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Abstract

Wedevelop a framework for a unified treatment ofwell-posedness for the Stefan
problem with or without surface tension. In the absence of surface tension, we
establish well-posedness in Sobolev spaces for the classical Stefan problem. We
introduce a new velocity variable which extends the velocity of the moving free-
boundary into the interior domain. The equation satisfied by this velocity is used
for the analysis in place of the heat equation satisfied by the temperature. Solutions
to the classical Stefan problem are then constructed as the limit of solutions to a
carefully chosen sequence of approximations to the velocity equation, in which the
moving free-boundary is regularized and the boundary condition is modified in a
such a way as to preserve the basic nonlinear structure of the original problem.With
our methodology, we simultaneously find the required stability condition for well-
posedness and obtain new estimates for the regularity of the moving free-boundary.
Finally, we prove that solutions of the Stefan problem with positive surface tension
σ converge to solutions of the classical Stefan problem as σ → 0.

1. Introduction

1.1. The Problem Formulation

We consider the local well-posedness and boundary regularity of solutions to
the classical one-phase Stefan problem, describing the evolving phase boundary of
a freezing liquid. We also establish the limit of zero surface tension.

The temperature p(t, x) of a liquid inside of a time-dependent domain �(t)
and an a priori unknown moving boundary �(t) satisfies the following system of
equations:
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Fig. 1. The one-phase Stefan problem. Displayed on the left side of the figure is the reference
domain� and reference boundary�. The time-dependent domain�(t) and themoving free-
boundary �(t) is shown on the right side of the figure.

pt − �p = 0 in �(t) , (1.1a)

∂n p = V�(t) on �(t) , (1.1b)

p = σκ� on �(t) , (1.1c)

p(0, ·) = p0 , �(0) = �0 . (1.1d)

The domain�(t) is an evolving open subset ofRd with d ≥ 2. The set�(t) denotes
the moving boundary (which may be a connected subset of ∂�(t) if a part of the
boundary of �(t) is fixed). See Fig. 1.

Equation (1.1a) expresses the fact that heat diffuses in the bulk �(t), while the
boundary condition (1.1b) states that the heat flux across the boundary governs the
boundary evolution; that is, ∂n p = ∇ p · n is the normal derivative of p on �(t)
where n stands for the outward pointing unit normal, and V�(t) denotes the speed
or the normal velocity of the hypersurface �(t). In the case that σ = 0, (1.1c)
is termed the classical Stefan condition and problem (1.1) is called the classical
Stefan problem. In this case, freezing of the liquid occurs at a constant temperature
p = 0. On the other hand, if σ > 0 in (1.1c) then the boundary condition is called
the Gibbs–Thomson correction to the classical Stefan condition, and the system
(1.1) is then termed the Stefan problem with surface tension, whereby σ > 0
is a given coefficient of surface tension and κ�(t) stands for the mean curvature
of the moving boundary �(t). Finally, we equip the problem with suitable initial
conditions (1.1d): p0 : �(0) → R and �0 are the prescribed initial temperature
and boundary, respectively.

Problem (1.1) is an example of a free-boundary partial differential equation
which requires the initial data to satisfy a stability condition in order to ensure
well-posedness in Sobolev spaces; specifically, we shall require that

−∂n p0 > 0 on �(0) ,

which, by analogy to fluid dynamics, we shall refer to as the Taylor sign condition
or the Rayleigh–Taylor sign condition. Below, we will explain how this Taylor sign
condition naturally appears from our analysis.
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1.2. The Reference Domain � and the Initial Domain �0

We will begin the analysis with motion in R
2, and then describe the minor

modifications needed to study motion in R3. To simplify our presentation, we will
parameterize our initial free-boundary�0 as a graph over the one-dimensional torus
T
1 which we identify with [0, 2π ]; we define

�0 = {x ∈ T
1 × R, x = (x ′, h0(x ′))}, h0 ∈ H4(T1). (1.2)

Without loss of generality we shall further assume that �0 is a small perturbation
of the manifold T

1 × {x2 = 0} in the sense that
‖h0‖H4(T1) ≤ ε0 	 1 , (1.3)

for some sufficiently small ε0. In Appendix A, we shall explain how to remove
the assumption (1.3). The only reason for making this smallness assumption is
that (1.3) and (1.2) allow us to to use one global Cartesian coordinate system
(rather than a collection of local coordinate charts). This is ideal for describing new
identities that provide very natural estimates for the second-fundamental formof the
evolving free-boundary �(t). All of our results apply to general domains; however,
in a general setting, we must employ a finite covering of � by local coordinate
charts, together with a partition-of-unity subordinate to that cover. In particular, the
Stefan problem localizes to each chart and effectively reduces to the analysis on

� = T
1 × (0, 1).

Again, we emphasize that the assumption (1.3) is not essential to our proof, and in
Appendix A, we explain how to treat general H4 initial geometries.

We define the initial domain

�0 = {(x1, x2) ∈ T
1 × R

∣
∣ h0(x

1) < x2 < 1} ,

while the reference domain is � = T
1 × (0, 1). The set

� = T
1 × {x2 = 0}

is the reference boundary on which our parameterization (x ′, h(t, x ′)) will be de-
fined. The top boundary ∂�top = T

1 × {x2 = 1} is fixed in time, and

∂n p = 0 on ∂�top. (1.4)

1.3. Notation

For any s ≥ 0 and given functions f : � → R, ϕ : � → R we set

‖ f ‖s := ‖ f ‖Hs (�); |ϕ|s := ‖ϕ‖Hs (�).

In particular, when s is not an integer, the corresponding fractional Sobolev space is
defined by interpolation in a standard way. If f : [0, T ]×� → R, ϕ : [0, T ]×� →
R are given time-dependent functions, then for any 1 ≤ p ≤ ∞ we set

‖ f ‖L p
t Hs

x
:= ‖ f ‖L p([0,T ];Hs (�))‖; |ϕ|L p

t Hs
x

:= ‖ϕ‖L p([0,T ];Hs (�)).
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If i = 1, 2 then f,i := ∂xi f is the partial derivative of f with respect to the xi

coordinate. Similarly, f,i j := ∂xi ∂x j f and so on. When differentiating with respect
to the time variable t , we set ft = f,t = ∂t f . For horizontal derivatives, we write

∂̄ f := f,1 , ∂̄k f := ∂̄kx1 f.

WeuseC to denote a universal constant that may vary from line to line. In numerous
estimates the sign � is used; by definition, X � Y if and only if there exists
a universal constant C such that X ≤ CY . We use P to denote a generic real
polynomial with positive coefficients that can similarly vary from line to line. We
always sum over repeated indices.

1.4. Fixing the Domain

In order to obtain a priori estimates, and to facilitate the construction of solu-
tions, we transform the Stefan problem to an equivalent problem on a fixed domain.
To this end, we shall view �(t) as a graph over T1 given by the height function
h(t, ·) : � → R

�(t) := �(t, �).

In other words, the moving surface �(t) is parameterized as the graph of a signed
height function h(t, x), so that �(t) = {x ∈ T

1 ×R| x = (x ′, h(t, x ′))}. With this
parameterization, the outward unit normal n(t, x ′) to �(t) at the point (x ′, h(t, x ′))
is given by

n(t, x ′) = (∂̄h,−1)
√

1 + |∂̄h|2
. (1.5)

Assuming that h(t, ·) is sufficiently regular and remains a graph, we can define a
diffeomorphism �(t, ·) : � → �(t) as an harmonic extension of the boundary
diffeomorphism (x ′, h) by solving the elliptic equation

��(t, ·) = 0 in �, (1.6a)

�(t, x ′, 0) = (x ′, h(t, x ′)) x ′ ∈ �, (1.6b)

�(t, ·) = Id on ∂�top, (1.6c)

where Id denotes the identitymap. Themapping�(t, ·) is indeed a diffeomorphism;
note that the map � := � − Id solves the problem

��(t, ·) = 0 in �, (1.7a)

�(t, x ′, 0) = (0, h(t, x ′)) x ′ ∈ �, (1.7b)

�(t, ·) = 0 on ∂�top , (1.7c)

so that by elliptic estimates, we may conclude that ‖�(t, ·) − Id‖H4.5(�) �
|h(t, ·)|H4(�) � ε0, using assumption (1.3), and the continuity of the map t �→
h(t, ·) in H4(�), which will be proved below. By the inverse function theorem we
infer that �(t, ·) is a diffeomorphism.
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As a consequence of (1.6),

‖�‖Hs (�) ≤ C‖�‖Hs−0.5(�) , (1.8)

and thus �(t, ·) gains a half-derivative of regularity in � with respect to the height
function h(t, ·) on �.

1.5. Reference Unit Normal, Unit Tangent, Line Element, and the Jacobian

We let

N = (0,−1), T = (1, 0)

denote the outward pointing unit normal and tangent vectors to� = T
1×{x2 = 0},

respectively. The time-dependent unit normal n(t, ·) and tangent τ(t, ·) vectors to
�(t) are given by

n = Jg−1ATN , τ = Jg−1ATT, (1.9)

where
J (t, x) := det∇�(t, x), x ∈ �, (1.10)

denotes the Jacobian determinant of ∇�, and

g(t, x) :=
√

1 + (∂̄h(t, x))2, x ∈ T
1 , (1.11)

where g2 dx is the line element associated with the metric induced on �. Together
with (1.9) we obtain the relationship

A2• := J−1(∂̄h,−1), |A2•| = J−1g. (1.12)

The vector A2•(t, ·) will play an important role in the derivation of energy identities
as it is parallel to n(t, ·).
1.5.1. The Change of Variables On the reference domain �, we set

q := p ◦ �, A := [∇�]−1, w := �t , v := −∇ p ◦ �. (1.13)

Note that, by the chain-rule, the relation v = −∇ p ◦ � can be written as

vi + Ak
i q,k = 0 in �. (1.14)

We also express pt ◦ � in terms of q, v, w. Again, by the chain rule, pt = qt ◦
�−1+∇q◦�−1 ·�−1

t . Since�−1
t = −A◦�−1�t ◦�−1 andw = �t , using (1.14)

we obtain that

pt ◦ � = qt − q,k A
k
rw

r = qt + v · w.

The transformed Laplacian ��q := �p ◦ � is defined as

��q = A j
i (A

k
i q,k ), j , (1.15)

and we define

∇�q := Ak
i q,k = ∇ p ◦ �. (1.16)
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Remark 1. (Differentiation rules) When differentiating the matrix A = [∇�]−1,
for a given i, k ∈ {1, 2},

∂t A
k
i = −Ak

rw
r ,s A

s
i ; ∂̄Ak

i = −Ak
r ∂̄�r ,s A

s
i .

In particular, a simple application of the above identities, together with the product
rule, show that for any given a, b ∈ N:

∂̄a∂bt A
k
i = −Ak

r ∂̄
a∂bt �r ,s A

s
i + {∂̄a∂bt , Ak

i };
{∂̄m∂nt , Ak

i } :=
∑

l+l ′≥1

al,l ′ ∂̄
l∂ l

′
t (Ak

r A
s
i )∂̄

m−l∂n−l ′
t �r ,s , (1.17)

where the term {·, ·} is the commutator error. Here the constants al,l ′ are some
universal constants, depending only onm, n, l and l ′ (where 0 ≤ l ≤ m, 0 ≤ l ′ ≤ n).

1.5.2. Classical Stefan Problem in the New Variables Using the family of
diffeomorphisms �(t, ·), the classical Stefan problem (i.e. problem (1.1) with σ =
0) on the fixed reference domain � is given by

qt − ��q = −v · w in � × (0, T ] , (1.18a)

vi + Ak
i q,k = 0 in � × (0, T ] , (1.18b)

q = 0 on � × [0, T ] , (1.18c)

�� = 0 on � × [0, T ] , (1.18d)

� = Id + h N on � × [0, T ] , (1.18e)

� = Id on ∂�top × [0, T ] , (1.18f)

�t · n(t) = −v · n(t) on � × (0, T ] , (1.18g)

v · N = 0 on ∂�top × [0, T ] , (1.18h)

�(0, ·) = �0 q(0, ·) = q0 = p0 ◦ �0 , (1.18i)

where��q is defined in (1.15) and N = (0, 1) is the outward-pointing unit normal
to ∂�top. Problem (1.18) is a reformulation of problem (1.1). Condition (1.18g) is
equivalent to the evolution equation for the height function h(t, ·) which is given
by

ht (t, x) = −g(t, x)∇�q(t, x) · n(t, x), x ∈ T
1, (1.19)

where the quantity g is defined in (1.11) and ∇�q is defined in (1.16). The time-
evolution of themap�(t, ·) is, in turn, coupled to the evolution of q(t, ·) via (1.18a).

1.5.3. The Higher-Order Energy Function E(t) We define the higher-order
energy function as

E(t) = E(q, h)(t) :=
∑

a+2b≤4

‖∂̄a∂bt v‖2
L2
t L2

x
+

∑

a+2b≤3

‖∂̄a∂bt v‖2
C0
t L2

x

+
2

∑

b=0

‖∂bt q‖2
C0
t H

4−2b
x

+
2

∑

b=0

‖∂bt q‖2
L2
t H

5−2b
x
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+
2

∑

b=0

|∂bt h|2
C0
t H

4−2b
x

+
1

∑

b=0

|∂bt ht |2L2
t H

3−2b
x

, (1.20)

where the time integrals in the L2-norms above are over the time-interval [0, t]. We
will show that E(t) remains bounded on [0, T ].

1.5.4. TheTaylorSignCondition In order to obtain a locallywell-posedproblem
for arbitrarily large initial data, we must impose the Taylor sign condition on the
initial data as follows:

− ∂n p0 > 0 on �(0) . (1.21)

Expressed in terms of q(0, ·), (1.21) is written as
q0,2 |t=0 > 0 on � . (1.22)

The condition (1.22) ensures that

inf
x ′∈�

q,2 (t, x ′, 0) > 0, t ∈ [0, T ], (1.23)

if T > 0 is taken sufficiently small. As mentioned in Sect. 1.1, we shall refer
to (1.22) as the Taylor sign condition in analogy to the terminology used in the
well-posedness theory in fluid mechanics [44,46]. The Taylor sign condition will
provide positivity of the natural energy functional.

Remark 2. Note that q,2 = gJ−1v · n on �, with v defined by (1.13). By (2.12),
we conclude that ht = Jq,2 at time t = 0. Since the Jacobian remains positive on
a short interval of time the Taylor sign condition (1.21) shows that ht (0, x) < 0 for
all x ∈ T

1. Thus, the domain �(t) expands on a short interval of time.

1.5.5. Compatibility Conditions To ensure that the solution is continuously
differentiable with respect to t , at t = 0, we must impose compatibility conditions
on the initial data. In particular, restricting (1.18a) to� and evaluating at time t = 0,
for H4 initial data, we find that

q0 = 0 on � , (1.24a)

��0q0 + J−2
0 g20(q0),

2
2 = 0 on �. (1.24b)

In the derivation of (1.24b) we have crucially, used (1.9) and the identity

v(0, ·) · w(0, ·)∣∣
�

= −Ak
i q0,k∂t�

i
t (0, ·) = −q0,2A

k
i N ,k � i

t (0, ·)
= J−1

0 g−2
0 q0,2�t (0, ·) · n0 = J−1

0 g−2
0 q0,2v(0, ·) · n0

= J−2
0 g20(q0),

2
2 .

Here J0, g0 are the initial values of J, g defined in (1.10) and (1.11), respec-
tively. Conditions (1.24) are satisfied for a large class of functions. Consider, simply,
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a function q0 independent of x1 in the slab Tε = T
1 × [0, ε] for some ε > 0, and

of the form

q0(x1, x2) = −α2 x
2
2

2
+ αx2 (1.25)

in Tε for some α > 0. Condition (1.24a) is obviously satisfied, while (1.24b)
reduces to the requirement that

0 = −��0q0 + J−2g2(q0),
2
2 = −|A2•|2(q0),22 +J−2g2(q0),

2
2

= J−2g2
(

(q0),22 +(q0),
2
2

)

,

where we have used (1.12). It is easily checked that for such q0,

(q0),22 +(q0),
2
2 = 0 on � ,

and therefore the condition (1.24b) is satisfied. Note that the assumption α > 0
ensures the validity of the Taylor sign condition (q0),2 > 0.

Since we imposed the homogeneous Neumann condition (1.18h) on the top
boundary ∂�top, we impose the compatibility condition

(q0),2 |t=0 = 0 on ∂�top. (1.26)

By employing a partition-of-unity of�, we can now easily construct a q0 ∈ H4(�)

such that the compatibility conditions (1.24) and (1.26) are simultaneously satisfied.

Remark 3. The quadratic function q0 defined in (1.25) satisfies the compatibility
conditions. This is one of many possible constructions of initial data satisfying the
corresponding regularity and compatibility conditions.

1.6. Local-in-time Well-Posedness for the Classical Stefan Problem

We define

S(t) := {(q, h) : E(q, h)(t) < ∞}. (1.27)

Our first result is a well-posedness statement for the classical Stefan problem.

