the terms containing η− in (21),
respectively (22), is an additional challenge and the methods we devised in order
to control this term in the commutation error is probably the most important new
contribution of this work.

Proof of Proposition 2.8. We start with d � 2. By Bobylev’s identity, one has

|〈Q( f,GΛ f )− GΛQ( f, f ),GΛ f 〉| = ∣∣〈F [Q( f,GΛ f )− GΛQ( f, f )] ,F [GΛ f ]〉L2
∣∣

�
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)||GΛ(η+)− GΛ(η)| dσ dη

=
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)
GΛ(η)| f̂ (η)| | f̂ (η−)| | f̂ (η+)||G(η+)− G(η)| dσ dη,

where the latter equality follows from the fact that GΛ is supported on the ball
{|η| � Λ} and |η+| � |η|.

To estimate |G(η+)−G(η)|, we use Corollary 2.7 with s := |η|2 and, accord-
ingly, s± = |η±|2. Notice that

|η±|2 = |η|2
2

(
1± η

|η| · σ
)

, |η|2 = |η+|2 + |η−|2,

and, writing cos θ = η·σ
|η| , we also have

|η+|2 = |η|2 cos2 θ
2 , |η−|2 = |η|2 sin2 θ

2 .

Since b is supported on angles in [0, π/2], one sees 0 � |η−|2 � 1
2 |η|2 and

1
2 |η|2 � |η+|2 � |η|2. Therefore, s− � s

2 � s+ � s and s = s+ + s−.
It follows that for all η ∈ R

d with |η| � Λ, noting that |η+| � |η| � Λ,

|G(η)− G(η+)| � 2αβt〈η+〉2α
(
1− |η+|2

|η|2
)
G(η−)ε(α,|η+|2/|η−|2)GΛ(η+), (23)

which finishes the proof in dimension d ≥ 2.
For the Kac model we remark that the above proof depends only on |η−| ≤

|η+| � |η| and |η−|2 + |η+|2 = |η|2, hence |η−|2 ≤ |η|2/2, and the strict con-
cavity Lemma 2.5 and the Corollary 2.7. Since, by symmetry, we assume that b1 is
supported in [−π/4, π/4], the same bounds for η− and η+ hold in dimension one
and the above proof can be literally translated, with obvious changes in notation,
to the Kac equation. ��

The bound on the commutation error in Proposition 2.8 is a trilinear expression
in the weak solution f . In order to close the a priori bound from Corollary 2.4 in
L2, one of the terms has to be controlled uniformly in η. Seemingly impossible with
the growing weights, it is exactly at this place where the gain of the small exponent



Gevrey Smoothing for the Homogeneous Non-cutoff Boltzmann Equation 619

ε(α, |η+|2/|η−|2) ≤ ε(α, 1) < 1 in the G(η−) term in (21) and (22) allows us to
proceed with this strategy. This gain of the small exponent is new and enabled by
the strict concavity bound of Lemma 2.5 and its Corollary 2.7 and it is crucial for
our inductive approach for controlling the commutation error.

The change of variables is a standard computation used earlier, for instance in
[3,39]. We repeat it for the convenience of the reader and, more importantly, since
some care has to be exercised in view of the strategy of our inductive setup for
controlling the commutation error.

Lemma 2.10. The inequality

|〈Q( f,GΛ f )− GΛQ( f, f ),GΛ f 〉| ≤ Id,Λ + I+d,Λ

holds, where, for d ≥ 2

Id,Λ =αβt
∫
Rd

(∫ π
2

0

∫
Sd−2(η)

sind θ b(cos θ)G(η−)
ε
(
α,cot2 θ

2

)
| f̂ (η−)|

× 1 Λ√
2

(|η−|) dω dθ

)
|GΛ(η) f̂ (η)|2 〈η〉2α dη. (24)

Here the vector η− is expressed as a function of η and σ , that is,

η− = η−(η, σ ) = 1

2
(η − |η|σ) = |η| sin2( θ

2 )
η

|η| − |η| sin(
θ
2 ) cos( θ

2 ) ω (25)

and σ is is a vector on the unit sphere given by

σ = σ(θ, ω) = cos(θ)
η

|η| + sin(θ) ω (26)

with polar angle θ ∈ [0, π/2] with respect to the north pole in the η direction,
ω ∈ S

d−2(η) := {ω̃ ∈ R
d : ω̃ ⊥ η, |ω̃| = 1}, the d − 2 sphere in R

d orthogonal to
the η direction, and dω the canonical measure on S

d−2:

I+d,Λ = 2dαβt
∫
Rd

(∫ π
4

0

∫
Sd−2(η+)

sind ϑ b (cos 2ϑ) G(η−)ε
(
α,cot2 ϑ

)
| f̂ (η−)|

× 1 Λ√
2

(|η−|) dω dϑ

)
|GΛ(η+) f̂ (η+)|2〈η+〉2α dη+

(27)

where now the vector η− is expressed as a function of η+ and σ , that is,

η− = η−(η+, σ ) = η+ − |η+|
(

η+ · σ
|η+|

)−1
σ = −|η+| tan(ϑ) ω, (28)

where σ is now a vector on the unit sphere with north pole in the η+ direction given
by

σ = σ(ϑ, ω) = cos(ϑ)
η+

|η+| + sin(ϑ) ω (29)
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Fig. 1. Geometry of the collision process in Fourier space

with polar angle ϑ ∈ [0, π/4] and ω ∈ S
d−2(η+), the (d − 2)-sphere in R

d

orthogonal to the η+ direction. If d = 2 we set S
0 := ∅ in this context.

For d = 1 we have

I1,Λ = αβt
∫
R

∫ π
4

−π
4

sin2 θb1(θ)G(η−)
ε
(
α,cot2 θ

2

)
| f̂ (η−)|1 Λ√

2

(|η−|) dθ

× |GΛ(η) f̂ (η)|2 〈η〉2α dη,

I+1,Λ =
√
2αβt

∫
R

∫ π
4

−π
4

sin2 θb1(θ)G(η−)
ε
(
α,cot2 θ

2

)
| f̂ (η−)|1 Λ√

2

(|η−|) dθ

× |GΛ(η+) f̂ (η+)|2 〈η+〉2α dη+,

where in the first case η− = η−(η, θ) = η sin θ and in the second case

η− = η−(η+, θ) = η+ tan θ

and there is no need to distinguish between the θ and ϑ parametrization.

Remark 2.11. In the η, respectively η+, integrals above η− and σ are always the
same vectors expressed in different parametrizations.We therefore have the relation
ϑ = θ/2, see Figure 1 for the geometry of the collision process in Fourier space.

Remark 2.12. From the bounds given in Lemma 2.10 one might already see that,
in order to bound the commutation error by some multiple of ‖GΛ f ‖2

Hα(Rd )
, one

has to control integrals of the form

sup
|η|≤Λ

∫ π
2

0

∫
Sd−2(η)

sind θb(cos θ)G
ε
(
α,cot2 θ

2

)
(η−) | f̂ (η−)|1 Λ√

2

(|η−|) dω dθ,

with the parametrisation (25) for η−, and similarly for (27) and the corresponding
integrals in the one dimensional case. Due to the characteristic function in η−, this
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uniform control is not needed on the full ball of radius Λ, but only on a strictly
smaller one, giving rise to an induction-over-length-scales type of argument.

Proof of Lemma 2.10. Let d ≥ 2. Using the elementary estimate

|GΛ(η) f̂ (η)| |GΛ(η+) f̂ (η+)| � 1

2

(
|GΛ(η) f̂ (η)|2 + |GΛ(η+) f̂ (η+)|2

)

in the bound (21) gives

|〈Q( f,GΛ f )− GΛQ( f, f ),GΛ f 〉| ≤ Ĩd,Λ + Ĩ+d,Λ

with

Ĩd,Λ =αβt
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)(

1− |η
+|2
|η|2

)
G(η−)ε(α,|η+|2/|η−|2)| f̂ (η−)|

× 1 Λ√
2
(|η−|) |GΛ(η) f̂ (η)|2 〈η+〉2α dσdη,

and

Ĩ+d,Λ =αβt
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)(

1− |η
+|2
|η|2

)
G(η−)ε(α,|η+|2/|η−|2)| f̂ (η−)|

× 1 Λ√
2
(|η−|) |GΛ(η+) f̂ (η+)|2 〈η+〉2α dσdη.

First we consider Ĩd,Λ. Writing σ in a parametrization where the north pole is in
the η direction, one has

σ = cos θ
η

|η| + sin θ ω,

where cos θ = η·σ
|η| ≥ 0 and ω is a unit vector orthogonal to η, that is, ω ∈

S
d−2(η). Due to the support condition on b one has cos θ ≥ 0, that is, σ is restricted

to the northern hemisphere θ ∈ [0, π/2]. In this parametization one has dσ =
sind−2 θdθdω. From the definition of η± one sees

η± = 1

2
(η ± |η|σ) = |η|

2
(1± cos θ)

η

|η| ±
|η|
2

sin(θ) ω,

so

η+ = |η| cos2( θ
2 )

η

|η| + |η| sin(
θ
2 ) cos( θ

2 ) ω.

In particular,

|η+| = |η| cos θ

2
, and 1− |η

+|2
|η|2 = 1− cos2

θ

2
= sin2

θ

2
.

Moreover,

η− = |η| sin2 θ

2

η

|η| − |η| sin
θ

2
cos

θ

2
ω, and |η−| = |η| sin θ

2
,



622 Jean-Marie Barbaroux et al.

so

|η+|2
|η−|2 =

cos2 θ
2

sin2 θ
2

= cot2
θ

2
.

After this preparation, using also 〈η+〉2α � 〈η〉2α and sin θ
2 � sin θ for θ ∈ [0, π

2 ],
the inequality Ĩd,Λ ≤ Id,Λ is immediate. The inclusion of the additional factor
1Λ(|η|) = 1sin θ

2Λ(|η−|) � 1Λ/
√
2(|η−|) seems artificial for the moment, but will

be convenient to keep track of the fact that η− is always restricted to a ball of radius
Λ√
2
.

Concerning Ĩd,Λ, we want to implement a change of variables from η to η+.
As a function of η and σ , η+ = 1

2 (η − |η|σ). Thus

∣∣∣∣∂η+

∂η

∣∣∣∣ =
∣∣∣∣12
(
1+ η

|η| ⊗ σ

)∣∣∣∣ = 1

2d

(
1+ η

|η| · σ
)

� 1

2d
,

since η ·σ � 0 and the second equality is an application of Sylvester’s determinant
theorem. Therefore, the Jacobian of the transformation from η to η+ can be bounded
by

∣∣∣∣ ∂η

∂η+

∣∣∣∣ =
∣∣∣∣∂η+

∂η

∣∣∣∣
−1
≤ 2d .

In addition,

|η+|2 = |η|2
2

(
1+ η · σ

|η|
)

and η+ · σ = |η|
2

(
1+ η · σ

|η|
)
= |η+|2

|η| ,

which implies

η+ · σ
|η+| =

|η+|
|η| and

η · σ
|η| = 2

|η+|2
|η|2 − 1 = 2

(
η+ · σ
|η+|

)2

− 1.

Moreover, from the definition of η±, one sees

η = 2η+ − |η|σ,

so

η− = η+ − |η|σ = η+ − |η+|
(

η+ · σ
|η+|

)−1
σ.

Therefore, taking care of the domain of integration,

Ĩ+d � 2d
∫
Rd

∫
Sd−1

b

(
2

(
η+ · σ
|η+|

)2

− 1

) (
1−

(
η+ · σ
|η+|

)2
)

1 η+·σ
|η+| Λ

(|η+|)

× Gε
(
α,|η+|2/|η−|2)(η−)| f̂ (η−)| |GΛ(η+) f̂ (η+)|2〈η+〉2α dσ dη+.
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Introducing spherical coordinates with north pole in the η+ direction, one has

σ = σ(ϑ, ω) = cos(ϑ)
η+

|η+| + sin(ϑ) ω

where now cosϑ = η+·σ
|η+| . From Figure 1 one sees ϑ = θ

2 ∈ [0, π/4]. In this
parametrisation one has

η− = η+ − |η+|
cosϑ

σ = −|η+| tan(ϑ) ω,

and again dσ = sind−2 ϑ dϑdω. Thus

Ĩ+d � 2d
∫
Rd

∫
Sd−2

∫ π
4

0
b (cos 2ϑ) sind ϑ Gε

(
α,cot2 ϑ

)
(η−)| f̂ (η−)|1(cosϑ)Λ(|η+|)

× |G(η+) f̂ (η+)|2〈η+〉2α dϑ dω dη+.

Since |η−|=|η+| tan ϑ ,weobtain1(cosϑ)Λ(|η+|)=1(sin ϑ)Λ(|η−|)�1
Λ/
√
2(|η−|),

because ϑ ∈ [0, π/4]. Hence Ĩ+d,Λ ≤ I+d,Λ.
The proof in the d = 1 case is completely analogous. ��

2.3. Extracting Pointwise Information from Local L2 Bounds.

Lemma 2.13. Let m � 2 and h ∈ Wm,∞(R) and q � 1
m . Then there exists a

constant Lm <∞ depending only on q,m, ‖h‖L∞(R) and ‖h(m)‖L∞(R) such that

|h(r)|q � Lm

∫
Ωr

|h(ξ)|q− 1
m dξ for all r ∈ R,

where Ωr = [r, r + 2] if r � 0 and Ωr = [r − 2, r ] if r < 0.

