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Abstract

We consider the Landau-de Gennes variational model for nematic liquid crys-
tals, in three-dimensional domains. More precisely, we study the asymptotic behav-
iour of minimizers as the elastic constant tends to zero, under the assumption that
minimizers are uniformly bounded and their energy blows up as the logarithm of
the elastic constant. We show that there exists a closed set .#jipe of finite length,
such that minimizers converge to a locally harmonic map away from .#jje. More-
over, -Yine restricted to the interior of the domain is a locally finite union of straight
line segments. We provide sufficient conditions, depending on the domain and the
boundary data, under which our main results apply. We also discuss some examples.

1. Introduction

1.1. Variational Theories for Nematic Liquid Crystals

A nematic liquid crystal is matter in an intermediate state between liquid and
crystalline solid. Molecules can flow and their centers of mass are randomly dis-
tributed, but the molecular axes tend to self-align locally. As a result, the material
is anisotropic with respect to optic and electromagnetic properties. In the so-called
uniaxial nematics, the molecules are often rod-shaped and, although they may carry
a permanent dipole, there are as many dipoles ‘up’ as there are ‘down’. Therefore,
the material symmetry group contains the rotations around the molecular axis and
the reflection symmetry which exchanges the two orientations of the axis. The long-
range orientational order due to the self-alignmennt of the molecules is broken in
some places; these are called defects. The word nematic itself refers to the line
defects (see [32]):

I am going to use the term nematic (viua, thread) to describe the forms,
bodies, phases, etc. of the second type... because of the linear disconti-
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nuities, which are twisted like threads, and which are one of their most
prominent characteristics.

In addition to line defects, also called disclinations, nematic media exhibit
“hedgehog-like” point singularities. According to the topological theory of ordered
media (see for example [53,64,66]), both kinds of defects are described by the
homotopy groups of a manifold, which parametrizes the possible local configura-
tions of the material.

Several models for uniaxial nematic liquid crystals have drawn the attention of
the mathematical community. The most popular continuum theories that are based
on a finite-dimensional order parameter space are probably the Oseen—Frank, the
Ericksen and the Landau-de Gennes theories. In the Oseen—Frank theory [31],
the material is modeled by a unit vector field n = n(x) € S?, which represents
the preferred direction of molecular alignment. The elastic energy, in the simplest
setting, reduces to the Dirichlet functional

! 2
E) := E/QIVHI ; 6]

where £2 C R? is the physical domain. In this case, least-energy configurations are
but harmonic maps n: £2 — S?. As such, minimizers have been widely studied
in the literature (the reader is referred to, for example, [39] for a general review
of this subject). SCHOEN and UHLENBECK [61] proved that minimizers are smooth
away from a discrete set of points singularities. BREzIs et al. [17] investigated the
precise shape of minimizers around a point defect x(, and proved that

X — X0

lx — xol
where R is a rotation. These “hedgehog-like” point defects are associated with a
non-trivial homotopy class of maps n: 8 B, (xg) — S, that is a non-trivial element
of 712(82). Interesting results are also available for the full Oseen—Frank energy,
which consists of various terms accounting for splay, twist and bend deformations.
HARDT et al. [37] proved the existence of minimizers and partial regularity, that is
regularity out of an exceptional set whose Hausdorff dimension is strictly less than
1. As for the local behaviour of minimizers around the defects, the picture is not
as clear as for the Dirichlet energy (1), but at least the stability of “hedgehog-like”
singularities such as (2) has been completely analyzed (see [45] and the references
therein). However, the partial regularity result of [37] implies that the Oseen—Frank
theory cannot account for line defects.

Ericksen theory is less restrictive, because it allows variable orientational order.
Indeed, the configurations are described by a pair (s, n) € R x S?, where n is the
preferred direction of molecular alignment and the scalar s measures the degree of
ordering. In this theory, defects are identified by the condition s = 0, which corre-
spond to complete disordered states. Under suitable assumptions, minimizers can
exhibit line singularities and even planar discontinuities (see [47, Theorem 7.2]).
Explicit examples were studied by AMBROSIO and VIRGA [6] and MIZEL et al. [54].
However, the Ericksen theory — as the Oseen—Frank theory—excludes configura-
tions which might have physical reality. Ericksen himself was aware of this, since he

n(x) >~ +R

for |x —xo| < 1, 2



Line Defects in a Limit of a three dimensional Landau-de Gennes Model 593

presented his theory as a “kind of compromise” [29, p. 98] between physical intu-
ition and mathematical simplicity. Indeed, both the Oseen—Frank and the Ericksen
theory do not take into account the material symmetry, that is, the configurations
represented by n and —n are physically indistinguishable. Moreover, these theories
postulate that, at each point of the medium, there is at most one preferred direction
of molecular orientation. Configurations for which such a preferred direction exists
are called uniaxial, because they have one axis of rotational symmetry. If no pre-
ferred direction exists, the configuration is called isotropic (in the Ericksen theory,
this corresponds to s = 0).

The Landau-de Gennes theory [27] allows for a rather complete description of
the local behaviour of the medium, because it accounts for biaxial configurations
as well.! A state is called biaxial when it has no axis of rotational symmetry, but
three orthogonal axes of reflection symmetry instead (see [56] for more details).
What makes the Landau-de Gennes theory so rich is the order parameter space.
Configurations are described by matrices (the so-called Q-tensors), which can be
interpreted as renormalized second-order moments of the microscopic distribution
of molecules with respect to the orientation.

In this paper, we aim at describing line defects in a special asymptotic limit
of the Landau-de Gennes theory, namely, when the elastic constant of the nematic
material is very small, compared to the typical length-scale of the domain. Two
simplifying assumptions are postulated here. First, we neglect the effect of external
electromagnetic fields. To induce non-trivial behaviour in minimizers, we couple the
problem with non-homogeneous Dirichlet boundary conditions (strong anchoring).
Second, we adopt the one-constant approximation, that is we drop out several
terms in the expression of the elastic energy, and we are left with the gradient-
squared term only. These assumptions, which drastically reduce the technicality
of the problem, are common in the mathematical literature on this subject (see for
example [28,33,40,41,46,52]). In the two-dimensional case, the analysis of the
analogous problem is presented in [21,35].

1.2. The Landau-de Gennes Functional

As we mentioned before, the local configurations of the medium are described
by Q-tensors, that is elements of

So :={QeM3(R): o' = o, trQ:O}.

This is a real linear space, of dimension five, which we endow with the scalar
product Q - P := Q;; P;; (Einstein’s convention is assumed). This choice of the
configurations space can be justified as follows. At a microscopic scale, the distri-
bution of molecules around a given point x € 2, as a function of orientation, can
be represented by a probability measure /i, on the unit sphere S?. The measure /¢,
satisfies to the condition y(B) = uyx(—B) forall B € P(S?), which accounts for

' Here “uniaxial” and “biaxial” refer to arrangements of molecules, not to the molecules
themselves which are always assumed to be uniaxial.
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the head-to-tail symmetry of the molecules. Then, the simplest meaningful way to
condense the information conveyed by ., is to consider the second-order moment

0= / (n®2 — 1Id) dpy(m).
2 3

We denote by n®? the matrix defined by (n®2),-’j :=m;nj,foreachi, j € {1, 2, 3}.
The quantity Q is renormalized, so that the isotropic state w, = 2 S? corre-
sponds to Q@ = 0. As a result, Q is a symmetric traceless matrix. (The interested
reader is referred, for example, to [56] for further details.)

The (simplified) Landau-de Gennes functional reads

1 1
E.(Q) :=/Q [5|VQ|2+8—2f<Q)], (LGy)

where Q: 2 — Sy is the configuration of the medium, located in a bounded
container 2 C R3. The function f is the quartic Landau-de Gennes potential,
defined by

f(Q):k—gtr Qz—g’tr Q3+2(trQ2)2 for O € So. 3)

This expression for f has been derived by a formal expansion in powers of Q.
All the terms are invariant by rotations so that f is independent of the coordinate
frame. This potential allows for multiple local minima, with a first-order isotropic-
nematic phase transition (see [27,65]). The positive parameters a, b and ¢ depend
on the material and the temperature (which is assumed to be uniform), while k is
just an additive constant, which plays no role in the minimization problem. The
potential f is bounded from below, so we determine uniquely the value of k by
requiring inf f = 0. The (small) parameter &2 is proportional to the material-
dependent elastic constant. For each 0 < ¢ < 1, we assign a boundary datum
g € H' (92, Sp) and we restrict our attention to minimizers Q, of (LG,) in the
class

H;S (82, So) := {Q e H' (22, So): Q = g¢ on 952 in the sense oftraces} .

When ¢ is small, the term =2 £ (Q) in (LG,) forces minimizers to take their
values close to A" := f —1(0). This set can be characterized as follows (see [52,

Proposition 9]):
W:[s*(n@—%ld):neSz], )

where the constant s, is defined by

1
1= 5ula, b €)= o (b /) +24ac) .

Thus, .4 is a smooth submanifold of Sy, diffeomorphic to the real projective
plane RP?, called vacuum manifold. The topology of .4 plays an important role,
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for a map £2 — .4 may encounter topological obstructions to regularity. Sources
of obstruction are the homotopy groups 71 (A") >~ Z /27 and 72 (") >~ Z, which
are associated with line and point singularities, respectively. There is a remark-
able difference with the Oseen—Frank model at this level, for S? is a simply con-
nected manifold, so topological obstructions result from 75 (S?) only. Despite this
fact, a strong connection between the Oseen—Frank and Landau-de Gennes the-
ories was established by MAJUMDAR and ZARNESCU [52], then by NGUYEN and
ZARNESCU [57], who addressed the asymptotic analysis of minimizers of (LGy),
in three-dimensional domains. Their results imply that, when £2, 952 are sim-
ply connected and g, = g € C 1882, ), minimizers Q, of (LG,) converge
in H'(£2, Sp) to a map of the form

00(x) = 5, (n?%x) - %m) ,

where ng € H'(£2, S?) is a minimizer of (1). The convergence is locally uniform,
away from singularities of Q. Also in this case, line defects do not appear in the
limiting map, although point defects analogous to (2) might occur. Indeed, their
assumptions on the domain and boundary datum are strong enough to guarantee
the uniform energy bound

E.(Qe) =C ®)

for an e-independent constant C, and obtain H'-compactness. In this paper, we
work in the logarithmic energy regime

E¢(Qe) = C (llogel + 1), (6)

which is compatible with singularities of codimension two, in the small e-limit.
There are analogies between the functional (LG;) and the Ginzburg—Landau
energy for superconductivity, which reduces to

1 1
ES™(u) :=/9[5|w|2+@(1—|u|2>2] 7

when no external field is applied. Here the unknown is a complex-valued function
u. There is a rich literature about the asymptotic behaviour, as ¢ — 0, of critical
points satisfying a logarithmic energy bound such as (133). It is well-known that,
under appropriate assumptions, critical points converge to maps with topology-
driven singularities of codimension two. In two-dimensional domains, the theory
has been developed after BETHUEL, BREZIs and HELEIN’s work [11]. In the three-
dimensional case, the asymptotic analysis of minimizers was performed by LiN
and RIVIERE [48], and extended to non-minimizing critical points by BETHUEL et
al. [12]. Later, JERRARD and SONER [44] and ALBERTI et al. [ 1] proved independently
that |loge|™! ESL I'-converges, when ¢ — 0, to a functional on integral currents
of codimension two. This functional essentially measures the length of defect lines,
weighted by some quantity that accounts for the topology of the defect.
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1.3. Main Results

For each fixed ¢ > 0, a classical argument of Calculus of Variations shows
that minimizers of (LG,) exist as soon as g, € H'/2(982, So) and are regular in
the interior of the domain. Our main result deals with their asymptotic behaviour
ase — 0.

Theorem 1. Let 2 be a bounded, Lipschit; domain. Assume that there exists a
positive constant M such that, for any 0 < ¢ < 1, there hold

Ec(Qe) = M (Jloge| + 1) and [|Q¢llLo2) = M. (H)

Then, there exist a subsequence €, N\ 0, a closed set Hine < Qanda map Qo €
ngc (£2\Aine, A) such that the following holds.

(i) Sine N 82 is a countably ' -rectifiable set, and 7 (Hine N 2) < +00.
(ii) Q¢, — Qo strongly in HILC(Q\%ine, ).
(iii) Qo is locally minimizing harmonic in §2\ A ine, that is for every ball B CC
2\ Fine and any P € H' (B, N) that satisfies P = Qg on d B we have

1 1
— [ VO < = | VP2,
2/BIQ0|_2/BI |

(iv) There exists a locally finite set S5 S 2\ Hine such that Qg is smooth in
2\ (Hine U Spis) and Q¢ — Qo locally uniformly in 2\ (Hine U Fpts)-

By saying that . is countably .7 !-rectifiable we mean that there exists a
decomposition

fjﬁline = U y-,
jeN

where 1 (%)) = 0 and, for each Jj = 1, the set ; is the image of a Lipschitz
map K; CC R — R3. In addition to the singular set .#jjpe of dimension one, the
limiting map Q¢ may have a set of point singularities .. This is consistent with
the regularity results for minimizing harmonic maps [34,61]. Later on, we will
discuss examples where e and .#js are non-empty.

Theorem 1 is local in nature. In particular, boundary conditions play no par-
ticular role in the proof of this result, although they need to be imposed to induce
non-trivial behaviour of minimizers. Theorem 1 can be adapted to the analysis near
the boundary of the domain, under additional assumptions on the boundary datum.
The necessary modifications are sketched in Section 4.4.

The singular set .%jiqe is defined as the concentration set for the energy densities
of minimizers. In other words, thanks to (H) we find a subsequence ¢, N\, 0 and a
measure jo € 4, (2) := C($2)’ such that

1 |VQ
21V 0

2 1 dx . —
+ _zf(Qs,L)] — =" po in A,(R2),
&4 | log e, |
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then we define .#ipe as the support of 1o. A more precise description of the limit
measure jg is given by the following result. We set

T
Ky := ESE
As we will see in Section 2.2, this number quantifies the energy cost associated
with a topological defect of codimension two.

Proposition 2. The measure juo|_ 2 is naturally associated with a stationary var-
ifold, and

_ po(Br(x))
m =2l

li

= Ky for po-almost every x € 2.
r—0 2r

For any open set K CC 2, Siine N K is the union of a finite number of closed
straight line segments Ly, ..., Ly. After possible subdivision, assume that for
eachi # J, either L; and L; are disjoint or they intersect at a common endpoint.
Then, the following properties hold:

(1) If D CC K is a closed disk which intersects Hine at a single point xo and xg
is not an endpoint for any L;, then the homotopy class of Qy restricted to 0 D
is non-trivial.

(ii) Suppose that xo € K is an endpoint of exactly q segments L, , ..., L;,. Thenq
is even.