Theorem 1.1. (Well-posedness of the classical Stefan problem) Given initial con-
ditions (q0, h0) ∈ S(0) with q0 satisfying the Taylor sign condition (1.22) and the
compatibility conditions (1.24)–(1.26), the problem (1.18) is locally-in-time well-
posed, i.e. there is a T > 0 such that and a unique solution (q, h) on the time
interval [0, T ] with initial data (q0, h0), such that

sup
t∈[0,T ]

E(q, h) ≤ 2E(q0, h0).

Remark 4. The definition of our higher-order energy function E restricted to time
t = 0 requires an explanation of time-derivates of q and h at t = 0. Specifically,
the values qt |t=0, qtt |t=0, ht |t=0 and htt |t=0 are defined via space-derivatives using
equations (1.18a) and (1.18g).



Well-posedness for the Classical Stefan Problem and the Zero Surface… 221

1.7. The Vanishing Surface Tension Limit

Our second main result establishes the vanishing surface tension limit. Denot-
ing by H the mean curvature of the free-boundary, in the �-parametrization, the
boundary condition (1.18c) is replaced with

q = H = σ
∂̄2� · n
|∂̄2�|2 = −σ

∂̄2h

(1 + |∂̄h|2)3/2 ; (1.28)

then, the problem (1.18), with the boundary condition (1.28) replacing (1.18c), is
the Stefan problem with surface tension formulated in harmonic coordinates. The
high-order energy function adapted for the presence of surface tension is given by

Eσ = Eσ (q, h) = E(q, h) + σ

2
∑

b=0

|∂bt h|2
C0
t H

5−2b
x

+σ

1
∑

b=0

|∂bt ht |2L2
t H

4−2b
x

+ σ 2
2

∑

b=0

|∂bt h|2L∞
t H4−2b , σ > 0. (1.29)

1.7.1. Compatibility Conditions For the Stefan Problem with Surface Tension
To ensure the spatial continuity of the temperature function q and its first time

derivative qt at time t = 0, we must impose two sets of compatibility conditions.
The first condition is

q0 = σH0 = −σg−3
0 ∂̄2h0 on �, (1.30)

where H0 denotes the mean curvature of the initial free surface �0, and g0 =
√

1 + (∂̄h0)2. To obtain the second compatibility condition, we note that qt
∣
∣
�

=
−σ∂tH

∣
∣
t=0. From the boundary condition (1.18g) we can evaluate ht at time t = 0

as

ht
∣
∣
t=0 = −g0∇�0q0 · n0, (1.31)

where the subscript 0 refers to the initial values of the quantities g, �, q, and n
defined above. Therefore,

∂tH
∣
∣
t=0 = −g−3

0 ∂̄2ht
∣
∣
t=0 + 3g−5

0 ∂̄2h0∂̄ht
∣
∣
t=0∂̄h0

= g−3
0 ∂̄2(g0∇�0q0 · n0) + 3q0g

−2
0 ∂̄(g0∇�0q0 · n0)∂̄h0, (1.32)

where we have used (1.30) and (1.31) in the last line. After restricting (1.18a) to �

at time t = 0 and using (1.32), we find that

−σ
(

g−3
0 ∂̄2(g0∇�0q0 · n0) + 3q0g

−2
0 ∂̄(g0∇�0q0 · n0)∂̄h0

)

−��0q0 = −g0
(∇�0q0 · n0

)

(A0)
k
2q0,k .

In particular, the right-hand side can be separated into the σ -depenendent and σ -
independent contributions, so that



222 Mahir Hadžić, Steve Shkoller

−g0
(∇�0q0 · n0

)

Ak
2q0,k = J−2

0 g20(q0),
2
2 +σ ∂̄H0

(

g0
(∇�0q0 · n0

)

(A0)
1
2

+g0
(

(A0)
1• · n0

)

A2
2(q0),2

)

.

Combining the two previous identities, we find the second compatibility condition
to be

��0q0 + J−2
0 g20(q0),

2
2 = σC(q0, h0), (1.33)

where

C(q0, h0) := −
[

g−3
0 ∂̄2(g0∇�0q0 · n0) + 3q0g

−2
0 ∂̄(g0∇�0q0 · n0)∂̄h0

]

− ∂̄H0

[

g0
(∇�0q0 · n0

)

(A0)
1
2 + g0

(

(A0)
1• · n0

)

(A0)
2
2(q0),2

]

.

(1.34)

1.7.2. Initial Data Satisfying Compatibility Conditions When � = Id (and
therefore h0(x) = 0, g0 = J0 = 1) the compatibility conditions (1.30) and (1.33)–
(1.36) simplify significantly and take the form

q0 = 0 and (q0),22 +(q0),
2
2 = σ(q0),211 on � (1.35)

(q0),222 , (q0),211 ∈ C0(�). (1.36)

It is easy to check that the function q0 constructed in Section 1.5.5 satisfies (1.35)–
(1.36). For general h satisfying |h|4 	 1 we can construct the initial temperature
q0 satisfying (1.30) and (1.33)–(1.36) by perturbative methods, using, for instance,
the implicit function theorem.

1.7.3. Well-Prepared Initial Data To obtain the vanishing surface tension limit,
we need to define a suitable class of initial data (qσ

0 , hσ
0 ), σ ≥ 0.

Definition 1. (Well-prepared data) A family of initial data (qσ
0 , hσ

0 )σ≥0 such that
E(qσ

0 , hσ
0 ) < ∞ is well-prepared if it satisfies (1) compatibility conditions (1.30),

(1.33)–(1.36) associated to the Stefan problem with surface tension, (2) the Taylor
sign condition (1.22), and (3) E(qσ

0 − q0, hσ
0 − h0) → 0 as σ → 0.

We now demonstrate that the class of well-prepared initial data is non-empty.
Let us assume for simplicity that �0 = Id and therefore the initial hypersurface
�0 is flat. For σ ≥ 0 we have hσ (x ′) = 0, x ′ ∈ T

1. Let b : T1 → R be a given
smooth function and α > 0 a given positive real number. Consider a function qσ

0
independent of x1 in the slab Tε = T

1 ×[0, ε] for some 0 < ε < 1 and of the form

qσ
0 (x1, x2) = −α2 x

2
2

2
+ αx2 + σb(x1)x

3
2 , (x1, x2) ∈ Tε .

It is straightforward to check that conditions (1.35)–(1.36) are both satisfied with
this choice of qσ

0 .Moreover, The Taylor sign condition holds since qσ
0,2 = α > 0 for

any σ ≥ 0 and the convergence requirement (3) in Definition 1 is clearly satisfied.
Outside the slab Tε we can extend the function qσ

0 smoothly so that the Neumann
boundary condition ∂Nqσ

0 is satisfied on ∂�top.
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1.7.4. The Vanishing Surface Tension Limit For a given T > 0 let

C1
t C

0
x ∩ C0

t C
2
x :=

{

(q, h) : q ∈ C1([0, T ];C0(�)) ∩ C0([0, T ];C2(�)),

h ∈ C1([0, T ];C0(�)) ∩ C0([0, T ];C2(�))
}

(1.37)

with the associated norm:

‖(q, h)‖C1
t C0

x∩C0
t C2

x
= max

t∈[0,T ],x∈�
(|q(t, x)| + |∂t q(t, x)|

+ |∇q(t, x)| + |∇2q(t, x)|
)

+ max
t∈[0,T ],x ′∈�

(|h(t, x ′)| + |∂t h(t, x ′)|

+ |∂̄h(t, x ′)| + |∂̄2h(t, x ′)|
)

. (1.38)

Theorem 1.2. (The limit of zero surface tension) Let (qσ
0 , hσ

0 )σ≥0 be a sequence
of well-prepared initial conditions in the sense of Definition 1 such that

E(qσ
0 − q0, h

σ
0 − h0) → 0 as σ → 0 .

Let (qσ (t, ·), hσ (t, ·))σ≥0 denote the corresponding sequence of solutions to
the Stefan problem with surface tension, such that (qσ (0, ·), hσ (0, ·)) = (qσ

0 , hσ
0 ).

Then, there exists a σ -independent time T > 0 and a constant C depending only
on (q0, h0) such that

Eσ (qσ , hσ )(T ) ≤ C σ ≥ 0

for all σ ≥ 0.
Furthermore, the sequence (qσ , hσ ) converges in the C1

t C
0
x ∩ C0

t C
2
x -norm to

the unique solution (q, h) of the classical Stefan problem (1.18) with σ = 0 and
the initial data (q(0), h(0)) = (q0, h0).

1.8. Prior Results and a Motivation For the Current Treatment

There is a large literature on the classical one-phase Stefan problem. For a com-
prehensive overview,we refer the reader toMeirmanov [40] andVisintin [49]. The
first weak solutions were defined by Kamenomostskaya [35], Ladyzhenskaya,
Solonnikov and Uralceva [38]. These weak solutions were analyzed by Fried-
man, Kinderlehrer [24–26], Cafarelli, Evans [6,7], wherein the regularity of
weak solutions was established. Since the problem satisfies amaximum principle, it
is ideally suited to the so-called viscosity solutions approach. The existence and reg-
ularity of viscosity solutions was established by Athanasopoulos, Caffarelli,
and Salsa in [4,5]. The existence of viscosity solutions in the one-phase case was
proven by Kim [36] and in the two-phase case by Kim and Požar [37]. A local-in
time regularity theorem was proven in [13] which in particular shows that initially
Lipschitz free-boundaries become C1 over a possibly smaller spatial region. For an
exhaustive overview and introduction to the regularity theory of such solutions we
refer the reader toCaffarelli and Salsa [8], see also more recent results [12,13].
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The local existence of classical solutions for the classical Stefan problem was
shown by Meirmanov (see [40] and references therein) and Hanzawa [34]. In
the first approach, the author regularizes the problem by adding artificial viscosity
to (1.1b) and fixes the moving domain by switching to so-called von Mises vari-
ables. The obtained solutions however, lose derivatives with respect to the assumed
regularity on the initial data. Similarly, in [34] the author uses Nash–Moser itera-
tion to obtain a local-in-time solution, however again with a significant derivative
loss with respect to the initial data. A local existence result for the one-phase n-
dimensional Stefan problem is proved in [28], where the required regularity class
for the temperature function is W 2,1

p with p > n + 2. For the two-phase Stefan
problem a local existence result is presented in [41] in the framework of L p maxi-
mal regularity, where the corresponding functional spaces of Sobolev-type require
p > n + 3, where n is the dimension of the ambient space.

In related work, local and global existence for the one-phase and two-phase
Muskat problems has been established in [10,14–16]. For the local and global
well-posedness of the one-phase Hele-Shaw problem and optimal decay rates of
the solutions, see [9] and the references therein.

As to the Stefan problem with surface tension (also known as the Stefan prob-
lem with Gibbs–Thomson correction), a global weak existence theory (without
uniqueness) is given in [1,39,45]. In [27] the authors consider the Stefan problem
with small surface tension i.e. σ 	 1 whereby (1.1c) is replaced by v = σκ . The
local existence of classical solutions is studied in [43]. In [23], the authors prove
a local existence and uniqueness result for classical solutions under a smallness
assumption on the initial datum close to flat hypersurfaces. The global existence
close to flat hyper-surfaces is proved in [30] and close to stationary spheres for the
two-phase problem in [29] and later in [42].

With the Gibbs–Thomson correction, problem (1.1) can account for phenom-
ena such as phase nucleation and undercooling (superheating); it is also used in
modeling crystal growth [49]. This is a small-scale model as opposed to the macro-
scale classical Stefan problem. In this sense, there is a fundamental importance in
rigorously understanding the link between the twomodels. As explained in [48,49],
one can associate a free energy to the Stefan problem with surface tension defined
by

Fσ ( p̃, �̃) =
∫

�

p̃ dx + σ |�̃|,

where p̃, �̃ are time-independent. Then, in the the sense of �-convergence of De
Giorgi [22], the free energy Fσ ( p̃, �̃) converges to the free energy for the classical
Stefan problem, see [49]. This is, however, a completely time-independent consid-
eration and does not address the vanishing σ -limit of time-dependent solutions to
the full non-linear problem (1.1). In the context of the water wave problem, the van-
ishing surface tension limit in two and three dimensions has been studied in [2,3];
for the full Euler equations, see [17].

Turning our attention to the Stefan problem, we can observe that there are two
parallel developments in the existence theory for weak solutions briefly mentioned
above. The first one applies to the classical Stefan problem and is motivated by the
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validity of maximum principle; suitable notions of weak and viscosity solutions
have been established [4–6,26,38]. The second development refers to the problem
with surface tension, wherein the weak solution existence results are in BV-type
spaces, and rely upon the gradient-flow structure of the problem. From the point of
view of the vanishing surface tension, it is natural to ask whether the two concepts
are compatible in any rigorous mathematical manner. The answer is inconclusive
due to a lack compactness. While the control of solutions constructed in [1,39] is
strong enough to pass to some limit as σ → 0, it is too weak to guarantee a sharp
interface in the limit. In other words, it is not clear how to preclude the formation
of so-called mushy regions [49].

We develop a new energy method for the Stefan problem with and without
surface tension and prove the vanishing surface tension limit. The well-posedness
is established in Hk Sobolev spaces using a combination of energy estimates for
tangential derivatives and elliptic-type estimates for added parabolic-type regular-
ity. Our framework is motivated by the analysis of the free-surface incompressible
Euler equations of Coutand and Shkoller [19,20].

Precise statements of our results are given in Theorems 1.1 and 1.2. The esti-
mates thatweuse are nonlinear in nature and they fundamentally exploit the intricate
energy structure of the problem. In particular, no derivative loss occurs with respect
to the regularity of the initial data. This framework is particularly convenient, as
it allows us to rigorously establish the vanishing surface tension limit locally-in-
time, as formulated in Theorem 1.2. In this way, we link two fundamental models
of phase transitions that are valid on different spatial scales, thus answering the
open question explained above. In forthcoming work, we shall extend our results to
the two-phase Stefan problem, providing the analog of Theorem 1.1 [33], while the
question of global-in-time stability of steady states using this functional-analytic
framework has been addressed in [31,32].

1.9. Methodology and Outline of the Paper

There are three main ingredients in our approach to the Stefan problem. First,
we replace the study of the heat equation for temperature with the equation for
a velocity field u(t, x) which satisfies the equation u + ∇ p = 0. Second, we
introduce the so-called Arbitrary Lagrange-Eulerian (ALE) variables, in which we
introduce a family of diffeomorphisms �(t, ·) : � → �(t) which fix the moving
domain. With respect to this change-of-variables, we define, respectively, the new
velocity and temperature fields v = u ◦ � and q = p ◦ �; in these variables, the
velocity equation becomes v + ∇ p ◦ � = 0. This equation contains the geometry
of the evolving free-boundary, and by the use of energy estimates for tangential
derivatives, we are able to naturally estimate the second-fundamental form as

∫

�

q,2 |∂̄k� · A2•|2 dx ′ ≈
∫

�

q,2 |∂̄kh|2 dx ′, (1.39)

for k some positive integer. In the original Eulerian framework (1.1), the energy
dissipation law is given by
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1

2

d

dt

∫

�(t)
p(t, x)2 dx +

∫

�(t)
|∇ p(t, x)|2 dx = 0.

This basic energy law is too weak to control the regularity of the evolving free-
boundary. Observe that our higher-order control of the free-boundary given by
(1.39) naturally produces the stability condition; in particular, the Taylor sign con-
dition (1.22) arises as a coefficient to the second-fundamental form, and its sign
determines either the control or growth of the curvature and its derivatives via a
Gronwall-type inequality.

A further subtlety consists in the discovery of another coercive energy term
which is defined on the whole domain � (phase), displayed in the fourth line
of (2.24). It contains terms of the general form

‖∂̄a∂bt q + ∂̄a∂bt � · v‖2L∞
t L2

x
and ‖∂̄a∂bt qt + ∂̄a∂bt �t · v‖2

L2
t L2

x

for a, b as in (2.24). They are intrinsically linked to the problem and contain infor-
mation about the regularity of the divergence of the velocity v. Taking a = 0 and
b = 1, the first term above becomes the norm of the ALE-divergence of v, as it is
easily seen from (1.18a):

‖qt + v · w‖L∞
t L2

x
= ‖div�v‖L∞

t L2
x
.

The gauge condition (1.6) allows us to get optimal Sobolev regularity for � and
hence for the temperature function q. This allows us to prove that the energy E
defined in (2.16) is in fact bounded by the coercive quadratic form (the “natural
energy”) F (2.24) dictated by the Stefan problem.

Condition (1.21) is the exact equivalent of the Taylor sign condition, necessary
for well-posedness of free-surface incompressible Euler equations without surface
tension [19] or the water wave problem [50]. If the initial temperature q0 is non-
negative, it is implied by Hopf’s lemma, at least over a short period of time. In a
short time regime, we prove a uniform lower bound on λ [cf. (1.23)], thus enabling
us to close the estimates.