Looking into the proof of Lemma 2.13, it is clear that its m = 1 version also
holds, even with a much simpler proof. Before actually going into the proof, we
state an important consequence of it, which will enable us to get pointwise decay
estimates on a function once suitable L2 norms are bounded.

For m ∈ N define ‖Dm f ‖L∞(Rd ) := supω∈Sd−1 ‖(ω · ∇)m f ‖L∞(Rd ). Notice
that this norm is invariant under rotations of the function f .

Corollary 2.14. Let H ∈ C m(Rn). Then there exists a constant Lm,n < ∞
(depending only on m, n, ‖H‖L∞(Rn) and, ‖DmH‖L∞(Rn)) such that

|H(x)| � Lm,n

(∫
Qx

|H(ξ)|2 dξ
) m

2m+n
,

where Qx is a cube in R
n of side length 2, with x being one of the corners, such

that it is oriented away from x in the sense that x · (ξ − x) � 0 for all ξ ∈ Qx.

Remark 2.15. The constant Lm,n in Corollary 2.14 is invariant under rotations of
the function H . This will be convenient for its application in Sections 2.5 and 2.6.
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Proof. We apply Lemma 2.13 iteratively in each coordinate direction to obtain

|H(x1, x2, . . . , xn)|2+ n
m

� L(1)
m

∫
Ωx1

|H(ξ1, x2, . . . , xd)|2+ n−1
m dξ1

� L(1)
m L(2)

m

∫
Ωx1

∫
Ωx2

|H(ξ1, ξ2, x3 . . . , xd)|2+ n−2
m dξ1 dξ2

� L(1)
m · · · L(n)

m

∫
Ωx1

· · ·
∫

Ωxd

|H(ξ1, . . . , ξd)|2 dξ1 · · · dξn .

The constants L(i)
m , i = 1, . . . , n, only depend on m,

‖H(x1, . . . , xi−1, · , xi+1, . . . , xn)‖L∞(R) � ‖H‖L∞(Rn)

and

‖∂mi H(x1, . . . , xi−1, · , xi+1, . . . , xn)‖L∞(R) � ‖DmH‖L∞(Rn).

Setting Lm,n =∏n
i=1 L

(i)
m yields the stated inequality with Qx = Ωx1×· · ·×Ωxn .

��
Remark 2.16. It is worth noticing that the exponent in Corollary 2.14 is decreasing
in the dimension and increasing in m.

For the proof of Lemma 2.13we need the following interpolation result between
L∞ norms of derivatives of a function.

Lemma 2.17. (Kolmogorov–Landau inequality on the unit interval) Let m � 2 be
an integer. There exists a constant Cm > 0 such that for all w ∈ Wm,∞([0, 1]),

‖w(k)‖L∞([0,1]) � Cm

(‖w‖L∞([0,1])
uk

+ um−k‖w(m)‖L∞([0,1])
)

,

k = 1, . . . ,m − 1,

for all 0 < u � 1.

Proof. The result dates back to Landau and Kolmogorov, who proved it on R

and R
+. A proof of the inequality on a finite interval can be found in the book by

DeVore and Lorentz [24] (pp. 37–39), but for the reader’s convenience we also
give a short proof in Appendix C. ��

For us, the important consequence we are going to make use of is

Corollary 2.18. Let Cm > 0 be the constant from Lemma 2.17. Then for all w ∈
Wm,∞([0, 1]),
‖w(k)‖L∞([0,1]) � 2Cm‖w‖1−k/mL∞([0,1]) max

{
‖w‖k/mL∞([0,1]), ‖w(m)‖k/mL∞([0,1])

}
, (30)

k = 1, . . . ,m − 1.

Proof. If ‖w(m)‖L∞([0,1]) � ‖w‖L∞([0,1]), we choose u = 1 in the bound from
Lemma 2.17, which gives
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‖w(k)‖L∞([0,1]) � 2Cm‖w‖L∞([0,1]).

In this case, and if ‖w(m)‖L∞([0,1]) � ‖w‖L∞([0,1]), we can choose

u = ‖w‖1/mL∞([0,1])‖w(m)‖−1/mL∞([0,1]) � 1

to obtain

‖w(k)‖L∞([0,1]) � 2Cm‖w‖1−k/mL∞([0,1])‖w(m)‖k/mL∞([0,1]).

Together this proves (30). ��
We can now turn to the

Proof of Lemma 2.13. Assumewithout loss of generality that r � 0, so thatΩr =
[r, r + 2]. By the Sobolev embedding theorem h is continuous and we let r∗ be a
point in Ωr where |h| attains its maximum. We can assume that r∗ ∈ [r, r + 1] and
set 〈h〉r∗ :=

∫ r∗+1
r∗ h(ξ) dξ (otherwise we use 〈h〉r∗ :=

∫ r∗
r∗−1 h(ξ) dξ ). Then for

some p � 1 we have

|h(r∗)|p − ∣∣〈h p〉r∗
∣∣ �

∫ r∗+1

r∗
|h p(r∗)− h p(ξ)| dξ

=
∫ 1

0
|h p(r∗)− h p(r∗ + ζ )| dζ.

By a fundamental theorem of calculus, for any ζ ∈ [0, 1], the integrand can be
bounded by

|h p(r∗)− h p(r∗ + ζ )| � p
∫ 1

0
|h(r∗ + sζ )|p−1|h′(r∗ + sζ )|ζ ds

� p sup
s∈[0,1]

|h′(r∗ + sζ )|
∫ 1

0
|h(r∗ + sζ )|p−1ζ ds.

We now use that

sup
s∈[0,1]

|h′(r∗ + sζ )| = sup
x∈[0,ζ ]

|h′(r∗ + x)|

� sup
x∈[0,1]

|h′(r∗ + x)| = ‖h′(r∗ + ·)‖L∞([0,1])

and apply the Kolmogorov–Landau inequality for the first derivative in its multi-
plicative form Corollary 2.18 to the function [0, 1]� x �→h(r∗+x)∈Wm,∞([0, 1])
to obtain

‖h′(r∗ + ·)‖L∞([0,1]) � 2Cm‖h(r∗ + ·)‖1−1/mL∞([0,1])
×max

{
‖h(r∗ + ·)‖1/mL∞([0,1]), ‖h(m)(r∗ + ·)‖1/mL∞([0,1])

}

� 2Cm |h(r∗)|1−1/m max
{
‖h‖1/mL∞(R)

, ‖h(m)‖1/mL∞(R)

}
.
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It follows that

|h(r∗)|p − ∣∣〈h p〉r∗
∣∣ � 2pCm |h(r∗)|1−1/m max

{
‖h‖1/mL∞(R)

, ‖h(m)‖1/mL∞(R)

}

×
∫ 1

0

∫ 1

0
|h(r∗ + sζ )|p−1ζ ds dζ.

The latter integral can be further estimated by

∫ 1

0

∫ 1

0
|h(r∗ + sζ )|p−1ζ ds dζ =

∫ 1

0

∫ ζ

0
|h(r∗ + x)|p−1 dx dζ

�
∫ 1

0

∫ 1

0
|h(r∗ + x)|p−1 dζ dx=

∫ 1

0
|h(r∗ + x)|p−1 dx

=
∫ r∗+1
r∗

|h(ξ)|p−1 dξ �
∫
Ωr

|h(ξ)|p−1 dξ.

Using

∣∣〈h p〉r∗
∣∣ �

∫ r∗+1

r∗
|h(ξ)|p dξ � ‖h‖L∞(Ωr )

∫
Ωr

|h(ξ)|p−1 dξ

� |h(r∗)|1−1/m‖h‖1/mL∞(R)

∫
Ωr

|h(ξ)|p−1 dξ,

we get

|h(r∗)|p � Lm |h(r∗)|1−1/m
∫

Ωr

|h(ξ)|p−1 dξ

with Lm = 2pCm max
{
‖h‖1/mL∞(R)

, ‖h(m)‖1/mL∞(R)

}
+ ‖h‖1/mL∞(R)

, and therefore

|h(r∗)|p−1+1/m � Lm

∫
Ωr

|h(ξ)|p−1 dξ.

Choosing q := p − 1+ 1/m � 1/m then yields

|h(r)|q � |h(r∗)|q � Lm

∫
Ωr

|h(ξ)|q−1/m dξ,

which is the claimed inequality. ��

2.4. Gevrey Smoothing of Weak Solutions for L2 Initial Data: Part I

Equipped with Corollary 2.14 we can construct an inductive scheme based
upon a uniform bound on G(η−)ε(α,1)| f̂ (η−)|. As already remarked, this result
will depend on the dimension, and will actually deteriorate quickly as dimension
increases. Nevertheless it leads to strong regularity properties of weak solutions in
the physically relevant cases.
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Theorem 2.19. Assume that the initial datum f0 satisfies f0 � 0, f0 ∈
L log L(Rd) ∩ L1

m(Rd) for some m � 2, and, in addition, f0 ∈ L2(Rd). Further
assume that the cross-section b satisfies the singularity condition (3) and the inte-
grability condition (4) for d � 2, and for d = 1, b1 satisfies the singularity condition
(6) and the integrability condition (7) for some 0 < ν < 1. Let f be a weak solution

of the Cauchy problem (1) with initial datum f0. Set αm,d := log
(
4m+d
2m+d

)
/ log 2.

Then, for all 0 < α � min
{
αm,d , ν

}
and T0 > 0, there exists β > 0, such that for

all t ∈ [0, T0]
eβt〈Dv〉2α f (t, ·) ∈ L2(Rd), (31)

that is, f ∈ G
1
2α (Rd) for all t ∈ (0, T0].

By decreasing β, if necessary, one even has a uniform bound;

Corollary 2.20. Let T0 > 0. Under the same conditions as in Theorem 2.19 there
exit β > 0 and M1 <∞ such that

sup
0≤t≤T0

sup
η∈Rd

eβt〈η〉2α | f̂ (t, η)| ≤ M1. (32)

Remark 2.21. (i) For strong singularities, the restriction on the Gevrey class
originates in the bound on the commutation error,with the best value in d = 1
dimension. The aim of part II below will be to recover the two-dimensional
result in any dimension d � 2. Under slightly stronger assumptions on the
angular cross-section, which still covers all physically relevant cases, we can
get the one-dimensional result in any dimension d � 1, see part III.

(ii) In dimensions d = 1, 2, 3 andm = 2, corresponding to initial datawith finite

energy, we have α2,d = log
(
8+d
4+d
)

/ log 2 � log
( 11
7

)
/ log 2 	 0.652077.

This means that for ν = 1
2 the weak solution gets analytic and even ultra-

analytic for ν > 1
2 .

(iii) In the case of physical Maxwellian molecules, where ν = 1
4 , in three dimen-

sions andwith initial datumhaving finitemass, energy and entropy,we obtain
Gevrey G2(R3) regularity.

(iv) Even though the range of α in Theorem 2.19 above deteriorates as the dimen-
sion increases, it only fails to cover (ultra-)analyticity results in dimensions
d � 6. Theorems 2.29 and 2.34 below yield results uniformly in the dimen-
sion.

We will prove Theorem 2.19 inductively over suitable length scales ΛN →∞
as N →∞ in Fourier space. To prepare for this, we fix someM <∞, 0 < T0 <∞
and introduce

Definition 2.22. (Hypothesis Hyp1Λ(M)) Let M � 0. Then for all 0 ≤ t ≤ T0

sup
|ζ |�Λ

G(t, ζ )ε(α,1)| f̂ (t, ζ )| � M. (33)
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Remark 2.23. Recall that G(t, ζ ) = eβt〈ζ 〉α , that is, it depends on α, β, and t , and
also f is a time dependent function, even though we suppress this dependence in
our notation. Thus Hyp1Λ(M) also depends on the parameters in G(t, ζ ) and on
M and T0, which, for simplicity, we do not emphasise in our notation. We will
later fix some T0 > 0 and a suitable large enough M . The main reason why this
is possible is that, since ‖ f̂ ‖L∞ ≤ ‖ f ‖L1 = ‖ f0‖L1 < ∞, for any Λ,β, T0 > 0
the hypothesis Hyp1Λ(M) is true for large enough M and even any M > ‖ f0‖L1

is possible by choosing β > 0 small enough.

A first step into the inductive proof is the following:

Lemma 2.24. Let α �ν and define cb,d := |Sd−2| ∫ π
2

0 sind θ b(cos θ) dθ for d �3,

cb,2 :=
∫ π

2
0 sin2 θ b(cos θ) dθ , cb,1 :=

∫ π
4
−π

4
sin2 θ b1(θ) dθ , which are finite by the

integrability assumptions (4) and (7), and let β ≤ C̃ f0
(1+2d−1) cb,dαT0M+1 . Then, for

any weak solution of the homogenous Boltzmann equation,

Hyp1Λ(M) ⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1√2Λ(Dv) f0‖L2(Rd ) e
C f0T0 (34)

for all 0 ≤ t ≤ T0.

