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Abstract

We give a regularity result for local minimizers u : � ⊂ R
3 → R

3 of a
special class of polyconvex functionals. Under some structure assumptions on the
energy density, we prove that local minimizers u are locally bounded. For each
component uα of u, we first prove a Caccioppoli’s inequality and then apply De
Giorgi’s iteration method to get the boundedness of uα . Our result can be applied
to the polyconvex integral

∫
�

(
3∑

α=1

|Duα|p + | adj2 Du|q + | det Du|r
)
dx

with suitable p, q, r > 1.

Mathematics Subject Classification. Primary: 49N60; Secondary: 35J50

1. Introduction

We study the regularity of local minimizers for a special class of variational
integrals

I (u,�) =
∫

�

f (Du)dx (1.1)

where u : � ⊂ R
n → R

m is a vector-valued map and Du is the m × n Jacobian
matrix of its partial derivatives

u ≡
(
u1, u2, . . . , um

)
, Du =

(
∂uα

∂xi

)α=1,2,...,m

i=1,2,...,n
.

A function u ∈ W 1,1
loc (�,Rm) is a local minimizer of I if f (Du) ∈ L1

loc(�)

and
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I (u, suppϕ) ≤ I (u + ϕ, suppϕ),

for all ϕ ∈ W 1,1(�,Rm) with suppϕ � �.
Motivated by the applications to nonlinear elasticity, J. Ball in 1977 pointed out

in [1] that the convexity of f with respect to Du is unrealistic in the vectorial case.
Indeed, it conflicts with, for the instance, the natural requirement that the elastic
energy is frame-indifferent. The convexity must be replaced by different and more
general assumptions, such as the so calledquasiconvexity andpolyconvexity, already
introduced by Morrey [36] in an abstract setting. In particular, we are interested in
the polyconvexity condition, which takes into account the constitutive hypothesis
that the energy is invariant under the transformation g �→ g + ϕ, for every null
Lagrangian ϕ.

A function f : Rm×n → R, f = f (ξ), is said to be polyconvex if there exists
a convex function g : Rτ(m,n) → R such that

f (ξ) = g (T (ξ)) , (1.2)

where

τ(m, n) :=
min(m,n)∑

i=1

(n
i

) (m
i

)

and T (ξ) is the vector defined as follows:

T (ξ) := (
ξ, adj2 ξ, . . . , adji ξ, . . . , adjmin{m,n} ξ

)
.

Here adji ξ denotes the adjugate matrix of order i . In particular, if m = n, then
adjn ξ = det ξ .

The polyconvexity assumption is commonly used as a structural assumption in
mathematical models of elasticity, since, if n = m = 3, then ξ , adj2 ξ and det ξ
govern the deformations of line, surface and volume, respectively.

Our main purpose is to illustrate some ideas and methods which lead to local
boundedness for local minimizers of some polyconvex functionals.

In our paper n = m = 3 and we assume that there exist Fα : R3 → [0,+∞),
Gα : R3 → [0,+∞), with α ∈ {1, 2, 3}, and H : R → [0,+∞) convex functions
such that

f (ξ) :=
3∑

α=1

{
Fα(ξα) + Gα

((
adj2 ξ

)α)}+ H(det ξ), (1.3)

where

ξ =
⎛
⎜⎝

ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

ξ31 ξ32 ξ33

⎞
⎟⎠ =

⎛
⎝ ξ1

ξ2

ξ3

⎞
⎠ , ξα ∈ R

3 for α ∈ {1, 2, 3},

and adj2 ξ ∈ R
3×3 denotes the adjugate matrix of order 2 whose components are

(adj2 ξ)γ i = (−1)γ+i det

(
ξα
k ξα

l

ξ
β
k ξ

β
l

)
γ, i ∈ {1, 2, 3},
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where α, β ∈ {1, 2, 3} \ {γ }, α < β, and k, l ∈ {1, 2, 3} \ {i}, k < l. Moreover,

(adj2 ξ)α = ((adj2 ξ)α1, (adj2 ξ)α2, (adj2 ξ)α3).

Integrands (1.3) occur as stored energy densities for certain models from nonlinear
elasticity (see Ball [1,2], Ogden [39]) and, by the results by Ball [1,2] and Müller
[38], (see also the monograph by Dacorogna [8]), the corresponding minimization
problems have a solution.

To have regular localminimizers some growth conditions have to be considered.
We assume that Fα(ξα) grows like |ξα|p, Gα(

(
adj2 ξ

)α
) grows like

∣∣(adj2 ξ
)α∣∣q

and H(det ξ) grows like | det ξ |r .
In this paper, under suitable assumptions on the exponents p, q, r (see condition

(2.5)) we prove that the localminimizers of I are locally bounded in�, see Theorem
2.1. We note that Fα,Gα, H may depend on x too: Fα(x, ξα),Gα(x,

(
adj2 ξ

)α
),

H(x, det ξ); see Theorem 2.1.
As an application of Theorem 2.1, let us consider the functional (1.1) with

f (Du) :=
3∑

α=1

(
|Duα|14/5 + | adj2 Duα|2

)
+ | det Du|3/2.

By Theorem 2.1 every local minimizer u : � ⊂ R
3 → R

3 of I is locally bounded.