The definition of stationary varifold is given in [63, Chapter 4]. Varifolds are
a generalization of differentiable manifolds, introduced by ALMGREN [4] in the
context of Calulus of Variations, and stationary varifolds can be thought as a weak
notion of minimal manifolds. Proposition 2 relies heavily on the structure theorem
for stationary varifolds of dimension one [3, Theorem p. 89].

Inside the domain, the singular set is a locally finite union of line segments.
Branching points are not excluded by this result, but only an even number of
branches can originate from each point. (However, we expect that branching points
should not arise — see the concluding remarks, Section 1.4.) Moreover, the set .- Jine
is a topological singularity, that is it is associated with a non-trivial homotopy class
of the map Qq. Therefore, from the physical point of view .#jie corresponds to the
“thin disclination lines” of index 4-1/2 (see, for example [22]). The “thick disclina-
tion lines” of index 1 are not included in .#ji,e because the order parameter Q¢ can
be defined continuously throughout their cores, thanks to the “escape in the third
dimension” proposed by CLADIS and KLEMAN [24]. Proposition 2 also excludes
disclination loops in the interior of the domain, although loops of radius larger than
some critical value R, are expected to occur (see [22, p. 519]). However, in the limit
as ¢ — 0 we have that R, — 400, therefore any defect loop which is contractible
in £2 should become unstable, shrink and eventually disappear. On the other hand,
disclination loops may occur at the boundary of the domain. In Section 5.4, we
show by an example that the singular set %, may touch 92, even if the boundary
datum is smooth. In this case, the conclusion of Proposition 2 does not hold any
more.
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We provide sufficient conditions for the estimate (H) to hold, in terms of the
domain and the boundary data. Here is our first condition:

(Hp) £2 is a bounded, smooth domain and {g.}p<c<1 iS a bounded family in
HY2002, ).

The uniform H!/2-bound is satisfied if, for instance, ge = g: 082 — ./ has a
finite number of disclinations. This means, there exists a finite set X C 052 such
that g is smooth on d§2\ X' and, for each xg € X, we can write

®2
g(x) = 54 [ (n cos (kB (x)) 4+ 7 sin (k@(x))) — %Id] ®)

+ smooth terms of order p(x)

as x — xg. Here k € %Z, (p(x), 6(x)) are geodesic polar coordinates centered
at xo and (T, 77) is an orthonormal pair in R3.

Proposition 3. Condition (H;) implies (H).
Alternatively, one can assume that

(Hy) £2 € R is a bounded Lipschitz domain, and it is bilipschitz equivalent to a
handlebody (that is a 3-ball with a finite number of handles attached).

(H3) There exists My > 0 such that, forany 0 < & < 1, we have g. € (H' N L)
(082, Sp) and

E¢(ge, 082) = Mo (logel + 1), ligell =) = Mo.

As an example of sequence satisfying (H3), one can take smooth approximations
of amap g: 92 — .4 of the form (8). For instance, we can take

8e(x) =1 (p(x))g(x) &)
where 1, € C*°[0, 400) is such that

1:(0) =n,(0) =0, n:(p)=1lifp=e, 0<n. <1, [n.|<cCe.

Proposition 4. If (Hy) and (H3) are satisfied, then (H) holds.

Remark 5. Hypothesis (H») is not the same as asking £2 to be a bounded Lipschitz
domain with connected boundary. Let K € S? be a (open) tubular neighborhood
of a trefoil knot. Then K is a solid torus, that is K is diffeomorphic to St x Blz, but
s3 \K 1is not a solid torus. In fact, 83\1( is not even a handlebody, because

71 (S*\K) = the knot group of the trefoil knot = <x, ylx?= y3>

while the fundamental group of any handlebody is free. By composing with a
stereographic projection, one constructs a smooth domain £2 € R3 diffeomorphic
to S*\ K. In particular, 952 is a torus but £2 does not satisfy (Hy).
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Fig. 1. The domain considered in Section 7: two unit balls (§2_ on the left, 24 on the right)
joined by a cylinder £2¢ of length 2L and radius r. The (unoriented) director field associated
to the boundary datum is also represented. The boundary datum restricted to the boundary
of 2_, £2 defines non-trivial homotopy classes in 7 (4"), 71 (.4") respectively

Given an arbitrary domain, one can construct examples where line defects occur.

Proposition 6. For each bounded domain 2 C R> of class C', there exists a family
of boundary data {g¢}o<c <1 satisfying (Hz) and a number o > 0 such that

E:(Q) 2 a(|loge| — 1)
forany Q € Hglg (82, So) and any 0 < ¢ < 1. Moreover, Hine is non-empty.

The functions g, are smooth approximations of a map d§2 — .4, which has point
singularities of the form (9).

Finally, we consider an example where both .#ine and .#}s are non-empty. The
domain consists of two balls of radius 1, joined by a cylinder of radius » € (0, 1/2)
and length 2L. The boundary datum, which is defined in Section 7, is uniaxial and
has two point defects. In Fig. 1, we represent the behaviour of the boundary datum
or, more precisely, the direction of the eigenspace corresponding to the leading
eigenvalue (that is, the average orientation of the molecules at each point). This
map defines non-trivial homotopy classes both in 771 (.4") and in 75 (4).

Proposition 7. There exists a positive number L* such that, if L > L*, then
both Hine and Fys are non-empty, and there exists xo € Fps such that
dist(xg, Hine) = L/2.

In other words, if the cylinder is long enough then the limit configuration has
line defects and at least one point defect, which is far from the line defects. Although
the boundary datum defines a non-trivial class in 2(./#"), topological arguments
alone are not enough to conclude that .} # #, for there exist maps 2 — A4
which satisfy the boundary condition and .Ajne 7# @, s = ¥ (see Remark 72).
Proposition 7 is inspired by HARDT and LIN’s paper [38], where the existence of
non-smooth minimizing harmonic maps, satisfying a boundary condition of degree
zero, is proved. However, there is an additional difficulty here, namely minimizers
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are not uniformly bounded in H' as ¢ — 0. We take care of this issue by adapting
some ideas of the proof of Theorem 1.

Let us spend a few words on the proof of the main result, Theorem 1. The core
of the argument is a concentration property for the energy, which can be stated as
follows.

Proposition 8. Assume that the condition (H) holds. For any 0 < 6 < 1 there
exist positive numbers 1), &y and C such that, for any xo € §2, R > 0 satisfying
Br(x0) € 2 andany0 < ¢ S &R, if

R
E:(Qe, Br(xo)) = nRlog - (10)
then
E¢(Q¢, Bgr(x0)) = CR.

Proposition 8 implies that either the energy on a ball blows up at least loga-
rithmically, or it is bounded on a smaller ball. Combining this fact with covering
arguments, one proves that the energy concentrates on a set .#jipe of finite length.
Then, the asymptotic behaviour of minimizers away from .#jjne can be studied using
well-established techniques, for example arguing as in [52].

Roughly speaking, the proof of Proposition 8 goes as follows. Condition (10)
implies that the problem can be reformulated in terms of .4 -valued maps. Indeed,
by an average argument we find r € (R, R) such that the energy of Q. on the
sphere of radius r is controlled by Cn|loge|. On the other hand, the energy per
unit length associated with a topological defect line is of the order of k.| log €| (see
the estimates by JERRARD and SANDIER [43,60]). Therefore, if  is small compared
to k4, the sphere of radius r intersects no topological defect line of Q. This makes
it possible to approximate Q. with an .4 -valued map P, defined on a sphere of
radius ' close to r. Now, since the sphere is simply connected, P, can be lifted to
a S2-valued map, that is one can write

1
Pe(x) = sy (n?z(x) —3 Id) for x € 3B, (x0)

for a smooth vector field n.: 9B, (xg) — S2. Thus, we have reduced things to a
problem which is formulated in terms of vector fields, and we can apply the methods
by HARDT et al. [37, Lemma 2.3] to obtain boundedness of the energy. In other
words, Condition (10) enables us to reduce the asymptotic analysis of the Landau-
de Gennes problem to the analysis of the Oseen—Frank problem. Extension results
are needed in several steps of this proof, for instance to interpolate between Q,
and P in order to construct an admissible comparison map. Various results in this
direction are discussed in detail in Section 3. In particular, we prove variants of
LuckHAus’ lemma [49, Lemma 1] which are fit for our purposes.

Remark 9. Condition (H) is not sufficient to obtain compactness for minimizers
of the Ginzburg—Landau energy. Indeed, BREZ1S and MIRONESCU [18] constructed
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sequence2 of minimizers u, € H'(B?, C) such that
E“(ue, BY) < lloge|  and  |ug| 1,

yet {ug}o<e<1 does not have subsequences converging almost everywhere on sets
of positive measure. Brezis and Mironescu’s example relies on oscillations of the
phase. Indeed, the u.’s can be lifted to R-valued functions ¢.’s (that is u, ~
exp(ige)), but the latter are not uniformly bounded in L°. This phenomenon does
not occur in our case, because the .4 -valued map P; is lifted to a unit vector field.
The finiteness of the fundamental group m;(.#") yields the compactness of the
universal covering of .4/, hence better compactness properties for the minimizers.

1.4. Concluding Remarks and Open Questions

Several questions about minimizers of the Landau-de Gennes functional on
three-dimensional domains remain open. A first question concerns the behaviour
of the singular set .#jine. Since -Aipe is obtained as a limit of minimizers, one would
expect that it inherits from Q. minimizing properties. It is natural to conjecture
that .Aine is a relative cycle, whose homology class is determined by the domain
and the boundary datum, and that .#};,e has minimal length in its homology class.
For instance, if the domain is convex and the boundary data has a finite number of
point singularities x1, ..., x, of the form (8), then -#jise should be a union of non-
intersecting straight lines connecting the x;’s in pairs, in such a way that the total
length of .Aipe is minimal. (Notice that, by topological arguments, the number p
must be even.) However, if the domain is non-convex, then a part of .#jj,. may lie
on the boundary.

It would be interesting to study the structure of minimizers Q, in the core of
line defects. For instance, does the core of line defects contain biaxial phases?
CONTRERAS and LAmy [25] and MAJUMDAR et al. [51] proved that the core of point
singularities, in dimension three, contains biaxial phases when the temperature is
low enough. Their proofs use a uniform energy bound such as (5), so they do
not apply directly to singularities of codimension two. However, the analysis of
point defects on two-dimensional domains (see for example [21,28,42]) suggests
that line defects may also contain biaxial phases, when the temperature is low. A
related issue is the analysis of singularity profiles. Let xo € Aine and let IT be an
orthogonal plane to .#ine, passing through the point xg. Set

Pe xg(¥) := Qe(xo +ey) for y e Il.
This defines a bounded sequence in L*°(I1, Syp), such that

|V P x, ||L2(K) = IVQell12(yrex) = C(K) forevery K cC I1.

2 Throughout the paper, the word “sequence” will be used to denote family of functions
indexed by a continuous parameter as well.
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Therefore, up to a subsequence we have Py , — Py, in Hll)c (11, Sp). The map Py,
contains the information on the fine structure of the defect core. What can be said
about Py,?

In another direction, investigating the asymptotic behaviour of a more gen-
eral class of functionals in the logarithmic energy regime is a challenging issue.
For instance, one may consider functionals with more elastic energy terms and/or
choose different potentials, such as the sextic potential

_ 4 2 @ 3, 93 2,2, 44 2 3
f(Q) = ZtrQ 3trQ—|—4(trQ)—|—5(trQ)(trQ)

as 243 ﬁ 3,2
+6(trQ) +6(trQ)

(see [26,36]) or the singular potential proposed by BALL and MAJUMDAR [8]. From
this point of view, it is interesting to remark that the proof of Proposition 8 is quite
robust, as it is based on variational arguments alone and does not use the structure of
the Euler—Lagrange system. Therefore, the proof of Proposition 8 could be adapted
to other choices of the elastic energy density, provided that they are quadratic in
the gradient, and other potentials f, possibly infinite-valued outside some convex
set, provided that they satisfy some non-degeneracy conditions around their set of
minimizers (see Lemma 14). This would yield local H'-compactness, away from a
singular set of codimension two, for minimizers of more general Landau-de Gennes
functionals. However, proving stronger compactness for minimizers (for example,
with respect to the uniform norm) and understanding the structure of the singular
set Aine for the general Landau-de Gennes energy are completely open questions.

The paper is organized as follows. Section 2 deals with general facts about the
space of Q-tensors and Landau-de Gennes minimizers. In particular, lower esti-
mates for the energy of Q-tensor valued maps are established in Section 2.2, by
adapting Jerrard’s and Sandier’s arguments. Section 3 contains several extension
results, which are a fundamental tool for the proof of our main theorem. Section 4
aims at proving Theorem 1, and in particular it contains the proof of Proposition 8
(Section 4.1). The asymptotic analysis away from the singular lines is carried out
in Section 4.2, while the singular set .#ji,e is defined and studied in Section 4.3.
In Section 4.4, we work out the analysis of minimizers near the boundary of the
domain. Section 5 deals with the proof of Proposition 2. We first show the stationar-
ity of wo (Section 5.1); then, with the help of an auxiliary problem (Section 5.2), we
compute the density of 1o and conclude the proof (Section 5.3). In Section 5.4, we
construct an example where 1o concentrates at the boundary of the domain. Sec-
tion 6 deals with the proofs of Propositions 3 (Section 6.1), 4 and 6 (Section 6.2).
Finally, in Section 7 we prove Proposition 7 by constructing an example where the
limit configuration Qg has both lines and point singularities.

2. Preliminary Results

Throughout the paper, we use the following notation. We denote by Bf (x) (or,
occasionally, B*(x, r)) the k-dimensional open ball of radius r and center x, and
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by EI: (x) the corresponding closed ball. When k = 3, we omit the superscript. When
x = 0, we write Bf or B,. Balls in the matrix space So will be denoted BrS °(0)
or BrSU. Forany Q € H'(£2, Sp) and any k-submanifold U C £2, we set

1 1
ee(Q) = 5IVOP + 5 7(0), Ee(Q. U) :=/Ueg<Q>d%".

The function e, (Q) will be called the energy density of Q. For any map Q, we set
E.(Q, ¥) := 0. Additional notation will be set later on.

2.1. Properties of Sg and f

We discuss general facts about Q-tensors, which are useful in order to to have
an insight into the structure of the target space Sg. The starting point of our analysis
is the following representation formula.

Lemma 10. For all fixed Q € So\{0}, there exist two numbers s € (0, +00),
r € [0, 1] and an orthonormal pair of vectors (n, m) in R3 such that

1 1
Q:s[n®2—§1d+r(m®2—§1d)].

Given Q, the parameters s = s(Q), r = r(Q) are uniquely determined. The
functions Q +— s(Q) and Q > r(Q) are continuous on So\{0}, and are positively
homogeneous of degree 1 and 0, respectively.

Slightly different forms of this formula are often found in the literature (for
example [52, Proposition 1]). The proof is a straightforward computation sketched
in [21, Lemma 3.2], so we omit it here.

