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Abstract

It has long been suspected that the non-cutoff Boltzmann operator has similar
coercivity properties to the fractional Laplacian. This has led to the hope that
the homogenous Boltzmann equation enjoys similar regularity properties to the
heat equation with a fractional Laplacian. In particular, the weak solution of the
fully nonlinear non-cutoff homogenous Boltzmann equation with initial datum in
Lé(Rd) N Llog L(R?), i.e., finite mass, energy and entropy, should immediately
become Gevrey regular for strictly positive times. We prove this conjecture for
Maxwellian molecules.
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1. Introduction

It has long been suspected that the non-cutoff Boltzmann operator with a singu-
lar cross section kernel has similar coercivity properties to the fractional Laplacian
(—A)Y, for suitable 0 < v < 1. This has been made precise by ALEXANDRE,
DESVILLETTES, VILLANI, and WENNBERG [3], see also the reviews by ALEXANDRE
[2] and by ViLLANI [49] for the idea’s history. The suspicion has led to the hope that
the fully nonlinear homogenous Boltzmann equation enjoys regularity properties
similer to the heat equation with a fractional Laplacian given by

oru+ (—A)’'u=0
ul,—o = ug € L'(RY).

Using the Fourier transform one immediately sees that
(e, ) =T Gy 6) with i € LR,
)

p P l lv A( ’ )| <— || ” (R4 < 00,
sup Sup € u(f E = uo L ( )
>0 SER[]

that is, the Fourier transform of the solution is extremely fast decaying for strictly
positive times.

Introducing the Gevrey spaces as in Definition 1.5, it is natural to expect (see,
for example, DESVILLETTES and WENNBERG [23]):

Conjecture. (Gevrey smoothing) Any weak solution of the non-cutoff homogenous
Boltzmann equation with a singular cross section kernel of order v and with initial
datum in Lé(Rd ) N Llog L(RY), i.e., finite mass, energy and entropy, belongs to

the Gevrey class G (R?) for strictly positive times.

The central result of our work is a proof of this conjecture for Maxwellian
molecules. In particular, we prove

Theorem. Assume that the non-cutoff Boltzman cross section has a singularity
1 +2vwith0 < v < 1 and obeys some further technical conditions, which are
true in all physically relevant cases, for details see (3) and (16). Then, for initial
conditions fp € Llog L N L,ln with an integer

2V —1
m>max (2, ——— |,
22 —12V)
any weak solution of the fully non-linear homogenous Boltzmann equation for

Maxwellian molecules belongs to the Gevrey class G for strictly positive times.
In particular, for v < 1og(9/5)/1log(2) >~ 0, 847996, we have m = 2 and the

theorem does not require anything except the physically reasonable assumptions of

finite mass, energy and entropy. If10g(9/5)/1og(2) < v < 1 and we assume only

log2
that fo € Llog LN LY, then we prove that the solution is in G 707 | in particular,

that it is ultra-analytic.
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1. For a more precise formulation of our results, see Theorems 1.6, 1.9, and 1.10
for the case m = 2 and Theorems 3.1, 3.2, and 3.3 below.

2. We would like to stress that our results cover both the weak and strong singu-
larity regimes, where 0 < v < 1/2, respectively 1/2 < v < 1.

3. The theorem above applies to all dimensions d = 1. The physical case for
Maxwellian molecules in dimensiond = 3is v = 1/4.

The main problem for establishing Gevrey regularity is that, in order to use the
coercivity results of ALEXANDRE, DESVILLETTES, VILLANI and WENNBERG [3],
one has to bound a non-linear and non-local commutator of the Boltzmann kernel
with certain sub-Gaussian Fourier multipliers. The main ingredient in our proof is
a new way of estimating this non-local and nonlinear commutator.

1.1. The Non-cutoff Boltzmann and Kac Models

We study the regularity of weak solutions of the Cauchy problem

o f =0 1) 0
fli=o = fo

for the fully nonlinear homogeneous Boltzmann and Kac equation ind = 1 dimen-
sions [14,28].
For d = 2 the bilinear operator Q is given by

0. = [ [ beost) (2 0) = 00 f0) dodva, @)

that is, the Boltzmann collision operator for Maxwellian molecules with angular

collision kernel b depending only on the deviation angle cosf = o - \HL for

o € S~ Here we use the o -representation of the collision process, in which

v+uv vV—U v+ vV—v _
v = « ] *|o*, v, = x| *|a, foro e S471.
2 2 2 2

By symmetry properties of the Boltzmann collision operator Q( f, f), the func-
tion b can be assumed to be supported on angles 6 € [0, F1; for otherwise (see
[49]) it can be replaced by

E(cos 0) = (b(cos ) + b(cos(m — 60)) ]l{ogéé%}.

We will assume that the angular collision kernel b has the non-integrable sin-
gularity

sin?=2 0 b(cos 0) ~ #, asf — 0F 3)

for some ¥k > Q0 and 0 < v < 1, and satisfies

/2
f sin @ b(cos ) df < oo. 4
0
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For inverse s-power forces (in three spatial dimensions), described by the poten-
tial U(r) = rl_‘v, s > 2, the collision kernel is of the more general form
s—35
s—1’
where the angular collision kernel b is locally smooth with a non-integrable singu-
larity

B(Jv — vy|, cos6) = b(cosO)|v —v]¥, y =

sin® b(cosh) ~ KO~172V, =

s—1

The case of (physical) Maxwellian molecules corresponds to the values y = 0,

1
s=5v=q.

Ford = 1 we set

0@, f) =K. )= /R/i b1O) (f(w)gw") — f(w)gw)) dodw,
2
&)

which is the Kac operator for Maxwellian molecules, and angular collision kernel
b1 = 0. The pre- and post-collisional velocities are related by

w'\ _ (cos® —sinb) [(w J—
(w;>_<sin9 cos@)(w*)’ for6 € =3, 51

In the original Kac model b; was chosen to be constant, whereas we will assume,
as in [20], that b; is an even function and has the non-integrable singularity

b1(6) ~ for6 — 0, (6)

K
|@|1+2v ’

with 0 < v < 1 and some « > 0, and further satisfies

g

7
fﬂ b1(0) sin® 6 do < oo. @)

-2

Making use of symmetry properties of the collision operator K (f, f), we can
assume b to be supported on angles # € [—Z, Z1; for otherwise it can be replaced
by its symmetrised version

b1(0) = (b1(0) + b1 (3 — 0)) Ljp<p<

This simple observation will be very convenient for our analysis.
We will mainly work with the weighted L? spaces, defined as

p+ (510) +b1(=F = 0) Lz <p<q)-

s
4

LERY = {f e LP@®D 1 ()7 f e LP@®D),

p 2 1,a € R, with norm

1/p
||f||Lg<Rd)=(/Rd|f<v)|1’<v>“l’dv) )=+ P2
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We will also use the weighted (L2 based) Sobolev spaces

HERY) = [f e S RY () F e Hk(Rd)} . kLEeR,
where H*(R?) are the usual Sobolev spaces given by

HFRY) = {f e S RY: (W f e Lz(Rd)} . keR.

The inner product on L2(R%) is given by (f, g) = fRd f)g()dv.
It will be assumed that the initial datum f # 0 is a non-negative density with
finite mass, energy and entropy, which is equivalent to

fo=0, foeL)(®RY)NLlogL(RY), (8)
where

LlogL(Rd) = Hf : R?Y - R measurable : I fllLogr < oo] ,
where

I fllL1ogL = /Rd |f()log (1 + [ f()]) dv,

and the negative of the entropy is given by H(f) := fRd flog f dv.
The space L} (RY) N L log L(RY) is very natural, since we have

Lemma 1.1. Let f = 0. Then
feLll®R)NLlogLRY) < feLYRY) and H(f) is finite.

This result is well-known to experts. For the reader’s convenience we will give
the proof in Appendix D. The following is the precise definition of weak solutions
which we use:

Definition 1.2. (Weak Solutions of the Cauchy Problem (1) [11,17,48]) Assume

that the initial datum fo is in LI(R?) N Llog LRY). f : Ry x RY — Riis called

a weak solution to the Cauchy problem (1), if it satisfies the following conditions:

() f20, feCRy: Z'RY))NL®[Ry: LYRY) N Llog L(RY));
() (0, = fo;

(iii) For all # = 0, mass is conserved, [ps f(t,v)dv = [pa fo(v) dv, kinetic
energy is decreasing, fRd f@t,v)v>dv < fRd fo(v) v? dv, and the entropy
is increasing, that is, H(f (¢, -)) < H(fo);

(iv) Forallp € € (Ry; C5° (R%)) one has

t
£t ). 0, 0)) = (o 900, ) — /0 (F(2. ), deg(r. ) dr

t
=/ (Q(f. /). ), ¢(x,))dr, forallz =0, €))
0
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where the latter expression involving Q is defined by

(S, 1), ) / / ( )f(v*)f(v)
R2d Jgd-1 v — *|
(U )+ o) —e) — (v*)) dodvdu,,

for test functions ¢ € W>>°(R?) in dimension d = 2, and in one dimension

(Q(f, ). o) = (K(f, ). 9)

= /ﬂ;/i b1(0) g(w)g(w) (p(w') — p(w)) dodwdw,
4

for test functions ¢ € W2 (R), making use of symmetry properties of the
Boltzmann and Kac collision operators and cancellation effects. !

Collecting results from the literature, the following is known regarding the
existence, uniqueness and further properties of weak solutions:

Theorem 1.3. (Arkeryd, Desvillettes, Mischler, Goudon, Villani, Wennberg) There
exists a weak solution of the Cauchy problem (1) in the sense of Definition 1.2. For
d 2 2 momentum and energy are conserved,

/f(t,v)vdv:/ fo(v) vdv, ff(z,u)uzdv=/ fo(w)yv?dv. (10)
R4 R4 R4 R4

In the one dimensional case (Kac equation), momentum is not conserved and energy
can only decrease and is conserved under the additional moment assumption fy €
Lép for some p = 2.

Remark 1.4. d = 2: The existence of weak solutions of the Cauchy problem (1)
with initial conditions satisfying (8) for the homogeneous Boltzmann equation was
first proved by ARKERYD [10,11] (see also the articles by GOUDON [27], VILLANI
[48], and DESVILLETTES [19,20]). Uniqueness in this case was shown by TosCcANI
and VILLANI [45], see also the review articles by MISCHLER and WENNBERG [37]
(for the cut-off case) and DESVILLETTES [19].

d = 1: For the homogeneous non-cutoff Kac equation for Maxwellian
molecules existence of weak solutions was established by DESVILLETTES [17].

1.2. Higher Regularity of Weak Solutions

It has been pointed out by several authors [2,23,49] that, for singular cross-
sections, the Boltzmann operator essentially behaves like a singular integral opera-
tor with a leading term similar to a fractional Laplace operator (—A)". In terms of
compactness properties this has been noticed for the linearised Boltzmann kernel

1 Throughout the text, whenever not explicitly mentioned, we will drop the dependence
on ¢ of a function, i.e. f(v) := f(t, v) etc.
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as early as in [42] and for the nonlinear Boltzmann kernel in [35,36]. Since the
solutions of the heat equation with a fractional Laplacian gain a high amount of
regularity for arbitrary positive times, it is natural to believe, as conjectured in [23],
that weak solutions to the non-cutoff Boltzmann equation gain a certain amount
of smoothness, and even analyticity, for any # > 0. This is in sharp contrast to the
fact that in the Grad’s cutoff case there cannot be any smoothing effect. Instead,
regularity and singularities of the initial datum get propagated in this case, see, for
example, [41].

The discussion about solutions of the heat equation with a fractional Lapla-
cian motivates the following definition of Gevrey spaces, which give a conve-
nient framework to describe this smoothing by interpolating between smooth and
(ultra-) analytic functions.

Definition 1.5. Let s > 0. A function f € L'(R?) belongs to the Gevrey class
G*(RY), if there exists an &9 > 0 such that

S 12
££0(D)! feL*RY), where (D)= (1 + |Dv|2) )

and we use the notation D, = —%VU. Thus, G!(RY) is the space of real analytic
functions, and G*(R?) for s € (0, 1) the space of ultra-analytic functions.

Equivalently, f € G*(R?) if f € €°>°(R¥) and there exists a constant C > 0
such that for all k£ € N one has

ID* fll2ray £ CEFHRYDS,
where | DX 17, = supgi— 107 £1I3,.2

The first regularisation results in this direction were due to DESVILLETTES for
the spatially homogeneous non-cutoff Kac equation [17] and the homogeneous
non-cutoff Boltzmann equation for Maxwellian molecules in two dimensions [18],
where € regularisation is proved. Later, DESVILLETTES and WENNBERG [23]
proved under rather general assumptions on the collision cross-section (excluding
Maxwellian molecules, though) regularity in Schwartz space of weak solutions
to the non-cutoff homogeneous Boltzmann equation. By quite different methods,
using Littlewood—Paley decompositions, ALEXANDRE and EL SAFADI [4] showed
that the assumptions on the cross-section (3)—(4) imply that the solutions are in
H® for any positive time ¢t > 0. By moment propagation results for Maxwellian
molecules (see TRUESDELL [46]) this cannot be improved to regularity in Schwartz
space.

For collision cross-sections corresponding to Debye—Yukawa-type interaction
potentials,

sinf b(cos0) ~ KO '(logd ™" for6 — 0 (with some K > 0, £ > 0),

2 Regarding equivalency, see, for example, Theorem 4 in [33].
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MorimoTo, Ukal, XU and YANG [39] proved the same H° regularising effect
using suitable test functions in the weak formulation of the problem.

The question of the local existence of solutions in Gevrey spaces for Gevrey
regular initial data with additional strong decay at infinity was first addressed in
1984 by UkalI [47], both in the spatially homogeneous and inhomogeneous setting.

We are interested in the Gevrey smoothing effect, namely that under the (physi-
cal) assumptions of finite mass, energy and entropy of the initial data, weak solutions
of the homogeneous Boltzmann equation without cutoff are Gevrey functions for
any strictly positive time. This question was treated in the case of the linearised
Boltzmann equation in the homogeneous setting by MORIMOTO ET AL. [39], where
they proved that, given 0 < v < 1, weak solutions of the linearized Boltzmann

equation belong to the space Gv (R3) for any positive time. In [31], radially symmet-
2

ric perturbations g = g(|v|) around a global Maxwellian p(v) = (Zn)_%e_ 2,
that is, for f in (1),

f) =pn@) +vuw@) g, g =g(v),

were studied by using eigenfunctions of the linearised Boltzmann operator .Z,
where

Lg=—pTI 0, nig) — nTIQ(uTg, ).
In this setting, the authors obtained a Gelfand-Shilov smoothing effect, which
includes Gevrey regularity.