In many free-boundary problems, constructing the solution is, in general, a
challenging problem, despite the (possible) availability of good a-priori estimates.
Our main technical idea, to make the construction as straightforward as possible, is
to regularize the problem via horizontal convolution by layers as introduced in [19]
in the study of well-posedness of the incompressible Euler equation on a moving
domain. In addition to that, we also regularize the Stefan condition p = 0 on �(t)
by modifying it into a Robin-type condition. If κ > 0 is a suitable regularization
parameter, to each κ we shall associate an energy functional Eκ whichwill be shown
to satisfy the following energy inequality:

Eκ(t) ≤ CEκ(0) + C(t + √
t)P(

√

Eκ),

where P is something with the leading order cubic contribution. Such a polynomial
inequality, through a continuity argument, leads to uniform-in-κ time of existence
[0, T ] and the bound

Eκ(t) ≤ 2CEκ(0).
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Passing to the limit as κ → 0, we recover the solution of the Stefan problem (1.18).
Our regularization is intrinsic to the problem and it does not rely on formulating a
sequence of iterated linear problems.

The second part of this work focuses on the problem of the vanishing surface
tension limit. Once the well-posedness framework of Theorem 1.1 is set-up, the
idea is rather straightforward. Namely, at the level of energy, the presence of sur-
face tension simply augments the high-order energy functional by a σ -dependent
contribution coming from the boundary �, so as to obtain (1.29). The goal is to
prove a uniform-in-σ upper bound on Eσ on a σ -independent time interval [0, T ].
This is made possible by one fundamental property of Eσ : it distinguishes between
two boundary energy contributions of general forms

|√q,2∂̄
a∂bt h|20 and σ |∂̄a+1∂bt h|20

for suitable a, b ∈ N0. Since the error terms are at least of cubic order, we can afford
to estimate all lower order terms in terms of the σ -independent energy term, while
the two terms with highest number of derivatives get bounded via the σ -dependent
energy contribution. With uniform estimates in hand, we can pass to the limit as
σ → 0.

The plan of the paper is as follows. In Sect. 2.1 we introduce the κ-regularized
problem and the associated high-order energy Eκ .We then state the energy identities
(Lemma 2.2), prove that Eκ is controlled by the natural energyFκ (Proposition 2.5)
and finally prove Lemma 2.2. In Sect. 2.7, we provide the energy estimates for the
error terms. Passage to the vanishing surface tension limit is explained in Sect. 3.
In Sect. 4 we explain how to extend our results to the three dimensional setting.

2. Local Well-Posedness For the Classical Stefan Problem

2.1. A Nonlinear Regularization of the Stefan Problem: the κ-Problem

We regularize the problem by using the horizontal convolution by layers, intro-
duced in [19] in the study of well-posedness of the incompressible Euler equation
on a moving domain.

Definition 2. (Horizontal convolution-by-layers) Let ρκ be a C∞(R)-bump func-
tion supported in a ball of radius κ defined through: ρκ(x) := 1

κ
ρ( x

κ
), where

ρ(x) =
{

c∗e−1/(1−|x |2), |x | < 1,
0 |x | ≥ 1

(2.1)

and constant c∗ is such that
∫

R
ρ(x ′) dx ′ = 1. For any given g : � → R we define

the horizontal convolution by layers of g via

�κg(x
1, x2) :=

∫

�

g(x1, x2)ρκ(x1 − x ′) dx ′.
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We also define the standard 2-D sequence of mollifiers: ηκ(x) = κ−2η(x/κ)

where η(x) = c∗e−1/(1−|x |2) for |x | < 1 and η(x) = 0 for |x | ≥ 1, and c∗ is chosen
so that

∫

R2 η(x)dx = 0. To formulate the regularized problem, we introduce the
following quantities:

�κ(t, x ′) = (x ′, hκ(t, x ′)) with hκ(t, x ′) := �κ�κh(t, x ′), x ′ ∈ �,

and we define �κ on � as a harmonic extension of its boundary value on � as
in (1.6). Analogously to (1.8), the following trace estimate is true:

‖∂at �κ‖Hs (�) � ‖∂at �κ‖Hs−0.5(�), s > 0.5, a ∈ N. (2.2)

We also denote Jκ := det∇�κ. Furthermore,

κA := [∇�κ ]−1; κw := ∂t�κ.

In analogy to (1.12), we introduce

κA2• := (∂̄hκ ,−1)

Jκ
; κa := J−1

κ
κA. (2.3)

For κ > 0, we now define a nonlinear regularization of the Stefan problem,
which we call the κ-problem (1.18), in which the coefficients are smoothed by use
of the horizontal convolution operator�κ . On a time interval [0, Tκ ], the κ-problem
is given as

qt − ��κq = −v · κw + α in [0, Tκ ] × �, (2.4a)

vi + κAk
i q,k = 0 in [0, Tκ ] × �, (2.4b)

q = −κ2v · κa2• + κ2β(t, x ′) on [0, Tκ ] × � , (2.4c)

�t · nκ = −v · nκ on [0, Tκ ] × � , (2.4d)

v · N = 0 on [0, Tκ ] × ∂�top , (2.4e)

�(0, ·) = �0 q(0, ·) = Qκ
0 , (2.4f)

where

��κ(t, ·) = 0 in �, (2.5a)

�κ(t, x ′, 0) = (x ′, hκ(t, x ′)) x ′ ∈ �, (2.5b)

�κ(t, ·) = Id on ∂�top, (2.5c)

��κq := κA j
i

(
κAk
i q,k

)

, j , and the time-independent forcing function α(x) is given
by

α = J−2
0 g20[q0,2 ]2 − Jκ(0, ·)−2gκ(0, ·)2[q0,2 ]2. (2.6)

Here

gκ(t, x) :=
√

1 + (∂̄hκ(t, x))2 ,
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and β(t, x ′) is defined as

β(t, x ′) :=
2

∑

k=0

tk

k!∂
k
t (v · κa2•)|t=0 . (2.7)

Note that we use the subscript and superscript κ on dependent variables in which
there is explicit use of the horizontal convolution operator �κ ; of course, all of the
q, h, and � implicitly depend on κ as well, but for notational convenience, we do
not indicate this implicit dependence on κ .

The presence of the horizontal mollification operator �κ in the approximate κ-
problem changes the compatibility conditions on the the initial data. The addition
of the forcing functions α(x) and β(t, x ′) ensure that the compatibility conditions
(1.24) are modified to be

Qκ
0 = 0 on � , (2.8a)

��κ
0
Qκ

0 = −J−2
0 g20[q0,2 ]2 on � , (2.8b)

where �κ
0 = �κ(0, ·). The approximated initial temperature function Qκ

0 is then
defined as the solution of the fourth-order elliptic equation

��κ
0
��κ

0
Qκ

0 = ηκ ∗ E(��0��0q0) in �, (2.9a)

Qκ
0 = 0 on � , (2.9b)

��κ
0
Qκ

0 = −J−2
0 g20[q0,2 ]2 on � , (2.9c)

where E continuously maps Hk(�) to Hk(R2) for all k ≥ 0. The fourth-order
elliptic equation (2.9) can be written as a system of second-order equations given
by

��κ
0
Qκ

0 = Rκ
0 in �, (2.10a)

��κ
0
Rκ
0 = ηκ ∗ E(��0��0q0) in �, (2.10b)

Qκ
0 = 0 on � , (2.10c)

Rκ
0 = −J−2

0 g20[q0,2 ]2 on � . (2.10d)

According to the basic elliptic regularity theorem with Sobolev class coefficients,
Theorem 3.6 in [11], we obtain estimates for Rκ

0 and then Qκ
0 which show that

‖Qκ
0‖24 ≤ CE(q0, h0) ,

the constant C being independent of κ . Thus we see that Qκ
0 → q0 in Hs(�), s ∈

[0, 4), and so we have an approximated initial temperature function Qκ
0 ∈ H4(�),

which satisfies the compatibility conditions (2.8). Again, from the elliptic system
(2.10) and the Sobolev embedding theorem, Qκ

0 → q0 in C1(�), and hence the
Taylor sign condition (1.22) remains valid for Qκ

0 , so that

(Qκ
0),2

∣
∣
∣
t=0

> 0 for sufficiently small κ > 0. (2.11)
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In equation (2.4d), nκ denotes the outer unit normal with respect to the regu-
larized surface �κ , i.e. in the coordinate representation

nκ = (∂̄hκ ,−1)
√

1 + |∂̄hκ |2
= g−1

κ (∂̄hκ ,−1) .

Note that the corresponding unit tangent to �κ is given via

τκ = ∂̄�κ

|∂̄�κ | = (1, ∂̄hκ)
√

1 + |∂̄hκ |2
= g−1

κ (1, ∂̄hκ) .

In analogy to (2.12), equation (2.4d) can be reformulated as an evolution equation
for h, given by

ht (t, x) = gκ(t, x)v · nκ(t, x), x ∈ T
1 . (2.12)

Remark 5. (The regularization (2.4c)) The approximate κ-problem uses horizontal
convolution by layers together with carefully chosen artificial viscosity terms. This
approximation scheme provides a simple existence theory for the κ-problem while
maintaining the nonlinear energy structure.

Remark 6. We introduce the regularization (2.4c) to circumvent a technical diffi-
culty of closing the energy estimates at the level of highest-in-time differentiated
problem. The problem arises from the commutation of the horizontal convolution
operator appearing in the terms of the following schematic form:

∫

�

�κ�κ�t t · �t t t T dx ′,

where T is a lower order term. Of course, when performing a-priori estimates (i.e.
assuming that the solutions to the original problem are smooth enough to justify
all the integrations by parts), such an issue does not arise.

2.1.1. Solutions to the κ-Problem

Theorem 2.1. Let κ > 0 be fixed. Let (Qκ
0 , h0) ∈ H4(�)× H4(�) be given initial

data satisfying the compatibility conditions (2.8). Then there is a time Tκ depending
on κ , such that there exists a unique solution (q, h) = (q(κ), h(κ)) to (2.4) on the
time interval [0, Tκ ]. The solution satisfies

2
∑

a=0

(

‖∂at q‖C0
t H

4−2a
x

+ ‖∂at q‖L2
t H

5−2a
x

+ ‖qttt‖L2
t (H1

x )′

+|∂a+1
t h|L2

t H
4−2a
x

)

+
1

∑

a=0

|∂a+1
t h|C0

t H
3−2a
x

< ∞ , (2.13)

where H1(�)′ denotes the dual space of H1(�).
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Proof. We briefly sketch the proof. For Tκ fixed (and taken sufficiently small) and
for K > 0, we define the closed set

ZK :=
{

h : [0, T ] × � → R,
∣
∣∂at h ∈ C([0, Tκ ],

H4−2a(�)) ∩ L2([0, Tκ ], H5−2a(�)), a = 0, 1, 2,
2

∑

a=0

(

|∂at h|2
C0
t H4−2a + |∂at h|2

L2
t H5−2a

)

≤ K ,

h0 and Qκ
0 satisfy compatibility conditions (2.8)

}

. (2.14)

Given h ∈ ZK , we define hκ = �2
κh, and then we define its harmonic extension

�κ by solving (2.5). We then define the corresponding κA, κa, and Jκ , and consider
the weak formulation of the parabolic problem (2.4a)–(2.4c): for all test functions
φ ∈ H1(�) and a.e. t ∈ [0, T ],

〈qt Jκ , φ〉 +
∫

�

q,k
κAk
i

κA j
i φ, j Jκdx + 1

κ2

∫

�

q φdx1

=
∫

�

q,k
κaki �

i
t φdx +

∫

�

α φ Jκdx +
∫

�

βφdx1 , (2.15)

together with the initial condition

q(0, x) = Qκ
0(x) .

Since κA, κa, and Jκ are inC∞, and since κAk
i
κA j
i ≥ λ for λ > 0, and the compatibility

conditions are satisfied, standard parabolic theory provides the existence of a unique
solution on a short time-interval [0, Tκ ] with the desired regularity properties. In
particular, it is a standard argument to establish the existence of a unique solution
in q ∈ L2(0, Tκ ; H5(�)) which satisfies the estimate (2.13).

Using a Galerkin scheme on (2.15), we obtain unique solutions in L2(0, Tκ ;
H1(�)) forq,qt , andqtt and also find thatqttt ∈ L2(0, Tκ ; H1(�)′), where H1(�)′
denotes the dual space of H1(�). Standard parabolic regularity theory, as in [47],
shows that q ∈ L2(0, Tκ ; H5(�)) and that qt ∈ L2(0, Tκ ; H3(�)).

With the solution q, we define the associated velocity field v using (2.4b). We
then update the height function h as

�(h)(t) := h0 +
∫ t

0
gκ(t)v · nκ(τ ) dτ, t ∈ [0, T ].

Choosing Tκ sufficiently small, it can be shown that�maps ZK into itself, and that
� is a contraction map. The fixed-point of � is then a solution to the κ-problem
(2.4). ��
Remark 7. A priori, the time of existence Tκ may converge to 0 as κ → 0. By
obtaining κ-independent bounds on solutions to (2.4), we will prove that, in fact,
the time of existence is independent of κ and given by T > 0.
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2.2. The Higher-Order Energy Function Compatible with the κ → 0 Asymptotics

The asymptotically consistent higher-order energy function associated to our
sequence of regularized κ-problems is given by

Eκ = Eκ(q, h) :=
∑

a+2b≤4

‖∂̄a∂bt v‖2
L2
t L2

x
+

∑

a+2b≤3

‖∂̄a∂bt v‖2
C0
t L2

x

+ κ2
∑

a+2b≤4

|∂̄a∂bt ht |2L2
t L2

x
+ κ2

∑

a+2b≤3

|∂̄a∂bt ht |2C0
t L2

x

+
2

∑

b=0

‖∂bt q‖2
C0
t H

4−2b
x

+
2

∑

b=0

‖∂bt q‖2
L2
t H

5−2b
x

+
2

∑

b=0

|�κh|2
C0
t H

4−2b
x

+
1

∑

b=0

|∂t�κh|2
L2
t H

3−2b
x

. (2.16)

As a consequence of Theorem 2.1 the map t �→ Eκ(t) is continuous on [0, Tκ ].

2.3. Bounds on Lower-Order Norms

Let

Aκ(t) =
∑

a+2b≤2

‖∂̄a∂bt v‖2
L2
t L2

x
+

∑

a+2b≤1

‖∂̄a∂bt v‖2L∞
t L2

x

+ κ2
∑

a+2b≤2

|∂̄a∂bt ht |2L2
t L2

x
+ κ2

∑

a+2b≤1

|∂̄a∂bt ht |2L∞
t L2

x

+
1

∑

b=0

‖∂bt q‖2
L∞
t H2−2b

x
+

1
∑

b=0

‖∂bt q‖2
L2
t H

3−2b
x

+
1

∑

b=0

|∂bt �κh|2
L∞
t H2−2b

x
+ |�κh|2

L2
t H

3−2b
x

.

We then assume that

Aκ(t) ≤ Eκ(0) + 1, t ∈ [0, Tκ ]. (2.17)

By the fundamental theorem of calculus it is easy to see that

Aκ(t) ≤ Aκ(0) + t sup
0≤s≤t

Eκ(t) ≤ Eκ(0) + t sup
0≤s≤t

Eκ(t).

In Sect. 2.8 we will prove an a priori bound for Eκ independent of κ and show that
the time of existence T is independent of κ. The bound (2.17) will then be justified
a posteriori using the fundamental theorem of calculus, smallness of Tκ , and the
definition of Eκ . By choosing Tκ possibly smaller we assume that for certain δ > 0,

min
x ′∈�

q,2 (t, x ′) > δ and |∂̄hκ(t, ·)|2∞ ≤ 1/2, t ∈ [0, Tκ ], (2.18)

where (q, h) is the solution of the κ-problem (2.4). The first inequality is true by
continuity-in-time of the energy Eκ and the Taylor sign condition (2.11). The second
inequality follows from the continuity-in-time and smallness of |∂̄h0|3 (1.3).
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2.4. The Energy Identities

In this section we collect the high-order energy identities in two lemmas stated
below. We use the notation T for those error terms which in a straightforward way
are seen to satisfy the energy bound of the form:

∫ t

0
|T (s)| ds � t P(Eκ);

this bound will then always follow from the standard L∞ −L2−L2 type estimates.
Here and in the rest of the paper P(·) stands for a generic polynomial satisfying
P(0) = 0.

Lemma 2.2. Assume that (q, h) is a solution to the regularized Stefan problem (2.4)
given by Theorem 2.1. Then the following identities hold:

(i)
∫

�

|∂̄4v|2 + 1

2

d

dt

∫

�

(−q,2)
∣
∣∂̄4�κ� · κA2•

∣
∣2 + 1

2

d

dt

∫

�

(

∂̄4q + ∂̄4�κ · v
)2

+ κ2
∫

�

J−1
κ |∂̄4ht |2 =

∫

�

R1 +
∫

�

R2 + T ; (2.19)
∫

�

|∂̄2∂tv|2 + 1

2

d

dt

∫

�

(−q,2)
∣
∣∂̄2∂t�κ� · κA2•

∣
∣2 + 1

2

d

dt

∫

�

(

∂̄2∂t q + ∂̄2∂t�κ · v
)2

+ κ2
∫

�

J−1
κ |∂̄2∂t ht |2 =

∫

�

R3 +
∫

�

R4 + T ; (2.20)
∫

�

|∂2t v|2 + 1

2

d

dt

∫

�

(−q,2)
∣
∣∂2t �κ� · κA2•

∣
∣
2 + 1

2

d

dt

∫

�

(

∂2t q + ∂2t �κ · v
)2

+ κ2
∫

�

J−1
κ |∂t t ht |2 =

∫

�

R5 +
∫

�

R6 + T , (2.21)

where Ri , i = 1, . . . 6, are error terms given below respectively by (2.41),
(2.42), (2.43), (2.44), (2.45) and (2.46).

