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Abstract

This paper is devoted to confronting two different approaches to the problem
of dynamical perfect plasticity. Interpreting this model as a constrained boundary
value Friedrichs’ system enables one to derive admissible hyperbolic boundary
conditions. Using variational methods, we show the well-posedness of this problem
in a suitable weak measure theoretical setting. Thanks to the property of finite
speed propagation, we establish a new regularity result for the solution in short
time. Finally, we prove that this variational solution is actually a solution of the
hyperbolic formulation in a suitable dissipative/entropic sense, and that a partial
converse statement holds under an additional time regularity assumption for the
dissipative solutions.

1. Introduction

Friedrichs’ systems are linear symmetric hyperbolic systems of the form
⎧
⎪⎨

⎪⎩

∂tU +
n∑

i=1

Ai∂xiU = 0 in Rn × (0, T ),

U (t = 0) = U0,

where U : Rn × (0, T ) → R
m is the unknown of the problem, A1, . . . , An are

symmetricm×mmatrices, andU0 : Rn → R
m is a given initial data. They appear in

a number of physical systems such as the wave equation or systems of conservation
laws. In particular, the system of three-dimensional linearized elasto-dynamics can
be put within this framework (see [22]), where U is a vector of size 9 (with three
components for the velocity, and six for the symmetric 3 × 3 Cauchy stress), and
A1, A2, A3 are explicit 9 × 9 matrices depending on the Lamé coefficients of the
material.
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Problems of continuum mechanics are usually settled in a bounded domain
Ω ⊂ R

n , which requires the imposition of a boundary condition. Of course, this
is a difficult issue in hyperbolic equations since the initial condition is transported
through the characteristics up to the boundary, where the value of the solutionmight
thus be incompatible with the prescribed boundary data. In other words, one has
to impose boundary conditions only on a part of the boundary that is not reached
by the characteristics (see for example [9,24,30] in the case of scalar conservation
laws, or [17] for one-dimensional nonlinear systems). In Friedrichs’ seminal work
[20], the following type of boundary conditions are considered:

(Aν − M)U = 0 on ∂Ω × (0, T ), (1.1)

where Aν = Aν(x) := ∑n
i=1 Aiνi (x) (ν(x) is the outer normal to Ω at the point

x ∈ ∂Ω), and M = M(x) is a m ×m matrix, for x ∈ ∂Ω , satisfying the following
algebraic conditions (in the non-characteristic case, that is, when Aν is non-singular,
see also [28] for more details):

⎧
⎪⎨

⎪⎩

M + MT is non-negative,

Im(Aν − M) ∩ Im(Aν + M) = {0} ,

R
m = Ker(Aν − M) ⊕ Ker(Aν + M).

(1.2)

The fact that the symmetric part of M is supposed to be non-negative is a way
to ensure that the L2(Ω)-norm of the solution decreases in time, and thus this
hypothesis is related to the uniqueness of the solution. In other words, the non-
negativity of M + MT is connected with the dissipativity of the equation. The two
other assumptions are related to the existence of a solution.

Unfortunately, the previous formulation necessitates that we properly define
the trace of U on the boundary, which might not be desirable if one is interested
in weak solutions in Lebesgue-type spaces (in the spirit of for example [24,30]
for a L∞-theory of boundary value scalar conservation laws). In [28], a general
L2-theory for such boundary value Friedrichs’ systems has been introduced. The
so-called dissipative solutions are defined as functions U ∈ L2(Ω × (0, T );Rm)

satisfying, for all constant vector κ ∈ R
m and all ϕ ∈ W 1,∞(Ω × (0, T )) with

ϕ � 0,

∫ T

0

∫

Ω

|U − κ|2 ∂tϕ dx dt +
n∑

i=1

∫ T

0

∫

Ω

Ai (U − κ) · (U − κ)∂xiϕ dx dt

+
∫

Ω

|U0 − κ|2 ϕ(0) dx +
∫ T

0

∫

∂Ω

Mκ+ · κ+ϕ dHn−1 dt � 0, (1.3)

where κ+ = κ+(x) is the orthogonal projection of κ onto the linear space Ker(Aν +
M) ∩ ImAν . As discussed in [28], this formulation naturally discriminates the
admissible boundary conditions. In particular, in this case, the matrix M has to be a
non-negative symmetric matrix (see Section 3.3). Note that this kind of dissipative
formulation is reminiscent of hyperbolic equations (see for example [23] in the case
of scalar conservations laws). Moreover, the family of functions U �→ |U − κ|2,
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where κ ∈ R
m can be thought of as the analogue of the Kružkov entropy functions

in [23]. The term dissipative refers to the decreasing character of the L2-norm of
the solution which prevents conservation of the energy, and to a special class of
boundary conditions for hyperbolic systems (see [10] and [28, Section 4]).

A number of mechanical problems, such as in elasto-plasticity or generalized
non-newtonian fluids, involve a convex constraint. For this reason, it becomes rele-
vant to ask whether one can incorporate convex constraints within a general theory
of Friedrichs’ systems. In [16], this problem has been addressed in the full space
Ω = R

n . The authors define a notion of dissipative solutions (from which the
previous formulation (1.3) in [28] has been inspired) which are shown in [6] to be
the (unique) limit of a sequence of viscosity solutions for a regularized diffusive
model where the constraint is penalized. The formulation of general constrained
Friedrichs’ systems in bounded domains becomes therefore a natural extension.
However, there might be non trivial interactions between the constraint and the
boundary condition (see (1.8) below), which makes the problem difficult to address
in its full generality. This is the reason that, in this paper, we focus our attention to
the meaningful particular case of dynamical perfect plasticity.

To be more precise, we consider a simplified two dimensional problem of anti-
plane shear elasto-plasticity (see Section 3.2 for a formal derivation from three-
dimensional small strain elasto-plasticity), where the displacement field u : Ω ×
[0, T ] → R is scalar valued and the stress σ : Ω × [0, T ] → R

2 is vector-valued.
General considerations of continuum mechanics state that the equation of motion

ü − divσ = 0 in Ω × (0, T )

must be satisfied. Then, following standard models of perfect plasticity, the stress
is constrained to remain inside a fixed closed and convex set of R2. For simplicity,
we assume that

|σ | � 1. (1.4)

Moreover, the displacement gradient decomposes additively as

∇u = e + p,

where e and p : Ω × [0, T ] → R
2 stand for the elastic and plastic strains, respec-

tively. The elastic strain is related to the stress by means of a linear relation, and,
again for simplicity, we set

σ = e. (1.5)

Finally, the plastic variable evolves through the so-called flow rule, which stipulates
that {

ṗ = 0 if |σ | < 1,
ṗ

| ṗ| = σ if |σ | = 1.
(1.6)

This system must be supplemented by initial conditions on (u, u̇, σ, p) and bound-
ary conditions. The mathematical analysis of dynamical elasto-plastic models has
been performed in [5,7] (see also [4,14,32,33] in the static and quasi-static cases).

From the hyperbolic point of view, this problem can be interpreted as a con-
strained Friedrichs’ system. Formally it can be put within a hyperbolic formulation
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of the type (1.3) (see Section 3.3) whereU = (u̇, σ ) ∈ R
3, and the 3×3 symmetric

matrices A1, A2 are given by

A1 =
⎛

⎝
0 −1 0

−1 0 0
0 0 0

⎞

⎠ , A2 =
⎛

⎝
0 0 −1
0 0 0

−1 0 0

⎞

⎠ .

The dissipative formulation is exactly given by (1.3), except that the constant vector
κ must belong to the constraint set K = R × B, where B is the closed unit ball of
R
2 (see (1.4) above). The hyperbolic vision of this problem motivates our choice

of boundary conditions. It turns out that, in the unconstrained case (that is the wave
equation), all admissible dissipative boundary conditions in the sense of (1.1)–(1.2)
are of the form

σ · ν + λ−1u̇ = 0 on ∂Ω × (0, T ) (1.7)

for some λ > 0 (see Lemma 3.1). This choice will be a posteriori justified by
the fact that the variational and dissipative formulations are essentially equivalent.
Note that this type of boundary condition is quite unusual in solid mechanics. These
are not of Robin type since it involves the velocity u̇, and not the displacement u.
It is closer to Navier’s no-slip boundary condition rather found in fluid mechanics
problems.

The goal of this paper consists thus in studying this particular model (in any
space dimension andwith a source term) related to dynamical perfect plasticity from
both variational and hyperbolic points of view. First of all, using variational meth-
ods, we establish a well-posedness result for this model. To this end, we regularize
the problem by considering a elasto-visco-plastic model where the constitutive law
(1.5) is replaced by a Kelvin–Voigt visco-elastic law

σ = σ̃ + ε∇u̇,

where ε > 0 is a viscosity parameter, and stress constraint (1.4) together with the
flow rule (1.6) are replaced by a Perzyna visco-plastic law

ṗ = σ̃ − PB(σ̃ )

ε
,

where PB denotes the orthogonal projection operator onto B. The equation of
motion and the boundary condition are thus to be modified into

{
ü − div(σ̃ + ε∇u̇) = 0 in Ω × (0, T ),

(σ̃ + ε∇u̇) · ν + λ−1u̇ = 0 on ∂Ω × (0, T ).

The well-posedness of this regularized model is presented in Section 4.
In Section 5, we prove the existence and uniqueness of a (variational) solu-

tion for the original model by means of a vanishing viscosity analysis as ε → 0.
However, since, in the limit, the stress satisfies the constraint |σ | � 1, the origi-
nal boundary condition (1.7) cannot be satisfied at points of the boundary where
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|u̇| > λ. Therefore, a relaxation phenomenon occurs (see Proposition 5.1) which
implies that the boundary condition (1.7) relaxes as

σ · ν + λ−1Tλ(u̇) = 0 on ∂Ω × (0, T ), (1.8)

where Tλ(z) = min(−λ,max(z, λ)) is the truncation of z ∈ R by the values ±λ.
This shows an interesting interaction which imposes the boundary condition to
accommodate the constraint. Note that since λ ∈ (0,+∞), the important cases of
Dirichlet and Neumann boundary conditions are prohibited by this formulation.
In Section 5.5, we show by means of asymptotic analysis that the Dirichlet (resp.
Neumann) boundary condition can be recovered by lettingλ → 0 (resp.λ → +∞).

As is usual in plasticity, the solution happens to concentrate, leading to a
bounded variation solution for the displacement, and a measure solution for the
plastic strain. In Section 6, using the property of finite speed propagation, we prove
a new regularity result in plasticity which states that, provided the data are smooth
and compactly supported in space, the solution is smooth as well in short time.
The argument rests on a Kato inequality (Proposition 5.5) that states a comparison
principle between two solutions associated to different data. The fact that the data
is compactly supported in Ω together with the finite speed propagation property
ensures that, in short time, the boundary is not reached by the solution so that the
boundary condition can be ignored, and one can argue as in the full space. To our
knowledge, it seems to be the first regularity result in dynamical perfect-plasticity,
and its generalization to more general vectorial models has been done in [26].

Finally, in Section 7, we establish rigorous links between the variational and hy-
perbolic formulations. We show that any variational solutions generate dissipative
solutions. Conversely, provided the solution of the hyperbolic problem are smoother
in time, variational solutions can be deduced from the dissipative formulation.

2. Mathematical Preliminaries

2.1. General Notation

If a and b ∈ R
n , we write a · b for the Euclidean scalar product, and we denote

the associated norm by |a| = √
a · a. Let B := {x ∈ R

n : |x | � 1} be the closed
unit ball in R

n , and PB be the orthonormal projection onto B, that is, PB(σ ) = σ

if σ ∈ B, while PB(σ ) = σ/|σ | if σ �∈ B. It is a standard fact of convex analysis
that the function

σ �→ |σ − PB(σ )|2
2ε

is convex, of class C1, and that its differential is given by σ �→ (σ − PB(σ ))/ε. In
addition, its convex conjugate is p �→ |p| + ε|p|2/2, and in particular,

p = σ − PB(σ )

ε
⇐⇒ σ · p = |p| + ε|p|2.
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We writeMn×n for the set of real n × n matrices, andMn×n
sym for that of all real

symmetric n × n matrices. Given a matrix A ∈ M
n×n , we let |A| := √

tr(AAT )

(AT is the transpose of A, and trA is its trace) which defines the usual Euclidean
norm overMn×n . We recall that for any two vectors a and b ∈ R

n , a ⊗ b ∈ M
n×n

stands for the tensor product, that is, (a ⊗ b)i j = aib j for all 1 � i, j � n, and
a � b := (a ⊗ b + b ⊗ a)/2 ∈ M

n×n
sym denotes the symmetric tensor product.

2.2. Functional Spaces

LetΩ ⊂ R
n be an open set.We use standard notation for Lebesgue and Sobolev

spaces. In particular, for 1 � p � ∞, the L p(Ω)-norms of the various quantities
are denoted by ‖ · ‖p.

We write M(Ω;Rm) (or simply M(Ω) if m = 1) for the space of bounded
Radon measures in Ω with values in R

m , endowed with the norm |μ|(Ω), where
|μ| ∈ M(Ω) is the total variation of the measure μ. The Lebesgue measure in Rn

is denoted by Ln , and the (n − 1)-dimensional Hausdorff measure byHn−1.
We denote by H(div,Ω) the Hilbert space of all σ ∈ L2(Ω;Rn) such that

divσ ∈ L2(Ω). We recall that if Ω is bounded with Lipschitz boundary and σ ∈
H(div,Ω), its normal trace, denoted by σ · ν, is well defined as an element of
H−1/2(∂Ω). If, further, σ ∈ H(div,Ω) ∩ L∞(Ω;Rn), it turns out that σ · ν ∈
L∞(∂Ω)with ‖σ ·ν‖L∞(∂Ω) � ‖σ‖∞ (see [2, Theorem 1.2]).Moreover, according
to [13, Theorem 2.2], if Ω is of class C2, then for all ϕ ∈ L1(∂Ω),

lim
ε→0

∫ 1

0

∫

∂Ω

(σ (y − εsν(y)) · ν(y) − (σ · ν)(y)) ϕ(y) dHn−1(y) ds = 0, (2.1)

where ν denotes the outer unit normal to ∂Ω .
The space BV (Ω) of functions of bounded variation in Ω is made of all func-

tions u ∈ L1(Ω) such that the distributional gradient Du ∈ M(Ω;Rn). We refer
to [1,18,21] for a detailed presentation of this space.We just recall here few facts. If
Ω has Lipschitz boundary, any function u ∈ BV (Ω) admits a trace, still denoted by
u ∈ L1(∂Ω), such that Green’s formula holds (see for example Theorem 1, Section
5.3 in [18]). Moreover, according to [3, Theorem 4], if Ω is further of class C1, for
every ε > 0, there exists a constant cε(Ω) > 0 such that for every u ∈ BV (Ω),

‖u‖L1(∂Ω) � (1 + ε)|Du|(Ω) + cε(Ω)‖u‖1. (2.2)

Moreover, if Ω is of class C2, one has

lim
ε→0

∫ 1

0

∫

∂Ω

|u(y − εsν(y)) − u(y)| dHn−1(y) ds = 0. (2.3)

Conversely, Gagliardo’s extension result (see [21, Theorem 2.16 and Remark
2.17]) states that if Ω ⊂ R

n is a bounded open set of class C1, and g ∈ L1(∂Ω),
for each ε > 0, there exists a function uε ∈ W 1,1(Ω) such that

⎧
⎪⎨

⎪⎩

uε = g on ∂Ω,

‖uε‖1 � ε‖g‖L1(∂Ω),

‖∇uε‖1 � (1 + ε)‖g‖L1(∂Ω).

(2.4)
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Let us finally mention a variant of the usual approximation result for BV functions
[2, Lemma 5.2].

Proposition 2.1. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary,

u ∈ BV (Ω) and σ ∈ L2(Ω;Rn). There exists a sequence (u j ) ⊂ W 1,1(Ω) such
that u j ⇀ u weakly* in BV (Ω), |Du j − σ |(Ω) → |Du − σ |(Ω) and u j = u on
∂Ω for all j ∈ N.

2.3. Generalized Stress/Strain Duality

According to [2, Definition 1.4], we define a duality pairing between stresses
and plastic strains as follows.

Definition 2.1. Let u ∈ BV (Ω) ∩ L2(Ω) be such that Du = e + p for some
e ∈ L2(Ω;Rn) and p ∈ M(Ω;Rn), and let σ ∈ H(div,Ω) ∩ L∞(Ω;Rn). We
define the distribution [σ · p] ∈ D′(Ω) by

〈[σ · p] , ϕ〉 = 〈[σ · Du] , ϕ〉 −
∫

Ω

σ · eϕ dx for all ϕ ∈ C∞
c (Ω),

where [σ · Du] is given by

〈[σ · Du] , ϕ〉 = −
∫

Ω

u(divσ)ϕ dx −
∫

Ω

u(σ · ∇ϕ) dx for all ϕ ∈ C∞
c (Ω).

Remark 2.1. Using an approximation procedure as in [2, Lemma 5.2], one can
show that [σ · p] is actually a bounded Radon measure in Ω satisfying

|[σ · p]| � ‖σ‖∞|p| inM(Ω).

A slight adaptation of [2, Theorem 1.9] shows the following integration by parts
formula.

Proposition 2.2. Let u ∈ BV (Ω) ∩ L2(Ω), σ ∈ H(div,Ω) ∩ L∞(Ω;Rn) and
ϕ ∈ W 1,∞(Ω). Then,
∫

Ω

ϕ d[σ · Du] +
∫

Ω

uϕ(divσ) dx +
∫

Ω

u(σ · ∇ϕ) dx =
∫

∂Ω

(σ · ν)uϕ dHn−1.