Remark 2.25. The main point of this lemma is that the right hand side of (34) does
not depend on M . This is crucial for our analysis and might seem a bit surprising,
at first. It is achieved by making β small enough.

Proof. Let d ≥ 2. Since cot2 θ
2 � 1 for θ ∈ [0, π

2 ] and cot2 ϑ � 1 for ϑ ∈ [0, π
4 ],

we can bound ε(α, cot2 θ
2 ) and ε(α, cot2 ϑ) by ε(α, 1) in the integrals Id,

√
2Λ and

I+
d,
√
2Λ

from Lemma 2.10.

Assume Hyp1Λ(M) holds. Then

G(t, ζ )ε(α,1)| f̂ (t, ζ )| � M for all |ζ | � Λ.

In particular, the terms containing η− in Id,
√
2Λ and I+

d,
√
2Λ

can be bounded by M .
Thus, these integrals can now be further estimated by

Id,
√
2Λ � αβt M |Sd−2|

∫ π
2

0
sind θ b(cos θ) dθ

∫
Rd
|G√2Λ(η) f̂ (η)|2 〈η〉2α dη

= αβt M cb,d‖G√2Λ f ‖2Hα(Rd )

and,

I+
d,
√
2Λ

� 2dαβt M |Sd−2|
∫ π

4

0
sind ϑ b (cos 2ϑ) dϑ

×
∫
Rd
|G(η+) f̂ (η+)|2〈η+〉2α dη+.
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In the ϑ integral, we bound sin ϑ � sin(2ϑ) to obtain

I+
d,
√
2Λ

� 2d−1αβt M cb,d‖G√2Λ f ‖2Hα(Rd )
.

By Lemma 2.10, the commutation error corresponding to the weight G√2Λ is thus
bounded by∣∣∣〈Q( f,G√2Λ f )− G√2ΛQ( f, f ),G√2Λ f

〉∣∣∣ � Id,
√
2Λ + I+

d,
√
2Λ

� (1+ 2d−1) αβt M cb,d‖G√2Λ f ‖2Hα(Rd )
. (35)

With Corollary 2.4 we then have

‖G√2Λ f ‖2L2(Rd )
� ‖1√2Λ(Dv) f0‖2L2 +

∫ t

0
2C f0‖G√2Λ f ‖2L2(Rd )

dτ

+
∫ t

0
2

(
− C̃ f0‖G√2Λ f ‖2Hν (Rd )

+
(
(1+ 2d−1) αβt M cb,d + β

)
‖G√2Λ f ‖2Hα(Rd )

)
dτ.

Since α � ν and β ≤ C̃ f0
(1+2d−1)cb,d αT0M+1 , this implies

‖G√2Λ f ‖2L2(Rd )
� ‖1√2Λ(Dv) f0‖2L2(Rd )

+
∫ t

0
2C f0‖G√2Λ f ‖2L2(Rd )

dτ,

and with Gronwall’s inequality,

‖G√2Λ f ‖2L2(Rd )
� ‖1√2Λ(Dv) f0‖2L2(Rd )

e2C f0T0 (36)

follows.
For d = 1, we note that, with the obvious change in notation, the above proof

literally translates to the Kac equation. ��
The second ingredient gives a uniform bound in terms of a weighted L2 norm

and some a priori uniform bound on some higher derivative of f̂ .

Lemma 2.26. Assume that there exist finite constants Am and B, such that

‖ f (t, ·)‖L1
m

� Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B (37)

for some integer m � 2 and for all 0 ≤ t ≤ T0. Set

Λ̃ := 1+√2

2
Λ (38)

and assume furthermore that

Λ ≥ Λ0 := 4
√
d√

2− 1
. (39)

Then for all |η| ≤ Λ̃,

| f̂ (t, η)| � K1 G(t, η)−
2m

2m+d for all 0 � t � T0, (40)

with a constant K1 depending only on the dimension d, m, Am, and B.
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Remark 2.27. The exponent 2m
2m+d in equation (40) comes from Corollary 2.14,

choosing n = d. This is responsible for our definition of αm,d , since then
ε
(
αm,d , 1

) = 2m
2m+d .

Remark 2.28. The assumptions of Lemma 2.26 are quite natural: since the Boltz-
mann equation conserves mass and kinetic energy does not increase, we have the a
priori estimate

‖ f (t, ·)‖L1
2(R

d ) � ‖ f0‖L1
2(R

d ) =: A2,

and due to the known results on moment propagation for the homogeneous Boltz-
mann equation in the Maxwellian molecules case, we have

f0 ∈ L1
m(Rd) �⇒ f (t, ·) ∈ L1

m (Rd) uniformly in t ≥ 0

for any m > 2 in addition to assumptions (8).4

The importance of Lemma 2.26 is that it effectively converts a local L2 bound
on suitable balls into a pointwise bound on slightly smaller balls.

Proof of Lemma 2.26. By theRiemann–Lebesgue lemma, the function f̂ has con-
tinuous and bounded derivatives of order up tom. Since for anymulti-index α ∈ N

d
0

one has ∂α f̂ = (−2π i)|α| v̂α f , we obtain the bound

‖Dm f̂ (t, ·)‖L∞(Rd ) = sup
ω∈Sd−1

‖(ω · ∇)m f̂ (t, ·)‖L∞(Rd )

� sup
ω∈Sd−1

sup
η∈Rd

∑
|α|=m

(
m

α

)
|ωα| |∂α f̂ (η)|

� (2π)m sup
ω∈Sd−1

∫
Rd

∑
|α|=m

(
m

α

)
|ωαvα| f (v) dv

� (2π)m sup
ω∈Sd−1

∫
Rd

(ω · v)m f (v) dv

� (2π)m
∫
Rd
|v|m f (v) dv

� (2π)m‖ f (t, ·)‖L1
m (Rd ) � (2π)m Am

Of course, also ‖ f̂ ‖L∞(Rd ) � ‖ f ‖L1(Rd ) � Am .

Let η ∈ R
d such that |η| � Λ̃. By Corollary 2.14 applied to the function f̂ ,

there is a constant Lm,d that depends only on d,m, and Am such that

| f̂ (η)| � Lm,d

(∫
Qη

| f̂ (ζ )|2 dζ
) m

2m+d
,

4 For more on moment propagation see, for instance,Villani’s review ([49] pp. 73ff) and
references therein.
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where Qη is the cube of side length 2 at η, such that all sides are oriented away
from the origin. The definitions of Λ̃ and Λ0 guarantee by Pythagoras’ theorem,
that, for |η| � Λ̃, Qη always stays inside the ball around the origin with radius√
2Λ. Since the orientation of Qη is such that η is the point closest to the origin

and the weight G is radial and increasing, we have

| f̂ (η)| � Lm,d

(
G(η)−2

∫
Qη

G(ζ )2| f̂ (ζ )|2 dζ
) m

2m+d

� Lm,d G(η)−
2m

2m+d

(∫
{|η|�√2Λ}

G(ζ )2| f̂ (ζ )|2 dζ
) m

2m+d

� Lm,d B
2m

2m+d G(η)−
2m

2m+d .

Setting K1 := Lm,d B
2m

2m+d yields the claimed inequality. ��
Proof of Theorem 2.19. ByLemma2.24, 2.26, andRemark 2.28, a suitable choice
for Am , B, and the length scales ΛN is

B := ‖ f0‖L2(Rd )e
C f0T0 ,

Am := sup
t�0
‖ f (t, ·)‖L1

m (Rd ) <∞,

and

ΛN := ΛN−1 +
√
2ΛN−1

2
= 1+√2

2
ΛN−1 =

(
1+√2

2

)N

Λ0

with Λ0 from (39).
Furthermore, we set

M1 := max {2Am + 1, K1} ,
with the constant K1 from equation (40).

For the start of the induction, we need Hyp1Λ0
(M1) to be true. Since

sup
0≤t≤T0

sup
|η|≤Λ0

G(η)ε(α,1)| f̂ (η)| ≤ eε(α,1)βT0(1+Λ2
0)

α

Am,

and from our choice of M1, there exists β0 > 0 such that Hyp1Λ0
(M1) is true for

all 0 ≤ β ≤ β0.
Now, we choose

β = min

(
β0,

C̃ f0

(1+ 2d−1)cb,d αT0M1 + 1

)
.

With this choice the conditions of Lemmas 2.24 and 2.26 are fulfilled and
Hyp1Λ0

(M1) is true.
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For the induction step assume that Hyp1ΛN
(M1) is true. Then Lemma 2.24

gives

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖1√2ΛN

(Dv) f0‖L2(Rd ) e
C f0T0 � B.

Note that ε(α, 1) ≤ 2m
2m+d , since α � min

{
αm,d , ν

}
, see Remark 2.27. In addition,

ΛN+1 = Λ̃N , so Lemma 2.26 shows

sup
|η|≤ΛN+1

G(η)ε(α,1)| f̂ (η)| ≤ K1 � M1,

that is, Hyp1ΛN+1(M1) is true. By induction, it is true for all N ∈ N. Invoking
Lemma 2.24 again, we also have

‖G√2ΛN
f ‖L2(Rd ) � B

for all N ∈ N and passing to the limit N → ∞, we see ‖G f ‖L2(Rd ) � B, which
concludes the proof of the theorem. ��
Proof of Corollary 2.20. The proof of Theorem 2.19 showed that given T0 > 0
there exists M1 > 0 and β > 0 such that Hyp1ΛN (M1) is true for all N ∈ N. This
clearly implies (32).

2.5. Gevrey Smoothing of Weak Solutions for L2 Initial Data: Part II

The results of Part I are best in one dimension and give the correct smoothing
in terms of the Gevrey class for ν not too close to one, more precisely ν ≤ αm,d .
In order to improve this in higher dimensions d � 2 and for a larger range of
singularities 0 < ν < 1, the commutator estimates have to be refined. We have

Theorem 2.29. Let d ≥ 3. Assume that the initial datum f0 satisfies f0 � 0,
f0 ∈ L log L(Rd) ∩ L1

m(Rd) for some m � 2, and, in addition, f0 ∈ L2(Rd).
Further assume that the cross-section b satisfies the singularity condition (3) and
the integrability condition (4) for some 0 < ν < 1. Let f be a weak solution of the
Cauchy problem (1) with initial datum f0, then for all 0 < α � min

{
αm,2, ν

}
and

T0 > 0, there exists β > 0, such that for all t ∈ [0, T0]

eβt〈Dv〉2α f (t, ·) ∈ L2(Rd), (41)

that is, f ∈ G
1
2α (Rd) for all t ∈ (0, T0].

In particular, the weak solution is real analytic if ν = 1
2 and ultra-analytic if

ν > 1
2 .

The beauty of this theorem is that, in contrast to Theorem 2.19, its result does
not deteriorate as dimension increases. We also have a corollary similar to Corol-
lary 2.20, however with a weaker conclusion. Moreover, it is not uniform in the
time t ≥ 0 but only holds on finite, but arbitrary, time intervals [0, T0].
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Corollary 2.30. Under the same assumptions as in Theorem 2.29, for any weak
solution f of the Cauchy problem (1) and any 0 < T0 <∞ there exists β̃ > 0 and
M <∞ such that

sup
0≤t≤T0

sup
η∈Rd

eβ̃t〈η〉2α | f̂ (t, η)| ≤ M. (42)

The proof of Theorem 2.29 is again based on an induction over length scales in
Fourier space. Having a close look at the integrals Id,Λ and I+d,Λ from Lemma 2.10
and using that ε(α, γ ) is decreasing in γ , one sees that it should be enough to bound
expressions of the form

∫
Sd−2(η)

G(η−)ε(α,1)| f̂ (η−)|1 Λ√
2

(|η−|) dω

and

∫
Sd−2(η+)

G(η−)ε(α,1)| f̂ (η−)|1 Λ√
2

(|η−|) dω

uniformly in η and θ , respectively η+ and ϑ , with the parametrization (25), respec-
tively (28), that is, instead of having to use the purely pointwise estimates expressed
in the hypothesis Hyp1Λ from the previous section, one can take advantage of aver-
aging over codimension 2 spheres first. This motivates

Definition 2.31. (Hypothesis Hyp2Λ(M)) Let M � 0 be finite. Then for all 0 ≤
t ≤ T0,

sup
ζ∈Rd\{0}

sup
(z,ρ)∈AΛ

∫
Sd−2(ζ )

G
(
t, z ζ

|ζ | − ρω
)ε(α,1) ∣∣∣ f̂ (t, z ζ

|ζ | − ρω
)∣∣∣ dω � M,

(43)

where AΛ = {(z, ρ) ∈ R
2 : 0 � z � ρ, z2 + ρ2 � Λ2} and S

d−2(ζ ) = {ω ∈ R
d :

ω ⊥ ζ, |ω| = 1}.