For the non-Maxwellian Boltzmann operator, Gevrey regularity was proved
under very strong unphysical decay assumptions on the initial datum in [34].

For radially symmetric solutions, the homogeneous non-cutoff Boltzmann
equation for Maxwellian molecules is related to the homogeneous non-cutoff Kac
equation. The non-cutoff Kac equation was introduced by DESVILLETTES in [17],
where first regularity results were established, see also DESVILLETTES’ review [20].
For this equation, the best available results so far are due to LEKRINE and XU [30]
and GLANGETAS and NAJEME [26]: LEKRINE and XU [30] proved Gevrey regular-

isation of order i for mild singularities 0 < v < % and all 0 < @ < v. Strong

singularities % < v < 1 were treated by GLANGETAS and NAJEME [26], where

they prove that for v = 1 the solution becomes Gevrey regular of order % for any
0<a< % and Gevrey regular of order 1, that is, analytic, when % < v < 1. Thus,
in the critical case v = %, the result of [26] misses the analyticity of weak solutions
and does not prove ultra-analyticity in the range 1/2 < v < 1. Moreover, both
results are obtained under the additional moment assumption fj € L; 12, (R).

Ultra-analyticity results have previously been obtained by MoriMoTO and XU
[40] for the homogeneous Landau equation in the Maxwellian molecules case and
related simplified models in kinetic theory. The analysis of smoothing properties of
the Landau equation is quite different from the Boltzmann and Kac equations. The
Landau equation explicitly contains a second order elliptic term, which yields coer-
civity, and, more importantly, certain commutators with weights in Fourier space
are identically zero, which simplifies the analysis tremendously, see Proposition
2.2 in [40].
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For the nonlinear non-cutoff homogeneous Boltzmann equation some partial
results regarding Gevrey regularisation were obtained by MoriMOTO and UKAI
[38] including the non-Maxwellian molecules case, but under the strong additional
assumptions of Maxwellian decay and smoothness of the solution. Still with these
strong decay assumptions, YIN and ZHANG [50,51] extended this result to a larger
class of kinetic cross-sections.

The non-Maxwellian case is considerably harder, since Bobylev’s identity has
a much more complicated form. Assuming that the Boltzmann collision kernel can
be factorised into a relative velocity (kinetic) part and an angular part,

B(|v — vy], cosO) = @(Jv — vy]) b(cosO),

the following smoothing results are known (for the precise assumptions in each
case we refer to the articles):

1. Using Littlewood—Paley theory, ALEXANDRE and ELSAFADI [5] were able to
prove H* smoothing of weak solutions for a regularised kinetic factor @ (v) =
(v)”.

2. ALEXANDRE, MORIMOTO, UKAIL, XU, YANG [9] proved H*° smoothing of weak
solutions for the physically relevant kinetic factor @ (v) = |v|Y.

3. CHeN and HE [15] showed H* smoothing, again in the physically relevant
case @ (v) = |v|” for the strong solutions constructed by DESVILLETTES and
MouHoT [22]. They were also able to generalise their result to show H™
smoothing in the inhomomogeneous case [16].

In the spatially inhomogeneous case, the collision operator is highly degener-
ate, since it only acts on the velocity variable. Due to the presence of the transport
term —v - Vi, one expects a transfer of regularity from the velocity variable to
the space variable, and therefore some hypoelliptic smoothing effect in both vari-
ables. This has been highlighted in terms of a generalised uncertainty principle for
kinetic equations by ALEXANDRE, MORIMOTO, UKAI, XU and YANG [7] under strong
assumptions on the initial data and the solutions. For the one-dimensional inho-
mogeneous Kac equation, LERNER, MORIMOTO, PRAVDA-STAROV and XU obtained
Gelfand-Shilov smoothing with respect to the velocity variable and Gevrey smooth-
ing with respect to the space variable for fluctuations around the global equilibrium
[32].

We stress that for the main result of our paper the initial datum is only assumed to
obey the natural assumptions coming from physics, i.e., finiteness of mass, energy
and entropy.

Given 8 > Oanda € (0, 1) we define the Gevrey multiplier G : R, xRY — R
by

Gt,n) = P10
and for A > 0 the cut-off Gevrey multiplier G 4 : R, x RY — R by

Ga(t,n) =G, mMLa(nl),
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where 1 4 is the characteristic function of the interval [0, A]. The associated Fourier
multiplication operator is denoted by G 4 (¢, D),

(G, D100 i= [ Gattom fitm @ an = 771 (G40, f,].

We use the following convention regarding the Fourier transform of a function f
in this article:

F ) = fo = fR e,

The Fourier transform of the Boltzmann operator for Maxwellian molecules
has the form (Bobylev identity, [13])

0 = [ b (i - a) [eofar) = a0 fan)] do.

nl
n+inlo
= (11
for d = 2. There is a similar Bobylev identity for the Kac operator [17]:
S I . .
K. = [ 0@ a0 7o) - g0 fn] as, )
-7

nt =ncosf,n” = nsiné.
A simple, but in a sense important, consequence of Bobylev’s identity is that, for
alld = 1,
PAQ(g, f) = PAQ(Pag. Paf), 13)

where, for convenience, we put P4 := 1 4(D,) for the orthogonal projection onto
Fourier ‘modes’ [n| < A.
Note also that, since G 4 (%, -) has compact support in Rg for any # > 0, one has

Gaf, G4 f € L=(0, Tol; H(R?))
for any finite Ty > 0 and A > 0, if f € L°°([0, Tp]; L' (R?)). This holds, since
1G A f Vs gy S 1 120y 10 G At 2,

S 131y 10 G A (To. Mg

for all s = 0. These functions, due to the cut-off in Fourier space, are even analytic
in a strip containing Rf.

Theorem 1.6. (Gevrey smoothing I) Assume that the cross-section b satisfies the
singularity condition (3) and the integrability condition (4) for d = 2, and for
d =1, by satisfies the singularity condition (6) and the integrability condition (7)
for some 0 < v < 1. Let f be a weak solution of the Cauchy problem (1) with
initial datum satisfying conditions (8). Then, for all 0 < a < min {ozz,d, v},
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ft, ) e Gi(Rd) (14)

log[(8+4d)/(4+d)]

SJorallt > 0, where oz g = Tog 2

Remarks 1.7. (i) In numbers,
a1 = 0.847997, arr = 0.736966, and a3 = 0.652077.

This means, that under only physically reasonable assumptions of finite mass,
energy, and entropy, weak solutions are analytic for v = % and even ultra-

analytic if v > % It is easy to see that ap 4 is decreasing in d and for
d = 6, ar,6 =~ 0.485427, hence, for d = 6, analyticity (respectively ultra-
analyticity) does not follow from this theorem.

(i) For the proof of Theorem 1.6 (and also 1.9 and 1.10 below) it is important that
the energy of f is bounded, which brings in the technical Lemma 2.13 and
its Corollary 2.14. A considerably simpler proof could be given using only
that f € L}(Rd). In this case, a2 4 is replaced by a1 4 = W

(see also Remark 1.11 below). However, o1 3 < 0.4855 in three dimensions,
thus we would not be able to conclude (ultra-)analytic smoothing of weak
solutions for strong singularities % Sv<lL

(iii)) As our theorem above shows, weak solutions of the homogenous Kac equa-
tion become Gevrey regular for strictly positive times for moderately singular
collision kernels with singularity v € (0, %), see (6) for the precise descrip-
tion of the singularity, for v = % they become analytic, which improves
the result of GLANGETAS and NAJEME [26] in this critical case, and even
ultra-anaytic for v € (%, 1).

(iv) Rotationally symmetric solutions f corresponding to rotationally symmet-
ric initial conditions f are Gevrey regular for strictly positive times under
the same conditions as in the one-dimensional case d = 1. The proof is
exactly as the proof of Theorem 3.1 with some small changes in the proof
of Lemma 2.26 where the independence of the solution f on the angular
coordinates can be explicitly used with the n = 1 version of Corollary 2.14.

Remark 1.8. Applying the same strategy as the one we developed for the proof of
Theorem 1.6, we were able to show in [12] a strong smoothing effect also in the
case of Debye—Yukawa type interaction potentials,

sin @ b(cos ) ~ KO '(logd™")¢ for6® — 0 (with some K > 0, £ > 0).

Note that this singularity is much weaker than the type of singularity considered in
the work at hand, which leads to a much weaker coercive term. Nevertheless, the
smoothing effect we prove in [12] corresponds to exactly what one would expect
from the analogy with a logarithmic heat equation 9, f = —(log(1 — A))**+! £.

As already remarked, the result of Theorem 1.6 deteriorates in the dimension.
Under the same assumptions, but using quite a bit more structure of the Boltzmann
operator, we can prove a dimension independent version. Its proof is considerably
more involved than the proof of Theorem 1.6.
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Theorem 1.9. (Gevrey smoothing II) Let d > 2. Assume that the cross-
section b satisfies the conditions of Theorem 1.6. Let f be a weak solution of
the Cauchy problem (1) with initial datum satisfying conditions (8).

Then, for all 0 < a < min {az,z, v},

f@t, ) e G%(Rd) (15)

log(5/3)
log?2

Theorem 1.6, the weak solution is real analytic if v = % and ultra-analytic if v > %
in any dimension.

forallt > 0, where apr = ~ 0.736966. In particular, in contrast to

If the integrability condition (4) is replaced by the slightly stronger condition
that b(cos 0) is bounded away from 6 = 0, that is,

forany 0 < 6y < 7 there exists Cg, < oo such that

16
0 < b(cosh) < Cy, forally <6 < Z, (16)

which is true in all physically relevant cases, we can prove an even stronger result.

Theorem 1.10. (Gevrey smoothing III) Let d > 2. Assume that the cross-section b
satisfies the conditions of Theorem 1.6 and the condition (16), that is, it is bounded
away from the singularity. Let f be a weak solution of the Cauchy problem (1) with
initial datum satisfying conditions (8). Then, for all 0 < a < min {ozz,], v},

ft, ) e Gﬁ(R% (17)

forall t > 0, where ay | = “E35) ~ 0.847997.

Remark 1.11. (i) Since we do not rely on interpolation inequalities between
Sobolev spaces, our results also include the limiting case o« = v, at least if
v < ap, (n =d, 2, 1). Thisis in contrast to all previous results on smoothing
properties of the Boltzmann and Kac equations.

(i1) If higher moments of the initial datum are bounded (and thus stay bounded
eternally due to moment propagation results, see, for instance, VILLANI'S
review [49]), the results in Theorems 1.9 and 1.10 can be improved in the
high singularity case, where v is close to one. Namely, let fo € Llog L N
L} (R?) for some integer m > 2, then the constants a2 4, @72, respectively
a1 are replaced by oy, , = logw‘”":’# (n = d,2,1), which are
strictly increasing towards the limit @, = 1 as m becomes large. See
Theorems 3.1, 3.2 and 3.3 below.

Moreover, we prove that for very strong singularities v, we can prescribe precise
o L L
conditions on the initial datum such that we have f € G2 (Rd).

Theorem 1.12. Given 0 < v < 1, there is m(v) such that, ifm € Nandm > m(v)
1
and fy € LlogL N L}n, the weak solution is in G (R?) for all t > 0.
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More precisely, under the conditions of Theorem 1.6 having m > max (2, %)
vields Gevrey smoothing of order % and under the slightly stronger conditions of

Theorem 1.10 having m > max (2, %) is enough.

Remark 1.13. The proof of this Theorem follows directly from the results of The-
orems 3.1, 3.2, and 3.3 in Section 3, which extend Theorems 1.6, 1.9, and 1.10 to
the case of finite moments m > 2.

The strategy of the proofs of our main results Theorems 1.6, 1.9 and 1.10 is
as follows: we start with the additional assumption fy € L? on the initial datum.
We use the known H* smoothing of the non-cutoff Boltzmann and Kac equa-
tion to allow this. This yields an L? reformulation of the weak formulation of the
Boltzmann and Kac equations which includes suitable growing Fourier multipliers.

The inclusion of sub-Gaussian Fourier multipliers leads to a nonlocal and non-
linear commutator of the Boltzmann and Kac kernels, which turns out to be a
three-linear expression in the weighted solution f on the Fourier side. In order to
bound this expression with L2 norms, one of the three terms has to be controlled
pointwise, including a sub-Gaussian growing factor, see Proposition 2.8. The prob-
lem is that one has to control the pointwise bound with an L? norm, which is in
general impossible. To overcome this obstacle there are several important technical
steps:

(1)  When working on a ball of radius A, we need this uniform control only on a
ball of radius A/ ﬁ, which enables an inductive procedure.

(2) Using the additional a priori information that the kinetic energy is finite,
or, depending on the initial condition, even higher moments are finite, we
transform weighted L2 bounds into pointwise bounds on slightly smaller balls
with an additional loss of power in the weights in Fourier space. Here we rely
on Kolmogorov-Landau type inequalities, see Lemma 2.17 and appendix C.

(3) Use of strict concavity of the Fourier multipliers, see Lemma 2.5, in order to
compensate for this loss of power.

(4) Averaging over a codimension 2 sphere, in the proof of Theorem 1.9, which
allows us to get, in any dimension, the same results as for the two dimensional
Boltzmann equation.

(5) Averaging over a codimension 1 set constructed from a codimension 2 sphere
and the collision angles 6 away from the singularity, and using the fact
that near the singularity, one of the three Fourier weights is not big due
to Lemma 2.5, enables us to get, in any dimension, the same results as for
the one-dimensional Kac equation under the conditions of Theorems 1.10
and 3.3.

Even though some of the auxiliary results which we use in this paper are well-
known to experts in the field of Boltzmann and Kac equation, we usually give the
complete proof of these results in the work at hand to keep it self-contained and
make it more accessible for non-specialists. >

3 Like us.
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2. Gevrey Regularity and (Ultra-)Analyticity of Weak Solutions with 1>
Initial Data

In this section, we will prove the Gevrey smoothing of weak solutions with
initial datum fy satisfying (8) and, additionally, fy € L*(R?).