3. Description of the Model

3.1. Small Strain Elasto-plasticity

To simplify the presentation of the model, we consider the physical three-
dimensional case. We assume that the reference configuration of the elasto-plastic
body under consideration occupies the volume B ⊂ R

3. In the framework of small
strain elasto-plasticity, the natural kinematic variable is the displacement field u :
B × [0, T ] → R

3 (or the velocity v := u̇). Denoting by Eu := (Du + DuT )/2 :
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B × [0, T ] → M
3×3
sym the linearized strain tensor, small strain elasto-plasticity

assumes that Eu decomposes additively as

Eu = e + p, (3.1)

where e and p : B × [0, T ] → M
3×3
sym stand for the elastic and plastic strains,

respectively.The elastic strain is related to theCauchy stress tensorσ : B×[0, T ] →
M

3×3
sym by means of Hooke’s law σ = Ce, where C is the symmetric fourth order

elasticity tensor. For example, in the isotropic case, one has

σ = λ(tre)I + 2μe, (3.2)

where λ and μ are the Lamé coefficients satisfying μ > 0 and 3λ + 2μ > 0. In a
dynamical framework and in the presence of external body loads f : B×[0, T ] →
R
3, the equations of motion are a system of partial differential equations which can

be written as
ü − divσ = f in B × (0, T ). (3.3)

Plasticity is characterized by the existence of a yield zone in the stress space beyond
which the Cauchy stress is not permitted to live. The stress tensor is indeed con-
strained to belong to a fixed nonempty, closed and convex subset of M3×3

sym . In the
case of Von Mises plasticity, the constraint only acts on the (trace free) deviatoric
stress σ D := σ − (trσ )I/3, and reads as

|σ D| � k, (3.4)

where k > 0 is a critical stress value. The evolution of the plastic strain is described
by means of the flow rule and is expressed with the Prandtl–Reuss law

{
ṗ = 0 if |σ D| < k,
ṗ

| ṗ| = σ D
k if |σ D| = k.

(3.5)

The system (3.1)–(3.5) is supplemented by initial and boundary conditions which
will be discussed later.

3.2. Anti-plane Shear

Denoting by (e1, e2, e3) the canonical basis ofR3, we assume thatB is invariant
in the e3 direction so that B = Ω × R, where Ω ⊂ R

2 is a bounded open set. We
also suppose that the displacement is anti-plane u(x1, x2, x3) = u(x1, x2)e3 for
some scalar function u : Ω × [0, T ] → R, so that computing the linearized strain
yields

Eu = (∂x1u)e1 � e3 + (∂x2u)e2 � e3,

corresponding to pure shear strain. We thus assume that the elastic and plastic
strains conserve this special structure so that

p = p1e1 � e3 + p2e2 � e3, e = e1e1 � e3 + e2e2 � e3,
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for some functions e1, e2, p1 and p2 : Ω × [0, T ] → R. Denoting by e = (e1, e2)
and p = (p1, p2), the additive decomposition (3.1) now reads as

∇u = e + p.

Computing the Cauchy stress according to (3.2) yields a pure shear stress σ = 2μe,
so that denoting by σ := (σ13, σ23) its only nonzero components, we have

σ = μe.

We also assume that the body load is compatible with the anti-plane assumption,
that is, f = f e3, for some f : Ω × [0, T ] → R, so that the equations of motion
(3.3) becomes a scalar equation

ü − divσ = f in Ω × (0, T ).

Finally, the stress constraint (3.4) now reads as |σ | � k/
√
2, and the flow rule (3.5)

is given by
{
ṗ = 0 if |σ | < k/

√
2,

ṗ
| ṗ| =

√
2σ
k if |σ | = k/

√
2.

In order to simplify notation, we assume henceforth that μ = 1 (so that σ = e) and
k = √

2. The simplified model of plasticity thus consists in looking for functions
u : Ω × [0, T ] → R, σ : Ω × [0, T ] → R

2 and p : Ω × [0, T ] → R
2 such that

the following system holds in Ω × (0, T ):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇u = σ + p,

ü − divσ = f,

|σ | � 1,

ṗ = 0 if |σ | < 1,
ṗ

| ṗ| = σ if |σ | = 1.

(3.6)

Note that the flow rule can be equivalently be written as

σ · ṗ = | ṗ|, (3.7)

which expresses Hill’s principle of maximal plastic work.
We supplement the system with initial conditions on the displacement, the

velocity, the stress and the plastic strain

(u, u̇, σ, p)(0) = (u0, v0, σ0, p0).

The precise mathematical formulation of this model will be the object of Section 5.
In particular, the flow rule (3.7) will have to be interpreted in a suitable measure
theoretic sense according to the generalized stress/strain duality introduced in De-
finition 2.1.

The discussion of admissible boundary conditions is the object of the following
paragraphs, once the hyperbolic structure of the system will be described.
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3.3. Dissipative Formulation of the Model

In this section, we perform formal manipulations on the system (3.6) in order
to write it in a different form, more appropriate to describe hyperbolicity. To do
that, we denote by U := (u̇, σ ), and observe that the first two equations of (3.6)
can be written as

∂tU + A1∂x1U + A2∂x2U + P = F, (3.8)

where F = ( f, 0, 0), P = (0, ṗ1, ṗ2) and

A1 =
⎛

⎝
0 −1 0

−1 0 0
0 0 0

⎞

⎠ , A2 =
⎛

⎝
0 0 −1
0 0 0

−1 0 0

⎞

⎠ . (3.9)

Taking the scalar product of (3.8) with U , yields

1

2
∂t |U |2 + 1

2
∂x1(A1U ·U ) + 1

2
∂x2(A2U ·U ) + P ·U = F ·U,

while, for every constant vector κ = (k, τ ) ∈ K := R × B, taking the scalar
product of (3.8) with κ leads to

∂t (U · κ) + ∂x1(A1U · κ) + ∂x2(A2U · κ) + P · κ = F · κ.

Substracting both previous equalities, and using that P · (U −κ) = ṗ · (σ − τ) � 0
according to the flow rule written as (3.7), we infer that

∂t |U − κ|2 +
2∑

i=1

∂xi (Ai (U − κ) · (U − κ)) � 2F · (U − κ). (3.10)

We thenmultiply the previous inequality by a test function ϕ ∈ C∞
c (Ω ×(−∞, T ))

with ϕ � 0, and integrate by parts to obtain

∫ T

0

∫

Ω

|U − κ|2ϕ̇ dx dt +
2∑

i=1

∫ T

0

∫

Ω

Ai (U − κ) · (U − κ)∂xiϕ dx dt

+
∫

Ω

|U0 − κ|2ϕ(0) dx + 2
∫ T

0

∫

Ω

F · (U − κ)ϕ dx dt � 0,

which is precisely the formulation of constrained Friedrichs’ systems as defined in
[16] without taking care of boundary conditions since ϕ vanishes in a neighborhood
of ∂Ω × (0, T ).

In order to account for the boundary condition, we follow an approach intro-
duced in [28]. Following the pioneering work [20], we are formally interested in
dissipative boundary conditions of the form

(Aν − M)U = 0 on ∂Ω × (0, T ), (3.11)
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where Aν = A1ν1+ A2ν2 (ν = (ν1, ν2) is the outer normal to ∂Ω), and M ∈ M
3×3

is a boundary matrix satisfying the following algebraic conditions:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M = MT ,

M is non-negative,

KerAν ⊂ KerM,

R
3 = Ker(Aν − M) + Ker(Aν + M).

(3.12)

Note that in the non-characteristic case (that iswhen Aν is non-singular), conditions
(3.12) imply those (1.2) introduced byFriedrichs (see [28] for a detailed discussion).
Thus, multiplying inequality (3.10) by a test function ϕ ∈ C∞

c (Rn×(−∞, T ))with
ϕ � 0, and integrating by parts, we get that

∫ T

0

∫

Ω

|U − κ|2ϕ̇ dx dt +
2∑

i=1

∫ T

0

∫

Ω

Ai (U − κ) · (U − κ)∂xiϕ dx dt

+
∫

Ω

|U0 − κ|2ϕ(0) dx + 2
∫ T

0

∫

Ω

F · (U − κ)ϕ dx dt

−
∫ T

0

∫

∂Ω

Aν(U − κ) · (U − κ)ϕ dx dt � 0. (3.13)

According to [28, Lemma 1], we have that

R
3 = KerAν ⊕ (Ker(Aν − M) ∩ ImAν) ⊕ (Ker(Aν + M) ∩ ImAν) .

For each κ ∈ R
3, we denote by κ± the projection of κ onto Ker(Aν ± M) ∩ ImAν .

Using the (strong) boundary condition (3.11), we have that U ∈ Ker(Aν − M), or
still U+ = 0. The algebraic conditions (3.12) together with [28, Lemma 1] thus
yield

Aν(U − κ) · (U − κ) = −M(U − κ)+ · (U − κ)+ + M(U − κ)− · (U − κ)−

= −Mκ+ · κ+ + M(U − κ)− · (U − κ)− � −Mκ+ · κ+.

Inserting in (3.13), we get that for all constant vector κ ∈ K and all ϕ ∈ W 1,∞(Ω×
(0, T )) with ϕ � 0,

∫ T

0

∫

Ω

|U − κ|2 ϕ̇ dx dt +
2∑

i=1

∫ T

0

∫

Ω

Ai (U − κ) · (U − κ)∂xiϕ dx dt

+
∫

Ω

|U0 − κ|2 ϕ(0) dx + 2
∫ T

0

∫

Ω

F · (U − κ)ϕ dx dt

+
∫ T

0

∫

∂Ω

Mκ+ · κ+ϕ dH1 dt � 0. (3.14)

The previous family of inequalities defines a notion dissipative solutions U ∈
L2(Ω × (0, T ); K ) to the dynamical elasto-plastic problem. Note that it is mean-
ingful within a L2 theory of Friedrichs’ systems (as suggested by (3.14)) since
the trace of U on the boundary ∂Ω × (0, T ), which is not well defined, is not
involved in this definition (see also [24,30] for an L∞-theory of initial/boundary
value conservation laws).
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3.4. Derivation of the Boundary Conditions

The well-posedness of this kind of dissipative formulations in the full space
Ω = R

2 has been established in [16]. On the other hand, among the results of
[28], it is shown that the existence and uniqueness of a solution to this problem in
the unconstrained case (K = R

3), and the dissipative boundary condition (3.11) is
proved to be satisfied in a suitable weak sense.

In order to formulate more precisely the admissible boundary conditions in our
particular situation, we need to characterize all boundary matrices satisfying the
required algebraic conditions (3.12).

Lemma 3.1. Assume that A1 and A2 are given by (3.9) and ν ∈ R
2 satisfies |ν| = 1.

The following assertions are equivalent:

1. A matrix M ∈ M
3×3 satisfies (3.12);

2. There exists λ ∈ (0,+∞) such that

M =
⎛

⎝
λ−1 0 0
0 λν21 λν1ν2
0 λν1ν2 λν22

⎞

⎠ . (3.15)

Proof. One can check immediately that any matrix M of the form (3.15) with
λ > 0 fulfills all conditions (3.12). Conversely, assume that

M =
⎛

⎝
d1 a b
a d2 c
b c d3

⎞

⎠ ∈ M
3×3
sym

satisfies (3.12). Since

Aν =
⎛

⎝
0 −ν1 −ν2

−ν1 0 0
−ν2 0 0

⎞

⎠ ,

we get that

KerAν =
{
(v, σ ) = (v, σ1, σ2) ∈ R

3 : v = 0 and σ · ν = σ1ν1 + σ2ν2 = 0
}

.

Denoting by ν⊥ := {
σ ∈ R

2 : σ · ν = 0
}
the linear space of dimension 1 in R

2,
condition KerAν ⊂ KerM reads as

⎧
⎪⎨

⎪⎩

ν⊥ ⊂ {
σ ∈ R

2 : aσ1 + bσ2 = 0
} =: E1,

ν⊥ ⊂ {
σ ∈ R

2 : d2σ1 + cσ2 = 0
} =: E2,

ν⊥ ⊂ {
σ ∈ R

2 : cσ1 + d3σ2 = 0
} =: E3.

Consequently, we obtain that the dimension of the linear spaces E1, E2 and E3
is larger than or equal to 1. If dim E1 = 1, then ν is orthogonal to E1, while if
dim E1 = 2, then a = b = 0. In both cases, one can find μ1 ∈ R such that

(a, b) = μ1ν.
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Arguing similarly for E2 and E3, there exist μ2 and μ3 ∈ R such that

(d2, c) = μ2ν, (c, d3) = μ3ν,

so that

M =
⎛

⎝
d1 μ1ν1 μ1ν2

μ1ν1 μ2ν1 μ2ν2
μ1ν2 μ3ν1 μ3ν2

⎞

⎠ .

Using that M is symmetric, we must have μ2ν2 = μ3ν1. Since |ν| = 1, then
either ν1 �= 0 or ν2 �= 0. Suppose, without loss of generality, that ν1 �= 0, and
define λ = μ2/ν1, then

M =
⎛

⎝
d1 μ1ν1 μ1ν2

μ1ν1 λν21 λν1ν2
μ1ν2 λν1ν2 λν22

⎞

⎠ .

Using next that M is non-negative, it follows that for all (v, σ ) ∈ R
3,

M

(
v

σ

)

·
(

v

σ

)

= d1v
2 + 2μ1vσ · ν + λ (σ · ν)2 � 0,

which ensures that d1 � 0, λ � 0. In fact, if d1 = λ = 0, the previous expression
can easily be made negative so that either d1 > 0 or λ > 0 (since the case μ1 = 0
is impossible).

From the conditions KerAν ⊂ KerM and dimKerAν = 1, we obtain that
dim Ker(Aν ± M) � 1 and dim(Ker(Aν − M) ∩ Ker(Aν + M)) � 1. The last
conditionR3 = Ker(Aν−M)+Ker(Aν+M) then implies that dim Ker(Aν±M) =
2 (since Aν is neither non-negative, nor non-positive). Computing

Aν ± M =
⎛

⎝
±d1 (±μ1 − 1)ν1 (±μ1 − 1)ν2
(±μ1 − 1)ν1 ±λν21 ±λν1ν2
(±μ1 − 1)ν2 ±λν1ν2 ±λν22

⎞

⎠ ,

we infer that

(Aν − M)

(
v

σ

)

= 0 ⇐⇒
{
d1v + (μ1 + 1)σ · ν = 0,
(μ1 + 1)v + λσ · ν = 0.

Observe that, since dimKer(Aν − M) = 2, we obtain that

d1v + (μ1 + 1)σ · ν = 0 ⇐⇒ (μ1 + 1)v + λσ · ν = 0

⇐⇒ d1λ − (μ1 + 1)2 = 0,

and similarly, since dimKer(Aν + M) = 2,

d1v + (μ1 − 1)σ · ν = 0 ⇐⇒ (μ1 − 1)v + λσ · ν = 0

⇐⇒ d1λ − (μ1 − 1)2 = 0,

which implies that μ1 = 0 and d1λ = 1, hence λ > 0. ��
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Remark 3.1. A similar characterization result can be proved in any dimension
n � 2, that is, when the matrices M belong toM(n+1)×(n+1).

As a consequence of Lemma 3.1, it follows that all admissible boundary con-
ditions (3.11) for the dissipative formulation are of the form

σ · ν + λ−1u̇ = 0 on ∂Ω × (0, T ), (3.16)

where λ : ∂Ω → (0,+∞). In the sequel, we will assume for simplicity that λ > 0
is independent of the space variable.

Remark 3.2. Note that, strictly speaking, (homogeneous) Dirichlet and Neumann
conditions are not containedwithin this framework.However, they can be recovered
by means of an asymptotic analysis as λ → 0+ and λ → +∞, respectively (see
Section 5.5).

Moreover, since λ is actually a (Borel) function of the space variable, letting
λ → 0 in some subset �D ⊂ Ω , and λ → +∞ on its complementary �N :=
∂Ω\�D would lead to mixed boundary conditions of Dirichlet type on �D and
Neumann type on �N . This problem will not be addressed in the present work.

4. The Dynamic Elasto-visco-plastic Model

In order to establish the existence and uniqueness of solution to (3.6) and (3.16), we
consider an elasto-visco-plastic approximation model which consists of regulariz-
ing the constitutive law by means of a Kelvin–Voigt type visco-elasticity and the
flow rule thanks to a Perzyna type visco-plasticity. Except for our choice of bound-
ary conditions (3.16), the model described below is very similar to that studied in
[15] (see also [7,31]).

This choice of regularization is motivated by the approximation employed in
[6,16] in order to show the well-posedness of constrained Friedrichs’ systems in
the whole space. It consists of penalizing the constraint (which is described by
Perzyna visco-plasticity), and adding up a diffusive term (which corresponds to
Kelvin–Voigt visco-elasticity).

Note also that since the space dimension does not reallymatter in the subsequent
arguments, we perform the analysis in any space dimension.

The main result of this section is the following existence and uniqueness result
(see [27] for the proof).