Again, we have

Lemma 2.32. Let α � ν, define cb,d,2 =
∫ π

2
0 sind θb(cos θ) dθ (which is finite by

the integrability assumption (4)), and let β ≤ C̃ f0
(1+2d−1)cb,d,2αT0M+1 . Then, for any

weak solution of the homogenous Boltzmann equation,

Hyp2Λ(M) ⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1√2Λ(Dv) f0‖L2(Rd ) e
C f0T0 (44)

for all 0 ≤ t ≤ T0.
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Proof. Using the monotonicity of ε(α, γ ) in γ and (24) one sees

Id,
√
2Λ ≤ αβt

∫
Rd

(∫ π
2

0

(∫
Sd−2(η)

G(η−)ε(α,1) | f̂ (η−)|1Λ(|η−|) dω
)

× sind θ b(cos θ) dθ

)
|G√2Λ(η) f̂ (η)|2 〈η〉2α dη

where η− = η−(η, θ, ω) is expressed via the parametrization (25). For σ =
(θ, ω) ∈ [0, π

2 ] × S
d−2, one has η− = |η| sin2 θ

2
η
|η| + |η| sin θ

2 cos
θ
2 ω and if

|η| ≤ √2Λ, then |η−| ≤ Λ. Identifying z = |η| sin2 θ
2 and ρ = |η| sin θ

2 cos
θ
2 , and

the direction of ζ with the direction of η, hypothesis Hyp2Λ(M) clearly implies

sup
|η|≤√2Λ

sup
θ∈[0,π/2]

∫
Sd−2(η)

G(η−)ε(α,1) | f̂ (η−)|1Λ(|η−|) dω ≤ M.

It follows that

Id,
√
2Λ � αβt M

∫
Rd

∫ π
2

0
sind θb(cos θ) dθ |G√2Λ(η) f̂ (η)|2 〈η〉 dη

= αβt M cb,d,2‖G√2Λ f ‖2Hα(Rd )
.

Similarly one has

I+
d,
√
2Λ
≤ 2dαβt

∫
Rd

(∫ π
4

0

(∫
Sd−2(η+)

G(η−)ε(α,1) | f̂ (η−)|1Λ(|η−|) dω
)

× sind ϑ b(cos 2ϑ) dϑ

)
|G√2Λ(η+) f̂ (η+)|2 〈η+〉2α dη+,

where η− = η−(η, ϑ, ω) is expressed via the parametrization (28). The vectors η−
and η+ are orthogonal and we have η− = −|η+| tan ϑ ω for (ϑ, ω) ∈ [0, π

4 ] ×
S
d−2(η+).
Setting z = 0 and ρ = |η+| tan ϑ we have ρ = |η−| ≤ Λ in the ϑ and η+

integrals above. Thus Hyp2Λ(M) again implies

sup
|η+|≤√2Λ

sup
ϑ∈[0,π/4]

∫
Sd−2(η+)

G(η−)ε(α,1) | f̂ (η−)|1Λ(|η−|) dω ≤ M.

Hence,

I+
d,
√
2Λ

� 2dαβt M
∫ π

2

0
sind θb(cos θ) dθ

∫
Rd
|G√2Λ(η+) f̂ (η+)|2 〈η+〉 dη+

� 2d−1αβt M cb,d,2‖G√2Λ f ‖2Hα(Rd )
.

The rest of the proof is the same as in the proof of Lemma 2.24. ��
To close the induction process, we next show
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Lemma 2.33. Let β � 1
T0
. Assume that there exist finite constants Am and B, such

that
‖ f (t, ·)‖L1

m
� Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B (45)

for some integer m � 2 and for all 0 ≤ t ≤ T0.

Set Λ̃ := 1+√2
2 Λ and assume that

Λ ≥ Λ0 := 4
√
2√

2− 1
. (46)

Then for all ζ ∈ R
d \ {0} and 0 � z � ρ with ρ2 + z2 � Λ̃2 one has∫

Sd−2(ζ )

∣∣∣ f̂ (t, z ζ
|ζ | + ρω

)∣∣∣ dω � K2 G̃(t, z2 + ρ2)−
2m

2m+2 for all 0 ≤ t ≤ T0

with a constant K2 depending only on d,m, Am, and B. Recall that G̃(t, s) =
eβt (1+s)α .
Proof. Fix 0 < t ≤ T0, ζ ∈ R

d \ {0}, and set F(ρ, z) := f̂ (t, z ζ
|ζ | + ρω), where

we drop, for simplicity, the dependence on the time t in our notation for F . Then,
since ‖ f (t, ·)‖L1

m
≤ Am one has f̂ (t, ·) ∈ C m(Rd) and thus also F ∈ C m(R2)

with ‖F‖L∞ � Am ‖∂mρ F‖L∞ � (2π)m Am , and ‖∂mz F‖L∞ � (2π)m Am and
Corollary 2.14 applied to F yields

∣∣∣ f̂ (z ζ
|ζ | + ρω

)∣∣∣ � Lm,2

(∫ ρ+2

ρ

∫ z+2

z

∣∣∣ f̂ (x ζ
|ζ | + yω

)∣∣∣2 dxdy

) m
2m+2

, (47)

where we also dropped the dependence of f̂ on the time variable t . Furthermore,
we will drop the time dependence of G and G̃ in the following, that is, G(ξ) and
G̃(s) will stand for G(t, ξ), respectively G̃(t, s).

To recover the L2 norm of G√2Λ f in the right hand side of (47) we now need
to take care of three things:

(i) Multiply with a suitable power of the radially increasing weight G;
(ii) Integrate over the missing d − 2 directions, which will be taken care of by

integrating over S
d−2(ζ ) and taking into account additional factors to get

the d-dimensional Lebesgue measure;
(iii) Ensure that the region of integration [ρ, ρ+ 2]× [z, z+ 2]×S

d−2(ζ ) stays
inside a ball of radius

√
2Λ uniformly in the direction of ζ . This we control

by choosing Λ0 large enough (a simple geometric consideration shows that
Λ0 from the statement of Lemma 2.33 works) and restricting ρ and z by
ρ2 + z2 � Λ̃2.

Let z, ρ ≥ 0. In the region of integration in (47), the point ρω+ z η
|η| is closest

to the origin in R
d , and since the weight G is radially increasing, we get

∣∣∣ f̂ (z ζ
|ζ | + ρω

)∣∣∣ � Lm,2G̃
(
z2 + ρ2

)− 2m
2m+2

(∫ ρ+2

ρ

∫ z+2

z
G
(
x ζ
|ζ | + yω

)2 ∣∣∣ f̂ (x ζ
|ζ | + yω

)∣∣∣2 dxdy

) m
2m+2

.

(48)
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Assume that z2+ρ2 ≤ Λ̃2. Then the integration of inequality (48) over S
d−2(ζ )

yields, with an application of Jensen’s inequality (t �→ t
m

2m+2 is concave!),
∫
Sd−2(ζ )

∣∣∣ f̂ (z ζ
|ζ | + ρω

)∣∣∣ dω � Lm,2|Sd−2|
m+2
2m+2 G̃

(
z2 + ρ2

)− 2m
2m+2

×
(∫

Sd−2(ζ )

∫ ρ+2
ρ

∫ z+2
z

G√2Λ

(
x ζ
|ζ | + yω

)2 ∣∣∣ f̂ (x η
|η| + yω

)∣∣∣2 dx dy dω

) m
2m+2

.

Now assume additionally 0 � z � ρ and Λ2
0 � ρ2 + z2 � Λ̃2. Since 0 � z � ρ

we have Λ2
0 � z2 + ρ2 � 2ρ2 and therefore

∫
Sd−2(ζ )

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ
|ζ | + yω

)2 ∣∣∣ f̂ (x ζ
|ζ | + yω

)∣∣∣2 dx dy dω

� 2
d−2
2 Λ2−d

0

∫
Sd−2(ζ )

∫ ρ+2

ρ

∫ z+2

z
G√2Λ

(
x ζ
|ζ | + yω

)2 ∣∣∣ f̂ (x ζ
|ζ | + yω

)∣∣∣2

× yd−2 dx dy dω

� 2
d−2
2 Λ2−d

0 ‖G√2Λ f ‖2L2(Rd )
,

since yd−2 dx dy dω is the d-dimensional Lebesgue measure in the cylindrical
coordinates (x, yω) with x ∈ R, y > 0, ω ∈ S

d−2(ζ ) along the cylinder with axis
ζ . So with the assumption ‖G√2Λ f ‖L2(Rd ) � B we obtain

∫
Sd−2(ζ )

∣∣∣ f̂ (t, z ζ
|ζ | + ρω

)∣∣∣ dω

� Lm,2|Sd−2| m+22m+2
(
2

d−2
2 Λ2−d

0 B2
) m

2m+2
G̃
(
t, z2 + ρ2

)− 2m
2m+2

.

In the case z2 + ρ2 � Λ2
0 we have G̃(t, z2 + ρ2)−1 eβt (1+Λ2

0)
α � 1 and we can

simply bound
∫
Sd−2(ζ )

∣∣∣ f̂ (t, z ζ
|ζ | + ρω

)∣∣∣ dω

≤ G̃
(
t, z2 + ρ2

)− 2m
2m+2

e
2m

2m+2βt (1+Λ2
0)

α |Sd−2| ‖ f̂ (t, ·)‖L∞(Rd )

≤ Am |Sd−2|e1+Λ2
0 G̃
(
t, z2 + ρ2

)− 2m
2m+2

since β ≤ 1/T0, by assumption. So choosing

K2 := max

(
Lm,2|Sd−2| m+22m+2

(
2

d−2
2 Λ2−d

0 B2
) m

2m+2
, Am |Sd−2|e1+Λ2

0

)

finishes the proof of the lemma. ��
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Now we have all the ingredients for the inductive

Proof of Theorem 2.29. By Lemmata 2.32 and 2.33 a suitable choice for Am and
B is

B := ‖ f0‖L2(Rd )e
C f0T0 ,

Am := sup
t�0
‖ f (t, ·)‖L1

m (Rd ) <∞.

Note that the finiteness of Am is guaranteed since f0 ∈ L1
m(Rd), see Remark 2.28.

We further choose the length scales ΛN to be

ΛN := ΛN−1 +
√
2ΛN−1

2
= 1+√2

2
ΛN−1 =

(
1+√2

2

)N

Λ0

with Λ0 now from (46), and we set

M2 := max
{
2|Sd−2|Am + 1, K2

}

with the constant K2 from Lemma 2.33.
For the start of the induction, we need Hyp2Λ0

(M2) to be true. Since

sup
0≤t≤T0

sup
ζ∈Rd\{0}

sup
(z,ρ)∈AΛ0

∫
Sd−2(ζ )

G
(
t, z ζ

|ζ | − ρω
)ε(α,1) ∣∣∣ f̂ (t, z ζ

|ζ | − ρω
)∣∣∣ dω

≤ |Sd−2|eβT0(1+Λ2
0)

α

Am

and from our choice of M2 there exists β0 > 0 such that Hyp2Λ0
(M2) is true for

all 0 ≤ β ≤ β0.
Now, we choose

β = min

(
β0, T

−1
0 ,

C̃ f0

(1+ 2d−1)cb,d,2 αT0M2 + 1

)
.

With this choice the conditions of Lemmas 2.32 and 2.33 are fulfilled and
Hyp2Λ0

(M2) is true.
For the induction step assume that Hyp2ΛN

(M2) is true. Then Lemma 2.32
gives

‖G√2ΛN
f ‖L2(Rd ) ≤ ‖1√2ΛN

(Dv) f0‖L2(Rd ) e
C f0T0 ≤ B

and then, since ε(α, 1) ≤ 2m
2m+2 by our choice of α, and ΛN+1 = Λ̃N , Lemma 2.33

shows that Hyp2ΛN+1(M2) is true, so by induction, it is true for all N ∈ N. Invoking
Lemma 2.32 again, we also have

‖G√2ΛN
f ‖L2(Rd ) � B

for all N ∈ N and letting N →∞, we see ‖G f ‖L2(Rd ) � B, which concludes the
proof of Theorem 2.29. ��
Proof of Corollary 2.30. Theorem 2.29 shows that G f ∈ L2(Rd) for all 0 � t �
T0. applying Corollary 2.14 with n = d to f̂ yields
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| f̂ (η)| � Lm,dG(η)−
2m

2m+d

(∫
Qη

G(ζ )2| f̂ (ζ )|2 dζ
) m

2m+d

� Lm,d‖G f ‖
2m

2m+d
L2(Rd )

G(η)−
2m

2m+d ,

where we also used that the Fourier multiplier is radially increasing. This proves
the uniform bound (42) with β̃ = β 2m

2m+d . ��

2.6. Gevrey Smoothing of Weak Solutions for L2 Initial Data: Part III

Under the slightly stronger assumption that the angular collision cross-section
b is bounded away from the singularity, we can state our theorem about Gevrey
regularisation in its strongest form.