2.1. L*-Reformulation of the Homogeneous Boltzmann Equation for Weak
Solutions and Coercivity

The following is our starting point for the proof of the regularizing properties
of the homogenous Boltzmann equation:

Proposition 2.1. Let f be a weak solution of the Cauchy problem (1) with initial
datum fy satisfying (8), and let Ty > 0. Then forallt € (0, Tp], B > 0, « € (0, 1),
and A > O0wehave Gof € € ([O, Tol; L2(]Rd)) and

1 1 [
166 D) £ =5 [ (£ (003w, D) £er. ) e o

1 t
= SILADw) follja + /0 (Q(f. HE. . G Do f(x. ) dr.

Informally, equation (18) follows from using ¢(z, -) := Ga(t, Dy) f(t,-) in the
weak formulation of the homogenous Boltzmann equation.

Recall that Gif € L>®([0, To]; H*®(RY)) for any finite Ty > 0, so it misses
the required regularity in time needed to be used as a test function. The proof of
Proposition 2.1 is analogous to MORIMOTO ET AL. [39], for the sake of completeness
and the convenience of the reader, we prove it in appendix A.

The coercive properties of the non-cutoff Boltzmann bilinear operator which
play the crucial role in the smoothing of solutions are made precise in the following
sub-elliptic estimate by ALEXANDRE, DESVILLETTES, VILLANI and WENNBERG [3].
We remark that, while the proof there is given for the Boltzmann equation, it equally
applies to the Kac equation.

Lemma 2.2. (Sub-elliptic Estimate, [3]) Ler g € L)(RY) N Llog L(RY), g = 0
(g £ 0). Assume that the collision cross-section b satisfies (3)—(4) or (6)—(7)
respectively, with 0 < v < 1. Then there exists a constant Cq > 0 (depending only
on the dimension d, the collision kernel b, ||g||L% and ||gllL10g L) and a constant

C > 0 (depending only on d and b), such that for any f € H'(R?) one has
—(Q(g. ), ) Z Cell flF = Cligll Il f117-

Remark 2.3. As explained in, for instance [8], the constant C, is an increasing
function of ||g||.1, ||g||zi1 and ”g”leogL' In particular, if g is a weak solution of
the Cauchy problem (1) with initial datum go € Lé(Rd ) N Llog L(R?), we have
gl = llgolizr ligllzy = ligollzy and liglriogr = log2ligollr + H(go) +
C57d||go||£8, for small enough 8 > 0 (see (85)). This implies that C, = Cg, and
thus
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~(Q(8. ). ) Z Cell fiFpy = Cligl 1172 Z Caol Flw = Cllgoll 1 If 1172
uniformly in ¢z > 0.
Together with Proposition 2.1 the coercivity estimate Lemma 2.2 implies

Corollary 2.4. (A priori bound for weak solutions) Let f be a weak solution of the
Cauchy problem (1) with initial datum fo satisfying (8), and let Ty > 0. Then there
exist constants C fo» Cfo > 0 (depending only on the dimension d, the collision
kernel b, ||f0||L% and || follL1og L) such that for all t € (0, Tp], B > 0, « € (0, 1),

and A > 0 we have

t ~
1GAfII72 SI11A(DY) foll7, +/0 2 (‘Cfo”GAf”%-]V + Cfo||GAf||iz) dr
t
+/O 20Q(f, Gaf) — GaQ(f. [).Gaf)| dT

t
+f0 2B11G 4 f 112 dr. (19)

Proof. We want to apply the coercivity result from Lemma 2.2 to the second integral
on the right hand side of Proposition 2.1. Therefore, we write

(Of, ), GA ) =(GAQ(f, £), Gaf)
=(Q(f,Gaf),Gaf)+(GaQ(f, f) — O(f, Gaf), Gaf)

< ~CplGaflizy +Clfoll 1GaSI7
——
=Cp

+(GaQ(f. ) = Q(f.Gaf). Gaf).

Moreover,
3G (. ) = 2B(n)** G4 (1, ).

Inserting those two results into (18), we obtain
t
IGAfI72 S11A(DY) foll72 + 28 fo 1Gaf (T, )5 dt
t
+2 [ (<CalGasty +CollOafiiz) dr

+2/O (GaQ(f, ) = Q(f. Gaf), Gaf)dr.

The term (GA Q(f, f) — Q(f, Ga f), G f) is called commutation error.
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2.2. Bound on the Commutation Error

Next, we prove a new bound on the commutation error. An important ingredient
is the following elementary observation:

Lemma 2.5. (Strict concavity bound) Let o« € (0,1] be fixed. The map
0=S urs e(a,u) ;== (1 +u)® — u® has the following properties:

(i) If « € (0,1), then e(w,-) is strictly decreasing on [0,00) with
limy, o &(a, u) = 0.
In particular, forany y 2 1 and 0 < ys~ < s one has
8(0{,‘;;:)Ss(a,y)fs(oz,l):2°‘—l<l. (20)

Moreover, forall « € (0, 1) and allu > 0

—1
e (o, u) <u®" 7

(ii) Ifu > 0, then (-, u) is strictly increasing on [0, 1];
(iii) Foralls—,sT >0

(45 +sH) <e (a, §—f) (14 5)% + (14 5.
Proof. Since
0
() =« ((1 Fu) ! u“—l) <0 forae(0,1)
u
&(a, -) is strictly decreasing. Furthermore, for fixed u > 0 we have
d
a—e(a, u) = (1 4+ u)*log(l +u) —u®logu > 0,
o

which shows that e(-, u) is strictly increasing.
For o € (0, 1) and u = 0 we estimate

14u
e(u,a) = Ol/ Pl dr < quet < pel
u

In particular, lim,—, o €(o, #) = 0. By monotonicity, the chain of inequalities (20)
follows.
Lets—,sT > 0. Then

A4s  +sH¥ =) [(1 + ‘f—f)a - (‘j—f)a] + (145
Se (o ) A4s) 4 (1 +5H0
Se (o S) A4+ (145,

where we made use of the monotonicity of (e, -) in the last inequality. O
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Remark 2.6. The proof of Lemma 2.5 is so simple that one might wonder whether
it could be of any use. In fact, it is crucial. It’s usefulness is hidden in the fact that it
enables us to gain a small exponent in the commutator estimates, see Proposition 2.8
and Lemma 2.10 below. Furthermore, (o, ) can be made as small as we like if y
can be chosen large enough, which will be important in the proof of Theorem 1.10.

Corollary 2.7. Let G(s) := Pt for s > 0, o € (0,1]. Then, for all
sTHsT=swith0 < s~ s,

~ ~ ~ sty ~
Gs) — G < 20801 +5H*(1 = 1) G @5=) G5
with € («, u) from Lemma 2.5.
Proof. Sinces™ < sanda € (0, 1],
- - s1d ~ s -
IG(s) — G| < / —G(r)|dr = ozﬂt/ A+nN*'Gwr)dr
o+ | dr st

<afr(l+sH¥ (s — s+)5(s).

In addition, since s < 2s7,

iz 1_£ s <2 1_i )
14+st s ) 145t s

Moreover, since s = s + s, the strict concavity Lemma 2.5 gives

~ -~ a(a i) ~
G(s) S G\ /Gi™),
which completes the proof. O

Proposition 2.8. (Bound on Commutation Error) Let f be a weak solution of the
Cauchy problem (1) with initial datum fy satisfying (8). Recall
e(a,u) = (I + u)* — u® Then forallt € (0,Tp], B > 0, « € (0,1), and
A > 0 we have

KQ(f. Gaf) = GaQ(f. ). Gaf)l

+2
SZaﬁt/ / b(l-a> (1— " l)G(n)““""*'2/""2>|f<n>|
Rd Jsd-1 |T)| |Tl|

< GaHIF G f )l (n*)** dodn, @2y

ford = 2, and
KO, Gaf) —GaQ(f, ), Gaf)l

< 20p t/ / " by @) sin? 0 G(n )@ PP £
RJ-z

x GO FODHIG A f )] (nT)>* dodn, (22)

in the one-dimensional case.



618 JEAN-MARIE BARBAROUX ET AL.

Remark 2.9. If the weight G was growing polynomially, the term G (™) in the
integral (21), respectively (22), would be replaced by 1. In this case, the “bad terms”
which contain 1~ can simply be bounded by ||f||Loo < \Ifllzr =l foll,1 and the
rest can be bounded nicely in terms of |G 4 f ll;2 and |G 4 f || g7, see the discussion
in appendix B.

If the weight G is exponential, the estimate of the terms containing 7~ in (21),
respectively (22), is an additional challenge and the methods we devised in order
to control this term in the commutation error is probably the most important new
contribution of this work.

Proof of Proposition 2.8. We start with d = 2. By Bobylev’s identity, one has
HO(f. GAf) = GAQ(f. 1) Gaf)l = (F Q. Gaf) = GAQ(f. NI, FIGaf]) 2]
/ / (* 0) GAIFIFOOINFOHINGAMT) = G A do dn

Rd Jsd—1

[, [ 2 (o) Gamidmnformiatnce - cadoan,

where the latter equality follows from the fact that G 4 is supported on the ball
{In| £ A}and [nT| < n|.

To estimate |G () — G(n)|, we use Corollary 2.7 with s := |5|* and, accord-
ingly, s* = [T |?. Notice that

Inl? _
In** = I+ —.o), =P+ P
2 Inl
and, writing cosf = ‘ , we also have
n*1? =l cos® §, In~* =[nl*sin* §.
Since b is supported on angles in [0, /2], one sees 0 < |77 |2 < %|n|2 and

%|n|2 < [nT1> < |nl*. Therefore, s~ < § <sT <sands =sT +5".
It follows that for all n € R? with || < A, noting that [nF| < 5] < A,

G = GO = 2007 (1= ) Gy @ IR0, 23)

which finishes the proof in dimension d > 2.

For the Kac model we remark that the above proof depends only on || <
Int] < Inl and [n~|*> + InT)? = [n|* hence |n~|* < |n|?/2, and the strict con-
cavity Lemma 2.5 and the Corollary 2.7. Since, by symmetry, we assume that by is
supported in [—7 /4, /4], the same bounds for n~ and n™ hold in dimension one
and the above proof can be literally translated, with obvious changes in notation,
to the Kac equation. O

The bound on the commutation error in Proposition 2.8 is a trilinear expression
in the weak solution f. In order to close the a priori bound from Corollary 2.4 in
L2, one of the terms has to be controlled uniformly in 1. Seemingly impossible with
the growing weights, it is exactly at this place where the gain of the small exponent
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e(a, |n+|2/|n_|2) <é&(a,1) < linthe G(n~) term in (21) and (22) allows us to
proceed with this strategy. This gain of the small exponent is new and enabled by
the strict concavity bound of Lemma 2.5 and its Corollary 2.7 and it is crucial for
our inductive approach for controlling the commutation error.

The change of variables is a standard computation used earlier, for instance in
[3,39]. We repeat it for the convenience of the reader and, more importantly, since
some care has to be exercised in view of the strategy of our inductive setup for
controlling the commutation error.

Lemma 2.10. The inequality

Q. Gaf) = GaQUfs /) Gaf) < laa+ 1] 4
holds, where, for d > 2

% . d _ a(a,cotzg) A
laa =aﬂt/ </ / sin? 6 b(cos 8) G () (7 2) | f)
R4 0 S4-2()

x u(m—bdwde)) G a() £ (DI (n)** dn. (24)
V2

Here the vector n™ is expressed as a function of n and o, that is,

1
" =" (n,0) =30~ lnlo) = nl sin%%)% —nlsin(§)cos(Hw  (25)

and o is is a vector on the unit sphere given by
o =00, = cos(e)|i| +sin®) w (26)
n

with polar angle 6 € [0, /2] with respect to the north pole in the n direction,
weS 2 ={@eR: @ Ly, @ =1}, thed — 2 sphere in RY orthogonal to
the n direction, and dw the canonical measure on §9-2.

IIA =2doz,3t/

R4

(/4/ sin? © b (cos 28) G(n—)s(o"cot2 79)|J5(77_)|
0 Jsi2(nh)

x n%an—ndwdﬂ) 1G A F D)) dn™
2

(27
where now the vector ™ is expressed as a function of n* and o, that is,
AN
=1 (" 0)=n"—n" ( I ) o=—"tan@@w, (28

where o is now a vector on the unit sphere with north pole in the n* direction given
by

+
o =0 w) = cos(z?)“r;—ﬂ +sin(@®) o (29)
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Fig. 1. Geometry of the collision process in Fourier space

with polar angle ¥ € [0, 7 /4] and v € S¥=2(pt), the (d — 2)-sphere in R4
orthogonal to the n™ direction. If d = 2 we set S° := @) in this context.
For d = 1 we have

ER _e(wcord) o _
na=apt [ [ siobi) 6o ) i g as
rRJ-Z NGl

X |G a() f(I? (n)>* dn,

::| ENE]

20N
]A = \/_oeﬁt/f sin20b1(0) G(n™)' (a’cm 2) If(n_)lﬂ%(ln_l)dé’
2

|G aH) f @I (> dn,
where in the first case n~ = n~ (n,0) = nsin 0 and in the second case
n"=n"(" 0 =n"tane
and there is no need to distinguish between the 6 and ¥ parametrization.

Remark 2.11. In the 1, respectively n, integrals above 7~ and o are always the
same vectors expressed in different parametrizations. We therefore have the relation
v = 6/2, see Figure 1 for the geometry of the collision process in Fourier space.

Remark 2.12. From the bounds given in Lemma 2.10 one might already see that,
in order to bound the commutation error by some multiple of ||G 4 f 12 one

Ho (R‘l ) ’
has to control integrals of the form

/ / sin? 9bcos ) G 2>(n YIFGIT 4 (07 ])dwdd,
|n|<A S92 ()

V)

with the parametrisation (25) for n~, and similarly for (27) and the corresponding
integrals in the one dimensional case. Due to the characteristic function in 5™, this
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uniform control is not needed on the full ball of radius A, but only on a strictly
smaller one, giving rise to an induction-over-length-scales type of argument.

Proof of Lemma 2.10. Letd > 2. Using the elementary estimate

~ ~ 1 ~ ~
IGa fDIGATH) fOrOI = 5 (|GA(7l)f(77)|2 + |GA<n+>f(n+)|2)
in the bound (21) gives
HQ(f.GAf) = GAQ(f. ). Gaf) < Taa+1f ,

with

~ + 2 - A
la.a =apt / / b(i -o) (1 - )G(n—)“a’"*'z/" D1 f )
re Jser” \Inl Il

x 14 (In~DIG A fI* (™) dodn,
2

and

+,2
1T :aﬂt/ f b o) (= I GO )@ P/ Py £y,
d.A R Jga-1 - \ ] In|?

x 1o (I ) 1Gat ™) F 1> (n)>* dadn.