Remark 11. The parameters s(Q), r(Q) are given by

21(0) 4+ 222(0)
201(0) + 22(0Q)°

where A1(Q) = 12(Q) = A3(Q) are the eigenvalues of Q.

$(Q) =211(Q) + 42(Q), r(Q) =

Following [52, Proposition 15], the vacuum manifold .4 := f ~1(0) can be
characterized as follows:

Q €./ ifandonlyif s(Q) =s, and r(Q) =0, (11)
where
Sy 1= % (b + M) .
There is another set which is important for our analysis, namely

¢ :={Q €8So: 11(Q) =22(0)},
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that is € is the set of matrices whose leading eigenvalue has multiplicity > 1. This
is a closed subset of ¢, and it is a cone (thatis, uQ € € forany Q € €, u € R™).
By Remark 11, we see that

Q€% ifandonlyif s(Q)=0 or r(Q)=1.

Then, applying Lemma 10 and the identity Id = n®24+m®24p®? (where (n, m, p)
is any orthonormal, positive basis of R3), we see that 0 € ¥ if and only if there
exist s = 0 and p € S? such that

Q:—SG@—%M> (12)

Therefore, € is the cone over the projective plane RP?. Away from %, it is
possible to define locally a continuous map Q +— n(Q), which selects a unit
eigenvector n(Q) associated with A1(Q) (see for example [7, Section 9.1, Equa-
tion (9.1.41)]). In particular, the map o: So\é — .+ defined by

0(Q) = s4 (n(Q)®2 - %Id) for Q € So\¢ 13)

is continuous. It was proven in [21, Lemma 3.10] that o gives a retraction by
deformation of So\% onto the vacuum manifold .4".

Lemma 12. The retraction o is of class C' on So\€. Moreover, o coincides with
the nearest-point projection onto A, that is

10 —0(Q) =10 — P (14)
holds for any Q € So\% and any P € ¥, with strict inequality if P # 0(Q).

Proof. By the definition of &, the leading eigenvalue A (Q) is simple for any Q €
So\%. Then, classical differentiability results for the eigenvectors (see for exam-
ple [7, Section 9.1]) imply that the map Q — n(Q) in (13) is of class c! (So\%),
whence o € C1(So\%).

To show that o is the nearest point projection onto .#”, we pick an arbitrary Q €
So\¢ and P € .#". By applying Lemma 10 and (11), we write

1 1 1
Q:s(n®2—§ld)+sr (m®2—§ld) and P =s, (p®2—§ld)

for some numbers s > 0 and 0 < r < 1, some orthonormal pair (n, m) and some
unit vector p. We compute that

1 2
sn®? + srm®? — s*p@)2 — §(S +sr—s,)1d

10— PP =

= C(s, 1, 5x) — 254s{(m - p)* + r(m - p)?}

where C (s, r, s4) is a constant which only depends on s, r and s,. For the last
equality, we have used the identities u®? - v®2 = (u - v)? and u®? . Id = |u?,
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which hold for any vectors u, v. Given s, r, n and m, we minimize the right-hand
side with respect to p, subject to the constraint

m-p)?+m-p? =1

Since r < 1, one easily sees that the minimum is achieved if and only if p = +£n;
thatis, P = o(Q). O

We also consider the function ¢: So — R, given by

$(Q) =5, (1(Q) — 22(Q)). 5)

Itis clear that¢ = 0,and ¢ (Q) = Oifand only if Q € €. Moreover, by Remark 11
we have

$(Q) ==s5."s(Q)(1 —r(Q)),
therefore ¢ (Q) = 1if Q € .4/, thanks to (11).

Lemma 13. The function ¢ is Lipschitz continuous on S, of class C' on So\€ and
satisfies

\/zs*_l < D¢ (Q)| < 2s*_1 forany Q € So\%.

Proof. Thanks to standard regularity results for the eigenvalues (see for example [7,
Equation (9.1.32)]), we immediately deduce that ¢ is locally Lipschitz continuous
onSpand ¢ € C 1(50\%). Let (n, m, p) be an orthonormal set of eigenvectors
relative to (A1, A2, A3) respectively. Then, for any Q € Sp\% there holds

sy |D = max d = max n-Bn—m-Bm
DY(Q) = | max  |9p¢(Q)] = max | |

(the last identity follows by differentiating (15), with the help of [7, Equa-
tion (9.1.32)] again). This implies s, |D¢(Q)| < 2. Now, set

1
By = — (n®2 - m®2) € So.
V2
Since [n®?| = m®?| = 1 and n®2 - m®? = 0, it is straightforward to check
that |Bg| = 1, so
1
5xID$(Q)| 2 In - Bon —m - Bom| = —> (|n|2 n |m|2) - V2.

O

We conclude our discussion on the structure of the target space Sop by proving
a couple of properties of the Landau-de Gennes potential f, defined by (3).
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Lemma 14. There exists a constant y = y(a, b, ¢) > 0 with the following prop-
erties. For any Q € Sy, there holds

FQ Zy (1 -¢(0). (Fo)
For any Qo € A and any matrix P € So which is orthogonal to Tg,.V', we have

2

@‘tzof(Qo +1tP) = y|P|% (Fp)

As a consequence of (Fy), there exist y' and 8y > 0 such that, if Q € Sy satisfies
dist(Q, A) < o, then
f(Q) 2y dist*(Q, A) (F2)
and
ftQ+ (1 —-00(Q) £y £(Q) (F3)
forany0 <t < 1.

Proof of (Fp). Using the representation formula of Lemma 10, we can compute
tr Q2 and tr Q3 as functions of s := s(Q), 1 := s(Q)r(Q). This yields
b
£(0) =k — %l(s2 —st+17) = (257 =357 + 3512 = 26%)

+g(s2 —st+ )2 = fs, 0.
We know that (s, 0) is the unique minimizer of f (see for example [52, Proposi-
tion 15]), so D? [ (sx, 0) = 0. Moreover, it is straightforward to compute that

detD? f (s, 0) > 0

thus D? f (s«, 0) > 0. As a consequence, there exist two numbers § > O and C > 0
such that

f(s, s7) = C(ss — 5)> + Cs%r? if (s —s3)> +52r2 < 6. (16)

The left-hand side in this inequality is a polynomial of order four with leading
term §(s? — st + %)% = £ (s> +1?)%, while the right-hand side is a polynomial of
order two. Therefore, there exists a positive number M such that

F(s, sr) = Clss — $)> + Cs2r? if (s — s3)> + 52> = M. (17)

Finally, we have f (s, t) > 0 for any (s, 1) # (sx, 0), so there exists a positive
constant C’ such that

F(s, sr)=C if 8§ < (s —s)> +s2r2 < M. (18)

Combining (16), (17) and (18), and modifying the value of C if necessary, for any
Q0 €8p,s =5(Q), r =r(Q) we obtain

N Sr

. Cs? > Cs?
f(s,sr)>C(s*—s)2+Cs2r2>%(1———1——) =

2

(1—¢(0)?°.

S S

O
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Proof of (F;). Since the group SO(3) acts transitively on the manifold .4 and the
potential f is preserved by the action, it suffices to check (F;) in case

1
Oo—s, (e;m - Id) . (19)
Indeed, for any Q € Sy there exists n € S? such that

0(0) = 5. (n®2 - %Id),

and there exists a matrix R € SO(3) such that Rn = e3. As is easily checked, the
function £g: Q — RQRT maps isometrically Sg onto itself. Then, (14) implies
that £z commutes with o, so

1 1
0(6r(Q)) = £r(0(Q)) = 5. (Rn(Rn)T -3 Id) =5 (e3eg -3 m) .

On the other hand, f is invariant by composition with &g (that is f o &g = f)
because it is a function of the scalar invariants of Q. Therefore, we assume WLOG
that Qg is given by (19).

In [21, Lemma 3.5], it is shown that a matrix P € S is orthogonal to T, /4
if and only if it can be written in the form

1
—g(S* + x0) + x2 X1 0
1
P = X1 —— (5% + x0) — x2 0
3 2
0 0 §(s>,< + xq)

for some x = (xq, x1, x2) € R3. Then, one can write f(Qo + tP) as a function
of #, x and compute the second derivatives. The proof of (F) is reduced to a
straightforward computation, which we omit here. O

Proof of (F»)—(F3). These properties follow from (F;) by a Taylor expansion of f
around Qop. O

2.2. Energy Estimates in Two-Dimensional Domains

In the analysis of the Ginzburg—Landau functional, a very useful tool are the
estimates proved by JERRARD [43] and SANDIER [60]. These estimates provide a
lower bound for the energy of complex-valued maps defined on a two-dimensional
disk, depending on the topological properties of the boundary datum. More pre-
cisely, ifu € H'(B?, C) satisfies |u(x)| = 1 for almost every x € BBIZ (plus some
technical assumptions) then

ESY(u, B}) = 7 |d| lloge| — C, (20)

where ESL is the Ginzburg-Landau energy, defined by (7), and d denotes the
topological degree of u/|u| on dB?, that is its winding number. The aim of this
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subsection is to generalize this result to tensor-valued maps and the Landau-de
Gennes energy.

Since we work in the H'-setting, we have to take care of a technical detail.
Set A := 812\312/2. Let Q € H'(B?, Sp) be a given map, which satisfies

¢0(Q, A) := essAinfqb oQ > 0. 21
In case Q is continuous, Condition (21) is equivalent to

Q(x) ¢ € forevery x € A.

For almost every r € (1/2, 1) the restriction of Q to 8Br2 is an H'-map (due to
Fubini theorem) and hence, by Sobolev injection, it is a continuous map which
satisfies Q(x) ¢ € for every x € BB,Z. Therefore, o o Q is well defined and
continuous on 8B,2. Moreover, its homotopy class is independent of 7. If p o Q is
continuous, then oo Q itself provides a homotopy between 0o O, B} and oo Q|; B}
for any r1 and r. Otherwise, by convolution (as in [62, Proposition p. 267]) one
constructs a smooth approximation (0o Q)s: A — A4 suchthat (0o Q)s — 00 Q
in H' (A, So) when 8§ — 0. By the Fubini theorem and Sobolev injection, we have
(00 Q)s — 0o Q uniformly on E)B,2 for almost every r € (1/2, 1). Therefore, the
maps ¢ o Q5p2 belong to the same homotopy class, for almost every r. By abuse
of notation, this homotopy class will be called “homotopy class of g o Q restricted
to the boundary” or also “homotopy class of the boundary datum”.

Proposition 15. There exist positive constants M and k., depending only on f,
with the following property. Let 0 < ¢ < 1 and Q € H'(B?, So) be given. Assume
that Q satisfies (21) and the homotopy class of ¢ o Qs B2 is non-trivial. Then

E.(Q, BY) 2 kx¢3(Q, A) |loge| — M.

The energetic cost associated with topological defects is quantified by a num-
ber k., defined by (26) and explicitly computed in Lemma 19:

This number plays the same role as the quantity r |d| in (20). The quantity qbg( 0, A)
at the right-hand side has been introduced for technical reasons. Notice that ¢ = 1
on A, 50 ¢o(Q, A) = 1if Q4 takes values in 4"

Before dealing with the proof of Proposition 15, we state an immediate conse-
quence.

Corollary 16. Let ¢, R be two numbers such that 0 < ¢ < R/2. Givenamap Q €
HY (B2, Sy), suppose that the restriction to the boundary belongs to H'(d B%, Sp)
and that

d0(Q, 8B§,) :=essinf¢po Q > 0.
aB%
If the homotopy class of o o Qlf’B,ze is non-trivial, then

E:(Q, B) + (10g2)R E<(Q, dB%) = k:$3(Q, aB,%)log§ - M.
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In particular, if Q satisfies Q = g on 8312e for some non-trivial g € H'(dB%, .A),
then Corollary 16 implies

R
Ec(Q, B%) = ks log— — M

for a constant M = M (R, g). (Compare with [43, Theorem 3.1], [60, Theorem 1],
and [23, Proposition 6.1].)

Proof of Corollary 16. We apply Proposition 15 to & := 2&/R and the map Q €
H'(B?, S¢) defined by

& : e D2\ p2
o0 Q(|x|) if x € A= B}\B}

Q 2Rx) ifxe 312/2.

Notice that ¢o(Q, A) = ¢o(Q, BBI%). Then, by a change of variable, we deduce
2 2 R < 5 p2
Kk (Q, BBR)IOgg —C = E:(Q, B))
1
< Ez(Q, Bip) +/1/2 E:(Q, 3B} dr

2 : R 2
= E.(0, BR) + 7E28/r(Q, 3BR) dr
12
< E<(Q, Bg) + (0g2)R Ec(Q, 3BR).
O

A generalization of the Jerrard—Sandier estimate (20) has already been proved
by CHIRON, in his PhD thesis [23]. Given a smooth, compact manifold without
boundary, Chiron considered maps into the cone over .4, that is

Xy = (0, +00) x A)U{0} 5 u = (lul, u/lul)

(with a metric defined accordingly). He obtained an estimate which is analogous
to (20). In case .4/ = S', one has Xg1 =~ C and the standard estimate (20) is
recovered. Given amap u: U € R¥ — X 4, a key step in Chiron’s arguments is
to decompose the gradient of u in terms of modulus and phase, that is

IVul? = |Viul|*> + |ul?> |V (u/|u])]* almosteverywhere on U.  (22)

Chiron’s result does not apply to tensor-valued maps, because the space S
do not coincide with the cone over .4 (the latter only contains uniaxial matrices,
while Sp also contains biaxial matrices). However, one can prove an estimate in
the same spirit as (22), namely, the gradient of a map 2 — Sy is controlled from
below by the gradients of ¢ o Q and o o Q.
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Lemma 17. Let U € R* be a domain and let Qe Cl(U, Sy). There holds

2
|VQ|2 > %* [V (¢ o Q)|2 + (¢ o Q)2 V(oo Q)|2 S -almost everywhere on U,

where we have set (¢ o Q)|V(oo Q)|[(x) :=0if Q(x) € .

Proof. First of all, notice that o o Q is well-defined on the set where Q ¢ %, or
equivalently, the set where ¢ o Q > 0. Therefore, the right-hand side always makes
sense. Because of our choice of the norm, we have

k
VY =D 1yl
i=1

for any scalar or tensor-valued map . Thus, it suffices to prove the lemma when
V is replaced by the partial derivative operator 9;, then sum overi € {1, ..., k}.
In view of this remark, we assume WLOG that k = 1.

Since ¢ is Lipschitz continuous (Lemma 13), we have ¢ o Q € Wli)’COO(U ).
Moreover, ¢ o Q = 0 on Q™' (%). Therefore, we have (¢ o Q) = 0 almost
everywhere on Q7' (%) and the lemma is trivially satisfied almost everywhere
on 0~ 1(%¥).