Theorem 2.34. Assume that the initial datum f0 satisfies f0 � 0, f0 ∈
L log L(Rd) ∩ L1

m(Rd) for some m � 2, and, in addition, f0 ∈ L2(Rd). Fur-
ther assume that the cross-section b in dimensions d � 2 satisfies the singularity
condition (3) for some 0 < ν < 1 and the boundedness condition (16). Let f
be a weak solution of the Cauchy problem (1) with initial datum f0, then for all
0 < α � min

{
αm,1, ν

}
and all T0 > 0, there exists β > 0, such that for all

t ∈ [0, T0]
eβt〈Dv〉2α f (t, ·) ∈ L2(Rd), (49)

that is, f ∈ G
1
2α (Rd) for all t ∈ (0, T0].

In particular, the weak solution is real analytic if ν = 1
2 and ultra-analytic if

ν > 1
2 .

Remark 2.35. Thus, under a slightly stronger assumption on b than in Theo-
rem 2.19, which we stress are nevertheless fulfilled in any physically reasonable
cases, we can prove the same regularity in any dimension as can be obtained for
radially symmetric solutions of the homogenous Boltzmann equation.

Corollary 2.36. Under the same assumptions as in Theorem 2.34, for any weak
solution f of the Cauchy problem (1) and any 0 < T0 <∞ there exists β > 0 and
M <∞ such that

sup
0≤t≤T0

sup
η∈Rd

eβt〈η〉2α | f̂ (t, η)| ≤ M. (50)

Proof. Given Theorem 2.34, the proof of Corollary 2.36 is the same as the proof
of Corollary 2.30. ��

The proof of Theorem 2.34 shows the delicate interplay between the angular
singularity of the collision kernel, the strict concavity of theGevreyweights, and the
use of averages of the weak solution in Fourier space, together with our inductive
procedure, which has proved to be successful in Theorems 2.19 and 2.29. Again,
the main work is to bound the expressions Id,Λ and I+d,Λ from Lemma 2.10. Before
we start the proof of Theorem 2.34, we start with some preparations. It is clear
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that we only have to prove Theorem 2.34 in dimension d ≥ 2 and for singularities
ν > α2,m , since otherwise the result is already contained inTheorems 2.19 and 2.29.

Looking at the integral Id,Λ from Lemma 2.10, one has

Id,Λ =αβt
∫
Rd

(∫ π
2

0

∫
Sd−2(η)

sind θb(cos θ)G(η−)
ε
(
α,cot2 θ

2

)
| f̂ (η−)|

× 1 Λ√
2

(|η−|) dω dθ

)
|GΛ(η) f̂ (η)|2 〈η〉2α dη,

wherewe use the parametrization (25) for η− = η−(η, θ, ω). Splitting the θ integral
above at a point θ0 ∈ (0, π

2 ) and using the monotonicity of the cotangent on [0, π
2 ]

and of ε(α, γ ) in γ one sees

Id,Λ ≤ Id,Λ,1 + Id,Λ,2

with

Id,Λ,1 := αβT0 ‖GΛ f ‖2Hα(Rd )

∫ θ0

0
sind θ b(cos θ) dθ

×
(

sup
0<θ≤π

2

sup
0<|η|≤Λ

∫
Sd−2(η)

G(η−(η, θ, ω))
ε
(
α,cot2

θ0
2

)

×| f̂ (η−(η, θ, ω))|1 Λ√
2

(|η−(η, θ, ω)|) dω
)

(51)

and

Id,Λ,2 := Cθ0αβT0 ‖GΛ f ‖2Hα(Rd )

×
(

sup
0<|η|≤Λ

∫ π
2

θ0

∫
Sd−2(η)

G(η−(η, θ, ω))ε(α,1) | f̂ (η−(η, θ, ω))|

×1 Λ√
2

(|η−(η, θ, ω)|) dω dθ

)
, (52)

where Cθ0 is an upper bound for b(cos θ) on [θ0, π
2 ]. Now we choose θ0 > 0 so

small that

ε

(
α, cot2

θ0

2

)
≤ ε(α2,m, 1) = 2m

2m + 2

and note that from Corollary 2.30, since ν > α2,m , there exists a finite M2 such
that

sup
0<θ≤π

2

sup
0<|η|≤Λ

∫
Sd−2(η)

G(η−(η, θ, ω))ε(α2,m ,1) | f̂ (η−(η, θ, ω))|

× 1 Λ√
2

(|η−(η, θ, ω)|) dω ≤ M2 <∞.
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So from (51) we get the bound

Id,Λ,1 ≤ αβT0M2cb,d,2‖GΛ f ‖2Hα(Rd )
(53)

where the finiteness of cb,d,2 follows from the singularity condition and the bound-
edness of b(cos θ) away from θ = 0.

For the integral I+d,Λ from Lemma 2.10, a completely analogous reasoning as

above shows for small enough ϑ0 such that ε(α, cot2ϑ) ≤ ε(α2,m, 1) we also have

I+d,Λ ≤ I+d,Λ,1 + I+d,Λ,2

with

I+d,Λ,1 ≤ 2d−1αβT0M2cb,d,2‖GΛ f ‖2Hα(Rd )
(54)

and

I+d,Λ,2 := 2dCϑ0αβT0 ‖GΛ f ‖2Hα(Rd )

×
(

sup
0<|η+|≤Λ

∫ π
4

ϑ0

∫
Sd−2(η+)

G(η−(η+, ϑ, ω))ε(α,1)

× | f̂ (η−(η+, ϑ, ω))|1 Λ√
2

(|η−(η+, ϑ, ω)|) dω dϑ

)
,

(55)

where we use the parametrization (28) for η− = η−(η+, ϑ, ω) and where Cϑ0 is
an upper bound for b(cos(2ϑ)) on [ϑ0,

π
4 ].

Recall that we always assume α ≤ α1,m , so ε(α, 1) ≤ ε(α1,m, 1) = 2m
2m+1 .

Thus we see that in order to set up our inductive procedure for controlling Id,Λ and
I+d,Λ it is natural to introduce

Definition 2.37 (Hypothesis Hyp3Λ(M)). Let M ≥ 0 be finite, 0 < θ0, ϑ0 < π
4 ,

T0 > 0, and m ≥ 2 an integer. Then for all 0 ≤ t ≤ T0 one has

sup
|η|≤√2Λ

∫ π
2

θ0

∫
Sd−2(η)

G
(
t, η−(η, θ, ω)

) 2m
2m+1

∣∣∣ f̂ (η−(η, θ, ω)
)∣∣∣

× 1Λ(|η−(η, θ, ω)|) dω dθ � M,

(56)

where we use the parametrization given in (25) for η−, and

sup
|η+|≤√2Λ

∫ π
4

ϑ0

∫
Sd−2(η+)

G
(
t, η−(η+, ϑ, ω)

) 2m
2m+1

∣∣∣ f̂ (η−(η+, ϑ, ω)
)∣∣∣

× 1Λ(|η−(η+, ϑ, ω)|) dω dϑ � M,

(57)

where we use the parametrization given in (28) for η−.
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For the induction proof of Theorem 2.34, we again start with

Lemma 2.38. Let M ≥ 0, T0 > 0, m ≥ 2 an integer, αm,2 < ν < 1, 0 < α � ν

and recall cb,d,2 =
∫ π

2
0 sind θb(cos θ) dθ (which is finite by the singularity assump-

tion (4) and the boundedness assumption (16)). Let M2 be from Corollary 2.30

and β ≤ C̃ f0
αT0[(1+2d−1)cb,d,2M2+(Cθ0+2dCϑ0 )M]+1 . Then for any weak solution of the

homogenous Boltzmann equation,

Hyp3Λ(M) ⇒ ‖G√2Λ f ‖L2(Rd ) ≤ ‖1√2Λ(Dv) f0‖L2(Rd ) e
C f0T0 (58)

for all 0 ≤ t ≤ T0.

Proof. Given Lemma 2.10 and the above discussion with the bounds in (53), (54)
and using the hypothesis Hyp3Λ for the terms in (52) and (55), one sees that the
commutation error on the level

√
2Λ is bounded by∣∣∣〈Q( f,G√2Λ f )− G√2ΛQ( f, f ),G√2Λ f

〉∣∣∣
� Id,

√
2Λ + I+

d,
√
2Λ

≤ (1+ 2d−1)αβT0M2cb,d,2‖GΛ f ‖2Hα(Rd )

+ (Cθ0 + 2dCϑ0)αβT0M‖GΛ f ‖2Hα(Rd )
.

Given this bound on the commutation error, the rest of the proof is the same as in
the proof of Lemma 2.24. ��

To close the induction step we also need a suitable version of Lemma 2.33 but
before we prove this we need a preparatory Lemma.

Lemma 2.39. Let H : R
d → R+ be a locally integrable function and let η, η+ ∈

R
d with |η|, |η+| ≥ Λ0 > 0, 0 < θ0 ≤ π

2 , and 0 < ϑ0 ≤ π
8 . Then with the

parametrization η− = η−(η, θ, ω) given in (25) one has

∫ π
2

θ0

∫ 2

0
H
(
η−(η, θ, ω)+ z η

|η|
)
dz dθ

� 2

Λ0 cos θ0

∫ |η|
2 +2

Λ0 sin2
θ0
2

∫ |η|
2

Λ0 sin θ0

H
(
x η
|η| − yω

)
dy dx

for any unit vector ω orthogonal to η.
Moreover, with the parametrization η− = η−(η+, θ, ω) given in (28) one has,

for any Λ̃ ≥ 1+√2
2 Λ0,

∫ π
4

ϑ0

∫ 2

0
H
(
η−(η+, ϑ, ω)+ z η

|η|
)
1 Λ̃√

2

(|η−(η+, ϑ, ω)|) dz dϑ

≤ 1

2Λ0

∫ 2

0

∫ Λ̃√
2

Λ0 tan ϑ0

H
(
x η
|η| − yω

)
dy dx .
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Remark 2.40. The restriction ϑ0 ≤ π
8 is only for convenience, to ensure that

Λ0 tan ϑ0 ≤ Λ̃√
2
.

Proof. Fix η as required and ω orthogonal to it. We want to have a map Φ1 :
(θ, z) �→ Φ1(θ, z) = (x, y) such that

η−(η, θ, ω)+ z η
|η| = x η

|η| − yω.

From the parametrization (25) we read off

x = |η| sin2 θ

2
+ z and y = |η|

2
sin θ

and we can compute the Jacobian going from the (θ, z) variables to (x, y) as
∣∣∣∣∂(x, y)

∂(θ, z)

∣∣∣∣ = | det DΦ1| = |η|
2

cos θ ≥ |η|
2

cos θ0.

Since |η| ≥ Λ0, θ ∈ [θ0, π
2 ], and 0 ≤ z ≤ 2, we have Λ0 sin2

θ0
2 ≤ x ≤

|η| sin2 π
4 = η

2 and Λ0
2 sin θ0 ≤ y ≤ η

2 . Thus, doing a change of variables
(θ, z) = Φ−1

1 (x, y) in the integral we can bound

∫ π
2

θ0

∫ 2

0
H
(
η−(η, θ, ω)+ z η

|η|
)
dz dθ

≤ 2

Λ0 cos θ0

∫ |η|
2 +2

Λ0 sin2
θ0
2

∫ |η|
2

Λ0 sin θ0

H
(
x η
|η| + yω

)
dy dx,

since the map Φ1 is a nice diffeomorphism.
For the second bound the calculation is, in fact, a bit easier, one just has to

take care that |η−| cannot be too large, which is taken into account by the factor
1Λ(|η−|). We now want a map Φ2 : (θ, z) �→ Φ2(θ, z) = (x, y) such that

η−(η+, ϑ, ω)+ z η+
|η+| = x η+

|η+| − yω.

From the parametrization (25) we read off

x = z and y = |η−| = |η+| tan ϑ

and the Jacobian going from the (ϑ, z) variables to (x, y) is simply
∣∣∣∣∂(x, y)

∂(ϑ, z)

∣∣∣∣ = | det DΦ2| = 2|η+| ≥ 2Λ0.

We certainly have 0 ≤ x ≤ 2 and also Λ0 tan ϑ0 ≤ y. Since y = |η−|, we also
have the restriction y ≤ Λ. So the proof of the second inequality follows similar to
the proof of first one. ��

Finally, we can state and prove the second step in our inductive procedure.



Gevrey Smoothing for the Homogeneous Non-cutoff Boltzmann Equation 643

Lemma 2.41. Let β � 1
T0
. Asssume that there exist finite constants Am and B, such

that

‖ f (t, ·)‖L1
m

� Am, and ‖(G√2Λ f )(t, ·)‖L2(Rd ) ≤ B (59)

for some integer m � 2 and for all 0 ≤ t ≤ T0.

Set Λ̃ := 1+√2
2 Λ and assume that

Λ ≥ Λ0 := 3. (60)

Then there exist a finite K3, depending only on d,m, Am, and B such that
Hyp3Λ̃(K3) is true.

Proof. Fix 0 < t ≤ T0, a direction η ∈ R
d \ {0}, and define the function

z �→ F(z) := f̂
(
t, η− + z η

|η|
)

of the single real variable z, where we think of η− as given in the η-parametrization
(25) for some θ andω ∈ S

d−2(η), andwherewedrop, for simplicity, the dependence
on the time t in our notation for F and f . Then, since ‖ f (t, ·)‖L1

m
≤ Am one has

f̂ (t, ·) ∈ C m(Rd) and thus also F ∈ C m(R) with ‖F‖L∞ � Am , ‖∂mz F‖L∞ �
(2π)m Am , and Corollary 2.14 applied to F now gives

| f̂ (η−)| ≤ Lm,1

(∫ 2

0
| f̂ (η− + z η

|η| )|2 dz
) m

2m+2
.