First we consider INd, A. Writing o in a parametrization where the north pole is in
the n direction, one has

o = cosO—- +sinf w,
yl
where cosf = % > 0 and w is a unit vector orthogonal to 7, that is, w €
S?=2(1). Due to the support condition on b one has cos § > 0, that is, o is restricted
to the northern hemisphere 6 € [0, w/2]. In this parametization one has do =

sin? =2 §d0dw. From the definition of n* one sees
7l

) & cosey L + = sin(®) .

+
7 m
2 ]

1
= - :l: =
2(17 [nlo)
SO

n .
nt = 1n| cos%%)m + Inlsin(§) cos(§) w.

In particular,

9 +2 0 9
In*l=Inlcos =, and 1— | =1—cos? = =sin® -.
2 In|? 2 2
Moreover,
0 0 0 0
777=|n|sin2—i—|n|sin—cos—a), and [n~ | =|n|sin =,

2 In] 22 2
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SO

2

D

InTI>  cos

In~1>  sin?

6
= cot? —.
2

ST~

After this preparation, using also (77)2* < ()2 and sin % < sin@ for 6 € [0, T1,
the inequality Iy o < Iz 4 is immediate. The inclusion of the additional factor
Ta(n) = ]lsin%A(|n_|) < ]lA/ﬁ(M_D seems artificial for the moment, but will

be convenient to keep track of the fact that n~ is always restricted to a ball of radius
A

Ne -
Concerning 1 4, we want to implement a change of variables from 7 to n™.
As a function of n and o, ™ =3 L(n = Inlo). Thus

e o) B
— 0’ — __’
2 n] 24 ) =24

since -0 = 0 and the second equality is an application of Sylvester’s determinant
theorem. Therefore, the Jacobian of the transformation from 1 to ™ can be bounded
by

ant
an

—1
_ |t <24

.

o
8n+

In addition,

2 . . +12
|77-|—|2=ﬂ<1_|__77 6) and n+g=M<1+—n O’>=|77|’

which implies

T.o o +2 +oo\?
n+ _ "l and 10— Inl 1:2(n )_1
| 7] 7] nl I

Moreover, from the definition of ni, one sees

n=2n"—Inlo,
SO

77+

~1
_ -0
n =n+—|nI6=n+—|n+|< P ) 0.

Therefore, taking care of the domain of integration,

T+ < od AN AN
e [ L (ORT) 1) (- (57 ) 1

x G D) 67| F ) 11G a0 F )P ort)? do dn
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Introducing spherical coordinates with north pole in the n™ direction, one has

+
o =0 w) = cos(z‘/‘)|n—+| +sin(@®) o
n
where now cos ¥ = 7;;7
parametrisation one has

. From Figure 1 one sees ¥ = % € [0, w/4]. In this

_ + In*| +
n=n - o = —|n"|tan(¥) w,
cos 1

and again do = sin? =2 9 d*dw. Thus

T i . 2 oA
If <2 f / f b (cos 20) sin® 9 G* ) 17| F () Lcosya i)
R4 Jsd-2 Jo
x G FaH P )2 dd dwdn™.

Since [~ |=[n"| tan ¥, we obtain Lcos ) (1NN =Lsinya(In~ D=1 4, 507D,
because ¢ € [0, w/4]. Hence IIA < I;A.
The proof in the d = 1 case is completely analogous. O

2.3. Extracting Pointwise Information from Local L* Bounds.

Lemma 2.13. Let m = 2 and h € W™°[R) and q 2 % Then there exists a
constant L, < oo depending only on g, m, ||h|| > ®) and (|20 | Loo(R) such that

|h(r)]|1 = Lm/ |h(§)|q‘% d¢ forallr € R,

r

where 2, = [r,r + 21 ifr 2 0and 2, =[r —2,r]ifr <O.

Looking into the proof of Lemma 2.13, it is clear that its m = 1 version also
holds, even with a much simpler proof. Before actually going into the proof, we
state an important consequence of it, which will enable us to get pointwise decay
estimates on a function once suitable L? norms are bounded.

For m € N define | D™ fllpoo(rd) = SUPyesi-1 [[(@ - V)™ [l oo (gay. Notice
that this norm is invariant under rotations of the function f.

Corollary 2.14. Let H € €™ (R"). Then there exists a constant L, , < 00
(depending only on m, n, | H|| oo wny and, | D™ H || Lo @n)) such that

m

2 2m+n
|H(xX)| < Linn (/Q |H ()] dé) .

where Q) is a cube in R" of side length 2, with x being one of the corners, such
that it is oriented away from x in the sense that x - (§ —x) 2 0 for all § € Q.

Remark 2.15. The constant L,, , in Corollary 2.14 is invariant under rotations of
the function H. This will be convenient for its application in Sections 2.5 and 2.6.
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Proof. We apply Lemma 2.13 iteratively in each coordinate direction to obtain

n
|H(x1, %2, ..., x) P H

n—1
< L,ﬁi)/ |H (& x2, ... xg)| T dg
2

~1

n—2
gLfn“Lﬁ,%)/ / |H (1L &2, %3 ..., xg) > T dé d
2 2,

§L$)-~~L£’:)/Q /Q \H(E1, ..., &) dE -+ dE,.
X1 Xq

The constants Lﬁ,i,),i =1,...,n,only depend on m,
IHr, oo Xict, o Xigds - X)) lee @) = ITH | Loorry
and
18" H(x1, .. Xim1, =2 Xigds s Xo) ooy = [|1D™ H || oo (rry -

Setting Ly, , = ]—[f’=l L,(,';) yields the stated inequality with Q; = §2,; x - - X £2,,.
O

Remark 2.16. It is worth noticing that the exponent in Corollary 2.14 is decreasing
in the dimension and increasing in m.

For the proof of Lemma 2.13 we need the following interpolation result between
L norms of derivatives of a function.

Lemma 2.17. (Kolmogorov-Landau inequality on the unit interval) Let m = 2 be
an integer. There exists a constant Cy, > 0 such that for all w € W™ >°([0, 1]),

lwll 0,1 -
||w(k)||L°°([0,]]) g Cn <— uk([ 1) +um k”u)(m)”Loo([O,l]) s

forall0 <u < 1.

Proof. The result dates back to LANDAU and KoLMOGOROV, who proved it on R
and R, A proof of the inequality on a finite interval can be found in the book by
DEVORE and LoreNTZ [24] (pp. 37-39), but for the reader’s convenience we also
give a short proof in Appendix C. O

For us, the important consequence we are going to make use of is

Corollary 2.18. Let C,, > 0 be the constant from Lemma 2.17. Then for all w €
wr2(10, 1),

1-k k k
1w ® L o.11) £ 2Cmllwl g1, max {nwnL{,Z"(W ||w<m’||Lé’2}[0,1D} . (30)

k=1,...,m—1.

Proof. If ||w(m) ||Loc([0,1]) § ||w||Loc([0,1]), we choose # = 1 in the bound from
Lemma 2.17, which gives
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lw® oo, = 2Cmlwll Lo, 1p)-
In this case, and if [|w™ llLqo,11) = llwllzee (o, 17), We can choose

o 1/m (m)y—1/m
u= “w”LOC([O,]])”w " ||L°°([(),l]) é 1

to obtain

1—k/m

k
lw® Lo,y S 2Cmllwl =g 1y lw™ 15,

Leo([0,1])-

Together this proves (30). 0O

We can now turn to the

Proof of Lemma 2.13. Assume without loss of generality that» = 0, so that £2, =
[r, r 4+ 2]. By the Sobolev embedding theorem 4 is continuous and we let r* be a
point in £2, where || attains its maximum. We can assume that r* € [r, r + 1] and

set (W)« = [TV h(£) dE (otherwise we use (h)y+ = frr:_l h(£)d&). Then for

¥
some p = 1 we have

*

r*+1
e R RO

1
_ / WP () — P + 0] de.
0

By a fundamental theorem of calculus, for any ¢ € [0, 1], the integrand can be
bounded by

1
RP () — P (% + 0] < pf (™ + 50) P~ W ( + s0)¢ ds
0

1
<p sup WG+ 50) / G+ 5017 ds.
5€[0.1] 0

‘We now use that

sup |W'(r* +5¢)| = sup |h'(* + x)
s€[0,1] x€[0,¢]

S sup [T+ 0| = IR+ ) lieeqo
x€l0,1]
and apply the Kolmogorov-Landau inequality for the first derivative in its multi-

plicative form Corollary 2.18 to the function [0, 1]2 x> A(r* +x) € W™ ([0, 1])
to obtain

% 1-1/m
|I’l(l‘ + .)”LOO([O,I])

1 1
x max [ G+ 20 1y 106 + 912 1]

A" (r* 4+ )llLeqo1) < 2Cm

_ 1 1
< 2Cu Y max {0 11
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It follows that

Ih(P)|P = [ (P«

_ 1 1
< 2pColh ' max {1 gy 1R 1 |

1 1
x/ / lh(r* +s0)|1P~ e ds de.
0o Jo

The latter integral can be further estimated by

1,1 1 ¢
//|h(r*+s;)|l’*1;dsdg=/ / WG + x)|P~ 1 dx d¢
0 JO 0 JO

1 1 1
g/ / 'h(r*+x)|l'—‘dzdx=/ Ih(* 4+ x)[P~ ! dx
0 JO 0

rr+41
= [ et s [ mera.

Using

*

r*41
) < [ @ e < e, [ mer ag

< |h<r*>|1*‘/m||h||£é2”(R)fg ()P~ dg,
we get
Ih(r)|P < Lm|h(r*>|1—”’”/ (€)' dg
2

with Ly = 2pConmax {12 g 11 | + 181 ) and therefore

()P < Lm/ Ih(E)P dt.
2
Choosing g := p — 1 + 1/m = 1/m then yields
R < RIS L / (@)Y de,
o

which is the claimed inequality. O

2.4. Gevrey Smoothing of Weak Solutions for L* Initial Data: Part I

Equipped with Corollary 2.14 we can construct an inductive scheme based
upon a uniform bound on G(7)*@ | f (n7)]. As already remarked, this result
will depend on the dimension, and will actually deteriorate quickly as dimension
increases. Nevertheless it leads to strong regularity properties of weak solutions in
the physically relevant cases.
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Theorem 2.19. Assume that the initial datum fy satisfies fo = 0, fo €
Llog L(RY N L,ln (R9) for some m 2 2, and, in addition, fy € L%(RY). Further
assume that the cross-section b satisfies the singularity condition (3) and the inte-
grability condition (4) ford 2 2, andford = 1, by satisfies the singularity condition
(6) and the integrability condition (7) for some 0 < v < 1. Let f be a weak solution

of the Cauchy problem (1) with initial datum fy. Set o, 4 = log (%) /log2.

Then, for all 0 < o < min {ocm,d, v} and Ty > 0, there exists B > 0, such that for
allt € [0, Tp]

PPN £ ) e L2RY), (31)

1
that is, f € G2 (R?) forall t € (0, Ty].
By decreasing S, if necessary, one even has a uniform bound;

Corollary 2.20. Let Ty > 0. Under the same conditions as in Theorem 2.19 there
exit B > 0 and M| < oo such that

sup sup PO | A )| < My (32)
0=<r<Ty neRrd

Remark 2.21. (i) For strong singularities, the restriction on the Gevrey class
originates in the bound on the commutation error, with the best valueind = 1
dimension. The aim of part II below will be to recover the two-dimensional
result in any dimension d 2 2. Under slightly stronger assumptions on the
angular cross-section, which still covers all physically relevant cases, we can
get the one-dimensional result in any dimension d 2 1, see part III.

(i) Indimensionsd = 1,2, 3andm = 2, corresponding to initial data with finite

energy, we have oz 4 = log (%) /log2 = log (%) /log2 ~ 0.652077.

This means that for v = 1 the weak solution gets analytic and even ultra-

: 1
analytic for v > 3.

(iii) In the case of physical Maxwellian molecules, where v = }‘, in three dimen-
sions and with initial datum having finite mass, energy and entropy, we obtain
Gevrey G*(R?) regularity.

(iv) Even though the range of « in Theorem 2.19 above deteriorates as the dimen-
sion increases, it only fails to cover (ultra-)analyticity results in dimensions
d 2 6. Theorems 2.29 and 2.34 below yield results uniformly in the dimen-
sion.

We will prove Theorem 2.19 inductively over suitable length scales Ay — 0o
as N — oo in Fourier space. To prepare for this, we fix some M < 00,0 < Tp < 00
and introduce

Definition 2.22. (Hypothesis Hypl 4, (M)) Let M = 0. Then for all0 < ¢t < Ty

sup G (1, )@V | f(t, )] £ M. (33)
[Z1=A
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Remark 2.23. Recall that G (¢, ¢) = eﬂ’ma, that is, it depends on «, $, and ¢, and
also f is a time dependent function, even though we suppress this dependence in
our notation. Thus Hyp1 4, (M) also depends on the parameters in G (¢, ¢) and on
M and Ty, which, for simplicity, we do not emphasise in our notation. We will
later fix some 7y > O and a suitable large enough M. The main reason why this
is possible is that, since ||f||Loo <\ flizt = llfollgr < oo, forany A, B, Ty > 0
the hypothesis Hyp1 4 (M) is true for large enough M and even any M > || foll ;1
is possible by choosing 8 > 0 small enough.

A first step into the inductive proof is the following:

s
Lemma 2.24. Let o < v and define cp, q:=|S72| [,* sin? 6 b(cos 6) 6 for d >3,
s

LA T
b2 = [y sin? 0 b(cos0)d, cp 1 = [ *; sin®0 by(9) O, which are finite by the
-z )
Cro
(14241 cpaToM+1"
any weak solution of the homogenous Boltzmann equation,

integrability assumptions (4) and (7), and let B <

Then, for

Hypl,(M) = G s, flr2may < 11 y5,(Dy) follp2ray €07 (34)
forall0 <t < Ty.

Remark 2.25. The main point of this lemma is that the right hand side of (34) does
not depend on M. This is crucial for our analysis and might seem a bit surprising,
at first. It is achieved by making 8 small enough.

Proof. Letd > 2. Since cot? % 2 lfor6 € [0, 7] and cot?2® =1 for 9 € [0, Tl

we can bound & (e, cot? %) and & (o, cot? 9) by &(a, 1) in the integrals I, N and

+
Id,ﬁA from Lemma 2.10.
Assume Hypl 4 (M) holds. Then

G, ) V| fa, o) £M forall [¢| < A.

