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Abstract

We consider the Landau-de Gennes variational model for nematic liquid crys-
tals, in three-dimensional domains.More precisely, we study the asymptotic behav-
iour of minimizers as the elastic constant tends to zero, under the assumption that
minimizers are uniformly bounded and their energy blows up as the logarithm of
the elastic constant. We show that there exists a closed set Sline of finite length,
such that minimizers converge to a locally harmonic map away from Sline. More-
over,Sline restricted to the interior of the domain is a locally finite union of straight
line segments. We provide sufficient conditions, depending on the domain and the
boundary data, under which ourmain results apply.We also discuss some examples.

1. Introduction

1.1. Variational Theories for Nematic Liquid Crystals

A nematic liquid crystal is matter in an intermediate state between liquid and
crystalline solid. Molecules can flow and their centers of mass are randomly dis-
tributed, but the molecular axes tend to self-align locally. As a result, the material
is anisotropic with respect to optic and electromagnetic properties. In the so-called
uniaxial nematics, the molecules are often rod-shaped and, although theymay carry
a permanent dipole, there are as many dipoles ‘up’ as there are ‘down’. Therefore,
the material symmetry group contains the rotations around the molecular axis and
the reflection symmetrywhich exchanges the two orientations of the axis. The long-
range orientational order due to the self-alignmennt of the molecules is broken in
some places; these are called defects. The word nematic itself refers to the line
defects (see [32]):

I am going to use the term nematic (νήμα, thread) to describe the forms,
bodies, phases, etc. of the second type… because of the linear disconti-
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nuities, which are twisted like threads, and which are one of their most
prominent characteristics.

In addition to line defects, also called disclinations, nematic media exhibit
“hedgehog-like” point singularities. According to the topological theory of ordered
media (see for example [53,64,66]), both kinds of defects are described by the
homotopy groups of a manifold, which parametrizes the possible local configura-
tions of the material.

Several models for uniaxial nematic liquid crystals have drawn the attention of
the mathematical community. The most popular continuum theories that are based
on a finite-dimensional order parameter space are probably the Oseen–Frank, the
Ericksen and the Landau-de Gennes theories. In the Oseen–Frank theory [31],
the material is modeled by a unit vector field n = n(x) ∈ S

2, which represents
the preferred direction of molecular alignment. The elastic energy, in the simplest
setting, reduces to the Dirichlet functional

E(n) := 1

2

ˆ
Ω

|∇n|2 , (1)

whereΩ ⊆ R
3 is the physical domain. In this case, least-energy configurations are

but harmonic maps n : Ω → S
2. As such, minimizers have been widely studied

in the literature (the reader is referred to, for example, [39] for a general review
of this subject). Schoen and Uhlenbeck [61] proved that minimizers are smooth
away from a discrete set of points singularities. Brezis et al. [17] investigated the
precise shape of minimizers around a point defect x0, and proved that

n(x) � ±R
x − x0
|x − x0| for |x − x0| � 1, (2)

where R is a rotation. These “hedgehog-like” point defects are associated with a
non-trivial homotopy class of maps n : ∂Br (x0) → S

2, that is a non-trivial element
of π2(S2). Interesting results are also available for the full Oseen–Frank energy,
which consists of various terms accounting for splay, twist and bend deformations.
Hardt et al. [37] proved the existence of minimizers and partial regularity, that is
regularity out of an exceptional set whose Hausdorff dimension is strictly less than
1. As for the local behaviour of minimizers around the defects, the picture is not
as clear as for the Dirichlet energy (1), but at least the stability of “hedgehog-like”
singularities such as (2) has been completely analyzed (see [45] and the references
therein). However, the partial regularity result of [37] implies that the Oseen–Frank
theory cannot account for line defects.

Ericksen theory is less restrictive, because it allows variable orientational order.
Indeed, the configurations are described by a pair (s, n) ∈ R × S

2, where n is the
preferred direction of molecular alignment and the scalar s measures the degree of
ordering. In this theory, defects are identified by the condition s = 0, which corre-
spond to complete disordered states. Under suitable assumptions, minimizers can
exhibit line singularities and even planar discontinuities (see [47, Theorem 7.2]).
Explicit examples were studied by Ambrosio and Virga [6] andMizel et al. [54].
However, the Ericksen theory — as the Oseen–Frank theory—excludes configura-
tionswhichmight have physical reality. Ericksen himself was aware of this, since he
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presented his theory as a “kind of compromise” [29, p. 98] between physical intu-
ition and mathematical simplicity. Indeed, both the Oseen–Frank and the Ericksen
theory do not take into account the material symmetry, that is, the configurations
represented by n and−n are physically indistinguishable. Moreover, these theories
postulate that, at each point of the medium, there is at most one preferred direction
of molecular orientation. Configurations for which such a preferred direction exists
are called uniaxial, because they have one axis of rotational symmetry. If no pre-
ferred direction exists, the configuration is called isotropic (in the Ericksen theory,
this corresponds to s = 0).

The Landau-de Gennes theory [27] allows for a rather complete description of
the local behaviour of the medium, because it accounts for biaxial configurations
as well.1 A state is called biaxial when it has no axis of rotational symmetry, but
three orthogonal axes of reflection symmetry instead (see [56] for more details).
What makes the Landau-de Gennes theory so rich is the order parameter space.
Configurations are described by matrices (the so-called Q-tensors), which can be
interpreted as renormalized second-order moments of the microscopic distribution
of molecules with respect to the orientation.

In this paper, we aim at describing line defects in a special asymptotic limit
of the Landau-de Gennes theory, namely, when the elastic constant of the nematic
material is very small, compared to the typical length-scale of the domain. Two
simplifying assumptions are postulated here. First, we neglect the effect of external
electromagnetic fields. To induce non-trivial behaviour inminimizers,we couple the
problemwith non-homogeneous Dirichlet boundary conditions (strong anchoring).
Second, we adopt the one-constant approximation, that is we drop out several
terms in the expression of the elastic energy, and we are left with the gradient-
squared term only. These assumptions, which drastically reduce the technicality
of the problem, are common in the mathematical literature on this subject (see for
example [28,33,40,41,46,52]). In the two-dimensional case, the analysis of the
analogous problem is presented in [21,35].

1.2. The Landau-de Gennes Functional

As we mentioned before, the local configurations of the medium are described
by Q-tensors, that is elements of

S0 :=
{
Q ∈ M3(R) : QT = Q, tr Q = 0

}
.

This is a real linear space, of dimension five, which we endow with the scalar
product Q · P := Qi j Pi j (Einstein’s convention is assumed). This choice of the
configurations space can be justified as follows. At a microscopic scale, the distri-
bution of molecules around a given point x ∈ Ω , as a function of orientation, can
be represented by a probability measure μx on the unit sphere S2. The measure μx

satisfies to the condition μx (B) = μx (−B) for all B ∈ B(S2), which accounts for

1 Here “uniaxial” and “biaxial” refer to arrangements of molecules, not to the molecules
themselves which are always assumed to be uniaxial.
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the head-to-tail symmetry of the molecules. Then, the simplest meaningful way to
condense the information conveyed by μx is to consider the second-order moment

Q =
ˆ
S2

(
n⊗2 − 1

3
Id

)
dμx (n).

Wedenote byn⊗2 thematrix defined by (n⊗2)i, j := nin j , for each i, j ∈ {1, 2, 3}.
The quantity Q is renormalized, so that the isotropic state μx = H 2

S
2 corre-

sponds to Q = 0. As a result, Q is a symmetric traceless matrix. (The interested
reader is referred, for example, to [56] for further details.)

The (simplified) Landau-de Gennes functional reads

Eε(Q) :=
ˆ
Ω

{
1

2
|∇Q|2 + 1

ε2
f (Q)

}
, (LGε)

where Q : Ω → S0 is the configuration of the medium, located in a bounded
container Ω ⊆ R

3. The function f is the quartic Landau-de Gennes potential,
defined by

f (Q) = k − a

2
tr Q2 − b

3
tr Q3 + c

4
(tr Q2)2 for Q ∈ S0. (3)

This expression for f has been derived by a formal expansion in powers of Q.
All the terms are invariant by rotations so that f is independent of the coordinate
frame. This potential allows for multiple local minima, with a first-order isotropic-
nematic phase transition (see [27,65]). The positive parameters a, b and c depend
on the material and the temperature (which is assumed to be uniform), while k is
just an additive constant, which plays no role in the minimization problem. The
potential f is bounded from below, so we determine uniquely the value of k by
requiring inf f = 0. The (small) parameter ε2 is proportional to the material-
dependent elastic constant. For each 0 < ε < 1, we assign a boundary datum
gε ∈ H1(∂Ω, S0) and we restrict our attention to minimizers Qε of (LGε) in the
class

H1
gε (Ω, S0) :=

{
Q ∈ H1(Ω, S0) : Q = gε on ∂Ω in the sense of traces

}
.

When ε is small, the term ε−2 f (Q) in (LGε) forces minimizers to take their
values close to N := f −1(0). This set can be characterized as follows (see [52,
Proposition 9]):

N =
{
s∗
(

n⊗2 − 1

3
Id

)
: n ∈ S

2
}
, (4)

where the constant s∗ is defined by

s∗ = s∗(a, b, c) := 1

4c

(
b +

√
b2 + 24ac

)
.

Thus, N is a smooth submanifold of S0, diffeomorphic to the real projective
plane RP2, called vacuum manifold. The topology of N plays an important role,
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for a map Ω → N may encounter topological obstructions to regularity. Sources
of obstruction are the homotopy groups π1(N ) � Z/2Z and π2(N ) � Z, which
are associated with line and point singularities, respectively. There is a remark-
able difference with the Oseen–Frank model at this level, for S2 is a simply con-
nected manifold, so topological obstructions result from π2(S

2) only. Despite this
fact, a strong connection between the Oseen–Frank and Landau-de Gennes the-
ories was established by Majumdar and Zarnescu [52], then by Nguyen and
Zarnescu [57], who addressed the asymptotic analysis of minimizers of (LGε),
in three-dimensional domains. Their results imply that, when Ω , ∂Ω are sim-
ply connected and gε = g ∈ C1(∂Ω, N ), minimizers Qε of (LGε) converge
in H1(Ω, S0) to a map of the form

Q0(x) = s∗
(

n⊗2
0 (x) − 1

3
Id

)
,

where n0 ∈ H1(Ω, S2) is a minimizer of (1). The convergence is locally uniform,
away from singularities of Q0. Also in this case, line defects do not appear in the
limiting map, although point defects analogous to (2) might occur. Indeed, their
assumptions on the domain and boundary datum are strong enough to guarantee
the uniform energy bound

Eε(Qε) � C (5)

for an ε-independent constant C , and obtain H1-compactness. In this paper, we
work in the logarithmic energy regime

Eε(Qε) � C (|log ε| + 1) , (6)

which is compatible with singularities of codimension two, in the small ε-limit.
There are analogies between the functional (LGε) and the Ginzburg–Landau

energy for superconductivity, which reduces to

EGL
ε (u) :=

ˆ
Ω

{
1

2
|∇u|2 + 1

4ε2
(1 − |u|2)2

}
(7)

when no external field is applied. Here the unknown is a complex-valued function
u. There is a rich literature about the asymptotic behaviour, as ε → 0, of critical
points satisfying a logarithmic energy bound such as (133). It is well-known that,
under appropriate assumptions, critical points converge to maps with topology-
driven singularities of codimension two. In two-dimensional domains, the theory
has been developed after Bethuel, Brezis and Hélein’s work [11]. In the three-
dimensional case, the asymptotic analysis of minimizers was performed by Lin
and Rivière [48], and extended to non-minimizing critical points by Bethuel et
al. [12]. Later, Jerrard andSoner [44] andAlberti et al. [1] proved independently
that | log ε|−1EGL

ε Γ -converges, when ε → 0, to a functional on integral currents
of codimension two. This functional essentially measures the length of defect lines,
weighted by some quantity that accounts for the topology of the defect.
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1.3. Main Results

For each fixed ε > 0, a classical argument of Calculus of Variations shows
that minimizers of (LGε) exist as soon as gε ∈ H1/2(∂Ω, S0) and are regular in
the interior of the domain. Our main result deals with their asymptotic behaviour
as ε → 0.

Theorem 1. Let Ω be a bounded, Lipschitz domain. Assume that there exists a
positive constant M such that, for any 0 < ε < 1, there hold

Eε(Qε) � M (|log ε| + 1) and ‖Qε‖L∞(Ω) � M. (H)

Then, there exist a subsequence εn ↘ 0, a closed set Sline ⊆ Ω and a map Q0 ∈
H1
loc(Ω\Sline, N ) such that the following holds.

(i) Sline ∩ Ω is a countably H 1-rectifiable set, andH 1(Sline ∩ Ω) < +∞.
(ii) Qεn → Q0 strongly in H1

loc(Ω\Sline, N ).
(iii) Q0 is locally minimizing harmonic in Ω\Sline, that is for every ball B ⊂⊂

Ω\Sline and any P ∈ H1(B, N ) that satisfies P = Q0 on ∂B we have

1

2

ˆ
B

|∇Q0|2 � 1

2

ˆ
B

|∇P|2 .

(iv) There exists a locally finite set Spts ⊆ Ω\Sline such that Q0 is smooth in
Ω\(Sline ∪ Spts) and Qε → Q0 locally uniformly in Ω\(Sline ∪ Spts).

By saying that Sline is countably H 1-rectifiable we mean that there exists a
decomposition

Sline =
⋃
j∈N

S j ,

where H 1(S0) = 0 and, for each j � 1, the set S j is the image of a Lipschitz
map Ki ⊂⊂ R → R

3. In addition to the singular set Sline of dimension one, the
limiting map Q0 may have a set of point singularitiesSpts. This is consistent with
the regularity results for minimizing harmonic maps [34,61]. Later on, we will
discuss examples where Sline and Spts are non-empty.

Theorem 1 is local in nature. In particular, boundary conditions play no par-
ticular role in the proof of this result, although they need to be imposed to induce
non-trivial behaviour of minimizers. Theorem 1 can be adapted to the analysis near
the boundary of the domain, under additional assumptions on the boundary datum.
The necessary modifications are sketched in Section 4.4.

The singular setSline is defined as the concentration set for the energy densities
of minimizers. In other words, thanks to (H) we find a subsequence εn ↘ 0 and a
measure μ0 ∈ Mb(Ω) := C(Ω)′ such that

{
1

2

∣∣∇Qεn

∣∣2 + 1

ε2n
f (Qεn )

}
dx

| log εn| ⇀
∗ μ0 in Mb(Ω),
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then we define Sline as the support of μ0. A more precise description of the limit
measure μ0 is given by the following result. We set

κ∗ := π

2
s2∗ .

As we will see in Section 2.2, this number quantifies the energy cost associated
with a topological defect of codimension two.

Proposition 2. The measure μ0 Ω is naturally associated with a stationary var-
ifold, and

lim
r→0

μ0(Br (x))

2r
= κ∗ for μ0-almost every x ∈ Ω.

For any open set K ⊂⊂ Ω , Sline ∩ K is the union of a finite number of closed
straight line segments L1, . . . , L p. After possible subdivision, assume that for
each i �= j , either Li and L j are disjoint or they intersect at a common endpoint.
Then, the following properties hold:

(i) If D ⊂⊂ K is a closed disk which intersects Sline at a single point x0 and x0
is not an endpoint for any Li , then the homotopy class of Q0 restricted to ∂D
is non-trivial.

(ii) Suppose that x0 ∈ K is an endpoint of exactly q segments Li1, . . . , Liq . Then q
is even.

The definition of stationary varifold is given in [63, Chapter 4]. Varifolds are
a generalization of differentiable manifolds, introduced by Almgren [4] in the
context of Calulus of Variations, and stationary varifolds can be thought as a weak
notion of minimal manifolds. Proposition 2 relies heavily on the structure theorem
for stationary varifolds of dimension one [3, Theorem p. 89].

Inside the domain, the singular set is a locally finite union of line segments.
Branching points are not excluded by this result, but only an even number of
branches can originate from each point. (However, we expect that branching points
should not arise—see the concluding remarks, Section 1.4.)Moreover, the setSline
is a topological singularity, that is it is associated with a non-trivial homotopy class
of the map Q0. Therefore, from the physical point of viewSline corresponds to the
“thin disclination lines” of index±1/2 (see, for example [22]). The “thick disclina-
tion lines” of index±1 are not included inSline because the order parameter Q0 can
be defined continuously throughout their cores, thanks to the “escape in the third
dimension” proposed by Cladis and Kléman [24]. Proposition 2 also excludes
disclination loops in the interior of the domain, although loops of radius larger than
some critical value Rc are expected to occur (see [22, p. 519]). However, in the limit
as ε → 0 we have that Rc → +∞, therefore any defect loop which is contractible
inΩ should become unstable, shrink and eventually disappear. On the other hand,
disclination loops may occur at the boundary of the domain. In Section 5.4, we
show by an example that the singular setSline may touch ∂Ω , even if the boundary
datum is smooth. In this case, the conclusion of Proposition 2 does not hold any
more.
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We provide sufficient conditions for the estimate (H) to hold, in terms of the
domain and the boundary data. Here is our first condition:

(H1) Ω is a bounded, smooth domain and {gε}0<ε<1 is a bounded family in
H1/2(∂Ω, N ).

The uniform H1/2-bound is satisfied if, for instance, gε = g : ∂Ω → N has a
finite number of disclinations. This means, there exists a finite set Σ ⊆ ∂Ω such
that g is smooth on ∂Ω\Σ and, for each x0 ∈ Σ , we can write

g(x) = s∗

{(
τ 1 cos (kθ(x)) + τ 2 sin (kθ(x))

)⊗2

− 1

3
Id

}

+ smooth terms of order ρ(x)

(8)

as x → x0. Here k ∈ 1
2Z, (ρ(x), θ(x)) are geodesic polar coordinates centered

at x0 and (τ 1, τ 2) is an orthonormal pair in R
3.

Proposition 3. Condition (H1) implies (H).

Alternatively, one can assume that

(H2) Ω ⊆ R
3 is a bounded Lipschitz domain, and it is bilipschitz equivalent to a

handlebody (that is a 3-ball with a finite number of handles attached).
(H3) There exists M0 > 0 such that, for any 0 < ε < 1, we have gε ∈ (H1 ∩ L∞)

(∂Ω, S0) and

Eε(gε, ∂Ω) � M0 (|log ε| + 1) , ‖gε‖L∞(∂Ω) � M0.

As an example of sequence satisfying (H3), one can take smooth approximations
of a map g : ∂Ω → N of the form (8). For instance, we can take

gε(x) := ηε(ρ(x))g(x) (9)

where ηε ∈ C∞[0, +∞) is such that

ηε(0) = η′
ε(0) = 0, ηε(ρ) = 1 if ρ � ε, 0 � ηε � 1,

∣∣η′
ε

∣∣ � Cε−1.

Proposition 4. If (H2) and (H3) are satisfied, then (H) holds.

Remark 5. Hypothesis (H2) is not the same as askingΩ to be a bounded Lipschitz
domain with connected boundary. Let K ⊆ S

3 be a (open) tubular neighborhood
of a trefoil knot. Then K is a solid torus, that is K is diffeomorphic to S1 × B2

1 , but
S
3\K is not a solid torus. In fact, S3\K is not even a handlebody, because

π1(S
3\K ) = the knot group of the trefoil knot =

〈
x, y | x2 = y3

〉

while the fundamental group of any handlebody is free. By composing with a
stereographic projection, one constructs a smooth domain Ω ⊆ R

3 diffeomorphic
to S3\K . In particular, ∂Ω is a torus but Ω does not satisfy (H2).
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Fig. 1. The domain considered in Section 7: two unit balls (Ω− on the left,Ω+ on the right)
joined by a cylinderΩ0 of length 2L and radius r . The (unoriented) director field associated
to the boundary datum is also represented. The boundary datum restricted to the boundary
of Ω−, Ω+ defines non-trivial homotopy classes in π2(N ), π1(N ) respectively

Given an arbitrary domain, one can construct exampleswhere line defects occur.

Proposition 6. For each bounded domainΩ ⊆ R
3 of class C1, there exists a family

of boundary data {gε}0<ε<1 satisfying (H3) and a number α > 0 such that

Eε(Q) � α (|log ε| − 1)

for any Q ∈ H1
gε (Ω, S0) and any 0 < ε < 1. Moreover, Sline is non-empty.

The functions gε are smooth approximations of a map ∂Ω → N , which has point
singularities of the form (9).

Finally, we consider an example where bothSline andSpts are non-empty. The
domain consists of two balls of radius 1, joined by a cylinder of radius r ∈ (0, 1/2)
and length 2L . The boundary datum, which is defined in Section 7, is uniaxial and
has two point defects. In Fig. 1, we represent the behaviour of the boundary datum
or, more precisely, the direction of the eigenspace corresponding to the leading
eigenvalue (that is, the average orientation of the molecules at each point). This
map defines non-trivial homotopy classes both in π1(N ) and in π2(N ).

Proposition 7. There exists a positive number L∗ such that, if L � L∗, then
both Sline and Spts are non-empty, and there exists x0 ∈ Spts such that
dist(x0, Sline) � L/2.

In other words, if the cylinder is long enough then the limit configuration has
line defects and at least one point defect, which is far from the line defects. Although
the boundary datum defines a non-trivial class in π2(N ), topological arguments
alone are not enough to conclude that Spts �= ∅, for there exist maps Ω → N
which satisfy the boundary condition and Sline �= ∅, Spts = ∅ (see Remark 72).
Proposition 7 is inspired by Hardt and Lin’s paper [38], where the existence of
non-smooth minimizing harmonic maps, satisfying a boundary condition of degree
zero, is proved. However, there is an additional difficulty here, namely minimizers
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are not uniformly bounded in H1 as ε → 0. We take care of this issue by adapting
some ideas of the proof of Theorem 1.

Let us spend a few words on the proof of the main result, Theorem 1. The core
of the argument is a concentration property for the energy, which can be stated as
follows.

Proposition 8. Assume that the condition (H) holds. For any 0 < θ < 1 there
exist positive numbers η, ε̄0 and C such that, for any x0 ∈ Ω , R > 0 satisfying
BR(x0) ⊆ Ω and any 0 < ε � ε̄0R, if

Eε(Qε, BR(x0)) � ηR log
R

ε
(10)

then

Eε(Qε, BθR(x0)) � CR.

Proposition 8 implies that either the energy on a ball blows up at least loga-
rithmically, or it is bounded on a smaller ball. Combining this fact with covering
arguments, one proves that the energy concentrates on a set Sline of finite length.
Then, the asymptotic behaviour ofminimizers away fromSline can be studied using
well-established techniques, for example arguing as in [52].

Roughly speaking, the proof of Proposition 8 goes as follows. Condition (10)
implies that the problem can be reformulated in terms ofN -valued maps. Indeed,
by an average argument we find r ∈ (θR, R) such that the energy of Qε on the
sphere of radius r is controlled by Cη| log ε|. On the other hand, the energy per
unit length associated with a topological defect line is of the order of κ∗| log ε| (see
the estimates by Jerrard and Sandier [43,60]). Therefore, if η is small compared
to κ∗, the sphere of radius r intersects no topological defect line of Qε. This makes
it possible to approximate Qε with an N -valued map Pε, defined on a sphere of
radius r ′ close to r . Now, since the sphere is simply connected, Pε can be lifted to
a S2-valued map, that is one can write

Pε(x) = s∗
(

n⊗2
ε (x) − 1

3
Id

)
for x ∈ ∂Br ′(x0)

for a smooth vector field nε : ∂Br ′(x0) → S
2. Thus, we have reduced things to a

problemwhich is formulated in terms of vector fields, andwe can apply themethods
by Hardt et al. [37, Lemma 2.3] to obtain boundedness of the energy. In other
words, Condition (10) enables us to reduce the asymptotic analysis of the Landau-
de Gennes problem to the analysis of the Oseen–Frank problem. Extension results
are needed in several steps of this proof, for instance to interpolate between Qε

and Pε in order to construct an admissible comparison map. Various results in this
direction are discussed in detail in Section 3. In particular, we prove variants of
Luckhaus’ lemma [49, Lemma 1] which are fit for our purposes.

Remark 9. Condition (H) is not sufficient to obtain compactness for minimizers
of the Ginzburg–Landau energy. Indeed, Brezis andMironescu [18] constructed
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sequence2 of minimizers uε ∈ H1(B2
1 , C) such that

EGL
ε (uε, B

2
1 ) � |log ε| and |uε| � 1,

yet {uε}0<ε<1 does not have subsequences converging almost everywhere on sets
of positive measure. Brezis and Mironescu’s example relies on oscillations of the
phase. Indeed, the uε’s can be lifted to R-valued functions ϕε’s (that is uε ≈
exp(iϕε)), but the latter are not uniformly bounded in L∞. This phenomenon does
not occur in our case, because theN -valued map Pε is lifted to a unit vector field.
The finiteness of the fundamental group π1(N ) yields the compactness of the
universal covering ofN , hence better compactness properties for the minimizers.

1.4. Concluding Remarks and Open Questions

Several questions about minimizers of the Landau-de Gennes functional on
three-dimensional domains remain open. A first question concerns the behaviour
of the singular setSline. SinceSline is obtained as a limit of minimizers, one would
expect that it inherits from Qε minimizing properties. It is natural to conjecture
that Sline is a relative cycle, whose homology class is determined by the domain
and the boundary datum, and that Sline has minimal length in its homology class.
For instance, if the domain is convex and the boundary data has a finite number of
point singularities x1, . . . , xp of the form (8), thenSline should be a union of non-
intersecting straight lines connecting the xi ’s in pairs, in such a way that the total
length of Sline is minimal. (Notice that, by topological arguments, the number p
must be even.) However, if the domain is non-convex, then a part of Sline may lie
on the boundary.