Note that the existence of a minimizer of I in ū + W
1, 145
0 (�), with ū ∈ W 1, 145 (�),

comes from Remark 8.32 in [8], see Theorem 3.1 below.
Partial regularity results, that is the regularity of solutions up to a set �0 and

the study of the properties of the singular set (see for example section 4.2 in [33]
and section 1 in [34]) are contained in [7,12,14,15,17,22,40]. For the polyconvex
case, only few everywhere regularity results are available; we mention those by
Fusco and Hutchinson in [18], where the everywhere continuity is proved in the
case n = m = 2, Fuchs and Seregin [16], where Hölder continuity for extremals
is dealt with. Global pointwise bounds are in [9,24,26–29]. Interesting results are
contained in [3–6,42]; see also [25].

The main novelty of our result is the technique used to obtain the regularity re-
sult. We prove the local boundedness of vector valued minimizers u = (u1, u2, u3)
by using De Giorgi’s iteration method, used until now only in the scalar case. In-
deed, we first show that each component uα satisfies a Caccioppoli inequality (see
Proposition 2.3); then we apply De Giorgi’s procedure, separately, to each uα .

The special structure on f in (1.3) is in some sense necessary to treat this type
of functional since in the vectorial framework minimizers can be unbounded in
view of some counterexamples, see [10,43], section 3 in [33] and the recent [35].

The integrals considered can be inserted in the class of functionals with p, q-
growth. The mathematical literature on the regularity under p, q-growth is very
rich; energy functionals with anisotropic, non-standard or general growth have
been studied by many authors and in different settings of applicability. Under p, q-
growth it is now well known, as in our result, that a restriction between p and q
must be imposed due to the counterexamples in [11,13,20,23,30–32]; we refer to
[33] for a detailed survey on the subject.
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Our paper is organized as follows. In the next section we present the precise
statement of our local boundedness result (Theorem 2.1) and we describe our strat-
egy for proving it; eventually we provide the proof. In Section 3 we recall an
existence result for a suitable class of polyconvex functionals (Theorem 3.1); using
this result and Theorem 2.1 we obtain the existence of locally bounded minimizers
for a class of functionals satisfying the assumptions of these two results (Theo-
rem 3.2). Section 4 is the Appendix, devoted to two technical results used to prove
Theorem 2.1.

2. Local Boundedness

We consider � ⊆ R
3 open set, a function f : � × R

3×3 → [0,+∞), and the
functional

I (u) :=
∫

�

f (x, Du(x)) dx

where u : � ⊆ R
3 → R

3,

Du :=
⎛
⎝ Du1

Du2

Du3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

u1x1 u1x2 u1x3

u2x1 u2x2 u2x3

u3x1 u3x2 u3x3

⎞
⎟⎟⎟⎟⎠ .

We assume that there exist Carathéodory functions Fα : � × R
3 → [0,+∞),

Gα : � × R
3 → [0,+∞), α ∈ {1, 2, 3} and H : � × R → [0,+∞), such that

λ → Fα(x, λ), λ → Gα(x, λ), t → H(x, t) are convex, with

f (x, ξ) :=
3∑

α=1

{
Fα(x, ξα) + Gα(x,

(
adj2 ξ

)α
)
}+ H(x, det ξ). (2.1)

Here

ξ =
⎛
⎝ ξ1

ξ2

ξ3

⎞
⎠ , ξα ∈ R

3 for α ∈ {1, 2, 3}

and adj2 ξ ∈ R
3×3 denotes the adjugate matrix of order 2 whose components are

(adj2 ξ)γ i = (−1)γ+i det

(
ξα
k ξα

l

ξ
β
k ξ

β
l

)
γ, i ∈ {1, 2, 3},

where α, β ∈ {1, 2, 3} \ {γ }, α < β, and k, l ∈ {1, 2, 3} \ {i}, k < l. Moreover,

(adj2 ξ)α = ((adj2 ξ)α1, (adj2 ξ)α2, (adj2 ξ)α3).



Local Boundedness for Minimizers of Some Polyconvex Integrals 273

We assume that there exist exponents 1 < p ≤ 3, 1 < q, 1 ≤ r , constants
k1, k3 > 0, k2 ≥ 0 and functions a, b, c : � → [0,+∞) such that, for all
α ∈ {1, 2, 3},

k1|λ|p − k2 ≤ Fα(x, λ) ≤ k3
(|λ|p + 1

)+ a(x) ∀λ ∈ R
3 (2.2)

k1 |λ|q − k2 ≤ Gα(x, λ) ≤ k3
(|λ|q + 1

)+ b(x) ∀λ ∈ R
3 (2.3)

0 ≤ H(t) ≤ k3
(|t |r + 1

)+ c(x) ∀t ∈ R, (2.4)

where a, b, c ∈ Lσ (�), σ > 1.
Our main result is the following.

Theorem 2.1. Let f satisfy (2.1) and growth conditions (2.2), (2.3), (2.4), with
1 ≤ r < q < p ≤ 3. Assume

p

p∗ < min

{
1 − qp∗

p(p∗ − q)
, 1 − rp∗

q(p∗ − r)
, 1 − 1

σ

}
, (2.5)

where p∗ = 3p
3−p , if p < 3, and, if p = 3, then p∗ is any ν > 3.

Then all the local minimizers u ∈ W 1,p
loc (�;R3) of I are locally bounded.