For the rest of the proof, we fix a point x € U\Q~!(¥) so that ¢ o Q, 0 0 Q
are of class C! in a neighborhood of x, and the leading eigenvalue of Q(x) has
multiplicity one. We are going to distinguish a few cases, depending on whether
the others eigenvalues of Q(x) have multiplicity one as well. Suppose first that
r(Q(x)) > 0:in this case, all the eigenvalues of Q(x) are simple. Using Lemma 10
and the results in [7], the map Q can be locally written as

1 1
0=s (n®2 -3 Id) + 57 (m®2 -3 Id) , (23)

where s, r, n, m are C! functions defined in a neighborhood of x, satisfying the
constraints

s >0, O<r<l1, Imf=m=1, n-m=0.

Then, oo Q is of class C! in aneighborhood of x, and we can compute | '], | (00 Q)'|
in terms of s, », n, m and their derivatives. Setting ¢ := sr, a straightforward
computation gives

s2po Q) =57 =25t +17, |(0o Q)| =252 |

and
O = 262 =57 1) 425 [ 42 [ st m)n - )
2
= 200 +25 ([0’ +7 [m* +2r@ - m)m-m))  24)
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Let p := n x m, so that (n, m, p) is an orthonormal, positive frame in R3. By
differentiating the orthogonality conditions for (n, m, p), we obtain

n =am+Bp, m =—an+yp

for some smooth, real-valued functions «, 3, y. Then, from (24) and (24) we deduce

2
0 -5 @00 228w + p+ 2@ +y?) —2ra)
> 25%(1 —r)*(a® + B°)
2521 =12 )00 @) = (@0 02|00 Q)

2
)

=39S

so the lemma holds at the point x.

If r(Q) = 0 in a neighborhood of x then the function m might not be well-
defined. However, the previous computation still make sense because t = sr van-
ishes in a neighborhood of x, and from (24), (24) we deduce that the lemma holds
at x. We still have to consider one case, namely, r(Q(x)) = 0 but »(Q) does not
vanish identically in a neighborhood of x. In this case, there exists a sequence
Xy — x such that r(Q(xx)) > O for each k € N. By the previous discussion the
lemma holds at each xj, and the functions ¢ o Q, (0 o Q)' are continuous (by
Lemmas 13 and 12). Passing to the limit as k — +o00, we conclude that the lemma
is satisfied at x as well. O

The regularity of Q in Lemma 17 can be relaxed.

Corollary 18. The map t: So — So given by

, [s*qﬁ(Q)@(Q) if 0 € So\%
T: 0
0 ifQe€
is Lipschitz-continuous. Moreover, for any Q € H'(U, Sg) there holds T o Q €
H'(U, So) and
1 2
7o 0)* < % IV(¢po Q)+ (¢oQ)P V(o QI SIVO* (25

holds % -almost everywhere on U.

Proof. By differentiating t and applying Lemma (17) to the map Q = Ids,, we
obtain

1 2o 5 2 42 2

il s 3 1D#I” + ¢ Dol = C on S\%.

Using this uniform bound, together with t € C(So, So) and 7 = 0, it is not hard
to conclude that T has bounded derivative in the sense of distributions, therefore t
is a Lipschitz function and the lower bound in (25) holds. The upper bound follows
easily from Lemma (17), by a density argument. O
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Following an idea of Chiron [23], we can associate with each homotopy class
of maps S! — .#" a positive number which measures the energy cost of that class.
Since .4 is a real projective plane, quantifying the energy cost of non-trivial maps
is simple, because there is a unique homotopy class of such maps. Define

1
Ky ::inf[z/ |P'0)" do: P e H'(S', .¥)is non-trivial]. (26)
St

Thanks to the compact embedding H'(S!, .#) — C%(S!, .4, a standard argu-
ment shows that the infimum is achieved. The Euler—Lagrange condition for (26)
implies that minimizers are geodesics in .#". Moreover, we have the following

property.

Lemma 19. A minimizer for (26) is given by
®2 1
Py(0) := sy [ n.(0)® — 3 Id) for 0 <6 < 2m,

where n,.(0) := (cos(0/2), sin(0/2), O)T. In particular, there holds

T
Ky = Esi

Sketch of the proof. The lemma has been proved, for example, in [21, Lemma 3.6,

Corollary 3.7], but we sketch the proof for the convenience of the reader.

Let ¢ : S> — .4 be the universal covering of .4, that is
1
¥ () = s, (n®2 -3 Id) for n € S2. 27

Forany n € S? and any tangent vector v € ToS?, one computes that
ldy (m)v|* = 252|v|?,

that is, the pull-back metric induced by ¥ coincides with the first fundamental form
of 4, up to a constant factor. Therefore, the Levi-Civita connections associated
with the two metrics are the same, because the Christoffel symbols are homogeneous
functions, of degree zero, of the coefficients of the metric. As a consequence, a
loop P is a geodesic in .4 if and only if it can be written as P = ¥ o n, where
n: [0, 27] — Stisa geodesic path in S? such that n(2r) = +n(0). Moreover,
P has a non-trivial homotopy class if and only if n(27) = —n(0). Therefore,
P := 1 onis a minimizing geodesic in the non-trivial class if and only if n is half
of a great circle in S? parametrized by arc-length, and the lemma follows. O

By adapting Sandier’s arguments in [60], we can bound from below the energy
of .4 -valued maps, in terms of the quantity (26). We use the following notation:
for any V CC R2, we define the radius of V as

rad(V) := inf [Zr,-: Vc U B(a;, ri)] .
i=1 i=1
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We clzirly have rad(V) < diam (V) and, since for bounded sets there holds
diam (V) = diam(dV), we obtain that

rad(V) < diam(3V). (28)

Lemma 20. Let V be a subdomain of B?, and take a number p > 0 such that
dist(V, 8B12) > 2p. Forany P € HI(B%\V, A such that P|83.2 is homotopically
non-trivial, there holds

1
—/ VP> do#? = K, log
2 Jpnv

0
rad(V)’

Sketch of the proof. Suppose, at first, that V = B,2 with0O < r < 1 and P is
smooth. Then, computing in polar coordinates, we obtain

1 1 /! 1
_/ |\vP? cufz:-/ / (pyappyz+—|agp|2) do dp
2 Jp2\B? 2) Js P

(26) 1 dp 1

r

so the lemma is satisfied for any 0 < p < 1. By a density argument, the same
estimate holds for any P € H 1 (Blz\Brz, A). For a general V, the lemma can
be proved arguing exactly as in [60, Proposition p. 385]. (Assuming additional
W1 % _pounds on P, the lemma could also be deduced by the arguments of [43,
Theorems 3.1 and 4.1]). O

Finally, we can prove the main result of this subsection.

Proof of Proposition 15. We argue as in [60, Theorem 2] and [23, Theorem 6.1].
As a first step, we suppose that Q is smooth. Reminding that A := BIZ\BI2 12, We
have

B = 4o(Q, A) =mingo 0 .

Moreover, there must be

ming o Q =0, (29)
Bl

otherwise ¢ o Q would be a well-defined, continuous map E? — 4/ and the
boundary datum would be topologically trivial. For each A > 0, we set

2, = {xeB%:¢oQ(x)>k}, w) = {xeBlz:¢oQ(x)<A}
I = 082,\082.

Notice that £2,, w;, and I'), are non empty for every A € (0, ¢p), due to (29). We
also set

O :=/Q V(0o Q) d#?, v(h) :=/F|V(¢0Q)I drt.
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Lemma 17 entails
1
/|VQ|22/ [—|V<<z>oQ)|2+<¢>oQ)2|V<QoQ>|2]cuf2
B2 B |2

and, applying the coarea formula, we deduce

1 (% 1 27(0) ) 1
E.(Q) = - ~|V(po — =2 )t da
(Q) 2/0 /FA(ZI (¢ Q)|+82|V(¢)OQ)|
+

—2/ 22O’ (W) da. (30)
0

Thanks to Sard lemma, almost every A € (0, ¢o) is a proper regular value of ¢ o Q,
so dividing by |V (¢ o Q)| makes sense. Let us estimate the terms in the right-hand
side of (30), starting from the second one. Lemma 14, (Fy) implies that

(@ ZC(=2) on I.

Therefore, with the help of the Holder inequality we deduce

a2
/ 22f(Q) 4! C(lz)»)/ 1 4!
r, €1V (¢ o Q) 3 r, IV(go0)l

C (1 =122
e2v(}) ’

1\

3D

Moreover, we have

28)
2N = 2diam(Iy) = 2rad(w;).

Combining this with (30) and (31), we find

E:(Q) = l/ 0 ’l\J(/\)Jr cd );) rod (wx)] d)\—/ 226’ () di
0 e=v(d) 0

2 2

v

% C +oo
/ — |1 — Alrad(w;) dA — / A2(~)’(k) di. (32)
0o ¢ 0

The second line follows by the elementary inequality a + b = 2+/ab. As for the
last term, we integrate by parts. Since & is compactly supported and non-negative,
for all Ao > 0 we have

400 —+00 o)
—/ 220 () da = 2/ 2O d + 1020 (ho) = 2/ 2O () di
A

0 A0 o

and, letting Ao — 0, by monotone convergence (® = 0, —©’ is a non-negative
Borel measure) we conclude that

+o00 bo
—/ 22O’ (L) da > 2/ 1O () di.
0 0
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Now, for any A € (0, ¢o) we have w; C Bf/z, so dist(w,, 8312) > 1/2. Therefore,
by applying Lemma 20 we obtain
O\) 2 —ky log (rad(wy)) — k4 log 4.

Thus, (32) implies
b (C
E.(Q) = / [— [T — A rad(wy) — 2k A log (rad(wx))] dr —C.
0 &

An easy analysis shows that the function r € (0, +00) Ce 1 —Ar —
2k logr has a unique minimizer r,, which is readily computed. As a conse-
quence, we obtain the lower bound

Cekgh

IT— 4]

%o
= —2/(*/ [Alogs — A+ Xlog
0

o)
E.(Q) = / [ZK*)\. — 2k, Xlog ] dr—-C
0

Cryeh
[T — Al

Jon-c.

All the terms are locally integrable functions of A, so the proposition is proved in
case Q is smooth.

Given any Q in H!, we can reduce to previous case by means of a density
argument, inspired by [62, Proposition p. 267]. For § > 0, let x° be a standard
mollification kernel and set Q% := Q % x°. (In order to define the convolution
at the boundary of £2, we extend Q by standard reflection on a neighborhood of
the domain.) Then, {Q®%}s~¢ is a sequence of smooth maps, which converge to Q
strongly in H'and, by Sobolev embedding, in L*. This implies ES(Q‘S) — E.(Q)
as § — 0. Moreover, for any x € A we have

dist (¢ 0 Q°(x). [go. +00)) < ]iz( 80 0°@ g0 0m] A7)
5 X

<cf
=71,

)

o |0°(x) — Q)| d?(y),  (33)

where the last inequality follows by the Lipschitz continuity of ¢ (Lemma 13). Now,
we can adapt the Poincaré inequality and combine it with the Holder inequality to

obtain
/.

8

|0°(0) — Q)| dA?(y) < 66/2
(x) B (

1/2
gcaz/ IVO|? d#* ) .
B (x)

Vol d#?
X)

This fact, combined with (33), implies

1/2
dist (¢ 0 Q°(x), [¢o, +00)) < C(/ IV Q|2 dgﬁ) -0
B

2 (x)
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uniformly in x € A as 8§ — 0 so, in particular, ¢o(Q%, A) — ¢o(Q, A)ass — 0.
Then, since the proposition holds for each Q%, by passing to the limit as § — 0 we
see that it also holds for Q. O

2.3. Basic Properties of Minimizers

We conclude the preliminary section by recalling some basic facts about mini-
mizers of (LGy).

Lemma 21. Minimizers Q. of (LG.) exist and are of class C* in the interior of §2.
Moreover, for any U CC §2 they satisfy

eIVQelleow) = CU).

Sketch of the proof. The existence of minimizers follows by standard method in
Calculus of Variations. Minimizers solve the Euler—Lagrange system

b
=1
3
on 2, in the sense of distributions. The term Id | Q§| is a Lagrange multiplier,
associated with the tracelessness constraint. The elliptic regularity theory, combined
with the uniform L*°-bound of Assumption (H), implies that each component Q. ;;
is of class C® in the interior of the domain. The W!°°(U)-bound follows by
interpolation results, see [10, Lemma A.1, A.2]. O

—&’AQ: —aQ, —bQ* + - 1d|Qc1* +¢|Q:* 0 =0 (34)

Lemma 22. (Stress-energy identity) For any i € {1, 2, 3}, the minimizers satisfy
3j (e:(Q)8ij —0i Qe - 0;0Q:) =0 in 2
in the sense of distributions.

Proof. Since Q. is of class C* in the interior of the domain by Lemma 21, we
can differentiate the products and use the chain rule. For each i we have
3j(e(Qe)8ij — 3; Qe - 0 Q)
1 9f(Qe)
= 8iast . ast + ;Tp:ai Qs,pq
—0i0jQ¢-0;Qc —0;Qc-0;0; Q¢

(34) b
= akakQa ' aiQs - g |Qs| Id'aiQs - aiQes : 8jan@ = 0’
where we have used that Id -9; Q. = 0, because Q. is traceless. 0O

Lemma 23. (Pohozaev identity) Let G C 2 be a Lipschitz subdomain and xo a
point in G. Then, there holds

1
Ec(Qe O+ 5 /BG b(x) - (x = x0) |3y Qs 2 A2
_ / b(x) - (x — x0)ee(Qp) A7
G

- /BG (VO:) v(x) - (VQ¢) Pyg (x — x0) dA#72,



Line Defects in a Limit of a three dimensional Landau-de Gennes Model 617

where v(x) is the outward normal to 0G at x and Pyg(x — x¢) is the component
of x — xo that is tangent to 0G.

This identity can be proved arguing exactly as in [11, Theorem III.2] (the reader
is also referred to [52, Lemma 2] for more details). The Pohozaev identity has a
very important consequence, which is obtained by taking G = B, (x¢) (see for
example [52, Lemma 2] for a proof).

Lemma 24. (Monotonicity formula) Let xo € £2, and let 0 < r; < rp <
dist(xg, 082). Then

i Ec(Qe, By (x0) < 1y 'Ec(Qe, By, (x0)).

Here is another useful consequence of the Pohozaev identity, whose proof is
straightforward:

Lemma 25. Assume that G C 2 is star-shaped, that is there exists xg € G such
that v(x) - (x — xg) = 0 for any x € 9G. Then

E¢(Qe, G) = 3diam(G) E.(Qs, 3G).