It would be interesting to study the structure of minimizers Qε in the core of
line defects. For instance, does the core of line defects contain biaxial phases?
Contreras and Lamy [25] andMajumdar et al. [51] proved that the core of point
singularities, in dimension three, contains biaxial phases when the temperature is
low enough. Their proofs use a uniform energy bound such as (5), so they do
not apply directly to singularities of codimension two. However, the analysis of
point defects on two-dimensional domains (see for example [21,28,42]) suggests
that line defects may also contain biaxial phases, when the temperature is low. A
related issue is the analysis of singularity profiles. Let x0 ∈ Sline and let Π be an
orthogonal plane toSline, passing through the point x0. Set

Pε,x0(y) := Qε(x0 + εy) for y ∈ Π.

This defines a bounded sequence in L∞(Π, S0), such that

∥∥∇Pε,x0
∥∥
L2(K )

= ‖∇Qε‖L2(x0+εK ) � C(K ) for every K ⊂⊂ Π.

2 Throughout the paper, the word “sequence” will be used to denote family of functions
indexed by a continuous parameter as well.
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Therefore, up to a subsequence we have Pε,x0 ⇀ Px0 in H1
loc(Π, S0). The map Px0

contains the information on the fine structure of the defect core. What can be said
about Px0?

In another direction, investigating the asymptotic behaviour of a more gen-
eral class of functionals in the logarithmic energy regime is a challenging issue.
For instance, one may consider functionals with more elastic energy terms and/or
choose different potentials, such as the sextic potential

f (Q) := −a1
2

tr Q2 − a2
3

tr Q3 + a3
4
(tr Q2)2 + a4

5
(tr Q2)(tr Q3)

+ a5
6
(tr Q2)3 + a′

5

6
(tr Q3)2

(see [26,36]) or the singular potential proposed by Ball andMajumdar [8]. From
this point of view, it is interesting to remark that the proof of Proposition 8 is quite
robust, as it is based on variational arguments alone and does not use the structure of
the Euler–Lagrange system. Therefore, the proof of Proposition 8 could be adapted
to other choices of the elastic energy density, provided that they are quadratic in
the gradient, and other potentials f , possibly infinite-valued outside some convex
set, provided that they satisfy some non-degeneracy conditions around their set of
minimizers (see Lemma 14). This would yield local H1-compactness, away from a
singular set of codimension two, forminimizers ofmore general Landau-de Gennes
functionals. However, proving stronger compactness for minimizers (for example,
with respect to the uniform norm) and understanding the structure of the singular
setSline for the general Landau-de Gennes energy are completely open questions.

The paper is organized as follows. Section 2 deals with general facts about the
space of Q-tensors and Landau-de Gennes minimizers. In particular, lower esti-
mates for the energy of Q-tensor valued maps are established in Section 2.2, by
adapting Jerrard’s and Sandier’s arguments. Section 3 contains several extension
results, which are a fundamental tool for the proof of our main theorem. Section 4
aims at proving Theorem 1, and in particular it contains the proof of Proposition 8
(Section 4.1). The asymptotic analysis away from the singular lines is carried out
in Section 4.2, while the singular set Sline is defined and studied in Section 4.3.
In Section 4.4, we work out the analysis of minimizers near the boundary of the
domain. Section 5 deals with the proof of Proposition 2.We first show the stationar-
ity ofμ0 (Section 5.1); then, with the help of an auxiliary problem (Section 5.2), we
compute the density of μ0 and conclude the proof (Section 5.3). In Section 5.4, we
construct an example where μ0 concentrates at the boundary of the domain. Sec-
tion 6 deals with the proofs of Propositions 3 (Section 6.1), 4 and 6 (Section 6.2).
Finally, in Section 7 we prove Proposition 7 by constructing an example where the
limit configuration Q0 has both lines and point singularities.

2. Preliminary Results

Throughout the paper, we use the following notation. We denote by Bk
r (x) (or,

occasionally, Bk(x, r)) the k-dimensional open ball of radius r and center x , and
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by B
k
r (x) the corresponding closedball.When k = 3,weomit the superscript.When

x = 0, we write Bk
r or Br . Balls in the matrix space S0 will be denoted BS0

r (Q)
or BS0

r . For any Q ∈ H1(Ω, S0) and any k-submanifold U ⊆ Ω , we set

eε(Q) := 1

2
|∇Q|2 + 1

ε2
f (Q), Eε(Q, U ) :=

ˆ
U
eε(Q) dH

k .

The function eε(Q) will be called the energy density of Q. For any map Q, we set
Eε(Q, ∅) := 0. Additional notation will be set later on.

2.1. Properties of S0 and f

We discuss general facts about Q-tensors, which are useful in order to to have
an insight into the structure of the target space S0. The starting point of our analysis
is the following representation formula.

Lemma 10. For all fixed Q ∈ S0\{0}, there exist two numbers s ∈ (0, +∞),
r ∈ [0, 1] and an orthonormal pair of vectors (n, m) in R3 such that

Q = s

{
n⊗2 − 1

3
Id+ r

(
m⊗2 − 1

3
Id

)}
.

Given Q, the parameters s = s(Q), r = r(Q) are uniquely determined. The
functions Q �→ s(Q) and Q �→ r(Q) are continuous on S0\{0}, and are positively
homogeneous of degree 1 and 0, respectively.

Slightly different forms of this formula are often found in the literature (for
example [52, Proposition 1]). The proof is a straightforward computation sketched
in [21, Lemma 3.2], so we omit it here.

Remark 11. The parameters s(Q), r(Q) are given by

s(Q) = 2λ1(Q) + λ2(Q), r(Q) = λ1(Q) + 2λ2(Q)

2λ1(Q) + λ2(Q)
,

where λ1(Q) � λ2(Q) � λ3(Q) are the eigenvalues of Q.

Following [52, Proposition 15], the vacuum manifold N := f −1(0) can be
characterized as follows:

Q ∈ N if and only if s(Q) = s∗ and r(Q) = 0, (11)

where

s∗ := 1

4c

(
b +

√
b2 + 24ac

)
.

There is another set which is important for our analysis, namely

C := {Q ∈ S0 : λ1(Q) = λ2(Q)} ,



604 Giacomo Canevari

that is C is the set of matrices whose leading eigenvalue has multiplicity> 1. This
is a closed subset of C , and it is a cone (that is, μQ ∈ C for any Q ∈ C , μ ∈ R

+).
By Remark 11, we see that

Q ∈ C if and only if s(Q) = 0 or r(Q) = 1.

Then, applyingLemma10 and the identity Id = n⊗2+m⊗2+p⊗2 (where (n, m, p)
is any orthonormal, positive basis of R3), we see that Q ∈ C if and only if there
exist s � 0 and p ∈ S

2 such that

Q = −s

(
p⊗2 − 1

3
Id

)
. (12)

Therefore, C is the cone over the projective plane RP2. Away from C , it is
possible to define locally a continuous map Q �→ n(Q), which selects a unit
eigenvector n(Q) associated with λ1(Q) (see for example [7, Section 9.1, Equa-
tion (9.1.41)]). In particular, the map � : S0\C → N defined by

�(Q) := s∗
(

n(Q)⊗2 − 1

3
Id

)
for Q ∈ S0\C (13)

is continuous. It was proven in [21, Lemma 3.10] that � gives a retraction by
deformation of S0\C onto the vacuum manifold N .

Lemma 12. The retraction � is of class C1 on S0\C . Moreover, � coincides with
the nearest-point projection onto N , that is

|Q − �(Q)| � |Q − P| (14)

holds for any Q ∈ S0\C and any P ∈ N , with strict inequality if P �= �(Q).

Proof. By the definition of C , the leading eigenvalue λ1(Q) is simple for any Q ∈
S0\C . Then, classical differentiability results for the eigenvectors (see for exam-
ple [7, Section 9.1]) imply that the map Q �→ n(Q) in (13) is of class C1(S0\C ),
whence � ∈ C1(S0\C ).

To show that � is the nearest point projection ontoN , we pick an arbitrary Q ∈
S0\C and P ∈ N . By applying Lemma 10 and (11), we write

Q = s

(
n⊗2 − 1

3
Id

)
+ sr

(
m⊗2 − 1

3
Id

)
and P = s∗

(
p⊗2 − 1

3
Id

)

for some numbers s > 0 and 0 � r < 1, some orthonormal pair (n, m) and some
unit vector p. We compute that

|Q − P|2 =
∣∣∣∣sn⊗2 + srm⊗2 − s∗p⊗2 − 1

3
(s + sr − s∗) Id

∣∣∣∣
2

= C(s, r, s∗) − 2s∗s{(n · p)2 + r(m · p)2}
where C(s, r, s∗) is a constant which only depends on s, r and s∗. For the last
equality, we have used the identities u⊗2 · v⊗2 = (u · v)2 and u⊗2 · Id = |u|2,
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which hold for any vectors u, v. Given s, r , n and m, we minimize the right-hand
side with respect to p, subject to the constraint

(n · p)2 + (m · p)2 � 1.

Since r < 1, one easily sees that the minimum is achieved if and only if p = ±n;
that is, P = �(Q). ��

We also consider the function φ : S0 → R, given by

φ(Q) = s−1∗ (λ1(Q) − λ2(Q)) . (15)

It is clear that φ � 0, and φ(Q) = 0 if and only if Q ∈ C . Moreover, by Remark 11
we have

φ(Q) := s−1∗ s(Q)(1 − r(Q)),

therefore φ(Q) = 1 if Q ∈ N , thanks to (11).

Lemma 13. The function φ is Lipschitz continuous on S0, of class C1 on S0\C and
satisfies

√
2s−1∗ � |Dφ(Q)| � 2s−1∗ for any Q ∈ S0\C .

Proof. Thanks to standard regularity results for the eigenvalues (see for example [7,
Equation (9.1.32)]), we immediately deduce that φ is locally Lipschitz continuous
on S0 and φ ∈ C1(S0\C ). Let (n, m, p) be an orthonormal set of eigenvectors
relative to (λ1, λ2, λ3) respectively. Then, for any Q ∈ S0\C there holds

s∗ |Dφ(Q)| = max
B∈S0, |B|=1

|∂Bφ(Q)| = max
B∈S0, |B|=1

|n · Bn − m · Bm|

(the last identity follows by differentiating (15), with the help of [7, Equa-
tion (9.1.32)] again). This implies s∗ |Dφ(Q)| � 2. Now, set

B0 := 1√
2

(
n⊗2 − m⊗2

)
∈ S0.

Since |n⊗2| = |m⊗2| = 1 and n⊗2 · m⊗2 = 0, it is straightforward to check
that |B0| = 1, so

s∗ |Dφ(Q)| � |n · B0n − m · B0m| = 1√
2

(
|n|2 + |m|2

)
= √

2.

��
We conclude our discussion on the structure of the target space S0 by proving

a couple of properties of the Landau-de Gennes potential f , defined by (3).
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Lemma 14. There exists a constant γ = γ (a, b, c) > 0 with the following prop-
erties. For any Q ∈ S0, there holds

f (Q) � γ (1 − φ(Q))2 . (F0)

For any Q0 ∈ N and any matrix P ∈ S0 which is orthogonal to TQ0N , we have

d2

dt2 |t=0
f (Q0 + t P) � γ |P|2. (F1)

As a consequence of (F1), there exist γ ′ and δ0 > 0 such that, if Q ∈ S0 satisfies
dist(Q, N ) � δ0, then

f (Q) � γ ′ dist2(Q, N ) (F2)

and
f (t Q + (1 − t)�(Q)) � γ ′t2 f (Q) (F3)

for any 0 � t � 1.

Proof of (F0). Using the representation formula of Lemma 10, we can compute
tr Q2 and tr Q3 as functions of s := s(Q), t := s(Q)r(Q). This yields

f (Q) = k − a

3
(s2 − st + t2) − b

27
(2s3 − 3s2t + 3st2 − 2t3)

+ c

9
(s2 − st + t2)2 =: f̃ (s, t).

We know that (s∗, 0) is the unique minimizer of f̃ (see for example [52, Proposi-
tion 15]), so D2 f̃ (s∗, 0) � 0. Moreover, it is straightforward to compute that

det D2 f̃ (s∗, 0) > 0

thus D2 f̃ (s∗, 0) > 0. As a consequence, there exist two numbers δ > 0 and C > 0
such that

f̃ (s, sr) � C(s∗ − s)2 + Cs2r2 if (s − s∗)2 + s2r2 � δ. (16)

The left-hand side in this inequality is a polynomial of order four with leading
term c

9 (s
2 − st + t2)2 � c

36 (s
2 + t2)2, while the right-hand side is a polynomial of

order two. Therefore, there exists a positive number M such that

f̃ (s, sr) � C(s∗ − s)2 + Cs2r2 if (s − s∗)2 + s2r2 � M. (17)

Finally, we have f̃ (s, t) > 0 for any (s, t) �= (s∗, 0), so there exists a positive
constant C ′ such that

f̃ (s, sr) � C ′ if δ < (s − s∗)2 + s2r2 � M. (18)

Combining (16), (17) and (18), and modifying the value of C if necessary, for any
Q ∈ S0, s = s(Q), r = r(Q) we obtain

f̃ (s, sr) � C(s∗ − s)2 + Cs2r2 � Cs2∗
2

(
1 − s

s∗
+ sr

s∗

)2

= Cs2∗
2

(1 − φ(Q))2 .

��
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Proof of (F1). Since the group SO(3) acts transitively on the manifoldN and the
potential f is preserved by the action, it suffices to check (F1) in case

Q0 = s∗
(

e⊗2
3 − 1

3
Id

)
. (19)

Indeed, for any Q ∈ S0 there exists n ∈ S
2 such that

�(Q) = s∗
(

n⊗2 − 1

3
Id

)
,

and there exists a matrix R ∈ SO(3) such that Rn = e3. As is easily checked, the
function ξR : Q �→ RQRT maps isometrically S0 onto itself. Then, (14) implies
that ξR commutes with �, so

�(ξR(Q)) = ξR(�(Q)) = s∗
(
Rn(Rn)T − 1

3
Id

)
= s∗

(
e3eT3 − 1

3
Id

)
.

On the other hand, f is invariant by composition with ξR (that is f ◦ ξR = f )
because it is a function of the scalar invariants of Q. Therefore, we assumeWLOG
that Q0 is given by (19).

In [21, Lemma 3.5], it is shown that a matrix P ∈ S0 is orthogonal to TQ0N
if and only if it can be written in the form

P =

⎛
⎜⎜⎜⎜⎝

−1

3
(s∗ + x0) + x2 x1 0

x1 −1

3
(s∗ + x0) − x2 0

0 0
2

3
(s∗ + x0)

⎞
⎟⎟⎟⎟⎠

for some x = (x0, x1, x2) ∈ R
3. Then, one can write f (Q0 + t P) as a function

of t , x and compute the second derivatives. The proof of (F1) is reduced to a
straightforward computation, which we omit here. ��
Proof of (F2)–(F3). These properties follow from (F1) by a Taylor expansion of f
around Q0. ��

2.2. Energy Estimates in Two-Dimensional Domains

In the analysis of the Ginzburg–Landau functional, a very useful tool are the
estimates proved by Jerrard [43] and Sandier [60]. These estimates provide a
lower bound for the energy of complex-valued maps defined on a two-dimensional
disk, depending on the topological properties of the boundary datum. More pre-
cisely, if u ∈ H1(B2

1 , C) satisfies |u(x)| = 1 for almost every x ∈ ∂B2
1 (plus some

technical assumptions) then

EGL
ε (u, B2

1 ) � π |d| |log ε| − C, (20)

where EGL
ε is the Ginzburg–Landau energy, defined by (7), and d denotes the

topological degree of u/|u| on ∂B2
1 , that is its winding number. The aim of this
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subsection is to generalize this result to tensor-valued maps and the Landau-de
Gennes energy.

Since we work in the H1-setting, we have to take care of a technical detail.
Set A := B2

1\B2
1/2. Let Q ∈ H1(B2

1 , S0) be a given map, which satisfies

φ0(Q, A) := ess inf
A

φ ◦ Q > 0. (21)

In case Q is continuous, Condition (21) is equivalent to

Q(x) /∈ C for every x ∈ A.

For almost every r ∈ (1/2, 1) the restriction of Q to ∂B2
r is an H1-map (due to

Fubini theorem) and hence, by Sobolev injection, it is a continuous map which
satisfies Q(x) /∈ C for every x ∈ ∂B2

r . Therefore, � ◦ Q is well defined and
continuous on ∂B2

r . Moreover, its homotopy class is independent of r . If � ◦ Q is
continuous, then �◦Q itself provides a homotopy between �◦Q|∂B2

r1
and �◦Q|∂B2

r2
,

for any r1 and r2. Otherwise, by convolution (as in [62, Proposition p. 267]) one
constructs a smooth approximation (�◦Q)δ : A → N such that (�◦Q)δ → �◦Q
in H1(A, S0) when δ → 0. By the Fubini theorem and Sobolev injection, we have
(� ◦ Q)δ → � ◦ Q uniformly on ∂B2

r for almost every r ∈ (1/2, 1). Therefore, the
maps � ◦ Q|∂B2

r
belong to the same homotopy class, for almost every r . By abuse

of notation, this homotopy class will be called “homotopy class of � ◦ Q restricted
to the boundary” or also “homotopy class of the boundary datum”.

Proposition 15. There exist positive constants M and κ∗, depending only on f ,
with the following property. Let 0 < ε < 1 and Q ∈ H1(B2

1 , S0) be given. Assume
that Q satisfies (21) and the homotopy class of � ◦ Q|∂B2

1
is non-trivial. Then

Eε(Q, B
2
1 ) � κ∗φ2

0(Q, A) |log ε| − M.

The energetic cost associated with topological defects is quantified by a num-
ber κ∗, defined by (26) and explicitly computed in Lemma 19:

κ∗ = π

2
s2∗ .

This number plays the same role as the quantityπ |d| in (20). The quantityφ2
0(Q, A)

at the right-hand side has been introduced for technical reasons. Notice that φ = 1
on N , so φ0(Q, A) = 1 if Q|A takes values inN .

Before dealing with the proof of Proposition 15, we state an immediate conse-
quence.

Corollary 16. Let ε, R be two numbers such that 0 < ε < R/2. Given a map Q ∈
H1(B2

R, S0), suppose that the restriction to the boundary belongs to H1(∂B2
R, S0)

and that

φ0(Q, ∂B
2
R) := ess inf

∂B2
R

φ ◦ Q > 0.

If the homotopy class of � ◦ Q|∂B2
R
is non-trivial, then

Eε(Q, B
2
R) + (log 2)R Eε(Q, ∂B

2
R) � κ∗φ2

0(Q, ∂B
2
R) log

R

ε
− M.
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In particular, if Q satisfies Q = g on ∂B2
R for some non-trivial g ∈ H1(∂B2

R, N ),
then Corollary 16 implies

Eε(Q, B
2
R) � κ∗ log

R

ε
− M

for a constant M = M(R, g). (Compare with [43, Theorem 3.1], [60, Theorem 1],
and [23, Proposition 6.1].)

Proof of Corollary 16. We apply Proposition 15 to ε̄ := 2ε/R and the map Q̃ ∈
H1(B2

1 , S0) defined by

Q̃(x) :=
⎧⎨
⎩
Q

(
Rx

|x |
)

if x ∈ A := B2
1\B2

1/2

Q (2Rx) if x ∈ B2
1/2.

Notice that φ0(Q̃, A) = φ0(Q, ∂B2
R). Then, by a change of variable, we deduce

κ∗φ2
0(Q, ∂B

2
R) log

R

ε
− C � Eε̄(Q̃, B

2
1 )

� Eε̄(Q, B
2
1/2) +

ˆ 1

1/2
Eε̄(Q̃, ∂B

2
r ) dr

= Eε(Q, B
2
R) +

ˆ 1

1/2

R

r
E2ε/r (Q, ∂B

2
R) dr

� Eε(Q, B
2
R) + (log 2)R Eε(Q, ∂B

2
R).

��
A generalization of the Jerrard–Sandier estimate (20) has already been proved

by Chiron, in his PhD thesis [23]. Given a smooth, compact manifold without
boundary, Chiron considered maps into the cone over N , that is

XN := ((0, +∞) × N ) ∪ {0} � u = (|u|, u/|u|)
(with a metric defined accordingly). He obtained an estimate which is analogous
to (20). In case N = S

1, one has XS1 � C and the standard estimate (20) is
recovered. Given a map u : U ⊆ R

k → XN , a key step in Chiron’s arguments is
to decompose the gradient of u in terms of modulus and phase, that is

|∇u|2 = |∇|u||2 + |u|2 |∇ (u/|u|)|2 almost everywhere on U. (22)

Chiron’s result does not apply to tensor-valued maps, because the space S0
do not coincide with the cone over N (the latter only contains uniaxial matrices,
while S0 also contains biaxial matrices). However, one can prove an estimate in
the same spirit as (22), namely, the gradient of a map Ω → S0 is controlled from
below by the gradients of φ ◦ Q and � ◦ Q.
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Lemma 17. Let U ⊆ R
k be a domain and let Q ∈ C1(U, S0). There holds

|∇Q|2 � s2∗
3

|∇ (φ ◦ Q)|2 + (φ ◦ Q)2 |∇ (� ◦ Q)|2 H k-almost everywhere on U,

where we have set (φ ◦ Q)|∇(� ◦ Q)|(x) := 0 if Q(x) ∈ C .

Proof. First of all, notice that � ◦ Q is well-defined on the set where Q /∈ C , or
equivalently, the set where φ ◦Q > 0. Therefore, the right-hand side always makes
sense. Because of our choice of the norm, we have

|∇ψ |2 =
k∑

i=1

|∂iψ |2

for any scalar or tensor-valued map ψ . Thus, it suffices to prove the lemma when
∇ is replaced by the partial derivative operator ∂i , then sum over i ∈ {1, . . . , k}.
In view of this remark, we assume WLOG that k = 1.

Since φ is Lipschitz continuous (Lemma 13), we have φ ◦ Q ∈ W 1,∞
loc (U ).

Moreover, φ ◦ Q = 0 on Q−1(C ). Therefore, we have (φ ◦ Q)′ = 0 almost
everywhere on Q−1(C ) and the lemma is trivially satisfied almost everywhere
on Q−1(C ).

For the rest of the proof, we fix a point x ∈ U\Q−1(C ) so that φ ◦ Q, � ◦ Q
are of class C1 in a neighborhood of x , and the leading eigenvalue of Q(x) has
multiplicity one. We are going to distinguish a few cases, depending on whether
the others eigenvalues of Q(x) have multiplicity one as well. Suppose first that
r(Q(x)) > 0: in this case, all the eigenvalues of Q(x) are simple. Using Lemma 10
and the results in [7], the map Q can be locally written as

Q = s

(
n⊗2 − 1

3
Id

)
+ sr

(
m⊗2 − 1

3
Id

)
, (23)

where s, r , n, m are C1 functions defined in a neighborhood of x , satisfying the
constraints

s > 0, 0 < r < 1, |n| = |m| = 1, n · m = 0.

Then,�◦Q is of classC1 in a neighborhood of x , andwe can compute |Q′|, |(�◦Q)′|
in terms of s, r , n, m and their derivatives. Setting t := sr , a straightforward
computation gives

s2∗(φ ◦ Q)′2 = s′2 − 2s′t ′ + t ′2,
∣∣(� ◦ Q)′

∣∣2 = 2s2∗
∣∣n′∣∣2

and

∣∣Q′∣∣2 = 2

3
(s′2 − s′t ′ + t ′2) + 2s2

∣∣n′∣∣2 + 2t2
∣∣m′∣∣2 + 4st (n′ · m)(n · m′)

� s2∗
3
(φ ◦ Q)′2 + 2s2

(∣∣n′∣∣2 + r2
∣∣m′∣∣2 + 2r(n′ · m)(n · m′)

)
(24)
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Let p := n × m, so that (n, m, p) is an orthonormal, positive frame in R
3. By

differentiating the orthogonality conditions for (n, m, p), we obtain

n′ = αm + βp, m′ = −αn + γp

for some smooth, real-valued functionsα,β, γ . Then, from (24) and (24)we deduce

∣∣Q′∣∣2 − s2∗
3
(φ ◦ Q)′2 � 2s2(α2 + β2 + r2(α2 + γ 2) − 2rα2)

� 2s2(1 − r)2(α2 + β2)

= s−2∗ s2(1 − r)2
∣∣(� ◦ Q)′

∣∣2 = (φ ◦ Q)2
∣∣(� ◦ Q)′

∣∣2 ,
so the lemma holds at the point x .

If r(Q) = 0 in a neighborhood of x then the function m might not be well-
defined. However, the previous computation still make sense because t = sr van-
ishes in a neighborhood of x , and from (24), (24) we deduce that the lemma holds
at x . We still have to consider one case, namely, r(Q(x)) = 0 but r(Q) does not
vanish identically in a neighborhood of x . In this case, there exists a sequence
xk → x such that r(Q(xk)) > 0 for each k ∈ N. By the previous discussion the
lemma holds at each xk , and the functions φ ◦ Q, (� ◦ Q)′ are continuous (by
Lemmas 13 and 12). Passing to the limit as k → +∞, we conclude that the lemma
is satisfied at x as well. ��

The regularity of Q in Lemma 17 can be relaxed.

Corollary 18. The map τ : S0 → S0 given by

τ : Q �→
{
s∗φ(Q)�(Q) if Q ∈ S0\C
0 if Q ∈ C

is Lipschitz-continuous. Moreover, for any Q ∈ H1(U, S0) there holds τ ◦ Q ∈
H1(U, S0) and

1

4
|∇ (τ ◦ Q)|2 � s2∗

3
|∇ (φ ◦ Q)|2 + (φ ◦ Q)2 |∇(� ◦ Q)|2 � |∇Q|2 (25)

holds H k-almost everywhere on U.

Proof. By differentiating τ and applying Lemma (17) to the map Q = IdS0 , we
obtain

1

4
|Dτ |2 � s2∗

3
|Dφ|2 + φ2 |D�|2 � C on S0\C .