Remark 2.2. If σ = ∞ then 1
σ

must be read as 0. Moreover, we remark that
if p = 3, then p∗ can be chosen large enough so that (2.5) is implied by the
assumptions 1 ≤ r < q < p and σ > 1.

For the sake of simplicity we prove the theorem in the case with no dependence
on x , that is, f (ξ), Fα(ξα), Gα(

(
adj2 ξ

)α
), H(t), with a(x) = b(x) = c(x) = 0 in

the growth conditions. See also Remark 2.6.

Sketch of the Proof

We now provide a sketch of the proof of Theorem 2.1. For a local minimizer
u = (u1, u2, u3) we will prove that each component is locally bounded. In the
following we consider the first component u1 (we can argue similarly for the other
components u2, u3).

STEP 1: Caccioppoli inequality for u1. We use the minimality condition with
a suitable test function; such a test function and the particular structure (2.1) of
the density f guarantee a Caccioppoli inequality for u1 on every superlevel set
{u1 > k}. More precisely, with fixed x0 ∈ � and a ball BR0(x0) � � (we will not
write the center x0 if no confusion may arise) we have that there exists c > 0 such
that for all s, t > 0, s < t ≤ R0,

∫
{u1>k}∩Bs

|Du1|p dx ≤ c
∫

{u1>k}∩Bt

(
u1 − k

t − s

)p∗

dx + c|{u1 > k} ∩ Bt |ϑ

(2.6)

with a suitable ϑ > 0. The Caccioppoli inequality (2.6) permits us to apply the
classical methods to get the regularity in the scalar case. Observe that on the right
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hand side of (2.6) we do not get the same exponent p as in the left hand side, but the
larger p∗; it still allows us to prove the local boundedness of u1, see also [19,37].
STEP 2: Decay of the “excess” on superlevel sets. For a suitable radius R < R0 and
a suitable level d, we define a sequence ρh of radii starting from R and decreasing
to R

2 , another sequence kh of levels starting from
d
2 and increasing to d. We define

the “excess” on the superlevel set as follows:

Jh :=
∫

{u1>kh}∩Bρh

(
u1 − kh

)p∗
dx . (2.7)

Note that Jh is a decreasing sequence. Using Sobolev inequality and Caccioppoli
estimate (2.6) we are able to show that

Jh+1 � cQh Jϑp∗/p
h (2.8)

for some constants c, Q > 1.
STEP 3: Iteration. On the right hand side of (2.8) there is competition between the
increasing Qh and the decreasing Jϑp∗/p

h ; if ϑp∗/p > 1 and the initial value J0 is
small, then

Jh � Q
−h

ϑp∗/p−1 J0 (2.9)

so that

lim
h→+∞ Jh = 0, (2.10)

which implies

u1 � d a. e. in BR/2. (2.11)

Since assumption (2.5) guarantees ϑp∗/p > 1 we get (2.11). Lower bounds for u1

can be obtained by showing that −u is a minimizer for a similar functional.
To accomplish this program, wewill use two technical lemmas; their statements

and proofs can be found in the Appendix.

STEP 1: Caccioppoli Inequality

The particular structure (2.1) of the density f guarantees a Caccioppoli in-
equality for any component uα of u on every superlevel set {uα > k}. In the next
proposition we state this result in the case of the first component u1.

Proposition 2.3. Let f be as in (2.1), satisfying the growth conditions (2.2), (2.3)
and (2.4), with

q <
p∗ p

p∗ + p
and r <

p∗q
p∗ + q

. (2.12)

Let u ∈ W 1,p
loc (�;R3) be a local minimizer of I .
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Let BR(x0) � �, |BR | < 1, R < 1, and, fixed k ∈ R, denote

A1
k,τ := {x ∈ Bτ (x0) : u1(x) > k} 0 < τ ≤ R.

Then there exists c > 0, independent of k, such that for every 0 < s < t ≤ R:

∫
A1
k,s

|Du1|p dx ≤ c
∫
A1
k,t

(
u1 − k

t − s

)p∗

dx

+ c

⎧⎨
⎩1 + ||a + b + c||Lσ (BR) +

(∫
BR

(|Du2| + |Du3|)p dx
) qp∗

(p∗−q)p

+
(∫

BR

∣∣∣(adj2 Du
)1∣∣∣q dx

) rp∗
(p∗−r)q

⎫⎬
⎭ |A1

k,t |ϑ , (2.13)

where ϑ := min
{
1 − qp∗

p(p∗−q)
, 1 − rp∗

q(p∗−r) , 1 − 1
σ

}
.

Proof. For the sake of simplicity we will give a proof assuming that the integrand
function f is independent on x , and consequently, that a, b and c in (2.2), (2.3) and
(2.4) are equal to 0.

Let BR(x0) � �, |BR | < 1 and R < 1. Let s, t be such that s < t ≤ R.
Consider a cut-off function η ∈ C∞

0 (Bt ) satisfying the following assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t − s
. (2.14)

Fixing k ∈ R, define w ∈ W 1,p
loc (�;R3),

w1 := max(u1 − k, 0), w2 := 0, w3 := 0,

and, for μ ≥ p∗,

ϕ := −ημw.