. o . —_ . +
In particular, the terms containing ™~ in 1, s , and / 434 CA0 be bounded by M.

Thus, these integrals can now be further estimated by

g
_ 2 . A
I, jsa < aft MIST2) /0 sin? 6 b(cos 6) do /ﬂ; 1G g4t fOnP? (7 dn
2
= aﬂtMcb,d”GﬁAf”H(x(Rd)

and,

z
I gzdaﬂ;msd*ﬂ/ sin? 9 b (cos 20) dv
d.2A = 0

x / G FHIP Ty dn™
Rd
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In the ¥ integral, we bound sin ¥ < sin(2%) to obtain
+ d—1 2
I} i, S27 Bt MeoallG s ey

By Lemma 2.10, the commutation error corresponding to the weight G 5 , is thus
bounded by

(0. G saf) = G 5a QU .G psaf)| S 1a sa+ I s,

S A +2"Napt McpallG g3 5 f e gy (35)
With Corollary 2.4 we then have

t
1G /34 f 132 gay ST /54D foll 7 + fo 2C41IG 50 f 1172 gy dT
t
~ 2
+/() 2( - CfOHGﬁAf”Hv(Rd)
+ ((1 +2 Y apt Mepa +ﬂ) ||Gmf||i,a<Rd)> dr.

CfO
(14+29-Yy¢ep g aToM+1°

Since Svand B < this implies

t
1G /34 f 32 gay S I 54(D0) foll 2 gay + /0 2C41IG /34 f 1172 gay .
and with Gronwall’s inequality,

IG /34 f 132 gay S I 54 (D0) foll 2 gay €07 (36)

follows.
For d = 1, we note that, with the obvious change in notation, the above proof
literally translates to the Kac equation. O

The second ingredient gives a uniform bound in terms of a weighted L norm
and some a priori uniform bound on some higher derivative of f.

Lemma 2.26. Assume that there exist finite constants A,, and B, such that

1f@E gy = Am, and (G 5, ) ) 2@ey < B (37
for some integer m 2 2 and for all 0 < t < Ty. Set
~ 1 2
A= +2fA (38)
and assume furthermore that
4./d
A > Ay = vd . (39)
V2-1
Then for all |n| < A,
1F@ I S K G 54 forall 0<1<T, (40)

with a constant K| depending only on the dimension d, m, A,,, and B.
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Remark 2.27. The exponent 231’:‘_ — in equation (40) comes from Corollary 2.14,
choosing n = d. This is responsible for our definition of «y,, 4, since then

£ (“quv 1) = 23111-

Remark 2.28. The assumptions of Lemma 2.26 are quite natural: since the Boltz-
mann equation conserves mass and kinetic energy does not increase, we have the a
priori estimate

I f(z, ')”L;(Rd) < ||f0||L;(Rd) =: Ay,

and due to the known results on moment propagation for the homogeneous Boltz-
mann equation in the Maxwellian molecules case, we have

foeLl@®RY) = f@,-) e Ll (R uniformlyinz >0
for any m > 2 in addition to assumptions (8).*

The importance of Lemma 2.26 is that it effectively converts a local L? bound
on suitable balls into a pointwise bound on slightly smaller balls.

Proof of Lemma 2.26. By the Riemann—Lebesgue lemma, the function f has con-
tinuous and bounded derivatives of order up to m. Since for any multi-index o € N; g

one has 0 f = (=2mi)ll ?"7, we obtain the bound

ID™ f(t, Y pooay = sup (@ - V)" F(t, ) ooy

weSd-1

sup sup ) ( )|w“||a“f(n>|

weSd-1 neRd lot|=m

2n)™ sup / Z ( >|a)"‘v°‘|f(v)dv

d—1
wEeS |‘m

[IA

A

S (2m)™ sup _/d(a)-v)m f(v)dv
R

weSd—1
< @ny" /R " @) d

< QU f )y gy S Q)" A

Of course, also ||f||LOO(Rd) < ”f”Ll(Rd) < Ap

Let n € R? such that || < A. By Corollary 2.14 applied to the function f
there is a constant L,, 4 that depends only on d, m, and A,, such that

1| £ Lna (f
0

4 For more on moment propagation see, for instance, VILLANIs review ([49] pp. 73ff) and
references therein.

2m+d
|f(c>|2dc) :

n
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where Qy is the cube of side length 2 at 7, such that all sides are oriented away
from the origin. The definitions of A and A guarantee by Pythagoras’ theorem,
that, for || < A, Q, always stays inside the ball around the origin with radius

V2 A. Since the orientation of 0y, is such that 7 is the point closest to the origin
and the weight G is radial and increasing, we have

If )| £ Lina (G(n)_z /Q G(;)%f(;)ﬁdr:)

- _% 5 A ) 2m+d

< Lypa G~ 5% G@PIf©Pdg
{InI£v24}

< LyyaB57 G) 5044

2m
Setting Ky := L,, 4B+ yields the claimed inequality. O

Proof of Theorem 2.19. By Lemma2.24,2.26, and Remark 2.28, a suitable choice
for A,,, B, and the length scales Ay is

B:= ||f0||L2(Rd)eCfOT0’
Ay i=sup || f(t, ')”L,‘n(R") < 00,
120
and
N
An_1+V2An- 1442 L++2
AN — 5 — ) AN—l = 5 AO

with Ag from (39).
Furthermore, we set

My :=max {2A,, + 1, K1},

with the constant K| from equation (40).
For the start of the induction, we need Hyp1 4 (M}) to be true. Since

sup sup G @D |F(m)| < S @DEHI+AY 4
0=<t=<Ty Inl<Ao

and from our choice of M1, there exists By > 0 such that Hypl 40 (M1) is true for
all0 < B < Bo.
Now, we choose

B = min ( fo Ch
1+ Qd_l)cb’d aToM1+1)°

With this choice the conditions of Lemmas 2.24 and 2.26 are fulfilled and
Hypl 4, (M) is true.
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For the induction step assume that Hypl 4, (M) is true. Then Lemma 2.24
gives
IG yza, Fli2@ay < I 54, (Do) foll L2ay €0 < B.

2m
Note thate(a, 1) < Tm+d’

ANyl = ZN, so Lemma 2.26 shows

since o < min {a.q, v}, see Remark 2.27. In addition,

sup GV f)| < K1 £ My,

M<An+1

that is, Hypl 4, . (M}) is true. By induction, it is true for all N € N. Invoking
Lemma 2.24 again, we also have

IG ay [l = B

for all N € N and passing to the limit N — oo, we see ||Gf || 2gay = B, which
concludes the proof of the theorem. O

Proof of Corollary 2.20. The proof of Theorem 2.19 showed that given Ty > 0
there exists M1 > 0 and 8 > 0 such that Hypl 4, (M) is true for all N € N. This
clearly implies (32).

2.5. Gevrey Smoothing of Weak Solutions for L* Initial Data: Part I

The results of Part I are best in one dimension and give the correct smoothing
in terms of the Gevrey class for v not too close to one, more precisely v < oy 4.
In order to improve this in higher dimensions d = 2 and for a larger range of
singularities 0 < v < 1, the commutator estimates have to be refined. We have

Theorem 2.29. Let d > 3. Assume that the initial datum fy satisfies fo = 0,
fo € Llog LR N L,ln (RY) for some m = 2, and, in addition, fy € L*(RY).
Further assume that the cross-section b satisfies the singularity condition (3) and
the integrability condition (4) for some O < v < 1. Let f be a weak solution of the
Cauchy problem (1) with initial datum fy, then for all 0 < a < min {am,z, v} and
Ty > 0, there exists § > 0, such that for all t € [0, Tp]

PPN £ ) e L2RY), (41)

1

that is, f € G2 (R?) forall t € (0, Ty].

II’: particular, the weak solution is real analytic if v = % and ultra-analytic if
VvV > 5-
The beauty of this theorem is that, in contrast to Theorem 2.19, its result does
not deteriorate as dimension increases. We also have a corollary similar to Corol-
lary 2.20, however with a weaker conclusion. Moreover, it is not uniform in the
time ¢ > 0 but only holds on finite, but arbitrary, time intervals [0, Tp].
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Corollary 2.30. Under the same assumptions as in Theorem 2.29, for any weak
solution f of the Cauchy problem (1) and any 0 < Ty < oo there exists f > 0 and
M < oo such that

sup sup P | Fe )| < M. 42)
0=<t=<Ty neRd

The proof of Theorem 2.29 is again based on an induction over length scales in
Fourier space. Having a close look at the integrals /4, 4 and I;T 4 from Lemma 2.10
and using that £ (e, y) is decreasing in y, one sees that it should be enough to bound
expressions of the form

/ G @D F I 4 (I~ de
S4-2(n) V2

and

f GO @D F)IL 4 (1) doo
gd—Z(nJr) ﬁ

uniformly in 7 and 6, respectively n and ¥, with the parametrization (25), respec-
tively (28), that is, instead of having to use the purely pointwise estimates expressed
in the hypothesis Hyp1 4 from the previous section, one can take advantage of aver-
aging over codimension 2 spheres first. This motivates

Definition 2.31. (Hypothesis Hyp2 ,(M)) Let M = 0 be finite. Then for all 0 <
1 < To,

e(a,1)
sup sup / G (t, z% — pw)
CeRI\{0} (z.p)€A4 JSI2(0)

f(taZ% _pa)>‘ dQ)éM,

(43)

where Ay = {(z.p) e R2:0ZzZ p, 22 +p> < A%} and S 2(0) = {w e R? :
wl o =1}

Again, we have

Lemma 2.32. Let o < v, define cp g2 = f07 sin? 0b(cos ) dO (which is finite by

. e . Cy,
the integrability assumption (4)), and let f < (1+2d—])cb$2aToM+l' Then, for any

weak solution of the homogenous Boltzmann equation,

Hyp2,(M) = G s, f 2y < 11 54D foll p2may €070 (44)

forall0 <t < T.
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Proof. Using the monotonicity of (¢, y) in y and (24) one sees

7 .
1 G(n~ e(a,l) =1 -nd >
d,mSaﬂt/Rdu) </Sd—2(n) 0D 1 F ) Lalln ™D do

x sin’ ¢ b(cose)de) G 20 f (I () dn

where = = 1~ (n,0, ) is expressed via the parametrization (25). For o =
0,w) € [0,5] x S92, one has n~ = |n|sin? %% + || sin%cos%w and if

In] < ~/2A, then [n~| < A. Identifying z = |n| sin? % and p = |n|sin % cos %), and
the direction of { with the direction of », hypothesis Hyp2 4 (M) clearly implies

sup sup / G(n*)s(a,l) |f(n—)| Laln~ ) do < M.
In|<v/24 0€10,7/2] JSI=2 ()

It follows that

I, a0 S a,BtM/Rd/O sin? 0b(cos0) d0 |G 5 ,(n) £ ()[* (n) dny
= aBt M cp,a2llG 30 f oy

Similarly one has

d % —e(o, 1) | £ — -
=2 [ ([ (.., G0 1wt hdo)

x sin’ 9 b(cos 20) dﬁ) G aa D F I () dy ™,

where n~ = n~ (n, ¥, w) is expressed via the parametrization (28). The vectors 1~
and n* are orthogonal and we have n~ = —|nT|tan® o for (3, w) € [0, Tl x
S ).

Setting z = 0 and p = [p*|tan® we have p = |n~| < A in the ¢ and n*
integrals above. Thus Hyp2 , (M) again implies

sup sup / G )@V 1 F ) Ta(n ™ do < M.
I+ <v/24 PEL0,7/4] JS4=2 ()

Hence,

+  <ad 2 d Y PtV i2 by 4ot
Id’sz <2 oz,BtM/O sin Gb(cose)dQ/léd IG ) f)I” (nT)dn
< 297 aBt M cp,a2G sz 0 f oy
The rest of the proof is the same as in the proof of Lemma 2.24. O

To close the induction process, we next show
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Lemma 2.33. Let 8 < TLO. Assume that there exist finite constants A,, and B, such
that

£ @y, S Ame and (G 5, ) 2y < B 45)
for some integer m = 2 and for all 0 <t < Ty.
Set A := H'T‘EA and assume that

42
AzAO::L.
V2-1

Then for all ¢ € R4\ {0} and 0 < z < p with p* + 22 < A2 one has

(46)

/ ‘f(t,zf—lerw)‘ dw§K2C~?(t,z2+p2)_%12 forall0 <t < Ty
S4=2(¢) ¢

with a constant K, depending only on d, m, A,,, and B. Recall that é(t, s) =
Bt (1+45)%
e .

Proof. Fix 0 < 7 < Ty, ¢ € R?\ {0}, and set F(p, z) := f(t, zlg—l + pw), where
we drop, for simplicity, the dependence on the time ¢ in our notation for F. Then,
since || f(z, ')”L}n < A,, one has f(t, ) € €"(R?) and thus also F € €"(R?)
with |[Flize = Ay 97 Fllze = 2m)"Ap, and |3 Fllze = (27)™ A and
Corollary 2.14 applied to F yields

R p+2 pz42
‘f(Zé—ﬁpw)‘éLm,z </ f
p z

where we also dropped the dependence of f on the time variable ¢. Furthermore,
we will drop the time dependence of G and G in the following, that is, G(£) and
G (s) will stand for G (t, £), respectively G(t, s).