We multiply this with the radially increasing weight G to get

G(η−)
2m

2m+1 | f̂ (η−)| � Lm,1

(∫ 2

0
|G(η− + z η

|η| ) f̂ (η
− + z η

|η| )|2 dz
) m

2m+2
.

Integrating this with respect to ω and θ , where we think of η− = η−(η, θ, ω) in
the parametrization (25), and using Jensen’s inequality for concave functions, one
gets

∫ π
2

θ0

∫
Sd−2(η)

G(η−)
2m

2m+1 | f̂ (η−)| dθ dω

� Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+12m+1

×
(∫ π

2

θ0

∫
Sd−2(η)

∫ 2

0
|G(η− + z η

|η| ) f̂ (η
− + z η

|η| )|2 dz dθ dω
) m

2m+1
. (61)

Now assume that |η| ≥ Λ0. Because of the first part of Lemma 2.39, we can further
bound
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(61) ≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+1

2m+1
(

2

Λ0 cos θ0

) m
2m+1

×
⎛
⎝∫

Sd−2(η)

∫ |η|
2 +2

Λ0 sin2
θ0
2

∫ |η|
2

Λ0 sin θ0

|G(x η
|η| − yω) f̂ (x η

|η| − yω)|2 dy dx dω
⎞
⎠

m
2m+1

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+1

2m+1
(

2

Λ0 cos θ0

) m
2m+1

(Λ0 sin θ0)
2−d

×
(∫

Sd−2(η)

∫ |η|
2 +2

Λ0 sin2
θ0
2

∫ |η|
2

Λ0 sin θ0

|G(x η
|η| − yω) f̂ (x η

|η| − yω)|2 yd−2dy dx dω
) m

2m+1
.

Again, the integration measure yd−2dy dx dω is d-dimensional Lebesgue measure
in the cylindrical coordinates (x, yω)with respect to the cylinder in the η direction.
One checks that the condition Λ ≥ Λ0 ≥ 3 ensures that

(Λ̃/2+ 2)2 + (Λ̃/2) ≤ (
√
2Λ)2,

so since |η| � Λ̃, we can extend the integration above to a ball of radius
√
2Λ to

get

(61) ≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+12m+1

(
2

Λ0 cos θ0

) m
2m+1

(Λ0 sin θ0)
2−d‖G√2Λ f ‖

2m
2m+1
L2(Rd )

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+12m+1

(
2

Λ0 cos θ0

) m
2m+1

(Λ0 sin θ0)
2−d B

2m
2m+1 . (62)

If |η| ≤ Λ0 we simply bound

∫ π
2

θ0

∫
Sd−2(η)

G(η−)
2m

2m+1 | f̂ (η−)| dθ dω ≤ ‖ f̂ ‖L∞ π

2
|Sd−2|eβT0(1+Λ2

0/2)

≤ Am
π

2
|Sd−2|e1+Λ2

0/2.

(63)

Concerning the bound in the second half ofHyp3Λ̃, a completely analogous calcula-
tion as the one above, using the secondhalf ofLemma2.39gives forλ0 ≤ |η+| ≤ Λ̃,

∫ π
2

ϑ0

∫
Sd−2(η+)

G
(
t, η−(η+, ϑ, ω)

) 2m
2m+1

∣∣∣ f̂ (η−(η+, ϑ, ω)
)∣∣∣

× 1 Λ√
2

(|η−(η+, ϑ, ω)|) dω dϑ

� Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+12m+1

(
1

2Λ0

) m
2m+1

(Λ0 tan ϑ0)
2−d

×
(∫

Sd−2(η+)

∫ 2

0

∫ Λ̃√
2

0
|G(x η

|η| − yω) f̂ (x η
|η| − yω)|2 yd−2dy dx dω

) m
2m+1

.

(64)
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By our choice of Λ̃ and Λ0, we always have 22 + (Λ̃/2)2 ≤ (
√
2Λ)2, so we can

extend the integration above to the whole ball |η+| ≤ √2Λ to see

(64) ≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+12m+1

(
1

2Λ0

) m
2m+1

(Λ0 tan ϑ0)
2−d‖G√2Λ f ‖

2m
2m+1
L2(Rd )

≤ Lm,1(
π
2 )

m+1
2m+1 |Sd−2| m+12m+1

(
1

2Λ0

) m
2m+1

(Λ0 tan ϑ0)
2−d B

2m
2m+1 . (65)

If |η+| ≤ Λ0 we simply bound as above

∫ π
4

ϑ0

∫
Sd−2(η+)

G(η−)
2m

2m+1 | f̂ (η−)| dϑ dω ≤ Am
π

4
|Sd−2|e1+Λ2

0 . (66)

Now we set K3 equal to the maximum of the constants in (62), (63), (65), (66).
With this choice, K3 depends only on d,m, Am , and B and Hyp3Λ̃(K3) is true. ��
Proof of Theorem 2.34. In view of Lemmata 2.38 and 2.41 a suitable choice for
Am and B is

B := ‖ f0‖L2(Rd )e
C f0T0 , Am := sup

t�0
‖ f (t, ·)‖L1

m (Rd ).

The finiteness of Am is guaranteed since f0 ∈ L1
m(Rd), see Remark 2.28. We again

choose the length scales ΛN to be

ΛN := ΛN−1 +
√
2ΛN−1

2
= 1+√2

2
ΛN−1 =

(
1+√2

2

)N

Λ0

with Λ0 = 3, see (60), and we set

M3 := max
{
2|Sd−2|Am + 1, K3

}
,

with the constant K3 from Lemma 2.41. Since

sup
0≤t≤T0

sup
|η|≤√2Λ

∫ π
2

θ0

∫
Sd−2(η)

G
(
t, η− (η, θω)

) 2m
2m+1

∣∣∣ f̂ (η− (η, θω)
)∣∣∣ dω dθ

≤ π

2
|Sd−2|e

2m
2m+1βT0(1+Λ2

0)
α

Am,

and similarly for the η+ term, it follows from our choice of M3 that there exists
β0 > 0 such that Hyp3Λ0

(M3) is true for all 0 ≤ β ≤ β0.
Now, we pick

β = min

(
β0, T

−1
0 ,

C̃ f0

αT0
[(
1+ 2d−1

)
cb,d,2M2 + (Cθ0 + 2dCv0)M

]+ 1

)
.

with the constant M2 from Corollary 2.30, so that the conditions of Lemma 2.38
and 2.41 are fulfilled.
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For the induction step assume that Hyp3ΛN
(M3) is true. Lemma 2.38 then

implies
‖G√2ΛN

f ‖L2(Rd ) ≤ ‖1√2ΛN
(Dv) f0‖L2(Rd ) e

C f0T0 = B,

and Lemma 2.41 shows that Hyp3ΛN+1(M3) is true.
It follows that Hyp3ΛN

(M3) is true for all N ∈ N, and therefore also

‖G√2ΛN
f ‖L2(Rd ) � B

for all N ∈ N In particular, letting N →∞, we see that ‖G f ‖L2(Rd ) � B, which
concludes the proof of Theorem 2.34. ��

3. Removing the L2 Constraint: Gevrey Regularity and (Ultra-)Analyticity
of Weak Solutions

In this sectionwewill give the proofs of Theorems 1.6, 1.9, and 1.10 in a slightly
more general form. More precisely, we will prove

Theorem 3.1. (Gevrey smoothing I) Assume that the cross-section b satisfies the
singularity condition (3) and the integrability condition (4) for d � 2, and for
d = 1, b1 satisfies the singularity condition (6) and the integrability condition (7)
for some 0 < ν < 1. Let f be a weak solution of the Cauchy problem (1) with
initial datum f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L log L(Rd) for some integer m ≥ 2.
Then, for all 0 < α � min

{
αm,d , ν

}
,

f (t, ·) ∈ G
1
2α (Rd) (67)

for all t > 0, where αm,d = log[(4m+d)/(2m+d)]
log 2 .

Theorem 3.2. (Gevrey smoothing II) Let d ≥ 2. Assume that the cross-section b
satisfies the conditions of Theorem 1.6. Let f be a weak solution of the Cauchy
problem (1) with initial datum f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L log L(Rd) for some
integer m ≥ 2. Then, for all 0 < α � min

{
αm,2, ν

}
,

f (t, ·) ∈ G
1
2α (Rd) (68)

for all t > 0, where αm,2 = log[(4m+2)/(2m+2)]
log 2 . In particular, the weak solution is

real analytic if ν = 1
2 and ultra-analytic if ν > 1

2 in any dimension.

If the integrability condition (4) is replaced by the slightly stronger condition
(16), which is true in all physically relevant cases, we can prove the stronger result

Theorem 3.3. (Gevrey smoothing III) Let d ≥ 2. Assume that the cross-section
b satisfies the conditions of Theorem 1.6 and the condition (16), that is, they are
bounded away from the singularity. Let f be a weak solution of the Cauchy problem
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(1) with initial datum f0 ≥ 0 and f0 ∈ L1
m(Rd) ∩ L log L(Rd) for some integer

m ≥ 2. Then, for all 0 < α � min
{
αm,1, ν

}
,

f (t, ·) ∈ G
1
2α (Rd) (69)

for all t > 0, where αm,1 = log[(4m+1)/(2m+1)]
log 2 .

We even have the uniform bound

Corollary 3.4. Under the same assumptions as in Theorem 3.1 (or 3.2, respec-
tively 3.3), for any weak solution f of the Cauchy problem (1) with initial datum
f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L log L(Rd) for some integer m ≥ 2 and for
any 0 < α � min{αd,m, ν} (or any 0 < α � min{αm,2, ν}, respectively
0 < α � min{αm,1, ν}) there exist constants 0 < K ,C <∞ such that

sup
0≤t<∞

sup
η∈Rd

eK min(t,1) 〈η〉2α | f̂ (t, η)| � C. (70)

Proof of Theorems 3.1 through 3.3. In the case where the initial condition f0
obeys f0 ≥ 0 and f0 ∈ L1

m(Rd) ∩ L log L(Rd) for some integer m ≥ 2, but
is not necessarily in L2(Rd), we use the known H∞ smoothing of the Boltzmann
[4,23,39] and the Kac equation [30] in a mild way (see also Appendix B): for τ > 0
one has f (τ, ·) ∈ L2(Rd) and using this as a new initial condition in Theorems 1.6
through 1.10, and noting that T0 in those theorems is arbitrary, this implies that

f (t, ·) ∈ G
1
2α (Rd) for t > 0.5 ��

Proof of Corollary 3.4. Using known results about propagation of Gevrey regu-
larity by Desvillettes, Furioli, and Terraneo [21] for the non-cutoff homoge-
neous Boltzmann and Kac equation for Maxwellian molecules, the bounds from
Corollary 2.20 through 2.36 extend to all times. ��
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5 A H∞ smoothing effect for the homogeneous non-cutoff Kac equation was first proved
by L. Desvillettes [17], but under the stronger assumption that all polynomial moments
of the initial datum f0 are bounded, i.e. f0 ∈ L1k(R) ∩ L log L(R) for all k ∈ N.
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A L2 Type Reformulation of the Boltzmann and Kac Equations

A reformulation of the weak form (9) of the Boltzmann and Kac equations is
derived. We want to choose a suitable test function ϕ in terms of the weak
solution f itself in the weak formulation of the Cauchy problem (1). We use
ϕ(t, ·) := G2

Λ(t, Dv) f (t, ·) and since this involves a hard cut-off in Fourier space,
we automatically have high regularity of ϕ(t, v) in the velocity variable, the ques-
tion is to have C 1 regularity in the time variable. For this we follow the strategy by
Morimoto et al. [39].

Proposition A.1. Let f be a weak solution of the Cauchy problem (1) with initial
datum f0 satisfying (8), and let T0 > 0. Then for all t ∈ (0, T0], β > 0, α ∈ (0, 1),
and Λ > 0 we have GΛ f ∈ C

([0, T0]; L2(Rd)
)
and

1

2
‖GΛ(t, Dv) f (t, ·)‖2L2(Rd )

− 1

2

∫ t

0

〈
f (τ, ·),

(
∂tG

2
Λ(τ, Dv)

)
f (τ, ·)

〉
dτ

= 1

2
‖1Λ(Dv) f0‖2L2(Rd )

+
∫ t

0

〈
Q( f, f )(τ, ·),G2

Λ(τ, Dv) f (τ, ·)
〉
dτ.

(71)

To ensure that we can use G2
Λ f as a test function in the weak formulation of the

Boltzmann equation, we need the following bilinear estimate on Q(g, f ), which is
a special case of a larger class of functional inequalities by Alexandre [1,2,6].