For almost every x in � \ ({η > 0} ∩ {u1 > k}) we have ϕ = 0, thus

f (Du + Dϕ) = f (Du) almost everywhere in � \ ({η > 0} ∩ {u1 > k}).
(2.15)

For almost every x in {η > 0} ∩ {u1 > k} denote

A :=
⎛
⎜⎝

μη−1(k − u1)Dη

Du2

Du3

⎞
⎟⎠ . (2.16)

We notice that

Du + Dϕ =
⎛
⎜⎝

(1 − ημ)Du1 + μημ−1(k − u1)Dη

Du2

Du3

⎞
⎟⎠ = (1 − ημ)Du + ημA.
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Since

det(Du + Dϕ) = (1 − ημ) det Du + ημ det A

and

adj2(Du + Dϕ) = (1 − ημ) adj2 Du + ημ adj2 A,

and using that f is polyconvex, we get

f (Du + Dϕ) ≤ (1 − ημ) f (Du) + ημ f (A)

almost everywhere in {η > 0} ∩ {u1 > k}. (2.17)

By the minimality of u, f (Du) ∈ L1
loc(�). Lemma 4.2 in the Appendix ensures

that

ημ f (A) ∈ L1({u1 > k} ∩ {η > 0}).
Therefore (2.15) and (2.17) imply f (Du + Dϕ) ∈ L1

loc(�).
By the local minimality of u, (2.15) and (2.17) we have
∫
A1
k,t∩{η>0}

f (Du) dx ≤
∫
A1
k,t∩{η>0}

{
(1 − ημ) f (Du) + ημ f (A)

}
dx .

The inequality above implies
∫
A1
k,t∩{η>0}

ημ f (Du) dx ≤
∫
A1
k,t∩{η>0}

ημ f (A) dx . (2.18)

Taking into account (2.16) and the particular structure of f (see (2.1)) we obtain

F2(A
2) = F2(Du2), F3(A

3) = F3(Du3), G1((adj2 A)1) = G1((adj2 Du)1),

(2.19)

then, by (2.18),

∫
A1
k,t∩{η>0}

ημ

{
F1(Du1) +

3∑
α=2

Gα(
(
adj2 Du

)α
) + H(det Du)

}
dx

≤
∫
A1
k,t∩{η>0}

ημ

{
F1(μη−1(k−u1)Dη) +

3∑
α=2

Gα((adj2 A)α)+H(det A)

}
dx .

(2.20)

By the growth assumption (2.2),

ημF1(μη−1(k − u1)Dη) ≤ cημ + cμpημ−p
(
u1 − k

t − s

)p

almost everywhere in A1
k,t ∩ {η > 0}.
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Therefore, recalling μ > p and the inequality z p ≤ z p
∗ + 1 if z ≥ 0, we obtain

∫
A1
k,t∩{η>0}

ημF1(μη−1(k − u1)Dη) dx ≤ c
∫
A1
k,t

{
1 +

(
u1 − k

t − s

)p∗}
dx .

(2.21)

Moreover, by (2.3) and Lemma 4.1-(c) in the Appendix,

ημ
3∑

α=2

Gα((adj2 A)α) ≤ ημk3

3∑
α=2

(|(adj2 A)α|q + 1
)

≤ cημ + cμqημ−q
(
u1 − k

t − s

)q

(|Du2| + |Du3|)q .

The first inequality in (2.12) implies q < p∗. Using the Young inequality with
exponents p∗

q and p∗
p∗−q we get that, almost everywhere in A1

k,t ∩ {η > 0},

cμqημ−q
(
u1 − k

t − s

)q

(|Du2| + |Du3|)q

≤ c

(
u1 − k

t − s

)p∗

+ c (|Du2| + |Du3|) qp∗
p∗−q .

We have thus proved that

∫
A1
k,t∩{η>0}

ημ
3∑

α=2

Gα((adj2 A)α) dx

≤ c
∫
A1
k,t

{
1 +

(
u1 − k

t − s

)p∗

+ (|Du2| + |Du3|) qp∗
p∗−q

}
dx . (2.22)

By (2.4), and computing det(A) with respect to the first row (see Lemma 4.1-(b)),

ημH(det A) ≤ cημ + cμrημ−r
(
u1 − k

t − s

)r ∣∣∣(adj2 Du
)1∣∣∣r .

Notice that, by (2.12), r < p∗. By the Young inequality with exponents p∗
r and

p∗
p∗−r we get

cμrημ−r
(
u1 − k

t − s

)r ∣∣∣(adj2 Du
)1∣∣∣r ≤ c

(
u1 − k

t − s

)p∗

+
∣∣∣(adj2 Du

)1∣∣∣
rp∗
p∗−r

.

Therefore ∫
A1
k,t∩{η>0}

ημH(det A) dx

≤ c
∫
A1
k,t

{
1 +

(
u1 − k

t − s

)p∗

+
∣∣∣(adj2 Du

)1∣∣∣
rp∗
p∗−r

}
dx . (2.23)
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Taking into account that the inequalities in (2.12) are equivalent to qp∗
p∗−q < p

and rp∗
p∗−r < q, by the Hölder inequality we obtain

∫
A1
k,t

{
(|Du2| + |Du3|) qp∗

p∗−q +
∣∣∣(adj2 Du

)1∣∣∣
rp∗
p∗−r

}
dx

≤
(∫

BR

(|Du2| + |Du3|)p dx
) qp∗

(p∗−q)p |A1
k,t |1−

qp∗
p(p∗−q)