(ii)

1

2

d

dt

∫

�

|∂̄3v|2 +
∫

�

(−q,2 )|∂̄3�κ�t · κA2•|2 +
∫

�

(∂̄3qt + ∂̄3κw · v)2

+ κ2

2

d

dt

∫

�

J−1
κ |∂̄3ht |2 =

∫

�

S1 +
∫

�

S2 + T ; (2.22)

1

2

d

dt

∫

�

|∂̄vt |2 +
∫

�

(−q,2 )|∂̄�κ�t t · κA2•|2 +
∫

�

(∂̄qtt + ∂̄κwt · v)2

+ κ2

2

d

dt

∫

�

J−1
κ |∂̄htt |2 =

∫

�

S3 +
∫

�

S4 + T , (2.23)

where Si , i = 1, . . . 4, are error terms given below respectively by (2.51),
(2.52), (2.53), (2.54).

We postpone the proof of Lemma 2.2 to Sect. 2.6.
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2.5. Equivalence of the Higher-Order Norm Eκ and the Natural Energy Function
Fκ

By summing the left-hand sides of the identities (2.19)–(2.23) fromLemma 2.2,
the natural coercive quadratic form Fκ that arises as the energy takes the form

Fκ =
∑

a+2b≤4

‖∂̄a∂bt v‖2
L2
t L2

x
+ 1

2

∑

a+2b≤3

‖∂̄a∂bt v‖2L∞
t L2

x

+ κ2
∑

a+2b≤4

|J−1/2
κ ∂̄a∂bt ht |2L2

t L2
x
+ κ2

2

∑

a+2b≤3

|J−1
κ ∂̄a∂bt ht |2L∞

t L2
x

+ 1

2

∑

a+2b≤4;
|√q,2 J

−1/2
κ ∂̄a∂bt �κh|2L∞

t L2
x

+
∑

a+2b≤3

|√q,2 J
−1/2
κ ∂̄a∂bt �κht |2L2

t L2
x

+ 1

2

∑

a+2b≤4;
‖∂̄a∂bt q + ∂̄a∂bt �κ · v‖2L∞

t L2
x

+
∑

a+2b≤3;
‖∂̄a∂bt qt + ∂̄a∂bt �κt · v‖2

L2
t L2

x
. (2.24)

The mathematical reason for imposing the Taylor sign condition (1.23) now be-
comes apparent. In order for the second line in the definition of Fκ (2.24) above to
make sense we must have

min
x ′∈�

(q,2 )(t, x ′, 0) > 0,

as was assumed in (1.23) for the (unregularized) classical Stefan problem. In order
to perform the estimates in the next section, it is crucial to show that the energy Eκ is
bounded byFκ . To prove this statement we first establish the following temperature
estimate.

Lemma 2.3. Let (q, h) be a solution of the regularized problem (2.4) given by
Theorem 2.1. Assume that the a priori assumption (2.17) holds on [0, Tκ ]. Then:
(i)

2
∑

a=0

‖∂at q‖2
L∞
t H4−2a

x
� Fκ on [0, Tκ ]. (2.25)

(ii)

‖q‖2
L2
t H4.5

x
+

2
∑

a=1

‖∂at q‖2
L2
t H5−2a � Fκ on [0, Tκ ]. (2.26)
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Proof. We use elliptic regularity theory and the a priori assumption (2.17) to
show that ‖q‖L∞

t H2
x

� Fκ since ��κq = qt + v · κw + α, ‖qt‖L∞L2 � Fκ ,

‖v‖L∞
t L2

x
‖w‖L∞

t L2
x

≤ ‖v‖L∞
t L2

x
|ht |L∞

t H1
x

� Fκ , and ‖α‖L∞
t L2

x
� Fκ(0) � Fκ .

Differentiating (2.4a) with respect to x j ( j = 1, 2), we obtain that ��κq, j =
(κAm

i
κAn
i ), j q,mn +(qt + v · κw), j +α, j . Furthermore, since q, j = �κ, j · v we have

that

‖q, j t ‖ � ‖�κ, j t‖L∞
t L∞

x
‖v‖L∞

t L2
x
+ ‖�κ, j‖L∞

t L∞
x

‖vt‖L∞
t L2

x

� |ht |L∞
t H2

x
‖v‖L∞

t L2
x
+ ‖∇�κ‖L∞

t H1.5‖vt‖L∞
t L2

x
� Fκ ,

where we have used the trace bound (2.2) and the a priori assumption (2.17). Note
that

‖(v · κw), j ‖L∞
t H1

x
� ‖v‖L∞

t H1
x
‖κw‖L∞

t L∞
x

+ ‖v‖L∞
t L2

x
‖κw, j ‖L∞

t L∞
x

� ‖q‖L∞
t H2

x
|hκ,t |L∞

t H1
x

+ ‖q‖1|hκ,t |L∞
t H2

x
� Fκ ,

where we have used the bound (2.17) in the last estimate. It is easy to see that
‖(κAm

i
κAn
i ), j q,mn ‖L∞

t L2
x

� Fκ (1 + P(Aκ)) � Fκ , where P stands for a generic
polynomial. Finally, ‖∇α‖L∞

t L2
x

� Fκ . Thus, by the elliptic theory again, we
conclude

‖q‖2L∞
t H3

x
� Fκ .

Differentiating (2.4a)with respect to t ,weobtain��κqt = −(κAm
i

κAn
i ),t q,mn +vt t+

(v · κw)t (since α is independent of t.). Again, using ‖vt t‖2L∞
t L2

x
� Fκ , the previous

estimates and the bound |hκ,t |2L∞
t H2

x
� Fκ , elliptic regularity implies ‖qt‖L∞

t H2
x

�
Fκ . Furthermore ‖qtt‖2L∞

t L2
x

� ‖qtt + κwt · v‖2
L∞
t L2

x
+ ‖κwt · v‖2

L∞
t L2

x
� Fκ . The

last equality follows from the third line on the definition (2.16) of Fκ and a simple
bound on the L∞

t L∞
x -norm of v, which follows from Sobolev embedding. Finally,

choose any j, k ∈ {1, 2}. Applying ∂x j ∂xk to (2.4a), we arrive at the elliptic equation

��κq, jk = −(κAm
i

κAn
i ), j q,mnk −(κAm

i
κAn
i ),k q,mnj

−(κAm
i

κAn
i ), jk q,mn +(qt + v · κw), jk +α, jk .

By the estimates already derived above, (2.16), (2.6), and (2.17), the right-hand side
is bounded by Fκ (1 + P(Aκ)) � Fκ in L∞

t L2
x -norm. Thus, by elliptic regularity,

we finally conclude ‖q‖L∞H4 � Fκ , concluding the proof of (2.25).
To prove (2.26) we start with the easiest case b = 2. For j = 1, 2, we have

q, j t t = (�κ, j · v)t t = �κ, j t t · v + 2�κ, j t · vt + �κ, j · vt t .

From the above we easily infer that
∫ t

0
‖∇qtt‖20 dτ �

∫ t

0

(

‖∇�κ,t t‖20‖v‖2∞ + ‖�κ, j t‖2∞‖vt‖20 + ‖�κ, j‖2∞‖vt t‖20
)

dτ

� P(Fκ). (2.27)
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We have thereby used the trace estimate (2.2) to obtain

‖∇�κ,t t‖20 � |hκ,t t |20.5 � Fκ ,

where we have used the definition (2.24) in the last bound above. On the other
hand, using the a priori bound (2.17) and the Sobolev embedding we conclude that
‖v‖∞ � ‖v‖1 � ‖q‖2 ≤ Eκ(0)+1 � 1.The remaining two terms on the right-hand
side of (2.27) are estimated in a similar fashion. If b = 1, we apply the same ideas
using (2.25), (2.17), and the Sobolev embeddings. To prove ‖q‖2

L2
t H4.5

x
� Fκ we

need to use an interpolation estimate. The strategy consists of estimating ‖q‖2
L2
t H5

x

and ‖q‖2
L2
t H4

x
separately and then interpolating between the two estimates. The

reader may consult [31] for the details. ��
Remark 8. The regularity of q ∈ L2

t H
4.5
x can in fact be improved.

Lemma 2.4. (Optimal regularity for �κ and q) Suppose that the pair (q, h) is a
solution of the κ-problem (2.4) given by Theorem 2.1, and that the basic assump-
tion (2.17) holds on [0, Tκ ]. Then ∫ Tκ

0

(‖�κ‖25 + ‖q‖25
)

dt ≤ CEκ(t) .

Proof. Step 1.We will first prove that
∫ Tκ

0 ‖�κ‖25dt ≤ CE(t). Since q = 0 on � it
follows that

v(x, t) · τκ(x, t) = 0 on � , (2.28)

wherewe recall that τκ is the unit tangent vector to�κ(t, �).Applying thehorizontal
derivative ∂̄ to (2.28), and using the fact that ∂̄τκ = g−1

κ ∂̄2�κ · nκ nκ and that
∂̄2�κ · nκ = −g−1

κ ∂̄2hκ , we find that

∂̄2hκ = g2κ ∂̄v · τκ

v · nκ

. (2.29)

The dominator in (2.32) is strictly positive for Tκ small enough by the Taylor sign
condition (2.11). For any W : � → R

2 we define

curl�W = ε j i A
s
jW

i ,s (2.30)

where ε21 = −ε12 = 1, ε11 = ε22 = 0.By the tangential trace inequality (see [11]),
∣
∣∂̄4v · τκ

∣
∣

H− 1
2 (�)

� ‖curl�∂̄3v‖L2(�) + ‖∂̄4v‖L2(�). (2.31)

We observe that

curl�∂̄3v = ∂̄3 (curl�v) − ε j i

3
∑

m=1

cm ∂̄m As
j ∂̄

3−mv j ,s

= −ε j i

3
∑

m=1

cm ∂̄m As
j ∂̄

3−mv j ,s ,
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where we have used the identity curl�v = (curl∇ p) ◦ � = 0. Using the Cauchy–
Schwarz inequality and the definition of Eκ , we obtain

‖curl�∂̄3v‖0 �
√

Eκ .

From (2.31) and the definition (2.16) of Eκ , we obtain
∫ t

0

∣
∣∂̄4v · τκ

∣
∣
2

H− 1
2 (�)

dσ � Eκ(t), 0 ≤ t ≤ Tκ . (2.32)

Using (2.32) and (2.31) it follows easily that
∫ t
0 |hκ |24.5 dσ ≤ Eκ(t), 0 ≤ t ≤ Tκ .

Recalling that �κ is the harmonic extension of (x ′, hκ(x ′)), x ′ ∈ � the optimal
trace inequality (1.8) implies that

∫ t
0 ‖�κ‖25 dσ ≤ CEκ(t) for any t ∈ [0, Tκ ].

Step 2. The fact that
∫ Tκ

0 ‖q‖25dt ≤ CE(t) follows from Step 1 and the elliptic
regularity result in Theorem 3.6 in [11]. ��

As a consequence of Lemmas 2.3 and 2.4 we obtain the following key bound
between the norm Eκ and the energy Fκ .

Proposition 2.5. (Norm-energy equivalence) Let (q, h) be a solution of the κ-
problem (2.4) given by Theorem 2.1. Assume that the a priori assumption (2.17)
holds on [0, Tκ ]. Then Eκ � Fκ on [0, Tκ ].
Proof. Due to the Taylor sign condition (2.18), the boundary integrals in Eκand
Fκ satisfy

2
∑

b=0

|�κh|2
L∞
t H4−2b

x
+

1
∑

b=0

|�κht |2L2
t H

3−2b
x

�
∑

a+2b≤4;
|√−q,2∂̄

a∂bt �κh|2L∞
t L2

x
+

∑

a+2b≤3

|√−q,2∂̄
a∂bt �κht |2L2

t L2
x
.

The remaining estimates now follow directly from Lemmas 2.3 and 2.4.

2.6. Proof of Lemma 2.2

Proof of part (i) of Lemma 2.2. Applying the tangential differential operator ∂̄4 to
the equation (2.4b), multiplying it by ∂̄4vi and integrating over �, we obtain

(

∂̄4vi + ∂̄4κAk
i q,k + κAk

i ∂̄
4q,k, ∂̄4vi

)

L2 =
3

∑

l=1

cl
(

∂̄ lκAk
i ∂̄

4−lq,k, ∂̄4vi
)

L2 , (2.33)

where cl = (4
l

)

. Recalling (1.17), we write

∂̄4κAk
i = −κAs

i ∂̄
4�r

κ,s
κAk
r + {∂̄4, κAk

i }, (2.34)

where {∂̄4, κAk
i } stands for the lower order commutator defined in (1.17). With this

identity, we obtain
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(

∂̄4κAk
i q,k, ∂̄

4vi
)

L2(�)
= −(

κAs
i ∂̄

4�r
κ,s

κAk
r q,k, ∂̄

4vi
)

L2(�)
+ ({∂̄4, κAk

i }q,k, ∂̄
4vi

)

L2(�)

= −
∫

�

q,k
κAs
i ∂̄

4�r
κ
κAk
r ∂̄

4vi N s +
∫

�

κAs
i ∂̄

4�r
κ
κAk
r q,k ∂̄4vi,s + T

= −
∫

�

q,k
κAs
i ∂̄

4�r
κ
κAk
r ∂̄

4vi N s −
∫

�

κAs
i ∂̄

4�r
κvr ∂̄4vi,s + T ,

(2.35)

where we have used (κAs
i ),s = 0 and the identity vr = −κAk

r q,k to write the last line
more concisely. Furthermore, integrating by parts with respect to xk ,

(
κAk
i ∂̄

4q,k, ∂̄4vi
)

L2 =
∫

�

κAk
i ∂̄

4q,k ∂̄
4vi =

∫

�

κAk
i ∂̄

4q ∂̄4vi · Nk −
∫

�

κAk
i ∂̄

4q ∂̄4vi,k .

(2.36)

Note that the the boundary contribution coming from the fixed boundary ∂�top
vanishes due to the boundary condition (2.4e), which further reduces to v2 = 0 on
∂�top. Summing (2.35) and (2.36), we obtain

(

∂̄4κAk
i q,k + κAk

i ∂̄
4q,k, ∂̄

4vi
)

L2(�)
= −

∫

�

q,k
κAs
i ∂̄

4�r
κ
κAk
r ∂̄

4vi N s

+
∫

�

κAk
i ∂

4q∂4vi · Nk −
∫

�

κAk
i ∂̄

4vi ,k
(

∂̄4q + ∂̄4�κ · v
) + T . (2.37)

The first three terms on the right-hand side of (2.37) will be the source of positive
definite quadratic contributions to the energy. To extract the quadratic coercive
contribution from the first integral on the right-hand side of (2.37), we simplify it
to

−
∫

�

q,k
κAs
i ∂̄

4�r
κ
κAk
r ∂̄

4vi N s =
∫

�

q,2
κA2
i ∂̄

4�r
κ
κA2
r ∂̄

4vi +
∫

�

q,1
κA2
i ∂̄

4�r
κ
κA1
r ∂̄

4vi

=
∫

�

q,2 ∂̄4�κ · κA2•∂̄4v · κA2• +
∫

�

q,1 ∂̄4�r
κ
κA1
r ∂̄

4v · κA2•.

We rewrite the expression ∂̄4v · κA2• and thereby use the boundary condition (2.4d):

∂̄4v · κA2• = ∂̄4w · κA2• + ∂̄4(v + w) · κA2•

= ∂̄4w · κA2• + ∂̄4
(

(v + w) · κA2•
︸ ︷︷ ︸

=0

) −
4

∑

l=1

al ∂̄
4−l(v + w) · ∂̄ lκA2•

= ∂̄4w · κA2• −
4

∑

l=1

al ∂̄
4−l(v + w) · ∂̄ lκA2•.
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Due to the above identity and recalling �κ = �κ�κ�, we obtain

∫

�

q,2 ∂̄4�κ · nκ ∂̄4v · κA2
κ =

∫

�

q,2 ∂̄4�κ�κ� · κA2•∂̄4w · κA2•

−
4

∑

l=1

al

∫

�

q,2 ∂̄4�κ · κA2•∂̄4−l(v + w) · ∂̄ lκA2•.