Lemma A.2. (Functional Estimate on Collision Operator) Assume that the angular
collision cross-section b satisfies assumptions (3)–(4) or (6)–(7), respectively. Then
for any k > d+4

2 there exists a constant C > 0 such that

‖Q(g, f )‖H−k (Rd ) � C‖g‖L1
2(R

d )‖ f ‖L1
2(R

d ). (72)

Proof. This is a direct consequence of Theorem 7.4 in Alexandre’s review [2]:
under the assumptions on b, for any m ∈ R there exists a constant C̃ > 0 such
that 6

‖Q(g, f )‖H−m (Rd ) � C̃‖g‖L1
2ν (Rd )‖ f ‖H−m+2ν2ν (Rd )

.

Since L1(Rd) ⊂ H−s(Rd) for any s > d
2 , we obtain for k > d+4

2 and ν ∈ (0, 1),

‖ f ‖H−k+2ν2ν (Rd )
= ‖〈·〉2ν f ‖H−k+2ν (Rd ) � C‖〈·〉2ν f ‖L1(Rd )

� c‖〈·〉2 f ‖L1(Rd ) = c‖ f ‖L1
2(R

d ),

i.e., L1
2(R

d) ⊂ H−k+2ν2ν (Rd) for any k > d+4
2 and ν ∈ (0, 1). Therefore,

‖Q(g, f )‖H−k (Rd ) � C̃‖g‖L1
2ν (Rd )‖ f ‖H−k+2ν2ν (Rd )

� C‖g‖L1
2(R

d )‖ f ‖L1
2(R

d ).

6 This result is proved in [2] for d = 3, but the proof depends only on assumption (3) and
general properties of Littlewood–Paley decompositions and holds in any dimension d ≥ 1.
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Lemma A.2 implies that for f, g ∈ L1
2(R

d), 〈Q(g, f ), h〉 is well-defined for all

h ∈ Hk(Rd), k > d+4
2 , and one has 〈Q(g, f ), h〉 = 〈Q̂(g, f ), ĥ 〉L2 .

Proof of Proposition A.1. Choosing a constant in time test function ϕ(t, ·) = ψ ∈
C∞0 (Rd) in the weak formulation (9) yields

∫
Rd

f (t, v)ψ(v) dv −
∫
Rd

f (s, v)ψ(v) dv =
∫ t

s
〈Q( f, f )(τ, ·), ψ〉 dτ,

for 0 � s � t � T0 for all ψ ∈ C∞0 (Rd) (this was already remarked by Villani
[48] as an equivalent formulation of (9)). By means of (72) this equality can be
extended to test functions ψ ∈ Hk for k > d+4

2 , in particular one can choose
ψ = G2

Λ f (t, ·) and ψ = G2
Λ f (s, ·), which, taking the sum of both resulting

equations, yields

‖GΛ f (t, ·)‖2L2(Rd )
− ‖GΛ f (s, ·)‖2L2(Rd )

=
〈
f (t, ·),G2

Λ f (t, ·)
〉
−
〈
f (s, ·),G2

Λ f (s, ·)
〉

=
〈
f (t, ·),

(
G2

Λ(t, Dv)− G2
Λ(s, Dv)

)
f (s, ·)

〉

+
∫ t

s

〈
Q( f, f )(τ, ·),G2

Λ f (t, ·)+ G2
Λ f (s, ·)

〉
dτ. (73)

Using Plancherel, the first term on the right hand side of (73) can be estimated by∣∣∣〈 f (t, ·), (G2
Λ(t, Dv)− G2

Λ(s, Dv)
)
f (s, ·)

〉∣∣∣
=
∣∣∣〈 f̂ (t, ·), (G2

Λ(t, ·)− G2
Λ(s, ·)

)
f̂ (s, ·)

〉∣∣∣
�
∫
Rd
| f̂ (t, η)| |G2

Λ(t, η)− G2
Λ(s, η)| | f̂ (s, η)| dη

� |t − s|
∫
Rd

2β〈η〉2αG2
Λ(t, η) dη ‖ f (t, ·)‖L1(Rd )‖ f (s, ·)‖L1(Rd )

� CΛ,T0 |t − s| ‖ f0‖2L1(Rd )
,

and, using that the terms involving the collision operator can, for any k > d+4
2

(compare (72)), be bounded by

|〈Q( f, f )(τ, ·),G2
Λ f (t, ·)〉|

� ‖Q( f, f )(τ, ·)‖H−k (Rd )‖G2
Λ f (t, ·)‖Hk (Rd )

� C‖ f ‖2
L1
2(R

d )

(∫
Rd
〈η〉2kG4

Λ(t, η)| f̂ (t, η)|2 dη
)1/2

� C‖ f ‖2
L1
2(R

d )
‖ f (t, ·)‖L1(Rd )

(∫
Rd
〈η〉2kG4

Λ(T0, η) dη

)1/2

� C ′Λ,T0‖ f0‖2L1
2(R

d )
‖ f0‖L1(Rd )
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for any t ∈ [0, T0], yielding∣∣∣∣
∫ t

s
〈Q( f, f )(τ, ·),G2

Λ f (t, ·)+ G2
Λ f (s, ·)〉 dτ

∣∣∣∣
� 2C ′Λ,T0 |t − s| ‖ f0‖2L1

2(R
d )
‖ f0‖L1(Rd ).

Plugging the latter two bounds into (73) shows that GΛ f ∈ C ([0, T0]; L2(Rd)),
in fact, the map [0, T0] � t �→ ‖GΛ f (t, ·)‖L2(Rd ) is even Lipschitz continuous.
For any test function ϕ ∈ C 1(R+;C∞0 (Rd)) the term involving the partial deriva-
tive ∂tϕ in the weak formulation (9) can be rewritten as

∫ t

0
〈 f (τ, ·), ∂τ ϕ(τ, ·)〉 dτ

= lim
h→0

∫ t

0

〈
f (τ, ·)+ f (τ + h, ·), ϕ(τ + h, ·)− ϕ(τ, ·)

2h

〉
dτ,

since f ∈ C (R+;D ′(Rd)). The integral on the right hand side is well-defined even
for ϕ ∈ L∞([0, T0];W 2,∞(Rd)), in particular for ϕ = G2

Λ f , yielding
∫ t

0

〈
f (τ, ·)+ f (τ + h, ·), ϕ(τ + h, ·)− ϕ(τ, ·)

2h

〉
dτ

=
∫ t

0

〈
f (τ, ·)+ f (τ + h, ·), G

2
Λ f (τ + h, ·)− G2

Λ f (τ, ·)
2h

〉
dτ

= 1

2h

∫ t

0

(
‖GΛ f (τ + h, ·)‖2L2 − ‖GΛ f (τ, ·)‖2L2

)
dτ

+
∫ t

0

〈
f (τ, ·), G

2
Λ(τ + h, Dv)− G2

Λ(τ, Dv)

2h
f (τ + h, ·)

〉
dτ.

Using GΛ f ∈ C ([0, T0]; L2(Rd)) it follows that

1

2h

∫ t

0

(
‖GΛ f (τ + h, ·)‖2L2(Rd )

− ‖GΛ f (τ, ·)‖2L2(Rd )

)
dτ

= 1

2h

∫ t+h

t
‖GΛ f (τ, ·)‖2L2(Rd )

dτ − 1

2h

∫ h

0
‖GΛ f (τ, ·)‖2L2(Rd )

dτ

h→0−→ 1

2
‖GΛ f (t, ·)‖2L2(Rd )

− 1

2
‖GΛ f (0, ·)‖2L2(Rd )

,

where ‖GΛ f (0, ·)‖L2(Rd ) = ‖1Λ(Dv) f0‖L2(Rd ). For the second integral, an appli-
cation of dominated convergence gives

lim
h→0

∫ t

0

〈
f (τ, ·), G

2
Λ(τ + h, Dv)− G2

Λ(τ, Dv)

2h
f (τ + h, ·)

〉
dτ

= 1

2

∫ t

0

〈
f (τ, ·),

(
∂τG

2
Λ

)
(τ, Dv) f (τ, ·)

〉
dτ.
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Putting everything together, we thus have proved equation (71), i.e.

1

2
‖GΛ f ‖2L2(Rd )

=1

2
‖1Λ(Dv) f0‖2L2(Rd )

+ 1

2

∫ t

0

〈
f (τ, ·), (∂τG

2
Λ

)
(τ, Dv) f (τ, ·)

〉
dτ

+
∫ t

0

〈
Q( f, f ),G2

Λ f
〉
dτ.

��

B H∞ Smoothing of the Boltzmann an Kac Equations

We follow the strategy as in our proof of Gevrey regularity, with several simplifi-
cations. Of course, we do not assume that f0 is square integrable! We have

Theorem B.1. (H∞ smoothing for the homogeneousBoltzmann andKac equation)
Assume that the cross-section b satisfies (3)–(4) for d � 2, respectively (6)–(7) for
d = 1, with 0 < ν < 1. Let f be a weak solution of the Cauchy problem (1) with
initial datum satisfying conditions (8). Then

f (t, ·) ∈ H∞(Rd) (74)

for all t > 0.

The proof is known, at least for the three dimensional Boltzmann equation see [39],
we give a proof for the convenience of the reader. Again, one has to use suitable
time-dependent Fourier multipliers. Note that for f0 ∈ L1(Rd) one has

‖ f0‖H−γ (Rd ) ≤ Cd,γ ‖ f0‖L1(Rd )

with Cd,γ =
(∫

Rd 〈η〉−γ dη
)1/2 which is finite for all γ > d/2. We choose γ = d,

for convenience, and

MΛ(t, η) := 〈η〉−deβt log〈η〉1Λ(|η|)
as a multiplier. Then

sup
Λ>0

‖MΛ(0, Dv) f0‖L2(Rd ) = ‖M∞(0, ·) f̂0‖L2(Rd )

= ‖ f0‖H−d (Rd ) ≤ Cd,d‖ f0‖L1(Rd )

The proof of Proposition A.1 carries over and we have

1

2
‖MΛ(t, Dv) f (t, ·)‖2L2(Rd )

− 1

2

∫ t

0

〈
f (τ, ·),

(
∂τ M

2
Λ(τ, Dv)

)
f (τ, ·)

〉
dτ

= 1

2
‖MΛ(0, Dv) f0‖2L2(Rd )

+
∫ t

0

〈
Q( f, f )(τ, ·), M2

Λ(τ, Dv) f (τ, ·)
〉
dτ,

(75)
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and as in the proof of Corollary 2.4, we have

〈Q( f, f ), M2
Λ f 〉 = 〈Q( f, MΛ f ), MΛ f 〉 + 〈MΛQ( f, f )− Q( f, MΛ f ), MΛ f 〉

� −C̃ f0‖MΛ f ‖2Hν + C f0‖MΛ f ‖2L2 + 〈MΛQ( f, f )− Q( f, MΛ f ), MΛ f 〉.
(76)

The replacement of Proposition 2.8 is

Proposition B.2. The commutation error is bounded by

|〈MΛQ( f, f )− Q( f, MΛ f ), MΛ f 〉|
� (1+ 2d−1)cb,d‖ f ‖L1

(
d

2
+ βt

2
2βt/2

)
‖MΛ f ‖2L2 (77)

with the constant cb,d from Lemma 2.24.

Remark B.3. Of course, for any weak solution f of the Boltzmann and Kac equa-
tions,

‖ f ‖L1 = ‖ f (t, ·)‖L1 = ‖ f0‖L1 .

The fact that the commutator is bounded in terms of the L2 norm of MΛ f makes
the proof of H∞ smoothing for the Boltzmann and Kac equations much simpler
than the proof of Gevrey regularity.

Proof. As in the proof of Proposition 2.8, Bobylev’s formula shows

|〈MΛQ( f, f )− Q( f, MΛ f ), MΛ f 〉|
≤
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)
MΛ(η)| f̂ (η)|| f̂ (η−)|| f̂ (η+)|

× |MΛ(t, η)− MΛ(t, η+)| dσ dη

≤ ‖ f̂ ‖L∞
∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)
MΛ(η)| f̂ (η)|| f̂ (η+)|

× |MΛ(t, η)− MΛ(t, η+)| dσ dη,

(78)

where, as before, η± = 1
2 (η±|η|σ). To bound |MΛ(η)−MΛ(η+)|, we let s := |η|2

and s+ = |η+|2. Recall that |η+|2 = |η|2
2 (1+ η

|η| · σ) and

1− s+

s
= 1− |η

+|2
|η|2 = 1

2

(
1− η

|η| · σ
)

.

Again, because of the support condition on the collision kernel b(cos θ), we have
s
2 � s+ � s. Set M̃(s) := (1+ s)−d/2e

βt
2 log(1+s). Then, for |η| ≤ Λ,

MΛ(η)− MΛ(η+) = M̃(s)− M̃(s+)

= (1+ s)−d/2e
βt
2 log(1+s) − (1+ s+)−d/2e

βt
2 log(1+s+)

= (1+ s)−d/2
(
e

βt
2 log(1+s) − e

βt
2 log(1+s+)

)

+
(
(1+ s)−d/2 − (1+ s+)−d/2

)
e

βt
2 log(1+s+). (79)
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Since s ≤ 2s+, we have (1+ s+)−1 ≤ 2(1+ s)−1. Hence

∣∣∣(1+ s)−d/2 − (1+ s+)−d/2
∣∣∣ = d

2

∫ s

s+
(1+ r)−d/2−1 dr

≤ d

2
(1+ s+)−d/2−1(s − s+)

≤ d(1+ s+)−d/2
(
1− s+

s

)
.