+
(∫

BR

∣∣∣(adj2 Du
)1∣∣∣q dx

) rp∗
(p∗−r)q |A1

k,t |1−
rp∗

q(p∗−r) . (2.24)

Since |A1
k,t | ≤ |BR | ≤ 1, by (2.20), (2.21), (2.22), (2.23) and (2.24) we get

∫
A1
k,s

{
F1(Du1) +

3∑
α=2

Gα(
(
adj2 Du

)α
) + H(det Du)

}
dx

≤ c
∫
A1
k,t

(
u1 − k

t − s

)p∗

dx

+ c

⎧⎨
⎩1 +

(∫
BR

(|Du2| + |Du3|)p dx
) qp∗

(p∗−q)p

+
(∫

BR

∣∣∣(adj2 Du
)1∣∣∣q dx

) rp∗
(p∗−r)q

⎫⎬
⎭ |A1

k,t |ϑ , (2.25)

where

ϑ := min

{
1 − qp∗

p(p∗ − q)
, 1 − rp∗

q(p∗ − r)

}
.

Since G2,G3, H ≥ 0 and

F1(Du1) ≥ k1|Du1|p − k2,

we have that (2.25) implies (2.13). ��

STEP 2: Decay of the “Excess” on Superlevel Sets

In this step we consider a scalar Sobolev function v : � ⊂ R
n → R, n ≥ 2.

Let us assume that � is an open set in R
n and v is a scalar function v ∈

W 1,p
loc (�;R), p ≥ 1. Fix BR0(x0) � � with R0 < 1 small enough so that

|BR0(x0)| < 1 and
∫
BR0

|v|p∗
dx < 1. (2.26)

Here p∗ = np
n−p if p < n and p∗ is any ν > p if p = n.
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For every R ∈ (0, R0] we define the decreasing sequences

ρh := R

2
+ R

2h+1 = R

2

(
1 + 1

2h

)
, ρ̄h := ρh + ρh+1

2
= R

2

(
1 + 3

4 · 2h
)

.

Fix a positive constant d � 1 and define the increasing sequence of positive real
numbers

kh := d

(
1 − 1

2h+1

)
, h ∈ N.

Moreover, define the sequence (Jv,h) as

Jv,h :=
∫
Akh ,ρh

(v − kh)
p∗
dx,

where Ak,ρ = {v > k} ∩ Bρ . The following result holds:

Proposition 2.4. Let v ∈ W 1,p
loc (�;R), p ≥ 1. Fix BR0(x0) � �with R0 < 1 small

enough such that (2.26) holds. If there exist 0 ≤ ϑ ≤ 1 and c0 > 0 such that for
every 0 < s < t ≤ R0 and for every k ∈ R

∫
Ak,s

|Dv|p dx ≤ c0

{∫
Ak,t

(
v − k

t − s

)p∗

dx + |Ak,t |ϑ
}

, (2.27)

then, for every R ∈ (0, R0],

Jv,h+1 ≤ c(ϑ, R)

(
2

p∗ p∗
p

)h

J
ϑ

p∗
p

v,h ,

with the positive constant c independent of h.

Proof. In the following we write Jh in place of Jv,h .
Notice that (Jh) is a decreasing sequence, since the following chain of inequal-

ities holds:

Jh+1 ≤
∫
Akh+1,ρh

(v − kh+1)
p∗
dx ≤

∫
Akh+1,ρh

(v − kh)
p∗
dx ≤ Jh ∀ h.

(2.28)

Let us now define a sequence (ζh) of cut-off functions in C∞
c (Bρ̄h (x0)) such that

0 ≤ ζh ≤ 1 and ζh ≡ 1 in Bρh+1 , |Dζh | � 2h+4

R .

If we denote (v − kh+1)+ = max{v − kh+1, 0} we get

Jh+1 =
∫
Akh+1,ρh+1

(v − kh+1)
p∗

ζ
p∗
h dx �

∫
Akh+1,ρ̄h

(v − kh+1)
p∗

ζ
p∗
h dx

=
∫
BR

(ζh(v − kh+1)+)p
∗
dx . (2.29)
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By the Sobolev embedding Theorem and the properties of ζh we get
∫
BR

(ζh(v − kh+1)+)p
∗
dx

� c

(∫
BR

|D(ζh(v − kh+1)+)|p dx
) p∗

p

≤ c

{(∫
BR

|Dvζh |pχ{v>kh+1} dx
) 1

p +
(∫

BR

|(v − kh+1)+Dζh |p dx
) 1

p
}p∗

≤ c

⎧⎨
⎩
(∫

Akh+1,ρ̄h

|Dv|p dx
) 1

p

+
((

2h

R

)p ∫
Akh+1,ρh

(v − kh+1)
p dx

) 1
p

⎫⎬
⎭

p∗

.

(2.30)

Using (2.27) with k = kh+1, t = ρh , s = ρ̄h we obtain

∫
Akh+1,ρ̄h

|Dv|p dx ≤ c

{(
2h

R

)p∗ ∫
Akh+1,ρh

|v − kh+1|p∗
dx + |Akh+1,ρh |ϑ

}
.