To recover the L? norm of G a4 J in the right hand side of (47) we now need
to take care of three things:

f(xé—‘+ya))’ dxdy) @

(i) Multiply with a suitable power of the radially increasing weight G;

(i) Integrate over the missing d — 2 directions, which will be taken care of by
integrating over S?~2(¢) and taking into account additional factors to get
the d-dimensional Lebesgue measure;

(iii))  Ensure that the region of integration [p, p + 2] X [z, 7+ 2] X s4 _2(5) stays
inside a ball of radius \/EA uniformly in the direction of ¢. This we control
by choosing Ag large enough (a simple geometric consideration shows that
Ao from the statement of Lemma 2.33 works) and restricting p and z by
0t 422 < A2

Let z, p > 0. In the region of integration in (47), the point pw + z% is closest
to the origin in R, and since the weight G is radially increasing, we get

_2m_
7 (o 00 108 (2 )

p+2 pz+2 20 . 2 ZnTT
/ G (xlg—l + yw) ‘f (xlg—l + ya))’ dxdy) .
Z

(48)

T~
_—
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Assume that 72+ p? < AZ. Then the integration of inequality (48) over S2(¢)
yields, with an application of Jensen’s inequality (¢ — ¢27+2 is concave!),

2m
N m+2 o~ _2m _
/;d—Z(g-) ‘f (Zl% + pw)‘ do < Lm’2|§d—2| 2 G (22 + pz) Im+2

+2 +2 ) s
L [ [ G s 7 (st o) anv00) ™

Now assume additionally 0 < z < p and A2 <pP2+22< A% Since0<z < p
we have A2 <22 4 p? < 2p? and therefore

p+2 z+2 . 20 . : 2
/st(;)/p /z G s34 (xm—f-ya)) ‘f(xm+yw>‘ dxdydw

<2d52A2_d/ /HZ/MG (v + )2 fx+ )‘2
i X + Yo X + Yo
O Jsi2ey ), . V2A \* Tl ]

X yd_2 dxdydw

=2 5
<27 A5G 30 f 172 gy

since y¢~2dxdydw is the d-dimensional Lebesgue measure in the cylindrical
coordinates (x, yw) withx € R, y > 0, w € S972(¢) along the cylinder with axis
¢. So with the assumption |G /5, fll 12 (wa) < B we obtain

/ ‘f(t,zf—lepw)‘dw
S4-2(¢) ¢

m+2

< Ly o|S¥72 22 (2 2 A2 dp? )2m+2 G (t “+p ) o
=

In the case z2 + p? < A2 we have G(t 24+ pH)7! Pra+49) 1 and we can

simply bound

/ ‘f(hz%%—pw)‘ dw
§472(¢)
~ 2 2 —2,%% 2_m/31‘(1+/\2)a d—2 ~
<G (n224p%) 77 B P S I2  f  p y
_2m_
< Am|Sd—2|el+A35 (I,Z2+,02) Zn+2
since B < 1/Tp, by assumption. So choosing

m
_n, m+2 d—2 _ 2m+2 _ 2
K5 := max (Lm,2|Sd 255 (2 A2 de> A s 2|el+A0)

finishes the proof of the lemma. O
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Now we have all the ingredients for the inductive

Proof of Theorem 2.29. By Lemmata 2.32 and 2.33 a suitable choice for A, and
Bis

T
B := ”fO”LZ(]Rd)eCfO 0,
Ay =sup || f(t, ')”Lyln(Rd) < 00.
120

Note that the finiteness of A,, is guaranteed since fy € L,lﬂ (R?), see Remark 2.28.
We further choose the length scales Ay to be

N
A1 +2An-1 142 142
= = Ay—1 = Ao

AN =
N 2 2

with Ag now from (46), and we set
M; = max {2|Sd_2|Am 1, K2]

with the constant K from Lemma 2.33.
For the start of the induction, we need Hyp2 4 (M>) to be true. Since

e(a,l)
sup  sup sup / G (t, z% — pw)
0<r<Tp ¢RI\ {0} (z.p)€A 4, /SI72(2)

< |Sd—2|e/3To(l+A3)°‘ A

A

f

(t, zé—l — pa))‘ do

and from our choice of M, there exists By > 0 such that Hyp2 4 (M) is true for
all0 < B8 < Bo.
Now, we choose

C
B =min [ fo, T, ", fo .
(1 +29"Yep graToMy + 1

With this choice the conditions of Lemmas 2.32 and 2.33 are fulfilled and
Hyp2 5, (M) is true.
For the induction step assume that Hyp2 , N (M>) is true. Then Lemma 2.32
gives
1G vz Fll2 @ty < 1130, (Do) foll ey €™ < B

and then, since e(a, 1) < 23{12 by our choice of o, and Ay = XN, Lemma 2.33

shows that Hyp2 4 | (M>) is true, so by induction, itis true forall N € N. Invoking
Lemma 2.32 again, we also have

IG ay [z = B

forall N € N and letting N — oo, we see ||Gf || .2(rd) < B, which concludes the
proof of Theorem 2.29. 0O

Proof of Corollary 2.30. Theorem 2.29 shows that Gf € L>(R?) forall 0 < ¢ <
Tp. applying Corollary 2.14 with n = d to f yields
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m

2m—+d
1F )] < LipaG ()~ 5 (/Q G(z)2|f<c>|2d¢>

2m

_2m_
g Lm,d ”Gf”[z";z—ﬂgd) G(U) 2m+d s

where we also used that the Fourier multiplier is radially increasing. This proves

the uniform bound (42) with B = 5224, O

2.6. Gevrey Smoothing of Weak Solutions for L? Initial Data: Part ITI

Under the slightly stronger assumption that the angular collision cross-section
b is bounded away from the singularity, we can state our theorem about Gevrey
regularisation in its strongest form.

Theorem 2.34. Assume that the initial datum fy satisfies fo = 0, fo €
Llog LRY) N L} (RY) for some m = 2, and, in addition, fy € L*(RY). Fur-
ther assume that the cross-section b in dimensions d 2 2 satisfies the singularity
condition (3) for some 0 < v < 1 and the boundedness condition (16). Let f
be a weak solution of the Cauchy problem (1) with initial datum fy, then for all
0 < a < min {am,l, v} and all Ty > O, there exists B > 0, such that for all
t € [0, Tp]

PPN (1 ) e L2RY), (49)

1
that is, f € G2 (R?) forall t € (0, Ty).
In particular, the weak solution is real analytic if v = % and ultra-analytic if

1
V>§.

Remark 2.35. Thus, under a slightly stronger assumption on b than in Theo-
rem 2.19, which we stress are nevertheless fulfilled in any physically reasonable
cases, we can prove the same regularity in any dimension as can be obtained for
radially symmetric solutions of the homogenous Boltzmann equation.

Corollary 2.36. Under the same assumptions as in Theorem 2.34, for any weak
solution f of the Cauchy problem (1) and any 0 < Ty < oo there exists B > 0 and
M < oo such that

sup sup P10 | F(t, )| < M. (50)
0=<t=To neRd

Proof. Given Theorem 2.34, the proof of Corollary 2.36 is the same as the proof
of Corollary 2.30. O

The proof of Theorem 2.34 shows the delicate interplay between the angular
singularity of the collision kernel, the strict concavity of the Gevrey weights, and the
use of averages of the weak solution in Fourier space, together with our inductive
procedure, which has proved to be successful in Theorems 2.19 and 2.29. Again,
the main work is to bound the expressions /; 4 and I{;f 4 from Lemma 2.10. Before
we start the proof of Theorem 2.34, we start with some preparations. It is clear
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that we only have to prove Theorem 2.34 in dimension d > 2 and for singularities
V > a2, since otherwise the result is already contained in Theorems 2.19 and 2.29.
Looking at the integral I; 4 from Lemma 2.10, one has

% . d _ 8(a,cot2 Q) A
Iia :aﬁt/ </ / sin® 6b(cos ) G(n™) 21 f )]
R\ Jo o Jsi=2ap

x uun‘bdwde) G A £ ()1 () d,
V2

where we use the parametrization (25) for ™ = n~ (n, 8, w). Splitting the  integral
above at a point 6y € (0, %) and using the monotonicity of the cotangent on [0, %]
and of ¢(«, ) in y one sees

Igpa <Igan+14a2

with
2 “ o
laan = aBTy IIGAfIIHa(Rd)/ sin“ 8 b(cos 0) df
0

2t
x( sup  sup / G(n—(n,e,w>>£(°"°°‘ 2)
0<9=Z 0<lni=A J8I=2n)

x|f(n—<n,9,w>>|u<|n—(n,e,w)|)dw) (51)
2

and

g, a2 = CoyaBTo ”GAf”?.]a(Rd)

x( sup /2/ G~ (1,0, @)@V | (™ (0,0, )|
b JS42(n)

O<nl=4a

xT A (In~(, 0, w))) da)d@), (52)
NG

where Cy, is an upper bound for b(cos 6) on [0y, %]. Now we choose 6y > 0 so
small that

. 2m
T 2m+2

[
e (a, cot? g) < eée(aam, 1)

and note that from Corollary 2.30, since v > a2, there exists a finite M> such
that

sup  sup f G~ (1,6, )2 D) | f(=(n, 6, )|
0<% 0<lnl=a J8=2m)

X1 a4 (In”(, 0, w)])do < My < 00.
V2
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So from (51) we get the bound

Ia. a1 < @BToM2ch,a 211G A fll3e o, (53)

where the finiteness of ¢, 4,2 follows from the singularity condition and the bound-
edness of b(cos 0) away from 0 = 0.
For the integral I; 4 from Lemma 2.10, a completely analogous reasoning as

above shows for small enough ¥ such that ¢(«, cot?p) < &(a2,m, 1) we also have

+ + +
Ija=<1ga1F 1540

with
I 41 =27 aBToMacha 211G A f ey (54)
and
1} 42 =2"Con@BTo 1G4 f e gy
T
T
0<Int|<a /oo JSI72(h)
x|~ (T 0 o)L a (n~ (0, w)|>dwcw),
/2
where we use the parametrization (28) for = = n~(n™", @, ») and where Cy, is
an upper bound for b(cos(21)) on [9g, T 1.
Recall that we always assume o < o, S0 (e, 1) < ey, 1) = 231’:1_1.

Thus we see that in order to set up our inductive procedure for controlling 7; 4 and
I} , itis natural to introduce

Definition 2.37 (Hypothesis Hyp3 4 (M)). Let M > 0 be finite, 0 < 69, Vo < 7T,
Tp > 0, and m > 2 an integer. Then for all 0 < r < T one has

% 2m
sup / / G(t,n (1.0, )™
by JSd=2(n)

f (. 0,)|

Inl<v24 (56)
xLa(ln™ (1,0, 0))) dodd = M,
where we use the parametrization given in (25) for n~, and
T 2m | oA,
sup / f Gt ™. 9, 0)™ T | f(n" (", 0, w))‘
Int1<v24 %0 820 T) 57)

x La(ln~ (", 9, w)) dodd < M,

where we use the parametrization given in (28) for n—.
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For the induction proof of Theorem 2.34, we again start with

Lemma 2.38. Let M > 0, Ty > 0, m > 2 an integer, gy <v < 1,0 <a S v

andrecall cp g = fg sin? Ob(cos 0) A0 (which is finite by the singularity assump-
tion (4) and the boundedness assumption (16)). Let Mo be from Corollary 2.30
and B < a—1 “h a
aTol(1+297 ) cp g 2 Ma+(Coy+29Cy ) M1+1"
homogenous Boltzmann equation,

Hyp3,(M) = G 5, f 12y < 11 54(D0) foll p2ay €070 (58)
forall0 <t < T.

Then for any weak solution of the

Proof. Given Lemma 2.10 and the above discussion with the bounds in (53), (54)
and using the hypothesis Hyp3 4 for the terms in (52) and (55), one sees that the
commutation error on the level ~/2 A is bounded by

(001G 50 )= G 13,01 .G s, 1)

< Id,ﬁA + I;:ﬁA
=+ 2d_l)a,BTOMZCb,d,2”GAf”ila(Rd)
+ (Cay + 29 Co)aBTOMIIG 4 f 1310 -

Given this bound on the commutation error, the rest of the proof is the same as in
the proof of Lemma 2.24. 0O

To close the induction step we also need a suitable version of Lemma 2.33 but
before we prove this we need a preparatory Lemma.

Lemma 2.39. Let H : R? — R be a locally integrable function and let n, 14 €

R with [nl, InT| = Ag > 0,0 < 6y < %, and 0 < ¥y < %. Then with the
parametrization n~ = n_(n, 0, ®) given in (25) one has
7 2
H (701,60, 0) + 21 ) dzdo
o Jo ]
0
Igl+2 \77\
< — / / | i yw) dydx
AO cos 90 Ao sin? Ag sin 00 7
for any unit vector w orthogonal to n.
Moreover, with the parametrization n~ = n~(n™", 0, ) given in (28) one has,

for any A> 1+T*EAO,

L 2
[5 [ ara ,ﬁw>+z|,,|) i (I 9, @) dz o
Do T
)dydx.

/ H(
2AO Ap tan v
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Remark 2.40. The restriction 99 < % is only for convenience, to ensure that

A
Aptan vy < 7

Proof. Fix n as required and w orthogonal to it. We want to have a map & :
0, z) = @1(0, z) = (x, y) such that

n (n,0,w)+ Z% = x% — yo.
From the parametrization (25) we read off

20
x—|n|51n §+Z and y—751n9

and we can compute the Jacobian going from the (0, z) variables to (x, y) as

a(x,

I et Doy = M cosa = 1 cosp,

2(0, z) 2 2
Since |n| > Ao, 6 € [6p, %], and 0 < z < 2, we have Aosinz%o < x <
|| sin’ T = — and ° sinfp < y < % Thus, doing a change of variables
@,2) = <Pl_ (x, y)in the integral we can bound

T

7 2
f / H(n‘(n,e,w)ﬂmi,) dz do
6o 0

Il
5 +2

[n]
+ yw> dydx,
A() COS 9() /;\0 sin? — /;X() sin O |n|

since the map @ is a nice diffeomorphism.

For the second bound the calculation is, in fact, a bit easier, one just has to
take care that |~ | cannot be too large, which is taken into account by the factor
TA(n™|). We now want a map @3 : (0, z) — P»(6, z) = (x, y) such that

("0 w) + z% = x% — yo.
From the parametrization (25) we read off
x=z and y=|n"|=|p"|tan®
and the Jacobian going from the (19, z) variables to (x, y) is simply

‘a(x,y)

= |det DD,| = 2|nT| > 2 Ao.
39, 2) | de 2] In™| = 2A0

We certainly have 0 < x < 2 and also Agtanvg < y. Since y = |~ |, we also
have the restriction y < A. So the proof of the second inequality follows similar to
the proof of first one. O

Finally, we can state and prove the second step in our inductive procedure.
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Lemma 2.41. Let 8 < TLO Asssume that there exist finite constants A, and B, such
that

1f@ Iy = A, and (G 5, )@ ) 2@ey = B (59)

for some integer m 2 2 and for all 0 <t < Ty.
Set A := #A and assume that

A > Ag:=3. (60)

Then there exist a finite K3, depending only on d,m, Ay, and B such that
Hyp3 5(K3) is true.