Using this uniform bound, together with τ ∈ C(S0, S0) and τ|C = 0, it is not hard
to conclude that τ has bounded derivative in the sense of distributions, therefore τ
is a Lipschitz function and the lower bound in (25) holds. The upper bound follows
easily from Lemma (17), by a density argument. ��
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Following an idea of Chiron [23], we can associate with each homotopy class
of maps S1 → N a positive number which measures the energy cost of that class.
SinceN is a real projective plane, quantifying the energy cost of non-trivial maps
is simple, because there is a unique homotopy class of such maps. Define

κ∗ := inf

{
1

2

ˆ
S1

∣∣P ′(θ)
∣∣2 dθ : P ∈ H1(S1, N ) is non-trivial

}
. (26)

Thanks to the compact embedding H1(S1, N ) ↪→ C0(S1, N ), a standard argu-
ment shows that the infimum is achieved. The Euler–Lagrange condition for (26)
implies that minimizers are geodesics in N . Moreover, we have the following
property.

Lemma 19. A minimizer for (26) is given by

P0(θ) := s∗
(

n∗(θ)⊗2 − 1

3
Id

)
for 0 � θ � 2π,

where n∗(θ) := (cos(θ/2), sin(θ/2), 0)T. In particular, there holds

κ∗ = π

2
s2∗ .

Sketch of the proof. The lemma has been proved, for example, in [21, Lemma 3.6,
Corollary 3.7], but we sketch the proof for the convenience of the reader.
Let ψ : S2 → N be the universal covering of N , that is

ψ(n) := s∗
(

n⊗2 − 1

3
Id

)
for n ∈ S

2. (27)

For any n ∈ S
2 and any tangent vector v ∈ TnS

2, one computes that

|dψ(n)v|2 = 2s2∗|v|2,
that is, the pull-back metric induced byψ coincides with the first fundamental form
of N , up to a constant factor. Therefore, the Levi-Civita connections associated
with the twometrics are the same, because theChristoffel symbols are homogeneous
functions, of degree zero, of the coefficients of the metric. As a consequence, a
loop P is a geodesic in N if and only if it can be written as P = ψ ◦ n, where
n : [0, 2π ] → S

2 is a geodesic path in S
2 such that n(2π) = ±n(0). Moreover,

P has a non-trivial homotopy class if and only if n(2π) = −n(0). Therefore,
P := ψ ◦ n is a minimizing geodesic in the non-trivial class if and only if n is half
of a great circle in S2 parametrized by arc-length, and the lemma follows. ��

By adapting Sandier’s arguments in [60], we can bound from below the energy
of N -valued maps, in terms of the quantity (26). We use the following notation:
for any V ⊂⊂ R

2, we define the radius of V as

rad(V ) := inf

{
n∑

i=1

ri : V ⊆
n⋃

i=1

B(ai , ri )

}
.
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We clearly have rad(V ) � diam(V ) and, since for bounded sets there holds
diam(V ) = diam(∂V ), we obtain that

rad(V ) � diam(∂V ). (28)

Lemma 20. Let V be a subdomain of B2
1 , and take a number ρ > 0 such that

dist(V, ∂B2
1 ) � 2ρ. For any P ∈ H1(B2

1\V, N ) such that P|∂B2
1
is homotopically

non-trivial, there holds

1

2

ˆ
B2
1\V

|∇P|2 dH 2 � κ∗ log
ρ

rad(V )
.

Sketch of the proof. Suppose, at first, that V = B2
r with 0 < r < 1 and P is

smooth. Then, computing in polar coordinates, we obtain

1

2

ˆ
B2
1\B2

r

|∇P|2 dH 2 = 1

2

ˆ 1

r

ˆ
S1

(
ρ
∣∣∂ρP

∣∣2 + 1

ρ
|∂θ P|2

)
dθ dρ

(26)
� κ∗

ˆ 1

r

dρ

ρ
= κ∗ log

1

r

so the lemma is satisfied for any 0 < ρ � 1. By a density argument, the same
estimate holds for any P ∈ H1(B2

1\B2
r , N ). For a general V , the lemma can

be proved arguing exactly as in [60, Proposition p. 385]. (Assuming additional
W 1,∞-bounds on P , the lemma could also be deduced by the arguments of [43,
Theorems 3.1 and 4.1]). ��

Finally, we can prove the main result of this subsection.

Proof of Proposition 15. We argue as in [60, Theorem 2] and [23, Theorem 6.1].
As a first step, we suppose that Q is smooth. Reminding that A := B2

1\B2
1/2, we

have

φ0 := φ0(Q, A) = min
A

φ ◦ Q
(21)
> 0.

Moreover, there must be

min
B
2
1

φ ◦ Q = 0, (29)

otherwise � ◦ Q would be a well-defined, continuous map B
2
1 → N and the

boundary datum would be topologically trivial. For each λ > 0, we set

Ωλ :=
{
x ∈ B2

1 : φ ◦ Q(x) > λ
}
, ωλ :=

{
x ∈ B2

1 : φ ◦ Q(x) < λ
}

Γλ := ∂Ωλ\∂Ω.

Notice that Ωλ, ωλ, and Γλ are non empty for every λ ∈ (0, φ0), due to (29). We
also set

Θ(λ) :=
ˆ
Ωλ

|∇ (� ◦ Q)|2 dH 2, ν(λ) :=
ˆ
Γλ

|∇ (φ ◦ Q)| dH 1.
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Lemma 17 entailsˆ
B2
1

|∇Q|2 �
ˆ
B2
1

{
1

2
|∇ (φ ◦ Q)|2 + (φ ◦ Q)2 |∇ (� ◦ Q)|2

}
dH 2

and, applying the coarea formula, we deduce

Eε(Q) � 1

2

ˆ φ0

0

ˆ
Γλ

(
1

2
|∇ (φ ◦ Q)| + 2 f (Q)

ε2 |∇ (φ ◦ Q)|
)
dH 1 dλ

− 2
ˆ +∞

0
λ2Θ ′(λ) dλ. (30)

Thanks to Sard lemma, almost every λ ∈ (0, φ0) is a proper regular value of φ ◦Q,
so dividing by |∇(φ ◦ Q)| makes sense. Let us estimate the terms in the right-hand
side of (30), starting from the second one. Lemma 14, (F0) implies that

f (Q) � C (1 − λ)2 on Γλ.

Therefore, with the help of the Hölder inequality we deduce

ˆ
Γλ

2 f (Q)

ε2 |∇ (φ ◦ Q)| dH
1 � C (1 − λ)2

ε2

ˆ
Γλ

1

|∇ (φ ◦ Q)| dH
1

� C (1 − λ)2 H 1(Γλ)
2

ε2ν(λ)
. (31)

Moreover, we have

H 1(Γλ) � 2 diam(Γλ)
(28)
� 2 rad(ωλ).

Combining this with (30) and (31), we find

Eε(Q) � 1

2

ˆ φ0

0

{
1

2
ν(λ) + C (1 − λ)2 rad2(ωλ)

ε2ν(λ)

}
dλ −

ˆ +∞

0
λ2Θ ′(λ) dλ

�
ˆ φ0

0

C

ε
|1 − λ| rad(ωλ) dλ −

ˆ +∞

0
λ2Θ ′(λ) dλ. (32)

The second line follows by the elementary inequality a + b � 2
√
ab. As for the

last term, we integrate by parts. SinceΘ is compactly supported and non-negative,
for all λ0 > 0 we have

−
ˆ +∞

λ0

λ2Θ ′(λ) dλ = 2
ˆ +∞

λ0

λΘ(λ) dλ + λ0
2Θ(λ0) � 2

ˆ φ0

λ0

λΘ(λ) dλ

and, letting λ0 → 0, by monotone convergence (Θ � 0, −Θ ′ is a non-negative
Borel measure) we conclude that

−
ˆ +∞

0
λ2Θ ′(λ) dλ � 2

ˆ φ0

0
λΘ(λ) dλ.
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Now, for any λ ∈ (0, φ0)we have ωλ ⊆ B2
1/2, so dist(ωλ, ∂B2

1 ) � 1/2. Therefore,
by applying Lemma 20 we obtain

Θ(λ) � −κ∗ log (rad(ωλ)) − κ∗ log 4.

Thus, (32) implies

Eε(Q) �
ˆ φ0

0

{
C

ε
|1 − λ| rad(ωλ) − 2κ∗λ log (rad(ωλ))

}
dλ − C.

An easy analysis shows that the function r ∈ (0, +∞) �→ Cε−1|1 − λ|r −
2κ∗λ log r has a unique minimizer r∗, which is readily computed. As a conse-
quence, we obtain the lower bound

Eε(Q) �
ˆ φ0

0

{
2κ∗λ − 2κ∗λ log

Cεκ∗λ
|1 − λ|

}
dλ − C

= −2κ∗
ˆ φ0

0

{
λ log ε − λ + λ log

Cκ∗λ
|1 − λ|

}
dλ − C.

All the terms are locally integrable functions of λ, so the proposition is proved in
case Q is smooth.

Given any Q in H1, we can reduce to previous case by means of a density
argument, inspired by [62, Proposition p. 267]. For δ > 0, let χδ be a standard
mollification kernel and set Qδ := Q ∗ χδ . (In order to define the convolution
at the boundary of Ω , we extend Q by standard reflection on a neighborhood of
the domain.) Then, {Qδ}δ>0 is a sequence of smooth maps, which converge to Q
strongly in H1 and, by Sobolev embedding, in L4. This implies Eε(Qδ) → Eε(Q)
as δ → 0. Moreover, for any x ∈ A we have

dist
(
φ ◦ Qδ(x), [φ0, +∞)

)
�
 
B2
δ (x)

∣∣φ ◦ Qδ(x) − φ ◦ Q(y)
∣∣ dH 2(y)

� C
 
B2
δ (x)

∣∣Qδ(x) − Q(y)
∣∣ dH 2(y), (33)

where the last inequality follows by the Lipschitz continuity ofφ (Lemma 13). Now,
we can adapt the Poincaré inequality and combine it with the Hölder inequality to
obtain ˆ

B2
δ (x)

∣∣Qδ(x) − Q(y)
∣∣ dH 2(y) � Cδ

ˆ
B2
δ (x)

|∇Q| dH 2

� Cδ2
(ˆ

B2
δ (x)

|∇Q|2 dH 2

)1/2

.

This fact, combined with (33), implies

dist
(
φ ◦ Qδ(x), [φ0, +∞)

)
� C

(ˆ
B2
δ (x)

|∇Q|2 dH 2

)1/2

→ 0
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uniformly in x ∈ A as δ → 0 so, in particular, φ0(Qδ, A) → φ0(Q, A) as δ → 0.
Then, since the proposition holds for each Qδ , by passing to the limit as δ → 0 we
see that it also holds for Q. ��

2.3. Basic Properties of Minimizers

We conclude the preliminary section by recalling some basic facts about mini-
mizers of (LGε).

Lemma 21. Minimizers Qε of (LGε) exist and are of class C∞ in the interior ofΩ .
Moreover, for any U ⊂⊂ Ω they satisfy

ε ‖∇Qε‖L∞(U ) � C(U ).

Sketch of the proof. The existence of minimizers follows by standard method in
Calculus of Variations. Minimizers solve the Euler–Lagrange system

− ε2�Qε − aQε − bQ2
ε + b

3
Id |Qε|2 + c |Qε|2 Qε = 0 (34)

on Ω , in the sense of distributions. The term Id |Q2
ε | is a Lagrange multiplier,

associatedwith the tracelessness constraint. The elliptic regularity theory, combined
with the uniform L∞-bound of Assumption (H), implies that each component Qε,i j

is of class C∞ in the interior of the domain. The W 1,∞(U )-bound follows by
interpolation results, see [10, Lemma A.1, A.2]. ��
Lemma 22. (Stress-energy identity) For any i ∈ {1, 2, 3}, the minimizers satisfy

∂ j
(
eε(Qε)δi j − ∂i Qε · ∂ j Qε

) = 0 in Ω

in the sense of distributions.

Proof. Since Qε is of class C∞ in the interior of the domain by Lemma 21, we
can differentiate the products and use the chain rule. For each i we have

∂ j
(
eε(Qε)δi j − ∂i Qε · ∂ j Qε

)

= ∂i∂k Qε · ∂k Qε + 1

ε2

∂ f (Qε)

∂Qpq
∂i Qε,pq

−∂i∂ j Qε · ∂ j Qε − ∂i Qε · ∂ j∂ j Qε

(34)= ∂k∂k Qε · ∂i Qε − b

3
|Qε|2 Id ·∂i Qε − ∂i Qε · ∂ j∂ j Qε = 0,

where we have used that Id ·∂i Qε = 0, because Qε is traceless. ��
Lemma 23. (Pohozaev identity) Let G ⊂ Ω be a Lipschitz subdomain and x0 a
point in G. Then, there holds

Eε(Qε, G) + 1

2

ˆ
∂G

ν(x) · (x − x0) |∂νQε|2 dH 2

=
ˆ
∂G

ν(x) · (x − x0)eε(Qε) dH
2

−
ˆ
∂G

(∇Qε) ν(x) · (∇Qε) P∂G(x − x0) dH
2,
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where ν(x) is the outward normal to ∂G at x and P∂G(x − x0) is the component
of x − x0 that is tangent to ∂G.

This identity can be proved arguing exactly as in [11, Theorem III.2] (the reader
is also referred to [52, Lemma 2] for more details). The Pohozaev identity has a
very important consequence, which is obtained by taking G = Br (x0) (see for
example [52, Lemma 2] for a proof).

Lemma 24. (Monotonicity formula) Let x0 ∈ Ω , and let 0 < r1 < r2 <

dist(x0, ∂Ω). Then

r−1
1 Eε(Qε, Br1(x0)) � r−1

2 Eε(Qε, Br2(x0)).

Here is another useful consequence of the Pohozaev identity, whose proof is
straightforward:

Lemma 25. Assume that G ⊆ Ω is star-shaped, that is there exists x0 ∈ G such
that ν(x) · (x − x0) � 0 for any x ∈ ∂G. Then

Eε(Qε, G) � 3 diam(G) Eε(Qε, ∂G).

3. Extension Properties

3.1. Extension of S2- and N -Valued Maps

In some of our arguments, we will encounter extension problems forN -valued
maps. This means, given g : ∂Bk

r → N (for k ∈ N, k � 2 and r > 0) we look for
a map Q : Bk

r → N satisfying Q = g on ∂Bk
r , with a control on the energy of Q.

When the datum g is smooth enough and no topological obstruction occur, this
problem can be reformulated in terms of S2-valued maps. Indeed, if the homotopy
class of g is trivial then g can be lifted, that is there exists a map n : ∂Bk

r → S
2, as

regular as g, such that the diagram

S
2

ψ

��

∂Bk
r

n
���������� g
�� N

commutes. Here ψ is the universal covering map of N , given by (27). In other
words, the function n satisfies

g(x) = (ψ ◦ n)(x) for (almost) every x ∈ ∂Bk
r . (35)

Physically speaking, the vector field n determines an orientation for the boundary
datum g, therefore a map g which admits a lifting is said to be orientable. Since S2

is a simply connected manifold, S2-valued maps are easier to deal with than N -
valued map, and extension results are known. Therefore, one can find an S2-valued
extension w of n, then apply ψ to define an extension P := ψ ◦ w of g. Thus, one
proves extension results for N -valued maps, which will be crucial in the proof
of Proposition 8. We will denote by∇� the tangential gradient at the boundary, that
is ∇�g(x) is the restriction of ∇g(x) to the tangent plane to ∂Bk

r at a point x .
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Lemma 26. There exists a constant C > 0 such that, for any r > 0, k � 3 and any
g ∈ H1(∂Bk

r , N ), there exists P ∈ H1(Bk
r , N ) which satisfies P = g on ∂Bk

r
and

‖∇P‖2L2(Bk
r )

� Crk/2−1/2 ‖∇�g‖L2(∂Bk
r )
.

In Lemma 26, the two sides of the inequality have different homogeneities
in P , g. This fact is of main importance, for the arguments of Section 4 rely
crucially on it.

In case k = 2, it makes sense to consider the homotopy class of a H1-boundary
datum g, due to Sobolev embedding. If the homotopy class is trivial, we have the
following:

Lemma 27. There exists a constant C > 0 such that, for any r > 0 and any
g ∈ H1(∂B2

r , N ) with trivial homotopy class, there exists P ∈ H1(B2
r , N )

satisfying P = g on ∂B2
r and

‖∇P‖2L2(B2
r )

� Cr ‖∇�g‖2L2(∂B2
r )
.

If the homotopy class of the boundary datum g is non-trivial, then there is
no extension P ∈ H1

g (B
2
r , N ). However, we can still find an extension P ∈

H1(B2
r , S0) whose energy satisfies a logarithmic upper bound.

Lemma 28. There exists a constant C > 0 such that, for any 0 < ε < 1, r > 0
and any g ∈ H1(∂B2

r , N ) with non-trivial homotopy class, there exists Pε ∈
H1(B2

r , S0) such that Pε = g ∂B2
1 and

Eε(Pε, B
2
r ) � κ∗ log

r

ε
+ C

(
r ‖∇�g‖2L2(∂B2

r )
+ 1
)
.

We also prove an extension results on a cylinder, in dimension three. Given
positive numbers L and r , setΛ := B2

r × [−L , L] and Γ := ∂B2
r × [−L , L]. Let

g ∈ H1(Γ, N ) be a boundary datum, which is only defined on the lateral surface
of the cylinder. By the Fubini theorem and Sobolev embedding, the restriction
of g to ∂B2

r × {z} has a well-defined homotopy class, for almost all z ∈ [−L , L].
Moreover, arguing by density (as in Section 2.2) we see that this class is indipendent
of z. We call it the homotopy class of g.

Lemma 29. For any 0 < ε < 1 and any g ∈ H1(Γ, N )with non-trivial homotopy
class, there exists Pε ∈ H1(Λ, S0) such that Pε = g on Γ ,

Eε(Pε, Λ) � κ∗L log
r

ε
+ CL

(
L

r
+ r

L

)
‖∇�g‖2L2(Γ )

+ CL

and

Eε(Pε, B
2
r × {z}) � κ∗ log

r

ε
+ C

(
L

r
+ r

L

)
‖∇�g‖2L2(Γ )

+ C

for z ∈ {−L , L}.
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In both the inequalities, the prefactors of the H1-seminorm of g are probably
not optimal, but the leading order terms are sharp (see Corollary 16).

A useful technique to construct extensions ofS2-valuedmaps has been proposed
by Hardt et al. [37].

Lemma 30. (Hardt et al. [37]) Given k � 2 and a map n ∈ H1(∂Bk
r , S

2), there
exists a map w ∈ H1(Bk

r , S
2) which satisfy w = n on ∂Bk

r ,

‖∇w‖2L2(Bk
r )

� Ckr
k/2−1/2 ‖∇�n‖L2(∂Bk

r )
(36)

and

‖∇w‖2L2(Bk
r )

� Ckr ‖∇�n‖2L2(∂Bk
r )
. (37)

Sketch of the proof. The existence of such an extension has been proved by
Hardt et al. (see [37, proof of Lemma 2.3, Equation (2.3)]). Although the proof
has been given in the case k = 3, the same argument applies to any k � 2. The
proof relies on the following identity: if v : Bk

r → R
3 satisfies −�v = 0 on Bk

r
and v = n on ∂Bk

r , then

r ‖∇�n‖2L2(∂Bk
r )

= (k − 2) ‖∇v‖2L2(Bk
r )

+ r ‖∂νv‖2L2(∂Bk
r )
, (38)

where ν is a unit normal to ∂Bk
r . This identity is obtained by multiplying both sides

of the equation −�v = 0 with x ·∇v and integrating by parts. Then, by integrating
the equality |∇v|2 = ∇ · ((v − n∗)∇v), where n∗ := ffl

∂Bk
r

n, we deduce

‖∇v‖2L2(Bk
r )

=
ˆ
∂Bk

r

(n − n∗)∂νv dH k−1
(38)
� ‖n − n∗‖L2(∂Bk

r )
‖∇�n‖L2(∂Bk

r )
,

so ‖∇v‖2
L2(Bk

r )
is bounded by the right-hand side of (36) and, thanks to the Poincaré

inequality, also by (37). Finally, one defines w by composing v with a suitable
projection onto the unit sphere S2. ��

We state now a lifting property for Sobolev maps. This subject has been studied
extensively, among others, by Bethuel and Zheng [15], Bourgain et al. [16],
Bethuel and Chiron [13], Ball and Zarnescu [9] (in particular, in the latter a
problem closely related to the Q-tensor theory is considered).

Lemma 31. LetM be a smooth, compact, simply connected surface, possibly with
boundary. Then, any map g ∈ H1(M , N ) has a lifting, that is there exists n ∈
H1(M , S2) which satisfies (35). Moreover, there holds

|∇g|2 = 2s2∗ |∇n|2 H 2-almost everywhere on M . (39)

If M has a boundary then n|∂M is a lifting of g|∂M . Moreover, if g|∂M ∈
H1(∂M , N ) then n|∂M ∈ H1(∂M , S2).
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Sketch of the proof. The identity (39) follows directly by (35), by a straightfor-
ward computation. The existence of a lifting is a well-known topological fact,
when g is of class C1. In case g ∈ H1 and M is a bounded, smooth domain in
R
2, the existence of a lifting has been proved by Ball and Zarnescu [9, Theo-

rem 2]. The proof, which is based on the density of smooth maps in H1(M , N )

(see [62]), carries over to more general manifolds M . In case M has a bound-
ary and g|∂M ∈ H1, one can adapt the density argument and find a lifting n such
thatn|∂M ∈ H1. If ñ is any other lifting of g, thenn·ñ is an H1-mapM → {1, −1}
and so, by a slicing argument, either ñ = n almost everywhere or ñ = −n a.e (see
[9, Proposition 2]). In particular, any lifting ñ of g satisfies ñ|∂M ∈ H1. ��

Combining Lemmas 30 and 31, we obtain easily Lemmas 26 and 27.

Proof of Lemmas 26 and 27. Consider Lemma 26 first. Let n ∈ H1(∂Bk
r , S

2) be
a lifting of g, whose existence is guaranteed by Lemma 31, and letw ∈ H1(Bk

r , S
2)

be the extension given by Lemma 30. Then, the map defined by

P(x) := s∗
(

w⊗2(x) − 1

3
Id

)
for H k-almost every x ∈ Bk

r

has the desired properties. The proof of Lemma 27 is analogous. ��
Proof of Lemma 28. By a scaling argument, we can assume WLOG that r = 1.
Let h(x) := P0(2x) for x ∈ ∂B2

1/2, where P0 is given by Lemma 19, and

let wε : B2
1/2 → S0 be given by

wε(x) := ηε(|x |)h
(

x

|x |
)

for x ∈ B2
1/2,

where

ηε(ρ) :=
{
1 if ρ � ε

ε−1ρ if 0 � ρ < ε.
(40)

Then, wε belongs to H1(B2
1/2, S0) and

Eε(wε, B
2
1/2) � κ∗ |log ε| + C. (41)

Indeed,

|∇wε|2 = ∣∣∂ρwε

∣∣2 + 1

ρ2
|∇�wε|2

{
� Cε−1 where ρ � ε

= ρ−2|∇�h|2 where ρ � ε,

and wε(x) ∈ N if |x | � ε. Therefore, we have

Eε(wε, B
2
1/2) � 1

2

ˆ 1/2

ε

dρ

ρ

ˆ
S1

|∇�h|2 dH 1 + Eε(wε, B
2
ε )

� 1

2
(|log ε| − log 2)

ˆ
S1

|∇�h|2 dH 1 + C,

whence (41) follows.
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Fig. 2. A square can be mapped into an annulus, by identifying a pair of opposite sides

To complete the proof of the lemma, we only need to interpolate between g
and h by a function defined on the annulus D := B2

1\B2
1/2. Up to a bilipschitz

equivalence, D can be thought as the unit square (0, 1)2 with an equivalence relation
identifying two opposite sides of the boundary, as shown in Fig. 2. We assign
the boundary datum g on the bottom side, and h on the top side. Since N is
path-connected, we find a smooth path c : [0, 1] → N connecting g(0, 0) to
h(0, 1). By assigning c as a boundary datum on the lateral sides of the square, we
have defined an H1-map ∂[0, 1]2 → N , homotopic to g ∗ c ∗ h ∗ c̃. (Here, the
symbol ∗ stands for composition of paths, and c̃ is the reverse path of c.) Since the
square is bilipschitz equivalent to a disk, it is possible to apply Lemma 27 and find
ṽ ∈ H1([0, 1]2, N ) such that

ˆ
[0, 1]2

|∇ṽ|2 dH 2 � C

(
‖∇g‖2

L2(∂B2
1 )

+ ‖∇h‖2
L2(∂B2

1/2)
+ ∥∥c′∥∥2

L2(0, 1)

)
. (42)

Passing to the quotient [0, 1]2 → D, we obtain a map v ∈ H1(D, S0). Now, the
function P : B2

1 → S0 defined by P := v on D and P := wε on B2
1/2 satisfies the

lemma. Indeed, the energy of P is bounded by (41) and (42), and the H1-norms
of h and c are controlled by a constant depending only on N . ��
Proof of Lemma 29. By an average argument, we find z0 ∈ [−L/4, L/4] such
that

‖∇�g‖2L2(∂B2
r ×{z0}) � 8

L
‖∇�g‖2L2(Γ )

. (43)

To avoid notation, we assume WLOG that z0 = 0. We construct an N -valued
map P̃ , defined over the “cylindrical annulus” (B2

r \B2
r/2) × [−L , L], such that

P̃
(
ρeiθ , z

)
=
{
g(reiθ , z) for ρ = r

g(reiθ , 0) for ρ = r/2,

where (ρ, θ, z) ∈ [0, r ] × [0, 2π ] × [−L , L] are the cylindrical coordinates.
Then, since P̃ restricted to ∂B2

r/2 × [−L , L] is independent of the z-variable, we
can apply Lemma 28 to construct an extension in the inner cylinder B2

r/2×[−L , L].
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The map P̃ is defined as follows:

P̃(ρeiθ , z) :=
{
g
(
reiθ , z′(ρ, z)

)
if ρ0(ρ, z) � ρ � r and |z| � L

g(reiθ , 0) if r/2 � ρ < ρ0(ρ, z) and |z| � L ,

where

z′(ρ, z) := 2L

r
sign(z)(ρ − r) + z, ρ0(ρ, z) := r − r

2L
|z|.