Theorem 4.1. Let Ω be a bounded open set of Rn with Lipschitz boundary and
λ > 0. Consider a source term f ∈ H1([0, T ]; L2(Ω)) and an initial data
(u0, v0, σ0, p0) ∈ H1(Ω) × H2(Ω) × H(div,Ω) × L2(Ω;Rn) such that

⎧
⎪⎨

⎪⎩

∇u0 = σ0 + p0 in L2(Ω;Rn),

σ0 · ν + λ−1v0 = 0 Hn−1-almost everywhere on ∂Ω,

|σ0| � 1 almost everywhere in Ω.
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For each ε > 0, we define gε := ε∇v0 · ν ∈ L2(∂Ω). Then, there exists a unique
triple (uε, σε, pε) with the regularity

⎧
⎪⎨

⎪⎩

uε ∈ W 2,∞([0, T ]; L2(Ω)) ∩ H2([0, T ]; H1(Ω)),

σε ∈ W 1,∞([0, T ]; L2(Ω;Rn)),

pε ∈ H1([0, T ]; L2(Ω;Rn)),

which satisfies the following properties

1. The initial conditions

uε(0) = u0, u̇ε(0) = v0, σε(0) = σ0, pε(0) = p0;
2. The additive decomposition that for all t ∈ [0, T ]

∇uε(t) = σε(t) + pε(t) in L2(Ω;Rn); (4.1)

3. The equation of motion

üε − div(σε + ε∇u̇ε) = f in L2(0, T ; L2(Ω));
4. The dissipative boundary condition

(σε + ε∇u̇ε) · ν + λ−1u̇ε = gε in L2(0, T ; L2(∂Ω)); (4.2)

5. The visco-plastic flow rule

ṗε = σε − PB(σε)

ε
in L2(0, T ; L2(Ω;Rn)). (4.3)

In addition, we have the following energy balance: for all t ∈ [0, T ],
1

2
‖u̇ε(t)‖22 + 1

2
‖σε(t)‖22 + ε

(∫ t

0

∫

Ω

|∇u̇ε|2 dx ds +
∫ t

0

∫

Ω

| ṗε|2 dx ds

)

+1

λ

∫ t

0

∫

∂Ω

|u̇ε|2 dHn−1ds +
∫ t

0

∫

Ω

| ṗε| dx ds

= 1

2
‖v0‖22 + 1

2
‖σ0‖22 +

∫ t

0

∫

Ω

f u̇ε dx ds +
∫ t

0

∫

∂Ω

gεu̇ε dHn−1 ds, (4.4)

and the estimate

sup
t∈[0,T ]

‖üε(t)‖22 + sup
t∈[0,T ]

‖σ̇ε(t)‖22 +ε

∫ T

0
‖∇üε(t)‖22 dt+1

λ

∫ T

0
‖üε(t)‖2L2(∂Ω)

dt

� C

(

‖div(σ0+ε∇v0) + f (0)‖22+‖∇v0‖22+
(∫ T

0
‖ ḟ (t)‖2 dt

)2)

(4.5)

for some constant C > 0 independently of ε and λ.
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The proof of Theorem 4.1 is standard and follows the lines of for example [15]
for the existence and uniqueness in the energy space, and of [7] for the additional
regularity results (4.5).Wewill not present the proof of that result, whose arguments
can be easily reconstructed by the reader from the above mentioned references. The
main difference with [7,15] is concerned with the boundary condition. However, as
long as ε > 0, since the analysis takes place in Sobolev type spaces, this difference
will not really matter.

The proof of existence relies on a time discretization procedure. At each time
step, we solve a minimization problem. After defining suitable interpolants, we
derive some standard a priori estimates that allow one to obtain some weak con-
vergences in the energy space as the time discretization parameter goes to zero.
This enables one to establish the additive decomposition as well as the initial con-
ditions for the displacement, the stress and the plastic strain. At this stage, the
equation of motion and the boundary condition are just formulated in a weak sense.
Nonetheless, it allows one to get the initial condition for the velocity using results
on Banach-valued Sobolev spaces. Indeed, since u̇ε ∈ L2(0, T ; H1(Ω)) and üε ∈
L2(0, T ; [H1(Ω)]′), it follows from[8,Theorem1.19] that u̇ε ∈ C0([0, T ]; L2(Ω)).
In order to get the flow rule, we derive a strong convergence result. Finally, we ob-
tain, thanks to suitable a posteriori estimates, the equation of motion in a strong
sense as well as the boundary condition. Note that the introduction of the term gε

allows one to get rid off undesirable boundary terms in the proof of estimate (4.5).

Remark 4.1. The equation of motion implies, for all ϕ ∈ L2(0, T ; H1(Ω)),

∫ T

0

∫

Ω

üεϕ dx dt +
∫ T

0

∫

Ω

(σε + ε∇u̇ε) · ∇ϕ dx dt + 1

λ

∫ T

0

∫

∂Ω

u̇εϕ dHn−1 dt

=
∫ T

0

∫

Ω

f ϕ dx dt +
∫ T

0

∫

∂Ω

gεϕ dHn−1 dt. (4.6)

5. The Dynamic Elasto-plastic Model

The object of this section is to show thewell-posedness of themodel (3.6) and of
(3.16) by letting the viscosity parameter ε tend to zero. It turns out that a relaxation
phenomenon occurs and leads to a modification of the boundary condition which
has to accommodate to the stress constraint. Indeed, since it is expected that |σ | � 1,
the boundary condition σ · ν + λ−1u̇ = 0 can only be satisfied at the points of the
boundary where |u̇| � λ, while on the part of the boundary where |u̇| > λ, the
velocity has to be truncated by the values ±λ. This phenomena is easily explained
by looking at the energy balance (4.4). In order to pass to the limit in this equality,
we must (at least) ensure the sequential lower semicontinuity of the mapping

(u, σ ) �→
∫

Ω

|∇u − σ | dx + 1

2λ

∫

∂Ω

|u|2 dHn−1

with respect to a reasonable topology provided by the energy estimates. Unfortu-
nately, this property fails according to the following result (see also [25,29]).
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Proposition 5.1. Let Ω ⊂ R
n be a bounded open set with C1 boundary. Let us

define the functional F : W 1,1(Ω) × L2(Ω;Rn) → [0,+∞] by

F(u, σ ) =
∫

Ω

|∇u − σ | dx + 1

2λ

∫

∂Ω

|u|2 dHn−1,

with the convention that F(u, σ ) = +∞ if u �∈ L2(∂Ω). Then, the lower semicon-
tinuous envelope of F with respect to the weak* convergence in BV (Ω) and the
strong convergence in L2(Ω;Rn) is given by

F(u, σ ) = |Du − σ |(Ω) +
∫

∂Ω

ψλ(u) dHn−1,

where ψλ : R → [0,+∞) is defined by

ψλ(z) =
{

z2
2λ if |z| � λ,

|z| − λ
2 if |z| � λ.

(5.1)

Proof. Let us fix (u, σ ) ∈ BV (Ω) × L2(Ω;Rn).
Step 1: Lower bound. We must show that for every sequence (uk) ⊂ W 1,1(Ω)

and (σk) ⊂ L2(Ω;Rn) with uk ⇀ u weakly* in BV (Ω) and σk → σ strongly in
L2(Ω;Rn), then

F(u, σ ) � lim inf
k→∞ F(uk, σk).

Since ψλ � | · |2/(2λ), we first observe that

lim inf
k→∞ F(uk, σk) � lim inf

k→∞ F(uk, σk). (5.2)

Possibly extracting a subsequence, we can assume without loss of generality that

lim inf
k→∞ F(uk, σk) = lim

k→∞ F(uk, σk) < +∞,

and, up to another subsequence, we can also suppose that |Duk −σk | ⇀ μweakly*
inM(Ω) for some non-negative measure μ ∈ M(Ω).

The argument presented below is very close to that of [29, Proposition 1.2].
Let δ > 0, and ζδ ∈ C∞

c (Ω; [0, 1]) be a cut-off function such that ζδ = 1 on
Aδ := {x ∈ Ω : dist(x, ∂Ω) � δ} and |∇ζδ| � 2/δ inΩ . We consider the function
wδ,k := (1−ζδ)(u−uk) ∈ BV (Ω)which satisfieswδ,k = u−uk in a neighborhood
of ∂Ω , wδ,k = 0 in Aδ , and Dwδ,k = −(u − uk)∇ζδ + (1− ζδ)(Du − Duk) in Ω .
According to the trace inequality (2.2), we infer that

∫

∂Ω

|u − uk | dHn−1 � (1 + ε)|Dwδ,k |(Ω) + cε

∫

Ω

|wδ,k | dx

�
(
2(1 + ε)

δ
+ cε

)∫

Ω\Aδ

|u − uk | dx
+ (1 + ε)|Du − Duk |(Ω \ Aδ).
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Since the function ψλ is 1-Lipschitz, we have that
∫

∂Ω

|ψλ(u) − ψλ(uk)| dHn−1 �
∫

∂Ω

|u − uk | dHn−1,

while

|Du − Duk |(Ω \ Aδ) � |Du − σ |(Ω \ Aδ)

+
∫

Ω\Aδ

|∇uk − σk | dx +
∫

Ω

|σk − σ | dx .

As a consequence,

F(u, σ ) − F(uk, σk) � Cε,δ

∫

Ω\Aδ

|u − uk | dx + (1 + ε)

∫

Ω

|σ − σk | dx
+ (1 + ε)|Du−σ |(Ω \ Aδ)+(1+ε)|Duk − σk |(Ω \ Aδ)

+ |Du − σ |(Ω) − |Duk − σk |(Ω).

Choosing a sequence (δ j ) j∈N with δ j ↘ 0+ and μ(∂Aδ j ) = 0 for all j ∈ N, we
get that |Duk − σk |(Ω \ Aδ j ) → |Du − σ |(Ω \ Aδ j ) as k → ∞, and thus

F(u, σ ) − lim inf
k→∞ F(uk, σk) � 2(1 + ε)|Du − σ |(Ω \ Aδ j ).

Finally, since Aδ j is increasing to Ω as j → ∞, we get that

F(u, σ ) � lim inf
k→∞ F(uk, σk),

which together with (5.2) completes the proof of the lower bound.
Step 2: Upper bound. We show the existence of sequences (uk) ⊂ W 1,1(Ω) and
(σk) ⊂ L2(Ω;Rn) such that uk ⇀ u weakly* in BV (Ω), σk → σ strongly in
L2(Ω;Rn), and

lim sup
k→∞

F(uk, σk) � F(u, σ ).

This proof follows the lines of [11, Lemma 2.1]. Let us denote by
θ = max(−λ,min(u, λ)) the truncation of the trace of u on ∂Ω by the values
±λ. Then θ ∈ L∞(∂Ω), and using Gagliardo’s extension theorem (2.4), for each
k ∈ N

∗, one can find a function wk ∈ W 1,1(Ω) such that wk = θ − u on ∂Ω ,
∫

Ω

|wk | dx � 1

k

∫

∂Ω

|θ − u| dHn−1,

and
∫

Ω

|∇wk | dx �
(

1 + 1

k

)∫

∂Ω

|θ − u| dHn−1.

Applying next Proposition 2.1, there exists a sequence (zk) ⊂ W 1,1(Ω) such that
zk ⇀ u weakly* in BV (Ω), |Dzk − σ |(Ω) → |Du − σ |(Ω) and zk = u on ∂Ω
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for each k. Setting σk ≡ σ and uk := wk + zk ∈ W 1,1(Ω), then uk = θ on ∂Ω ,
uk ⇀ u weakly* in BV (Ω), and

lim sup
k→∞

∫

Ω

|∇uk − σ | dx � |Du − σ |(Ω) +
∫

∂Ω

|u − θ | dHn−1.

Consequently,

lim sup
k→∞

F(uk, σk) � |Du − σ |(Ω) +
∫

∂Ω

|u − θ | dHn−1 + 1

2λ

∫

∂Ω

|θ |2 dHn−1

= |Du − σ |(Ω) +
∫

∂Ω∩{u�−λ}
(−u − λ) dHn−1

+
∫

∂Ω∩{u�λ}
(u − λ) dHn−1

+ 1

2λ

∫

∂Ω∩{|u|�λ}
|u|2 dHn−1+λ

2
Hn−1({|u| > λ})=F(u, σ ),

which concludes the proof of the upper bound. ��
Remark 5.1. In the proof of the lower bound we strongly used the C1 regularity of
the boundary. Indeed [29, Remark 1.3] shows that energy functionals of the form

BV (Ω) � u �→ |Du|(Ω) +
∫

Ω

ψ(u) dHn−1,

with Ω ⊂ R
n only Lipschitz, and ψ : R → R 1-Lipschitz, might fail to be

sequentially weakly* lower semicontinuous in BV (Ω). On the other hand, the use
of the C1 character of the boundary does not seem to be necessary in the proof of
the upper bound. Indeed, as observed in [11, Lemma 2.1], Gagliardo’s extension
result with estimates as in (2.4) holds for Lipschitz boundaries as well.

Remark 5.2. Let us observe for future use that the function ψλ defined in (5.1) is
convex, 1-Lipschitz, and of class C1, with

ψ ′
λ(z) =

⎧
⎪⎨

⎪⎩

−1 if z � −λ,
z
λ

if |z| < λ,

1 if z � λ.

Moreover, its convex conjugate is given, for all z ∈ R, by

ψ∗
λ (z) = λ

2
|z|2 + I[−1,1](z), (5.3)

where I[−1,1] is the indicator function of the interval [−1, 1] which is equal to 0 in
[−1, 1], and +∞ outside.

We now state the main result of this section.
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Theorem 5.1. Let Ω ⊂ R
n be a bounded open set with C1 boundary and λ > 0.

Consider a source term f ∈ H1([0, T ]; L2(Ω))andan initial data (u0, v0, σ0, p0) ∈
H1(Ω) × H2(Ω) × H(div,Ω) × L2(Ω;Rn) such that

⎧
⎪⎨

⎪⎩

∇u0 = σ0 + p0 in L2(Ω;Rn),

σ0 · ν + λ−1v0 = 0 Hn−1 on ∂Ω,

|σ0| � 1 almost everywhere in Ω.

(5.4)

Then there exists a unique triple (u, σ, p) with the regularity
⎧
⎪⎨

⎪⎩

u ∈ W 2,∞([0, T ]; L2(Ω)) ∩ C0,1([0, T ]; BV (Ω)),

σ ∈ W 1,∞([0, T ]; L2(Ω;Rn)),

p ∈ C0,1([0, T ];M(Ω;Rn)),

which satisfies the following properties

1. The initial conditions:

u(0) = u0, u̇(0) = v0, σ (0) = σ0, p(0) = p0;
2. The additive decomposition that for all t ∈ [0, T ]

Du(t) = σ(t) + p(t) inM(Ω;Rn);
3. The equation of motion

ü − divσ = f in L2(0, T ; L2(Ω));
4. The relaxed boundary condition

σ · ν + ψ ′
λ(u̇) = 0 in L2(0, T ; L2(∂Ω));

5. The stress constraint that for all t ∈ [0, T ],
|σ(t)| � 1 almost everywhere in Ω;

6. The flow rule that for almost every t ∈ [0, T ],
| ṗ(t)| = [σ(t) · ṗ(t)] inM(Ω).

In addition, we have the following energy balance: for all t ∈ [0, T ],
1

2
‖u̇(t)‖22 + 1

2
‖σ(t)‖22 +

∫ t

0
| ṗ(s)|(Ω) ds + λ

2

∫ t

0

∫

∂Ω

|σ · ν|2 dHn−1 ds

+
∫ t

0

∫

∂Ω

ψλ(u̇) dHn−1 ds = 1

2
‖v0‖22 + 1

2
‖σ0‖22 +

∫ t

0

∫

Ω

f u̇ dx ds. (5.5)

Remark 5.3. In the sequel we will refer to the solution given by Theorem 5.1
as the variational solution to the elasto-plastic problem associated to the initial
data (u0, v0, σ0, p0) and the source term f . Unless otherwise specified, we always
assume in the sequel that f ∈ H1([0, T ]; L2(Ω)) and (u0, v0, σ0, p0) ∈ H1(Ω)×
H2(Ω) × H(div,Ω) × L2(Ω;Rn) satisfy (5.4).
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The rest of this section is devoted to proving Theorem 5.1. We consider the
unique solution (uε, σε, pε) to the elasto-visco-plastic problem (given by Theo-
rem 4.1) associated with the initial condition (u0, v0, σ0, p0) and the source terms
f and gε = ε∇v0 ·ν. Using the estimates obtained in Theorem 4.1, we derive weak
convergences which enable one to get the initial conditions, the equation of motion
and the stress constraint. We then obtain in Section 5.2 some strong convergence
results despite the fact that we did not yet identify the correct boundary condition.
Together with the relaxation result Proposition 5.1, this allows one to derive a first
energy inequality between two arbitrary times. In Section 5.3 we show that this
inequality is actually an equality which leads to the flow rule in a measure theo-
retic sense, and the relaxed boundary condition. Eventually, the uniqueness of the
solution is established in Section 5.4 as a consequence of a Kato inequality which
states a comparison principle between two solutions.

5.1. Weak Convergences

In the proof of Theorem 4.1, we have established the following estimate (see
(4.5)):

sup
t∈[0,T ]

‖üε(t)‖22 + sup
t∈[0,T ]

‖σ̇ε(t)‖22 + 1

λ

∫ T

0
‖üε(t)‖2L2(∂Ω)

dt

� C

(

‖div(σ0 + ε∇v0) + f (0)‖22 + ‖∇v0‖22 +
(∫ T

0
‖ ḟ (t)‖2 dt

)2)

, (5.6)

while the energy balance (4.4) gives

sup
t∈[0,T ]

‖u̇ε(t)‖22 + sup
t∈[0,T ]

‖σε(t)‖22 + 1

λ

∫ T

0
‖u̇ε(t)‖2L2(∂Ω)

dt

+ ε

∫ T

0
‖∇u̇ε(t)‖22 dt + ε

∫ T

0
‖ ṗε(t)‖22 dt +

∫ T

0

∫

Ω

| ṗε| dx dt

� C

(

‖v0‖22 + ‖σ0‖22 +
(∫ T

0
‖ f (t)‖2 dt

)2

+ λε‖∇v0 · ν‖2L2(∂Ω)

)

, (5.7)

where the constants C > 0 occurring in (5.6) and (5.7) are independent of ε and λ.
Using also that uε ∈ W 2,∞([0, T ]; L2(Ω)) and u0 ∈ H1(Ω), then

uε(t) = u0 +
∫ t

0
u̇ε(s) ds for all t ∈ [0, T ],

where the integral is intended as a Bochner integral in L2(Ω), and we get

sup
ε>0

‖uε‖W 2,∞([0,T ];L2(Ω)) < ∞. (5.8)

Arguing similarly yields

sup
ε>0

‖uε‖H2([0,T ];L2(∂Ω)) < ∞, (5.9)
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and
sup
ε>0

‖σε‖W 1,∞([0,T ];L2(Ω)) < ∞. (5.10)

Thanks to the estimates (5.8), (5.9) and (5.10) we can extract a subsequence
(not relabeled), and find functions u ∈ W 2,∞([0, T ]; L2(Ω)), σ ∈ W 1,∞([0, T ];
L2(Ω;Rn)) and w ∈ H2([0, T ]; L2(∂Ω)) such that

⎧
⎪⎨

⎪⎩

uε ⇀ u weakly* in W 2,∞([0, T ]; L2(Ω)),

σε ⇀ σ weakly* in W 1,∞([0, T ]; L2(Ω;Rn)),

uε ⇀ w weakly in H2([0, T ]; L2(∂Ω)).