3. Extension Properties

3.1. Extension of S*- and N -Valued Maps

In some of our arguments, we will encounter extension problems for .4 -valued
maps. This means, given g: BBf — A (fork € N,k 2 2 and r > 0) we look for
amap Q: Bf — A satisfying Q = g on an , with a control on the energy of Q.
When the datum g is smooth enough and no topological obstruction occur, this
problem can be reformulated in terms of S?-valued maps. Indeed, if the homotopy
class of g is trivial then g can be lifted, that is there exists a map n: an — §?%, as
regular as g, such that the diagram

SZ

/Jw
Bk

commutes. Here 1 is the universal covering map of ./, given by (27). In other
words, the function n satisfies

g(x) = (¥ om)(x) for (almost) every x € dBX. (35)

Physically speaking, the vector field n determines an orientation for the boundary
datum g, therefore a map g which admits a lifting is said to be orientable. Since S?
is a simply connected manifold, S*-valued maps are easier to deal with than .4-
valued map, and extension results are known. Therefore, one can find an S2-valued
extension w of n, then apply ¥ to define an extension P := ¢y o w of g. Thus, one
proves extension results for .4 -valued maps, which will be crucial in the proof
of Proposition 8. We will denote by VT the tangential gradient at the boundary, that
is V1g(x) is the restriction of Vg(x) to the tangent plane to 8Bf at a point x.
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Lemma 26. There exists a constant C > 0 such that, for any r > 0, k = 3 and any
g€ Hl(an, N), there exists P € Hl(Bf, N) which satisfies P = g on an
and

IVPIZ2 g S €221V 7l 2o -

In Lemma 26, the two sides of the inequality have different homogeneities
in P, g. This fact is of main importance, for the arguments of Section 4 rely
crucially on it.

In case k = 2, it makes sense to consider the homotopy class of a H !-boundary
datum g, due to Sobolev embedding. If the homotopy class is trivial, we have the
following:

Lemma 27. There exists a constant C > 0 such that, for any r > 0 and any
g € Hl(aBE, ) with trivial homotopy class, there exists P € Hl(Brz, N)
satisfying P = g on Z)B,2 and

IVPIZ2 g2y S Cr VTl 20052,

If the homotopy class of the boundary datum g is non-trivial, then there is
no extension P € Hg1 (B,z, 4). However, we can still find an extension P €

H! (Brz, So) whose energy satisfies a logarithmic upper bound.

Lemma 28. There exists a constant C > 0 such that, forany 0 < ¢ < 1,r > 0
and any g € H 1(8B,2, A) with non-trivial homotopy class, there exists P, €
Hl(Brz, So) such that P, = g 8312 and

2y < r 2
Ee(Pe. BY) S sexlog =+ C (< 197813252 + 1) -

We also prove an extension results on a cylinder, in dimension three. Given
positive numbers L and r, set A := Br2 X [—L, Lland I' := aBE x [—L, L].Let
geH 1 (I", A) be a boundary datum, which is only defined on the lateral surface
of the cylinder. By the Fubini theorem and Sobolev embedding, the restriction
of g to 83,2 X {z} has a well-defined homotopy class, for almost all z € [-L, L].
Moreover, arguing by density (as in Section 2.2) we see that this class is indipendent
of z. We call it the homotopy class of g.

Lemma 29. Forany0 < ¢ < landanyg € H'(I", .4") withnon-trivial homotopy
class, there exists P, € H' (A, So) such that P, = gon I,

r L r 2
and
2 r L r 2
Ee(Pe, B x () S wulog = +C (= 4+ 2 ) 1978132y +C

forz e {—L, L}.
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In both the inequalities, the prefactors of the H'-seminorm of g are probably
not optimal, but the leading order terms are sharp (see Corollary 16).

A useful technique to construct extensions of S>-valued maps has been proposed
by HARDT et al. [37].

Lemma 30. (HARDT et al. [37]) Given k = 2 and a map n € H' (3 B¥, S?), there
exists a map w € H' (Bf, S?) which satisfy w = n on an,

IVWIZ 2050, S Cor* 272 1 Vnll 25 1 (36)

(BF) =
and

VW22 e, < Cor [V7ml 2, (37)

(BF @B

Sketch of the proof. The existence of such an extension has been proved by
HARDT et al. (see [37, proof of Lemma 2.3, Equation (2.3)]). Although the proof
has been given in the case k = 3, the same argument applies to any k = 2. The
proof relies on the following identity: if v: Bf — R3 satisfies —Av = 0 on Bf
and v = n on 3Bf, then

r ”VTn”LZ(aBk) (k 2) ”VV”LZ(Bk) + r ”avV”LZ(aBk) ) (38)

where v is a unit normal to BBf . This identity is obtained by multiplying both sides
of the equation —Av = 0 with x - Vv and integrating by parts. Then, by integrating
the equality |[Vv|2 = V- ((v — n,)Vv), where n, := faBk n, we deduce

(38)
||Vv||§2(B),_() = /aBk(n—n*)avvd%”k_l < In—null 20 VTR0 2001y »

s0 || Vv]|2 12(84) is bounded by the right-hand side of (36) and, thanks to the Poincaré

inequality, also by (37). Finally, one defines w by composing v with a suitable
projection onto the unit sphere S*>. 0O

We state now a lifting property for Sobolev maps. This subject has been studied
extensively, among others, by BETHUEL and ZHENG [15], BOURGAIN et al. [16],
BETHUEL and CHIRON [13], BALL and ZARNESCU [9] (in particular, in the latter a
problem closely related to the Q-tensor theory is considered).

Lemma 31. Let .# be a smooth, compact, simply connected surface, possibly with
boundary. Then, any map g € H'(.#, A) has a lifting, that is there exists n €
H'(#, S*) which satisfies (35). Moreover, there holds

|Vg|2 = 2sf |Vn|2 H*-almost everywhere on M . 39)

If A has a boundary then ny 4 is a lifting of gs... Moreover, if 8. €
HY@u, N)thenny 4 € H (3.4, S?).
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Sketch of the proof. The identity (39) follows directly by (35), by a straightfor-
ward computation. The existence of a lifting is a well-known topological fact,
when g is of class C'. In case g € H' and .# is a bounded, smooth domain in
RR?, the existence of a lifting has been proved by BALL and ZARNEscU [9, Theo-
rem 2]. The proof, which is based on the density of smooth maps in H!(.Z, .#)
(see [62]), carries over to more general manifolds .# . In case .# has a bound-
ary and g5 € H ! one can adapt the density argument and find a lifting n such
thatn)y » € H'.Ifiiis any other lifting of g, thenn-fiisan H'-map .Z — {1, —1}
and so, by a slicing argument, either n = n almost everywhere or n = —n a.e (see
[9, Proposition 2]). In particular, any lifting n of g satisfies dy_, € H Lo

Combining Lemmas 30 and 31, we obtain easily Lemmas 26 and 27.

Proof of Lemmas 26 and 27. Consider Lemma 26 first. Letn € H'(d Bf, S?) be
alifting of g, whose existence is guaranteed by Lemma 31, and letw € H 1 (Bf, Sz)
be the extension given by Lemma 30. Then, the map defined by

1
P(x) := 54 (w®2(x) -3 Id) for *-almost every x € B

has the desired properties. The proof of Lemma 27 is analogous. 0O

Proof of Lemma 28. By a scaling argument, we can assume WLOG that r = 1.
Let h(x) := Py(2x) for x € 8B12/2, where Pp is given by Lemma 19, and
let we: B}, — So be given by

X
we (x) = 1 (|x])h (|x—|) for x € Bf 5.

where
1 if p2>e¢
= - 40
ne(p) L_Ip f0<p<e (40)
Then, w, belongs to H' (Blz/Z, So) and
Ec(we, Bijy) < xlloge| + C. (41)

Indeed,

| | Sce! where p < ¢
Vw,|> = [d,we|” + = |VTw
| el | P s| ,02 [VTwe| [: ,0_2|VT/’1|2 where p Z .

and we(x) € A if |x| = €. Therefore, we have

1

12 4
Ec(we, Bf ) < E/ 7/51 |V1h)? " + E.(w,, B?)
&

A

1
5 (lloge] —logZ)/ \Vh|? d#! + C,
Sl

whence (41) follows.
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g g

Fig. 2. A square can be mapped into an annulus, by identifying a pair of opposite sides

To complete the proof of the lemma, we only need to interpolate between g
and & by a function defined on the annulus D := B12\B12 ;- Uptoa bilipschitz

equivalence, D can be thought as the unit square (0, 1) with an equivalence relation
identifying two opposite sides of the boundary, as shown in Fig. 2. We assign
the boundary datum g on the bottom side, and % on the top side. Since .4 is
path-connected, we find a smooth path ¢: [0, 1] — .4 connecting g(0, 0) to
h(0, 1). By assigning c as a boundary datum on the lateral sides of the square, we
have defined an Hl—map a[0, 1]2 — ., homotopic to g * ¢ x h * ¢. (Here, the
symbol * stands for composition of paths, and ¢ is the reverse path of c.) Since the
square is bilipschitz equivalent to a disk, it is possible to apply Lemma 27 and find
o € H'([0, 112, .4") such that

o|* do? 2 2 2
/[o 12 ViPrdrt = c (”Vg”Lz(aB%) + ”Vh”LZ(an/z) + HC/HLz(Q 1)) - (42)

Passing to the quotient [0, 1]2 — D, we obtainamap v € H! (D, Sp). Now, the
function P: Bf — Sp defined by P :=von D and P := w, on 312/2 satisfies the

lemma. Indeed, the energy of P is bounded by (41) and (42), and the H L_norms
of & and ¢ are controlled by a constant depending only on .#". O

Proof of Lemma 29. By an average argument, we find zo € [—L/4, L/4] such
that

IVrel? < 3 v (43)
T8WL2@B2x(z0p = 7 WV T8N L2(r) -

To avgid notation, we assume WLOG that zg = 0. We construct an .4 -valued
map P, defined over the “cylindrical annulus” (Brz\Brz/Q) x [—L, L], such that

[N) (pelev Z) = g(rel:z’ Z) for IO =
gre'”, 0) for p=r/2,

where (p, 9,~z) e [0, r] x [0, 27] x [—L, L] are the cylindrical coordinates.
Then, since P restricted to BBrz/2 x [—L, L] is independent of the z-variable, we

can apply Lemma 28 to construct an extension in the inner cylinder Brz/2 x[—L, L].
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The map P is defined as follows:

g(re', 2/ (p, 2)) if po(p, 2) S p <r and |z| S L

Blpe”, 2= |8
e [g(rele, 0) if 7/2< p < polp, ) and [z S L,

where
, 2L . r
7 (p, 2) == —sign(x)(p —r) +z, polp, 2) =1 — ——|z|.
r 2L
Note that [z'(p, 2)| = L if po(p, z2) = p = r and |z| = L. We compute the H'-

seminorm of P. For simplicity, we restrict our attention to the upper half-cylinder.
We have

”VP”LZ((BZ\BZZ)X 0,L])

2w 4L2 .
= / / / I (—2 + 1) plocgl (re. 2o, 2))
0 Jo Jpo(p.2) r

0 gl (re”. 2. 2) ] dpdzdo

2 po(p, 2) .
/ / / P~ gl (rele’ 0) dp dz do
2 2
<_ / / [(_+1)r|3z8|2+2r_1 |30g|2](rg’9 £) e dz do

2 .
+(log2)L/ Eik (re’e, O) dé

4L2 o 2 1 2 i0
<r —+l rlogl”+r " |0pgl” t(re'”, £)d&dO
271 .
+ (log 2)L/ |89g|2 (re’e, 0) do.
0
An analogous estimates holds on the lower half-cylinder. Therefore,
- 41 2
||VP||L2((BZ\33/2)X[ L,L) = T + r ”ng”LZ(F)

+ (log2)rL ||VTg||i2(3Br2x{0})

and so, due to (43), we have

L2
< - 2
”VP“LZ (Bz\sz)X[ LL) = C( r +l") ”VTg”LZ([') . (44)

By applying Lemma 28 (and (43)) to g(-, 0), we find an extension P, €
H! (Br /20 So) which satisfies

Ec(Pr. Blp) < kilog = + & VT8I gy + € 45)
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Define the map P by letting P(pe'?, z) := P(pe'?, z2) if r/2 < p < r and
P.(pe'?, 2) = P.(pe'?) if p < r/2. By integrating (44) with respect to z €
[—L, L], and combining the resulting inequality with (44), we give an upper bound
for the energy of P, on A. Moreover, there holds

D12
”VP”H«BE\BE/z)x{L})

27 pr 412 5 "
=/ / [(_2+1)p|3zg| (re’ .2 (p, L))
0 r/2 r
—1 2(. 0 s
+ 0 1008 (re. 2 (o, L))]dpde
ro [ (AL? 2 -1 2 i
— — 4+ 1) r |08l +2r " 3pgl° {(re'?, £)dEdR
2L 0 0 1’2
r (412 2
Z r_2 + 1 ”VTg”LZ(F) .

This inequality combined with (45), gives an upper bound for the energy of P,
on Br2 x {L}; a similar inequality holds on Br2 x {—L}. This concludes the proof.
O

A

[IA

3.2. Luckhaus’ Lemma and Its Variants

In many of our arguments, it will be useful to compare the energy of a minimizer
Q. of (LGg) on, say, a ball B, with the energy of another map P, : B, — So. How-
ever, it may happen that P, # Q. on 9B, so P is not an admissible comparison
map. To correct this, we need to construct a function which interpolates between
P and Q. over a thin spherical shell.

The problem may be stated as follows. Sete := ¢/r, and suppose that) < & < 1.
Let uz: 9B; — So, vz: 4B — A be two H! -maps. We look for a (small)
number A (g) > 0 and a map @z : Az := B1\Bi—_n@E) — So, such that

@z (x) = uz(x) and @z(x — h(&)x) = vs(x)
for #%-almost every x € 0B (46)

and the energy E3(¢z, A;) satisfies a suitable bound. In some cases, only the
function u; is prescribed, and we need to find both vz and ¢;z.

Luckhaus proved an interesting interpolation lemma (see [49, Lemma 1]), which
turned out to be useful in several applications. When both u; and vz take values in
the manifold .#", Luckhaus’ lemma gives an extension ¢; satisfying (46) and

sup dist(pz(x), A)+ [ |Ve:|* £ Cluz, vz, h(#)).
xX€A; Az

For the convenience of the reader, and for future reference, we recall Luckhaus’
lemma. Since the term £ 2 f (¢z) is not taken into account here, we drop the sub-
script € in the notation.
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Linear interpolation

Homogeneous extension

Fig. 3. Left a grid on a sphere. Right the Luckhaus’ construction. Given two maps ug, Vg
(respectively defined on the outer and inner boundary of a thin spherical shell), we construct
a map ¢e by using linear interpolation on the boundary of the cells, and homogeneous
extension inside each cell

Lemma 32. (LuckHAUSs [49]) Forany B € (1/2, 1), there exists a constant C > 0
with this property. For any fixed numbers 0 < A < 1/2,0 <o < landanyu, v €
H'(8By, N, set

2 2 u —v|? 2
K = |Vu| +|VU| +—2 dor-.
JdB o

Then, there exists a function ¢ € H'(B1\Bi_;., So) satisfying (46),
dist(p(x), A) < Co'=PA"12K!1/2

for almost all x € B1\Bj—, and

/ IVol? < Ca (1 + U2X_2) K.
Bi\Bj-»

The idea of the proof is illustrated in Fig. 3. One constructs a grid on the
sphere d B; with suitable properties. The map ¢ is defined by linear interpolation
between u and v on the boundary of the cells. Inside each cell, ¢ is defined by a
homogeneous extension. By choosing carefully the grid on d By, and using Sobolev
embeddings, one can bound the L°°-distance between u and v on the boundary
of the cells, in terms of K. This yields bounds both on dist(¢(x), .#") and on the
gradient of ¢.