Note that |z′(ρ, z)| � L if ρ0(ρ, z) � ρ � r and |z| � L . We compute the H1-
seminorm of P̃ . For simplicity, we restrict our attention to the upper half-cylinder.
We have

‖∇ P̃‖2
L2((B2

r \B2
r/2)×[0, L])

=
ˆ 2π

0

ˆ L

0

ˆ r

ρ0(ρ, z)

{(
4L2

r2
+ 1

)
ρ |∂zg|2

(
reiθ , z′(ρ, z)

)

+ρ−1 |∂θg|2
(
reiθ , z′(ρ, z)

)}
dρ dz dθ

+
ˆ 2π

0

ˆ L

0

ˆ ρ0(ρ, z)

r/2
ρ−1 |∂θg|2

(
reiθ , 0

)
dρ dz dθ

� r

2L

ˆ 2π

0

ˆ L

0

ˆ z

0

{(
4L2

r2
+ 1

)
r |∂zg|2 + 2r−1 |∂θg|2

}
(reiθ , ξ) dξ dz dθ

+(log 2)L
ˆ 2π

0
|∂θg|2

(
reiθ , 0

)
dθ

� r

(
4L2

r2
+ 1

) ˆ 2π

0

ˆ L

0

{
r |∂zg|2 + r−1 |∂θg|2

}
(reiθ , ξ) dξ dθ

+ (log 2)L
ˆ 2π

0
|∂θg|2

(
reiθ , 0

)
dθ.

An analogous estimates holds on the lower half-cylinder. Therefore,

‖∇ P̃‖2
L2((B2

r \B2
r/2)×[−L , L]) �

(
4L2

r
+ r

)
‖∇�g‖2L2(Γ )

+ (log 2)r L ‖∇�g‖2L2(∂B2
r ×{0})

and so, due to (43), we have

‖∇ P̃‖2
L2((B2

r \B2
r/2)×[−L , L]) � C

(
L2

r
+ r

)
‖∇�g‖2L2(Γ )

. (44)

By applying Lemma 28 (and (43)) to g(·, 0), we find an extension P̃ε ∈
H1(B2

r/2, S0) which satisfies

Eε(P̃ε, B
2
r/2) � κ∗ log

r

ε
+ Cr

L
‖∇�g‖2L2(Γ )

+ C. (45)
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Define the map P by letting P(ρeiθ , z) := P̃(ρeiθ , z) if r/2 < ρ � r and
Pε(ρeiθ , z) := P̃ε(ρeiθ ) if ρ � r/2. By integrating (44) with respect to z ∈
[−L , L], and combining the resulting inequality with (44), we give an upper bound
for the energy of Pε on Λ. Moreover, there holds

‖∇ P̃‖2
L2((B2

r \B2
r/2)×{L})

=
ˆ 2π

0

ˆ r

r/2

{(
4L2

r2
+ 1

)
ρ |∂zg|2

(
reiθ , z′(ρ, L)

)

+ ρ−1 |∂θg|2
(
reiθ , z′(ρ, L)

)}
dρ dθ

� r

2L

ˆ 2π

0

ˆ L

0

{(
4L2

r2
+ 1

)
r |∂zg|2 + 2r−1 |∂θg|2

}
(reiθ , ξ) dξ dθ

� r

L

(
4L2

r2
+ 1

)
‖∇�g‖2L2(Γ )

.

This inequality combined with (45), gives an upper bound for the energy of Pε
on B2

r × {L}; a similar inequality holds on B2
r × {−L}. This concludes the proof.

��

3.2. Luckhaus’ Lemma and Its Variants

Inmany of our arguments, it will be useful to compare the energy of aminimizer
Qε of (LGε) on, say, a ball Br with the energy of another map Pε : Br → S0. How-
ever, it may happen that Pε �= Qε on ∂Br , so Pε is not an admissible comparison
map. To correct this, we need to construct a function which interpolates between
Pε and Qε over a thin spherical shell.

The problemmay be stated as follows. Set ε̄ := ε/r , and suppose that 0 < ε̄<1.
Let u ε̄ : ∂B1 → S0, vε̄ : ∂B1 → N be two H1-maps. We look for a (small)
number h(ε̄) > 0 and a map ϕε̄ : Aε̄ := B1\B1−h(ε̄) → S0, such that

ϕε̄(x) = u ε̄(x) and ϕε̄(x − h(ε̄)x) = vε̄(x)

for H 2-almost every x ∈ ∂B1 (46)

and the energy Eε̄(ϕε̄, Aε̄) satisfies a suitable bound. In some cases, only the
function u ε̄ is prescribed, and we need to find both vε̄ and ϕε̄.

Luckhaus proved an interesting interpolation lemma (see [49,Lemma1]),which
turned out to be useful in several applications. When both u ε̄ and vε̄ take values in
the manifold N , Luckhaus’ lemma gives an extension ϕε̄ satisfying (46) and

sup
x∈Aε̄

dist(ϕε̄(x), N ) +
ˆ
Aε̄

|∇ϕε̄|2 � C(u ε̄, vε̄, h(ε̄)).

For the convenience of the reader, and for future reference, we recall Luckhaus’
lemma. Since the term ε̄−2 f (ϕε̄) is not taken into account here, we drop the sub-
script ε̄ in the notation.



624 Giacomo Canevari

Linear interpolation

Homogeneous extension

v

u
ϕ

Fig. 3. Left a grid on a sphere. Right the Luckhaus’ construction. Given two maps uε , vε
(respectively defined on the outer and inner boundary of a thin spherical shell), we construct
a map ϕε by using linear interpolation on the boundary of the cells, and homogeneous
extension inside each cell

Lemma 32. (Luckhaus [49]) For any β ∈ (1/2, 1), there exists a constant C > 0
with this property. For any fixed numbers 0 < λ � 1/2, 0 < σ < 1 and any u, v ∈
H1(∂B1, N ), set

K :=
ˆ
∂B1

{
|∇u|2 + |∇v|2 + |u − v|2

σ 2

}
dH 2.

Then, there exists a function ϕ ∈ H1(B1\B1−λ, S0) satisfying (46),

dist(ϕ(x), N ) � Cσ 1−βλ−1/2K 1/2

for almost all x ∈ B1\B1−λ andˆ
B1\B1−λ

|∇ϕ|2 � Cλ
(
1 + σ 2λ−2

)
K .

The idea of the proof is illustrated in Fig. 3. One constructs a grid on the
sphere ∂B1 with suitable properties. The map ϕ is defined by linear interpolation
between u and v on the boundary of the cells. Inside each cell, ϕ is defined by a
homogeneous extension. By choosing carefully the grid on ∂B1, and using Sobolev
embeddings, one can bound the L∞-distance between u and v on the boundary
of the cells, in terms of K . This yields bounds both on dist(ϕ(x), N ) and on the
gradient of ϕ.

We will discuss here a couple of variants of this lemma. In our first result,
we suppose that only the map u ε̄ : ∂B1 → S0 is prescribed, so we need to find
both vε̄ : ∂B1 → N and ϕε̄. Approximating u ε̄ with a N -valued map vε̄ may be
impossible, due to topological obstructions. However, this is possible if the energy
of u ε̄ is small, compared to | log ε̄|. More precisely, we assume that

Eε̄(u ε̄, ∂B1) � η0 |log ε̄| (47)
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for some small constant η0 > 0. For technical reasons, we also require a L∞-bound
on u ε̄, namely

‖u ε̄‖L∞(∂B1) � κ (48)

where κ is an ε̄-independent constant. In the applications, u ε̄ will be a Landau-de
Gennes minimizer and (48) will be satisfied, because of (H).

Proposition 33. For any κ > 0, there exist positive numbers η0, ε̄1, C with the
following property. For any 0 < η � η0, any 0 < ε̄ � ε̄1 and any u ε̄ ∈ (H1 ∩
L∞)(∂B1, S0) satisfying (47)–(48), there exist maps vε̄ ∈ H1(∂B1, N ) and ϕε̄ ∈
H1(B1\B1−h(ε̄), S0) which satisfy (46),

1

2

ˆ
∂B1

|∇vε̄|2 dH 2 � CEε̄(u ε̄, ∂B1), (49)

Eε̄(ϕε̄, B1\B1−h(ε̄)) � Ch(ε̄)Eε̄(u ε̄, ∂B1) (50)

for h(ε̄) := ε̄1/2| log ε̄|.

We will discuss the proof of this proposition later on. Before that, we remark
that vε̄ effectively approximates u ε̄, that is their distance—measured in a suitable
norm—tends to 0 as ε̄ → 0.

Corollary 34. Under the same assumptions of Proposition 33, there holds

‖u ε̄ − vε̄‖L2(∂B1) � Ch1/2(ε̄)E1/2
ε̄ (u ε̄, ∂B1).

Notice that the right-hand side tends to 0 as ε̄ → 0, due to (47) and the choice
of h(ε̄).

Proof. We can estimate the L2-distance between un and vn thanks to (46), the
Hölder inequality and (50):

‖u ε̄ − vε̄‖2L2(∂B1)
(46)=

ˆ
∂B1

|ϕε̄(x) − ϕε̄(x − h(ε̄)x)|2 dH 2(x)

� h(ε̄)
ˆ
∂B1

ˆ 1

1−h(ε̄)
|∇ϕε̄(t x)|2 dt dH 2(x)

� h(ε̄)

(1 − h(ε̄))2
Eε̄(ϕε̄, B1\B1−h(ε̄))

(50)
� Ch(ε̄)Eε̄(u ε̄, ∂B1).

��
Combining Lemma 32 and Proposition 33, we obtain a third extension result.

In this case, both the boundary values u, v are prescribed and, unlike Luckhaus’
lemma, we provide a control over the potential energy of the extension ε̄−2 f (ϕε̄).
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Proposition 35. Let {σε̄}ε̄>0 be a positive sequence such that σε̄ → 0, and let u ε̄,
vε̄ be given functions in H1(∂B1, S0). For all ε̄ > 0, assume that u ε̄ satisfies (48),
that vε̄(x) ∈ N for H 2-almost everywhere x ∈ ∂B1 and that

ˆ
∂B1

{
|∇u ε̄|2 + 1

ε̄2
f (u ε̄) + |∇vε̄|2 + |u ε̄ − vε̄|2

σ 2
ε̄

}
dH 2 � C (51)

for an ε̄-independent constant C. Set

νε̄ := h(ε̄) +
(
h1/2(ε̄) + σε̄

)1/4
(1 − h(ε̄)) .

Then, there exist a number ε̄1 > 0 and, for 0 < ε̄ � ε̄1, a function ϕε̄ ∈
H1(B1\B1−νε̄ , S0) which satisfies (46) and

Eε̄(ϕε̄, B1\B1−νε̄ ) � Cνε̄.

The assumption (51) could be replaced by a logarithmic bound, of the order
of η0| log ε̄| for small η0 > 0, with additional assumptions on σε̄. However, the
result as it is presented here suffices for our purposes.

Proof of Proposition 35. Thanks to (51) and (48), we can apply Proposition 33
to the function u ε̄. We obtain two maps wε̄ ∈ H1(∂B1, N ) and ϕ1

ε̄ ∈
H1(B1\B1−h(ε̄), S0), which satisfy

ϕ1
ε̄ (x) = u ε̄(x) and ϕ1

ε̄ (x − h(ε̄)x) = wε̄(x) for H 2-almost all x ∈ ∂B1,ˆ
∂B1

|∇wε̄|2 dH 2 � C,

Eε̄(ϕ
1
ε̄ , B1\B1−h(ε̄)) � Ch(ε̄). (52)

Corollary 34, combined with (51), entails

‖wε̄ − vε̄‖L2(∂B1) � ‖wε̄ − u ε̄‖L2(∂B1) + ‖u ε̄ − vε̄‖L2(∂B1) � C
(
h1/2(ε̄) + σε̄

)
.

Therefore, setting σ̃ε̄ := h1/2(ε̄) + σε̄, we have

ˆ
∂B1

{
|∇wε̄|2 + |∇vε̄|2 + |wε̄ − vε̄|2

σ̃ 2
ε̄

}
dH 2 � C

Then, we can apply Lemma 32 to vε̄ and wε̄, choosing σ = σ̃ε̄, β = 3/4 and
λ := σ̃

1/4
ε̄ . By rescaling, we find a map ϕ2

ε̄ ∈ H1(B1−h(ε̄)\B1−νε̄ , S0) which
satisfies

ˆ
B1−h(ε̄)\B1−νε̄

∣∣∣∇ϕ2
ε̄

∣∣∣
2

� C σ̃ 1/4
ε̄ (1 − h(ε̄))

dist(ϕ2
ε̄ (x), N ) � C σ̃ 1/8

ε̄ for almost all x ∈ B1−h(ε̄)\Bνε̄ . (53)
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Since σ̃ε̄ → 0, there exists ε̄1 > 0 such that ϕ2
ε̄ (x) /∈ C for any 0 < ε̄ � ε̄1 and x .

Therefore, the function

ϕε̄(x) :=
{
ϕ1
ε̄ (x) if x ∈ B1\B1−h(ε̄)

� ◦ ϕ2
ε̄ (x) if x ∈ B1−h(ε̄)\B1−νε̄

is well-defined, belongs to H1(B1\B1−νε̄ , S0), satisfies (46) and

Eε̄(ϕε̄, B1\B1−νε̄ ) = Eε̄(ϕ
1
ε̄ , B1\B1−h(ε̄)) +

ˆ
B1−h(ε̄)\B1−νε̄

∣∣∣∇ϕ2
ε̄

∣∣∣
2 (52)–(53)

� Cνε̄.

��

Sections 3.3–3.5 are devoted to the proof of Proposition 33, which we sketch
here. From now on, we assume that there exists a positive constant M such that

Eε̄(u ε̄, ∂B1) � M |log ε̄| for all 0 < ε̄ < 1. (Mε̄)

The assumption (47) clearly implies (Mε̄). As in Luckhaus’ arguments, the key
ingredient of the construction is the choice of a grid on the unit sphere ∂B1, with
special properties. In Section 3.3 we construct a family of grids {G ε̄}, whose cells
have size controlled by h(ε̄), and we prove that there exists ε̄1 > 0 such that

dist(u ε̄(x), N ) � δ0 for any ε̄ ∈ (0, ε̄1) and any x ∈ Rε̄
1.

Here Rε̄
1 denotes the 1-skeleton of G

ε̄, that is the union of the boundaries of all the
cells, and δ0 is given by Lemma 14. In particular, the composition � ◦ u ε̄ is well-
defined on Rε̄

1 when ε̄ < ε̄1. We wish to extend � ◦ u ε̄ to a map vε̄ : ∂B1 → N .
This may be impossible, depending on the homotopy properties of u ε̄. A sufficient
condition for the existence of vε̄ is the following:

(Cε̄) For any 2-cell K of G ε̄, the loop � ◦ u ε̄ |∂K : ∂K → N is homotopically
trivial.

This condition makes sense for any u ε̄ ∈ H1(∂B1, S0), for we construct G ε̄ in
such a way that u ε̄ restricted to Rε̄

1 belongs to H1 ↪→ C0.
In Section 3.4, we assume that (Mε̄) and (Cε̄) hold and we construct a func-

tion vε̄ ∈ H1(∂B1, N ), whose energy is controlled by the energy of u ε̄. Once vε̄ is
known, we construct ϕε̄ by Luckhaus’ method. Particular care must be taken here,
as we need to bound the potential energy of ϕε̄ as well. Finally, in Section 3.5 we
show that the logarithmic bound (47), for a small enough constant η0, implies that
Condition (Cε̄) is satisfied. The argument relies on the results of Section 2.2, which
imply a logarithmic lower bound for the energy if � ◦ u ε̄ |∂K is non-trivial for at
least one 2-cell K .
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3.3. Good Grids on the Sphere

Consider a decomposition of ∂B1 of the form

∂B1 =
2⋃
j=0

k j⋃
i=1

Ki, j ,

where the sets Ki, j are mutually disjoint, and each Ki, j is bilipschitz equivalent to
a j-dimensional ball. The collection of all the Ki, j ’s will be called a grid on ∂B1.
Each Ki, j will be called a j-cell of the grid. We define the j-skeleton of the grid as

R j :=
k j⋃
i=1

Ki, j for j ∈ {0, 1, 2}.

For our purposes, we need to consider grids with some special properties.

Definition 36. Let h : (0, ε̄1] → (0, +∞) be a fixed function. A family of
grids G := {G ε̄}0<ε̄�ε̄1

will be called a good family of grids of size h if there
exists a constant CG > 0 which satisfies the following properties:

(G1) For each ε̄, i , j , there exists a bilipschitz homeomorphism ϕε̄i, j : K ε̄
i, j → B j

h(ε̄)
such that

∥∥∥Dϕε̄i, j
∥∥∥
L∞ +

∥∥∥D(ϕε̄i, j )−1
∥∥∥
L∞ � CG .

(G2) For all p ∈ {1, 2, . . . , k1} we have

#
{
q ∈ {1, 2, . . . , k2} : K ε̄

p,1 ⊆ ∂K ε̄
q,2

}
� CG ,

that is, each 1-cell is contained in the boundary of at most CG 2-cells.
(G3) We have

Eε̄(u ε̄, R
ε̄
1) � CG h

−1(ε̄) Eε̄(u ε̄, ∂B1),

where Rε̄
1 denotes the 1-skeleton of G ε̄.

(G4) There holds

ˆ
Rε̄
1

f (u ε̄) dH
1 � CG h

−1(ε̄)

ˆ
∂B1

f (u ε̄) dH
2.

Of course, this definition depends on the family {u ε̄}, which we assume to be fixed
throughout the arguments of this section.

Lemma 37. For any strictly positive function h, a good family of grids of size h
exists.
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Proof. On the unit cube ∂[0, 1]3, consider the uniform grid of size �h−1(ε̄)�−1,
that is the grid spanned by the points

(
�h−1(ε̄)�−1

Z
3
)

∩ ∂[0, 1]3

(where �x� is, by the definition, the smallest integer k such that k � x). By applying
a bilipschitz homeomorphism [0, 1]3 → B1, one obtains a gridF ε̄ on ∂B1 which
satisfy (G1)–(G2). Denote by T ε̄

1 the 1-skeleton of F ε̄. By an average argument,
as in [49, Lemma 1], we find a rotation ω ∈ SO(3) such that

Eε̄(u ε̄, ω(T
ε̄
1 )) � Ch−1(ε̄) Eε̄(u ε̄, ∂B1)

and ˆ
ω(T ε̄

1 )

f (u ε̄) dH
1 � Ch−1(ε̄)

ˆ
∂B1

f (u ε̄) dH
2.

Thus,

G ε̄ :=
{
ω(K ) : K ∈ F ε̄

}

is a good family of grids of size h. ��
Good families of grids enjoy the following property:

Lemma 38. Let G be a good family of grids on ∂B1, of size h. Assume that (Mε̄)
holds, and that there exists α ∈ (0, 1) such that

lim
ε̄→0

ε̄αh−1(ε̄) = 0. (54)

Then, there holds

lim
ε̄→0

sup
x∈Rε̄

1

dist(u ε̄(x), N ) = 0.

Proof. The arguments below are adapted from [1, Lemmas 3.4 and 3.10] (the
reader is also referred to [14, Lemmas 2.2, 2.3 and 2.4]). Since the Landau-de
Gennes potential satisfies (F2) by Lemma 14, there exist positive numbers β,C and
a continuous function ψ : [0, +∞) → R such that

⎧⎪⎨
⎪⎩

ψ(s) = βs2 for 0 � s < δ0

0 < ψ(s) � C for s � δ0

ψ(dist(v, N )) � f (v) for any v ∈ S0.

Denote by G a primitive of ψ1/6, and set dε̄ := dist(u ε̄, N ). Since the function
dist(·, N ) is 1-Lipschitz continuous, we have dε̄ ∈ H1(Ω, R) and |∇dε̄| � |∇u ε̄|.
Moreover, ψ(dε̄) � f (u ε̄) by construction of ψ . Thus, (Mε̄) and (G3) entail

h(ε̄)
ˆ
Rε̄
1

{
1

2
|∇dε̄|2 + ε̄−2ψ(dε̄)

}
dH 1 � MCG | log ε̄|.
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By applying Young’s inequality a + b � Ca3/4b1/4, we obtain

MCG | log ε̄| � C ε̄−1/2h(ε̄)
ˆ
Rε̄
1

|∇dε̄|3/2 ψ1/4(dε̄) dH
1

= C ε̄−1/2h(ε̄)
ˆ
Rε̄
1

|∇G(dε̄)|3/2 dH 1. (55)

Fix a 1-cell K of G ε̄. We control the oscillations of G(dε̄) over K thanks to the
Sobolev embedding W 1,3/2(K ) ↪→ C0(K ) and (55):

(
osc
K

G(dε̄)

)3/2

� Ch1/2(ε̄)
ˆ
K

|∇G(dε̄)|3/2 dH 1

= C ε̄1/2h−1/2(ε̄) |log ε̄| .
In view of (54), we obtain

osc
Rε̄
1

G(dε̄) → 0

as ε̄ → 0. The function G is a continuous and strictly increasing, so G has a
continuous inverse. This implies

osc
Rε̄
1

dε̄ → 0 (56)

as ε̄ → 0. On the other hand, (Mε̄), (G3) and (54) yield
 
K
ψ(dε̄) dH

1 � 1

h(ε̄)

ˆ
Rε̄
1

f (u ε̄) dH
1 → 0 (57)

as ε̄ → 0, for any 1-cell K of Gε̄. As we will see in a moment, this implies

sup
K

 
K
dε̄ dH

1 → 0. (58)

Combining (58) with (56), we conclude that dε̄ converges uniformly to 0 as ε̄ → 0.
Now, we check that (58) holds. There exists a constant λ > 0 such that

‖dε̄‖L∞(Ω) � λ

(this follows from the uniform L∞-estimate for u ε̄, (48)). For any δ ∈ (0, λ), set

ψ∗(δ) := inf
δ�s�λ

ψ(s) > 0.

Then,

H 1
({
dε̄ � δ

} ∩ K
)

H 1(K )
ψ∗(δ) � 1

H 1(K )

ˆ
{dε̄�δ}∩K

ψ(dε̄) dH
1

�
 
K
ψ(dε̄) dH

1. (59)
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Thus, for any 1-cell K , we have

0 �
 
K
dε̄ dH

1 = 1

H 1(K )

ˆ
{dε̄�δ}∩K

dε̄ dH
1 + 1

H 1(K )

ˆ
{dε̄�δ}∩K

dε̄ dH
1

�
H 1

({
dε̄ � δ

} ∩ K
)

H 1(K )
δ + H 1

({
dε̄ � δ

} ∩ K
)

H 1(K )
λ

(59)
� δ + λ

ψ∗(δ)

 
K
ψ(dε̄) dH

1

(57)
� δ + Cλ

ψ∗(δ)
ε̄2h−1(ε̄) |log ε̄| .

We pass to the limit first as ε̄ → 0, then as δ → 0. Using (54), we deduce (58). ��
Remark 39. As a byproduct of the proof, under the assumptions of Lemma 38 the
following property holds. For any δ > 0, there exists a positive number ε̄1 which
only depend on M, κ , CG and the potential f , such that

dist(u ε̄(x), N ) � δ

for any 0 < ε̄ � ε̄1 and any x ∈ Rε̄
1. Here M , κ and CG are given respectively

by (Mε̄), (48), and Definition 36.

3.4. Construction of vε̄ and ϕε̄

First, we construct the approximating map vε̄ : ∂B1 → N .

Lemma 40. Assume that (Mε̄), (Cε̄) hold. There exists ε̄1 > 0 such that, for any
0 < ε̄ � ε̄1, there exists a map vε̄ ∈ H1(∂B1, N ) which satisfy (49),

vε̄(x) = �(u ε̄(x)) and |u ε̄(x) − vε̄(x)| � δ0 (60)

for every x ∈ Rε̄
1 .

Proof. To construct vε̄, we take a family G = {G ε̄}ε̄>0 of grids of size

h(ε̄) := ε̄1/2 |log ε̄| (61)

(such a family exists by Lemma 37). Condition (54) is satisfied for α = 1/2, so by
Lemma 38 there exists ε̄1 > 0 such that

dist(u ε̄(x), N ) � δ0 for any ε̄ ∈ (0, ε̄1) and any x ∈ Rε̄
1. (62)

The constant δ0 is given by Lemma 14. In particular, the formula

vε̄(x) := �(u ε̄(x)) for all x ∈ Rε̄
1

defines a function vε̄ ∈ H1(Rε̄
1, S0) which satisfies (60).

To extend vε̄ inside each 2-cell, we use Lemma 27. Fix a 2-cell K of Gε̄.
Since we have assumed that (Cε̄) holds, vε̄|∂K is homotopically trivial. Therefore,
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Lemma 27 and (G1) imply that there exists vε̄,K ∈ H1(K , N ) such that vε̄,K = vε̄
on ∂K and ˆ

K

∣∣∇vε̄,K
∣∣2 dH 2 � Ch(ε̄)

ˆ
∂K

|∇vε̄|2 dH 1.

Define vε̄ : ∂B1 → N by setting vε̄ := vε̄,K on each 2-cell K . This function
agrees with vε̄ |R1

ε̄
previously defined by (60), hence the notation is not ambiguous.