(2.38)

The first term on the right-hand side of (2.38) is rewritten in the following way:

∫

�

q,2 ∂̄4�κ�κ� · κA2•∂̄4w · κA2• =
∫

�

q,2 �κ∂̄4� · κA2•�κ∂̄4�t · κA2•

+
∫

�

∂̄4�κ�
[

�κ

[

q,2
(

∂̄4�t · κA2•
)
κA2•

] − q,2
(

∂̄4�κ�t · κA2•
)
κA2•

]

= 1

2
∂t

∫

�

q,2
∣
∣∂̄4�κ� · κA2•

∣
∣2 − 1

2

∫

�

q,2t
∣
∣∂̄4�κ� · κA2•

∣
∣2

−
∫

�

q,2 ∂̄4�κ� · κA2•∂̄4�κ� · κA2•t

+
∫

�

�κ∂̄4�
[

�κ

[

q,2
(

∂̄4�t · κA2•
)
κA2•

] − q,2
(

�κ∂̄4�t · κA2•
)
κA2•

]

= 1

2
∂t

∫

�

q,2
∣
∣∂̄4�κ� · κA2•

∣
∣2 +

∫

�

�κ ∂̄4�
[

�κ

[

q,2
(

∂̄4�t · κA2•
)
κA2•

]

− q,2
(

�κ∂̄4�t · κA2•
)
κA2•

]

+ T . (2.39)

The second term on the right-hand side of (2.37) turns into

∫

�

κAk
i ∂̄

4q ∂̄4vi · Nk = −
∫

�

∂̄4q ∂̄4v · κA2•

= κ2
∫

�

∂̄4ht
(

∂̄4(v · κA2•) −
3

∑

l=0

al ∂̄
lv∂̄4−lκA2•

)

+ κ2
∫

�

β(t, x ′)∂̄4v · κA2•

= κ2
∫

�

J−1
κ |∂̄4ht |2 − κ2

3
∑

l=0

al

∫

�

∂̄4ht ∂̄
lv∂̄4−lκA2•

+ κ2
∫

�

∂̄4β(t, x ′)∂̄4v · κA2•,

where we have used the boundary condition (2.4c) in the second equality above
(recall v · κa2• = w · κa2• = ht ). As to the third term on the right-hand side of (2.37),
note that
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κAk
i ∂̄

4vi ,k = ∂̄4(κAk
i v

i ,k ) −
4

∑

l=1

cl ∂̄
lκAk

i ∂̄
4−lvi ,k

= −∂̄4(qt + v · κw) −
4

∑

l=1

cl ∂̄
lκAk

i ∂̄
4−lvi ,k ,

where κAk
i v

i ,k = −div�κ v = −(qt + v · κw) + α by the parabolic equation (2.4a).
Thus

−
∫

�

κAk
i ∂̄

4vi ,k
(

∂̄4q + ∂̄4�κ · v
)

=
∫

�

∂̄4(qt + �κt · v − α)
(

∂̄4q + ∂̄4�κ · v
)

+
4

∑

l=1

cl

∫

�

∂̄ lκAk
i ∂̄

3−lvi ,k
(

∂̄4q + ∂̄4�κ · v
)

= 1

2
∂t

∫

�

(

∂̄4q + ∂̄4�κ · v
)2

+
∫

�

(

4
∑

l=1

dl ∂̄
4−l�κt · ∂̄ lv − ∂̄4�κ · vt )

(

∂̄4q + ∂̄4�κ · v
)

+
4

∑

l=1

cl

∫

�

∂̄ lκAk
i ∂̄

3−lvi ,k
(

∂̄4q + ∂̄4�κ · v
) +

∫

�

∂̄4α
(

∂̄4q + ∂̄4�κ · v
)

.

(2.40)

Combining (2.37), (2.38), (2.39) and (2.40) we obtain the identity (2.19) with the
error termsR1 and R2 given by:

R1 :=
3

∑

l=1

cl ∂̄
lκAk

i ∂̄
4−lq,k ∂̄

4vi − (
4

∑

l=1

cl ∂̄
lκAk

i ∂̄
4−lvi ,k

+
4

∑

l=1

dl ∂̄
4−lκw · ∂̄ lv − ∂̄4�κ · vt

)(

∂̄4q + ∂̄4�κ · v
)

+ ∂̄4α
(

∂̄4q + ∂̄4�κ · v
); (2.41)

R2 := − �κ∂̄4�
[

�κ

[

(−q,2 )
(

∂̄4�t · κA2•
)
κA2•

] − (−q,2 )
(

∂̄4�κ�t · κA2•
)
κA2•

]

+
4

∑

l=1

al(−q,2 )∂̄4�κ · κA2•∂̄4−l(v + w) · ∂̄ lκA2•

+ q,1 ∂̄4�r
κ
κA1
r ∂̄

4v · κA2• + κ2
3

∑

l=0

al ∂̄
4ht ∂̄

lv∂̄4−lκA2•

− κ2∂̄4β∂̄4v · κA2•. (2.42)
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Applying the tangential differential operator ∂̄2∂t to the equation (2.4b),multiplying
it by ∂̄2∂tv

i and integrating over �, we obtain, in a completely analogous fashion,
identity (2.20), claimed in Lemma 2.2 with error termsR3 and R4 given by:

R3 :=
∑

1≤m+n≤2

cmn ∂̄
m∂nt

κAk
i ∂̄

2−m∂1−n
t q,k ∂̄2∂tv

i

−( ∑

1≤m+n≤2

cmn ∂̄
m∂nt

κAk
i ∂̄

2−m∂1−n
t vi ,k

+
∑

0≤m+n≤2

dmn ∂̄
m∂nt �κt · ∂̄2−m∂1−n

t v − ∂̄2�κt · vt
)

×(

∂̄2qt + ∂̄2�κt · v
); (2.43)

R4 := −�κ∂̄2�t

[

�κ

[

q,2
(

∂̄2∂t�t · κA2•
)
κA2•

] − q,2
(

∂̄2∂t�κ�t · κA2•
)
κA2•

]

+
∑

l+l ′≥1

al,l ′
∫

�

q,2 ∂̄ l∂ l
′
t �κ · κA2•∂̄2−l∂1−l ′

t (v + w) · ∂ lt
κA2•

− q,1 ∂̄2∂t�
r
κ
κA1
r ∂̄

2∂tv · κA2• + κ2
∑

0≤l+l ′<3

∂̄2∂t ht ∂̄
l∂ l

′
t v · ∂̄2−l∂1−l ′

t
κA2•

− κ2∂̄2∂tβ∂̄2∂tv · κA2•. (2.44)

Finally, applying ∂t t to the equation (2.4b), multiplying it by ∂t tv
i and integrating

over �, the last identity (2.21) of Lemma 2.2 follows with error terms R5 and R6
given by

R5 := −(
κAk
i ,t t v

i ,k +2κAk
i ,t v

i ,kt +2vt · κwt + vt t · κw

−�κt t · vt
)

(qtt + �κt t · v); (2.45)

R6 := −�κ�t t

[

�κ

[

q,2
(

�t t t · κA2•
)
κA2•

] − q,2
(

∂t t�κ�t · κA2•
)
κA2•

]

+
2

∑

l=1

a2l

∫

�

q,2 ∂2t �κ · κA2•∂2−l
t (v + w) · ∂ lt

κA2• − q,1 ∂t t�
r
κ
κA1
r ∂t tv · κA2•

+ κ2
1

∑

l ′=0

∂t t ht∂
l ′
t v∂2−l ′

t
κA2•

− κ2∂t tβ∂t tv · κA2•. (2.46)

Proof of part (ii) of Lemma 2.2. Applying the tangential operator ∂̄3∂t to the equa-
tion (2.4b), multiplying by ∂̄3vi and integrating over � we obtain

(

∂̄3∂tv
i , ∂̄3vi

)

L2 + (

∂̄3∂t (
κAk
i q,k ), ∂̄3vi

)

L2 = 0,

implying

1

2
∂t

∫

�

|∂̄3vi |2 + (

∂̄3∂t
κAk
i q,k +κAk

i ∂̄
3∂t q,k , ∂̄3vi

)

L2

=
∑

l+l̄=3, k+k̄=1
0<l+k<4

cl,k,l̄,k̄
(

∂̄ l∂kt
κAk
i ∂̄

l̄∂ k̄t q,k , ∂̄3vi
)

L2 . (2.47)
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Recalling (1.17), we write

∂̄3∂t
κAk
i = −κAk

r ∂̄
3κw,rs

κAs
i + {∂̄3∂t , κAk

i }. (2.48)

Using this decomposition we have

(

∂̄3∂t
κAk
i q,k +κAk

i ∂̄
3∂t q,k , ∂̄3vi

)

L2 = −
∫

�

κAk
r ∂̄

3κw,rs
κAs
i q,k ∂̄3vi

+
∫

�

κAk
i ∂̄

3∂t q,k ∂̄3vi + T , (2.49)

where the commutator term has been absorbed in the error T . Integrating by parts
with respect to s and k in the first two integrals on the right-hand side above
respectively, we obtain analogously to the proof of Lemma 2.2:

−
∫

�

κAk
r ∂̄

3κw,rs
κAs
i q,k ∂̄3vi +

∫

�

κAk
i ∂̄

3∂t q,k ∂̄3vi

=
∫

�

q,2 ∂̄3κw · κA2•∂̄3w · κA2• −
∫

�

∂̄3∂t q ∂̄3v · κA2• +
∫

�

q,1
κA1
r ∂̄

3κwr ∂̄3v · κA2•

+
∫

�

(∂̄3qt + ∂̄3κw · v)2 +
∫

�

(
3

∑

l=1

dl ∂̄
3−lκw · ∂̄ lv

+
3

∑

l=1

el ∂̄
l As

i ∂̄
3−lvi ,s

)(

∂̄3qt + ∂̄3κw · v
) + T . (2.50)

Note further that the first term on the right-hand side above can be, similarly
to (2.39), further written as

∫

�

q,2 ∂̄3κw · κA2•∂̄3w · κA2• =
∫

�

q,2 |∂̄3�κw · κA2•|2

+
∫

�

�κ ∂̄3w · [

�κ [q,2 (∂̄3w · κA2•)κA2•]
− q,2 (∂̄3�κw · κA2•)κA2•

]

.

The second term on the right-hand side of (2.50) reads, using the boundary condi-
tion (2.4c)

∫

�

∂̄3∂t q ∂̄3v · κA2• = κ2
∫

�

∂̄3∂t ht
(

∂̄3(v · κA2•) −
2

∑

l=0

cl ∂̄
lv · ∂̄3−lκA2•

)

+ κ2
∫

�

∂̄3∂tβ∂̄3v · κA2•

= κ2

2

d

dt

∫

�

J−1
κ |∂̄3ht |2 − κ2

2
∑

l=0

cl

∫

�

∂̄3∂t ht ∂̄
lv · ∂̄3−lκA2•

+κ2
∫

�

∂̄3∂tβ∂̄3v · κA2• + T ,
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where the error term T denotes the lower order terms containing the time derivative
of Jκ . We also used the regularized boundary condition (2.4c) in the first equality
above. Combining (2.47)–(2.50) and the last identity we obtain the identity (2.22)
with error terms S1 and S2 given by

S1 :=
∑

l+l̄=3, k+k̄=1
0<l+k<4

cl,k,l̄,k̄ ∂̄
l∂kt

κAk
i ∂̄

l̄∂ k̄t q,k

−
(

3
∑

l=1

dl ∂̄
3−lκw · ∂̄ lv +

3
∑

l=1

el ∂̄
lκAs

i ∂̄
3−lvi ,s

)
(

∂̄3qt + ∂̄3κw · v
)

; (2.51)

S2 := − �κ∂̄3w · [

�κ [q,2 (∂̄3w · κA2•)κA2•] − q,2 (∂̄3�κw · κA2•)κA2•
]

+
3

∑

l=1

cl(−q,2 )∂̄3κw · κA2•(∂̄3−l(v + w) · ∂̄ lκA2•) − q,1
κA1
r ∂̄

3κwr ∂̄3v · κA2•

+ κ2
2

∑

l=0

cl ∂̄
3∂t ht ∂̄

lv · ∂̄3−lκA2• − κ2∂̄3∂tβ∂̄3v · κA2•. (2.52)

Applying the tangential operator ∂̄∂2t to the equation (2.4b), multiplying by ∂̄∂tv
i

and integrating over�we obtain the identity (2.23) in an analogous way, with error
terms S3 and S4 given by

S3 := (

v,s ·∂̄�κt t
κAs
i − {∂̄∂2t , κAk

i }q,k
)

∂̄vit

+
∑

1≤m+n≤2

cmn ∂̄
a∂bt

κAk
i ∂̄

1−a∂2−b
t q,k ∂̄vit t

+
(

∑

1≤m+n≤2

dmn ∂̄
a∂bt

κAs
i ∂̄

1−a∂1−b
t vi ,s

−(�t t · ∂̄v + ∂̄�t · vt + �t ∂̄vt )

)
(

∂̄qtt + ∂̄�κ,t t · v
) ; (2.53)

S4 := q,2 ∂̄κwt · κA2•
[

(∂̄(v + κw) · κA2•t ) + (κwt + vt ) · ∂̄κA2• + (κw + v) · ∂̄κA2•t
]

− ∂̄∂t�κw · κA2•
[

�κ

(

(−q,2 )A2•∂̄∂tw · κA2•
) − q,2 ∂̄∂t�κwκA2•

]

− q,1
κA1
r ∂̄∂t

κwr ∂̄∂tv · κA2• + κ2∂̄∂t ht (∂̄∂t (v · κA2•) − ∂̄∂tv · κA2•)
− κ2∂̄∂t tβ∂̄∂tv · κA2•. (2.54)

2.7. Nonlinear Energy Estimates

The following proposition states the desired energy bound for the classical
Stefan problem (with σ = 0), will subsequently lead to a uniform-in-κ time of
existence for our family solutions to the regularized κ-problems (2.4).

Proposition 2.6. (Main energy inequality) There exists a constant C independent
of κ and a generic polynomial function P such that for any t ∈ [0, T κ ] we have
the following bound:

Eκ(t) ≤ CEκ(0) + C(t + √
t)P(Eκ). (2.55)
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The proof of the proposition proceeds by systematically estimating error terms
in the energy identities from Section 2.4. We shall implicitly use the a priori
bound (2.17) freely throughout the proof without explicitly making reference to
it.
Step 1. Estimates for

∫ t
0

∫

�
R1 defined by (2.41) We start by estimating the integral

∑3
l=1

∫ t
0

∫

�
cl ∂̄ lκAk

i ∂̄
4−lq,k ∂̄

4vi [the first term appearing in (2.41).] If l = 1, we
have
∣
∣
∣

∫ t

0

∫

�

∂̄κAk
i ∂̄

3q,k ∂̄
4vi

∣
∣
∣ ≤ ‖∂̄κAk

i ‖L∞
t L∞

x

∫ t

0
‖∂̄3q,k ‖L2‖∂̄4vi‖L2

� ‖
∫ t

0
∂̄∂t (

κAk
i )‖H1.5‖∂̄3q,k ‖L2

t L2
x
‖∂̄4vi‖L2

t L2
x

≤ √
t‖κw‖L2

t H3.5
x

‖∂̄3q,k ‖L2
t L2

x
‖∂̄4vi‖L2

t L2
x

�
√
t P(Eκ).

For l = 2, 3 we have
∣
∣
∣

∫ t

0

∫

�

∂̄ lκAk
i ∂̄

4−lq,k ∂̄
4vi

∣
∣
∣ � ‖∂̄ lκAk

i ‖L∞
t H0.5

x
‖∂̄4−lq,k ‖H0.5

∫ t

0
‖∂̄4vi‖L2

�
√
t‖∇(�κ − Id)‖L∞

t H2.5
x

‖q‖L∞
t H3.5

x
‖∂̄4vi‖L2

t L2
x

�
√
t P(Eκ).