(5.11)

Moreover, according to [15, Lemma 2.7], for every t ∈ [0, T ],
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uε(t) ⇀ u(t) weakly in L2(Ω),

u̇ε(t) ⇀ u̇(t) weakly in L2(Ω),

σε(t) ⇀ σ(t) weakly in L2(Ω;Rn),

uε(t) ⇀ w(t) weakly in L2(∂Ω),

u̇ε(t) ⇀ ẇ(t) weakly in L2(∂Ω).

(5.12)

In order to derive weak compactness of the sequence of plastic strains, we use
the energy balance (4.4) between two arbitrary times 0 � t1 < t2 � T , which leads
to
∫ t2

t1

∫

Ω

| ṗε| dx ds �
∫ t2

t1

∫

Ω

f u̇ε dx ds +
∫ t2

t1

∫

∂Ω

gεu̇ε dHn−1 ds

+1

2

(
‖u̇ε(t1)‖22 − ‖u̇ε(t2)‖22

)
+1

2

(
‖σε(t1)‖22 − ‖σε(t2)‖22

)
.

(5.13)

Using the fact that f ∈ L∞(0, T ; L2(Ω)) and (u̇ε)ε>0 is uniformly bounded in
L∞(0, T ; L2(Ω)) by (5.8), we infer that

∣
∣
∣
∣

∫ t2

t1

∫

Ω

f u̇ε dx ds

∣
∣
∣
∣ � C(t2 − t1), (5.14)

for some constant C > 0 independently of ε. Then, using that gε = ε∇v0 · ν ∈
L2(∂Ω) and (u̇ε)ε>0 is uniformly bounded in L∞(0, T ; L2(∂Ω)) by (5.9),

∣
∣
∣
∣

∫ t2

t1

∫

∂Ω

gεu̇ε dHn−1 ds

∣
∣
∣
∣ � C(t2 − t1), (5.15)

for some constant C > 0 independently of ε. Next, using again (5.8) yields

∣
∣
∣‖u̇ε(t1)‖22 − ‖u̇ε(t2)‖22

∣
∣
∣ =

∣
∣
∣
∣

∫

Ω

(u̇ε(t1) − u̇ε(t2))(u̇ε(t1) + u̇ε(t2)) dx

∣
∣
∣
∣

� C‖u̇ε(t2) − u̇ε(t1)‖2 � C(t2 − t1), (5.16)
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where, again, C > 0 is independent of ε. Similarly, using (5.10) leads to
∣
∣
∣‖σε(t1)‖22 − ‖σε(t2)‖22

∣
∣
∣ � C‖σε(t2) − σε(t1)‖2 � C(t2 − t1), (5.17)

Gathering (5.13)–(5.17) and using Jensen’s inequality yields
∫

Ω

|pε(t2) − pε(t1)| dx � C(t2 − t1).

It is thus possible to applyAscoli–Arzela Theorem to get, up to another subsequence
independent of time, the existence of p ∈ C0,1([0, T ];M(Ω;Rn)) such that for
all t ∈ [0, T ],

pε(t) ⇀ p(t) weakly* inM(Ω;Rn). (5.18)

Next, using the decomposition ∇uε = pε + σε, the convergences (5.12) and
(5.18), and the already established regularity properties for (u, σ, p), we obtain that
u ∈ C0,1([0, T ]; BV (Ω)), and for all t ∈ [0, T ],

uε(t) ⇀ u(t) weakly* in BV (Ω). (5.19)

Remark 5.4. Let us stress that, as u(t) ∈ BV (Ω) for all t ∈ [0, T ], its trace is
well defined as an element of L1(∂Ω). However, the trace mapping from BV (Ω)

to L1(∂Ω) is not sequentially weakly* continuous, and therefore we cannot ensure
that w(t) is the trace of u(t).

The initial condition. Since uε(0) = u0, u̇ε(0) = v0, σε(0) = σ0, pε(0) = p0 for
all ε > 0, we obtain that u(0) = u0, u̇(0) = v0, σ(0) = σ0 and p(0) = p0.
The additive decomposition. Using the additive decomposition (4.1) and the weak
convergences (5.12), (5.18) and (5.19), we infer that for all t ∈ [0, T ],

Du(t) = σ(t) + p(t) inM(Ω;Rn).

The stress constraint. Let τε := PB(σε). Since ‖τε‖L∞(Ω×(0,T )) � 1, we can
assume, up to another subsequence, that τε ⇀ τ weakly* in L∞(Ω × (0, T );Rn)

with ‖τ‖L∞(Ω×(0,T )) � 1. According to estimate (5.7) and the flow rule (4.3), we
get that

∫ T

0
‖σε(t) − τε(t)‖22 dt � Cε → 0,

so that σ = τ . Consequently, for all t ∈ [0, T ], we have
|σ(t)| � 1 almost everywhere in Ω.

The equation of motion. According to (5.7), we get that ε∇u̇ε → 0 strongly in
L2(0, T ; L2(Ω;Rn)). We thus deduce that σε + ε∇u̇ε → σ strongly in
L2(0, T ; L2(Ω;Rn)), and since from the equation of motion at fixed ε, one has
div(σε + ε∇u̇ε) = f − üε, we obtain thanks to the estimate (5.8) that

sup
ε>0

‖σε + ε∇u̇ε‖L2(0,T ;H(div,Ω)) < +∞.
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As a consequence div(σε + ε∇u̇ε) ⇀ divσ weakly in L2(0, T ; L2(Ω)), and

ü − divσ = f in L2(0, T ; L2(Ω)).

Note also that (σε + ε∇u̇ε) · ν ⇀ σ · ν weakly in L2(0, T ; H−1/2(∂Ω)). Using
the boundary condition at fixed ε, we also have that (σε + ε∇u̇ε) · ν = gε − λ−1u̇ε

which is bounded in L2(0, T ; L2(∂Ω)) according to (5.9), and consequently,

(σε + ε∇u̇ε) · ν ⇀ σ · ν in L2(0, T ; L2(∂Ω)). (5.20)

Remark 5.5. Passing to the limit in (4.6), we get for all ϕ ∈ L2(0, T ; H1(Ω)),
∫ T

0

∫

Ω

üϕ dx dt+
∫ T

0

∫

Ω

σ ·∇ϕ dx dt+1

λ

∫ T

0

∫

∂Ω

ẇϕ dHn−1 dt =
∫ T

0

∫

Ω

f ϕ dx dt.

(5.21)

5.2. Strong Convergences

At this stage, it still remains to prove the boundary condition and the flow rule.
To do this, we need to improve some of the weak convergences established above
into strong convergences. This is the object of the following result.

Proposition 5.2. The following strong convergences hold:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u̇ε → u̇ strongly in C0([0, T ]; L2(Ω)),

σε → σ strongly in C0([0, T ]; L2(Ω;Rn)),√
ε∇u̇ε → 0 strongly in L2(0, T ; L2(Ω;Rn)),

u̇ε → ẇ strongly in L2(0, T ; L2(∂Ω)).

Proof. Subtracting Equations (4.6) to (5.21), and taking ϕ := 1[0,t]u̇ε where t ∈
[0, T ] as test function in L2(0, T ; H1(Ω)), we get that
∫ t

0

∫

Ω

(üε − ü)u̇ε dx ds +
∫ t

0

∫

Ω

(σε − σ) · ∇u̇ε dx ds + ε

∫ t

0

∫

Ω

|∇u̇ε|2 dx ds

+1

λ

∫ t

0

∫

∂Ω

(u̇ε − ẇ)u̇ε dHn−1 ds =
∫ t

0

∫

∂Ω

gεu̇ε dHn−1 ds.

Thanks to the additive decomposition (4.1), we have
∫ t

0

∫

Ω

(σε − σ) · ∇u̇ε dx ds =
∫ t

0

∫

Ω

(σε − σ) · ṗε dx ds

+
∫ t

0

∫

Ω

(σε − σ) · σ̇ε dx ds.

According to the flow rule (4.3) and the fact that for all t ∈ [0, T ], ‖σ(t)‖∞ � 1,
we deduce that

∫ t

0

∫

Ω

(σε − σ) · ṗε dx ds � 0,



Hyperbolic Structure for a Simplified Model of Dynamical Perfect Plasticity 785

and thus,
∫ t

0

∫

Ω

(üε − ü)(u̇ε − u̇) dx ds + ε

∫ t

0

∫

Ω

|∇u̇ε|2 dx ds

+
∫ t

0

∫

Ω

(σε − σ) · (σ̇ε − σ̇ ) dx ds + 1

λ

∫ t

0

∫

∂Ω

(u̇ε − ẇ)2 dHn−1 ds

� −
∫ t

0

∫

Ω

(üε − ü)u̇ dx ds −
∫ t

0

∫

Ω

(σε − σ) · σ̇ dx ds

−1

λ

∫ t

0

∫

∂Ω

(u̇ε − ẇ)ẇ dHn−1 ds +
∫ t

0

∫

∂Ω

gεu̇ε dHn−1 ds.

The weak convergences (5.11) imply that the right hand side of the previous in-
equality tends to 0 as ε → 0. Thus, noticing that

∫ t

0

∫

Ω

(üε − ü)(u̇ε − u̇) dx ds = 1

2
‖u̇ε(t) − u̇(t)‖22,

and
∫ t

0

∫

Ω

(σε − σ) · (σ̇ε − σ̇ ) dx ds = 1

2
‖σε(t) − σ(t)‖22,

we get the desired strong convergences. ��
An important consequence of the strong convergences is the derivation of an

energy inequality between two arbitrary times. The following result makes use of
the lower bound inequality established in Proposition 5.1.

Proposition 5.3. For every 0 � t1 � t2 � T ,

1

2
‖u̇(t2)‖22+

1

2
‖σ(t2)‖22+

λ

2

∫ t2

t1

∫

∂Ω

|σ · ν|2 dHn−1 ds+
∫ t2

t1

∫

∂Ω

ψλ(u̇) dHn−1 ds

+
∫ t2

t1
| ṗ(s)|(Ω) ds � 1

2
‖u̇(t1)‖22 + 1

2
‖σ(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇ dx ds.

In addition, for almost every t ∈ [0, T ],
λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1 +
∫

∂Ω

ψλ(u̇(t)) dHn−1 + | ṗ(t)|(Ω)

� [σ(t) · ṗ(t)](Ω) −
∫

∂Ω

(σ (t) · ν)u̇(t) dHn−1.

Proof. Using the energy balance (4.4) and the boundary condition, we have, for
all 0 � t1 � t2 � T ,

1

2
‖u̇ε(t2)‖22 + 1

2
‖σε(t2)‖22 + λ

2

∫ t2

t1

∫

∂Ω

|(σε + ε∇u̇ε) · ν − gε|2 dHn−1 ds

+ 1

2λ

∫ t2

t1

∫

∂Ω

|u̇ε|2 dHn−1 ds +
∫ t2

t1

∫

Ω

| ṗε| dx ds

� 1

2
‖u̇ε(t1)‖22 + 1

2
‖σε(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇ε dx ds +
∫ t2

t1

∫

∂Ω

gεu̇ε dHn−1 ds.

(5.22)
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By Jensen’s inequality, we have

1

t2 − t1

(
1

2λ

∫ t2

t1

∫

∂Ω

|u̇ε|2 dHn−1 ds +
∫ t2

t1

∫

Ω

| ṗε| dx ds
)

� 1

2λ

∫

∂Ω

(
uε(t2) − uε(t1)

t2 − t1

)2

dHn−1 +
∫

Ω

∣
∣
∣
∣
pε(t2) − pε(t1)

t2 − t1

∣
∣
∣
∣ dx,

where we used that, as Bochner integrals,
∫ t2

t1
u̇ε(s) ds = uε(t2) − uε(t1) in L2(∂Ω)

and
∫ t2

t1
ṗε(s) ds = pε(t2) − pε(t1) in L2(Ω;Rn).

Using (5.19) and Proposition 5.2, we know that

uε(t2) − uε(t1)

t2 − t1
⇀

u(t2) − u(t1)

t2 − t1
weakly* in BV (Ω),

and

σε(t2) − σε(t1)

t2 − t1
→ σ(t2) − σ(t1)

t2 − t1
strongly in L2(Ω;Rn),

from which we deduce, according to Proposition 5.1, that
∫

∂Ω

ψλ

(
u(t2) − u(t1)

t2 − t1

)

dHn−1 +
∣
∣
∣
∣
p(t2) − p(t1)

t2 − t1

∣
∣
∣
∣ (Ω)

� lim inf
ε→0

{
1

2λ

∫

∂Ω

(
uε(t2) − uε(t1)

t2 − t1

)2

dHn−1+
∫

Ω

∣
∣
∣
∣
pε(t2) − pε(t1)

t2 − t1

∣
∣
∣
∣ dx

}

.

Therefore, thanks to the strong convergences results established in Proposition 5.2
together with the weak convergence (5.20) of the normal trace, it is possible to pass
to the (lower) limit in (5.22) to get that

1

2

‖u̇(t2)‖22 − ‖u̇(t1)‖22
t2 − t1

+ 1

2

‖σ(t2)‖22 − ‖σ(t1)‖22
t2 − t1

+ λ

2(t2 − t1)

∫ t2

t1

∫

∂Ω

|σ · ν|2dHn−1 ds +
∫

∂Ω

ψλ

(
u(t2) − u(t1)

t2 − t1

)

dHn−1

+
∣
∣
∣
∣
p(t2) − p(t1)

t2 − t1

∣
∣
∣
∣ (Ω) � 1

t2 − t1

∫ t2

t1

∫

Ω

f u̇ dx ds. (5.23)

Since u̇ ∈ W 1,∞([0, T ]; L2(Ω)) and σ ∈ W 1,∞([0, T ]; L2(Ω;Rn)), using [8,
Theorem 1.19], we obtain that functions t �→ ‖u̇(t)‖22 and t �→ ‖σ(t)‖22 are
absolutely continuous, and for almost every t ∈ [0, T ]

d

dt
‖u̇(t)‖22 = 2

∫

Ω

u̇(t)ü(t) dx,
d

dt
‖σ(t)‖22 = 2

∫

Ω

σ(t) · σ̇ (t) dx . (5.24)
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In addition, since u ∈ C0,1([0, T ], BV (Ω)) then according to [14, Theorem 7.1],
for almost every t ∈ [0, T ],

u(s) − u(t)

s − t
⇀ u̇(t) weakly* in BV (Ω) as s → t,

while the fact that σ ∈ W 1,∞([0, T ], L2(Ω;Rn)) ensures, according to [12, Corol-
laire A.2], that for almost every t ∈ [0, T ],

σ(s) − σ(t)

s − t
→ σ̇ (t) strongly in L2(Ω;Rn) as s → t.

Consequently, we can pass to the limit in (5.23) as t2 → t1 = t . Applying Propo-
sition 5.1 again yields, for almost every t ∈ [0, T ],

∫

Ω

u̇(t)ü(t) dx +
∫

Ω

σ(t) · σ̇ (t) dx + λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1

+
∫

∂Ω

ψλ(u̇(t)) dHn−1 + | ṗ(t)|(Ω) �
∫

Ω

f (t)u̇(t) dx .
(5.25)

On the one hand, using the equation of motion together with Definition 2.1 of
duality and the integration by parts formula stated in Proposition 2.2 (with ϕ = 1),
we infer that for almost every t ∈ [0, T ],

λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1+
∫

∂Ω

ψλ(u̇(t)) dHn−1+| ṗ(t)|(Ω)

� [σ(t) · ṗ(t)](Ω) −
∫

∂Ω

(σ (t) · ν)u̇(t) dHn−1.

On the other hand, integrating (5.25) between two arbitrary times t1 and t2, and
using (5.24) yields

1

2
‖u̇(t2)‖22+

1

2
‖σ(t2)‖22+

λ

2

∫ t2

t1

∫

∂Ω

|σ · ν|2 dHn−1 ds+
∫ t2

t1

∫

∂Ω

ψλ(u̇) dHn−1 ds

+
∫ t2

t1
| ṗ(s)|(Ω) ds � 1

2
‖u̇(t1)‖22 + 1

2
‖σ(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇ dx ds,

which is the announced energy inequality. ��

5.3. Flow Rule and Boundary Condition

We now show that the previous energy inequality is actually an equality, and as
a byproduct, we obtain the flow rule and the boundary condition.

Proposition 5.4. For every 0 � t1 � t2 � T ,

1

2
‖u̇(t2)‖22+

1

2
‖σ(t2)‖22+

λ

2

∫ t2

t1

∫

∂Ω

|σ · ν|2 dHn−1 ds+
∫ t2

t1

∫

∂Ω

ψλ(u̇) dHn−1 ds

+
∫ t2

t1
| ṗ(s)|(Ω) ds = 1

2
‖u̇(t1)‖22 + 1

2
‖σ(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇ dx ds. (5.26)
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In addition,

σ · ν + ψ ′
λ(u̇) = 0 in L2(0, T ; L2(∂Ω)),

and, for almost every t ∈ [0, T ],
| ṗ(t)| = [σ(t) · ṗ(t)] inM(Ω).