Moreover, vε̄ ∈ H1(∂B1, N ) andˆ
∂B1

|∇vε̄|2 dH 2 �
∑
K

ˆ
K

|∇vε̄|2 dH 2 � Ch(ε̄)
∑
K

ˆ
∂K

|∇vε̄|2 dH 1

(G2)

� Ch(ε̄)
ˆ
Rε̄
1

|∇vε̄|2 dH 1
(60)
� Ch(ε̄)

ˆ
Rε̄
1

|∇u ε̄|2 dH 1

(G3)

� CEε̄(u ε̄, ∂B1),

where the sum runs over all the 2-cells K of Gε̄. Thus vε̄ satisfies (49), so the lemma
is proved. ��

Now, we construct the interpolation map ϕε̄ : ∂B1 → S0.

Lemma 41. Assume that the conditions (Mε̄), (Cε̄) are satisfied. Then, for any 0 <
ε̄ � ε̄1 there exists a map ϕε̄ ∈ H1(B1\B1−h(ε̄), S0) which satisfies (46) and (50).

Proof. Set Aε̄ := B1\B1−h(ε̄). The grid G ε̄ on ∂B1 induces a grid Ĝ ε̄ on Aε̄, whose
cells are

K̂ :=
{
x ∈ R

3 : 1 − h(ε̄) � |x | � 1,
x

|x | ∈ K

}
for each K ∈ G ε̄ .

If K is a cell of dimension j , then K̂ has dimension j + 1. For j ∈ {0, 1, 2}, we
call R̂ε̄

j the union of all the ( j + 1)-cells of Ĝ ε̄.
The function ϕε̄ is constructed as follows. If x ∈ ∂B1 ∪ ∂B1−h(ε̄), then ϕε̄(x)

is determined by (46). If x ∈ R̂ε̄
1 ∪ R̂ε̄

1, we define ϕε̄(x) by linear interpolation:

ϕε̄(x) := 1 − |x |
h(ε̄)

u ε̄

(
x

|x |
)

+ h(ε̄) − 1 + |x |
h(ε̄)

vε̄

(
x

|x |
)
. (63)

For any 3-cell K̂ of Gε̄, we extend homogeneously (of degree 0) the function ϕε̄ |∂ K̂
on K̂ . This gives a map ϕε̄ ∈ H1(K̂ ), because K̂ is a cell of dimension 3. As a
result, we obtain a map ϕε̄ ∈ H1(Aε̄, S0) which satisfies (46).

To complete the proof of the lemma, we only need to bound the energy of ϕε̄.
Since ϕε̄ has been obtained by homogeneous extension on cells of size h(ε̄), we
have

Eε̄(ϕε̄, Aε̄)
(G1)

� Ch(ε̄)
∑

K̂

Eε̄(ϕε̄, ∂ K̂ )

(G2)

� Ch(ε̄)
{
Eε̄(u ε̄, ∂B1) + Eε̄(vε̄, ∂B1−h(ε̄)) + Eε̄(ϕε̄, R̂

ε̄
1)
}
, (64)
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where the sum runs over all the 3-cells K̂ of Ĝ ε̄. To conclude the proof, we invoke
the following fact.

Lemma 42. We have

Eε̄(ϕε̄, R̂
ε̄
1) � C

(
ε̄2h−2(ε̄) + 1

)
Eε̄(u ε̄, ∂B1).

From (64) and Lemma 42 we get

Eε̄(ϕε̄, Aε̄) � Ch(ε̄)

{(
ε̄2h−2(ε̄) + 1

)
Eε̄(u ε̄, ∂B1) + Eε̄(vε̄, ∂B1−h(ε̄))

}

(49)
� Ch(ε̄)

(
ε̄2h−2(ε̄) + 1

)
Eε̄(u ε̄, ∂B1)

and, thanks to our choice (61) of h(ε̄), we conclude that (50) holds, so Lemma 41
is proved. ��
Remark 43. We can keep track of the constants in the proof of Lemmas 40 and 41.
By doing so, one sees that the constant C given by Proposition 33 (Equations (49)
and (50)) only depends on CG and the potential f .

Proof of Lemma 42. We consider first the contribution of the potential energy.
Thanks to (F3), (63) and (60), we deduce that

f (ϕε̄(x)) � C

(
1 − |x |
h(ε̄)

)2

( f ◦ u ε̄)

(
x

|x |
)

for x ∈ R̂ε̄
1.

By integration, this givesˆ
R̂ε̄
1

f (ϕε̄) dH
2 � Ch(ε̄)

ˆ
Rε̄
1

f (u ε̄) dH
2. (65)

Now, we consider the elastic part of the energy. Using again (63), we haveˆ
R̂ε̄
1

|∇ϕε̄|2 dH 2 � Ch−1(ε̄)

ˆ
Rε̄
1

|u ε̄ − vε̄|2 dH 1. (66)

The condition (F2) on the Landau-de Gennes potential, together with (60), impliesˆ
Rε̄
1

|u ε̄ − vε̄|2 dH 1 � C
ˆ
Rε̄
1

f (u ε̄) dH
1. (67)

Using (65), (66) and (67), we deduce that

Eε̄(ϕε̄, R̂
ε̄
1) � C

(
h−1(ε̄) + ε̄−2h(ε̄)

)ˆ
Rε̄
1

f (u ε̄) dH
1.

Because of Condition (G4) in Definition 36, we obtain

Eε̄(ϕε̄, R̂
ε̄
1) � C

(
h−2(ε̄) + ε̄−2

) ˆ
∂B1

f (u ε̄) dH
2,

so the lemma follows easily. ��
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3.5. Logarithmic Bounds for the Energy Imply (Cε̄)

The aim of this subsection is to establish the following lemma, and conclude
the proof of Proposition 33.

Lemma 44. There exists η1 = η1(N , CG , M, ε̄1) such that, if 0 < ε̄ < ε̄1 and
u ε̄ satisfies (Mε̄), (48) but not (Cε̄), then

Eε̄(u ε̄, ∂B1) � η1 |log ε̄| .
Once Lemma 44 is proved, Proposition 33 follows in an elementary way.

Proof of Proposition 33. Choose η0 := η1/2. If u ε̄ satisfies (47) with this choice
of η0 and (48), then it must satisfy Condition (Cε̄), otherwise Lemma 44 would
yield a contradiction. Then, the proposition follows by Lemmas 40 and 41. ��
Proof of Lemma 44. Byassumption,Condition (Cε̄) is not satisfied, so there exists
a 2-cell K ∗ ∈ G ε̄ such that � ◦ u ε̄ |∂K ∗ is non-trivial. By Definition 36, there exists
a bilipschitz homeomorphism ϕ : K∗ → Bh(ε̄) which satisfies (G1). Therefore, up
to composition with ϕ we can assume that K∗ is a 2-dimensional disk, K∗ = B2

h(ε̄).
Lemma 38 implies that u ε̄(x) /∈ C0 for every x ∈ ∂K∗, for 0 < ε̄ � ε̄1. Then, by
applying Corollary 16 we deduce

Eε̄(u ε̄, K∗) + Ch(ε̄)Eε̄(u ε̄, ∂K∗) � κ∗φ2
0(u ε̄, ∂K∗) log

h(ε̄)

ε̄
− C

Notice that φ0(u ε̄, ∂K∗) � 1/2 if δ0 is small enough, because of (62). On the other
hand, condition (G3) yields

Eε̄(u ε̄, K∗) + Ch(ε̄)Eε̄(u ε̄, ∂K∗) � CEε̄(u ε̄, ∂B1).

Due to the previous inequalities and (61), we infer

Eε̄(u ε̄, ∂B1) � C
{
log
(
ε̄−1/2 |log ε̄|

)
− 1
}

� C

(
1

2
|log ε̄| − 1

)

for all 0 < ε̄ � ε̄1 < 1, so the lemma follows. ��

4. Compactness of Landau-de Gennes Minimizers: Proof of Theorem 1

4.1. Concentration of the Energy: Proof of Proposition 8

The whole section aims at proving Theorem 1. In this subsection, we prove
Proposition 8 by applying the results of Section 3.

Let 0 < θ < 1, let η0, ε̄1 be given by Proposition 33, and set ε̄0 := ε̄1θ .
Throughout the section, the same symbol C will be used to denote several different
constants, possibly depending on θ and ε̄1, but not on ε, R. To simplify the notation,
from now on we assume that x0 = 0. For a fixed 0 < ε � ε̄0R, define the set

Dε :=
{
r ∈ (θR, R) : Eε(Qε, ∂Br ) � 2η

1 − θ
log

R

ε

}
.
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The elements of Dε are the “good radii”, that is r ∈ Dε means that we have a
control on the energy on the sphere of radius r . Assume that the condition (10) is
satisfied. Then, by an average argument we deduce that

H 1(Dε) � (1 − θ)R

2
. (68)

For any r ∈ Dε we have

Eε(Qε, ∂Br ) � 2η

1 − θ

(
log

r

ε
− log θ

)
,

since R � θ−1r . By choosing η small enough, we can assume that

Eε(Qε, ∂Br ) � η0 log
r

ε
for any r ∈ Dε and 0 < ε � ε̄0R. (69)

In particular, our choice of η depends on ε̄1, η0, θ .

Lemma 45. For any 0 < ε � ε̄0R and any r ∈ Dε, there holds

Eε(Qε, Br ) � CR
(
E1/2
ε (Qε, ∂Br ) + 1

)
.

A similar inequality was obtained by Hardt, Kinderlehrer and Lin in [37,
Lemma 2.3, Equation (2.3)], and it played a crucial role in the proof of their energy
improvement result.

Proof of Lemma 45. To simplify the notations, we get rid of r by a scaling argu-
ment. Set ε̄ := ε/r , and define the function u ε̄ : B1 → S0 by

u ε̄(x) := Qε(r x) for all x ∈ B1.

Notice that ε̄ � ε̄1, since ε � ε̄0R and θR < r . The lemma will be proved once
we show that

Eε̄(u ε̄, B1) � CE1/2
ε̄ (u ε̄, ∂B1) + 1 (70)

(multiplying both sides of (70) by r � R yields the lemma). Sincewe have assumed
that r ∈ Dε we have, by (69),

Eε̄(u ε̄, ∂B1) � η0 |log ε̄| .
Moreover, u ε̄ satisfies the L∞-bound (48), due to (H). Therefore, we can apply
Proposition 33 and find vε̄ ∈ H1(∂B1, N ), ϕε̄ ∈ H1(Aε̄, S0) which satisfy

ϕε̄(x) = u ε̄(x) and ϕε̄(x − h(ε̄)x) = vε̄(x) forH 2-almost every x ∈ ∂B1ˆ
∂B1

|∇vε̄|2 dH 2 � CEε̄(u ε̄, ∂B1), (71)

Eε̄(ϕε̄, Aε̄) � Ch(ε̄)Eε̄(u ε̄, ∂B1). (72)
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Here h(ε̄) := ε̄1/2| log ε̄| and Aε̄ := B1\B1−h(ε̄). By applying Lemma 26 to vε̄, we
find a map wε̄ ∈ H1(B1, N ) such that wε̄ |∂B1 and

ˆ
B1

|∇wε̄|2 � C

{ˆ
∂B1

|∇vε̄|2 dH 2
}1/2 (71)

� CE1/2
ε̄ (u ε̄, ∂B1). (73)

Now, define the function w̃ε̄ : B1 → S0 by

w̃ε̄(x) :=
⎧⎨
⎩
ϕε̄(x) for x ∈ Aε̄

wε̄

(
x

1 − h(ε̄)

)
for x ∈ B1−h(ε̄).

The energy of w̃ε̄ in the spherical shell Aε̄ is controlled by (72). Due to our choice
of the parameter h(ε̄), we deduce that

Eε̄(w̃ε̄, Aε̄) � 1,

provided that ε̄1 is small enough. Combining this with (73), we obtain

Eε̄(w̃ε̄, B1) � CE1/2
ε̄ (u ε̄, ∂B1) + 1.

But w̃ε̄ is an admissible comparison function for u ε̄ on B1, because w̃ε̄ = u ε̄ on
∂B1. Thus, the minimality of u ε̄ implies (70). ��

Lemma 45 can be seen as a non-linear differential inequality for the func-
tion y : r ∈ (θR, R) �→ Eε(Q, Br ). The conclusion of the proof of Proposition 8
follows now by a simple ODE argument.

Lemma 46. Let α, β be two positive numbers. Let y ∈ W 1,1([r0, r1], R) be a
function such that y′ � 0 almost everywhere, and let D ⊆ (r0, r1) be a measurable
set such that H 1(D) � (r1 − r0)/2. If the function y satisfies

y(r) � αy′(r)1/2 + β for H 1-almost all r ∈ D, (74)

then there holds

y(r0) � β + 2α2

r1 − r0
.

Proof. If there exists a point r∗ ∈ (r0, r1) such that y(r∗) � β, then y(r0) � β

(because y is an increasing function) and the lemma is proved. Therefore, we can
assumeWLOGthat y−β > 0on (r0, r1). Then,Equation (74) and themonotonicity
of y imply

y′(r)
(y(r) − β)2

� α−21D(r)

for almost all r ∈ (r0, r1), where 1D is the characteristic function of D (that is,
1D(r) = 1 if r ∈ D and 1D(r) = 0 otherwise). By integrating this inequality
on (0, r), we deduce

1

y(r0) − β
− 1

y(r) − β
� α−2H 1 ((r0, r) ∩ D)
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for any r ∈ (r0, r1). Since we have assumed thatH 1(D) � (r1−r0)/2, we obtain

H 1((r0, r) ∩ D) �
(
r − r0 + r1

2

)+
:= max

{
r − r0 + r1

2
, 0

}

so, via an algebraic manipulation, we get

y(r) � β + y(r0) − β

1 − α−2 (r − (r0 + r1)/2)+ (y(r0) − β)

for any r ∈ (r0, r1). Since y is well-defined (and finite) up to r = r1, there must be

1 − r1 − r0
2α2 (y(r0) − β) > 0,

whence the lemma follows. ��
Conclusion of the proof of Proposition 8. Thanks to Lemma 45 and (68), we can
apply Lemma 46 to the function y(r) := Eε(Qε, Br ), for r ∈ (θR, R), and the
set D := Dε. This yields

Eε(Qε, BθR) � CR,

so the proposition is proved. ��

4.2. Uniform Energy Bounds Imply Convergence to a Harmonic Map

In this subsection, we suppose that minimizers satisfy

Eε(Qε, BR(x0)) � CR (75)

on a ball Br (x0) ⊂⊂ Ω . In interesting situations, where line defects appear, such
an estimate is not valid over the whole ofΩ but it is satisfied locally, away from a
singular set. The main result of this subsection is the following:

Proposition 47. Assume that BR(x0) ⊆ Ω and that (75) is satisfied for some R,
C > 0. Fix 0 < θ < 1. Then, there exist a subsequence εn ↘ 0 and a map Q0 ∈
H1(BθR(x0), N ) such that

Qεn → Q0 strongly in H1(BθR(x0), S0).

The map Q0 is minimizing harmonic in BθR(x0), that is, for any comparison map
Q ∈ H1(BθR(x0), N ) such that Q = Q0 on ∂BθR(x0) there holds

1

2

ˆ
BθR(x0)

|∇Q0|2 � 1

2

ˆ
BθR(x0)

|∇Q|2 .

In general, we cannot expect the map Q0 to be smooth (see the example of
Section 7). In contrast, by Schoen and Uhlenbeck’s partial regularity result [61,
Theorem II] we know that there exists a finite set Spts ⊆ BθR(x0) such that Q0
is smooth on BθR(x0)\Spts. Accordingly, the sequence {Qεn } will not converge
uniformly to Q0 on the whole of BθR(x0), in general, but we can prove the uniform
convergence away from the singularities of Q0.
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Proposition 48. Let K ⊆ BθR(x0) be such that Q0 is smooth on the closure of K .
Then Qεn → Q0 uniformly on K .

The asymptotic behaviour ofminimizers of theLandau-deGennes functional, in
the bounded-energy regime (75),was already studied byMajumdar andZarnescu
in [52]. In that paper, H1-convergence to a harmonicmap and local uniform conver-
gence away from the singularities of Q0 were already proven. However, in our case
some extra care must be taken, because of the local nature of our assumption (75).

Proof of Proposition 47. Up to a translation, we assume that x0 = 0. In view
of (75), there exists a subsequence εn ↘ 0 and a map Q0 ∈ H1(BR, S0) such that

Qεn → Q0 weakly in H1(BR, S0), strongly in L2(BR, S0)

and almost everywhere

Using Fatou’s lemma and (75) again, we also see that
ˆ
BR

f (Q0) � lim inf
n→+∞ ε2n Eεn (Qεn , BR) � lim inf

n→+∞ ε2nCR = 0,

hence f (Q0) = 0 almost everywhere or, equivalently,

Q0(x) ∈ N for almost all x ∈ B1.

Bymeans of a comparison argument, we will prove that Qεn actually converges
strongly in H1. Fatou’s lemma combined with (75) gives

ˆ R

θR
lim inf
n→+∞ Eεn (Qεn , ∂Br ) dr � lim inf

n→+∞ Eεn (Qεn , BR\BθR) � CR. (76)

Therefore, the set
{
r ∈ (0, R] : lim inf

n→+∞ Eεn (Qεn , ∂Br ) >
2C

1 − θ

}

must have length � (1 − θ)R/2, otherwise (76) would be violated. In particular,
there exist a radius r ∈ (θR, R] and a relabeled subsequence such that

Eεn (Qεn , ∂Br ) � 2C

1 − θ
.

For ease of notation we scale the variables, setting ε̄n := εn/r ,

un(x) := Qεn (r x) and u∗(x) := Q0(r x) for x ∈ B1.

The scaled maps satisfy

un → u∗ weakly in H1(B1, S0), strongly in L2(B1, S0)

and almost everywhere, (77)

u∗(x) ∈ N for almost every x ∈ B1, (78)

Eε̄n (un, ∂B1) � C. (79)
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By (77) and the trace theorem, un ⇀ u∗ weakly in H1/2(∂B1, S0) and hence, by
compact embedding, strongly in L2(∂B1, S0). Moreover, by (79) un ⇀ u∗ weakly
in H1(∂B1, S0), so

1

2

ˆ
∂B1

|∇u∗|2 dH 2 � lim sup
n→+∞

Eε̄n (un, ∂Br ) � C. (80)

Weare going to applyProposition 35 to interpolate betweenun andu∗. Setσn :=
‖un − u∗‖L2(∂B1). Then σn → 0 and

ˆ
∂B1

{
|∇un|2 + 1

ε̄n
f (un) + |∇u∗|2 + |un − u∗|2

σn

}
dH 2 � C,

because of (79), (80). Moreover, the L∞-estimate (48) is satisfied by Lemma 21.
Thus, Proposition 35 applies. We find a positive sequence νn → 0 and functions
ϕn ∈ H1(B1\B1−νn , S0) which satisfy

ϕn(x) = un(x), ϕn(x − νnx) = u∗(x)

for H 2-almost every x ∈ ∂B1 and

Eε̄n (ϕn, B1\B1−νn ) � Cνn . (81)

Now, letw∗ ∈ H1(B1, N ) be a minimizing harmonic extension of u∗|∂B1 , that
is

1

2

ˆ
B1

|∇w∗|2 � 1

2

ˆ
B1

|∇w|2 (82)

for any w ∈ H1(B1, N ) such that w|∂B1 = u∗|∂B1 . Such a function exists by
classical results (see for example [62, Proposition 3.1]). Define wn : B1 → S0 by

wn(x) :=
⎧⎨
⎩
ϕn(x) if x ∈ B1\B1−νn

w∗
(

x

1 − νn

)
if x ∈ B1−νn .

The mapwn is an admissible comparison map for un , that iswn ∈ H1(B1, S0) and
wn |∂B1 = un |∂B1 . Hence,

Eε̄n (un, B1) � Eε̄n (wn, B1) = 1 − νn

2

ˆ
B1

|∇w∗|2 + Eε̄n (wn, B1\B1−νn ).

When we take the limit as n → +∞, νn → 0 and the energy in the shell B1\B1−νn

converges to 0, due to (81). Keeping (77) in mind, we obtain

1

2

ˆ
B1

|∇u∗|2 � lim inf
n→+∞

1

2

ˆ
B1

|∇un|2 � lim sup
n→+∞

1

2

ˆ
B1

|∇un|2

� lim sup
n→+∞

Eε̄n (un, B1) � 1

2

ˆ
B1

|∇w∗|2 � 1

2

ˆ
B1

|∇u∗|2 ,
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where the last inequality follows by the minimality of w∗, (82). But this implies

lim
n→+∞

1

2

ˆ
B1

|∇un|2 = 1

2

ˆ
B1

|∇u∗|2 ,

which yields the strong H1 convergence un → u∗, as well as

lim
n→+∞

1

ε̄n

ˆ
B1

f (un) = 0. (83)

Moreover, u∗ must be a minimizing harmonic map.
Scaling back to Qεn , Q0, we have shown that Qεn → Q0 strongly in

H1(Br , S0) and that Q0 is minimizing harmonic in Br , where r � θR. In par-
ticular, the proposition holds true. ��

Once Proposition 47 is established, Proposition 48 can be proved arguing as in
Majumdar and Zarnescu’s paper [52]. The arguments in [52, Proposition 4] rely
on the condition

lim
n→+∞

1

ε2n

ˆ
BθR(x0)

f (Qεn ) = 0,

which follows as a byproduct of Equation (83) in the previous proof.

4.3. The Singular Set

In this subection, we complete the proof of Theorem 1 by defining the singular
setSline and showing that it is a rectifiable set of finite length. For each 0 < ε < 1,
define the measure με by

με(B) := Eε(Qε, B)

|log ε| for B ∈ B(Ω). (84)

In view of our main assumption (H), the measures {με}0<ε<1 have uniformly
bounded mass. Therefore, we may extract a subsequence εn ↘ 0 such that

μεn ⇀
! μ0 weakly! in M (Ω) := C(Ω)′. (85)

Let Sline be the support of μ0. By definition, Sline is a closed subset of Ω . Let η
be given by Proposition 8, corresponding to the choice θ = 1/2.

Lemma 49. Let x0 ∈ Ω and R > 0 be such that BR(x0) ⊂ Ω . If

μ0
(
BR(x0)

)
< ηR (86)

then

μ0
(
BR/2(x0)

) = 0,

that is BR/2(x0) ⊆ Ω\Sline.
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Proof. In force of (85) and (86), we know that

lim sup
n→+∞

Eεn (Qεn , BR(x0))

R log (εn/R)
< η.

In particular, the assumption (10) is satisfied along the subsequence {εn}. Then, we
can apply Proposition 8 with θ = 1/2 and we obtain

Eεn (BR/2(x0)) � CR

for n large enough. Due to (85), we deduce

μ0
(
BR/2(x0)

)
� lim inf

n→+∞ μεn

(
BR/2(x0)

) = 0.

��
By the monotonicity formula (Lemma 24), for any x ∈ Ω the function

r ∈ (0, dist(x, ∂Ω)) �→ μ0
(
Br (x)

)

2r

is non-decreasing, so the limit

Θ(x) := lim
r→0+

μ0
(
Br (x)

)

2r
(87)

exists. The functionΘ is usually called the (1-dimensional) density of μ0 (see [63,
p. 10]).

Lemma 50. For all x ∈ Sline ∩ Ω , we have Θ(x) � η/2.

Proof. This follows immediately by Lemma 49. Indeed, if x ∈ Sline ∩Ω then for
any r > 0 we have μ0(Br (x)) > 0, so Lemma 49 implies

μ0(B2r (x))

4r
� η

2
.

Passing to the limit as r → 0, we conclude. ��
The strict positivity of Θ has remarkable consequences.

Proposition 51. The set Sline ∩ Ω is countably H 1-rectifiable, and

H 1(Sline ∩ Ω) < +∞.

Moreover, there holds

(μ0 Ω)(B) =
ˆ
B∩Sline∩Ω

Θ(x) dH 1(x) for all B ∈ B(Ω).
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Proof. Lemma 50, together with [63, Theorem 3.2.(i), Chapter 1] and (H), implies

H 1(Sline ∩ Ω) � 2η−1μ0(Ω) � 2η−1M < +∞.

Moreover, since the 1-dimensional density of μ0 Ω exists and is essentially
bounded away fromzero, the support is aH 1-rectifiable set andμ0 Ω is absolutely
continuous with respect toH 1 (Sline ∩Ω). This fact was proved byMoore [55]
and is a special case of Preiss’ theorem [58, Theorem 5.3], which holds true for
measures in R

n having positive k-dimensional density, for any k � n. Thus, there
exists a positive, H 1-integrable function g : Ω → R such that

(μ0 Ω)(B) =
ˆ
B∩Sline∩Ω

g(x) dH 1(x)

for any B ∈ B(Ω). By Besicovitch differentiation theorem, there holds

lim
r→0+

μ0(Br (x))

H 1(Br (x) ∩ Sline)
= g(x)

forH 1-almost all x ∈ Sline∩Ω . On the other hand, becauseSline∩Ω is rectifiable
and has finite length, [30, Theorem 3.2.19] implies that

lim
r→0+

H 1(Br (x) ∩ Sline)

2r
= 1

for H 1-almost all x ∈ Sline ∩ Ω . Combining these facts with (87), we obtain
that Θ = g H 1-almost everywhere on Sline ∩ Ω , so the proposition follows. ��

To complete the proof of Theorem 1, we check that Qεn locally converge to a
harmonic map, away from Sline.

Proposition 52. There exists a map Q0 ∈ H1
loc(Ω\Sline, N ) such that, up to a

relabeled subsequence,

Qεn → Q0 strongly in H1
loc(Ω\Sline, S0).

The map Q0 is minimizing harmonic on every ball B ⊂⊂ Ω\Sline. Moreover,
there exists a locally finite set Spts ⊆ Ω\Sline such that Q0 is of class C∞
on Ω\(Sline ∪ Spts), and

Qεn → Q0 locally uniformly in Ω\(Sline ∪ Spts).