We proceed to estimate the integral
∑4

l=1 cl
∫ t
0

∫

�
∂̄ lκAk

i ∂̄
4−lvi ,k

(

∂̄4q + ∂̄4�κ · v)

[the second term appearing in (2.41)]. Only cases l = 1 and l = 4 deserve special
attention, while the cases l = 2 and l = 3 are estimated by a routine application of
the Cauchy–Schwarz inequality and the Sobolev embedding. When l = 1, we can
use Lemma B.2 to conclude that

∣
∣
∣

∫ t

0

∫

�

∂̄κAk
i ∂̄

3vi ,k
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣

≤
∫ t

0
‖∂̄κAk

i ‖0.5‖vi ,k ‖2.5‖∂̄4q + ∂̄4�κ · v‖0

+‖∂̄κAk
i ‖L∞

t L∞
x

∫ t

0
‖vi ,k ‖2.5

(‖∂̄4q‖0.5 + ‖(∂̄4�κ · v)‖0.5
)

� ‖
∫ t

0
∇2∂t (

κAk
i )‖L∞

t L2
x

∫ t

0
‖q‖4.5

(‖∂̄4q‖0.5 + ‖∂̄4�κ · v‖0.5
)

+‖
∫ t

0
∂̄∂t (

κAk
i )‖H1.5

∫ t

0
‖q‖24.5

+‖∇2�κ‖L∞
t H1.5

x
‖v‖L∞

t H0.5
x

‖∇2�κ‖L∞
t H2.5

x

∫ t

0
‖q‖4.5

�
√
t‖κw‖L2

t H3
x
‖q‖2

L2
t H4.5

x
+ √

t‖κw‖L2
t H3

x
‖∇2�κ‖L∞

t H2.5
x

∫ t

0
‖q‖4.5

+C
√
t‖κw‖L2

t H3.5
x

∫ t

0
‖q‖24.5

+C
√
t‖∇2�κ‖L∞

t H1.5
x

‖∇2�κ‖L∞
t H2.5

x
‖q‖L2

t H4.5
x

�
√
t P(Eκ).
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As for the case l = 4, we use Lemma B.2 again and obtain

∣
∣
∣

∫ t

0

∫

�

∂̄4κAk
i v

i ,k
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣

≤
∫ t

0

∫

�

‖κAk
i ‖3.5‖vi ,k

(

∂̄4q + ∂̄4�κ · v
)‖0.5

≤
∫ t

0
‖∇2�κ‖2.5‖vi ,k ‖W 0.5,∞‖∂̄4q + ∂̄4�κ · v‖0.5

≤ ‖∇2�κ‖L∞
t H2.5

x
‖q‖L∞

t H3.5
x

∫ t

0
(‖q‖4.5 + ‖∇2�κ‖2.5)

≤ √
t‖∇2�κ‖L∞

t H2.5
x

‖q‖L∞
t H3.5

x
‖q‖L2

t H4.5
x

+ t‖q‖L∞
t H3.5

x
‖∇2�κ‖2L∞

t H2.5
x

� (
√
t + t)P(Eκ).

The next error term to estimate is
∑4

l=1 dl
∫ t
0

∫

�
∂̄4−lκw · ∂̄ lv(

∂̄4q + ∂̄4�κ · v)

[the
third term appearing in (2.41)]. If l = 4, we estimate

∣
∣
∣

∫ t

0

∫

�

κw · ∂̄4v
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣ ≤

∫ t

0
‖κw‖∞‖∂̄4v‖0‖∂̄4q + ∂̄4�κ · v‖0

≤ √
t‖κw‖L∞

t H1.5
x

‖∂̄4q + ∂̄4�κ · v‖L∞
t L2

x
‖∂̄4v‖L2

t L2
x

�
√
t P(Eκ);

and analogously for l = 3

∣
∣
∣

∫ t

0

∫

�

∂̄κw · ∂̄3v
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣ ≤ √

t‖κw‖L∞
t H2.5

x
‖∂̄4q

+ ∂̄4�κ · v‖L∞
t L2

x
‖∂̄3v‖L2

t L2
x

�
√
t P(Eκ ).

For l = 1, 2, we have
∣
∣
∣

∫ t

0

∫

�

∂̄ lκw · ∂̄4−lv
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣

≤
∫ t

0
‖∂̄ lκw‖0‖∂̄4−lv‖∞‖∂̄4q + ∂̄4�κ · v‖0

≤ √
t‖κw‖L∞

t H2
x
‖∂̄4q + ∂̄4�κ · v‖L∞

t L2
x
‖q‖L2

t H4.5
x

�
√
t P(Eκ).

The next-to-last term on the right-hand side of (2.41) is estimated as follows:
∣
∣
∣∂̄

4�κ · vt
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣ ≤ √

t‖∂̄4�κ‖L∞
t L2

x
‖∂̄4q

+∂̄4�κ · v‖L∞
t L2

x
‖vt‖L2

t H1.5
x

�
√
t P(Eκ).

Finally, to bound
∫ t
0

∫

�
∂̄4α

(

∂̄4q + ∂̄4�κ · v)

[the last term appearing in (2.41)] we
integrate by parts and use the Cauchy–Schwarz inequality to obtain

∣
∣
∣

∫ t

0

∫

�

∂̄4α
(

∂̄4q + ∂̄4�κ · v
)
∣
∣
∣ ≤ ‖∂̄3α‖L∞

t L2
x

√
t‖∂̄5q + ∂̄(∂̄4�κ · v)‖L2

t L2
x

� Eκ(0) + tEκ(t).
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Note that we used Lemma 2.4 and a priori bound (2.17).
Estimates for the error term

∫ t
0

∫

�
R2 defined by (2.42). For any i, j ∈ {1, 2} set

F = q,2
κA2
i
κA2

j , G = ∂̄3� i
t and apply Lemma B.1 to conclude

∫ t

0

∣
∣
∣�κ

[

q,2
(

∂̄4�t · κA2•
)
κA2•

] − q,2
(

∂̄4�κ�t · κA2•
)
κA2•

∣
∣
∣

2

�
∫ t

0
|q,2

κA2• : κA2•|2W 1,∞(�)
|�κw|23

� sup
0≤s≤t

|q,2
κA2• : κA2•|22

∫ t

0
|�κw|23 � P(Eκ),

where we estimate |�κw|L2
t H3

x
using (2.12):

|ht |2L2
t H3

x
�

∫ t

0

∣
∣∂̄3(

√

1 + |∂̄hκ |2(v · κA2•))
∣
∣
2 � P(Eκ)

∫ t

0
‖q‖24.5 � P(Eκ ).

(2.56)

Note that we bounded |v|3 by relating it to its norm over � via the trace estimate

|v|2
L2
t H3

x
� ‖v‖2

L2
t H3.5

x
� P(Eκ)

∫ t

0
‖q‖24.5 � P(Eκ). (2.57)

Thus,
∣
∣
∣

∫ t

0

∫

�

�κ∂̄4�
[

�κ

[

q,2
(

∂̄4�t · κA2•
)
κA2•

] − q,2
(

∂̄4�κ�t · κA2•
)
κA2•

]∣
∣
∣

� P(Eκ)1/2
(
∫ t

0

∫

�

∣
∣�κ∂̄4�

∣
∣
2)1/2 � t P(Eκ).

Finally, we treat the last term on the right-hand side of (2.42). For 1 ≤ l ≤ 2, we
have

∫ t

0

∫

�

q,2 ∂̄4�κ · κA2•∂̄4−l(v + κw) · ∂̄ lκA2•

≤ |q,2 ∂̄ lκA2•|L∞
t L∞

x

∫ t

0
|∂̄4�κ · κA2•|0|∂̄4−l(v + κw)|0

� |q,2 |L∞
t H1

x
|∂̄ lκA2•|L∞

t H1
x
|∂̄4�κ · κA2•|L∞

t L2
x

√
t
(|v|L2

t H3
x

+ |κw|L2
t H3

x

)

�
√
t P(Eκ ),

where estimates (2.56) and (2.57) were used in the last inequality. If l = 3, we apply
a similar estimate, bounding the term ∂̄ lκA2• = ∂̄3κA2• in L2-norm and ∂̄4−l(v+κw) =
∂̄(v + κw) via L∞ norm and Sobolev embedding leading to:

∣
∣
∣

∫ t

0

∫

�

q,2 ∂̄4�κ · κA2•∂̄(v + κw) · ∂̄3κA2•
∣
∣
∣ �

√
t P(Eκ).

Case l = 4 is the trickiest error term as four derivatives fall on κA2•, thus creating
a term that at highest order contains five derivatives of �, which is more than the
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number of derivatives allowed by our energy Eκ . However, we have the following
identity:

∫

�

q,2 ∂̄4�κ · κA2•(v + κw) · ∂̄4κA2• = 1

2

∫

�

∂̄[q,2

κw · τκ

|∂̄τκ | ](∂̄4�κ · κA2•
)2

+
∫

�

q,2

κw · τκ

|∂̄τκ | ∂̄4�κ · κA2•∂̄4�κ · ∂̄κA2•

+
∫

�

q,2 ∂̄4�κ · κA2•E, (2.58)

where E is the lower order error term given by

E = κw · τκ

3
∑

l=1

el ∂̄
l+1�κ∂̄4−l(|∂̄�κ |−1) · κA2• +

3
∑

l=1

el
κw · τκ ∂̄ lτκ ∂̄4−lκA2•.

(2.59)

To prove (2.58) we first note that

v + κw = (v + κw) · nκnκ + (v + κw) · τκτκ = (v + κw) · τκτκ ,

where we have used the boundary condition (2.4d). Therefore, we have the equality

(v + κw) · ∂̄4κA2• = (v + κw) · τκτκ · ∂̄4κA2• = κw · τκτκ · ∂̄4κA2•

= −κw · τκ ∂̄4τκ · κA2• +
3

∑

l=1

el
κw · τκ ∂̄ lτκ ∂̄4−lκA2•,

where we first used the identity v · τκ = 0 and in the last line we used the product
rule expansion of the identity 0 = ∂̄4(τκ · κA2•) with el the corresponding binomial

coefficients. Since τκ = ∂̄�κ

|∂̄�κ | , we have

∂̄4τκ · κA2• = ∂̄5�κ

|∂̄�κ | · κA2• +
3

∑

l=1

el ∂̄
l+1�κ∂̄4−l(|∂̄�κ |−1) · κA2•

+ ∂̄�κ ∂̄4(|∂̄�κ |−1) · κA2•

= ∂̄5�κ

|∂̄�κ | · κA2• +
3

∑

l=1

el ∂̄
l+1�κ∂̄4−l(|∂̄�κ |−1) · κA2•,

where we simply used the product rule to expand ∂̄4( ∂̄�

|∂̄�| ) and the orthogonality of
∂̄�κ and κA2• in the last line. Combining the previous two identities, we may write

(v + κw) · ∂̄4κA2• = − ∂̄5�κ

|∂̄�κ | · κA2•κw · τκ + E,
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where the error term E is given by (2.59). We thus obtain
∫

�

q,2 ∂̄4�κ · κA2•(v + κw) · ∂̄4κA2• = −
∫

�

q,2

κw · τκ

|∂̄�κ | ∂̄
4�κ · κA2•∂̄5�κ · κA2•

+
∫

�

q,2 ∂̄4�κ · κA2• E .

Note that first integral on the right-hand side has a symmetry allowing us to extract
a full tangential derivative at the level of highest order terms:

−
∫

�

q,2

κw · τκ

|∂̄τκ | ∂̄4�κ · κA2•∂̄5�κ · κA2•

= −1

2

∫

�

q,2

κw · τκ

|∂̄τκ | ∂̄[(∂̄4�κ · κA2•
)2] +

∫

�

q,2

κw · τκ

|∂̄τκ | ∂̄4�κ · κA2•∂̄4�κ · ∂̄κA2•

= 1

2

∫

�

∂̄[q,2

κw · τκ

|∂̄τκ | ](∂̄4�κ · κA2•
)2 +

∫

�

q,2

κw · τκ

|∂̄τκ | ∂̄4�κ · κA2•∂̄4�κ · ∂̄κA2•,

where we have used integration by parts in the second equation. Finally, summing
the previous two identities we arrive at (2.58).

Note that �κ enters the right-hand side of the above identity at most with 4
derivatives. By standard L∞ − L2 − L2 type estimates and identity (2.58), we
finally arrive at

∣
∣
∣

∫ t

0

∫

�

q,2 ∂̄4�κ · κA2•(v + κw) · ∂̄4κA2•
∣
∣
∣ �

√
t P(Eκ). (2.60)

Before we estimate the third term on the right-hand side of (2.42), we first rewrite:

∂̄4v · κA2• = −∂̄4(κw · κA2•) −
3

∑

l=0

al ∂̄
lv∂̄4−lκA2• = −J−1

κ ∂̄4hκ,t −
3

∑

l=0

al ∂̄
lv∂̄4−lκA2•,

where al , l = 0, . . . , 3 are the corresponding binomial coefficients. As a conse-
quence, we have

∣
∣
∣

∫ t

0

∫

�

q,1 ∂̄4�r
κ
κA1
r ∂̄

4v · κA2•
∣
∣
∣ ≤ κ2

∣
∣
∣

∫ t

0

∫

�

(v · κa2• + β),1 ∂̄4�r
κ
κA1
r J

−1
κ ∂̄4ht

∣
∣
∣

+κ2
3

∑

l=0

al
∣
∣
∣

∫ t

0

∫

�

(v · κa2• + β),1 ∂̄4�r
κ
κA1
r ∂̄

lv∂̄4−lκA2•
∣
∣
∣. (2.61)

The first term on the right-hand side above is easily bounded as follows:

κ2
∣
∣
∣

∫ t

0

∫

�

(v · κa2• + β),1 ∂̄4�r
κ
κA1
r J

−1
κ ∂̄4ht

∣
∣
∣

≤ √
tκ|(v · κa2• + β),1

κA1
r J

−1
κ |L∞

t L∞
x

|∂̄4�κ |L∞
t L2

x
κ|∂̄4ht |L2

t L2
x

�
√
tκP(Eκ).
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The second term on the right-hand side of (2.61) is a sum, and the hardest summand
to bound is created when l = 0. In this case, roughly speaking we bound |∂̄4κA2•|0
by κ−1|�κ�|4 trading one tangential derivative on ∂̄4�κ�κ∇� for a bound on
�κ∇� in H3, at the expense of a factor of κ−1. Using this observation we obtain

κ2
∣
∣
∣

∫ t

0

∫

�

(v · κa2• + β),1 ∂̄4�r
κ
κA1
r v∂̄4κA2•

∣
∣
∣

� κ2√t |(v · κA2• + β),1
κA1
r |L∞

t L∞
x

|κ−1|∂̄4�κ |L∞
t L2

x

�
√
tκP(Eκ).

The next-to-last term on the right-hand side of (2.42) is again a sum and the hardest
term to estimate is created again when l = 0. We use the same idea as in the
previous estimate to obtain

∣
∣
∣κ

2
∫ t

0

∫

�

∂̄4htv · ∂̄4κA2•
∣
∣
∣ �

√
tκ|∂̄4ht |L2

t L2
x
|v|L∞

t L∞
x

κκ−1|�κ�|L∞
t L2

x
�

√
t P(Eκ).

Note that we exploited the presence of the κ-dependent energy term in our energy
Eκ , using the bound κ|∂̄4ht |L2

t L2
x

≤ √
Eκ . In an analogous manner, we conclude

∣
∣
∣

∫

�

R3 + R5 dx
∣
∣
∣ +

∣
∣
∣

∫

�

R4 + R6 dx
′
∣
∣
∣ � (t + √

t)P(Eκ),

where we note that the commutator term, i.e. the first term on the right-hand side
of (2.46) deserves special attention. Due to the absence of spatial derivatives in the
term �t t t in

−�κ�t t

[

�κ

[

q,2
(

�t t t · κA2•
)
κA2•

] − q,2
(

∂t t�κ�t · κA2•
)
κA2•

]

,

we cannot apply the commutator bound from Lemma B.1 in the form stated. Here,
we crucially exploit the κ-dependent term in the energy Eκ . Note that

∣
∣
∣

∫ t

0

∫

�

�κ�t t

[

�κ

[

q,2
(

�t t t · κA2•
)
κA2•

] − q,2
(

∂t t�κ�t · κA2•
)
κA2•

]∣
∣
∣

≤ √
t |�κ�t t |L∞

t L2
x
||q,2

κA2• : κA2•|L∞
t W 1,∞

x
κ|�t t t |L2

t L2
x

≤ √
t P(Eκ), (2.62)

where we gain one power of κ in the second line above from the commutator es-
timate and then absorb it into the energy contribution κ|�t t t |L2

t L2
x
. The last term

on the right-hand side of (2.42) contains the β-contribution from the regularized
Dirichlet condition (2.4c). It is easily estimated using the Cauchy-Schwarz inequal-
ity by a term of the form Ctm0 + Ctκ2|∂̄4ht |2L2L2 which in turn is smaller than a
constant multiple of tm0 + tEκ . Here m0 is a constant, which depends only on the
initial data.
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Estimates for
∫

�
S1 and

∫

�
S2. In the first term on the right-hand side of (2.51), the

hardest terms to estimate correspond to the cases (l̄, k̄) = (2, 1) and (l, k) = (2, 1).
If (l̄, k̄) = (2, 1), then

∣
∣
∣

∫ t

0

∫

�

∂̄κAk
i ∂̄

2∂t q,k ∂̄3vi
∣
∣
∣

≤
∫ t

0

∫

�

|∂̄(∂̄κAk
i ∂̄

3vi )∂̄∂t q,k |

≤
∫ t

0
‖∂̄2κAk

i ‖∞‖∂̄3vi‖0‖∂̄∂t q,k ‖0

+
∫ t

0
‖∂̄∂t

κAk
i ‖∞‖∂̄4vi‖0‖∂̄∂t q,k ‖0

�
√
t‖∂̄2κAk

i ‖L∞
t H1.5

x
‖∂̄3v‖L∞

t L2
x
‖qt‖L2

t H2
x

+‖
∫ t

0
∂̄κAk

i (s) ds‖H1.5‖∂̄4vi‖L2
t L2

x
‖qt‖L2

t H2
x

�
√
t‖∇2�κ‖L∞

t H2.5
x

‖∂̄3v‖L∞
t L2

x
‖qt‖L2

t H2
x

+ t‖∇w‖L2
t H1

x
‖∂̄4vi‖L2

t L2
x
‖qt‖L2

t H2
x

� (t + √
t)P(Eκ).