Proof. Deriving the additive decomposition with respect to time yields, for almost
every t ∈ [0, T ],

Du̇(t) = σ̇ (t) + ṗ(t) inM(Ω;Rn),

where u̇(t) ∈ BV (Ω) ∩ L2(Ω), σ̇ (t) ∈ L2(Ω;Rn) and ṗ(t) ∈ M(Ω;Rn).
Moreover, since for all t ∈ [0, T ], σ(t) ∈ H(div,Ω) and ‖σ(t)‖∞ � 1, we get
from Remark 2.1 that for almost every t ∈ [0, T ],

| ṗ(t)| � [σ(t) · ṗ(t)] inM(Ω), (5.27)

and in particular that
| ṗ(t)|(Ω) � [σ(t) · ṗ(t)](Ω). (5.28)

On the other hand, since σ(t) ∈ H(div,Ω) ∩ L∞(Ω;Rn) with ‖σ(t)‖∞ � 1,
we infer that σ(t) · ν ∈ L∞(∂Ω) with ‖σ(t) · ν‖L∞(∂Ω) � 1. As a consequence,
for all t ∈ [0, T ]

ψλ(u̇(t)) + λ

2
|σ(t) · ν|2 � −(σ (t) · ν)u̇(t) Hn−1-almost everywhere on ∂Ω,

(5.29)
or even still
∫

∂Ω

ψλ(u̇(t)) dHn−1 + λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1 � −
∫

∂Ω

(σ (t) · ν)u̇(t) dHn−1.

(5.30)
Summing up (5.28) and (5.30), using Definition 2.1 of duality together with the
integration by parts formula given by Proposition 2.2 and the equation of motion
yields, for almost every t ∈ [0, T ],

| ṗ(t)|(Ω) +
∫

∂Ω

ψλ(u̇(t)) dHn−1 + λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1

�
∫

Ω

f (t)u̇(t) dx −
∫

Ω

ü(t)u̇(t) dx −
∫

Ω

σ̇ (t) · σ(t) dx .

Thanks to (5.24) together with an integration between two arbitrary times 0 � t1 �
t2 � T we have the converse energy inequality

1

2
‖u̇(t2)‖22+

1

2
‖σ(t2)‖22+

λ

2

∫ t2

t1

∫

∂Ω

|σ · ν|2 dHn−1 ds+
∫ t2

t1

∫

∂Ω

ψλ(u̇) dHn−1 ds

+
∫ t2

t1
| ṗ(s)|(Ω) ds � 1

2
‖u̇(t1)‖22 + 1

2
‖σ(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇ dx ds,
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which gives the energy equality (5.26) according to Proposition 5.3.
We now derive the energy balance (5.26) with respect to time. It follows that

for almost every t ∈ [0, T ],

| ṗ(t)|(Ω) +
∫

∂Ω

ψλ(u̇(t)) dHn−1 + λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1

=
∫

Ω

f (t)u̇(t) dx −
∫

Ω

ü(t)u̇(t) dx −
∫

Ω

σ̇ (t) · σ(t) dx,

or still, thanks to the equation ofmotion,Definition 2.1 of duality and the integration
by parts formula given by Proposition 2.2,

| ṗ(t)|(Ω) +
∫

∂Ω

ψλ(u̇(t)) dHn−1 + λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1

= [σ(t) · ṗ(t)](Ω) −
∫

∂Ω

(σ (t) · ν)u̇(t) dHn−1.

Remembering (5.28) and (5.30) implies that

| ṗ(t)|(Ω) = [σ(t) · ṗ(t)](Ω),

and
∫

∂Ω

ψλ(u̇(t)) dHn−1 + λ

2

∫

∂Ω

|σ(t) · ν|2 dHn−1 = −
∫

∂Ω

(σ (t) · ν)u̇(t) dHn−1,

and by (5.27) and (5.29),

| ṗ(t)| = [σ(t) · ṗ(t)] inM(Ω),

as well as

ψλ(u̇(t)) + λ

2
|σ(t) · ν|2 = −(σ (t) · ν)u̇(t) Hn−1-almost everywhere on ∂Ω.

By (5.3) and standard arguments of convex analysis, this last formula is then equiv-
alent to the boundary condition σ(t) · ν + ψ ′

λ(u̇(t)) = 0Hn−1-almost everywhere
on ∂Ω . ��

Remark 5.6. According to the boundary condition at fixed ε > 0 and the conver-
gence (5.20) of the normal stress, we have that, as ε → 0, u̇ε = λgε − λ(σε +
ε∇u̇ε) · ν ⇀ −λσ · ν = λψ ′

λ(u̇) weakly in L2(0, T ; L2(∂Ω)). This enables one to
identify the function w (the limit of the trace of uε in (5.11)) as ẇ = λψ ′

λ(u̇), and
by Proposition 5.2,

u̇ε → λψ ′
λ(u̇) strongly in L2(0, T ; L2(∂Ω)). (5.31)
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5.4. Uniqueness

In order to establish the uniqueness, we derive a general comparison principle
between two solutions which, in the context of hyperbolic equations, is known as a
Kato inequality. This result is much more than needed in order to establish unique-
ness. However, it will be useful later to show regularity results for the variational
solution of the elasto-plastic problem (see Section 6).

Proposition 5.5. (Kato inequality) Let (u, σ, p) (resp. (ũ, σ̃ , p̃)) be a variational
solution of the elasto-plastic problem associated with the initial condition
(u0, v0, σ0, p0) (resp. (ũ0, ṽ0, σ̃0, p̃0)) and the source term f (resp. f̃ ). Then for
all ϕ ∈ W 1,∞(Ω × (0, T )) with ϕ � 0,

∫ T

0

∫

Ω

(u̇ − ˙̃u)2ϕ̇ dx dt +
∫ T

0

∫

Ω

|σ − σ̃ |2ϕ̇ dx dt +
∫

Ω

(v0 − ṽ0)
2ϕ(0) dx

+
∫

Ω

|σ0 − σ̃0|2ϕ(0) dx − 2
∫ T

0

∫

Ω

(σ − σ̃ ) · ∇ϕ(u̇ − ˙̃u) dx dt

+2
∫ T

0

∫

Ω

( f − f̃ )(u̇ − ˙̃u)ϕ dx dt � 0. (5.32)

Proof. Letϕ ∈ W 1,∞(Ω×(0, T ))withϕ � 0 and, let (u, σ, p) (resp. (ũ, σ̃ , p̃)) be
a variational solution of the elasto-plastic problem associated with the initial condi-
tion (u0, v0, σ0, p0) (resp. (ũ0, ṽ0, σ̃0, p̃0)) and the source term f (resp. f̃ ). Thanks
to the equation of motion and since the function (u̇ − ˙̃u)ϕ ∈ L2(0, T ; L2(Ω)), we
infer that

∫ T

0

∫

Ω

ü(u̇ − ˙̃u)ϕ dx dt −
∫ T

0

∫

Ω

divσ(u̇ − ˙̃u)ϕ dx dt

=
∫ T

0

∫

Ω

(u̇ − ˙̃u)ϕ dx dt,

and similarly,

∫ T

0

∫

Ω

¨̃u(u̇ − ˙̃u)ϕ dx dt −
∫ T

0

∫

Ω

divσ̃ (u̇ − ˙̃u)ϕ dx dt

=
∫ T

0

∫

Ω

f̃ (u̇ − ˙̃u)ϕ dx dt.

Summing up both previous equalities leads to

∫ T

0

∫

Ω

(ü − ¨̃u)(u̇ − ˙̃u)ϕ dx dt −
∫ T

0

∫

Ω

(divσ − divσ̃ )(u̇ − ˙̃u)ϕ dx dt

=
∫ T

0

∫

Ω

( f − f̃ )(u̇ − ˙̃u)ϕ dx dt. (5.33)
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Using the integration by parts formula established in Proposition 2.2, we get

−
∫ T

0

∫

Ω

(divσ − divσ̃ )(u̇ − ˙̃u)ϕ dx dt =
∫ T

0

∫

Ω

(u̇ − ˙̃u)(σ − σ̃ ) · ∇ϕ dx dt

−
∫ T

0

∫

∂Ω

(σ · ν − σ̃ · ν)(u̇ − ˙̃u)ϕ dHn−1 dt

+
∫ T

0
〈[(σ (t) − σ̃ (t)) · (Du̇(t) − D ˙̃u(t))], ϕ(t)〉 dt, (5.34)

and Definition 2.1 implies

∫ T

0
〈[(σ (t) − σ̃ (t)) · (Du̇(t) − D ˙̃u(t))], ϕ(t)〉 dt

=
∫ T

0
〈[(σ (t) − σ̃ (t)) · ( ṗ(t) − ˙̃p(t))], ϕ(t)〉 dt

+
∫ T

0

∫

Ω

ϕ(σ − σ̃ ) · (σ̇ − ˙̃σ) dx dt.

On the one hand, by the flow rule we have for almost every t ∈ [0, T ],

[σ(t) · ṗ(t)] = | ṗ(t)| and [σ̃ (t) · ˙̃p(t)] = | ˙̃p(t)| inM(Ω),

while, the stress constraint andProposition 2.2 imply that for almost every t ∈ [0, T ]

[σ̃ (t) · ṗ(t)] � | ṗ(t)| and [σ(t) · ˙̃p(t)] � | ˙̃p(t)| in M(Ω).

Consequently, since ϕ is non-negative, we have

∫ T

0
〈[(σ (t) − σ̃ (t)) · ( ṗ(t) − ˙̃p(t))], ϕ(t)〉 dt � 0.

This implies that

−
∫ T

0

∫

∂Ω

(σ · ν − σ̃ · ν)(u̇ − ˙̃u)ϕ dHn−1 dt

� −
∫ T

0

∫

Ω

(ü − ¨̃u)(u̇ − ˙̃u)ϕ dx dt −
∫ T

0

∫

Ω

(σ − σ̃ ) · (σ̇ − ˙̃σ)ϕ dx dt

−
∫ T

0

∫

Ω

(σ − σ̃ ) · ∇ϕ(u̇ − ˙̃u) dx dt +
∫ T

0

∫

Ω

( f − f̃ )(u̇ − ˙̃u)ϕ dx dt.

(5.35)

Next, using that both functions u̇ − ˙̃u ∈ W 1,∞([0, T ]; L2(Ω)) and σ − σ̃ ∈
W 1,∞([0, T ]; L2(Ω;Rn)), we can integrate by parts with respect to the time vari-



792 Jean-François Babadjian & Clément Mifsud

able to get

−
∫ T

0

∫

Ω

(ü − ¨̃u)(u̇ − ˙̃u)ϕ dx dt −
∫ T

0

∫

Ω

(σ − σ̃ ) · (σ̇ − ˙̃σ)ϕ dx dt

= 1

2

(∫ T

0

∫

Ω

(u̇ − ˙̃u)2ϕ̇ dx dt +
∫ T

0

∫

Ω

|σ − σ̃ |2ϕ̇ dx dt

+
∫

Ω

(v0 − ṽ0)
2ϕ(0) dx −

∫

Ω

(u̇(T ) − ˙̃u(T ))2ϕ(T ) dx

+
∫

Ω

|σ0 − σ̃0|2ϕ(0) dx −
∫

Ω

|σ(T ) − σ̃ (T )|2ϕ(T ) dx

)

,

and inserting inside (5.35) leads to

−
∫ T

0

∫

∂Ω

(σ · ν − σ̃ · ν)(u̇ − ˙̃u)ϕ dHn−1 dt

� 1

2

∫ T

0

∫

Ω

(u̇ − ˙̃u)2ϕ̇ dx dt + 1

2

∫ T

0

∫

Ω

|σ − σ̃ |2ϕ̇ dx dt

+1

2

(∫

Ω

(v0 − ṽ0)
2ϕ(0) dx +

∫

Ω

|σ0 − σ̃0|2ϕ(0) dx

)

−
∫ T

0

∫

Ω

(σ − σ̃ ) · ∇ϕ(u̇ − ˙̃u) dx dt +
∫ T

0

∫

Ω

( f − f̃ )(u̇ − ˙̃u)ϕ dx dt.

Using the boundary condition, and the fact thatψ is a non-negative convex function,
we obtain

−
∫ T

0

∫

∂Ω

(σ · ν − σ̃ · ν)(u̇ − ˙̃u)ϕ dHn−1 dt

=
∫ T

0

∫

∂Ω

(ψ ′(u̇) − ψ ′( ˙̃u))(u̇ − ˙̃u)ϕ dHn−1 dt � 0,

and inequality (5.32) follows. ��

As a consequence of Proposition 5.5, if (u1, σ1, p1) and (u2, σ2, p2) are two
variational solutions of the elasto-plastic problem given by Theorem 5.1 for the
same initial data (u0, v0, e0, p0) and source term f , taking ϕ(x, t) := T − t as test
function in (5.32) implies that σ1 = σ2 and u̇1 = u̇2. Consequently, since u1(0) =
u2(0) = u0, we deduce that u1 = u2, and using the additive decomposition, that
p1 = p2.

Remark 5.7. The uniqueness of the solution shows that there is no need to extract
subsequences in all weak and strong convergences obtained before.
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5.5. Homogeneous Dirichlet and Neumann Boundary Conditions

The boundary condition studied so far does not account for the importantDirich-
let and Neumann cases. It is however possible to recover these particular situations
by means of asymptotic analysis as the coefficient λ → 0+ for the Dirichlet, or
λ → +∞ for the Neumann case. The object of this section is to show such rigorous
convergence results.

Theorem 5.2. Let Ω ⊂ R
n be a bounded open set of class C1. Consider a source

term f ∈ H1([0, T ]; L2(Ω)) and an initial data (u0, v0, σ0, p0) ∈ H1(Ω) ×
H2(Ω) × H(div,Ω) × L2(Ω;Rn) such that

{
∇u0 = σ0 + p0 in L2(Ω;Rn),

|σ0| � 1 almost everywhere in Ω,
(5.36)

and
σ0 · ν = v0 = 0 Hn−1-almost everywhere on ∂Ω. (5.37)

For any λ > 0, let (uλ, σλ, pλ) the unique variational solution to the elasto-plastic
problem given by Theorem 5.1. For � ∈ {0,+∞}, there exists a unique triple
(u(�), σ (�), p(�)) with the regularity

⎧
⎪⎨

⎪⎩

u(�) ∈ W 2,∞([0, T ]; L2(Ω)) ∩ C0,1([0, T ]; BV (Ω)),

σ (�) ∈ W 1,∞([0, T ]; L2(Ω;Rn)),

p(�) ∈ C0,1([0, T ];M(Ω;Rn)),

(5.38)

such that, as λ → �,
⎧
⎪⎨

⎪⎩

uλ ⇀ u(�) weakly* in W 2,∞([0, T ]; L2(Ω)),

σλ ⇀ σ(�) weakly* in W 1,∞([0, T ]; L2(Ω;Rn)),

pλ(t) ⇀ p(�)(t) weakly* inM(Ω;Rn) for all t ∈ [0, T ],
(5.39)

and which satisfies the following properties

1. The initial conditions

u(�)(0) = u0, u̇(�)(0) = v0, σ (�)(0) = σ0, p(�)(0) = p0;
2. The additive decomposition that for all t ∈ [0, T ]

Du(�)(t) = σ (�)(t) + p(�)(t) inM(Ω;Rn);
3. The equation of motion

ü(�) − divσ (�) = f in L2(0, T ; L2(Ω));
4. The boundary condition

σ (∞) · ν = 0 in L2(0, T ; L2(∂Ω));
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5. The stress constraint that for all t ∈ [0, T ],
|σ (�)(t)| � 1 almost everywhere in Ω;

6. The flow rule that for almost every t ∈ [0, T ],
{

| ṗ(0)(t)| = [σ (0)(t) · ṗ(0)(t)] inM(Ω),

|u̇(0)(t)| = −(σ (0)(t) · ν)u̇(0)(t) Hn−1-almost everywhere on ∂Ω,

or

| ṗ(∞)(t)| = [σ (∞)(t) · ṗ(∞)(t)] inM(Ω).

Remark 5.8. Note that in the Dirichlet case (� = 0), as classical in variational
problems with linear growth, the velocity may concentrate on the boundary so that
its inner trace might not vanish as required by the boundary condition. It explains
why some plastic strain can accumulate on the boundary and that the flow rule is
formulated in Ω and not only in Ω .

Remark 5.9. Assumption (5.37) seems to be artificial, however it allows us to
easily satisfy the boundary condition σ0 · ν + λ−1v0 = 0 on ∂Ω for the initial data
for every λ > 0. It seems more natural to consider initial data that satisfy (5.36)
and, in the Neumann case for example, only

σ0 · ν = 0 Hn−1-almost everywhere on ∂Ω. (5.40)

To do this, one should be able to construct a sequence (uλ
0, v

λ
0 , σ

λ
0 , pλ

0 ) ∈ H1(Ω)×
H2(Ω)×H(div,Ω)×L2(Ω;Rn), for every (u0, v0, σ0, p0) ∈ H1(Ω)×H2(Ω)×
H(div,Ω) × L2(Ω;Rn) satisfying (5.36) and (5.40), such that

⎧
⎪⎨

⎪⎩

∇uλ
0 = σλ

0 + pλ
0 in L2(Ω;Rn),

σ λ
0 · ν + λ−1vλ

0 = 0 Hn−1-almost everywhere on ∂Ω,

|σλ
0 | � 1 almost everywhere in Ω,

and, at least,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uλ
0 ⇀ u0 weakly in L2(Ω),

vλ
0 ⇀ v0 weakly in H1(Ω),

σλ
0 ⇀ σ0 weakly in H(div,Ω),

pλ
0 ⇀ p0 weakly* inM(Ω;Rn).

This issue will not be addressed in this paper and for that reason, we assume (5.37),
for simplicity.