We will discuss here a couple of variants of this lemma. In our first result,
we suppose that only the map uz: dB; — Sy is prescribed, so we need to find
both vz: 9B — 4 and ;. Approximating uz with a .4 -valued map vz may be
impossible, due to topological obstructions. However, this is possible if the energy
of uz is small, compared to | log £|. More precisely, we assume that

Ez(uz, 9B1) < no|logé| 47)
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for some small constant g > 0. For technical reasons, we also require a L°°-bound
on uz, namely

luzllzocap) =« (48)

where « is an g-independent constant. In the applications, uz will be a Landau-de
Gennes minimizer and (48) will be satisfied, because of (H).

Proposition 33. For any k > 0, there exist positive numbers 1o, €1, C with the
following property. For any 0 < 1 < no, any 0 < & < &, and any uz € (H' N
L) (dBy, So) satisfying (47)—(48), there exist maps v € H' (B, A) and ¢; €
Hl(Bl \Bi—n@), So) which satisfy (46),

1

—/ Vo:? d#” < CEs(us, 9By), 49)
2 JoB,

E:(¢z, Bi\Bi-n@) < Ch(€)Ez(uz, dBy) (50)

for h(g) :=&'/?|log&|.

We will discuss the proof of this proposition later on. Before that, we remark
that vz effectively approximates uz, that is their distance—measured in a suitable
norm—tends to 0 as ¢ — 0.

Corollary 34. Under the same assumptions of Proposition 33, there holds

1/2
g

luz — vell2am,) < Ch'?E)VE; " (us, 3By).

Notice that the right-hand side tends to 0 as ¢ — 0, due to (47) and the choice
of h(e).

Proof. We can estimate the L2-distance between u, and v, thanks to (46), the
Holder inequality and (50):

(46) _
luz = vell 72, = / |9z (x) — @s(x — h(E)x)|* 4o (x)
0B

A

1
h(z) / / Vs (1x)1? dr do%(x)
0B J1—h(¢e)

h(g) (50) _
= mEé(%, Bi\Bi-nz) < Ch(g)Ez(ug, 0By).

0

Combining Lemma 32 and Proposition 33, we obtain a third extension result.
In this case, both the boundary values u, v are prescribed and, unlike Luckhaus’
lemma, we provide a control over the potential energy of the extension &2 f (¢;).
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Proposition 35. Let {0:}5=0 be a positive sequence such that oz — 0, and let ug,
vz be given functions in HY 0By, So). Forall & > 0, assume that uz satisfies (48),
that vz (x) € N for *-almost everywhere x € 3By and that

1 uz — vg|?
/ \Vugl® + = f (us) + |va|2+¥ dr*<c (51
9B & OE

for an g-independent constant C. Set
_ _ 1/4 _
Vs = h(F) + (h]/z(s)—i-ﬂg) (1 - h(&)).

Then, there exist a number €1 > 0 and, for 0 < & < &1, a function ¢z €
H'(B, \Bi—v;, So) which satisfies (46) and

E:z(pz, Bi\Bi—y.) < Cvs.

The assumption (51) could be replaced by a logarithmic bound, of the order
of no|logeé| for small no > 0, with additional assumptions on oz. However, the
result as it is presented here suffices for our purposes.

Proof of Proposition 35. Thanks to (51) and (48), we can apply Proposition 33
to the function uz. We obtain two maps w; € HY 3By, &) and (pél €
H'(B1\Bi_n), So), which satisfy

@l (x) =uz(x) and @l(x — h(€)x) = wz(x) for #>-almostall x € 3By,
| wuiant <c.
dB
E:(¢;, Bi\Bi-n) < Ch(@). (52)

Corollary 34, combined with (51), entails
lws = vell 2oy = lwe = uel2,) + s = vell 2y < € (h72@) +03)

Therefore, setting 6; := hY2(8) + o5, we have

)
/ [|ng|2+ Voe? + M} d#? < C
dB

&

Then, we can apply Lemma 32 to vz and wg, choosing 0 = 63, § = 3/4 and

~1/4 . .
A= aé/ . By rescaling, we find a map (pg2 € Hl(Bl,h(g)\Bl_vg, Sp) which

satisfies
2
/ V2| < ca* 1 - n@)
Bi—h@) \Bi-v;

dist(p2(x), A) < C5)/® foralmostall x € By_j)\By:. (53)
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Since 63 — 0, there exists £; > 0 such that (péz(x) ¢ ¢ forany 0 < & < £y and x.
Therefore, the function

ol (x) if x € BI\B1_n@)

@z (x) := .
’ [@ 0 g2(x) if x € Bi_ne)\Bi;

is well-defined, belongs to H! (B1\B1-v;, So), satisfies (46) and

2 (52)-(53)
< Cl)g.

Ez(¢z, Bi1\Bi—v,) = Ez(¢}, Bi\Bi-n@)) +/

2
‘V%
Bi—n@) \Bi-v;

O

Sections 3.3-3.5 are devoted to the proof of Proposition 33, which we sketch
here. From now on, we assume that there exists a positive constant M such that

Ez(uz, 0B;) < M |logz| forall 0 <& < 1. M;)

The assumption (47) clearly implies (Mz). As in Luckhaus’ arguments, the key
ingredient of the construction is the choice of a grid on the unit sphere d By, with
special properties. In Section 3.3 we construct a family of grids {4}, whose cells
have size controlled by % (€), and we prove that there exists £; > 0 such that

dist(uz(x), A) < 89 forany & € (0, &) andany x € R‘f.

Here R’f denotes the 1-skeleton of &7, that is the union of the boundaries of all the
cells, and &y is given by Lemma 14. In particular, the composition g o uz is well-
defined on Rf when & < £;. We wish to extend g o uz to a map vz: 0B — A .
This may be impossible, depending on the homotopy properties of uz. A sufficient
condition for the existence of vz is the following:

(Cz) For any 2-cell K of ¢, the loop ¢ o uzpx - 0K — 4" is homotopically
trivial.

This condition makes sense for any u; € H 1(831, So), for we construct 4¢ in
such a way that u; restricted to Rf belongs to H! — €Y.

In Section 3.4, we assume that (Mz) and (Cz) hold and we construct a func-
tionv; € H'(d By, /), whose energy is controlled by the energy of uz. Once v; is
known, we construct ¢z by Luckhaus’ method. Particular care must be taken here,
as we need to bound the potential energy of ¢z as well. Finally, in Section 3.5 we
show that the logarithmic bound (47), for a small enough constant 7, implies that
Condition (Cj) is satisfied. The argument relies on the results of Section 2.2, which
imply a logarithmic lower bound for the energy if ¢ o uz sk is non-trivial for at
least one 2-cell K.
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3.3. Good Grids on the Sphere

Consider a decomposition of d By of the form

2 kj
0B = J | Kij.

j=0i=1

where the sets K; ; are mutually disjoint, and each K; ; is bilipschitz equivalent to
a j-dimensional ball. The collection of all the K; ;’s will be called a grid on 9 B;.
Each K; ; will be called a j-cell of the grid. We define the j-skeleton of the grid as

kj
Rj = UK,"]' for ] S {0, 1, 2}
i=1
For our purposes, we need to consider grids with some special properties.
Definition 36. Let /: (0, £;] — (0, +o0) be a fixed function. A family of

grids ¢4 := {gé}0<§§§1 will be called a good family of grids of size h if there
exists a constant C¢y > 0 which satisfies the following properties:

(G1) Foreacheg, i, j, there exists a bilipschitzhomeomorphism (pf i K f i~ B,{ @
such that

g \—1
o+ ot s

8
HD(p"’f L

(Gp) Forall p € {1, 2, ..., k1} we have
#laell 2 k) k), cokg,) < co,

that is, each 1-cell is contained in the boundary of at most Cy 2-cells.
(G3) We have

Ez(uz, R) < Cyh™'(8) Ez(uz, 9By),

where RIE denotes the 1-skeleton of &2,
(Gy) There holds

fup)d# S CohT V@) | fup) dR
R§ 9B

Of course, this definition depends on the family {u;z}, which we assume to be fixed
throughout the arguments of this section.

Lemma 37. For any strictly positive function h, a good family of grids of size h
exists.
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Proof. On the unit cube 3[0, 1]3, consider the uniform grid of size [A~!(£)]~!,
that is the grid spanned by the points

(rh_l(é)'|_1Z3) na[o, 113

(where [x] is, by the definition, the smallest integer k such that k = x). By applying
a bilipschitz homeomorphism [0, 1]> — B, one obtains a grid .#¢ on d B; which
satisfy (G1)—(G»). Denote by Tf the 1-skeleton of .#¢. By an average argument,
as in [49, Lemma 1], we find a rotation w € SO(3) such that

E:(uz, o(Tf)) £ Ch™'(8) Ez(uz, 3B1)

and

/ CfwdA SChTN @) | fup)da
o(TY)

dB

Thus,

@G = {a)(K): K e f/"g}
is a good family of grids of size h. O
Good families of grids enjoy the following property:

Lemma 38. Let & be a good family of grids on 3 By, of size h. Assume that (M;)
holds, and that there exists a € (0, 1) such that

lim &h 1 (&) = 0. (54)
£—0
Then, there holds
lim sup dist(uz(x), 4) =0.

gﬁoxeRf

Proof. The arguments below are adapted from [1, Lemmas 3.4 and 3.10] (the
reader is also referred to [14, Lemmas 2.2, 2.3 and 2.4]). Since the Landau-de
Gennes potential satisfies (F») by Lemma 14, there exist positive numbers 8, C and
a continuous function i : [0, +00) — R such that

VY (s) = Bs? for 0 <s < &
0<y(s)SC for s = 8y
¥ (dist(v, A)) < f(v) forany v e Sp.
Denote by G a primitive of 1//1/ 6 and set d; := dist(uz, .#). Since the function

dist(-, 4")is 1-Lipschitz continuous, we have d; € H'(£2, R)and |Vds| < |Vusz.
Moreover, ¥ (ds) < f(uz) by construction of ¥. Thus, (Mz) and (G3) entail

1
h(é)/i [5 IVds|2 + 5 29 (ds) | d#' < MCyllog|.
4§
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By applying Young’s inequality @ 4+ b > Ca>/*b!'/4, we obtain

MCyllog| = C&™' (@) [ 1VasP g1 aot
R}
= Cé’l/zh(é)/_ IVG(d:)|*/? dor'. (55)
R}

Fix a 1-cell K of ¢¢. We control the oscillations of G (ds) over K thanks to the
Sobolev embedding Wh3/2(K) < C%K) and (55):
3/2
(ols{c G(dg)) < Ch'?(3) / VG (dp)|>/* do#!
K
= C&'2h~ 12 (&) |log &l .
In view of (54), we obtain

oscG(d;) — 0
Ry

as &€ — 0. The function G is a continuous and strictly increasing, so G has a
continuous inverse. This implies

oscd; — 0 (56)
Ry

as ¢ — 0. On the other hand, (M3), (G3) and (54) yield

1
Fownan' s [ rupant—o (57)
K @) Jr:
as & — 0, for any 1-cell K of ¥%. As we will see in a moment, this implies
sup ][ d: d#" — 0. (58)
K JK

Combining (58) with (56), we conclude that d; converges uniformly to 0 as ¢ — 0.
Now, we check that (58) holds. There exists a constant A > 0 such that

dzll oo (2) = A

(this follows from the uniform L°°-estimate for uz, (48)). For any § € (0, 1), set

U (8) = 5§ilslfgxw(s) > 0.

Then,

A ({dz 2 8} NK)
A (K)

V() < ¥ (dz) doA!

= AHNK) Jig: a0k

< ][ W(ds) d. (59)
K
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Thus, for any 1-cell K, we have
! ds 47" +
HVK) Ja.<sink HVK) Jia:=sy0k
- A ({dz <8} NK) A ({dz 2 8} NK)
- LK) HL(K)

< * dz) !
= 7.0) ]{( v (ds)

Cx
< S5+ ——2*h @) |log sl .
=T Ro &

We pass to the limit first as € — 0, then as § — 0. Using (54), we deduce (58). O

0< ][ d: d ' = dz !
K

Remark 39. As a byproduct of the proof, under the assumptions of Lemma 38 the
following property holds. For any § > 0, there exists a positive number &1 which
only depend on M, k, Cg and the potential f, such that

dist(uz(x), A) =6
forany 0 < & < £ and any x € Rf. Here M, « and Cg are given respectively

by (M3), (48), and Definition 36.

3.4. Construction of vz and ¢z
First, we construct the approximating map vz : 9B} — 4.

Lemma 40. Assume that (M3), (Cz) hold. There exists €1 > 0 such that, for any
0 < & < &1, there exists a map v; € H (9B}, AN) which satisfy (49),

ve(x) = o(uz(x)) and |uz(x) —vz(x)| = 8o (60)
for every x € R‘f.
Proof. To construct vz, we take a family & = {4%};-¢ of grids of size
h(E) ==& logg| (61)

(such a family exists by Lemma 37). Condition (54) is satisfied for @« = 1/2, so by
Lemma 38 there exists £; > 0 such that

dist(uz(x), A) < 89 forany £ € (0, ;) and any x € Rf. (62)
The constant §p is given by Lemma 14. In particular, the formula
vz(x) := o(uz(x)) forall x € ng

defines a function v; € H'(R%, Sp) which satisfies (60).
To extend vz inside each 2-cell, we use Lemma 27. Fix a 2-cell K of %;.
Since we have assumed that (Cz) holds, vgsx is homotopically trivial. Therefore,
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Lemma 27 and (G1) imply that there exists vz x € HY(K, .#) such that Vi K = Uz
on 0K and

/ |Voz k| d#? < Ch(é)/ Vo |2 d#".
K 0K

Define vz: dB; — .4 by setting vz := vz g on each 2-cell K. This function
agrees with vz g1 previously defined by (60), hence the notation is not ambiguous.

Moreover, v; € H (3B, /") and

/ Vs> dor? < Z/ |Vvg|* dor” < Ch(é)Z/ IVve|? d!
3B, /K x JOK

(Gy) 5 Gy 5 .
< Ch(g) | |Vuvgl” do#" < Ch(s) | |Vugl” d#
R} R}

(Gy)
< CE:(uz, 9By),

where the sum runs over all the 2-cells K of 4. Thus v; satisfies (49), so the lemma
is proved. O

Now, we construct the interpolation map ¢z : dB; — Sp.