Assume now that (l, k) = (2, 1), then

∣
∣
∣

∫ t

0

∫

�

∂̄2∂t
κAk
i ∂̄q,k ∂̄3vi

∣
∣
∣ �

√
t‖q‖L∞

t H2
x
‖∂̄3v‖L∞

t L2
x
‖κw‖L2

t H3
x

�
√
t P(Eκ).

The second error term is rather straightforward: for any l = 2, 3,

∣
∣
∣

∫ t

0

∫

�

∂̄3−lκw · ∂̄ lv(

∂̄3qt + ∂̄3κw · v
)
∣
∣
∣

≤ ‖∂̄3−lκw‖L∞
t H1.5

x

∫ t

0
‖∂̄ lv‖0‖∂̄3qt + ∂̄3κw · v‖0

�
√
t‖κw‖L∞

t H2.5
x

‖∂̄ lv‖L∞
t L2

x
‖∂̄3qt + ∂̄3κw · v‖L2

t L2
x

�
√
t P(Eκ).

If l = 1, then

∣
∣
∣

∫ t

0

∫

�

∂̄2κw · ∂̄v
(

∂̄3qt + ∂̄3κw · v
)
∣
∣
∣ � ‖Dv‖L∞

t H1.5
x

‖κw‖L∞
t H2

x
‖∂̄3qt

+∂̄3κw · v‖L2
t L2

x
�

√
t P(Eκ).

Similar analysis yields:

3
∑

l=1

∣
∣
∣

∫ t

0

∫

�

∂̄ lκAs
i ∂̄

3−lvi ,s
(

∂̄3qt + ∂̄3κw · v
)
∣
∣
∣ �

√
t P(Eκ).
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As for the error term (2.52), we start by applying Lemma B.1 to deal with the
commutator term. For any i, j ∈ {1, 2} set F = q,2

κA2
i
κA2

j , G = ∂̄2w and apply
Lemma B.1 to obtain

∫ t

0

∣
∣
∣�κ [q,2 (∂̄3w · κA2•)κA2•] − q,2 (∂̄3�κw · κA2•)κA2•

]
∣
∣
∣

2

�
∫ t

0
|q,2

κA2• : κA2•|2W 1,∞|w|22
� t sup

0≤s≤t
|q,2

κA2• : κA2•|22 sup
0≤s≤t

|w|22 � t P(Eκ), (2.63)

where, in order to bound |w|L∞
t H2

x
, we use the equation (2.4d) analogously to the

bound (2.56). Upon using the Cauchy-Schwarz inequality we get
∣
∣
∣

∫ t

0

∫

�

�κ∂̄3w · [

�κ [q,2 (∂̄3w · κA2•)κA2•] − q,2 (∂̄3�κw · κA2•)κA2•
]
∣
∣
∣ ≤ √

t P(Eκ).

As for the second term on the right-hand side of (2.52), we obtain
∣
∣
∣

∫ t

0

∫

�

q,2 (∂̄3−l(v + w) · ∂̄ lκA2•)∂̄3κw · κA2•
∣
∣
∣

≤
∫ t

0
|q,2 |∞

(

(|v|2 + |w|2)|∂̄3κA2•|0
)|∂̄3�κw|0

� ‖q‖L∞
t H2.5

x
(‖v‖L∞

t H2.5
x

+ |w|2)
∣
∣∂̄� − Id

∣
∣
3

∫ t

0
|∂̄3�κw|0,�

√
t P(E),

where the term |w|2
L∞
t H2

x
is bounded by P(Eκ) for the same reason as in (2.63). The

last term on the right-hand side of (2.52) is a sum, and the hardest term to bound
is created when l = 0. We must integrate by parts with respect to the time variable
to obtain

κ2
∫ t

0

∫

�

∂̄3∂t htv · ∂̄3κA2• = κ2
∫

�

∂̄3htv · ∂̄3κA2•
∣
∣
∣

t

0
− κ2

∫ t

0

∫

�

∂̄3htvt · ∂̄3κA2•

−κ2
∫ t

0

∫

�

∂̄3htv · ∂̄3∂t κA2•. (2.64)

Now observe that

κ2
∫

�

∂̄3htv · ∂̄3κA2•
∣
∣
∣

t

0
� κ2m0 + κ|∂̄3ht |L∞

t L2
x
|v|L∞

t L∞
x

κ|
∫ t

0
∂t ∂̄

3κA2•|L∞
t L2

x

�
√

Eκ

√

Eκ

√
tκ|∂̄4ht |L2

t L2
x

�
√
t P(Eκ ),

wherem0 depends only on the initial conditions. As for the remaining three terms on
the right-hand side of (2.64), they are straightforward to bound using the standard
energy estimates. We arrive at

κ2
∣
∣
∣

∫ t

0

∫

�

∂̄3∂t htv · ∂̄3κA2•
∣
∣
∣ ≤ κ2m0 + √

t(1 + κ)P(Eκ).

In an analogous manner we conclude
∣
∣
∣

∫ t

0

∫

�

S3 dx
∣
∣
∣ +

∣
∣
∣

∫ t

0

∫

�

S4 dx
′
∣
∣
∣ � (t + √

t)P(Eκ).
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2.8. Proof of Theorem 1.1

The polynomial inequality (2.55) replaces the typically used Gronwall inequal-
ity. Since the constants appearing in (2.55) are independent of κ a standard con-
tinuity argument (see for instance Section 9 of [18]) yields the existence of a κ-
independent time T such that

Eκ(t) ≤ CEκ(0) ≤ CE(0) + 1

for κ small enough.
Since E(t) ≤ Eκ(t), t ∈ [0, T ] (recall the definitions (1.20) of E and (2.16) of

Eκ ), we obtain the uniform bound

E(qκ , hκ) ≤ CE(0) + 1,

where (qκ , hκ)κ is a family of solutions to the κ-regularized problem (2.4), 0 ≤
κ ≤ 1. Note that the assumptions (2.18) remain valid (on a possibly smaller) time
interval [0, T ], as both |∂̄h|L∞

t L∞
x
and δ are easily controlled by the energy E . By

the fundamental theorem of calculus, it is clear that on a possibly smaller time
interval [0, T ] we have

sup
0≤t≤T

A(t) ≤ Eκ(0) + T sup
0≤t≤T

Eκ(t) ≤ Eκ(0) + 1

2
,

thus justifying a posteriori the a priori assumption (2.17). Thus, passing to the weak
limit as κ → 0 we obtain a solution on the time interval [0, T ]which belongs to the
space S(T ) defined in (1.27). Since S(T ) embeds compactly into C1

t C
0
x ∩ C0

t C
2
x

the solution is also classical.
Uniqueness.We only present a brief sketch of the uniqueness argument. A simple
application of the energy method also implies uniqueness of the solution. Assume
that (q̃, h̃) also solves (2.4) with the corresponding �̃, ṽ, w̃. Then the pair (r, ρ) :=
(q − q̃, h − h̃) satisfies the following system of equations:

rt − A j
i

(

Aki r,k
)

, j = (�� − �
�̃

)q − (v − ṽ)· w + ṽ(w − w̃) in � ; (2.65a)

(v − ṽ)i + Aki r,k +q̃,k (Aki − Ãki ) = 0 in � ; (2.65b)

r = 0 on � ; (2.65c)

ρt = −r,2 on � ; (2.65d)

∂nr = 0 on ∂�top. (2.65e)

Furthermore, initially (r(0, x), ρ(0, x ′)) = (0, 0).Applying ∂̄ to the identity (2.65b),
multiplying by (∂̄(v − ṽ))i and integrating over �, we derive the first identity in
analogy to the proof of Lemma 2.2. Similarly, applying ∂t to (2.65b), multiply-
ing by (v − ṽ)i and integrating, we obtain the second energy identity. The natural
quadratic form that emerges is equivalent to

E := ‖∂̄(v − ṽ)‖2
L2
t L2

x
+ ‖v − ṽ‖2L∞L2 + ‖r‖2L∞H1

x

+‖rt‖2L2
t L2

x
+ |ρ|2L∞

t L2
x
+ |ρt |2L2

t L2
x
.
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Furthermore, we have an a-priori control of the high-order derivatives of the two
solutions, i.e. for some M > 0: E(q, h) + E(q̃, h̃) < M . From here, we can easily
prove the polynomial bound

E(t) ≤ t P(E(t)),

which in particular, uses the fact that the initial values for ρ and r are 0. We infer
that E = 0 and hence the uniqueness follows.
Continuity in Time. Since q ∈ L2

t H
5
x and qt ∈ L2

t H
3
x , it follows that q ∈ C0

t H
4
x ;

similarly, since qtt ∈ L2
t H

3
x , then qt ∈ C0

t H
2
x . Passing to the limit as κ → 0 in

(2.32),

∂̄2h = g2∂̄v · τ

v · n , (2.66)

where v · n > 0 by the Taylor sign condition. By passing to the limit as κ → 0 in
Lemma 2.4, we have that � ∈ L2

t H
5
x , and we also have that � ∈ L2

t H
3.5
x , from

which it follows that � ∈ C0
t H

4
x . Since q ∈ C0

t H
4
x and , and since v = −∇�q ∈

L2
t H

4
x , it follows that v ∈ L2

t H
4
x ∩C0

t H
3
x ; hence, ∂̄v · τ ∈ L2

t H
2.5(�). Then, since

g and n are in L∞
t H3(�), and v · n ∈ L∞

t H2.5(�), we see from (2.66) that

h ∈ L2
t H

4.5(�) .

Since ht = gv · n on �, we then have that

ht ∈ L2
t H

3.5(�) ,

from which it follows that

h ∈ C0
t H

4(�) .

Since ht = gv · n on �, and since g and n are in C0
t H

3(�) and v ∈ C0
t H

2.5(�),
then ht ∈ C0

t H
2.5(�). Using that htt = ∂t [gv · n] on � and the fact that vt ∈

C0
t H

0.5(�), we also have that htt ∈ C0
t H

0.5(�).
It remains to show that qtt ∈ C0

t L
2
x . From (1.18a),

qtt = (�q)t − (v · w)t .

Given the regularity already established for q, qt , �, and �t , we need to establish
the regularity for wt = �t t . Since htt ∈ C0

t H
0.5(�), then �t t ∈ C0

t H
1(�), and

we find that qtt ∈ C0
t L

2(�).

3. The Vanishing Surface Tension Limit

Local-in-time existence for the Stefan problem with surface tension has been
studied in a variety of papers; see, for example, [23,29,30,43]. For any (qσ

0 , hσ
0 ) ∈

H4(�)×H5.5(�) there exists a local-in-time classical solution (q, h) to the Stefan
problem with surface tension in the harmonic gauge:

qt − ��q = −v · w in � × (0, T ] , (3.1a)
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vi + Ak
i q,k = 0 in � × (0, T ] , (3.1b)

q = −σ
∂̄2h

(1 + |∂̄h|2) 3
2

on � × [0, T ] , (3.1c)

�� = 0 on � × [0, T ] , (3.1d)

� = Id + h N on � × [0, T ] , (3.1e)

� = Id on ∂�top × [0, T ] , (3.1f)

�t · n(t) = −v · n(t) on � × (0, T ] , (3.1g)

v · N = 0 on ∂�top × [0, T ] , (3.1h)

�(0, ·) = �0 q(0, ·) = qσ
0 = p0 ◦ �0 , . (3.1i)

With σ > 0, we can prove the following energy identities in the same way as
Lemma 2.2.

Lemma 3.1. Let (q, h) be a local-in-time solution to (3.1) defined on the time
interval [0, Tσ ]. Then we have the following energy identity:

Fσ (q, �)(t) =
∫ t

0

∫

�

{R1 + R3 + R5 + S1 + S3}

+
∫ t

0

∫

�

{R2 + R4 + R6 + S2 + S4}

+
∫ t

0

∫

�

{Rσ
2 + Rσ

4 + Rσ
6 + Sσ

2 + Sσ
4 },

where

Fσ := F + σ

2

∑

a+2b≤4

∣
∣
∣|∂̄�|−3/2 J−1/2∂̄a+1∂bt h

∣
∣
∣

2

L∞
t L2

x

+σ
∑

a+2b≤3

∣
∣
∣∂̄�|−3/2 J−1/2∂̄a+1∂bt ht

∣
∣
∣

2

L2
t L2

x

, (3.2)

with the energyF and error termsRi , i = 1, . . . , 6,Si , i = 1, . . . , 4 given by (2.24)
and Lemma 2.2 respectively, wherein we drop the κ-dependent terms. Furthermore,

Rσ
2 := − σ ∂̄

(
∂̄2h

|∂̄�|3
)

∂̄4� · A1•∂̄4v · A2•

+ σ
{ − ∂̄5h · ∂̄

( − ∂̄4ht |∂̄�|−3) + ∂̄5hht |∂̄�|−3}

+ σ

2
|∂̄5h|2∂t

(

|∂̄�|−3 J−1
)

+ σ ∂̄4w · A2•
[

∂̄4
(

∂̄2h

|∂̄�|3
)

− ∂̄6h|∂̄�|−3
]

+ σ

4
∑

l=1

al ∂̄
4−l(w + v) · ∂̄ l A2•∂̄4

(
∂̄2h

|∂̄�|3
)

(3.3)

Rσ
4 := − σ

(
∂̄2h

|∂̄�|3
)

,1 ∂̄2∂t� · A1•∂̄2∂tv · A2•
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+ σ

2
|∂̄3∂t h|2∂t (|∂̄�|−3 J−1) + σ ∂̄3∂tw · A2•

[

∂̄∂t

(
∂̄2h

|∂̄�|3
)

− ∂̄3ht
|∂̄�|3

]

+ σ
∑

l+l ′≥1

al,l ′ ∂̄
2∂t

(
∂̄2h

|∂̄�|2
)

∂̄ l∂ l
′
t (w + v) · ∂̄2−l∂1−l ′

t A2•; (3.4)

Rσ
6 := − σ

(
∂̄2h

|∂̄�|3
)

,1 �t t · A1•∂t tv · A2•

+ σ

2
|∂̄htt |2

(

|∂̄�|−3 J−1
)

t
− σ ∂̄htt httt ∂̄

(

|∂̄�|−3
)

+ σwt t

(

∂t t

(
∂̄2h

|∂̄�|3
)

− A2•
∂̄2htt
|∂̄�|3

)

+ σ

1
∑

l=0

al∂t t
∂̄2h

|∂̄�|∂
l
t (w + v) · ∂2−l

t A2•; (3.5)

Sσ
2 := σ

3
∑

l=1

al ∂̄
3−l(w + v) · ∂̄ l A2•∂̄3∂t ∂̄

(
∂̄h

|∂̄�|
)

+σ
∑

a+b<4
a≤3, b≤1

∂̄4w · A2•∂̄a+1∂bt h∂̄3−a∂1−b
t

(

|∂̄�|−1
)

(3.6)

Sσ
4 := σ

∑

l+l′<2
l,l′≤1

al,l ′ ∂̄
1−l∂1−l ′

t (w + v) · ∂̄ l∂ l
′
t A

2•∂̄∂t t ∂̄

(
∂̄h

|∂̄�|
)

+σ
∑

l+l′<3
l≤1, l′≤2

bl,l ′ ∂̄∂tw · A2•∂̄ l+1∂ l
′
t h∂̄1−l∂2−l ′

t

(

|∂̄�|−1
)

. (3.7)

Remark 9. The higher-order energy function Fσ is obtained by proceeding in the
same way as in the derivation of the energy function Fκ in Sect. 2.6. The essential
difference is the nontrivial trace of the term ∂̄4q on the boundary �. Since q = σH
on � an integration by parts with respect to xk in the integral

∫

�

Ak
i ∂̄

4q,k ∂̄4vi

leads to an additional σ -dependent energy term in (3.2).

3.1. Nonlinear Energy Estimates

In the following proposition we prove the basic energy estimate in analogy to
Proposition 2.6. Most importantly, we establish a nonlinear polynomial inequality
for the energy Eσ with σ -independent coefficients. As a consequence, we show that
under the assumptions of Theorem 1.2, the time interval Tσ is independent of σ.

Proposition 3.2. Let (qσ
0 , hσ

0 )σ≥0 be a given family of well-prepared initial condi-
tions in the sense of Definition 1. There exists a constant C independent of σ and a
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universal polynomial P such that for any t ∈ [0, T σ ] the following bound holds:

Eσ (t) ≤ CEσ (0) + C(t + √
t)P(Eσ ). (3.8)

In particular, there exists a time T > 0 independent of σ , a constant C∗ > 0 and
the solution (qσ ,�σ ) to the Stefan problem with surface tension defined on [0, T ]
satisfying the bound

Eσ (qσ ,�σ )(t) ≤ C∗, 0 ≤ σ ≤ 1, t ∈ [0, T ].
Proof. In comparison to the estimates for the classical Stefan problem carried over
in Section 2.7 the only new error terms to estimate are the termsRσ

2 ,Rσ
4 ,Rσ

6 , Sσ
2 ,

Sσ
4 given in the statement of Lemma 3.1.