Proof. Fix an open subset K ⊂⊂ Ω\Sline. Combining Proposition 8 with a stan-
dard covering argument, we deduce that minimizers Qε satisfy

Eε(Qε, K ) � C = C(K ),

therefore they are weakly compact in H1(K , S0). It follows from Proposition 47
that the convergence is strong, and any limit map Q0 is locally minimizing har-
monic. Then, on each ball B ⊂⊂ Ω\Sline there exists a finite set XB ⊆ B
such that Q0 ∈ C∞(B\XB, S0), because of [61, Theorem II]. Therefore Q0 ∈
C∞(Ω\Sline ∪ Spts), where Spts := ∪B XB is locally finite in Ω\Sline. The
locally uniform convergence Qεn → Q0 onΩ\(Sline ∪Spts) follows from Propo-
sition 48 and a covering argument. ��
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4.4. The Analysis Near the Boundary

Proposition 8, which is the key step in the proof of our main theorem, has been
proven on balls contained in the domain. In this subsection, we aim at proving a
similar result in case the ball intersects the boundary of Ω . For this purpose, we
need an additional assumption on the behaviour of the boundary datum. Let Γ be
a relatively open subset of ∂Ω . We assume that

(HΓ ) For any 0 < ε < 1, there holds gε ∈ (H1
loc ∩ L∞

loc)(Γ, S0). Moreover, for
any K ⊂⊂ Γ there exists a constant CK such that

Eε(gε, K ) � CK and ‖gε‖L∞(K ) � CK

for any 0 < ε < 1.

For instance, the families of boundary data given by (8) and (9) satisfies Condi-
tion (HΓ ) on Γ := ∂Ω\Σ .

Proposition 53. Assume that the conditions (H) and (HΓ ) hold. For any 0 < θ < 1
there exist positive numbers η, ε̄0 andC such that, for any x0 ∈ Ω , R > 0 satisfying
BR(x0) ∩ ∂Ω ⊆ Γ and any 0 < ε � ε̄0R, if

Eε(Qε, BR(x0) ∩ Ω) � ηR log
R

ε
(88)

then

Eε(Qε, BθR(x0) ∩ Ω) � CR.

By a standard covering argument, we see that Proposition 53 implies the weak
compactness of minimizers up to the boundary. More precisely, we have

Corollary 54. Let Γ be a relatively open subset of ∂Ω . Assume that the condi-
tions (H) and (HΓ ) are satisfied. Then, there exist a subsequence εn ↘ 0, a closed
setSline ⊆ Ω and a map Q0 ∈ H1

loc((Ω ∪Γ )\Sline, N ) which satisfy (i)–(iv) in
Theorem 1 and

Qεn ⇀ Q0 weakly in H1
loc((Ω ∪ Γ )\Sline, S0).

The set Sline is again defined as the support of the measure μ0, where μ0 is
a weak! limit of {με}0<ε<1 in C(Ω)′ and the με’s are given by (84). The proofs
in Section 4.3 remain unchanged. We cannot expect strong H1 convergence of
minimizers up to the boundary, unless some additional assumption on the boundary
datum ismade.Moreover, the intersectionSline∩Γ maybe non-empty.An example
is given in Section 5.4, Proposition 62.

Proof of Proposition 53. For the sake of simplicity, we assume that x0 = 0 and
set Fε(r) := Eε(Qε, Br ∩ Ω) for 0 < r < R. The coarea formula implies

Fε(r) =
ˆ r

0
Eε(Qε, ∂Bs ∩ Ω) ds



644 Giacomo Canevari

for 0 < r < R, so F ′
ε(r) = Eε(Qε, ∂Br ∩ Ω) for almost everywhere 0 < r < R.

Define the set

D̃ε :=
{
r ∈ (θR, R) : F ′

ε(r) � 2η

1 − θ
log

R

ε

}
.

The assumption (88) and an average argument give

H 1(D̃ε) � (1 − θ)R

2
. (89)

On the other hand, for any radius r ∈ D̃ε we have

Eε(Qε, ∂(Br ∩ Ω)) = F ′
ε(r) + Eε(Qε, Br ∩ ∂Ω)

(HΓ )

� 2η

1 − θ

(
log

r

ε
− log θ

)
+ C,

where C is a constant depending on x0 and R. Therefore, by choosing η small
enough we obtain

Eε(Qε, ∂(Br ∩ Ω)) � η0 log
r

ε

0 < ε � ε̄0R, ε̄= := ε̄1θ , where η0 and ε̄1 are given by Proposition 33. With the
help of this estimate, and since Br ∩ Ω is bilipschitz equivalent to a ball, we can
repeat the proof of Lemma 45. We deduce that

Fε(r) � CR
(
Eε(Qε, ∂(Br ∩ Ω))1/2 + 1

)

for any r ∈ D̃ε and 0 < ε � ε̄0R. Then, using the elementary inequality (a +
b)1/2 � a1/2 + b1/2 and (HΓ ) again, we infer

Fε(r) � CR
{(

F ′
ε(r) + Eε(Qε, Br ∩ ∂Ω)

)1/2 + 1
}

� CR
(
F ′
ε(r)

1/2 + 1
)

(90)

for any r ∈ D̃ε and 0 < ε � ε̄0R. Thanks to (89) and (90), we can apply Lemma 46
to y := Fε. This yields the conclusion of the proof. ��

5. Structure of the Singular Set: Proof of Proposition 2

5.1. The Limit Measure is a Stationary Varifold

The aim of this section is to prove Proposition 2. We start by showing that
μ0 Ω is a stationary varifold. These objects, introduced by Almgren [4], can
be thought as weak counterparts of manifolds with vanishing mean curvature. For
more details, the reader is referred to the paper by Allard [2] or the book by
Simon [63].
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Before stating the following proposition, let us recall some basic facts. The
rectifiability of μ0 Ω (Proposition 51), together with [63, Remarks 1.9 and 11.5,
Theorem 11.6], implies that for μ0-almost all x ∈ Ω there exists a unique
1-dimensional subspace Lx ⊆ R

n such that

lim
λ→0

ˆ
Rd

λ−1ϕ

(
z − x

λ

)
dμ0(z) = Θ(x)

ˆ
Lx

ϕ(y) dH 1(y) (91)

for all ϕ ∈ Cc(R
3). Such line is called the approximate tangent line of μ0 at x ,

and noted Tan(μ0, x). Now, let G1,3 ⊆ M3(R) be the set of matrices representing
orthogonal projections on 1-subspaces ofR3. Let A(x) ∈ G1,3 denote the orthogo-
nal projection on Tan(μ0, x), for almost all x ∈ Ω . A varifold is a Radon measure
on Ω × G1,3. The varifold associated with μ0 Ω is defined as the push-forward
measure V0 := (Id, A)#(μ0 Ω), that is the measure V0 ∈ M (Ω × G1,3) given
by

V0(E) := μ0 {x ∈ Ω : (x, A(x)) ∈ E} for any Borel set E ⊆ Ω × G1,3.

The varifold V0 is stationary (see [2, § 4.2]) if and only if there holds
ˆ
Ω

Ai j (x)∂ jXi (x) dμ0(x) = 0 for any X ∈ C1
c (Ω, R3). (92)

Proposition 55. The varifold V0 associated with μ0 Ω is stationary.

Proof. The proposition follows by adaptingAmbrosio andSoner’s analysis in [5].
For the convenience of the reader, we give here the proof. Define the matrix-valued
map Aε = (Aεi j )i, j : Ω → M3(R) by

Aεi j := 1

|log ε|
(
eε(Qε)δi j − ∂i Qε · ∂ j Qε

)

for i, j ∈ {1, 2, 3}. Then Aε is a symmetric matrix, such that

tr Aε = 1

|log ε|
(
3eε(Qε) − |∇Qε|2

)
� με (93)

and
∣∣Aε∣∣ � Cμε. (94)

For any vector v ∈ S
2, there holds

Aεi jviv j = 1

|log ε|
(
eε(Qε) − |vi∂i Qε|2

)
� με, (95)

so the eigenvalues of Aε are less than or equal to με. Moreover, by integrating by
parts the stress-energy identity (Lemma 22) we obtain

ˆ
Ω

Aεi j (x)∂ jXi (x) dx = 0 (96)
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for any X ∈ C1
c (Ω, R3). In view of (94), and extracting a subsequence if nec-

essary, we have that Aε ⇀! A0 in the weak-! topology of M (Ω, M3(R)) :=
Cc(Ω, M3(R))

′. The limit measure A0 satisfies |A0| � C(μ0 Ω), in particular
is absolutely continuous with respect to μ0 Ω . Therefore, there exists a matrix-
valued function A∗ ∈ L1(Ω, μ0; M3(R)) such that

dA0 = A∗(x) d(μ0 Ω) as measures in M (Ω, M3(R)).

Passing to the limit in (93), (95) and (96), for μ0-almost all x we obtain that A∗(x)
is a symmetric matrix, with tr A∗(x) � 1 and eigenvalues less than or equal to 1,
such that ˆ

Ω

A∗
i j (x)∂ jXi (x) dμ0(x) = 0 (97)

for any X ∈ C1
c (Ω, R3). Now, fix a Lebesgue point x for A∗ (with respect to μ0)

and 0 < λ < dist(x, ∂Ω). Condition (97) implies

λ−1
ˆ
R3

A∗(z) · ∇X
(
z − x

λ

)
dμ0(z) = 0 (98)

for any X ∈ C1
c (B1, R

3). Then,
∣∣∣∣λ−1

ˆ
R3

(
A∗(z) − A∗(x)

) · ∇X
(
z − x

λ

)
dμ0(z)

∣∣∣∣

� μ0(Bλ(x))

λ︸ ︷︷ ︸
→Θ(x)/2

‖∇X‖L∞(B1)

 
Bλ(x)

∣∣A∗(z) − A∗(x)
∣∣ dμ0(z) → 0

as λ → 0. Combined with (91) and (98), this provides

Θ(x)A∗(x) ·
ˆ
Tan(μ0,x)

∇X dH 1

= lim
λ→0

λ−1
ˆ
R3

A∗(x) · ∇X
(
z − x

λ

)
dμ0(x) = 0

for any X ∈ C1
c (B1, R

3). SinceΘ(x) > 0 by Lemma 50, applying [5, Lemma 3.9]
we deduce that at least two eigenvalues of A∗(x) vanish, forμ0-almost all x . On the
other hand, we know already that tr A∗(x) = 1 with eigenvalues�1. Therefore, the
eigenvalues of A∗(x) are (1, 0, 0) and A∗(x) represents the orthogonal projection
on a line.

The push-forward measure V := (Id, A∗)#(μ0 Ω) is a varifold, and (97)
means that V is stationary. A classical result byAllard (see [2, Rectifiability The-
orem, § 5.5] or [5, Theorem 3.3]) asserts that every varifold with locally bounded
first variation and positive density is rectifiable. In our case, V has vanishing first
variation, and the density is bounded from below by Lemma 50. Therefore, by
Allard’s theorem V is rectifiable. In particular A∗(x) is the orthogonal projec-
tion on Tan(Sline, x) for μ0-almost all x ∈ Ω , so V = V0 and the proposition
follows. ��
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Remark 56. In general, we cannot expect that μ0 is associated with a stationary
varifold, that is stationaritymay fail on the boundary of the domain (see Section 5.4).
Indeed, stationarity is deduced by taking the limit in the Euler–Lagrange system
associated to the energy, and such a system is not satisfied on the boundary.

Stationary varifolds of dimension 1 are essentially the sum of straight line seg-
ments (see [3]). However, the sum can be locally infinite. To rule out this possibility,
in the rest of the section we prove that the 1-dimensional density of μ0 Ω is con-
stant almost everywhere As a consequence, we obtain thatSline ∩Ω is essentially
a locally finite union of line segments [3, Theorem p. 89]. In order to compute
the density of μ0 Ω , we apply an argument by Lin and Rivière (see [48, Sec-
tion III.1]). Essentially, by scaling we reduce to an auxialiary problem defined on
a cylinder, for which we prove refined energy estimates. This requires, once again,
interpolation and extension arguments. For the convenience of the reader, we work
out this argument, which is sketched in [48], in detail.

5.2. An Auxiliary Problem: Energy Bounds on a Cylinder

We consider the following auxiliary problem. Given some (small) parame-
ters 0 < δ, ε̄ < 1, we consider the closed cylinder Λδ := B̄2

δ × [−1, 1] with
lateral surface Γδ := ∂B2

δ × [−1, 1]. Let gδ,ε̄ ∈ H1(∂Λδ, S0) be a boundary
datum which satisfies the following conditions:

‖gδ,ε̄‖L∞(Λδ) � M (99)

Eε̄(gδ,ε̄, B
2
δ × {−1, 1}) � M log

δ

ε̄
(100)

Eε̄(gδ,ε̄, Γδ) � η log
δ

ε̄
, (101)

for some positive constants M and η. Let uδ,ε̄ be a minimizer of the Landau-de
Gennes energy (LGε) in the class H1

gδ,ε̄ (Λδ, S0).

Lemma 57. For any M > 0, there existsη0 > 0 and for any 0 < η � η0, 0 < δ < 1
there exist positive numbers ε̄0, C and α(M, η, δ) with the following properties.
If 0 < ε̄ � ε̄0 and gδ,ε̄ satisfies (99)–(101), then either

Eε̄(uδ,ε̄, Λδ) � α(M, η, δ) log
δ

ε̄
(102)

or

(2κ∗ − α(M, η, δ)) log
δ

ε̄
− C � Eε̄(uδ,ε̄, Λδ)

� (2κ∗ + α(M, η, δ)) log
δ

ε̄
+ C. (103)

Moreover, we can choose the number α(M, η, δ) in such a way that

α(M, η, δ) � C
(
δM + δ2η + δη + η + δ−1η

)
.
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Again, the key step in the proof is to approximate uδ,ε̄ with anN -valued map,
defined on the lateral surface of the cylinder. This is possible, because the energy
on Γδ is small compared to | log ε̄|, by (101). Set h(ε̄) := ε̄1/2| log ε̄| and

Aδ,ε̄ :=
(
B̄2
δ \B2

δ−δh(ε̄)

)
× [−1, 1], Dδ,ε̄ := ∂B2

δ−δh(ε̄) × [−1, 1].
Then, by arguing exactly as in the proof of Proposition 33, we obtain

Lemma 58. For any M > 0, there exist positive numbers η0 and C and, for any
0 < η � η0 and 0 < δ < 1, there exists ε̄0 > 0 with the following property. If
0 < ε̄ � ε̄0 and gδ,ε̄ satisfies (99)–(101), then there exist maps vδ,ε̄ ∈
H1(Dδ,ε̄, N ) and ϕδ,ε̄ ∈ H1(Aδ,ε̄, S0) which satisfy

ϕδ,ε̄ = gδ,ε̄ H
2-almost everywhere on ∂Aδ,ε̄\Dδ,ε̄,

ϕδ,ε̄ = vδ,ε̄ H
2-almost everywhere on Dδ,ε̄ (104)

1

2

ˆ
Dδ,ε̄

∣∣∇vδ,ε̄
∣∣2 dH 2 � Cη log

δ

ε̄
, (105)

Eε̄(ϕδ,ε̄, Aδ,ε̄) � Cη h(ε̄) log
δ

ε̄
. (106)

Sketch of the proof. In Proposition 33, the datum gδ,ε̄ is defined on a sphere of
fixed radius. Here, in constrast, the domain is the lateral surface of a cylinder of
variable radius δ. To overcome these issues, we first rescale the domain so that
we work in the cylinder B2

1 × [−δ−1, δ−1]. Then, we construct a good grid of
size h(ε̄), in the sense of Definition 36. By an average argument, the constant CG
in Definition 36 behaves as O(δ), and in particular is uniformly bounded. Although
the geometry is different, we can repeat the proof of Proposition 33 because the
construction used in the proof is local, that is, the behaviour of vδ,ε̄ and ϕδ,ε̄ on a cell
of the grid only depends on the behaviour of uδ,ε̄ on the same cell. By Remark 43,
the constants in (105)–(106) only depend on the shape of a given cell (that is onCG ),
not on the size of the whole domain. Therefore, they are uniformly bounded with
respect to δ. ��

Since vδ,ε̄ is an N -valued H1-map, it is possible to define its homotopy class
(see Lemma 29). If such homotopy class is trivial, there is no topological obstruc-
tion, therefore the energy of a minimizer is small compared to | log ε̄|, that is, the
upper bound (102) holds. Otherwise, we prove that (103) holds. The lower bound
follows by the Jerrard–Sandier type estimate (Corollary 16), while the upper bound
is obtained via a comparison argument.

The Homotopy Class of vδ,ε̄ is Trivial: Proof of (102) We assume now that the
homotopy class of vδ,ε̄ is trivial, and we construct a competitor which satisfies the
energy bound (102). Using the properties (105), (106) and a comparison argument,
we find z− ∈ (−1 + δ, −1 + 2δ) and z+ ∈ (1 − 2δ, 1 − δ) such that

1

2

ˆ
∂B2

δ−δh(ε̄)×{z−, z+}
∣∣∇vδ,ε̄

∣∣2 dH 1 � Cη

δ
log

δ

ε̄
(107)
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and

Eε̄(ϕδ,ε̄, (B
2
δ \B2

δ−δh(ε̄)) × {z−, z+}) � Cη

δ
h(ε̄) log

δ

ε̄
. (108)

Since the homotopy class of vδ,ε̄ is trivial, with the help of (107) and of Lemma 28
we find a map wδ,ε̄ ∈ H1(B2

δ−δh(ε̄) × {z−, z+}, N ) such that

1

2

ˆ
B2
δ−δh(ε̄)×{z−, z+}

∣∣∇wδ,ε̄

∣∣2 dH 2 � Cη log
δ

ε̄
. (109)

We consider now four subdomains:

Λ−
δ := B2

δ × (−1, z−), Λ0
δ,ε̄ := B2

δ−δh(ε̄) × (z−, z+), Λ+
δ := B2

δ × (z+, 1)

and

A′
δ,ε̄ := (B2

δ \B2
δ−δh(ε̄)) × [z−, z+].

Weare going to applyLemma25 toΛ−
δ ,Λ

0
δ,ε̄ andΛ

+
δ (these subdomains are convex,

so they are star-shaped with respect to each of their points). We first consider Λ+
δ ,

and we assign the boundary datum

g+
δ,ε̄ :=

⎧⎪⎪⎨
⎪⎪⎩

gδ,ε̄ on ∂Λ+
δ ∩ ∂Λδ

ϕδ,ε̄ on
(
B2
δ \B2

δ−δh(ε̄)

)
× {z+}

wδ,ε̄ on B2
δ−δh(ε̄) × {z+}.

Let u+
δ,ε̄ be aminimizer of (LGε) onΛ

+
δ , subject to the boundary condition u = g+

δ,ε̄

on ∂Λ+
δ . By applying Lemma 25 and (100), (101), (108), (109), we obtain

Eε̄(u
+
δ,ε̄, Λ

+
δ ) � Cδ Eε̄(g

+
δ,ε̄, ∂Λ

+
δ ) � C (δM + δη + η h(ε̄)) log

δ

ε̄
. (110)

We define a function u−
δ,ε̄ in Λ−

δ a similar way. Finally, in Λ0
δ,ε̄ we consider the

boundary datum

g0δ,ε̄ :=
{
vδ,ε̄ on ∂B2

δ−δh(ε̄) × (z−, z+)
wδ,ε̄ on B2

δ−δh(ε̄) × {z−, z+},
and denote by u0δ,ε̄ the corresponding minimizer. By applying Lemma 25, (105)
and (109), we deduce

Eε̄(u
0
δ,ε̄, Λ

0
δ,ε̄) � CEε̄(g

0
δ,ε̄, ∂Λ

0
δ,ε̄) � Cη log

δ

ε̄
. (111)

The boundary conditions we have defined on the boundaries of Λ+
δ , Λ

0
δ,ε̄, Λ

−
δ

and A′
δ,ε̄ match. Therefore, we can define an admissible comparison map by past-

ing u+
δ,ε̄, u

0
δ,ε̄, u

−
δ,ε̄ and ϕδ,ε̄ restricted to A′

δ,ε̄. Combining (106), (110) and (111),
we obtain

Eε̄(uδ,ε̄, Λδ) � C (δM + δη + η h(ε̄)) log
δ

ε̄
.
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Since h(ε̄) = ε̄1/2| log ε̄| � 2e−1 for 0 < ε̄ < 1, we conclude that (102) holds if

α(M, η, δ) � C1 (δM + δη + η) , (112)

for some universal constant C1.

The Homotopy Class of vδ,ε̄ is Non-trivial: Proof of the Upper Bound in (103)
We suppose now that the homotopy class of vδ,ε̄ is non-trivial and we prove the
upper bound in (103), again by a comparison argument. To construct the comparison
map, we consider the same decomposition of Λδ into four subdomains as before.
We first construct a map u0δ,ε̄ ∈ H1(Λ0

δ,ε̄, S0) by applying Lemma 29 with the
choice g = vδ,ε̄. Thanks to (105), we obtain that

Eε̄(u
0
δ,ε̄, Λ

0
δ,ε̄) �

(
2κ∗ + C(δ−1 + δ)η

)
log

δ

ε̄
+ C (113)

and

Eε̄(u
0
δ,ε̄, B

2
δ−h(ε̄)δ × {z−, z+}) �

(
2κ∗ + C(δ−1 + δ)η

)
log

δ

ε̄
+ C. (114)

Next, we consider Λ+
δ and we assign the boundary datum

g+
δ,ε̄ :=

⎧⎪⎨
⎪⎩

gδ,ε̄ on ∂Λ+
δ ∩ ∂Λδ

ϕδ,ε̄ on (B2
δ \B2

δ−δh(ε̄)) × {z+}
u0δ,ε̄ on B2

δ−δh(ε̄) × {z+}.
Because of Lemma 25, (100), (101), (108) and (114), a minimizer u+

δ,ε̄ correspond-

ing to the boundary condition u = g+
δ,ε̄ on ∂Λ

+
δ satisfies

Eε̄(u
+
δ,ε̄, Λ

+
δ ) � Cδ Eε̄(g

+
δ,ε̄, ∂Λ

+
δ ) � C

(
δM + δ2η + δη + η

)
log

δ

ε̄
(115)

(we have also used that h(ε̄) � C). In the subdomain Λ−
δ , we define u−

δ,ε̄ in a

similar way. As before, pasting u−
δ,ε̄, u

0
δ,ε̄, u

+
δ,ε̄ and ϕδ,ε̄ restricted to A′

δ,ε̄ we obtain
an admissible comparison map. Therefore, combining (113), (115) and (106), we
deduce that the upper bound in (103) holds, provided that

α(M, η, δ) � C2

(
δM + δ2η + δη + η + δ−1η

)
. (116)

The Homotopy Class of vδ,ε̄ is Non-trivial: Proof of the Lower Bound in (103)
Finally, we need to prove the lower bound in (103), again assuming that the homo-
topy class of vδ,ε̄ is non-trivial. The essential tool, here, is the Jerrard–Sandier type
estimate (Corollary 16). However, in order to be able to apply such an estimate, once
again we need to take care of the boundary conditions by means of an interpolation
argument. Using cylindric coordinates (ρ, θ, z) ∈ [0, δ] × [0, 2π)× [−1, 1], we
define the map ũδ,ε̄ : Λδ → S0 by

ũδ,ε̄(ρe
iθ , z) :=

⎧⎨
⎩
uδ,ε̄

(
ρeiθ

1 − h(ε̄)
, θ, z

)
if ρ � δ − δh(ε̄), |z| � 1

ϕδ,ε̄
(
(2δ − δh(ε̄) − ρ)eiθ , z

)
if δ − δh(ε̄) � ρ � δ, |z| � 1.
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This map belongs to H1, satisfies

ũδ,ε̄(δe
iθ , z) = vδ,ε̄(e

iθ , z) for H 2-almost all (θ, z) ∈ [0, 2π) × [−1, 1]
(117)

and

Eε̄(ũδ,ε̄, Λδ) � Eε̄(uδ,ε̄, Λδ) + Eε̄(ϕδ,ε̄, Aδ,ε̄)
(106)
� Eε̄(uδ,ε̄, Λδ) + Cη h(ε̄) log

δ

ε̄
. (118)

By the Fubini theorem and (117), for almost everywhere z ∈ [−1, 1] the map ũδ,ε̄
restricted to ∂B2

δ ×{z} belongs to H1, isN -valued and has a nontrivial homotopy
class. Moreover, we can always assume WLOG that ε̄ � ε̄0 < δ/2. Let us apply
Corollary 16 to the function ũδ,ε̄ restricted to B2

δ × {z}. This yields

Eε̄(ũδ,ε̄, B
2
δ × {z}) + Cδ Eε̄(ũδ,ε̄, ∂B

2
δ × {z}) � κ∗ log

δ

ε̄
− C.

By integrating with respect to z ∈ [−1, 1], and using (117) again, we deduce that

Eε̄(ũδ,ε̄, Λδ) + Cδ
ˆ
Dδ,ε̄

∣∣∇vδ,ε̄
∣∣2 dH 2 � 2κ∗ log

δ

ε̄
− C.

Then, thanks to (105), we obtain

Eε̄(ũδ,ε̄, Λδ) � (2κ∗ − Cδη) log
δ

ε̄
− C.

Finally, combining this inequality with (118), we conclude that

Eε̄(uδ,ε̄, Λδ) � (2κ∗ − Cδη − Cη h(ε̄)) log
δ

ε̄
− C

and, since h(ε̄) := ε̄1/2| log ε̄| is bounded, the lower bound in (103) is satisfied if

α(M, η, δ) � C3 (δη + η) . (119)

Thanks to (112), (116) and (119), Lemma 57 is satisfied if we set

α(M, η, δ) := max{C1, C2, C3}
(
δM + δ2η + δη + η + δ−1η

)
.
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5.3. The Singular Measure has Constant Density

Aim of this subsequence is to prove the following

Proposition 59. For H 1-almost all x ∈ Sline ∩ Ω , there holds Θ(x) = κ∗.