Proof. The proof follows closely the lines of that of Theorem 5.1; it is divided into
three steps.
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Step 1: Weak convergences. Passing to the limit as ε → 0 in estimates (5.6) and
(5.7) yields

sup
t∈[0,T ]

‖üλ(t)‖22 + sup
t∈[0,T ]

‖σ̇λ(t)‖22

� C

(

‖divσ0 + f (0)‖22 + ‖∇v0‖22 +
(∫ T

0
‖ ḟ (t)‖2 dt

)2)

,

and

sup
t∈[0,T ]

‖u̇λ(t)‖22 + sup
t∈[0,T ]

‖σλ(t)‖22 +
∫ T

0
ψλ(u̇λ(t)) dt

+λ

2

∫ T

0

∫

∂Ω

|σλ · ν|2 dHn−1 dt � C

(

‖v0‖22+‖σ0‖22+
(∫ T

0
‖ f (t)‖2 dt

)2)

,

(5.41)

where the constants C > 0 are independent of λ. Using similar arguments to those
of Section 5.1, we can find a subsequence (not relabeled) and, for � ∈ {0,+∞},
functionsu(�),σ (�) and p(�) as in (5.38) such that theweak convergences (5.39) hold.
In particular, we can easily derive the initial conditions, the additive decomposition,
the stress constraint and the equation of motion.

Using the equation of motion for fixed λ > 0, we infer that the sequence
(σλ)λ>0 is bounded in L2(0, T ; H(div,Ω)), so that σλ · ν ⇀ σ(�) · ν weakly in
L2(0, T ; H−1/2(∂Ω)). On the other hand, according to estimate (5.41), we have
thatσλ·ν → 0 strongly in L2(0, T ; L2(∂Ω)) asλ → +∞. Therefore, theNeumann
boundary condition σ (∞) · ν = 0 in L2(0, T ; L2(∂Ω)) follows.
Step 2: Strong convergences. We now show that, as λ → �,

{
u̇λ → u̇(�) strongly in C0([0, T ]; L2(Ω)),

σλ → σ (�) strongly in C0([0, T ]; L2(Ω;Rn)).
(5.42)

With this aim, substracting the equations of motion, we get that

üλ − ü(�) − div(σλ − σ (�)) = 0 in L2(0, T ; L2(Ω)).

For t ∈ [0, T ], multiplying by 1[0,t]u̇λ, integrating over Ω × (0, T ), and using
Definition 2.1 of duality together with the integration by parts formula given by
Proposition 2.2 yields

∫ t

0

∫

Ω

(üλ − ü(�))u̇λ dx ds +
∫ t

0

∫

Ω

(σλ − σ (�)) · σ̇λ dx ds

+
∫ t

0
[(σλ(s) − σ (�)(s)) · ṗλ(s)](Ω) ds

−
∫ t

0

∫

∂Ω

(σλ · ν − σ (�) · ν)u̇λ dHn−1 ds = 0.
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According to the flow rule for fixed λ > 0, the fact that for all s ∈ [0, T ],
‖σ (�)(s)‖∞ � 1 and Remark 2.1, we get that [(σλ(s) − σ (�)(s)) · ṗλ(s)](Ω) � 0
for almost every s ∈ [0, T ]. Thus,

∫ t

0

∫

Ω

(üλ − ü(�))(u̇λ − u̇(�)) dx ds +
∫ t

0

∫

Ω

(σλ − σ (�)) · (σ̇λ − σ̇ (�)) dx ds

� −
∫ t

0

∫

Ω

(üλ − ü(�))u̇(�) dx ds −
∫ t

0

∫

Ω

(σλ − σ (�)) · σ̇ (�) dx ds

+
∫ t

0

∫

∂Ω

(σλ · ν − σ (�) · ν)u̇λ dHn−1 ds,

and integrating by parts the left hand side with respect to time yields

1

2
‖u̇λ(t) − u̇(�)(t)‖22 + 1

2
‖σλ(t) − σ (�)(t)‖22

� −
∫ t

0

∫

Ω

(üλ − ü(�))u̇(�) dx ds −
∫ t

0

∫

Ω

(σλ − σ (�)) · σ̇ (�) dx ds

+
∫ t

0

∫

∂Ω

(σλ · ν − σ (�) · ν)u̇λ dHn−1 ds.

(5.43)

The weak convergences (5.39) ensure that the first two integrals in the right hand
side of (5.43) tend to 0 as λ → �. Concerning the boundary integral, if � = +∞,
since σ (∞) · ν = 0, using the boundary condition for fixed λ > 0, we infer that

(σλ · ν − σ (∞) · ν)u̇λ = −ψ ′
λ(u̇λ)u̇λ � 0 almost everywhere on ∂Ω × (0, T )

by convexity of ψλ. On the other hand, if � = 0, from the boundary condition for
fixed λ > 0 and the fact that ‖σ (0) · ν‖L∞(∂Ω×(0,T )) � 1, we get that

(σλ · ν − σ (0) · ν)u̇λ = −
(

|u̇λ|1{|u̇λ|>λ} + |u̇λ|2
λ

1{|u̇λ|�λ} + (σ (0) · ν)u̇λ

)

� −
( |u̇λ|2

λ
+(σ (0) · ν)u̇λ

)

1{|u̇λ|�λ} � λ almost everywhere on ∂Ω×(0, T ).

In both cases, we obtain that the right hand side of (5.43) is infinitesimal as λ → �,
which completes the proof of the strong convergences.

Step 3: The flow rules. If � = +∞, writing the energy balance (5.5) between two
arbitrary times 0 � t1 < t2 � T yields

1

2
‖u̇λ(t2)‖22 + 1

2
‖σλ(t2)‖22 +

∫ t2

t1
| ṗλ(t)|(Ω) dt

� 1

2
‖u̇λ(t1)‖22 + 1

2
‖σλ(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇λ dx dt.

Using the strong convergences (5.42) together with the sequential lower semicon-
tinuity of the mapping

p �→
∫ t2

t1
| ṗ(t)|(Ω) dt
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with respect to the weak convergence (5.39) (see for example [14, Appendix]) leads
to

1

2
‖u̇(∞)(t2)‖22 + 1

2
‖σ (∞)(t2)‖22 +

∫ t2

t1
| ṗ(∞)(t)|(Ω) dt

� 1

2
‖u̇(∞)(t1)‖22 + 1

2
‖σ (∞)(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇(∞) dx dt.

Deriving this inequality with respect to time, and using the equation of motion then
implies that for almost every t ∈ [0, T ], | ṗ(∞)(t)|(Ω) � [σ (∞)(t) · ṗ(∞)(t)](Ω).
On the other hand, since we have ‖σ (∞)‖L∞(Ω×(0,T )) � 1, Remark 2.1 ensures
that | ṗ(∞)(t)| � [σ (∞)(t) · ṗ(∞)(t)] inM(Ω), from which we deduce that

| ṗ(∞)(t)| = [σ (∞(t) · ṗ(∞)(t)] inM(Ω) for almost every t ∈ [0, T ].

Next, if � = 0, writing the energy balance (5.5) between two arbitrary times
0 � t1 < t2 � T yields

1

2
‖u̇λ(t2)‖22 + 1

2
‖σλ(t2)‖22 +

∫ t2

t1
| ṗλ(t)|(Ω) dt +

∫ t2

t1

∫

∂Ω

ψλ(u̇λ) dHn−1 dt

� 1

2
‖u̇λ(t1)‖22 + 1

2
‖σλ(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇λ dx dt.

Using the definition of ψλ, we have

∫ t2

t1

∫

∂Ω

ψλ(u̇λ) dHn−1 dt �
∫ t2

t1

∫

∂Ω

|u̇λ| dHn−1 dt

−
∫ t2

t1

∫

{|u̇λ(t)|�λ}
|u̇λ| dHn−1 dt − λ

2

∫ t2

t1
Hn−1({|u̇λ(t)| > λ}) dt

�
∫ t2

t1

∫

∂Ω

|u̇λ| dHn−1 dt − λ(t2 − t1)Hn−1(∂Ω).

Thanks to the strong convergences (5.42) and the sequential lower semicontinuity
of the mapping

(u, p) �→
∫ t2

t1
| ṗ(t)|(Ω) dt +

∫ t2

t1

∫

∂Ω

|u̇| dHn−1 dt

with respect to the convergences (5.39) and (5.42) (see for example [14,Appendix]),
we get

1

2
‖u̇(0)(t2)‖22 + 1

2
‖σ (0)(t2)‖22 +

∫ t2

t1
| ṗ(0)(t)|(Ω) dt +

∫ t2

t1

∫

∂Ω

|u̇(0)| dHn−1 dt

� 1

2
‖u̇(0)(t1)‖22 + 1

2
‖σ (0)(t1)‖22 +

∫ t2

t1

∫

Ω

f u̇(0) dx dt,
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or still, by the definition of duality

| ṗ(0)(t)|(Ω) +
∫

∂Ω

|u̇(0)(t)| dHn−1

� [σ (0)(t) · ṗ(0)(t)](Ω) −
∫

∂Ω

(σ (0)(t) · ν)u̇(0)(t) dHn−1.

On the other hand, since ‖σ (0) · ν‖L∞(∂Ω×(0,T )) � ‖σ (0)‖L∞(Ω×(0,T )) � 1, Re-
mark 2.1 ensures that for almost every t ∈ [0, T ], | ṗ(0)(t)| � [σ (0)(t) · ṗ(0)(t)]
in M(Ω) and |u̇(0)(t)| � −(σ (0)(t) · ν)u̇(0)(t) Hn−1-almost everywhere on ∂Ω ,
from which we deduce that

| ṗ(0)(t)| = [σ (0)(t) · ṗ(0)(t)] inM(Ω)

and

|u̇(0)(t)| = −(σ (0)(t) · ν)u̇(0)(t) Hn−1-almost everywhere on ∂Ω.

Finally, in both cases � ∈ {0,+∞}, the uniqueness can be recovered as in
Section 5.4. ��

6. Short Time Regularity of the Solution

In this section, we prove that the variational solutions to the elasto-plastic prob-
lem are smooth in short time, provided that the initial data are smooth and com-
pactly supported in space. This kind of regularity result in the context of dynamical
elasto-plasticity seems to be new, and the argument strongly rests on the hyperbolic
structure of the model. The general idea is similar to the proof of the fact that the
(unique) entropic solution to a scalar conservation law with BV initial data is ac-
tually BV (instead of just L1 in the Kružkov theory [23]). It consists in proving a
comparison principle between two solutions associated to different initial data. In
[23], an L1-contraction principle states that, at time t , the L1-distance between two
solutions can be estimated by the L1-distance of the initial data. In our context, an
L2-comparison principle has been established in Proposition 5.5. Then, translating
in space the data enables one to get an L2-estimate on the difference quotient of the
solution in terms of the L2-norm of the difference quotient of the data. In particular,
if the data are H1, then the solution is H1 as well (see [16, Lemma 10] in the full
space). Since we are dealing with a boundary value problem, one has to be careful
that the translated solutions remain inside the domain Ω . This is the reason that we
need to ensure that, in short time, if the data are compactly supported in space, then
so is the solution, which is a statement of the finite speed propagation property. In
that way, the boundary of the domain can be ignored, and one can argue similarly
as in the full space.

Proposition 6.1. (Finite speed propagation) Let (u, σ, p) be the variational solu-
tion of the elasto-plastic problem given by Theorem 5.1 for the initial condition
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(u0, v0, σ0, p0) and the source term f . Suppose that there exists a compact set
K ⊂ Ω such that

supp(v0, σ0, f (t)) ⊂ K for all t ∈ [0, T ].
Then, for all T ∗ ∈ (0, T ] be such that T ∗ < dist(K , ∂Ω), there exists a compact
set K ∗ ⊂ Ω such that supp(u̇, σ ) ⊂ K ∗ × [0, T ∗].
Proof. By assumption, we know that for all x ∈ ∂Ω , we have dist(x, K ) > T ∗, so
that we can find some rx > 0 such that dist(x, K ) = rx + T ∗. Using the fact that
∂Ω is compact, we obtain the existence of p ∈ N and x1, . . . , xp ∈ ∂Ω such that

∂Ω ⊂
p⋃

i=1

B
(
xi ,

rxi
4

)
.

Observe that if y ∈ B
(
xi ,

rxi
2

)
for some 1 � i � p, then

|dist(y, K ) − dist(xi , K )| � |y − xi | � rxi
2

,

and consequently,

dist(y, K ) � T ∗ + rxi
2

> 0,

which implies that v0 = 0, σ0 = 0 and f (t) = 0 in ∪p
i=1B (xi , ri/2) for all

t ∈ [0, T ].
Define η = min1�i�p rxi /4 > 0, and consider the boundary layer

Lη = {y ∈ Ω : 0 < dist(y, ∂Ω) < η} ⊂
p⋃

i=1

B
(
xi ,

rxi
2

)
∩ Ω

so that v0 = 0, σ0 = 0 and f (t) = 0 in Lη for all t ∈ [0, T ]. Let us show that
u̇ = 0 and σ = 0 on Lη × [0, T ∗]. To this aim, let x0 ∈ Lη, and, the set Lη being
open, let ρ0 ∈ (0, η/2) be such that B(x0, ρ0) ⊂ Lη. Now define the function
ϕ ∈ W 1,∞(Rn × (0, T ∗)) as

ϕ(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T ∗ − t + ρ0 − |x − x0| if

{
t ∈ [0, T ∗],
ρ0 < |x − x0| < ρ0 + T ∗ − t,

T ∗ − t if

{
t ∈ [0, T ∗],
|x − x0| < ρ0,

0 otherwise.

Note that ϕ � 0, and
{

ϕ̇ = −1{(x,t): t∈[0,T ∗], |x−x0|<ρ0+T ∗−t},
∇ϕ = − x−x0|x−x0|1{(x,t): t∈[0,T ∗], ρ0<|x−x0|<ρ0+T ∗−t},
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which implies that −|u̇|2ϕ̇ − |σ |2ϕ̇ + 2σ · ∇ϕu̇ � 0 almost everywhere in Ω ×
(0, T ∗). Consequently, using the comparisonprincipleProposition5.5 (with (u, σ, p)
and the null solution) it follows that

−
∫ T ∗

0

∫

B(x0,ρ0)
(|u̇|2 + |σ |2)ϕ̇ dx dt + 2

∫ T ∗

0

∫

B(x0,ρ0)
σ · ∇ϕu̇ dx dt

�
∫

B(x0,ρ0+T ∗)
(|v0|2 + |σ0|2)ϕ(0) dx +

∫ T ∗

0

∫

B(x0,ρ0+T ∗)
| f ||u̇|ϕ dx dt,

and since the spatial derivative of ϕ vanish on B(x0, ρ0), we get that

∫ T ∗

0

∫

B(x0,ρ0)
(|u̇|2 + |σ |2) dx dt

�
∫

B(x0,ρ0+T ∗)
(|v0|2 + |σ0|2)ϕ(0) dx +

∫ T ∗

0

∫

B(x0,ρ0+T ∗)
| f ||u̇|ϕ dx dt.

Using the definition of x0, we obtain that for every y ∈ B(x0, ρ0 + T ∗),

|dist(y, K ) − dist(x0, K )| � ρ0 + T ∗,

and thus

dist(y, K ) > T ∗ + η − ρ0 − T ∗ >
η

2
> 0.

Consequently,

∫ T ∗

0

∫

B(x0,ρ0)
(|u̇|2 + |σ |2) dx dt � 0

which implies that both u̇ and σ vanish in Lη×(0, T ∗). The conclusion thus follows
by setting K ∗ = Ω \ Lη. ��
Remark 6.1. Since u ∈ W 2,∞([0, T ]; L2(Ω)), we have, for all t ∈ [0, T ],

u(t) = u0 +
∫ t

0
u̇(s) ds,

where the integral is intended as a Bochner integral in L2(Ω). Therefore, if fur-
ther supp(u0) ⊂ K , it follows that supp(u) ⊂ K ∗ × [0, T ∗]. As a consequence,
the measure Du is also compactly supported in K ∗ × [0, T ∗], and the additive
decomposition entails that supp(p) ⊂ K ∗ × [0, T ∗] as well.

We are now in position to state the regularity result.

Theorem 6.1. (Short time regularity) Let (u, σ, p) be the variational solution to the
elasto-plastic problemgivenbyTheorem5.1 for the initial condition (u0, v0, σ0, p0)
and the source term f . Suppose that there exists a compact set K ⊂ Ω such that

supp(u0, v0, σ0, p0, f (t)) ⊂ K for all t ∈ [0, T ],
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and that

σ0 ∈ H1(Ω;Rn), f ∈ H1(Ω × (0, T )).

Then, for all T ∗ ∈ (0, T ] be such that T ∗ < dist(K , ∂Ω), we have
⎧
⎪⎨

⎪⎩

u ∈ H1([0, T ∗]; H1(Ω)),

σ ∈ L2(0, T ∗; H1(Ω;Rn)),

p ∈ H1([0, T ∗]; L2(Ω;Rn)).

Proof. Using Proposition 6.1 and Remark 6.1, we know that for all T ∗ < dist
(K , ∂Ω), there exists a compact set, K ∗ ⊂ Ω such that supp(u, σ, p) ⊂ K ∗ ×
[0, T ∗]. Since K ∗ is a compact subset of Ω , there exists δ > 0 such that for all
h ∈ R

n with |h| < δ, the sets K ∗ + h are also compactly embedded in Ω . Let Ω ′
be a bounded smooth open subset ofRn such that Ω ⊂ Ω ′, and for all h ∈ R

n with
|h| < δ, Ω + h ⊂ Ω ′.
Step 1: Extension on Ω ′ × (0, T ∗). We denote by f̄ , ū and σ̄ the extensions of
f , u and σ by zero on Ω ′ × (0, T ∗). Clearly, one has f̄ ∈ H1([0, T ∗]; L2(Ω ′)),
ū ∈ W 2,∞([0, T ∗]; L2(Ω ′)), σ̄ ∈ W 1,∞([0, T ∗]; L2(Ω ′;Rn)) and

‖σ̄‖L∞(Ω ′×(0,T ∗)) � 1.

In addition, for all t ∈ [0, T ∗], since the (inner) trace on ∂Ω of u(t) vanishes,
[1, Theorem 3.87] ensures that the function ū(t) ∈ BV (Ω ′) and Dū(t) = Du(t) in
M(Ω ′). Hence, we get that ū ∈ C0,1([0, T ∗]; BV (Ω ′)). Similarly, since the (inner)
normal trace on ∂Ω of σ vanishes, we deduce that divσ̄ ∈ L∞(0, T ∗; L2(Ω ′)),
which implies that σ̄ ∈ L∞(0, T ∗; H(div,Ω ′)).