Lemma 41. Assume that the conditions (M3), (Cz) are satisfied. Then, for any 0 <
g < & there exists a map @z € Hl(Bl\Bl_h(g), So) which satisfies (46) and (50).

Proof. Set Az := B1\Bi_p). The grid %°F on 9 B induces a grid &% on Az, whose
cells are

R = [xeR3: 1—h@E) < |x| < 1,|x—| eK] for each K € %°.
X

If K is a cell of dimension j, then K has dimension j+ 1.Forj € {0, 1, 2}, we
call Iéf the union of all the (j + 1)-cells of e,

The function ¢z is constructed as follows. If x € dB; U 9 B1_j), then ¢z(x)
is determined by (46). If x € Ié"f U 1@‘15, we define ¢z (x) by linear interpolation:

i ._1—|x| o x h(e) — 1+ |x| o x
el =T ”‘9(|x|)+ 16 ”8(|x|)' 63)

For any 3-cell K of %, we extend homogeneously (of degree 0) the function ¢z DR

on K. This gives a map ¢z € H'(K), because K is a cell of dimension 3. As a
result, we obtain a map ¢; € H 1(Az, So) which satisfies (46).

To complete the proof of the lemma, we only need to bound the energy of ¢;z.
Since ¢z has been obtained by homogeneous extension on cells of size h(g), we
have

Gn B .
Ez(¢s, As) < Ch(®) ) Es(gs, 0K)
K
(Gy)

< Ch(®){Es(uz, 3B1) + Ez(vs, 3B1-_nz) + Ez(gz, R}, (64)
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where the sum runs over all the 3-cells K of %%. To conclude the proof, we invoke
the following fact.

Lemma 42. We have
Es(pe, R < C (B2072@) + 1) Es(uz, 9By).

From (64) and Lemma 42 we get

E(ge, As) < Ch(é>[ (22072@) +1) Extuz, 9B1) + Ex(ve, 0B1-1o)

49)
< Chp) (ézh’z(é) + 1) Ez(uz, 3By)

and, thanks to our choice (61) of i(g), we conclude that (50) holds, so Lemma 41
is proved. O

Remark 43. We can keep track of the constants in the proof of Lemmas 40 and 41.
By doing so, one sees that the constant C given by Proposition 33 (Equations (49)
and (50)) only depends on C and the potential f.

Proof of Lemma 42. We consider first the contribution of the potential energy.
Thanks to (F3), (63) and (60), we deduce that

1— |x]\? Az
Foen < () (Foun (L) for x e &
h(&) |x]
By integration, this gives
/ flgp) dA” < ChE) / flup) d?. (65)
R Ry
Now, we consider the elastic part of the energy. Using again (63), we have
/_ IVe:|* d#? < Ch™ 1 (3) / luz — v|* d#". (66)
R R}
The condition (F») on the Landau-de Gennes potential, together with (60), implies
Cuz — > da!t < c/f fluz)dot. (67)
RE RE
Using (65), (66) and (67), we deduce that
Exor, B < € (17 @) +720@) [ funa.
&
Because of Condition (G4) in Definition 36, we obtain

Exe R S C (2@ +87) | s an,
1

il

so the lemma follows easily. O
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3.5. Logarithmic Bounds for the Energy Imply (Cs)

The aim of this subsection is to establish the following lemma, and conclude
the proof of Proposition 33.

Lemma 44. There exists n; = n1 (A, Cq, M, £1) such that, if 0 < & < & and
uz satisfies (Mz), (48) but not (Cz), then

Ez(uz, dB1) = n |logé|.
Once Lemma 44 is proved, Proposition 33 follows in an elementary way.

Proof of Proposition 33. Choose 1o := 11 /2. If u; satisfies (47) with this choice
of no and (48), then it must satisfy Condition (Cz), otherwise Lemma 44 would
yield a contradiction. Then, the proposition follows by Lemmas 40 and 41. O

Proof of Lemma 44. By assumption, Condition (C;) is not satisfied, so there exists
a2-cell K* € ¥° such that g o Uz |y g+ 18 non-trivial. By Definition 36, there exists
a bilipschitz homeomorphism ¢ : Ky — By which satisfies (G1). Therefore, up
to composition with ¢ we can assume that K is a 2-dimensional disk, K, = Bﬁ(é).
Lemma 38 implies that uz(x) ¢ %) for every x € 3Ky, for0 < & < £;. Then, by
applying Corollary 16 we deduce
_ 2 h(€)
Ez(uz, Ky) + Ch(2)Ez(uz, 0Ky) 2 kspy(uz, 9Ky)log = C

Notice that ¢g(uz, 0K,) = 1/2if 8 is small enough, because of (62). On the other
hand, condition (G3) yields

Es(uz, Ky) + Ch(8)Ez(uz, 0K,) = CEz(uz, 0By).

Due to the previous inequalities and (61), we infer
1
E:(uz, 3B)) = C {1og (5*‘/2 |10gé|) - 1} >c (5 llog &| — 1)

forall0 < & < &; < 1, so the lemma follows. O

4. Compactness of Landau-de Gennes Minimizers: Proof of Theorem 1

4.1. Concentration of the Energy: Proof of Proposition 8

The whole section aims at proving Theorem 1. In this subsection, we prove
Proposition 8 by applying the results of Section 3.

Let0 < 0 < 1, let no, €1 be given by Proposition 33, and set &y := £16.
Throughout the section, the same symbol C will be used to denote several different
constants, possibly depending on 6 and &1, butnoton ¢, R. To simplify the notation,
from now on we assume that xo = 0. For a fixed 0 < ¢ < gy R, define the set

2n 1 R
0 .
) g

De =\re (QRv R) E&‘(Q&‘» aB}’) g 1 ;
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The elements of D? are the “good radii”, that is r € D® means that we have a
control on the energy on the sphere of radius . Assume that the condition (10) is
satisfied. Then, by an average argument we deduce that

(1-0)R

1 £y >
H(D%) 2 5

(68)
For any r € D? we have
2n r
Ee(Qe. 9B,) £ — (log = — log6)
1-6 e
since R < 6~ !r. By choosing 1 small enough, we can assume that
E.(Q.. 3B,) < njolog — forany r € D° and 0 <e < &R. (69)
€

In particular, our choice of 1 depends on &1, 19, 6.

Lemma 45. For any 0 < ¢ < &R and any r € D?, there holds

E:(Qe. B) < CR(EV(Q.. 0B, +1).

A similar inequality was obtained by Hardt, Kinderlehrer and Lin in [37,
Lemma 2.3, Equation (2.3)], and it played a crucial role in the proof of their energy
improvement result.

Proof of Lemma 45. To simplify the notations, we get rid of r by a scaling argu-
ment. Set £ := ¢/r, and define the function uz: By — Sg by

uz(x) := Q.(rx) forall x € Bj.

Notice that £ < &1, since ¢ < &R and R < r. The lemma will be proved once
we show that

172
g

Ez(uz, B)) < CE;'"(uz, 9B1) + 1 (70)

(multiplying both sides of (70) by » < R yields the lemma). Since we have assumed
that r € D® we have, by (69),

Ez(uz, 9B1) < no|logé].

Moreover, uz satisfies the L°°-bound (48), due to (H). Therefore, we can apply
Proposition 33 and find v; € Hl(aBl, N), 05 € Hl(Ag, So) which satisty

@:(x) =uz(x) and @z(x — h(&)x) = vz(x) for % -almost every x € 0B
| 1vuPar? < Chiue, o), )
0B

Ez (s, Ag) = Ch(8)Ez(uz, 3By). (72)
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Here h(e) := 51/2| logée| and Az := B1\Bi_j(). By applying Lemma 26 to vz, we
find a map wz € H'(By, /) such that w;z|yp, and

1/2 71 12
/ |ng|2<(1[/ Vgl d%ﬂ] < CEws, 0B).  (73)
B By

Now, define the function w;: By — Sg by

¥z (x) for x € A;

wg(x) = W (1#}1(‘)) for x € Bi_n@).
— h(e

The energy of w; in the spherical shell Az is controlled by (72). Due to our choice
of the parameter %(g), we deduce that

Ez(wg, As) =1,

provided that &; is small enough. Combining this with (73), we obtain

172

Ez (g, B)) = CE;"(uz, 9B1) + 1.

But w; is an admissible comparison function for uz on By, because w; = uz on
d By. Thus, the minimality of u;z implies (70). O

Lemma 45 can be seen as a non-linear differential inequality for the func-
tiony:r € (@R, R) — E.(Q, B,). The conclusion of the proof of Proposition 8
follows now by a simple ODE argument.

Lemma 46. Let o, B be two positive numbers. Let y € Wl’l([ro, ril, R) be a
function such that y' 2 0 almost everywhere, and let D C (rg, r1) be a measurable
set such that 1 (D) = (r] — r0)/2. If the function y satisfies

y(r) S ay' ()2 + B for A -almostall r € D, (74)
then there holds
202
y(ro) = B+ )
ry —ro

Proof. If there exists a point r, € (rg, r1) such that y(r,) < B, then y(rg) < B
(because y is an increasing function) and the lemma is proved. Therefore, we can
assume WLOG that y—f > Oon (g, r1). Then, Equation (74) and the monotonicity
of y imply

y'(r) >
o) =B~
for almost all r € (rg, r1), where 1p is the characteristic function of D (that is,

1p(r) = 1ifr € D and 1p(r) = O otherwise). By integrating this inequality
on (0, r), we deduce

1 1
- >a 2 ((rg, )N D
Yo —B  yr—p =" (0. H VD)

a21p(r)




Line Defects in a Limit of a three dimensional Landau-de Gennes Model 637

for any r € (rg, r1). Since we have assumed that #1(D) > (r1 —ro)/2, we obtain

+

80, via an algebraic manipulation, we get

y(ro) — B
—a=2(r — (ro+ /2" (y(ro) — B)

for any r € (rg, rq). Since y is well-defined (and finite) up to r = ry, there must be

y(r)§ﬂ+1

ry —ro
202

whence the lemma follows. 0O

1—

(y(ro) = p) > 0,

Conclusion of the proof of Proposition 8. Thanks to Lemma 45 and (68), we can
apply Lemma 46 to the function y(r) := E.(Q¢, B,), forr € (OR, R), and the
set D := D?. This yields

Es(Qs» BQR) g CR,

so the proposition is proved. O

4.2. Uniform Energy Bounds Imply Convergence to a Harmonic Map

In this subsection, we suppose that minimizers satisfy
E¢(Qe, Br(x0)) = CR (75)

on a ball B,(xp) CC £2. In interesting situations, where line defects appear, such
an estimate is not valid over the whole of £2 but it is satisfied locally, away from a
singular set. The main result of this subsection is the following:

Proposition 47. Assume that Br (x0) € $£2 and that (75) is satisfied for some R,
C > 0. Fix0 < 6 < 1. Then, there exist a subsequence &, \(0 and a map Qg €
HY(Bor(x0), ) such that

0., — Qo strongly in H'(Bgg(x0), So).

The map Qq is minimizing harmonic in Bgg(xo), that is, for any comparison map
Q € H' (Byr(x0), A) such that Q = Qo on dByr(xo) there holds

1 1
5/’ |va§5/’ voP.
Byr(x0) Bo g (x0)

In general, we cannot expect the map Q¢ to be smooth (see the example of
Section 7). In contrast, by SCHOEN and UHLENBECK’S partial regularity result [61,
Theorem II] we know that there exists a finite set ., S Byr(xo) such that Qg
is smooth on By (x0)\-pts- Accordingly, the sequence {Q,,} will not converge
uniformly to Qg on the whole of Bgg (x¢), in general, but we can prove the uniform
convergence away from the singularities of Qy.
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Proposition 48. Let K C Byg(x) be such that Qg is smooth on the closure of K.
Then Q., — Qo uniformly on K.

The asymptotic behaviour of minimizers of the Landau-de Gennes functional, in
the bounded-energy regime (75), was already studied by MAJUMDAR and ZARNESCU
in [52]. In that paper, H ' -convergence to a harmonic map and local uniform conver-
gence away from the singularities of Q¢ were already proven. However, in our case
some extra care must be taken, because of the local nature of our assumption (75).

Proof of Proposition 47. Up to a translation, we assume that xo = 0. In view
of (75), there exists a subsequence &, N\, 0 and amap Qg € H'(Bg, So) such that

Q¢, — Qo weakly in H'(Bg. So), strongly in LZ(BR, So)

and almost everywhere

Using Fatou’s lemma and (75) again, we also see that
f(Qo) < liminf e2E,, (Q.,, Br) < liminf e2CR =0,
Br n——+oo n——+00

hence f(Qo) = 0 almost everywhere or, equivalently,
Qo(x) € A foralmost all x € Bj.

By means of a comparison argument, we will prove that Q,, actually converges
strongly in H'. Fatou’s lemma combined with (75) gives

R
/ liminf Eg, (Qc,, dB,)dr < liminf E¢, (Qs,, BR\Bsr) < CR. (76)
gR N>+ n——+00

Therefore, the set
.. 2C
r € (0, R]: liminf E;, (Q,,, 0B,) > ——
n—>-+00 1-6

must have length < (I — 6)R/2, otherwise (76) would be violated. In particular,
there exist a radius r € (9 R, R] and a relabeled subsequence such that

Eor(Qe,r 9B,) € o
For ease of notation we scale the variables, setting &, := ¢, /7,
up(x) := Qg, (rx) and wu.(x):= Qo(rx) for x € By.
The scaled maps satisfy

u, — u, weaklyin Hl(Bl, So), strongly in Lz(Bl, So)

and almost everywhere, 77
ux(x) € A foralmost every x € By, (78)
Ez, (uy, 3B)) = C. (79
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By (77) and the trace theorem, u,, — u, weakly in HY2 By, Sp) and hence, by
compact embedding, strongly in L?(d By, So). Moreover, by (79) u,, — u, weakly
in H'(dBy, So), so
1
—/ |Vu,|* d#* < limsup E;, (u,, 9B,) < C. (80)
2 dB) n—+00
We are going to apply Proposition 35 to interpolate between u,, and u . Seto,, :=
||Mn - M*”LZ(aBl). Then o, —> 0 and

lu, — u*|2

1
/ [|wn|2 + — f(up) + |Vus|* + ]d%’2 <,
0B &n

n

because of (79), (80). Moreover, the L°°-estimate (48) is satisfied by Lemma 21.
Thus, Proposition 35 applies. We find a positive sequence v, — 0 and functions
¢n € H'(B1\Bi_,,, So) which satisfy

Pn(x) = un(x),  @a(x —vpx) = us(x)
for #2-almost every x € 9B} and
Ez, (¢n, Bi\Bi-y,) = Cvy. (81)

Now, letwy, € H 1 (B1, /) be a minimizing harmonic extension of Uy B, > that
is

1 1
[ IVw P [ [Vw (82)
2 /B, 2 /B,

for any w € Hl(Bl, A7) such that wyyp, = U4|pp,- Such a function exists by

classical results (see for example [62, Proposition 3.1]). Define w, : By — Sp by

On(x) if x € Bi1\Bj—y,
wy(x) = w*( X ) ifxe By

1—-v,

The map w,, is an admissible comparison map for u,,, thatis w, € H 1(B1, Sp) and
wnwgl = M,1|aBl . HCIICC,

1—v,

Ex,(un, B1) < Es, (wn, B)) = / Vs 2 + Ez, (wn, BI\B1_y,).
B

When we take the limit as n — 400, v, — 0 and the energy in the shell B\ Bj_,,
converges to 0, due to (81). Keeping (77) in mind, we obtain

1 1 1
— [ IVu,)? <liminf = [ |[Vu,|?> <limsup= [ |Vu,|?
2 /g, n—+o00 2 [p, n—+oo 2 JB,

1 1
< timsup £, e B S 5 [ (Vw25 [ v,
B B

n——+00
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where the last inequality follows by the minimality of w,, (82). But this implies

. 1 2 1 2
Iim = |Vu,|- == |Vuy,|”,
n—+o00 2 B B

which yields the strong H' convergence u, — u, as well as

lim f(un) = 0. (83)

n—+o0 g, B,

Moreover, u, must be a minimizing harmonic map.