Estimating
∫ t
0

∫

�
Rσ

2 defined by (3.3) We start by bounding the first term on the
right-hand side of (3.3):

σ

∣
∣
∣

∫ t

0

∫

�

∂̄2
( ∂̄h

|∂̄�∂̄h|
)

∂̄4� · A1•∂̄4v · A2•
∣
∣
∣ �

∫ t

0
P(|√σ ∂̄h|4)|√σ�|5|v|3

� P(|√σ ∂̄h|L∞H4)|√σ�|L∞H5

√
t |v|L2H3 �

√
t P(Eσ ∂̄h).

The second and the third terms on the right-hand side of (3.3) are estimated anal-
ogously and rely on the standard L∞ − L2 − L2 estimates. As for the fourth term
on the right-hand side of (3.3), note that, due to (2.3),

σ

∣
∣
∣

∫ t

0

∫

�

J−1∂̄4ht
(

∂̄4(
∂̄2h

|∂̄�|3 ) − ∂̄6h

|∂̄�|3 )
)
∣
∣
∣

�
∫ t

0
|√σ ∂̄3ht |0√σ

∣
∣∂̄4(

∂̄2h

|∂̄�|3 ) − ∂̄6h

|∂̄�|3 )
∣
∣
1

�
√
t P(Eσ ),

where the last estimate follows in the standard way; terms with less derivatives are
bounded in the L∞-norm and then by the Sobolev embedding theorem. In the last
term on the right-hand side of (3.3), the hardest case to deal with is l = 4. Note that

σ

∫ t

0

∫

�

(v + w) · ∂̄4A2•∂̄4
( ∂̄2h

|∂̄�|
) = σ

∫ t

0

∫

�

(v + w) · ∂̄4A2•
(

∂̄6h|∂̄�|−3)

+ σ

∫ t

0

∫

�

(v + w) · ∂̄4A2•
4

∑

l ′=1

al ′ ∂̄
6−l ′h∂̄ l

′
(|∂̄�|−2) =: I + II.

The more challenging term to estimate is term I . Since A2• = J−1(∂̄h,−1) we
have the identity

I = σ

∫ t

0

∫

�

(v + w) · ∂̄4
(

J−1(∂̄h,−1)
) (

∂̄6h|∂̄�|−3)

= σ

∫ t

0

∫

�

J−1(v + w) · (∂̄5h, 0)
(

∂̄6h|∂̄�|−3
)
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+ σ

3
∑

m=1

cm

∫ t

0

∫

�

∂̄m
(

J−1
)

(v + w) · ∂̄4−m(∂̄h,−1)
(

∂̄6h|∂̄�|−3)

=: IA + IB

for some universal constants cm ∈ R. Note that when m = 4 term (v + w) ·
∂̄4−m(∂̄h,−1) vanishes since (∂̄h,−1) is parallel to n and v ·n = −w ·n by (3.1g).

∣
∣IA

∣
∣ = σ

∣
∣
∣

∫ t

0

∫

�

J−1(v1 − w1)∂̄5h∂̄6h|∂̄�|−3
∣
∣
∣

= 1

2
σ

∣
∣
∣

∫ t

0

∫

�

J−1∂̄(|∂̄5h|2)(v1 − w1)|∂̄�|−3
∣
∣
∣

= 1

2
σ

∣
∣
∣

∫ t

0

∫

�

|∂̄5h|2∂̄
(

J−1(v1 − w1)|∂̄�|−3
) ∣

∣
∣ � t P(Eσ ),

where we have used the parametric representation of� in terms of h and integrated
by parts. The last inequality is rather standard and follows by estimating ∂̄

(

(v1 −
w1)|∂̄�|−3

)

in L∞ norm and further via Sobolev inequality, where we also use
σ |∂̄5h|L∞

t L2
x

� Eσ . Terms IB and I I are easily estimated via the standard energy

L∞−L2−L2 bounds andSobolev imbedding, and the same applies to the remaining
cases l = 1, 2, 3. When estimating the fourth term on the right-hand side of (3.3)
first integrate by parts so to remove one ∂̄-derivative from ∂̄6� term and then apply
the standard energy estimates.
Estimating

∫ t
0

∫

�
Rσ

4 defined by (3.4) The estimates are completely analogous to
the ones forRσ

2 .
Estimating

∫ t
0

∫

�
Rσ

6 defined by (3.5) The first term on the right-hand side of (3.5)
is estimated analogously to the first term on the right-hand side of (3.3). Note that

∣
∣
∣
σ

2

∫ t

0

∫

�

|∂̄htt |2(|∂̄�|−3 J−1)t

∣
∣
∣ � (|∂̄�|−3 J−1)t |∞σ

∫ t

0
|∂̄htt |22

� t |∂̄h|∞|∂̄hκt |∞Eσ � t P(Eσ ),

where we use Sobolev inequality and the definition of Eσ to infer

|∂̄hκt |2∞ � |∂̄hκt |21 �
∫

�

(−q,2 )|∂̄2hκt |2 � Eσ ,

and similarly that

|∂̄h|2∞ �
∫

�

(−q,2 )|∂̄2h|2 � Eσ . (3.9)

Space-time integrals of the third and fourth term on the right-hand side of (3.5) are
bounded in the usual way by P(Eσ ). To bound the last term on the right-hand side
of (3.5) we distinguish the cases l = 0 and l = 1. If l = 1, by the Leibniz rule,
expand

∂t t
∂̄2h

|∂̄�| = ∂̄2htt |∂̄�|−1 + 2∂̄2ht (|∂̄�|−1)t + ∂̄2h(|∂̄�|−1)t t .



258 Mahir Hadžić, Steve Shkoller

For the first two terms above, integrate by parts to move one ∂̄ derivative away from
∂̄2htt and ∂̄2ht . Then use the standard L∞ − L2 − L2 type estimates as well as the
bound |∂̄vt |L∞

t L2
x

� ‖qt‖L∞
t H2.5

x
to get the desired estimate. For the third term on

right-hand side above we have

σ

∣
∣
∣

∫ t

0

∫

�

(

∂̄2h(|∂̄�|−1)t t
)

∂t (w + v) · ∂t A
2•
∣
∣
∣

≤ |∂̄2h|∞
√
t |√σ(|∂̄�|−1)t t |L2

t L2
x
|∂t (v + w)|L∞

t L2
x
|∂t A2•|L∞

t L∞
x

�
√
t P(Eσ ).

Estimating Sσ
2 and Sσ

4 defined by (3.6) and (3.7) respectively The estimates are
straightforward and follow the same principle: terms with least amount of deriva-
tives are bounded via Sobolev embedding by the σ -independent energy E(qσ , hσ ).

Summing up the above estimateswe prove the first inequality in the proposition.
The existence of a σ -independent time T follows from the standard continuity
argument and the fact that constant C in (3.8) is σ -independent. Since Eσ (0) →
E(0) as σ → 0, due to our assumption on initial data, the last statement of the
proposition follows. ��
Proof of Theorem 1.2. Recall the definition (1.38) of ‖(q, h)‖C1

t C0
x∩C0

t C2
x
. Assume

that ‖(qσ , hσ )− (q0, h0)‖C1
t C0

x∩C0
t C2

x
does not converge to 0 as σ → 0. Then there

exists an ε > 0 and a subsequence (σn)n∈N, σn → 0 as n → ∞, such that

‖(qσn , hσn ) − (q0, h0)‖C1
t C0

x∩C0
t C2

x
≥ ε ∀n ∈ N. (3.10)

Since E(qσn , hσn ) ≤ C , there exists a subsequence of (qσn , hσn )n (without loss of
generality indexed again by (σn)) and (q̄, h̄) ∈ S such that

(qσn , hσn ) ⇀ (q̄, h̄), weakly in S,

where we recall that S is defined in (1.27). Note that the injection operator I : S →
C1
t C

0
x ∩ C0

t C
2
x is compact. Hence (qσn , hσn ) → (q̄, h̄) in C1

t C
0
x ∩ C0

t C
2
x where

(q̄, h̄)

∣
∣
∣
t=0

= (q0, h0) due to the property 3) in Definition 1 of the well-prepared

initial data. Since σn → 0 as n → ∞, (q̄, h̄) solves the classical Stefan prob-
lem with those initial conditions. From the uniqueness statement of Theorem 1.1,
we conclude that (q̄, h̄) = (q, h). Thus (qσn , hσn ) → (q, h) in C1

t C
0
x ∩ C0

t C
2
x

contradicting (3.10).

4. The Three-Dimensional Case

In this section, we briefly sketch how to adapt the analysis of the previous sec-
tions to prove theorems analogous to Theorem 1.1 and 1.2 in the three dimensional
setting. We assume now that �(t) is an evolving phase inside the reference domain

� := T
2 × (0, 1),

where T2 is the 2-torus. Initially at t = 0 the moving boundary

�0 = T
2 × {x3 = h0(x)}
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is parametrized as a graph over � = T
2 × {x3 = 0} by the height function h0. The

top boundary ∂�top = T
2×{x3 = 1} is fixed and the temperature p satisfies the ho-

mogeneous Neumann boundary condition on ∂� just like in (1.4). We parametrize
boundary as a graph over � with the height function h(t, x ′), where x ′ := (x1, x2).
Using the harmonic coordinates we can change variables as in (1.13) to obtain a
fixed boundary problem given by (1.18). The associated energy is given by

E3D(t) = E3D(q, h)(t) :=
∑

|α|+2b≤5

‖∇̄α∂bt v‖2
L2
t L2

x
+ 1

2

∑

|α|+2b≤4

‖∇̄α∂bt v‖2L∞
t L2

x

+ 1

2

∑

|α|+2b≤5

|√−q,2∇̄α∂bt h|2L∞
t L2

x
+

∑

|α|+2b≤4

|√−q,2∇̄α∂bt ht |2L2
t L2

x

+ 1

2

∑

|α|+2b≤5

‖∇̄α∂bt q + ∇̄α∂bt � · v‖2L∞
t L2

x

+
∑

|α|+2b≤4;
‖∇̄α∂bt qt + ∇̄α∂bt �t · v‖2

L2
t L2

x
. (4.1)

In the above definition, α = (α1, α2) is a multi-index of order |α| = α1 + α2,
whereby α1, α2 are non-negative integers. Symbol ∇̄ refers to differentiation in
tangential directions, i.e. ∇̄α := ∂

α1
x1

∂
α2
x2
. The three-dimensional Taylor sign condi-

tion for a function q reads:

min
x ′∈�

(q,3 )(t, x ′, 0) > 0. (4.2)

The following theorem holds:

Theorem 4.1. Let the initial conditions (q0, h0) be such that E3D(q0, h0) < ∞ and
let q0 satisfy the Taylor sign condition (4.2). Then the three-dimensional one-phase
classical Stefan problem is locally-in-time well-posed, i.e. there is a T > 0 such
that there exists a unique solution (q, h) with the initial data (q0, h0) on the time
interval [0, T ]. In addition it satisfies the bound:

E3D(q, h) ≤ 2E3D(q0, h0).

Furthermore, let (qσ
0 , �σ

0 )σ≥0 be a given family of well-prepared initial conditions
in the sense of Definition 1. Assume that it satisfies the Taylor sign condition (4.2)
and the corresponding compatibility conditions. By (qσ , hσ )σ≥0 we denote the
associated family of solutions to the problem (1.18). There exists a σ -independent
time T > 0 and a constant C depending only on (q0, h0) such that

E3D,σ (qσ , hσ )(T ) ≤ C σ ≥ 0

for allσ ≥ 0. As a consequence, sequence (qσ , hσ ) converges to the unique solution
(q, h) of the classical Stefan problem (1.18) with σ = 0 in C1

t C
0
x ∩ C0

t C
2
x -norm.

Remark 10. Note that the definition of E3D contains time derivatives. Thus, to
make sense out of the assumptionE3D(q0, h0) < ∞,we express the timederivatives
∂t q0 and ∂t h0 in terms of the spatial derivatives as explained in Remark 4.
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Appendix A. Modifications of Our Analysis For a More General Initial
Domain

In this section we explain how to construct a smooth reference interface for a
general graph �0 = {x |x = (x, h0(x))} ⊂ T

1 × [0, 1), where the size of |h|4.5 is
not necessarily small. For any ε > 0 we define

hε
0(x) =

∫

T1
h(y)ρε(x − y), x ∈ T

1, �ε
0 = {x |x = (x, hε

0(x))} ⊂ T
1 × [0, 1),

and set

�ε
0 := {(x, y) ∈ T

1 × [0, 1) | x ∈ T
1, hε

0(x) < y < 1}.
Here ρε is the the standard mollifier defined in Definition 2 and the domain �ε

0 will
be our reference domain. Clearly hε

0 ∈ C∞(�) and for ε sufficiently small we can
parametrize the evolving surface�(t) as a graph over�ε

0 using the outward-pointing
unit normal vector field N ε to �ε

0 :

�(t) = {x |x = (x, hε
0(x)) + h(t, x)N ε(x)}, N ε(x) = (∂̄hε

0,−1)
√

1 + |∂̄hε
0|2

.

Note that |hε − h0|4.5 → 0 as ε → 0. The construction of the harmonic diffeor-
morphic extension � : �ε

0 → �(t) of the boundary data

�(t, x, hε
0(x)) = (x, hε

0(x)) + h(t, x)N ε(x), �(t, x, 1) = (x, 1)

is a simple consequence of the existence theory for the Dirichlet boundary value
problems for systems of elliptic partial differential equations, since for small ε and
small times t ≥ 0 we have

|� − Id|4.5 � ε 	 1.

Using the argument in (1.7) the trace estimate (1.8) is true. Fixing an ε > 0
sufficiently small we drop the ε-notation and refer to the reference curve �ε

0 as �,

the reference domain�ε
0 as�, the reference unit normal N ε as N , and the reference

height hε
0 as h̃. In the harmonic gauge, the Stefan problem takes nearly the same

form (1.18):

qt − A j
i (A

k
i q,k ), j = −v · w in �, (A.1a)

vi + Ak
i q,k = 0 in �, (A.1b)

q = 0 on � , (A.1c)

�t · n(t) = −v · n(t) on � , (A.1d)

v · N = 0 on ∂�top , (A.1e)

q(0, ·) = q0 = p0 ◦ �; �(0, ·) = �0 , (A.1f)

where

‖�0 − Id‖H5 � ε
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and the local coordinate realization of the unit normal n(t, x) takes themore general
form:

n(t, x) = (1 − hH)

√

1 + (∂̄ h̃)2 N − ∂̄hT
√

(1 + (∂̄ h̃)2)(1 − hH0)2 + (∂̄h)2
, x ∈ T

1,

where

H = − ∂̄2h̃

(1 + (∂̄ h̃)2)3/2
, T = (1, ∂̄ h̃)

√

1 + (∂̄ h̃)2

stand for the mean curvature and the unit tangent to the reference surface �, respec-
tively.Theproof ofTheorem1.1 applies to (A.1) in an analogousmanner; it is simply
more technical. The main technical novelty is that the tangential vector-fields to the
reference surface � are not given by ∂̄ = ∂x , as � may have a nontrivial curvature
in general. Therefore, in the neighborhood of � for any C1 function f : � → R

we define the tangental derivative

∂̄ f = ∇ f · T,

where T is a local extension of the unit tangent vector field T into the domain
�. Choosing a smooth cut-off function μ : � → [0, 1] defined to be 1 in a
neighborhood of � and 0 in a neighborhood of ∂�top, we can replace the operator
∂̄ in Lemma 2.2 by the operator

μ∂̄ + (1 − μ)∂i , i = 1, 2.

The ensuing energy identities, energy estimates, and the proof of Theorem 1.1
follow in an analogous way.

Appendix B. Auxiliary Lemmas

We collect some auxiliary estimates in this section that have been used in the
proof of the energy estimates. The following commutator estimate is used in the
proof of Proposition 2.6.

Lemma B.1. (Lemma 5.1 in [20]) For F ∈ W 1,∞(�) and G, ∂̄G ∈ L2(�), there
is a generic constant C independent of κ such that

∣
∣�κ(F ∂̄G) − f �κ∂̄G

∣
∣ ≤ C |F |W 1,∞(�)|G|0,

where W 1,∞(�) denotes the Sobolev space of functions h ∈ L∞(�) with weak
derivative ∂̄h ∈ L∞(�).

Similarly, the following bound is used in estimating some top-order terms in
the energy estimates.



262 Mahir Hadžić, Steve Shkoller

Lemma B.2. (Lemma 8.5 in [20]) Let H
1
2 (�)′ denote the dual space of H 1

2 (�).

Then there exists a positive constant C > 0 such that

‖∂̄F‖
H

1
2 (�)′

≤ C‖F‖
H

1
2 (�)

.

Proof. The proof is a simple consequence of an interpolation estimate between
L2(�) and H1(�)′-spaces. The details are given in [20]. ��
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