For every t ∈ [0, T ∗], we define the measure p̄(t) ∈ M(Ω ′;Rn) by

p̄(t) = Dū(t) − σ̄ (t).

Using the regularity of ū and σ̄ , we obtain that p̄ ∈ C0,1([0, T ∗];M(Ω ′;Rn)). For
almost every t ∈ [0, T ∗], we consider the Radon measure [σ̄ (t) · ˙̄p(t)] on Ω ′ as in
Definition 2.1. Clearly [σ̄ (t) · ˙̄p(t)] = [σ(t) · ṗ(t)] in M(Ω), while Remark 2.1
ensures that |[σ̄ (t) · ˙̄p(t)]|(Ω ′ \Ω) � | ˙̄p(t)|(Ω ′ \Ω) = 0. It implies that for almost
every t ∈ [0, T ∗], we have | ˙̄p(t)| = [σ̄ (t) · ˙̄p(t)] inM(Ω ′).
Step 2: Spatial translation. For every h ∈ R

n be such that |h| < δ, we define the
translation operator τh of a generic function F : Ω ′ × (0, T ∗) → R by

τh F(x, t) = F(x + h, t) for all (x, t) ∈ Ω × (0, T ∗).

Then, τh f̄ ∈ H1([0, T ∗]; L2(Ω)), τhū ∈ W 2,∞([0, T ∗]; L2(Ω)) and τh σ̄ satisfies
‖τh σ̄‖L∞(Ω×(0,T ∗)) � 1 and belongs to W 1,∞([0, T ∗]; L2(Ω;Rn)). According to
[1, Remark 3.18], for all t ∈ [0, T ∗], we have that D(τhū)(t) = τ−h#Dū(t) (the
push-forward of the measure Dū(t) by the mapping x �→ x−h) which implies that
τhū ∈ C0,1([0, T ∗]; BV (Ω)). Finally, since for all t ∈ [0, T ∗] the push-forward
measure τ−h# p̄(t) ∈ M(Ω;Rn) satisfies

τ−h# p̄(t) = Dτhū(t) − τh σ̄ (t),
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the regularity of τhū and τh σ̄ ensures that τ−h# p̄ ∈ C0,1([0, T ∗];M(Ω;Rn)).

Step 3 : The translation of the solution is a solution.We define the translation of
the solution (uh, σh, ph) := (τhū, τh σ̄ , τ−h# p̄) and fh := τh f̄ . Let us show that:

1. We have the regularity properties:

uh ∈ W 2,∞([0, T ∗]; L2(Ω)) ∩ C0,1([0, T ∗]; BV (Ω)),

σh ∈ W 1,∞([0, T ∗]; L2(Ω;Rn)),

and

ph ∈ C0,1([0, T ∗];M(Ω;Rn));
2. Equation of motion: üh − divσh = fh in L∞(0, T ∗; L2(Ω));
3. Additive decomposition: for every t ∈ [0, T ∗],

Duh(t) = σh(t) + ph(t) inM(Ω;Rn);
4. Stress constraint: for every t ∈ [0, T ∗], |σh(t)| � 1 almost everywhere in Ω;
5. Flow rule: for almost everywhere t ∈ [0, T ∗], | ṗh(t)| = [σh(t) · ṗh(t)] in

M(Ω);
6. Boundary condition: for almost everywhere t ∈ [0, T ∗],

σh(t) · ν + ψ ′
λ(u̇h(t)) = 0 Hn−1-almost everywhere on ∂Ω;

7. Initial conditions:

uh(0) = τhu0, u̇h(0) = τhv0, σh(0) = τhσ0, ph(0) = τ−h# p0.

Items 1, 3 and 4 have already been proved in step 2. Due to the definition of τh ,
items2 and7 are automatically satisfied.Let us examinepoint 6. Since supp(u, σ ) ⊂
K ∗ × [0, T ∗], then for all t ∈ [0, T ∗], supp(uh(t), σh(t)) ⊂ (K ∗ + h) which is a
compact subset of Ω as long as |h| < δ. Therefore, for all t ∈ [0, T ∗], we have
u̇h(t) = 0 and σh(t) · ν = 0 on ∂Ω , and thus 6 holds. It remains to show item 5.
By Definition 2.1 of duality, we know that for almost everywhere t ∈ [0, T ∗] and
for all ϕ ∈ C∞

c (Ω),

〈[ ṗh(t) · σh(t)], ϕ〉 = −
∫

Ω

u̇h(t)divσh(t)ϕ dx

−
∫

Ω

σh(t) · ∇ϕu̇h(t) dx −
∫

Ω

σ̇h(t) · σh(t)ϕ dx .

Using a change of variables (and since |h| < δ), we get that

〈[ ṗh(t) · σh(t)], ϕ〉 = −
∫

Ω

˙̄u(t)divσ̄ (t)ϕ(· − h) dx

−
∫

Ω

σ̄ (t) · ∇ϕ(· − h) ˙̄u(t) dx −
∫

Ω

˙̄σ(t) · σ̄ (t)ϕ(· − h) dx,
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and according to the integration by parts formula (Proposition 2.2), we obtain

〈[ ṗh(t) · σh(t)], ϕ〉 = 〈 ∣
∣ ˙̄p ∣

∣ , ϕ(· − h)
〉 = 〈 | ṗh | , ϕ〉 ,

where we used that ϕ(· − h) ∈ C∞
c (Ω ′) and | ˙̄p(t)| = [

σ̄ (t) · ˙̄p(t)] inM(Ω ′).
Step 4 : Regularity. Now that (uh, σh, ph) is a solution associated to the initial
condition (τhu0, τhv0, τhσ0, τ−h# p0) and source term fh , Proposition 5.5 (with the
test function ϕ(x, t) = T ∗ − t) then implies that

∫ T ∗

0

∫

Ω

(u̇h − u̇)2 dx dt +
∫ T

0

∫

Ω

|σh − σ |2 dx dt

� T ∗
∫

Ω

(τhv0 − v0)
2 dx + T ∗

∫

Ω

|τhσ0 − σ0|2 dx

+2T ∗
∫ T ∗

0

∫

Ω

|τh f − f ||τhu̇ − u̇| dx dt.

According to Young’s inequality, and since v0 ∈ H1(Ω), σ0 ∈ H1(Ω;Rn), f ∈
H1(Ω × (0, T ∗)), we get that

∫ T ∗

0

∫

Ω

(u̇h − u̇)2 dx dt +
∫ T ∗

0

∫

Ω

|σh − σ |2 dx dt

� C(T ∗)|h|2
(

‖∇v0‖22 + ‖∇σ0‖22 +
∫ T ∗

0
‖∇ f (t)‖22 dt

)

,

from which we get that u̇ ∈ L2(0, T ∗; H1(Ω)) and σ ∈ L2(0, T ∗; H1(Ω;Rn)).
Writing for all t ∈ [0, T ],

u(t) = u0 +
∫ t

0
u̇(s) ds

as a Bochner integral in L2(Ω), we obtain that u ∈ L2(0, T ∗; H1(Ω)), or still
u ∈ H1([0, T ∗]; H1(Ω)). Finally, we have p = ∇u − σ ∈ L2(0, T ∗; L2(Ω;Rn))

and ṗ = ∇u̇ − σ̇ ∈ L2(0, T ∗; L2(Ω;Rn)) which shows the desired regularity
p ∈ H1([0, T ∗]; L2(Ω;Rn)). ��
Remark 6.2. A similar result holds for the variational solutions to the elasto-plastic
problem with homogeneous Dirichlet or Neumann boundary conditions given by
Theorem 5.2.

7. Dissipative Formulation

In this last Section, we establish precise links between the variational and the
dissipative formulations by making rigorous the formal computations done in Sec-
tion 3.3. We show that any variational solution generates a dissipative solution
by performing the manipulations on the approximate elasto-visco-plastic model
(for which the solution is essentially smooth), and then by passing to the limit as
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the viscosity parameter ε → 0. A partial converse statement is proved, provided
the dissipative solutions are smoother in time. We then employ measure theoretic
arguments to establish that a solution of the variational problem can be constructed.

In order to define precisely the dissipative formulation of the dynamical elasto-
plastic problem, we introduce the convex set

K := R × B ⊂ R
n+1,

and, for i = 1, . . . , n, we define the matrices

Ai := −2e1 � ei+1,

where {e1, . . . , en} stands for the canonical basis ofRn . For all x ∈ ∂Ω , we denote
the boundary matrix by

Aν(x) :=
n∑

i=1

Aiνi (x),

where ν(x) is the outer unit normal to Ω at x ∈ ∂Ω . In addition, for each λ > 0
and all x ∈ ∂Ω , we define the matrix M(x) ∈ M

(n+1)×(n+1) by

M(x) := λ−1e1 ⊗ e1 + λ

n∑

i, j=1

νi (x)ν j (x)ei+1 � e j+1.

In this section, we always assume that Ω is of class C1, so the normal ν ∈ C(∂Ω),
and thus both matrices Aν and M ∈ C(∂Ω;M(n+1)×(n+1)).

Definition 7.1. LetU0 ∈ L2(Ω; K ) be initial data and F ∈ L2(Ω × (0, T );Rn+1)

be a source term. A function U ∈ L2(Ω × (0, T ); K ) is a dissipative solution to
the elasto-plastic problem if for all constant vector κ ∈ K and all ϕ ∈ W 1,∞(Ω ×
(0, T )) with ϕ � 0,

∫ T

0

∫

Ω

(

|U − κ|2ϕ̇ +
n∑

i=1

Ai (U − κ) · (U − κ)∂xiϕ

)

dx dt

+
∫

Ω

|U0 − κ|2 ϕ(0) dx + 2
∫ T

0

∫

Ω

F · (U − κ)ϕ dx dt

+
∫ T

0

∫

∂Ω

Mκ+ · κ+ϕ dHn−1 dt � 0,

where κ+ denotes the orthogonal projection of κ onto Ker(Aν + M) ∩ ImAν .

Remark 7.1. Using elementary algebraic computations,wehave for allκ = (k, τ ) ∈
R
n+1 and all ξ ∈ R

n

n∑

i=1

ξi Aiκ · κ = −2(τ · ξ)k.
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In addition, according to [28, Lemma 1], we have that

R
n+1 = KerAν ⊕ (Ker(Aν − M) ∩ ImAν) ⊕ (Ker(Aν + M) ∩ ImAν) .

For each κ = (k, τ ) ∈ R
n+1, denoting by κ(0), κ− and κ+ the projection of κ onto

KerAν , Ker(Aν − M)∩ ImAν and Ker(Aν + M)∩ ImAν , respectively, we get that
κ = κ(0) + κ− + κ+ where

⎧
⎪⎨

⎪⎩

κ(0) = (0, τ − (τ · ν)ν),

κ− = ( k−λτ ·ν
2 ,

(
τ ·ν
2 − k

2λ

)
ν
)
,

κ+ = ( k+λτ ·ν
2 ,

(
τ ·ν
2 + k

2λ

)
ν
)
.

In particular,

Mκ± · κ± = 2λ

(
k

2λ
± τ · ν

2

)2

.

The following result states that variational solutions to the elasto-plastic prob-
lem generate dissipative solutions.

Proposition 7.1. Let (u, σ, p) be the variational solution to the elasto-plastic prob-
lem given by Theorem 5.1 for the initial data (u0, v0, σ0, p0) and the source term
f , and define U := (u̇, σ ). Then U ∈ L2(Ω × (0, T ); K ) is a dissipative solu-
tion to the elasto-plastic problem according to Definition 7.1 for the initial data
U0 = (v0, σ0) and the source term F = ( f, 0).

Proof. The proof is very close to that of Proposition 5.5. For fixed ε > 0, let
(uε, σε, pε) be the solution of the elasto-visco-plastic problem given by The-
orem 4.1 for the initial condition (u0, v0, σ0, p0) and the source terms f and
gε = ε∇v0 · ν. Let k ∈ R and τ ∈ B, taking (u̇ε − k)ϕ ∈ L2(0, T ; H1(Ω))

as test function in the variational formulation (4.6), and using the additive decom-
position (4.1) together with the boundary condition (4.2) yields

∫ T

0

∫

Ω

üε (u̇ε − k) ϕ dx dt +
∫ T

0

∫

Ω

σ̇ε · (σε − τ)ϕ dx dt

+
∫ T

0

∫

Ω

(σε − τ) · ṗεϕ dx dt +
∫ T

0

∫

Ω

(σε − τ) · ∇ϕ(u̇ε − k) dx dt

+
∫ T

0

∫

Ω

τ · ∇ ((u̇ε − k)ϕ) dx dt + ε

∫ T

0

∫

Ω

|∇u̇ε|2ϕ dx dt

+ ε

∫ T

0

∫

Ω

∇u̇ε · ∇ϕ(u̇ε − k) dx dt

−
∫ T

0

∫

∂Ω

(σε + ε∇u̇ε) · ν(u̇ε − k)ϕ dHn−1 dt

=
∫ T

0

∫

Ω

f (u̇ε − k)ϕ dx dt.
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Next, using the flow rule (4.3) and the fact that τ ∈ B, we infer that (σε −τ)· ṗε � 0
almost everywhere in Ω × (0, T ), and thus

∫ T

0

∫

Ω

üε (u̇ε − k) ϕ dx dt +
∫ T

0

∫

Ω

σ̇ε · (σε − τ)ϕ dx dt

+
∫ T

0

∫

Ω

(σε − τ) · ∇ϕ(u̇ε − k) dx dt +
∫ T

0

∫

Ω

τ · ∇ ((u̇ε − k)ϕ) dx dt

+ ε

∫ T

0

∫

Ω

∇u̇ε · ∇ϕ(u̇ε − k) dx dt

−
∫ T

0

∫

∂Ω

(σε + ε∇u̇ε) · ν(u̇ε − k)ϕ dHn−1 dt

�
∫ T

0

∫

Ω

f (u̇ε − k)ϕ dx dt. (7.1)

Since u̇ε ∈ W 1,∞([0, T ]; L2(Ω)) and σε ∈ W 1,∞([0, T ]; L2(Ω;Rn)), integrating
by parts with respect to time yields

2
∫ T

0

∫

Ω

üε(u̇ε − k)ϕ dx dt = −
∫ T

0

∫

Ω

(u̇ε − k)2ϕ̇ dx dt

+
∫

Ω

(u̇ε(T ) − k)2ϕ(T ) dx

−
∫

Ω

(v0 − k)2ϕ(0) dx, (7.2)

and similarly

2
∫ T

0

∫

Ω

(σε − τ) · σ̇εϕ dx dt = −
∫ T

0

∫

Ω

|σε − τ |2ϕ̇ dx dt

+
∫

Ω

|σε(T ) − τ |2ϕ(T ) dx

−
∫

Ω

|σ0 − τ |2ϕ(0) dx . (7.3)

In addition, since τ is constant and u̇ε ∈ L2(0, T ; H1(Ω)), using an integration by
parts formula with respect to the space variable leads to

∫ T

0

∫

Ω

τ · ∇ ((u̇ε − k)ϕ) dx dt =
∫ T

0

∫

∂Ω

(τ · ν)(u̇ε − k)ϕ dHn−1 dt. (7.4)

Gathering (7.1)–(7.4) yields

∫ T

0

∫

Ω

(u̇ε − k)2ϕ̇ dx dt +
∫ T

0

∫

Ω

|σε − τ |2ϕ̇ dx dt +
∫

Ω

(v0 − k)2ϕ(0) dx

+
∫

Ω

|σ0 − τ |2ϕ(0) dx − 2
∫ T

0

∫

Ω

(σε − τ) · ∇ϕ(u̇ε − k) dx dt
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− 2ε
∫ T

0

∫

Ω

∇u̇ε · ∇ϕ(u̇ε − k) dx dt + 2
∫ T

0

∫

Ω

f (u̇ε − k)ϕ dx dt

+2
∫ T

0

∫

∂Ω

((σε + ε∇u̇ε) · ν − τ · ν) (u̇ε − k)ϕ dHn−1 dt � 0,

and passing to the limit as ε → 0, Proposition 5.2 and (5.31) imply that
∫ T

0

∫

Ω

(u̇ − k)2ϕ̇ dx dt +
∫ T

0

∫

Ω

|σ − τ |2ϕ̇ dx dt +
∫

Ω

(v0 − k)2ϕ(0) dx

+
∫

Ω

|σ0 − τ |2ϕ(0) dx − 2
∫ T

0

∫

Ω

(σ − τ) · ∇ϕ(u̇ − k) dx dt

+2
∫ T

0

∫

Ω

f (u̇ − k)ϕ dx dt

+2
∫ T

0

∫

∂Ω

(σ · ν − τ · ν)(λψ ′
λ(u̇) − k)ϕ dHn−1 dt � 0.

Thanks to algebraic manipulations, we have for almost every (x, t) ∈ ∂Ω × (0, T ),

2(σ · ν − τ · ν)(λψ ′
λ(u̇) − k)

= 2λ

((
λψ ′

λ(u̇) − k

2λ
+ σ · ν − τ · ν

2

)2

−
(

λψ ′
λ(u̇) − k

2λ
− σ · ν − τ · ν

2

)2
)

= 2λ

((
k

2λ
+ τ · ν

2

)2

−
(

λψ ′
λ(u̇) − k

2λ
− σ · ν − τ · ν

2

)2
)

,

where we used the boundary condition σ · ν +ψ ′
λ(u̇) = 0 on ∂Ω × (0, T ). Finally,

from Remark 7.1, it follows that
∫ T

0

∫

Ω

|U − κ|2 ϕ̇ dx dt +
n∑

i=1

∫ T

0

∫

Ω

Ai (U − κ) · (U − κ)∂xiϕ dx dt

+
∫

Ω

|U0 − κ|2 ϕ(0) dx + 2
∫ T

0

∫

Ω

F · (U − κ)ϕ dx dt

+
∫ T

0

∫

∂Ω

Mκ+ · κ+ϕ dHn−1 dt � 0,

as required. ��
We finally show that, provided additional regularity assumptions, any dissipa-

tive solution to the elasto-plastic problem generates a variational solution.