This property is of crucial importance, because it allow us to describe the
structure of the singular set in the interior of the domain and to prove Proposition 2.

Proof of Proposition 59. Because μ0 Ω is rectifiable, Θ is approximately con-
tinuous and μ0 has an approximate tangent line (that is, (91) holds) atH 1-almost
every point x0 ∈ Sline ∩Ω . Fix such a point x0. By (91), there exists a line L such
that the measures (νλ)λ>0 defined by

νλ(A) := λ−1μ0(λA ∩ Ω) for A ∈ B(R3)

satisfy

νλ ⇀
! ν0 := Θ(x0)H

1 L weakly! in Mb(Ω) as λ → 0. (120)

Up to rotations and translations, we can assume WLOG that x0 = 0 and L = {x ∈
R
3 : x1 = x2 = 0}. Let

M ′ := 2
√
2M

dist(x0, ∂Ω)
, (121)

where M is given by assumption (H), and let η0 = η0(M ′) be the corresponding
number given by Lemma 57. Let 0 < η � η0 and 0 < δ < 1 be two small
parameters, to be choosen later.We consider again the cylinderΛδ := B2

δ ×[−1, 1],
with lateral surfaceΓδ := ∂B2

δ ×[−1, 1]. Since ν0(Γδ) = 0, because of (120) there
exists a positive number λ0 = λ0(η, δ) < dist(x0, ∂Ω)/(2

√
2) such that

μ0(λΓδ) � λη

2
for 0 < λ � λ0.

Then, for a fixed 0 < λ � λ0, thanks to (84) we find a positive number n0 =
n0(M ′, η, δ, λ) such that

Eεn (Qεn , λΓδ) � λη log
λδ

εn
for any integer n � n0. (122)

Moreover, the cylinder λΛδ is contained in a ball centered at x0 with radius
√
2λ <

r0 := dist(x0, ∂Ω)/2. Then, because of the monotonicity formula (Lemma 24)
and (H) we have

Eεn (Qεn , λΛδ) �
√
2λ

r0
Eεn (Qεn , Br0)

(H)−(121)
� λM ′ log λδ

εn

for any integer n � n0. Thanks to the Fatou lemma, we deduce
ˆ λ

−λ

lim inf
n→+∞ Eεn (Qεn , B

2
λδ × {z}) dz � λM ′ log λδ

εn
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so, by an average argument, we can find two numbers z− ∈ [−λ, −3λ/4], z+ ∈
[3λ/4, λ] and a subsequence (still denoted εn) such that

Eεn (Qεn , B
2
λδ × {z−, z+}) � M ′ log λδ

εn
(123)

for any integer n � n0. To avoid notation, we will assume that z− = −λ and z+ =
λ. Reducing the value of n0 if necessary, we can assume that εn � λε̄0, where
ε̄0 = ε̄0(M ′, η, δ) is given by Lemma 57.

Now, fix an integer n � n0. We set ε̄ := εn/λ (notice that ε̄ � ε̄0) and

uδ,ε̄(y) := Qεn (λy) for y ∈ Λδ.

From (122) and (123) we deduce that

Eε̄(uδ,ε̄, Γδ)
λ<1
� η log

δ

ε̄
, Eε̄(uδ,ε̄, B

2
δ × {−1, 1}) � M ′ log δ

ε̄

so the conditions (100) and (101) are satisfied; moreover, uδ,ε̄ satisfies (99) because
of (H). Therefore, we can apply Lemma 57. Scaling back to Qεn , we conclude that
either

Eεn (Qεn , λΛδ) � λα log
λδ

εn
, (124)

or

λ (2κ∗ − α) log
λδ

εn
− λC � Eεn (Qεn , λΛδ) � λ (2κ∗ + α) log

λδ

εn
+ λC, (125)

where α = α(M ′, η, δ) is a positive number which satisfies

α � C
(
δM ′ + δ2η + δη + η + δ−1η

)
.

At this point, we choose δ := η1/2, so that α → 0 when η → 0.
Suppose that the inequality (124) holds. then, passing to the limit as n → +∞,

thanks to (84) we find that

μ0(interior of λΛδ) � λα.

Passing to the limit as λ → 0, with the help of (120) we obtain

2Θ(x0) = ν0(Λδ) � α,

and finally, letting η → 0 (so that α → 0) we conclude that Θ(x0) = 0. This is a
contradiction, because x0 is supposed to be an approximate continuity point for Θ
and Θ is bounded away from 0 on Sline ∩ Ω (Lemma 50). Therefore, (124) does
not hold, and so (125) must be satisfied instead. Passing to the limit as n → +∞
and λ → 0, and using (84) and (120) again, we deduce that

2κ∗ − α � ν0(Λδ) � 2κ∗ + α,

or equivalently,

κ∗ − α

2
� Θ(x0) � κ∗ + α

2
.

Letting η → 0, we conclude that Θ(x0) = κ∗. ��
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Remark 60. As a byproduct of the previous proof, we obtain a topological infor-
mation about Q0. Let x0 ∈ Sline ∩ Ω be as in the previous proof (that is, Θ
is approximately continuous at x0 and Tan(μ0, x) exists). If D ⊂⊂ Ω is a disk
and D∩Sline = {x0}, then the homotopy class of Q0 restricted to ∂D is non-trivial,
for we know by the previous proof that (125) must be satisfied, so we are in the case
where vδ,ε̄ has a non-trivial class (we are using the notation of Section 5.2). This
means that � ◦ uδ,ε̄, where is well-defined, has a non-trivial class too. Taking the
limit as ε → 0, we conclude that Q0 has a non-trivial class because uδ,ε̄ converge
locally uniformly to Q0, away from the singular set Sline ∪ Spts (Theorem 1).

Proposition 2 now follows quite easily from a result by Allard and Almgreen,
which is a structure theorem for stationary varifolds of dimension 1.

Proof of Proposition 2. Let S ′ be the set of points x ∈ Sline ∩ Ω such that
Θ(x) = κ∗. Since μ0 Ω is a stationary varifold, [3, Theorem and Remark p. 89]
imply that S ′ is a relatively open subset of Sline ∩ Ω , such that

H 1((Sline ∩ Ω)\S ′) = 0, (126)

and S ′ ∩ K is a finite union of straight segments, for any open set K ⊂⊂ Ω .
Moreover, the setS ′ must be dense inSline ∩Ω . Indeed, suppose that there exists
a point x0 ∈ Sline ∩ Ω and an open neighborhood B ⊆ Ω of x0, such that B
does not intersect the closure of S ′. Then, we have H 1(Sline ∩ B) = 0 because
of (126), therefore μ0(B) = 0 by Proposition 51 and soSline ∩ B = ∅, which is a
contradiction. It follows that, for any open set K ⊂⊂ Ω ,Sline ∩ K is a finite union
of closed line segments, L1, . . . , L p. By subdividing the segments, if necessary,
we can assume WLOG that, for each i �= j , either Li and L j are disjoint or their
intersection is a common endpoint.

Property (i) now follows directly from Remark 60. We still have to show Prop-
erty (ii). Suppose that x0 ∈ K is an endpoint of exactly q � p line segments,
say L1, . . . , Lq . We claim that q is even. Let V be the δ-neighborhood of Sline,
for a small, positive number δ. Pick a cylinderΛ ⊆ K which contains x0, such that
the lateral surface of Λ does not intersect V (see Fig. 4). Since (Spts\V ) ∩ K is
finite, modifying Λ if necessary we can assume that ∂Λ\V does not contain any
singular pointSpts, so Q0 is well-defined and continuous on ∂Λ\V . In particular,
if we denote byU−,U+ the two bases of the cylinder, the maps Q0|∂U+ and Q0|∂U−
are homotopic to each other. Assume now, by contradiction, that q is odd. Then
one of the bases—say U+—must intersect an even number of segments, and the
other must intersect an odd number of segments. Therefore, due to Remark 60, the
homotopy class of Q0|∂U+ must be trivial, and the homotopy class of Q0|∂U− must
be non-trivial. This is a contradiction, hence q is even. ��

Remark 61. For k ∈ {1, . . . , q}, let ν(k) be the direction vector associated with Lk

which has unit norm and points outward from x0. Then, the stationarity of Sline
implies that

q∑
k=1

ν(k) = 0.
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Fig. 4. A branching point for the singular setSline, surrounded by a cylinderΛ. The homo-
topy class of Q0 restricted to the boundary of a disk which crosses transversely Sline is
determined by the number of intersections between the disk and Sline, modulo 2. A con-
figuration such as the one represented in this figure cannot occur, otherwise Q0 restricted
to ∂U+ and ∂U− would be in different homotopy classes

Indeed, taking an arbitrary vector field X supported in a small neighborhood of x0,
thanks to (92) we have

0 = κ∗
q∑

k=1

ˆ length(Lk )

0
ν
(k)
i ν

(k)
j ∂ jXi (x0 + tν(k)) dt = −κ∗

q∑
k=1

ν(k) · X(x0).

5.4. Concentration of the Energy at the Boundary: An Example

The arguments we presented in this section may not be extended to the analysis
of the singular set near the boundary of the domain. In particular, the stationarity
of μ0 may fail. We discuss now an example where the boundary datum is inde-
pendent of ε and smooth, yet the geometry of the domain forces the energy of
the minimizers to concentrate at the boundary. As a result, Sline is non-empty
but Sline ⊆ ∂Ω , and Sline is not a locally finite union of straight line segments.

Let r : (0, +∞)×R×[0, 2π ] → R
3 be the cylindrical change of coordinates,

given by

r(ρ, z, θ) := (ρ cos θ, ρ sin θ, z)T.

Let D be the disk B1(2, 0) in the (ρ, z)-plane, and letΩ be the solid torus generated
by the revolution of D, that is

Ω := r (D × [0, 2π)) =
{
(x1, x2, x3) ∈ R

3 :
(√

x21 + x22 − 2

)2

+ x23 < 1

}
.
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We consider the boundary datum g ∈ C1(∂Ω, N ) given by g = h ◦ r−1, where

h(ρ, z) := s∗

{(
e1 cos

ϕ(ρ, z)

2
+ e3 sin

ϕ(ρ, z)

2

)⊗2

− 1

3
Id

}
,

and ϕ(ρ, z) is the oriented angle between the ray starting at (2, 0) and passing
through (ρ, z) and the positive ρ-axis. Notice that, for each θ ∈ [0, 2π), the
restriction of g to the slice r(∂D × {θ}) has a non-trivial homotopy class. We will
prove the following:

Proposition 62. For this choice of the domain and the boundary datum, we have

Sline = r ({(1, 0)} × [0, 2π)) =
{
(x1, x2, x3) ∈ R

3 : x21 + x22 = 1, x3 = 0
}
.

In particular, Sline ⊆ ∂Ω .

Because of the cylindrical symmetry, the problem is essentially bidimensional.
Indeed, given any map Q ∈ H1

g (Ω, S0), by a change of variable we obtain

Eε(Q, Ω) =
ˆ 2π

0

ˆ
D

{
1

2

∣∣∂ρ(Q ◦ r)
∣∣2 + 1

2
|∂z(Q ◦ r)|2 + 1

ε2
f (Q ◦ r)

}
ρ dρ dz dθ

+
ˆ 2π

0

ˆ
D

1

2ρ
|∂θ (Q ◦ r)|2 dρ dz dθ. (127)

Therefore, a map Qε is a minimizer for (LGε) in the class H1
g (Ω, S0) if and only

if Qε = Pε ◦ r−1, where Pε only depend on (ρ, z) and is a minimizer for the
weighted functional

Fε(P, D) := 2π
ˆ
D

{
1

2
|∇P|2 + 1

ε2
f (P)

}
ρ dρdz (128)

in the class

H1
h (D, S0) :=

{
P ∈ H1(D, S0) : P = h on ∂D

}
.

Lemma 63. For any δ > 0, there exists a constant Cδ such that, for any 0 < ε <

δ/4, there holds

Fε(Pε, D) � 2πκ∗(1 + δ)| log ε| + Cδ.

Proof. Fix δ > 0, 0 < ε < δ/4 and let ρδ := 1 + 3δ/4, Dδ := B2
δ/4(ρδ, 0). We

define a map P̃δ,ε : Dδ → S0 by setting

P̃δ,ε(ρ, z) := ηε

(√
(ρ − ρδ)2 + z2

)
h

(
2 + 4

δ
(ρ − ρδ),

4z

δ

)

if

(ρ − ρδ)
2 + z2 � δ2

16
,
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where ηε is defined by (40). The restriction of P̃δ,ε to ∂Dδ is a N -valued loop
which depends on δ but not on ε, and has a non-trivial homotopy class. Therefore,
there exists a map P̃δ : D\Dδ → N such that

P̃δ = h on ∂D, P̃δ = P̃δ,ε on ∂Dδ.

We extend P̃δ, ε to a new map, still denoted P̃δ,ε, by setting P̃δ,ε := P̃δ on D\Dδ .
Then P̃δ,ε ∈ H1

h (D, S0) and, through a straightforward computation, we obtain

Fε(Pε, D) � Fε(P̃δ,ε, D) = Fε(P̃δ,ε, Dδ) + π

ˆ
D\Dδ

|∇ P̃δ|2 dH 2

� 2π(1 + δ)Eε(P̃δ,ε, Dδ) + Cδ

� 2π(1 + δ) log
δ/4

ε
+ Cδ = 2π(1 + δ)| log ε| + Cδ,

where the symbol Cδ denotes several constants which only depend on δ, D
and h. ��

This lemma has an immediate consequence on the limit measure of the three-
dimensional minimization problem.

Corollary 64. There holds

μ0(Ω) � 2πκ∗.

Proof. Since we have Eε(Qε, Ω) = Fε(Pε, D) because of (127), the corollary
follows by taking the limit in Lemma 63 first as ε → 0, then as δ → 0. ��

Now, since the three dimensional-minimizers Qε satisfy Qε = Pε ◦ r−1

and Pε is independent of the θ -variable, the singular set Sline must be of the
form Sline = r(Σ × [0, 2π)) for some Σ ⊂ D. Notice that Σ is non-empty,
because the homotopy class of the boundary datum h is non-trivial. Moreover, Σ
is finite because H 1(Sline) < ∞.

Lemma 65. Suppose that (ρ0, z0) ∈ Σ . Then

μ0(Ω) � 2πρ0κ∗.

Combining Corollary 64 and Lemma 65, we immediately deduce that ρ0 = 1,
that is, Σ = {(1, 0)}, whence Proposition 62 follows.

Proof of Lemma 65. Fix a positive number δ < 1/2. It suffices to prove the
inequality

Fε(Pε, D) � 2πκ∗(ρ0 − δ)| log ε| − Cδ (129)

for any small ε and for some positive constant Cδ which depends only on δ, D, h.
The lemma will follow by using (127) and passing to the limit as ε → 0, δ → 0.

Consider the disk D′ := B2
3/2(2, 0) ⊃⊃ D, as well as the associated torus of

revolution Ω ′ := r(D′ × [0, 2π)). We extend each minimizer Pε to a new map
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defined on D′, still denoted by Pε, by setting Pε := h on D′\D. In the same way,
we extend Qε by setting Qε := g on Ω ′\Ω . Moreover, we set

D′
δ := B2

δ/2(ρ0, z0).

SinceΣ is finite, reducing the value of δ if necessary we can assume that D′
δ ∩Σ =

{(ρ0, z0)}. Therefore, Remark 60 implies that Qε restricted to ∂D′
δ has a non-trivial

homotopy class, provided that ε is small enough. Thus, we can apply Corollary 16
to bound from below the energy on D′

δ . We have

Fε(Pε, D
′
δ) � 2π

(
ρ0 − δ

2

)
Eε(Pε, D

′
δ)

� 2πκ∗
(
ρ0 − δ

2

)
φ0(Pε, ∂D

′
δ) log

δ

ε
− C

(
Eε(Pε, ∂D

′
δ) + 1

)
.

(130)

Thanks to Theorem 1 and Corollary 54, we have Qε → Q0 weakly in H1, in a
small neighborhood of r(∂D′

δ × [0, 2π)) ⊂ Ω ′. Therefore, modifying again the
value of δ if necessary, we can assume that

Qε ⇀ Q0 weakly in H1(r(∂D′
δ × [0, 2π)), S0)

(this property may not be satisfied for any value δ, but it is satisfied for almost every
value thanks to the Fubini theorem). By the Fubini theorem again and compact
Sobolev embedding, this yields

Pε ⇀ P0 weakly in H1(∂D′
δ, S0) and uniformly,

where P0 := Q0 ◦ r is an N -valued map. In particular, there holds

φ0(Pε, ∂D
′
δ) → φ0(P0, ∂D

′
δ) = 1 and Eε(Pε, ∂D

′
δ) � Cδ. (131)

Combining (130) and (131), we deduce that for (almost every) small enough δ, there
exist positive constants Cδ and εδ such that (129) is satisfied for any 0 < ε � εδ .
This is enough to conclude the proof of the lemma. ��

6. Sufficient Conditions for (H)

6.1. Proof of Proposition 3

In this section, we analyze the role of the domain and the boundary data in
connection with (H), and prove sufficient conditions for (H) to hold true. We prove
first Proposition 3, namely, we assume thatΩ is a bounded, Lipschitz domain and
the boundary datum is bounded in H1/2(∂Ω, N ), andwe show that the inequalities

‖Qε‖L∞(Ω) � M (132)

and

Eε(Qε) � M (|log ε| + 1) (133)

are satisfied for some positive M . The L∞-bound (132) is easily obtained by a
comparison argument.
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Lemma 66. Minimizers Qε of (LGε) satisfy

‖Qε‖L∞(Ω) � max

{√
2

3
s∗, ‖gε‖L∞(∂Ω)

}
.

Proof. Set

M := max

{√
2

3
s∗, ‖Qε‖L∞(∂Ω)

}
,

anddefineπ : S0 → S0 byπ(Q) := M |Q|−1Q if |Q| � M ,π(Q) := Q otherwise.
We have

D f (Q) · Q = −a |Q|2 − b tr Q3 + c |Q|4 > 0 when |Q| >
√
2

3
s∗

(this follows from the inequality
√
6| tr Q3| � |Q|3; see [50, Lemma1]).Wededuce

that f (π(Q)) � f (Q) for any Q. Moreover, π is the projection on a convex set,
so it is 1-Lipschitz continuous. Thus, the map π ◦ Qε belongs to H1

gε (Ω, S0),
satisfies |∇(π ◦ Qε)| � |∇Qε| almost everywhere and Eε(π ◦ Qε) � Eε(Qε),
with strict inequality if |Qε| > M on a set of positive measure. By the minimality
of Qε, we conclude that |Qε| � M almost everywhere. ��

The logarithmic energy bound (133) is more delicate. The proof is adapted from
an argument by Rivière [59, Proposition 2.1], which involves Hardt, Kinderlehrer
and Lin’s re-projection trick (see [37, Lemma 2.3]) in an essential way.

Proof of Proposition 3. Since the boundary data are supposed to be N -valued,
they are bounded in L∞, so (132) follows by Lemma 66. We prove (133) by
constructing a suitable comparison function, whose energy is bounded by the right-
hand side of (133). For any 0 < ε < 1, let uε ∈ H1(Ω, S0) be the harmonic
extension of gε, that is the unique solution of

{
−�uε = 0 in Ω

uε = gε on ∂Ω.

Since {gε}ε is bounded in H1/2 ∩ L∞, the sequence {uε}ε is bounded in H1 ∩ L∞.
Let δ > 0 be a small parameter to be chosen later. For any A ∈ S0 with |A| � δ

and any ε, we define

uA
ε := (ηε ◦ φ) (uε − A) � (uε − A) ,

where φ : S0 → R and � : S0\C → N are defined respectively in Lemmas 13,
12, and ηε ∈ C(R+, R) is given by

ηε(r) := ε−1r if 0 � r < ε, ηε(r) = 1 if r � ε.
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ByLemma12 andCorollary 18,we have uA
ε ∈ (H1∩L∞)(Ω, S0).We differentiate

uA
ε and, taking advantage of the Lipschitz continuity of φ (Lemma 13), we deduce

∣∣∣∇uA
ε

∣∣∣
2

� C
{(
η′
ε ◦ φ)2 (uε − A) |∇uε|2 + (ηε ◦ φ)2 (uε − A) |∇ (�(uε − A))|2

}
.

We apply Corollary 18 to bound the derivative of �(uε − A):

∣∣∣∇uA
ε

∣∣∣
2

� C

{(
η′
ε ◦ φ)2 (uε − A) + (ηε ◦ φ)2 (uε − A)

φ2(uε − A)

}
|∇uε|2 .

On the other hand, there holds

f
(
uA
ε

)
� C1{φ(uε−A)�ε},

so

Eε

(
uA
ε

)
� C

ˆ
Ω

{(1{φ(uε−A)�ε}
φ2(uε − A)

+ ε−21{φ(uε−A)�ε}
)

|∇uε|2

+ ε−21{φ(uε−A)�ε}
}
. (134)

Now, fix a bounded subset K ⊆ S0, so large that uε(x) + BS0
δ ⊆ K for almost

everywhere x ∈ Ω and any ε (we denote by BS0
δ the set of Q ∈ S0 with |Q| � δ).

We set Kε := K ∩ {φ � ε}. We integrate (134) with respect to A ∈ BS0
δ . We apply

Fubini–Tonelli theorem and introduce the new variable B := uε(x)− A. We obtain

ˆ
B

S0
δ

Eε

(
uA
ε

)
dH 5(A) � C

ˆ
Ω

{(ˆ
K\Kε

dH 5(B)

φ2(B)
+ ε−2H 5(Kε)

)
|∇uε|2

+ ε−2H 5(Kε)

}
dx .

We claim that

H 5(Kε) � Cε2 and
ˆ
K\Kε

dH 5(B)

φ2(B)
� C (| log ε| + 1) . (135)

To simplify the presentation, we postpone the proof of this claim. With the help
of (135), we obtain
ˆ
B5
δ

Eε

(
uA
ε

)
dH 5(A) � C

{
(| log ε| + 1) ‖∇uε‖2L2(Ω)

+ 1
}

� C (| log ε| + 1) .

Therefore, we can choose A0 ∈ S0 such that |A0| � δ and

Eε

(
uA0
ε

)
� C (| log ε| + 1) . (136)
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The map uA0
ε satisfies the desired energy estimate, but it does not satisfy the

boundary condition, since

uA0
ε = � (gε − A0) on ∂Ω. (137)

To correct this, we consider the maps {�A}
A∈BS0

δ

defined by

�A : Q ∈ N �→ �(Q − A).

This is a continuous family of mappings inC1(N , N ) and �0 = IdN . Therefore,
we can choose δ so small that the map �A : N → N is a diffeomorphism for
any A ∈ BS0

δ (in particular for A = A0). Let U be the set defined by

U := {λQ : λ ∈ R
+, Q ∈ N

}
.

We extend �−1
A0

to a Lipschitz functionF : U → U by setting

F (λQ) := λ�−1
A0
(Q) for any λ ∈ R

+, Q ∈ N .

Remark that any P ∈ U \{0} can be uniquely written in the form P = λQ for λ ∈
R

+ and Q ∈ N , so F is well-defined. Also, f ◦ F (P) = f (P) because F (P)
and P have the same scalar invariants. The map Pε := F ◦ uA0

ε is well-defined,
because uA0

ε ∈ U . Moreover, Pε belongs to H1
gε (Ω, S0) thanks to (137), and

satisfies

Eε(Pε) � C (| log ε| + 1) ,

due to (136). By comparison, the minimizers satisfy (133). ��
The claim (135) follows by

Lemma 67. For any R > 0, there exist positive constants CR, MR such that, for
any non increasing, non negative function g : R+ → R

+, there holdsˆ
B

S0
R

(g ◦ φ) (Q) dH 5(Q) � CR

ˆ MR

0
(s + s4)g(s) ds.

Assuming that the lemma holds true, choose R so large that K ⊆ BS0
R . Then,

the two assertions of Claim (135) follow by taking g = 1(0, ε) and g(s) =
ε−21(0, ε)(s) + s−21[ε,+∞)(s), respectively. For the sake of clarity, we split the
proof of Lemma 67 into a few steps. For r > 0, we let distr denote the geodesic
distance in ∂BS0

r , that is

distr (Q, A) := inf

{ ˆ 1

0

∣∣γ ′(t)
∣∣ dt : γ ∈ C1([0, 1], ∂BS0

1 ),

γ (0) = Q, γ (1) ∈ A

}
(138)

for any Q ∈ ∂BS0
r and A ⊆ ∂BS0

r , and set N ′
r := C ∩ ∂BS0

r . Notice that there
exists a positive constant C such that

dist|Q|(Q, P) � C |Q − P| (139)

for any Q, P ∈ S0 with |Q| = |P|.
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Lemma 68. There exists a positive constant α such that

φ(Q) � α dist|Q|
(
Q, N ′|Q|

)
for any Q ∈ S0.

Proof. Fix Q ∈ S0 and P ∈ N ′|Q|. By Lemmas 10 and 12, we can write

Q = s

(
n⊗2 − 1

3
Id

)
+ sr

(
m⊗2 − 1

3
Id

)
, P = −s′

(
p⊗2 − 1

3
Id

)

for some orthonormal pair (n, m), some unit vector p, s, some positive numbers
s, s′ and 0 � r � 1. Through simple algebra, we obtain

|Q − P|2 = 2

3
s2(r2 − r + 1) − 2

3
ss′(1 − r) + 2

3
s′2

+ 2ss′{(n · p)2 + r(m · p)2
}
. (140)

Moreover, we have |P| = |Q| if and only if

s′2 = s2(r2 − r + 1). (141)

By minimizing (with respect to s′, p) the right-hand side in (140), subject to the
constraint (141), we find

dist2(Q, N ′
1 ) = 2

3
s2
√
r2 − r + 1

{
(1 − r)2 −

(√
r2 − r + 1 − 1

)2}

� 2

3
s2(1 − r)2 = 2

3
s2∗φ2(Q).