Proof. Fix 0 <t < Ty, a direction € R? \ {0}, and define the function
2> F(z) = f(t n +z|'7m)
of the single real variable z, where we think of ™ as given in the n-parametrization

(25) for some § and w € S¢~2(1), and where we drop, for simplicity, the dependence
on the time 7 in our notation for F and f. Then, since || f(z,)ll 1 < A one has

f(t,) € €"(R?) and thus also F € " (R) with || Fllzec £ Ay, |07 Fllpe <
(27)™A,,, and Corollary 2.14 applied to F now gives

. 2 o
If(n‘)lsLm,1</O If(n_+z|'7ﬂ)|2dz) .

We multiply this with the radially increasing weight G to get

2m A 2 ~ ﬁ
G )T f ) = L, (/0 G~ + 2z f(n~ +Zﬁ)|2dZ> :

Integrating this with respect to @ and 6, where we think of n~ = n~(n, 0, w) in
the parametrization (25), and using Jensen’s inequality for concave functions, one
gets

b4

2 o 2m oA
/ / G )+ f(n)ldo do
6o JSI2(m)

+1 1
< Ly (5305 |S472 B

z ) Tl
X (/ / / IG(n‘+zﬁ)f(n‘+zﬁ)|2dzd9dw) . (6D
b Jsi2m) Jo

Now assume that || > Ag. Because of the first part of Lemma 2.39, we can further
bound
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m+1 m+1 2 2’7:’1*]
61) <L Ty ot |S92 2t [ — 2
(61) <L, 1(5)21| | A cos 0o

m

Inl

2m+1
2 +2
: (/ / / Gl — yo) f (= yw) | dy dx da))
S4-2(n) J A sin? Ao sin 6

1 1 2 2m+l
<L I(l)%@"‘ﬂz’ﬁu S (Ag sin 6p)> ¢
=itz Ag cos 6y

\n\ m

+2 2 d—2 2m+1
(/ / / |G(x‘ ‘ yw)f(xl |~ yo)|“ y*"“dydx da)) .
S9-2(n) J Ag sin? Ag sin 6y " n

Again, the integration measure y?~2dy dx dw is d-dimensional Lebesgue measure
in the cylindrical coordinates (x, yw) with respect to the cylinder in the n direction.
One checks that the condition A > Ay > 3 ensures that

(A/2+2)% + (A)2) < (V24)?,

so since |n| < A, we can extend the integration above to a ball of radius V2A to
get

m+1 2m

m+1 — 2 zmmﬁ . — I+l
(61) < Ly, 1 (%) 37 S92 |35 (m) (A05in60)> 1G /3, f 115z,

m+1

2 2] m
< Lpi(% YT S4B (— = (Aosinp)> B35, (62)
Agcosby

If |n] < Ag we simply bound

T

2 o 2m oA S T _ 2
/ / G )T | f () dOdew < || fl| Lo =|SI72|ePTo+40/2)
b Jsi-2(n) 2 (63)

T _ 2
<A, E|Sd 211 +45/2,

Concerning the bound in the second half of Hyp3 7, a completely analogous calcula-
tion as the one above, using the second half of Lemma 2.39 gives for Ao < [n| < A,

% 2m__
N
B0 JSI2(nt)

x1 4 (In~ (", 9, 0)]) dwdd
V2

F(n @t o, w))‘

m+1 m—+1 1 ﬁ#—l
< Ly 1 ()3T |§472 BT (Z—AO) (Ag tan 99)> ¢

21;2”—%—1
\/> —
</;d 2 +)/ / |G(x\n\ yw)f(xm yo)|* y42dy dx da)) .
1

(64)
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By our choice of A and Ap, we always have 22 4 (/T/2)2 < («/EA)z, SO we can
extend the integration above to the whole ball |77 < V2A to see

2m

mtl _on, mtl 1 #l“ _ T
(64) < Lyn,1(5) 251|872 20 <2—AO> (A0tan90)* 1G /54 f11 7550,

m+1 m 1 zmm+l 2m
<L, 1(%)72,,111 |Sd_2|72m-:—ll _ (Ag tan ¥g)> "¢ BT, (65)
’ 2Ag
If [n*] < A we simply bound as above

s
Z 1 A
f f G| F () dd doo < A ZIST20e 8, (66)
% Sd_z(r)"') 4

Now we set K3 equal to the maximum of the constants in (62), (63), (65), (66).
With this choice, K3 depends only ond, m, A, and B and Hyp3 3(K3) is true. O

Proof of Theorem 2.34. In view of Lemmata 2.38 and 2.41 a suitable choice for
A, and B is

B = ||f0||L2(Rd)€Cf°TO, Ap = sup || f (2, ')||L,1”(]Rd)~
t20

The finiteness of A,, is guaranteed since fo € L,ln (RY), see Remark 2.28. We again
choose the length scales Ay to be

N
An—1 +2An-1 142 14+42
= =5 AN = Ao

AN
N 2 2

with Ag = 3, see (60), and we set
M; := max {2|S‘H|A,,, +1, K3},
with the constant K3 from Lemma 2.41. Since
T
2 2m
sup  sup / / G (1. 1™ (n,60) T | £ (1™ (0. 60)) | deodo
0<r<Tp \77\5\/5/\ 6o S4-2(p)

2m
T = _ 8T 12 o
< —|Sd 2|@2m+1 0(1+47) A’ ,

and similarly for the n* term, it follows from our choice of M3 that there exists
Bo > 0 such that Hyp3A0 (M3) is true forall 0 < B < fBo.
Now, we pick

C
. 1 fo

=min | Bo, T, , )
p (’3 0 aro[u+zd—1)cb,d,2Mz+<ceo+2de0>M]+1)

with the constant M3 from Corollary 2.30, so that the conditions of Lemma 2.38
and 2.41 are fulfilled.
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For the induction step assume that Hyp3 4 (M3) is true. Lemma 2.38 then
implies
1G yapy fl2ey < I s34, (Do) foll L2y €070 = B,

and Lemma 2.41 shows that Hyp3 , Nt (M3) is true.
It follows that Hyp3 4 . (M3) is true for all N € N, and therefore also

1G jaay fll2wey = B

forall N € N In particular, letting N — oo, we see that |G || 2ra) < B, which
concludes the proof of Theorem 2.34. O

3. Removing the L? Constraint: Gevrey Regularity and (Ultra-)Analyticity
of Weak Solutions

In this section we will give the proofs of Theorems 1.6, 1.9, and 1.10in a slightly
more general form. More precisely, we will prove

Theorem 3.1. (Gevrey smoothing 1) Assume that the cross-section b satisfies the
singularity condition (3) and the integrability condition (4) for d 2 2, and for
d =1, by satisfies the singularity condition (6) and the integrability condition (7)
for some 0 < v < 1. Let f be a weak solution of the Cauchy problem (1) with
initial datum fy > 0 and fo € L,ln (R4 N Llog L(RY) for some integer m > 2.
Then, for all 0 < a < min {am,d, v},

fm»ecﬁ@% (67)

log[(4m~+d)/(2m+d)]

forallt > 0, where oy, g = Tog 2

Theorem 3.2. (Gevrey smoothing II) Let d > 2. Assume that the cross-section b
satisfies the conditions of Theorem 1.6. Let f be a weak solution of the Cauchy
problem (1) with initial datum fy > 0 and fo € L,ln RHNL log L(RY) for some
integer m > 2. Then, for all 0 < a < min {am,z, v},

fm»eGﬁﬁﬁ (68)

log[(4m+2)/(2m+2)]

forallt > 0, where oy, 2 = Tog 2

. In particular, the weak solution is

real analytic if v = % and ultra-analytic if v > % in any dimension.

If the integrability condition (4) is replaced by the slightly stronger condition
(16), which is true in all physically relevant cases, we can prove the stronger result

Theorem 3.3. (Gevrey smoothing III) Let d > 2. Assume that the cross-section
b satisfies the conditions of Theorem 1.6 and the condition (16), that is, they are
bounded away from the singularity. Let f be a weak solution of the Cauchy problem
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(1) with initial datum fy > 0 and fy € L}n RHYNL log L(Rd)for some integer
m > 2. Then, for all 0 < o < min {am,l, v},

ft,)e Giaf%") (69)

forallt > 0, where oy 1 = W

We even have the uniform bound

Corollary 3.4. Under the same assumptions as in Theorem 3.1 (or 3.2, respec-
tively 3.3), for any weak solution f of the Cauchy problem (1) with initial datum
fo = 0and fy € L,L(Rd) N Llog L(RY) for some integer m > 2 and for
any 0 < o < min{agp,, v} (or any 0 < « < min{ay, 2, v}, respectively
0 < o < min{a,y, 1, v}) there exist constants 0 < K, C < 0o such that

sup sup eKMnED O £y <, (70)

0<t<o0 yeRd

Proof of Theorems 3.1 through 3.3. In the case where the initial condition fy
obeys fo > 0 and fy € L} (R?Y) N Llog L(RY) for some integer m > 2, but
is not necessarily in L2(R?), we use the known H smoothing of the Boltzmann
[4,23,39] and the Kac equation [30] in a mild way (see also Appendix B): fort > 0
one has f(z,-) € L*(R?) and using this as a new initial condition in Theorems 1.6
through 1.10, and noting that 7y in those theorems is arbitrary, this implies that

f@, ) e Gi(Rd) fort > 0> O

Proof of Corollary 3.4. Using known results about propagation of Gevrey regu-
larity by DESVILLETTES, FURIOLL, and TERRANEO [21] for the non-cutoff homoge-
neous Boltzmann and Kac equation for Maxwellian molecules, the bounds from
Corollary 2.20 through 2.36 extend to all times. O
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S AH® smoothing effect for the homogeneous non-cutoff Kac equation was first proved
by L. DESVILLETTES [17], but under the stronger assumption that all polynomial moments
of the initial datum f{) are bounded, i.e. fy € L}((R) N Llog L(R) forall k € N.
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A L? Type Reformulation of the Boltzmann and Kac Equations

A reformulation of the weak form (9) of the Boltzmann and Kac equations is
derived. We want to choose a suitable test function ¢ in terms of the weak
solution f itself in the weak formulation of the Cauchy problem (1). We use
o(t, ) = G? “4(t, Dy) f(t, -) and since this involves a hard cut-off in Fourier space,
we automatlcally have high regularity of ¢(z, v) in the velocity variable, the ques-
tion is to have ¢! regularity in the time variable. For this we follow the strategy by
MORIMOTO ET AL. [39].

Proposition A.1. Let f be a weak solution of the Cauchy problem (1) with initial
datum fy satisfying (8), and let Ty > 0. Then forallt € (0, Ty], B > 0, @ € (0, 1),
and A > Owehave GAf €€ ([O, Tol; Lz(Rd)) and

t
SIGAG D F My —f (@) (4Gh@ Do) 1) dr
an

=5||11A(Dv)fo||iz(R,,) /(Q(f N ). GhE DYf(x, ) dr.

To ensure that we can use G%x f as a test function in the weak formulation of the
Boltzmann equation, we need the following bilinear estimate on Q(g, f), which is
a special case of a larger class of functional inequalities by ALEXANDRE [1,2,6].

Lemma A.2. (Functional Estimate on Collision Operator) Assume that the angular

collision cross-section b satisfies assumptions (3)—(4) or (6)—(7), respectively. Then
for any k > # there exists a constant C > 0 such that

10, Al < Cllgh a1z (72)
Proof. This is a direct consequence of Theorem 7.4 in ALEXANDRE’SN review [2]:
under the assumptions on b, for any m € R there exists a constant C > 0 such
that ©

10, Npg-nmay = ClENLy qay 1 1l ymsow gay-
Since L'(R?) ¢ H~*(R?) for any s > £, we obtain for k > 4+ and v € (0, 1),
11 gy gy = 10V Fll g2vgay < CIE Fll 1 ey
S el flligay = el flligays

ie., L%(Rd) C Hz_vk+2”(Rd) for any k > d+4 and v € (0, 1). Therefore,

10, Hllg—cray < Clglly a1 f oy < Clgll gy £l g gay-

6 This result is proved in [2] for d = 3, but the proof depends only on assumption (3) and
general properties of Littlewood—Paley decompositions and holds in any dimension d > 1.
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Lemma A.2 implies that for f, g € LI(R?), (Q(g. f), h) is well-defined for all
he H*(RY), k > &% and one has (Q(g, f), h) = (Q(g, ), h) ;2.

Proof of Proposition A.1. Choosing a constant in time test function ¢ (¢, -) = ¢ €
6 (R?) in the weak formulation (9) yields

t
/ f(tyv)w(v)dv—/ f(s,v)w(v)dv:f (Q(fs )z, ), ¥)dr,
R4 R4 K

for0 < s <t = Ty forall ¥ € 65° (R?) (this was already remarked by VILLANI

[48] as an equivalent formulation of (9)). By means of (72) this equality can be

extended to test functions ¢ € H k for k > %, in particular one can choose

U= Gaf(t, ) and Y = G%lf(s, -), which, taking the sum of both resulting
equations, yields

1GAf @, 72 ay = 1GAf (s, 2 ga,
=(r@. 2. G rw ) = (6.9, GAr6.)
= (.. (630, D) = G465, DY) £G5.)
+ [ et pe . Gire + Greo)a a3
Using Plancherel, the first term on the right hand side of (73) can be estimated by
(£@.9. (G5 D) = G55, D) £ 5.
= (7., (63 ) = Ghs. ) Fs.0)|
< [ 111G @ = Gl mldy

<t —s) fR 2B(m** G, n) dn | £t )l gy Il £ (. ) 1 gay
< Canlt = sl foll 71 gays

and, using that the terms involving the collision operator can, for any k > #

(compare (72)), be bounded by

HO(f, )z, ), G4 f(t, )]
SO H)@ ) g+ @y |GH £t ) gk may

A 1/2
< CUFIG ) ( /R (GG a I f P dn)

1/2
< CUFIG ) oy 12 ) ( A G (To, m) dn)

< Ch ol y gy I foll 1 gy
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for any ¢ € [0, Tp], yielding

<Q(f N, GLf )+ G f(s, ) de

<2C) i~ 14015y ey fol1 iy,

Plugging the latter two bounds into (73) shows that G 4 f € ([0, Tol; L?(R%)),
in fact, the map [0, To] > 7 = |G 4 f(t, )| 2 (ray is even Lipschitz continuous.