In addition, log(1+ s) ≤ log(2(1+ s+)) = log 2+ log(1+ s+). So

∣∣∣e βt
2 log(1+s) − e

βt
2 log(1+s+)

∣∣∣ ≤ βt

2

∫ s

s+
1

1+ r
e

βt
2 log(1+r) dr

≤ βt

2

s

1+ s+
e

βt
2 log(1+s)(1− s+

s

)
≤ βt2

βt
2 e

βt
2 log(1+s+)

(
1− s+

s

)
.

Also log(1+ s) ≤ log(2(1+ s+)) = log 2+ log(1+ s+). These bounds together
with (79) show

∣∣MΛ(η)− MΛ(η+)
∣∣ ≤ (d + βt 2

βt
2

)(
1− |η

+|2
|η|2

)
MΛ(η+)

for all |η| ≤ Λ. Since the integration in (78) is only over |η| ≤ Λ, plugging this
together with ‖ f̂ ‖L∞ � ‖ f ‖L1 into (78) yields

|〈MΛQ( f, f )− Q( f, MΛ f ), MΛ f 〉|

≤ ‖ f ‖L1

(
d + βt 2

βt
2

) ∫
Rd

∫
Sd−1

b

(
η

|η| · σ
)(

1− |η
+|2
|η|2

)

× MΛ(η)| f̂ (η)|MΛ(η+)| f̂ (η+)| dσ dη.

Noting again

MΛ(η)| f̂ (η)|MΛ(η+)| f̂ (η+)| � 1

2

(
(MΛ(η)| f̂ (η)|)2 + (MΛ(η+)| f̂ (η+)|)2

)

and performing the same change of variables for the integral containing η+ as in
the proof of Lemma 2.10 finishes the proof of equation (77). ��

Now we can finish the

Proof of Theorem B.1. Using (75), (76), Proposition B.2, and

∂τ MΛ(τ, η)2 = 2β log〈η〉MΛ(τ, η)2,
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one sees that

‖MΛ(t, Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d + 2C f0

∫ t

0
‖MΛ(τ, Dv) f (τ, ·)‖2L2 dτ

+
∫ t

0

〈
MΛ(τ, Dv) f (τ, ·),

(
β log〈Dv〉 − 2C̃ f0〈Dv〉2ν

)
MΛ(τ, Dv) f (τ, ·)

〉
dτ

+ (1+ 2d−1)cb,d‖ f0‖L1

∫ t

0

(
d

2
+ βτ

2
2

βτ
2

)
‖MΛ(τ, Dv) f (τ, ·)‖2L2 .

Setting

A(β, τ ) := sup
η∈Rd

(
β log〈η〉 − 2C̃ f0〈η〉2ν

)
+ 2C f0

+ (1+ 2d−1)cb,d‖ f0‖L1

(
d

2
+ βτ

2
2

βτ
2

)

= β

2ν

[
log

(
β

4νC̃ f0

)
− 1

]
+ 2C f0

+ (1+ 2d−1)cb,d‖ f0‖L1

(
d

2
+ βτ

2
2

βτ
2

)
,

the above can be bounded by

‖MΛ(t, Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d +
∫ t

0
A(β, τ )‖MΛ(τ, Dv) f (τ, ·)‖2L2 dτ,

and from Gronwall’s lemma we get

‖MΛ(t, Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d exp
(∫ t

0
A(β, τ ) dτ

)
.

Letting Λ→∞, one sees that

‖ f (t, ·)‖2Hβt−d = ‖M∞(t, Dv) f (t, ·)‖2L2 ≤ ‖ f0‖2H−d exp
(∫ t

0
A(β, τ ) dτ

)
.

that is, f (t, ·) ∈ Hβt−d(Rd). Now let β → ∞ to see that f (t, ·) ∈ H∞(Rd) for
any t > 0. ��

Remark B.4. Setting β = γ+d
t , one sees that ‖ f (t, ·)‖Hγ (Rd ) � t−

γ+d
4ν , so the Hγ

norms, in particular the L2 norm, of f (t, ·) blow up at most polynomially as t → 0.

C The Kolmogorov–Landau Inequality

In this section we give a short proof of

Lemma C.1. (Kolmogorov–Landau inequality on the unit interval) Let m � 2 be
an integer. There exists a constant Cm > 0 such that for all w ∈ Wm,∞([0, 1]),
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‖w(k)‖L∞([0,1]) � Cm

(‖w‖L∞([0,1])
uk

+ um−k‖w(m)‖L∞([0,1])
)

,

k = 1, . . . ,m − 1,

for all 0 < u � 1.

For the convenience of the reader, we give a short proof. The following argument is
in part borrowed from R. A. DeVore and G. G. Lorentz’s book [24] (pp. 37–39).

Proof. Since w ∈ Wm,∞([0, 1]), it has absolutely continuous derivatives of order
up to m − 1 and essentially bounded mth derivative.
Let x ∈ [0, 1

2 ] and h ∈ [0, 1
2 ]. Then, by Taylor’s theorem,

w(x + h) = w(x)+
m−1∑
j=1

h j

j !w
( j)(x)+ Rm(x, h)

with the remainder Rm(x, h) = ∫ h0 (h−t)m−1
(m−1)! w(m)(x + t) dt , which can be bounded

by

|Rm(x, h)| � ‖w(m)‖L∞([0,1])
∫ h

0

(h − t)m−1

(m − 1)! dt = hm

m! ‖w
(m)‖L∞([0,1]).

Choosing m − 1 real numbers 0 < λ1 < λ2 < · · · < λm−1 � 1 we obtain for
h ∈ [0, 1

2 ] the system of equations

m−1∑
j=1

λ
j
s
h j

j !w
( j)(x) = w(x + λsh)− w(x)− Rm(x, λsh) for s = 1, · · · ,m − 1.

(80)

Setting

V =

⎛
⎜⎜⎜⎝

λ1 λ21 · · · λm−11
λ2 λ22 · · · λm−12
...

. . .
...

λm−1 λ2m−1 · · · λm−1m−1

⎞
⎟⎟⎟⎠ , w(x) =

⎛
⎜⎜⎜⎜⎝

hw′(x)
h2
2 w′′(x)

...
hm−1

(m−1)!w
(m−1)(x)

⎞
⎟⎟⎟⎟⎠ ,

b(x) =

⎛
⎜⎜⎜⎝

w(x + λ1h)− w(x)− Rm(x, λ1h)

w(x + λ2h)− w(x)− Rm(x, λ2h)
...

w(x + λm−1h)− w(x)− Rm(x, λm−1h)

⎞
⎟⎟⎟⎠ ,

we have Vw(x) = b(x). Since the Vandermonde determinant

det V =
m−1∏
i=1

λi
∏

1� j<l�m−1
(λl − λ j ) �= 0,
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V is invertible and we obtain w(x) = V−1b(x) and therefore
∣∣∣∣h

k

k! w
(k)(x)

∣∣∣∣ � ‖w(x)‖ � ‖V−1‖ ‖b(x)‖, (81)

where ‖ · ‖ is any norm on R
m−1, respectively the induced operator norm on the

space of (m − 1)× (m − 1) real matrices. Choosing for concreteness the �1 norm
on R

m−1, we have

‖b(x)‖ =
m−1∑
s=1

|w(x + λsh)− w(x)− Rm(x, λsh)|

� (m − 1)

(
2‖w‖L∞([0,1]) + hm

m! ‖w
(m)‖L∞([0,1])

)
.

While for our application the size of ‖V−1‖ is of no importance, one can even
explicitly calculate it: The inverse of theVandermondematrix V is explicitly known
(see for instance [25]),

(
V−1

)
αβ
= (−1)α−1 σ

β
m−1−α

λβ

∏
ν �=β(λν − λβ)

, α, β = 1, . . . ,m − 1,

where σ
j
i , i, j = 1, . . . ,m − 2 is the i th elementary symmetric function in the

(m − 2) variables λ1, . . . , λ j−1, λ j+1, . . . , λm−1,

σ
j
i =

∑
1�ν1<···<νi�m−1

ν1,...,νi �= j

λν1 · · · λνi , σ
j
0 := 1.

By means of the identity (Lemma 1 in [25]) we have

m−2∑
i=0

σ
j
i =

m−1∏
ν=1
ν �= j

(1+ λν),

which holds since the λν are all positive, hence

‖V−1‖ = max
1�β�m−1

m−1∑
α=1

∣∣∣∣
(
V−1

)
αβ

∣∣∣∣ = max
1�β�m−1

1

λβ

∏
ν �=β |λν − λβ |

m−1∑
α=1

σ
β
m−1−α

= max
1�β�m−1

1

λβ

m−1∏
ν=1
ν �=β

1+ λν

|λν − λβ | .

Going back to inequality (81), we have so far proved that

hk

k!
∣∣∣w(k)(x)

∣∣∣ � (m − 1)‖V−1‖
(
2‖w‖L∞([0,1]) + hm

m! ‖w
(m)‖L∞([0,1])

)
,
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which yields

∣∣∣w(k)(x)
∣∣∣ � (m − 1)‖V−1‖

(
2k!
hk
‖w‖L∞([0,1]) + hm−k k!

m! ‖w
(m)‖L∞([0,1])

)

� (m − 1)‖V−1‖
(
2m!
hk
‖w‖L∞([0,1]) + hm−k‖w(m)‖L∞([0,1])

)
.

(82)

For x ∈ [ 12 , 1] the same calculations with h replaced by −h prove inequality (82)
in this case as well, so

‖w(k)‖L∞([0,1]) � (m − 1)‖V−1‖
(
2m!
hk
‖w‖L∞([0,1]) + hm−k‖w(m)‖L∞([0,1])

)

(83)

for all h ∈ [0, 1
2 ]. Taking an arbitrary u ∈ [0, 1], inequality (83) implies, with

h = u
2 ∈ [0, 1

2 ],

‖w(k)‖L∞([0,1]) � 2mm!(m − 1)‖V−1‖
(

1

uk
‖w‖L∞([0,1]) + um−k‖w(m)‖L∞([0,1])

)
,

which is the claimed inequality with

Cm = 2mm!(m − 1)‖V−1‖ = 2mm!(m − 1) max
1�β�m−1

1

λβ

m−1∏
ν=1
ν �=β

1+ λν

|λν − λβ | . (84)

��

Remark C.2. The constantCm in equality (84) is far from optimal, but can bemade
small by minimising in the choice of the points 0 < λ1 < · · · < λm−1 � 1, sug-
gesting that the optimal constantmight be obtained bymethods from approximation
theory.
Indeed, by a more refined argument making use of numerical differentiation formu-
las, theminimisers of the associatedmultiplicativeKolmogorov–Landau inequality,
i.e., extremisers of

Mk(σ ) := sup{‖w(k)‖L∞([0,1]) : w ∈ Wm,∞([0, 1]), ‖w‖L∞([0,1]) � 1,

‖wm‖L∞([0,1]) � σ }

are explicitly known (at least for a wide range of parameters m ∈ N and σ � 0).
The optimal Kolmogorov–Landau constants in these cases are given by the end-
point values of certain Chebyshev type perfect splines. We refer to the papers by
Pinkus [43] and Karlin [29], as well as the recent article by A. Shadrin [44] and
references therein.
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D Proof of Lemma 1.1

Proof. Let f ∈ L1
2(R

d) ∩ L log L(Rd). Then

|H( f )| =
∫
Rd

f log+ f dv +
∫
Rd

f log− f dv.

The positive part is bounded by
∫

f log(1+ f ) dv = ‖ f ‖L log L . The negative part
can be controlled by∫

Rd
f log− f dv =

∫
{ f �1}

f log
1

f
dv � Cδ

∫
{ f �1}

f 1−δ dv

� Cδ

(∫
Rd

(1+ |v|2)− 1−δ
δ dv

)δ

‖ f ‖1−δ

L1
2

,

which is finite for 0 < δ < 2
d+2 , having used that for any δ > 0 there exists a

constant Cδ such that log t � Cδtδ for all t � 1.
Conversely, let f ∈ L1

2(R
d) with finite entropy H( f ). Then∫

Rd
f log(1+ f ) dv =

∫
{ f≤1}

f log(1+ f ) dv +
∫
{ f >1}

f log(1+ f ) dv.

On the set where f ≤ 1, we replace f by 1 and where f > 1, we bound 1+ f by
2 f leading to∫

Rd
f log(1+ f ) dv � log 2

∫
Rd

f dv +
∫
Rd

f log f dv +
∫
Rd

f log− f dv.

As above, we conclude∫
Rd

f log(1+ f ) dv � log 2|| f ‖L1(Rd ) + H( f )+ Cδ,d‖ f ‖1−δ

L1
2(R

d )
, (85)

with a finite constant Cδ,d for 0 < δ < 2
d+2 . ��
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