Combining this inequality with (139), the lemma follows. ��
Lemma 69. Let N ′ be a compact n-submanifold of a smooth Riemann
m-manifold M , and let

Uδ := {x ∈ M : distM (x, N ′) � δ
}

be the δ-neighborhood ofN ′ inM , for δ > 0 (here distM stands for the geodesic
distance in M ). There exist δ∗ > 0 and, for any δ ∈ (0, δ∗), a constant C =
C(M , N ′, δ) > 0 such that for any decreasing function h : R+ → R

+ there
holds ˆ

Uδ

h
(
distM (x, N ′)

)
dH m(x) � C

ˆ Cδ

0
sm−n−1h(s) ds.

Proof. We identify R
m = R

n × R
m−n , and call the variable y = (y′, z) ∈

R
n × R

m−n . For a small δ∗ > 0, the δ∗-neighborhood Uδ∗ can be covered with
finitely many open sets {Vj }1� j�K and, for each j , there exists a bilipschitz home-
omorphism ϕ j : Vj → Wj ⊆ R

m which maps N ′ ∩ Vj onto R
n ∩ Wj . Due to

the bilipschitz continuity of the ϕ j ’s, there exist two constants γ1, γ2 such that, for
any j and any y = (y′, z) ∈ Wj , there holds

γ1 |z| � distM (ϕ−1
j (y), N ) � γ2 |z| .
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Therefore, if 0 < δ < δ∗ the change of variable x = ϕ−1
j (y) implies

ˆ
Uδ

h
(
distM (x, N ′)

)
dH m(x) �

K∑
j=1

ˆ
ϕ−1
j (Vj )

h (γ1|z|)
∣∣∣Jϕ−1

j (y)
∣∣∣ dH m(y)

� M
ˆ
Bm−n(0, γ2δ)

h(γ1|z|) dH m−n(z)

where M is an upper bound for the norm of the Jacobians Jϕ−1
j . Then, passing to

polar coordinates,

ˆ
Uδ

h
(
distM (x, N ′)

)
dH m(x) � M

ˆ γ2δ

0
ρm−n−1h(γ1ρ) dρ

� Mγ 1+n−m
1

ˆ γ1γ2ρ

0
sm−n−1h(s) ds.

��
Proof of Lemma 67. By Lemma 13, the function φ is positively homogeneous of
degree 1. Then,

ˆ
B

S0
R

(g ◦ φ)(Q) dH 5(Q) =
ˆ R

0
ρ4

ˆ
∂B

S0
1

g (ρφ(Q)) dH 4(Q) dρ.

By applying Lemma 68, and since g is a decreasing function,

ˆ
B

S0
R

(g ◦ φ)(Q) dH 5(Q) �
ˆ R

0
ρ4

ˆ
∂B

S0
1

g
(
αρ dist1(Q, N

′
1 )
)
dH 4(Q) dρ.

Now, we apply Lemma 69 with M = ∂BS0
1 , N ′ = N ′

1 and h : s �→ g(αρs). We

find constants δ and C such that, letting Uδ be the δ-neighborhood of N ′
1 in ∂BS0

1

and Vδ := ∂BS0
1 \Uδ , we have

ˆ
B

S0
R

(g ◦ φ)(Q) dH 5(Q)

=
ˆ R

0
ρ4
{ˆ

Uδ

g
(
αρ dist1(Q, N

′
1 )
)
dH 4(Q)

+
ˆ
Vδ

g
(
αρ dist1(Q, N

′
1 )
)
dH 4(Q)

}
dρ

� C
ˆ R

0
ρ4
{ ˆ Cδ

0
sg(αρs) ds + g(αρδ)H 4(Vδ)

}
dρ

(to bound the integral on Vδ , we use again that g is decreasing). Now, the two
terms can be easily handled by changing the variables and using the Fubini–Tonelli
theorem:
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ˆ
B

S0
R

(g ◦ φ)(Q) dH 5(Q) � α−2C
ˆ R

0
ρ2

ˆ αρδC

0
tg(t) dt dρ

+ (αδ)−5CH 4(Vδ)
ˆ αδR

0
t4g(t) dt

� Cα,δ,R

ˆ Cα,δ,R

0
(t + t4)g(t) dt.

Since α, δ depend only on φ and N ′
1 , the lemma is proved. ��

6.2. Proof of Propositions 4 and 6

Condition (H) may be satisfied even if the boundary datum is not N -valued.
As we show in this section, if the domain satisfies a topological condition (H2) and
if boundary datum is smooth (at least H1 ∩ L∞), satisfying a uniform L∞-bound
and a logarithmic energy estimate (H3), then (132)–(133) are satisfied for some
constant M = M(Ω, M0) > 0. This proves Proposition 4. In particular, we prove
the logarithmic energy bound (133) by constructing an admissible comparison
function, whose energy is controlled by the right-hand side of (133). If Ω is a
ball, it sufficies to extend homogeneously the boundary data. SinceΩ is bilipschitz
equivalent to a handlebody by (H2), we reduce to the case of a ball by cutting
each handle of Ω along a meridian disk. This technique was used already in [37,
Lemma 1.1]. At the end of the section, we also prove Proposition 6.

Lemma 70. Assume that (H2) and (H3) hold. There exists a finite number of prop-
erly embedded disks D1, D2, . . . , Dk ⊆ Ω such thatΩ\∪k

i=1 Di is diffeomorphic
to a ball,

Eε(gε, ∂Di ) � C (|log ε| + 1) (142)

and

dist(gε(x), N ) → 0 uniformly in x ∈
k⋃

i=1

∂Di . (143)

Proof. For each handle i ofΩ , there is an open setUi such that ∂Ω ∩Ui is foliated
by

∂Ω ∩Ui =
∐

−a0<a<a0

∂Da
i ,

where the generic Da
i is a properly embedded disk, which cross transversely a

generator of π1(Ω) at some point. Then, Fatou’s lemma implies that

ˆ a0

−a0
lim inf
ε→0

Eε(gε, ∂D
a
i ) da � lim inf

ε→0

ˆ a0

−a0
Eε(gε, ∂D

a
i ) da

(H3)

� C (|log ε| + 1) ,

so, by an average argument, we can choose the parameter a in such away that Di :=
Da
i satisfies (142). Then, (143) is obtained by the same arguments as Lemma 38.
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(As in the lemma, we apply Sobolev embedding inequality not on ∂Di directly, but
on 1-cells K ⊆ ∂Di of size comparable to εα |log ε|.) Furthermore, by construction
Ω\∪k

i=1 Di is a ball, since we have removed a meridian disk for each handle ofΩ .
��

Proof of Proposition 4. The L∞-bound (132) holds by virtue of Lemma 66, so
we only need to prove (133). Assume for a moment that Ω = B1. In this case,
define the function

Pε(x) := gε

(
x

|x |
)

for x ∈ B1. (144)

Then Pε ∈ H1
gε (B1, S0) and we easily compute

Eε(Pε) =
ˆ 1

0

ˆ
∂B1

(
|∇�gε|2 + ε−2ρ2 f (gε)

)
dH 2 dρ

(H3)

� C (|log ε| + 1) ,

so the lemma holds true when Ω = B1.
Now, arguing as in [37, Lemma 1.1], we prove that the general case can

be reduced to the previous one. Let Ω be any domain satisfying (H2), and let
D1, . . . , Dk be the disks given by Lemma 70. By (143), there exists ε0 > 0 such
that, for any 0 < ε � ε0 and any x ∈ ∪i∂Di ,

dist(gε(x), N ) � δ0.

For ease of notation, for a fixed i ∈ {1, . . . , k} we assume, up to a bilipschitz
equivalence, that Di = B2

1 . Then, we define ĝε,i : B2
1 → S0 by

ĝε,i (x) :=

⎧⎪⎪⎨
⎪⎪⎩

δ0 + |x | − 1

δ0
gε

(
x

|x |
)

+ 1 − |x |
δ0

(� ◦ gε)

(
x

|x |
)

if |x | � 1 − δ0

vε

(
x

1 − δ0

)
if |x | � 1 − δ0,

where vε ∈ H1(B2
1 , S0) is the extension of � ◦ gε |∂B2

1
given by Lemma 28. By a

straightforward computation, one checks that

Eε(ĝε,i , Di ) � C (Eε(gε, ∂Di ) + |log ε| + 1) . (145)

Now, consider two copies D+
i and D−

i of each disk Di . LetΩ ′ be a smooth domain
such that

Ω ′ � (Ω\ ∪i Di ) ∪i D
+
i ∪i D

−
i ,

and let ϕ : Ω ′ → Ω be the smooth map which identifies each D+
i with the cor-

responding D−
i (see Fig. 5). This new domain is simply connected, and in fact is

diffeomorphic to a ball. Up to a bilipschitz equivalence, we will assume thatΩ ′ is
a ball. We define a boundary datum g′

ε for Ω
′ by setting g′

ε := gε on Ω\ ∪i Di ,
and g′

ε := gε, i on D+
i ∪ D−

i . Then, (145), (142) and (H3) imply

Eε(g
′
ε, ∂Ω) � C (Eε(gε, ∂Ω) + |log ε| + 1) � C (|log ε| + 1) .
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Fig. 5. On the left, a ball with one handle. On the right, the corresponding domain Ω ′: the
handle has been cut along a disk. The map ϕ : Ω ′ → Ω identifies the opposite disks in the
handle cut

Then Formula (144) gives a map P ′
ε ∈ H1

g′
ε
(Ω ′, S0) which satisfies

Eε(P
′
ε, Ω

′) � C (|log ε| + 1) .

Since P ′
ε |D+

i
= P ′

ε |D−
i
for every i , the map P ′

ε factorizes through ϕ, and defines a

new function Pε ∈ H1
gε (Ω, S0) such that

Eε(Pε, Ω) � C (|log ε| + 1) .

By comparison, we conclude that (133) holds for any 0 < ε � ε0. Now, fix ε0 <
ε < 1 and consider the (S0-valued) harmonic extension P̃ε of gε. There holds

‖∇ P̃ε‖2L2(Ω)
� C ‖∇gε‖2L2(∂Ω)

(H3)

� C (|log ε| + 1) ,

‖P̃ε‖2L∞(Ω) � C ‖gε‖2L∞(∂Ω)

(H3)

� C

and so

Eε(Pε) � 1

2
‖∇ P̃ε‖2L2(Ω)

+ Cε−2
0 � C

(
1 + ε20

)
(|log ε| + 1) .

Also, in this case, the lemma follows by comparison. ��

Proof of Proposition 6. Up to rotations and translations, we can assume that the
x3-axis {x1 = x2 = 0} crosses transversely ∂Ω at one point x0 at least. Let
ηε ∈ C∞(R+, R) be a cut-off function satisfying

ηε(0) = η′
ε(0) = 0, ηε(r) = s∗ for r � ε, 0 � ηε � s∗,

∣∣η′
ε

∣∣ � Cε−1.

Set

gε(x) := ηε(|x ′|)
{(

x ′

|x ′|
)⊗2

− 1

3
Id

}
for x ∈ ∂Ω,

where x ′ := (x1, x2, 0). Computing as in Lemma 28, one sees that {gε} satis-
fies (H3). It remains to prove that the energy ofminimizers Qε satisfies a logarithmic
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lower bound. Take a ball Br (x0). If the radius r is small enough, the setΩ ∩ Br (x0)
can be mapped diffeomorphically onto the half-ball

U :=
{
x ∈ R

3 : |x | � 1, x3 � 0
}
,

so we can assume WLOG that Ω ∩ Br (x0) = U . Let Us := {x ∈ U : x3 = s}, for
r/2 � s � r . The map Qε |∂Us : ∂Us → N is a homotopically non-trivial loop,
which satisfies Eε(Qε, ∂Us) � C . Then, by applying Corollary 16 we deduce

Eε(Qε, Us) � κ∗ log
s

ε
− C

for a constant C depending on r ,Ω . By integrating this bound for s ∈ (r/2, r), the
proposition follows. ��

7. Coexistence of Line and Point Singularities: An Example

In this section, we show through an example that both the set of line singular-
ities Sline and the set of point singularities Spts may be non-empty. We consider
the following domain. For two fixed positive numbers

L > 0 and 0 < r <
1

2
, (146)

define

p± := (±(L + 1), 0, 0)

Ω± := B1(p±), Ω0 :=
(
[−L − 1, L + 1] × B2

r (0)
)

\ (Ω− ∪ Ω+)

andΩ := Ω−∪Ω0∪Ω+. In other words, the domain consists of two balls joined by
a cylinder about the x1-axis (see Fig. 1). This is a Lipschitz domain; however, one
could consider a smooth domainΩ ′, obtained fromΩ by “smoothing the corners”,
and the arguments of this section could be easily adapted to Ω ′.

We write ∂Ω = Γ− ∪Γ0∪Γ+, where Γ± := ∂Ω±\Ω0 and Γ0 := ∂Ω0\(Ω+ ∪
Ω−). We define the auxiliary functions χ ∈ H1(0, 2π), ηε ∈ H1(0, π) and ξr ∈
H1(0, π) by

χ(θ) :=

⎧⎪⎨
⎪⎩

π/2 − 3θ/5 for 0 � θ � 5π/6

0 for 5π/6 < θ < 7π/6

7π/10 − 3θ/5 for 7π/6 � θ � 2π,

ηε(ϕ) :=

⎧⎪⎨
⎪⎩

ε−1ϕ for 0 � ϕ � ε

1 for ε < ϕ < π − ε

ε−1(π − ϕ) for π − ε � ϕ � π
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and

ξr (ϕ̃) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 � ϕ̃ � arcsin r
arcsin 2r (ϕ̃ − arcsin r)

arcsin 2r − arcsin r
if arcsin 2r < ϕ̃ < arcsin 2r

ϕ̃ if arcsin 2r � ϕ̃ � π.

Notice that
∣∣η′

ε

∣∣ � ε−1 and
∣∣ξ ′
r

∣∣ � 2. (147)

Theboundarydatum gε is defined as follows.WeparametrizeΓ+ using spherical
coordinates (θ, ϕ) ∈ [0, 2π ] × [0, π ] centered at p+:

x1 = L + 1 + sin ϕ cos θ, x2 = sin ϕ sin θ, x3 = cosϕ

and define gε on Γ+ by

gε(x1, x2, x3) := s∗ηε(ϕ)
{(

e1 cosχ(θ) + e2 sin χ(θ)
)⊗2 − 1

3
Id

}
. (148)

On Γ−, we use spherical coordinates about the x1-axis, that is (θ̃ , ϕ̃) ∈ [0, 2π ] ×
[0, π ] given by

x1 = −L − 1 + cos ϕ̃, x2 = sin ϕ̃ cos θ̃ , x3 = sin ϕ̃ sin θ̃

and set

gε(x1, x2, x3) := s∗
{(

e1 cos ξr (ϕ̃) + e2 sin ξr (ϕ̃) cos θ̃

+ e3 sin ξr (ϕ̃) sin θ̃
)⊗2 − 1

3
Id

}
. (149)

Finally, we set

gε := s∗
(

e⊗2
1 − 1

3
Id

)
on Γ0.

This defines a map gε ∈ H1(∂Ω, S0) which is non-orientable with two point
disclinations on Γ+, is constant on Γ0 and has a hedgehog-type behaviour on Γ−.
In Fig. 1, we represent the direction of the eigenvector associated with the leading
eigenvalue of gε(x), for x ∈ ∂Ω . One could regularize the functions χ , ηε and ξr
so that the map gε is smooth; this would not affect our arguments. Pick a subse-
quence εn ↘ 0 so that themeasuresμεn defined by (84) convergeweakly

! inC(Ω)′
to a measure μ0, and let Sline ⊆ Ω be the support of μ0. Let Spts ⊆ Ω\Sline be
a set such that the sequence {Qεn }n∈N is compact in C0(Ω\(Sline ∪ Spts), S0).
By Theorem 1, such a set exists and is locally finite in Ω\Sline. We will show the
following result, which implies Proposition 7.
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Proposition 71. There exists L∗ such that, if

L � L∗

then ∅ �= Sline ⊆ {x1 � 0
}
and Spts ∩ {x1 � −L/2} �= ∅.

Remark 72. The presence of a point defect is not forced by a topological obstruc-
tion. In other words, there exists maps Pε : Ω → S0 which satisfy Pε = gε
on ∂Ω and converge to a map with a line singularity but no point singularity.
Indeed, let ϕ : Ω → B1 be a bilipschitz homeomorphism such that ϕ(L , 0, ±1) =
(0, 0, ±1). Then, the functions

Pε(x) := gε ◦ ϕ−1
(

ϕ(x)

|ϕ(x)|
)

converge almost everywhere to a map with a line singularity Sline := ϕ−1{x1 =
x2=0}, but nopoint singularities. The convergence alsoholds inH1

loc(Ω\Sline, S0).

We split the proof of Proposition 71 into some lemmas. Throughout the section,
we use the symbol C to denote a generic constant, which does not depend on ε, L
and r .

Lemma 73. There exists a constant M , independent of L and r , such that

Eε(Qε, Ω) � M (|log ε| + 1) and ‖Qε‖L∞(Ω) � M

for any 0 < ε < 1.

Proof. The L∞-bound follows by Lemma 66, since |gε(x)| � (2/3)1/2s∗ for
almost everywhere x ∈ ∂Ω and any 0 < ε < 1. The energy bound follows by
a comparison argument. We define a map Pε on Ω+ and Ω− by homogeneous
extension:

Pε(x) := gε

(
p+ + x − p±

|x − p±|
)

if x ∈ Ω±,

and we set

Pε(x) := s∗
(

e⊗2
1 − 1

3
Id

)
if x ∈ Ω0.

(Here we assume that gε is defined also on ∂Ω±\Γ±, by the same formulae (148)–
(149).) Then, the map Pε is continuous and belongs to H1(Ω, S0). Moreover,
Eε(Pε, Ω0) = 0 since Pε |Ω0 is constant and takes values inN . A simple compu-
tation, based on (147), concludes the proof. ��

For any s ∈ R, let Us := Ω ∩ {x1 < s} and Gε(s) := Eε(Qε, Us). Fubini–
Tonelli theorem entails that G ′

ε(s) = Eε(Qε, Ω ∩ {x1 = s}) for almost every s.
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Lemma 74. There exist positive constants L∗ and M such that, for any L � L∗
and any 0 < ε � 1/2, there holds

Gε(0) � M.

In particular, if L � L∗ then Sline ⊆ Ω\U0.

Proof. This proof is based on the same arguments as Proposition 8. Define the set

Dε :=
{
s ∈ (0, L) : G ′

ε(s) � 2M

L
(|log ε| + 1)

}
.

By Lemma 73 and an average argument, we know that

H 1(Dε) � L

2
. (150)

Moreover, there exists L∗ > 0 such that, for any L � L∗, any 0 < ε � 1/2 and
any s ∈ Dε, there holds

G ′
ε(s) � η0 |log ε|

where η0 is the constant given by Proposition 33. Therefore, for a fixed s ∈ Dε

we can apply Proposition 33 to the map uε := Qε |{s}×B2
r
. Notice that uε is defined

on a disk, while the maps we consider in Proposition 33 are defined over a sphere.
However, since uε takes a constant value on the boundary, it can be identified with
a map defined on a sphere by collapsing {s} × ∂B2

r into a point. Setting h(ε) :=
ε1/2| log ε| and Aε := (s−h(ε), s)×B2

r , we find maps vε : {s−h(ε)}×B2
r → N

and ϕε : Aε → S0 such that

1

2

ˆ
{s−h(ε)}×B2

r

|∇vε|2 dH 2 � G ′
ε(s), Eε(ϕε) � Ch(ε) |log ε| . (151)

Now, consider the set Vs := [s − h(ε) − r, s − h(ε)] × B2
r (we assume that

L∗ > 2, so that s − h(ε) − r > −L for ε � 1/2) and the map ṽε ∈ H1(∂Vs, N )

given by ṽε := vε on {s} × B2
r ,

ṽε := s∗
(

e⊗2
1 − 1

3
Id

)
on ∂Vs\

({s} × B2
r

)
.

Thanks to (151), we have

1

2

ˆ
∂Vs

|∇ṽε|2 dH 2 = 1

2

ˆ
{s}×B2

r

|∇vε|2 dH 2 � G ′
ε(s).

Then, by applying Lemma 26 (which is possible because Vs is bilipschitz equivalent
to a ball), we find a map wε ∈ H1(Vs, N ) such that wε = ṽε on ∂Vs and

1

2

ˆ
Vs

|∇wε|2 � CG ′
ε(s)

1/2, (152)
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for a constantC independent of ε, L , r . (Here we have used that r < 1.) Finally, we
define a map w̃ε ∈ H1(Us, S0) as follows. We set w̃ε := ϕε on [s − h(ε), s] × B2

r
and w̃ε := wε on Vs ,

w̃ε := s∗
(

e⊗2
1 − 1

3
Id

)
on Ω0\

([s − h(ε) − r, s] × B2
r

)

and use an homogeneous extension to construct w̃ε on Ω−:

w̃ε(x) := gε

(
p− + x − p−

|x − p−|
)

for x ∈ Ω−.

The map w̃ε is continuous, satisfies Eε(w̃ε) = 0 on Ω0\([s − h(ε) − r, s] × B2
r )

and Eε(w̃ε, Ω−) � C because of (147). Thus, from (151) and (152) we infer

Eε(w̃ε, Us) � CG ′
ε(s)

1/2 + C.

Moreover, w̃ε is an admissible competitor for Qε, because w̃ε = Qε on ∂Us . Then,
the minimality of Qε yields

Gε(s) � CG ′
ε(s)

1/2 + C (153)

for almost everywhere s ∈ Dε and every 0 < ε � 1/2. Thanks to (150) and (153),
we apply Lemma 46 to y := Gε and obtain

Gε(0) �
(
1 + 2

L

)
C �

(
1 + 2

L∗

)
C =: M

for every 0 < ε � 1/2. Therefore, με U0 → 0 in Mb(U0) := C0(U0)
′ and

hence Sline ⊆ Ω\U0. ��
Before concluding the proof of Proposition 71, we recall a well-known fact.

Given r > 0 and a continuous map n : B2
r → S

2 that takes a constant value on ∂B2
r ,

it is possible to define the topological degree of n. Indeed, the topological space
which is obtained by collapsing the boundary of ∂B2

r into a point is homeomorphic
to a sphere. Then, since n|∂B2

r
is a constant, n induces a continuous map S

2 → S
2

whose homotopy class is characterized by an integer number d called the degree
of n. We will write d =: deg(n, B2

r ). In case n ∈ H1(B2
r , S

2) takes a constant
value at the boundary, the degree of n can still be defined (for instance, one can
apply the VMO-theory by Brezis and Nirenberg [19,20]).

Lemma 75. For any r > 0 and any n ∈ H1(B2
r , S

2) with constant value at the
boundary, if

1

2

ˆ
B2
r

|∇n|2 dH 2 < 4π

then deg(n, B2
r ) = 0.
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Proof. By applying the area formula, we obtainˆ
B2
r

∣∣∂x1n × ∂x2n
∣∣ dH 2 =

ˆ
n(B2

r )

H 0(n−1(y)
)
dH 2(y) � H 2(n(B2

r )
)
.

On the other hand, we have |∂x1n × ∂x2n| � |∂x1n||∂x2n| � |∇n|2/2. Therefore,
there holds

1

2

ˆ
B2
r

|∇n|2 dH 2 � H 2(n(B2
r )
)
.

If the left-hand side is <4π , then n is not surjective and so deg(n, B2
r ) = 0 (see

for example [19, Property 1]). ��
Proof of Proposition 71. Arguing as in the proof of Proposition 6, and using that
the boundary conditions gε |U+ are non orientable, one shows that

Eε(Qε) � C (|log ε| − 1)

for any ε, L and r , so Sline �= ∅. By Lemma 74, there exists L∗ such that Sline ⊆
Ω\U0 if L � L∗. Set

L∗ := max

{
L∗,

M

πs∗

}
(154)

where M is given by Lemma 74, and let L � L∗. The proposition follows once we
show that Spts ∩U−L/2 �= ∅.

By applying Lemma 74, Theorem 1 and Corollary 54, we deduce that Qεn

converges to Q0 in H1(U−δ, S0) for every δ > 0, where Q0 : U0 → N is a
locally minimizing harmonic map. Passing to the limit as ε → 0 in Lemma 74, we
see that

1

2

ˆ
U0

|∇Q0|2 � M (155)

for an L-independent constant M . In particular, Q0 ∈ H1(U0, N ). An average
argument, combined with Lemma 155, shows that there exists −L < s < −L/2
such that Q0 ∈ H1({s} × B2

r , N ) and

1

2

ˆ
{s}×B2

r

|∇Q0|2 dH 2 � 4M

L
.

Due to Lemma 31, we find a lifting of Q0|∂Us , that is a map n0 ∈ H1(∂Us, S
2)

which satisfies (35) and |∇Q0|2 = 2s∗|∇n0|2 almost everywhere Then, we have

1

2

ˆ
{s}×B2

r

|∇n0|2 dH 2 � 2M

s∗L
. (156)

Combining (156) with (154), we deduce

1

2

ˆ
{s}×B2

r

|∇n0|2 dH 2 � 2π.
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Moreover, n0 takes a constant value on the boundary of {s} × B2
r , since Q0 does.

Then, by Lemma 75, deg(n0, {s} × B2
r ) = 0. On the other hand, deg(n0, ∂Us ∩

Γ0) = 0 since n0 takes a constant value on ∂Us ∩ Γ0, and deg(n0, Γ−) can be
computed explicitly thanks to (149). This yields

deg(n0, ∂Us) = deg(n0, Γ−) = ±1,

so the map Q0|∂Us is homotopically non-trivial andSpts ∩Us �= ∅. ��
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