(2.31)

Collecting (2.29), (2.30) and (2.31) we obtain

Jh+1 ≤ c

{(
2h

R

)p∗ ∫
Akh+1,ρh

(v − kh+1)
p∗
dx + |Akh+1,ρh |ϑ

+
(
2h

R

)p ∫
Akh+1,ρh

(v − kh+1)
p dx

} p∗
p

. (2.32)

Since z p ≤ z p
∗ + 1 for every z ≥ 0,

(
2h

R

)p ∫
Akh+1,ρh

(v−kh+1)
p dx ≤

(
2h

R

)p∗ ∫
Akh+1,ρh

(v−kh+1)
p∗
dx + |Akh+1,ρh |,

thus obtaining

Jh+1 ≤ c

{(
2h

R

)p∗ ∫
Akh+1,ρh

(v − kh+1)
p∗
dx + |Akh+1,ρh |ϑ + |Akh+1,ρh |

} p∗
p

.

(2.33)

Since

|Akh+1,ρh |(kh+1 − kh)
p∗ ≤

∫
Akh+1,ρh

(v − kh)
p∗
dx ≤ Jh,
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we have

|Akh+1,ρh | ≤ Jh
(kh+1 − kh)p

∗ =
(
2h+2

d

)p∗

Jh .

Taking into account that

∫
Akh+1,ρh

(v − kh+1)
p∗
dx �

∫
Akh+1,ρh

(v − kh)
p∗
dx ≤ Jh,

the inequality (2.33) gives

Jh+1 ≤ c

{(
2h

R

)p∗

Jh +
(
2h

d

)ϑp∗

Jϑ
h +

(
2h

d

)p∗

Jh

} p∗
p

. (2.34)

Since Jh ≤ 1 for every h and recalling that d ≥ 1 > R0 ≥ R, we get

(
2h

R

)p∗

Jh +
(
2h

d

)ϑp∗

Jϑ
h +

(
2h

d

)p∗

Jh ≤
{
2
2hp

∗

Rp∗ + 2hϑp∗

Rϑp∗

}
Jϑ
h

≤
(

2

Rp∗ + 1

Rϑp∗

)
2hp

∗
Jϑ
h .

By (2.34) it follows that

Jh+1 ≤ c

{(
2

Rp∗ + 1

Rϑp∗

)
2hp

∗
Jϑ
h

} p∗
p ≤ c(ϑ, R)

(
2

p∗ p∗
p

)h

J
ϑ

p∗
p

h .

��

STEP 3: Iteration and Proof of Theorem 2.1

We now resume the proof of Theorem 2.1. As in the proof of Proposition 2.3,
we will consider an integrand function f independent on x ; consequently, a, b and
c in (2.2), (2.3) and (2.4) have to be considered 0.

We need the following classical result, see for example [21].

Lemma 2.5. Let γ > 0 and let (Jh) be a sequence of real positive numbers such
that

Jh+1 � A λh J 1+γ

h ∀h ∈ N ∪ {0}, (2.35)

with A > 0 and λ > 1. If J0 � A− 1
γ λ

− 1
γ 2 , then Jh ≤ λ

− h
γ J0 and limh→∞ Jh = 0.
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Fix BR0(x0) � � with R0 < 1 small enough such that |BR0(x0)| < 1 and∫
BR0

|u|p∗
dx � 1. By Proposition 2.3 we have that u1 satisfies, for every 0 < s <

t ≤ R0 and every k ∈ R,

∫
A1
k,s

|Du1|p dx ≤ c
∫
A1
k,t

(
u1 − k

t − s

)p∗

dx

+ c

⎧⎪⎨
⎪⎩1 +

(∫
BR0

(|Du2| + |Du3|)p dx
) qp∗

(p∗−q)p

+
(∫

BR0

∣∣∣(adj2 Du
)1∣∣∣q dx

) rp∗
(p∗−r)q

⎫⎪⎬
⎪⎭ |A1

k,t |ϑ , (2.36)

where c > 0 is independent of s, t, k and ϑ := min{1 − qp∗
p(p∗−q)

, 1 − rp∗
q(p∗−r) }.

Therefore the scalar function u1 satisfies (2.27) of Proposition 2.4 with constant c0
depending on

∫
BR0

(|Du2| + |Du3|)p dx and
∫
BR0

∣∣∣(adj2 Du
)1∣∣∣q dx .

Note that these integrals are finite by (2.2) and (2.3).Moreover, they are independent
of u1; indeed

(
adj2 Du

)1 depends only on u2 and u3.
As above, let us define

kh := d

(
1 − 1

2h+1

)
, h ∈ N

with d � 1 (d will be fixed later) and, for every R ∈ (0, R0], define

ρh := R

2
+ R

2h+1 = R

2

(
1 + 1

2h

)
, ρ̄h := ρh + ρh+1

2
= R

2

(
1 + 3

4 · 2h
)

and

Ju1,h :=
∫
A1
kh ,ρh

(u1 − kh)
p∗
dx .

Proposition 2.4, applied to u1, gives

Ju1,h+1 ≤ c(ϑ, R)

(
2

p∗ p∗
p

)h

J
ϑ

p∗
p

u1,h
, (2.37)

with the positive constant c independent of h and, by (2.5), with the exponent ϑ p∗
p

greater than 1.
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Indeed, since

Ju1,0 =
∫
A1
d
2 ,R

(
u1 − d

2

)p∗

dx →d→+∞ 0,

we can choose d � 1 large enough so that

Ju1,0 < c(ϑ, R)
− 1

ϑ
p∗
p −1

(
2

p∗ p∗
p

)− 1

(ϑ
p∗
p −1)2

.