For any test function ¢ € €' (R™; 65° (R9)) the term involving the partial deriva-
tive d;¢ in the weak formulation (9) can be rewritten as

t
/0 (F(5. ). dep(, ) dr

dr,

t N .
Zéiﬂ%fo <f(r, Yt fath, o, LEER) — e )>

2h

since f € €(Rt; 2'(RY)). The integral on the right hand side is well-defined even
for ¢ € L*°([0, Tol; Wz*oo(Rd)), in particular for ¢ = G%‘f, yielding

(T +h,) — e, ~)> d

2h
G f(t+h,)—Gif, -)> ‘

/(; <f(fv)+f(f+hv)’

t
Z/(; <f(f,)+f(f+h,), 2]1
1 t
2h

2 2
+/ <f(r’ 5, Ga(z+h Do) = G5(x. Do)
0

(||GAf<r +h )2 = 16 f (@I, ) dr

o f( +h, -)> dr

Using G4 f € €([0, Tp); L2(RY)) it follows that

t

2
T (1G4S @+ R gay = 1G4 f (@ )3 gay ) d7

t+h

1
—5i | 1Gar Rd)dr—ﬂ /0 1G A S (s g dT

h—>0
—||GAf<r M3 gy = ||GAf(o, M2 gy

where |G 4 f(0, )l 2way = 11 (Dy) foll L2 (ra)- For the second integral, an appli-
cation of dominated convergence gives

2 2
hm/ <f( Gale+h, Do) GA(T’DU)f(r+h,~)>dr

2h

/ <f(f ), <3rG%‘> (z, D) f (z, .)> dr
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Putting everything together, we thus have proved equation (71), i.e.
1 2 1 2 1 ! 2
E”GAf”LZ(Rd) =§||]1A(Dv)f0||Lz(Rd) t3 A (f(z,),(8:G3) (x, Dy) f(z,)) dt

+/ (O(f. f). G4 f) dr.
0

B H°° Smoothing of the Boltzmann an Kac Equations

We follow the strategy as in our proof of Gevrey regularity, with several simplifi-
cations. Of course, we do not assume that fj is square integrable! We have

Theorem B.1. (H smoothing for the homogeneous Boltzmann and Kac equation)
Assume that the cross-section b satisfies (3)—(4) for d 2 2, respectively (6)—(7) for
d=1,with0 <v < 1. Let f be a weak solution of the Cauchy problem (1) with
initial datum satisfying conditions (8). Then

f(t,) e H°(RY) (74)
forallt > 0.

The proof is known, at least for the three dimensional Boltzmann equation see [39],
we give a proof for the convenience of the reader. Again, one has to use suitable
time-dependent Fourier multipliers. Note that for fo € L'(R?) one has

Il foll g-v ey < Cayll foll L1 ray

with Cgp, = (fa (7)™ dn)'/? which is finite for all y > d/2. We choose y = d,
for convenience, and

Ma(t, n) := ()~ %ePrlogn g 4 (1))

as a multiplier. Then

sup M (0, Dy) foll 12 way = 1Moo (0, ) foll L2 gey
N

= llfollg-aray = Ca,all foll 1 (way

The proof of Proposition A.1 carries over and we have
1 2 1 ! 2
SIMa DS sy = 5 [ (70 (2ME @ DY) ez ) e

1 t
= SIMA©, Do) fol 2, + fo (o(s. HiE. ) M@ D £ (2. 0) d,
(75)
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and as in the proof of Corollary 2.4, we have

(Q(f, ) MAf) = (Q(f, Maf), Maf) + (MAQ(f, [) = Q(f, Ma ), M4 [)
S —CplMaflip + CrlMafll3s+ (MaQ(f. f) — Q(f. Maf). M4 f).

(76)
The replacement of Proposition 2.8 is
Proposition B.2. The commutation error is bounded by
KMAQ(f, ) — Q(f, Maf), Ma )l
< (A +2Yepall £l (% + %2ﬁ’/2> IMaf7s a7

with the constant cp g4 from Lemma 2.24.

Remark B.3. Of course, for any weak solution f of the Boltzmann and Kac equa-
tions,

Al = 1F @ =l follr-

The fact that the commutator is bounded in terms of the L? norm of M 4 f makes
the proof of H*> smoothing for the Boltzmann and Kac equations much simpler
than the proof of Gevrey regularity.

Proof. As in the proof of Proposition 2.8, Bobylev’s formula shows
KMAQ(f, f) = Q(f. Maf), Maf)l
<[/ b(i-o—) M F ol f )17 o)
R Jsd-1 -\ 7]
X |Ma(t,n) = Ma(t, 1) do dy
N 17 A A +
oo b|—- M
<Ifle fR /S (W o) aolfonfanr
X [Ma(t,0) = Ma(t.n )| do d,

where, as before, n = (n=£n|o). Tobound [M 4 () — M A ()|, welets := |n|?

and s+ = [, Recall that [p*> = 4°(1 + 2 - o) and

+ +12 1
1—S—=1—|”£ =-(1—i.a).
s ] 2 0]

Again, because of the support condition on the collision kernel b(cos 0), we have
~ B
5= sT <s.Set M(s) :== (1 + s)_d/zeTtl"g(H's). Then, for || < A,

Ma(n) — Ma(n™) = M(s) — M(s™)
=+ s)—d/ze%log(lﬂ) —a+ S+)—d/2e%1og(1+s+)

= (1 +5)"92 (e%log(us) _ e%log(1+s+))

+ ()72 — (14 5H)702) F 15D (79
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Since s < 251, we have (1 +s7)~! < 2(1 4+ 5)~!. Hence
()72 = (145700 / (1 +r > ar
< 5(1 +sT)72 s =)

<dd +s+)*d/2(1 - %)

In addition, log(1 + s) < log(2(1 +s™)) =log2 + log(l + sT). So

B log(14s) _ B 10g(14s%)| - BE /S L 8og14) g,
- 2 o 1L +7
+ +
Bt s m log(1+s)(l _ S_) < g2 log(1+3+)(l S_)
=2 1+s+ s s

Also log(1 + 5) < log(2(1 +sT)) = log2 + log(1 + s™). These bounds together
with (79) show

t +2
[Ma() = Mar™)| < (d+ pr27) (1 - "fn'L ) Ma(n®)

for all || < A. Since the integration in (78) is only over || < A, plugging this
together with || f||z < || f |1 into (78) yields

KMAQ(f. [) = Q(f. Maf), M [)]

o) [ o(30) (1157

X Ma|f | Ma(H)F ()| do dn.

Noting again

WAL F Dl a1 € 3 (st ) + sty Fr))

and performing the same change of variables for the integral containing ™ as in
the proof of Lemma 2.10 finishes the proof of equation (77). O

Now we can finish the

Proof of Theorem B.1. Using (75), (76), Proposition B.2, and

3 Ma(z, m)* = 2B log(n) M(z, n)?,
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one sees that
t
IMa(t, D) f(t, )35 < 1 foll,-a +2C, / IMa(z, Dy) f(z, )%, dr
0

! ~
+ [ (Mate D f(x, ). (BlogtDy) =28 (D) Mate, D) £, 0)

+(1 +2d*‘>cb,d||fo||uf0 (2 - ﬁz 7 ) IMa(z, D) f (@, )]s

Setting

A(B.7) = sup (Blog(n) — 285 ™) +2C5,
neRd

2

_b ).
=, |:log <4v5f0> 1:| +2Cy,

— T ﬂr
+ (1 +2 Nepall foll o (2 +ﬁ72 )

_ d T _pt
+ 1+ 2 Yepall foll 1 (— + ’%2 2 )

the above can be bounded by

t
IMa(t, D) F(t 72 < I foll3-a + /0 AB, DIIMa(T, Dy) f(z, )7, dr,

and from Gronwall’s lemma we get

t
IMA(t, DY) f(t 72 < N foll5-a exp (/0 A, 7) dr) :

Letting A — o0, one sees that
t
LF (5 = IMoo(t, D) £t )22 < [l foll?, s exp ( [0 A(B. r)dr) :

that is, f(z,-) € HP'=4(R%). Now let B — oo to see that f(z,-) € H>®(R?) for
anyt > 0. O

d
Remark B.4. Setting 8 = , one sees that || f(z, ) || HV(Rd) y4+u ,sothe HY
norms, in particular the L2 norm, of f (¢, -) blow up at most polynomially ast — 0.

C The Kolmogorov-Landau Inequality

In this section we give a short proof of

Lemma C.1. (Kolmogorov-Landau inequality on the unit interval) Let m = 2 be
an integer. There exists a constant C,, > 0 such that for all w € W™°°([0, 1]),
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lwll > o, 11 -
oy < G (PO o ).

forall0 < u < 1.

For the convenience of the reader, we give a short proof. The following argument is
in part borrowed from R. A. DEVORE and G. G. LORENTZ’s book [24] (pp. 37-39).

Proof. Since w € W™ ([0, 1]), it has absolutely continuous derivatives of order
up to m — 1 and essentially bounded m™ derivative.
Let x € [0, %] and h € [0, %]. Then, by Taylor’s theorem,

m—1, ;
W
wix +h) = wx) + Yy —w )+ Ru(x, h)
j=1
with the remainder R, (x, h) = Oh (}E’;?T;, : w™ (x + t) d¢, which can be bounded
by

h m—1 m
(h—1) h
Ry (x, )| < |[w™ || poo / At = —w™ | oo .
|Rm (x, W] < [[w™ L (0,1)) r— o,
Choosing m — 1 real numbers 0 < A} < Ap < -+ < Ap—1 < 1 we obtain for

h € [0, %] the system of equations

m—1 j

A ,
E Aﬁf'w(])(x) =w(x + Agh) —w(x) — Ry (x, Agh) fors=1,--- ,m—1.
=1

(80)
Setting
A2t hw'(x)
2 m—1 h
Ay A5 e A Tw”(x)
V = s W()C) = . B
Am—1 )‘r2n—l T )‘%:% (Zniill)gw(m_l)(x)
w(x + Ah) — w(x) — Ry (x, A1h)
w(x + A2h) — w(x) — Ry (x, A2h)
b(x) = ) ,
w(x + Ap—1h) —w(x) — Ry (x, Ap—1h)

we have Vw(x) = b(x). Since the Vandermonde determinant

m—1
detV=T[[n [] @u-2rp#o.
i=1

i=l  1<j<iSm—1
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V is invertible and we obtain w(x) = V~!b(x) and therefore

w® )| S IwE)I S VD), (81)

E

where | - || is any norm on R”~!, respectively the induced operator norm on the
space of (m — 1) x (m — 1) real matrices. Choosing for concreteness the ¢! norm
on R”™~! we have

m—1

e =D lwlx + sh) = w(x) — Ru(x, Ash)]

s=1
hm
Sm—1) <2||w||L°°([0,1]) + %Ilw(m)llm([o,l])> .
While for our application the size of |V ~!|| is of no importance, one can even

explicitly calculate it: The inverse of the Vandermonde matrix V is explicitly known
(see for instance [25]),

1 1 o 1
V’) — (=)~ mle =1, . m—1,
( of AB Hv;éﬂ()‘v — Ag)
where cr ,i,j =1,...,m — 2 is the i elementary symmetric function in the
(m—2) varlables A], . ..,Aj,l, Ajtls oo A1,
al.J = Z App s Ay, 00’ =1
1<v1< -<V; <m 1
Vi, Vi EJ

By means of the identity (Lemma 1 in [25]) we have
m—2 ) m—1

> ol = [Ta+20,
i=0 =1
v£]

which holds since the X, are all positive, hence

m—1 _
IV='l= max (v—l) _
C o '"‘11+_k
1<8<m— 1A,3 IA — gl
VZh

Going back to inequality (81), we have so far proved that

hk ' | W
TP @| s m-vv <2||w||L°°([0,1]) + mﬂw(m)llmc([o,l])) ,
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which yields

- 2k! i k!
w® )| < o= DIy (annm(m,mw’” k%”w(m)”Loo([O,l]))

B 2m! _
Sm—-DnIv (h—k||w||uoao,u>+h"’ k||w<"’>||Loo<[o,u>)-
(82)

For x € [%, 1] the same calculations with & replaced by —h prove inequality (82)
in this case as well, so

_ 2m! B
lw® oo,y £ (m — DIV <FllwllL°°([o,1]>+hm kllw(m)IILOO([o,u))
(83)

for all 1 € [0, %]. Taking an arbitrary u € [0, 1], inequality (83) implies, with
h=14%¢€l0, 3],

_ 1 _
lw® [ ooggo.17) £ 2™mim — DIV (u—k||w||m[o,u>+u’" k||w<"’>\|Loo<[o,u>),

which is the claimed inequality with

1 14
Co = 2"mlm — DIV = 2"miom — 1) max  — [ —22 . (84)
1SB<m—1Ag > % |hy — Agl
v=1
v#£B
0

Remark C.2. The constant C,, in equality (84) is far from optimal, but can be made
small by minimising in the choice of the points 0 < A; < -+ < Ay—; < 1, sug-
gesting that the optimal constant might be obtained by methods from approximation
theory.

Indeed, by a more refined argument making use of numerical differentiation formu-
las, the minimisers of the associated multiplicative Kolmogorov—Landau inequality,
i.e., extremisers of

M (o) == sup{[w® || oo qo.17) : w € W™ ([0, 1]), |lwllLoqo.1py < 1,

lw™ [z 0,17 = o}

are explicitly known (at least for a wide range of parameters m € N and o = 0).
The optimal Kolmogorov-Landau constants in these cases are given by the end-
point values of certain Chebyshev type perfect splines. We refer to the papers by
Pinkus [43] and KARLIN [29], as well as the recent article by A. SHADRIN [44] and
references therein.
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D Proof of Lemma 1.1

Proof. Let f € L}(RY) N Llog L(RY). Then

IH(f)|=/ flog+fdv+/ Flog_ fdv.
R4 R4

The positive part is bounded by | f log(1 + f)dv = || f]|£10g - The negative part
can be controlled by

1
/ flog_fdv:/ flog—dvéCB/ F1=0dv
RY (<1 f <

(/ 1+ o) )dv) 11,

which is finite for 0 < § < %5 +2, having used that for any § > O there exists a

constant Cs such that logz < Csz% forall r > 1.
Conversely, let f € L;(Rd) with finite entropy H (f). Then

/ flog(1+ fHdv =/ flog(1 +f)dv—|—/ Sflog(1+ f)dv.
R4 {r=1} {f>1}

On the set where f < 1, we replace f by 1 and where f > 1, we bound 1 + f by
2 f leading to

/ flog(1+f)dv§10g2/ fdv+/ flogfdv+/ flog_ fdv.
R4 R4 R4 R
As above, we conclude

/ flog(1+ f)dv = log2|| fllp1waey + H(f) + Cs a’||f||L L(®RYy (85)

with a finite constant Cs5 4 for 0 < § < ﬁ. O
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