Proposition 7.2. Assume that Ω ⊂ R
n is a bounded open set with C2 bound-

ary. Let U = (v, σ ) ∈ W 1,∞([0, T ]; L2(Ω; K )) be a dissipative solution to
the elasto-plastic problem according to Definition 7.1 for the initial data U0 =
(v0, σ0) ∈ L2(Ω; K ) and the source term F = ( f, 0) with f ∈ L∞(0, T ; L2(Ω)).
Then, for all u0 ∈ BV (Ω) ∩ L2(Ω), there exists a triple (u, σ, p) which is a
variational solution to the elasto-plastic problem associated to the initial data
(u0, v0, σ0, Du0 − σ0) and the source term f .

Proof. We split the proof into several steps.
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Step 1: Initial conditions for v and σ . According to [28, Lemma 3], we infer that
the initial condition is satisfied in the essential-limit sense, that is, for allφ ∈ C1c (Ω),

lim
t→0

lim
α→0

1

α

∫ t

t−α

∫

Ω

|U (x, s) −U0(x)|2φ(x) dx ds = 0.

On the other hand, since U ∈ W 1,∞([0, T ]; L2(Ω;Rn+1)), then U (t) → U (0)
strongly in L2(Ω;Rn+1) as t → 0. It thus follows that U (0) = U0, or still
v(0) = v0 and σ(0) = σ0. By Definition 7.1 of dissipative solutions, and us-
ing the regularity assumption U ∈ W 1,∞([0, T ]; L2(Ω;Rn+1)), we can integrate
by parts with respect to time to get that, for all ϕ ∈ C1c (Rn × (0, T )) with ϕ � 0
and all constant vector κ ∈ K ,

∫ T

0

∫

Ω

(

−2U̇ · (U − κ)ϕ +
n∑

i=1

Ai (U − κ) · (U − κ)∂xiϕ

)

dx dt

+ 2
∫ T

0

∫

Ω

F · (U − κ)ϕ dx dt +
∫ T

0

∫

∂Ω

Mκ+ · κ+ϕ dHn−1 dt � 0,

or still, that

∫ T

0

∫

Ω

(

−2(U · U̇ )ϕ +
n∑

i=1

(AiU ·U )∂xi ϕ + 2(F ·U )ϕ

)

dx dt

+ 2κ ·
∫ T

0

∫

Ω

(

U̇ϕ −
n∑

i=1

(AiU )∂xiϕ − Fϕ

)

dx dt

+
∫ T

0

∫

∂Ω

(
Mκ+ · κ+ + Aνκ · κ

)
ϕ dHn−1 dt � 0.

According to [28, Lemma 1], we have that Mκ+ · κ+ + Aνκ · κ = Mκ− · κ−, and
thus

∫ T

0

∫

Ω

(

−2(U · U̇ )ϕ +
n∑

i=1

(AiU ·U )∂xiϕ + 2(F ·U )ϕ

)

dx dt

+ 2κ ·
∫ T

0

∫

Ω

(

U̇ϕ −
n∑

i=1

(AiU )∂xiϕ − Fϕ

)

dx dt

+
∫ T

0

∫

∂Ω

Mκ− · κ−ϕ dHn−1 dt � 0.

(7.5)

Step 2: Definition of (u, σ, p) and first properties. For all t ∈ [0, T ], let us define
the displacement as

u(t) := u0 +
∫ t

0
v(s) ds in L2(Ω).

Using the regularity assumption on U , we infer that u ∈ W 2,∞([0, T ]; L2(Ω))

and that σ ∈ W 1,∞([0, T ]; L2(Ω;Rn)). In addition, for all t ∈ [0, T ], we have
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|σ(t)| � 1 almost everywhere in Ω . Note that, by construction u(0) = u0, and by
step 1, u̇(0) = v0. We also define the plastic strain by

p := Du − σ ∈ W 1,∞([0, T ]; H−1(Ω;Rn)). (7.6)

We now use Remark 7.1 to rewrite (7.5) as

−
∫ T

0

∫

Ω

(u̇üϕ + σ · σ̇ ϕ + (σ · ∇ϕ)u̇ − f u̇ϕ) dx

+ k
∫ T

0

∫

Ω

(üϕ + σ · ∇ϕ − f ϕ) dx dt + τ ·
∫ T

0

∫

Ω

(σ̇ϕ + u̇∇ϕ) dx dt

+ λ

∫ T

0

∫

∂Ω

(
k

2λ
− τ · ν

2

)2

ϕ dHn−1 dt � 0, (7.7)

for all κ = (k, τ ) ∈ R × B and all ϕ ∈ C1c (Rn × (0, T )) with ϕ � 0. Choosing
k = 0 and τ = 0, we deduce that

−
∫ T

0

∫

Ω

(u̇üϕ + σ · σ̇ ϕ + (σ · ∇ϕ)u̇ − f u̇ϕ) dx dt � 0.

In particular, one can localize in time to get, for all φ ∈ C1c (Rn) with φ � 0 and for
almost every t ∈ [0, T ],

−
∫

Ω

(u̇(t)ü(t)φ + σ(t) · σ̇ (t)φ + (σ (t) · ∇φ)u̇(t) − f (t)u̇(t)φ) dx � 0.

As a consequence, for almost every t ∈ [0, T ], there exists a non-negative measure
μ(t) ∈ M(Rn) compactly supported in Ω such that for all φ ∈ C1c (Rn)

〈μ(t), φ〉 = −
∫

Ω

(u̇(t)ü(t)φ + σ(t) · σ̇ (t)φ + (σ (t) · ∇φ)u̇(t) − f (t)u̇(t)φ) dx .

(7.8)
Particular, according to Fubini’s Theorem, the function t �→ 〈μ(t), φ〉 is measur-
able, and by density, this property remains true for all φ ∈ Cc(Rn). This shows the
weak* measurability of the mapping μ : t �→ μ(t) ∈ M(Rn). In addition, since
μ(t) has compact support in Ω , we can take φ ≡ 1 as test function in (7.8) which
ensures that

μ(t)(Rn) = 〈μ(t), 1〉 = −
∫

Ω

(u̇(t)ü(t) + σ(t) · σ̇ (t) − f (t)u̇(t)) dx .

Next, using the Cauchy–Schwarz inequality, we get that

ess sup
t∈[0,T ]

μ(t)(Rn) < +∞, (7.9)

which shows that μ ∈ L∞
w∗(0, T ;M(Rn)).

Step 3: Equation of motion. In (7.7), choosing τ = 0 and k ∈ R arbitrary leads to
∫ T

0

∫

Ω

(üϕ + σ · ∇ϕ − f ϕ) dx dt = 0
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for every ϕ ∈ C1c (Ω × (0, T )), which implies that

ü − divσ = f in L∞(0, T ; L2(Ω)).

In particular σ ∈ L∞(0, T ; H(div,Ω)), and since by the stress constraint σ ∈
L∞(Ω × (0, T );Rn), then σ · ν ∈ L∞(∂Ω × (0, T )). As a consequence, for all
ϕ ∈ C1c (Rn × (0, T )),

∫ T

0

∫

Ω

(üϕ + σ · ∇ϕ − f ϕ) dx dt =
∫ T

0

∫

∂Ω

(σ · ν)ϕ dHn−1 dt.

Reporting into (7.7) leads to

− 2
∫ T

0

∫

Ω

(u̇üϕ + σ · σ̇ ϕ + (σ · ∇ϕ)u̇ − f u̇ϕ) dx dt

+ 2k
∫ T

0

∫

∂Ω

(σ · ν)ϕ dHn−1 dt + 2τ ·
∫ T

0

∫

Ω

(σ̇ϕ + u̇∇ϕ) dx dt

+ 2λ
∫ T

0

∫

∂Ω

(
k

2λ
− τ · ν

2

)2

ϕ dHn−1 dt � 0.

(7.10)

Step 4: Flow rule and additional regularity. Choosing next k = 0 in (7.10), we
get that for all τ ∈ B and all ϕ ∈ C1c (Ω × (0, T )) with ϕ � 0,

−τ ·
∫ T

0

∫

Ω

(σ̇ϕ + u̇∇ϕ) dx dt �
∫ T

0

∫

Ω

ϕ dμ(t) dt.

Using the definition (7.6) of p, we infer that

τ

∫ T

0
〈 ṗ(t), ϕ(t)〉 dt �

∫ T

0

∫

Ω

ϕ dμ(t) dt.

Since ṗ ∈ L2(0, T ; H−1(Ω)), we can localize with respect to time to get that, for
almost every t ∈ [0, T ] and all φ ∈ C1c (Ω) with φ � 0,

τ · 〈 ṗ(t), φ〉 �
∫

Ω

φ dμ(t).

Passing to the supremum with respect to τ ∈ B and using (7.9) yields

|〈 ṗ(t), φ〉| �
∫

Ω

φ dμ(t) � C∗‖ϕ‖∞, (7.11)

where C∗ > 0 is independent of t , which shows that ṗ(t) ∈ M(Ω;Rn). In partic-
ular, since μ(t) � 0, we obtain that

| ṗ(t)| � μ(t) inM(Ω). (7.12)

We already know that p ∈ W 1,∞([0, T ]; H−1(Ω;Rn)) which ensures the mea-
surability of the function t �→ 〈 ṗ(t), φ〉 for all φ ∈ C1c (Ω). Then by density this
property remains true for all φ ∈ Cc(Ω). It shows the weak* measurability of the
mapping t �→ ṗ(t) ∈ M(Ω;Rn), and by (7.11), that ṗ ∈ L∞

w∗(0, T ;M(Ω;Rn)).
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Then by definition of the distributional derivative we have that for all φ ∈ Cc(Ω),
t �→ 〈p(t), φ〉 ∈ W 1,∞([0, T ];Rn) and d

dt 〈p(t), φ〉 = 〈 ṗ(t), φ〉 for almost every
t ∈ [0, T ]. It thus shows that for all 0 � t1 � t2 � T ,

|〈p(t2) − p(t1), φ〉|=|〈p(t2), φ〉 − 〈p(t1), φ〉|
=

∣
∣
∣
∣

∫ t2

t1
〈 ṗ(t), φ〉 dt

∣
∣
∣
∣�C∗‖φ‖∞(t2 − t1).

Dividing the previous inequality by ‖φ‖∞ and passing to the supremumwith respect
to φ ∈ Cc(Ω) shows that p ∈ C0,1([0, T ];M(Ω;Rn)). By construction, we have
Du(t) = σ(t) + p(t) inM(Ω;Rn) for all t ∈ [0, T ], and therefore, thanks to the
already established regularity of u and σ , we infer that u ∈ C0,1([0, T ]; BV (Ω)).

According to the definition (7.8) of themeasureμ(t) and the equation ofmotion,
we have that for all φ ∈ C1c (Ω) and for almost every t ∈ [0, T ],

〈μ(t), φ〉 = −
∫

Ω

(u̇(t)divσ(t)φ + σ(t) · σ̇ (t)φ + (σ (t) · ∇φ)u̇(t)) dx

= 〈[σ(t) · ṗ(t)], φ〉

which is well defined according to Definition 2.1 since, for almost every t ∈ [0, T ],
σ(t) ∈ H(div,Ω)∩ L∞(Ω;Rn), and Du̇(t) = σ̇ (t)+ ṗ(t)with u̇(t) ∈ BV (Ω)∩
L2(Ω), σ̇ (t) ∈ L2(Ω;Rn), and ṗ(t) ∈ M(Ω;Rn). Therefore, (7.12) yields
| ṗ(t)| � [σ(t) · ṗ(t)] in M(Ω). On the other hand, using the stress constraint
‖σ(t)‖∞ � 1 and Remark 2.1, the other inequality | ṗ(t)| � [σ(t) · ṗ(t)] inM(Ω)

follows, so that, finally

| ṗ(t)| = [σ(t) · ṗ(t)] inM(Ω).

Step 5: Boundary condition. Let ϕ ∈ C1c (Rn × (0, T )) with ϕ � 0. Using, the
integration by parts formula in BV , we get that

∫ T

0

∫

Ω

(σ̇ϕ + u̇∇ϕ) dx dt = −
∫ T

0

∫

Ω

ϕ d ṗ(t) dt +
∫ T

0

∫

∂Ω

ϕu̇ν dHn−1 dt,

while the integration by parts formula given by Proposition 2.2 together with the
equation of motion yields

〈μ(t), φ〉 = 〈[σ(t) · ṗ(t)], φ〉 −
∫

∂Ω

(σ (t) · ν)u̇(t)φ dHn−1.

Reporting inside (7.10), it follows that

∫ T

0

∫

Ω

ϕ d[(σ (t) − τ) · ṗ(t)] dt �
∫ T

0

∫

∂Ω

(σ · ν − τ · ν)u̇ϕ dHn−1 dt

− k
∫ T

0

∫

∂Ω

(σ · ν)ϕ dHn−1 dt − λ

∫ T

0

∫

∂Ω

(
k

2λ
− τ · ν

2

)2

ϕ dHn−1 dt,
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and localizing in time,we get that for almost every t ∈ [0, T ], and allφ ∈ W 1,∞(Ω)

with φ � 0.
∫

Ω

φ d[(σ (t) − τ) · ṗ(t)] �
∫

∂Ω

(σ (t) · ν − τ · ν)u̇(t)φ dHn−1

−k
∫

∂Ω

(σ (t) · ν)φ dHn−1 − λ

∫

∂Ω

(
k

2λ
− τ · ν

2

)2

φ dHn−1. (7.13)

We next wish to localize the previous relation in space. To this aim, we define,

φε(x) :=
{
0 if dist(x, ∂Ω) � ε,
ε−dist(x,∂Ω)

ε
if dist(x, ∂Ω) < ε.

Note that φε ∈ W 1,∞(Ω), φε � 0 and since Ω is of class C2, then for ε > 0 small
enough, we have ∇φε(x − εsν(x)) = ν(x)/ε for all x ∈ ∂Ω and all s ∈ [0, 1].
Using that φε = 1 on ∂Ω , we get that for all ζ ∈ W 1,∞(Ω) with ζ � 0,

∫

Ω

φεζ d[(σ (t) − τ) · ṗ(t)] = −
∫

Ω

(σ(t) − τ) · σ̇ (t)φεζ dx

−
∫

Ω

u̇(t)divσ(t)φεζ dx −
∫

Ω

(σ(t) − τ) · (∇ζ )φεu̇(t) dx

−
∫

Ω

(σ(t) − τ) · (∇φε)ζ u̇(t) dx +
∫

∂Ω

(σ (t) · ν − τ · ν)u̇(t)ζ dHn−1.

(7.14)

Since φε → 0 strongly in L1(Ω), the dominated convergence theorem ensures that
the three first integrals in the right hand side of (7.14) tend to zero as ε → 0. Then,
according to the coarea formula (see [19, Lemma 3.2.34]), denoting Ωε := {x ∈
Ω : dist(x, ∂Ω) < ε}, the fourth integral writes as

∫

Ω
(σ(t) − τ) · (∇φε)ζ u̇(t) dx =

∫

Ωε

(σ (t) − τ) · (∇φε)ζ u̇(t) dx

=
∫ 1

0

∫

∂Ω
(σ (x − sεν(x), t) − τ) · ν(x)u̇(x − sεν(x), t)ζ(x − sεν(x)) dHn−1(x) ds.

Therefore, according to (2.1) and (2.3), we obtain

lim
ε→0

∫

Ω

(σ(t) − τ) · (∇φε)ζ u̇(t) dx =
∫

∂Ω

(σ (t) · ν − τ · ν)u̇(t)ζ dHn−1.

Inserting inside (7.14), we get that
∫

Ω

φεζ d[(σ (t) − τ) · ṗ(t)] → 0,

and (7.13) yields for all ζ ∈ W 1,∞(Ω) with ζ � 0,

0 �
∫

∂Ω

(σ (t) · ν − τ · ν)u̇(t)ζ dHn−1 − k
∫

∂Ω

(σ (t) · ν)ζ dHn−1

−λ

∫

∂Ω

(
k

2λ
− τ · ν

2

)2

ζ dHn−1.
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As a consequence, we get that for almost every t ∈ [0, T ] and all (k, τ ) ∈ R × B,
then

− (σ (t) · ν − τ · ν)u̇(t) � −kσ(t) · ν − λ

(
k

2λ
− τ · ν

2

)2

Hn−1-almost everywhere on ∂Ω. (7.15)

Note that the maximum of the right-hand side with respect to k ∈ R, is attained at
some k∗ ∈ R, which satisfies according to the first order condition

−σ(t) · ν −
(
k∗

2λ
− τ · ν

2

)

= 0.

Replacing in (7.15), and taking τ = −zν for any z ∈ [−1, 1], leads to
−(σ (t) · ν + z) � λ(σ(t) · ν)2 + λzσ(t) · ν,

or still, thanks to Young’s inequality

λ

2
z2 � λ

2
(σ (t) · ν)2 + u̇(t)(z + σ(t) · ν).

Finally, from Remark 5.2, we deduce that u̇(t) ∈ ∂ψ∗
λ (−σ(t) · ν), or equivalently

that σ(t) · ν + ψ ′
λ(u̇(t)) = 0. ��

Remark 7.2. In the variational framework, the initial datamust satisfy the hypothe-
ses (5.4). Here, the constraint is also satisfied by the initial data. Note that since the
hyperbolic variables are the velocity and the stress, the additive decomposition of
the initial data has been ensured by the construction of the plastic strain. However,
we did not suppose that the initial data satisfies the boundary condition.

Acknowledgments. The authorswish to express their gratitude toBrunoDesprés andNicolas
Seguin for helpful and stimulating discussions on this paper.
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