Therefore, by Lemma 2.5, limh→∞ Ju1,h = 0. Thus, u1 ≤ d almost everywhere in
B R0

2
. We have proved that u1 is locally bounded from above.

To prove that u1 is locally bounded from below, we notice that −u is a local
minimizer of

∫
�

f̃ (Dv) dx where

f̃ (ξ) :=
3∑

α=1

{
Fα(−ξα) + Gα((adj2 ξ)α)

}+ H(− det ξ).

If we denote

F̃α(λ) := Fα(−λ), H̃(t) = H(−t), λ ∈ R
3, t ∈ R,

the functions F̃α , H̃α are convex and satisfy (2.2) and (2.4).
The function f̃ satisfies the assumptions of Theorem 2.1, so we obtain that

there exists d ′ such that −u1 ≤ d ′ almost everywhere in B R0
2
. We have therefore

proved that u1 ∈ L∞(B R0
2

(x0)). Due to the arbitrariness of x0 and R0, we get

u1 ∈ L∞
loc(�).

The symmetric structure of the energy density f allows us to obtain an analo-
gous statement to Proposition 2.3 also for u2 and u3. Therefore, reasoning as for
u1 (see also Remark 4.3), we obtain that u2, u3 ∈ L∞

loc(�), too.

Remark 2.6. We proved Theorem 2.1 by assuming that the integrand function is
independent of x . In the general case, with f depending on x and satisfying the
general growth conditions (2.2)–(2.4), with a, b, c belonging to Lσ , σ > 1, the
proof goes in a similar way, with the additional condition that 1 − 1

σ
>

p
p∗ .

3. Existence and Regularity

Consider an open, bounded set � ⊆ R
3 and a Caratheodory function f :

� × R
3×3 → [0,+∞), f (x, ξ) := g(x, T (ξ)) with

T (ξ) := (ξ, adj2 ξ, det ξ) ∈ R
3×3 × R

3×3 × R

where z �→ g(x, z) is convex.
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Let ū ∈ W 1,p(�;R3) be a function such that
∫
�

f (x, Dū(x)) dx < +∞.
Consider the minimization problem

min

{
I (u) :=

∫
�

f (x, Du(x)) dx : u ∈ ū + W 1,p
0 (�;R3)

}
. (P)

We suppose that there exist constants c1 > 0, c2 ≥ 0 and real exponents
p, q, r̃ > 1 such that

c1
(
|ξ |p + | adj2 ξ |q + | det ξ |r̃

)
− c2 ≤ f (x, ξ). (3.1)

The following existence result holds (see Remark 8.32 (iii) in [8]):

Theorem 3.1. Consider the variational problem (P). If f satisfies (3.1) with expo-
nents

2 ≤ p < +∞,
p

p − 1
≤ q < +∞, 1 < r̃ < +∞,

then (P) has a solution.

As a consequence of Theorem 3.1 and Theorem 2.1 we have the following:

Theorem 3.2. Consider the variational problem (P), where � is an open bounded
set in R3 and f satisfies (2.1), the growth conditions (2.2), (2.3), (2.4) and

k4| det ξ |r̃ − k5 ≤ H(det ξ) (3.2)

with p ∈
(
3+√

45
4 , 3

)
, p

p−1 ≤ q <
p∗(p∗−p)p

(p∗)2+(p∗−p)p
, 1 < r̃ ≤ r <

p∗(p∗−p)q
(p∗)2+(p∗−p)q

,

k4 > 0, k5 ≥ 0 and σ > 3
p .

Then there exists a minimizer u of (P), with u ∈ L∞
loc(�,R3).

Proof. It suffices to notice that p
p∗ < 1− qp∗

p(p∗−q)
is equivalent toq <

p∗(p∗−p)p
(p∗)2+(p∗−p)p

and that p ∈
(
3+√

45
4 , 3

)
implies that p

p−1 <
p∗(p∗−p)p

(p∗)2+(p∗−p)p
. The thesis immedi-

ately follows by Theorem 3.1 and, taking into account that a minimizer is also a
local minimizer, by Theorem 2.1. ��
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4. Appendix

Given a vector v = (v1, · · · , vn) ∈ R
n we write |v| :=

√∑n
i=1 v2i . Analo-

gously, given a matrix A = (ai j ), i, j ∈ {1, · · · , n}, Ai is its i-th row and

|A| :=
√∑n

i, j=1 a
2
i j .

Lemma 4.1. Consider the matrices A, B ∈ R
3×3

A =
⎛
⎝ A1

B2

B3

⎞
⎠ , B =

⎛
⎝ B1

B2

B3

⎞
⎠ .

Then the following estimates hold:

(a) |A| ≤ |A1| + |B2| + |B3|,
(b) | det A| ≤ |A1||(adj2 B)1|,
(c) |(adj2 A)2 j | ≤ |A1||B3| and |(adj2 A)3 j | ≤ |A1||B2|, for all j ∈ {1, 2, 3}.
Proof. The first estimate is trivial, because

|A| =
√

|A1|2 + |B2|2 + |B3|2 ≤ |A1| + |B2| + |B3|.
To prove the second one, notice that

| det A| ≤
3∑
j=1

|A1 j ||(adj2 A)1 j |.

Since the second and third rows of A and B coincide,

(adj2 A)1 j = (adj2 B)1 j j ∈ {1, 2, 3};
moreover,

∣∣∣(adj2 B)1
∣∣∣ = ∣∣((adj2 B)11, (adj2 B)12, (adj2 B)13

)∣∣ ,
so we have

3∑
j=1

|A1 j ||(adj2 A)1 j | =
3∑
j=1

|A1 j ||(adj2 B)1 j | ≤ |A1||(adj2 B)1|

and we conclude.
To prove (c), notice that, with fixed j ∈ {1, 2, 3},

|(adj2 A)2 j | ≤ |A1i ||B3k | + |A1k ||B3i | i, k ∈ {1, 2, 3} \ { j}, i �= k;
so the first inequality in (c) follows. Analogously, the second inequality follows.

��
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Lemma 4.2. Let � be an open subset of R3. Consider a Caratheodory function
f : � × R

3×3 → [0,+∞). Assume that there exists c1, c3 > 0 and c2 ≥ 0 such
that for every ξ ∈ R

9

c1
(|ξ |p + | adj2 ξ |q)− c2 ≤ f (x, ξ) (4.1)

≤ c3
(|ξ |p + | adj2 ξ |q + | det ξ |r + 1 + ω(x)

)
,

with 1 ≤ p, 1 ≤ q, 1 ≤ r , ω(x) � 0.
Let u ∈ W 1,p

loc (�;R3) be such that x → f (x, Du(x)) ∈ L1
loc(�). Fix η ∈ C1

c (�),
η ≥ 0 and k ∈ R, and denote, for almost every x ∈ {u1 > k} ∩ {η > 0},

A :=
⎛
⎝μη−1(k − u1)Dη

Du2

Du3

⎞
⎠ .

For the sake of simplicity, we write f (A) instead of f (x, A) and f (Du) instead of
f (x, Du(x)). If (2.12) holds and ω ∈ L1

loc(�), then

ηt f (A) ∈ L1({u1 > k} ∩ {η > 0}) ∀t ≥ p∗.

Proof. Denote û := (u2, u3) and

Dû :=
(
Du2

Du3

)
.

By the growth condition (4.1) and Lemma 4.1 we have, almost everywhere in
{u1 > k} ∩ {η > 0},
f (A) ≤c

{(
μη−1(u1 − k)|Dη|

)p + |Dû|p +
∣∣∣(adj2 Du)1

∣∣∣q + 1 + ω
}

+ c
{
μη−1(u1 − k)|Dη||Dû|

}q + c
{
μη−1(u1 − k)|Dη|

∣∣∣(adj2 Du)1
∣∣∣
}r

.

(4.2)

Since (2.12) holds, q < p and r < q; thus there exist α > 1 and β > 1 such that

qα < p∗, qα′ = p, and rβ < p∗, rβ ′ = q.

Therefore, by the Young inequality, there exists c > 0 such that, almost everywhere
in {u1 > k} ∩ {η > 0},

{
μη−1(u1 − k)|Dη||Dû|

}q +
{
μη−1(u1 − k)|Dη|

∣∣∣(adj2 Du)1
∣∣∣
}r

≤ c
(
μη−1(u1 − k)|Dη|

)qα + c
(
μη−1(u1 − k)|Dη|

)rβ

+ c
(
|Dû|p +

∣∣∣(adj2 Du)1
∣∣∣q
)

. (4.3)

Denote q̃ := max{p, qα, rβ}. We have
(
μη−1(u1 − k)|Dη|

)p +
(
μη−1(u1 − k)|Dη|

)qα +
(
μη−1(u1 − k)|Dη|

)rβ

≤ μq̃η−q̃(u1 − k)q̃ |Dη|q̃ + 3. (4.4)
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Therefore, by (4.2), (4.3) and (4.4), almost everywhere in {u1 > k} ∩ {η > 0}, we
have

ηt f (A) ≤ c
{
μq̃ηt−q̃(u1 − k)q̃ |Dη|q̃ + ηt |Dû|p + ηt

∣∣∣(adj2 Du)1
∣∣∣q+ηt+ηtω

}
.

By (4.1) and f (Du) ∈ L1
loc(�) we obtain

ηt |Dû|p + ηt
∣∣∣(adj2 Du)1

∣∣∣q ≤ ηt
(|Du|p + | adj2 Du|q)

≤ ηt

c1
( f (Du) + c2) ∈ L1(�).

Since u ∈ L p∗
loc(�;R3) and t − q̃ > t − p∗ ≥ 0, we have ηt−q̃(u1 − k)q̃ |Dη|q̃ ∈

L1({u1 > k} ∩ {η > 0}). We have thus proved that ηt f (A) ∈ L1({u1 > k} ∩ {η >

0}) for all t ≥ p∗. ��
Remark 4.3. Analogous inequalities to those in Lemma 4.1 hold true if

A =
⎛
⎝ B1

A2

B3.

⎞
⎠ , or A =

⎛
⎝ B1

B2

A3

⎞
⎠ .

Therefore, a statement similar to Lemma 4.2 can be given for u2 and u3, with

A :=
⎛
⎝ Du1

μη−1(k − u2)Dη

Du3

⎞
⎠ and A :=

⎛
⎝ Du1

Du2

μη−1(k − u3)Dη

⎞
⎠ ,

respectively.
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