Scaling back to Qg,, Qo, we have shown that Q,, — Qo strongly in
H'(B,, So) and that Qo is minimizing harmonic in B,, where r = OR. In par-
ticular, the proposition holds true. O

Once Proposition 47 is established, Proposition 48 can be proved arguing as in
MAJUMDAR and ZARNESCU'’S paper [52]. The arguments in [52, Proposition 4] rely
on the condition

lim - f(Qe,) =0,

n=>+00 & J Byr (x0)

which follows as a byproduct of Equation (83) in the previous proof.

4.3. The Singular Set

In this subection, we complete the proof of Theorem 1 by defining the singular
set -“jine and showing that it is a rectifiable set of finite length. Foreach0 < ¢ < 1,
define the measure i, by

we(B) = E(Q: B) for B € B(2). (84)
[log e|

In view of our main assumption (H), the measures {us}o<¢<1 have uniformly
bounded mass. Therefore, we may extract a subsequence &, \ O such that

te, —* 1o weakly* in Z(2) :=C(R). (85)

Let .“ine be the support of g. By definition, .#jj,e is a closed subset of 2. Letyn
be given by Proposition 8, corresponding to the choice 6 = 1/2.

Lemma 49. Let xo € 2 and R > 0 be such that Bg(xo) C . If

o (Br(x0)) < nR (86)
then

1o (Bry2(x0)) = 0,

that is Bg/2(x0) S £2\Sine-
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Proof. In force of (85) and (86), we know that

. E¢,(Qs,, Br(xo))
lim sup
n— 400 Rlog (eq/R)

In particular, the assumption (10) is satisfied along the subsequence {¢,}. Then, we
can apply Proposition 8 with & = 1/2 and we obtain

E¢,(Br2(x0)) < CR
for n large enough. Due to (85), we deduce

o (Br2(x0)) < 1}2225 e, (Brj2(x0)) = 0.

O
By the monotonicity formula (Lemma 24), for any x € §2 the function
B, (x
r e (0, dist(x, 9£2)) — #o (B- ()
2r
is non-decreasing, so the limit
B,(x
O(x) := lim M (87)
r—>0t 2r

exists. The function @ is usually called the (1-dimensional) density of 1¢ (see [63,
p- 10]).

Lemma 50. For all x € Hine N §2, we have O (x) = n/2.

Proof. This follows immediately by Lemma 49. Indeed, if x € HAjpe N §2 then for
any r > 0 we have uo(B;(x)) > 0, so Lemma 49 implies

to(Bar(x)) _ 1
4r 2’
O

1\

Passing to the limit as r — 0, we conclude.
The strict positivity of @ has remarkable consequences.
Proposition 51. The set .S ine N $2 is countably 7 -rectifiable, and
AN (Hine N 2) < +00.

Moreover, there holds

(1oL 2)(B) =/ O(x)dA# (x) forall B € B(R2).
Bm«%inemg
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Proof. Lemma 50, together with [63, Theorem 3.2.(i), Chapter 1] and (H), implies
AN (Fiine N 2) £ 207 po(R) £ 207 M < +o0.

Moreover, since the 1-dimensional density of wo L £2 exists and is essentially
bounded away from zero, the support is a .77 ! -rectifiable set and 11o_£2 is absolutely
continuous with respect to 7' L (.Aine N §2). This fact was proved by MOORE [55]
and is a special case of PrEiss’ theorem [58, Theorem 5.3], which holds true for
measures in R” having positive k-dimensional density, for any k < n. Thus, there
exists a positive, .7 !-integrable function g: £ — R such that

(moL 2)(B) = / g dA ()
Bﬂéﬂliner\Q
for any B € %(52). By Besicovitch differentiation theorem, there holds
| po(Br(x))
m =
r—0+ 1 (Br(x) N Aine)

for.##!-almostall x € .AineN$2. On the other hand, because . #ine N2 is rectifiable
and has finite length, [30, Theorem 3.2.19] implies that

lim A (B (x) N HAine) _
r—0t 2r

g(x)

1

for 1 -almost all x € Hine N £2. Combining these facts with (87), we obtain
that ® = g 7 L_almost everywhere on .#ipe N §2, so the proposition follows. O

To complete the proof of Theorem 1, we check that Q,, locally converge to a
harmonic map, away from .#ipe.

Proposition 52. There exists a map Qo € HILC(Q\%me, A" such that, up to a
relabeled subsequence,

Q:, — Qo strongly in H;\ . ($2\Fine, So)-

The map Qg is minimizing harmonic on every ball B CC $2\.Sine. Moreover,
there exists a locally finite set S5 S 2\ ine sSuch that Qy is of class C*
on 2\(Hine U ypts)» and

Q¢, — Qo locally uniformly in $2\(Aine U Spts)-

Proof. Fix an open subset K CC $2\.%jine. Combining Proposition 8 with a stan-
dard covering argument, we deduce that minimizers Q. satisfy

E¢(Q¢, K) = C = C(K),

therefore they are weakly compact in H' (K, Sp). It follows from Proposition 47
that the convergence is strong, and any limit map Qg is locally minimizing har-
monic. Then, on each ball B CC £2\.Yine there exists a finite set Xg € B
such that Qg € C*°(B\Xpg, So), because of [61, Theorem II]. Therefore Qg €
C®(2\Aine U Spis), where /s 1= UpXp is locally finite in £2\.%jpe. The
locally uniform convergence Q;, — Qo on £2\(Aine U Spts) follows from Propo-
sition 48 and a covering argument. O
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4.4. The Analysis Near the Boundary

Proposition 8, which is the key step in the proof of our main theorem, has been
proven on balls contained in the domain. In this subsection, we aim at proving a
similar result in case the ball intersects the boundary of §2. For this purpose, we
need an additional assumption on the behaviour of the boundary datum. Let I” be
a relatively open subset of 9£2. We assume that

(Hr) For any 0 < ¢ < 1, there holds g, € (H' NnL®

loc loc

any K CC I there exists a constant Ck such that

)(I", Sp). Moreover, for

Ec(ge, K) = Ckx and ||ga||L0<>(K) < Ckg
forany0 < e < 1.

For instance, the families of boundary data given by (8) and (9) satisfies Condi-
tion (Hr)on I" := 02\ X.

Proposition 53. Assume that the conditions (H) and (H ) hold. Forany(0 < 6 <1
there exist positive numbers 1, & and C such that, for any xo € §2, R > 0 satisfying
Br(x0) N3 C I andany 0 < & < &R, if

R
E.(Q¢, Br(xp) N £2) < nRlog - (88)
then
E¢(Q¢, Bor(xo) N §2) < CR.

By a standard covering argument, we see that Proposition 53 implies the weak
compactness of minimizers up to the boundary. More precisely, we have

Corollary 54. Let I" be a relatively open subset of 0§2. Assume that the condi-
tions (H) and (Hr) are satisfied. Then, there exist a subsequence ¢, \ 0, a closed
set Hine € 2 and a map Qg € HILC((.Q U I\ Aine, A) which satisfy (i)—(iv) in
Theorem 1 and

Qe — Qo weakly in Hy (2 U I\ HAine, So)-

The set .Aine is again defined as the support of the measure g, where pg is
a weak* limit of {{tg}o<e<1 in C(£2)" and the j,’s are given by (84). The proofs
in Section 4.3 remain unchanged. We cannot expect strong H'! convergence of
minimizers up to the boundary, unless some additional assumption on the boundary
datum is made. Moreover, the intersection .#jine N 1" may be non-empty. An example
is given in Section 5.4, Proposition 62.

Proof of Proposition 53. For the sake of simplicity, we assume that xo = 0 and
set Fe(r) := E¢(Q¢, B N $2) for 0 < r < R. The coarea formula implies

Fe(r) = /r E¢(Qe, 0Bs N $2)ds
0
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for0 < r < R, so0 F/(r) = E;(Q, 3B, N §2) for almost everywhere 0 < r < R.
Define the set

i 2
Df = [r € R, R): Fl(r) < —"

R
og — .
-0 %%

The assumption (88) and an average argument give

(1-6)R

21 (D?) > (89)

On the other hand, for any radius r € D? we have

Ee(Qe, 3(B, N2)) = FJ(r)+ E:(Qe, B, N3S2)
Hpy o
< i/ (logz — logé) + C,
1-6 )
where C is a constant depending on xo and R. Therefore, by choosing 1 small
enough we obtain
r
E (Qg, 0(B, N $2)) § 770108 g

0 <& < &R, é- := €0, where ng and £, are given by Proposition 33. With the
help of this estimate, and since B, N §2 is bilipschitz equivalent to a ball, we can
repeat the proof of Lemma 45. We deduce that

Fo) < CR (Ee(Qe, 8B 0 202 +1)

for any r € D and 0 < & < §yR. Then, using the elementary inequality (a +
b)!/2 < a2 + b'/% and (Hr) again, we infer

F.(r) < CR {(F;(r) + Eo(Q., B, N3))* + 1}

< CR(F()'+1) (90)

forany r € D® and0 < & < &yR. Thanks to (89) and (90), we can apply Lemma 46
to y := F,. This yields the conclusion of the proof. O

5. Structure of the Singular Set: Proof of Proposition 2

5.1. The Limit Measure is a Stationary Varifold

The aim of this section is to prove Proposition 2. We start by showing that
o L £2 is a stationary varifold. These objects, introduced by ALMGREN [4], can
be thought as weak counterparts of manifolds with vanishing mean curvature. For
more details, the reader is referred to the paper by ALLARD [2] or the book by
SIMON [63].
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Before stating the following proposition, let us recall some basic facts. The
rectifiability of gl £2 (Proposition 51), together with [63, Remarks 1.9 and 11.5,
Theorem 11.6], implies that for pp-almost all x € £2 there exists a unique
1-dimensional subspace L, C R" such that

—X

lim Alw( )mw@)=@@X/ o(y) dA () oD
1—0 JRd A Ly

for all ¢ € C.(R?). Such line is called the approximate tangent line of g at x,
and noted Tan(uo, x). Now, let G1 3 € M3(R) be the set of matrices representing
orthogonal projections on 1-subspaces of R3.Let A(x) € G 3 denote the orthogo-
nal projection on Tan(ug, x), for almost all x € 2. A varifold is a Radon measure
on £2 x Gy 3. The varifold associated with o L £2 is defined as the push-forward
measure Vo := (Id, A)#(uoL £2), that is the measure Vo € .Z (2 x G, 3) given
by

Vo(E) :=pno{x € £2: (x, A(x)) € E} forany Borel set E C 2 x G 3.

The varifold Vy is stationary (see [2, § 4.2]) if and only if there holds
/ Aij(0)3;X; (x)dpo(x) =0 forany X € CH(£2, R?). (92)
Q

Proposition 55. The varifold V associated with o §2 is stationary.

Proof. The proposition follows by adapting AMBROSIO and SONER’s analysis in [5].
For the convenience of the reader, we give here the proof. Define the matrix-valued

map A® = (Afj),‘,j: 2 - M3(R) by

. 1
Af; = —— (ec(Qe)8ij — 0 Q¢ - 0, Q)

Y Jloge|
fori, j € {1, 2, 3}. Then A is a symmetric matrix, such that

1

rA* = —— (3e.(Q0) ~ IVO.I) = e 93)
logel

and

|A®] < Cae. (94)

For any vector v € S?, there holds

(ec(00) = 1070 0:) < e, (95)

Afvv; =
ST Jlog e

so the eigenvalues of A® are less than or equal to .. Moreover, by integrating by
parts the stress-energy identity (Lemma 22) we obtain

/ AL (08X (1) dx =0 (96)
2
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for any X € Ccl, (2, R3). In view of (94), and extracting a subsequence if nec-
essary, we have that A* —* AY in the weak-» topology of .Z (2, M3(R)) :=
C.(£2, M3(R))’. The limit measure A° satisfies |A°| < C(uo L £2), in particular
is absolutely continuous with respect to po L §2. Therefore, there exists a matrix-
valued function A* € L' (2, po; M3(R)) such that

dA® = A*(x)d(uo L £2) as measures in .Z (2, M3(R)).

Passing to the limit in (93), (95) and (96), for pp-almost all x we obtain that A*(x)
is a symmetric matrix, with tr A*(x) = 1 and eigenvalues less than or equal to 1,
such that

/Q A;‘kj(x)ajxi (x)dpo(x) =0 97)

forany X € C (} (82, R3). Now, fix a Lebesgue point x for A* (with respect to o)
and 0 < A < dist(x, 042). Condition (97) implies

A oA -vx (2E) 4 =0 98
- ) - Iy no(z) = (98)

forany X € CC],(Bl, R3). Then,

-1 * * z -
‘A /]R3(A (z) — A (x))-VX( -

- 1o(Bi(x)

\—);_/

—0O(x)/2

as A — 0. Combined with (91) and (98), this provides

X

) duo(z)

”VX“LOO(BI)][ |A*(2) — A*(x)| dpo(z) = 0
B (x)

O(x)A*(x) - VX d#!
Tan(po.x)
— lim A~ / A*(x) - VX (ﬂ) dpo(x) = 0
r—0 R3 A

forany X € Cg. (By, R?). Since @ (x) > 0 by Lemma 50, applying [5, Lemma 3.9]
we deduce that at least two eigenvalues of A*(x) vanish, for j1p-almost all x. On the
other hand, we know already that tr A*(x) = 1 with eigenvalues < 1. Therefore, the
eigenvalues of A*(x) are (1, 0, 0) and A*(x) represents the orthogonal projection
on a line.

The push-forward measure V := (Id, A*)u#(uo L £2) is a varifold, and (97)
means that V is stationary. A classical result by ALLARD (see [2, Rectifiability The-
orem, § 5.5] or [5, Theorem 3.3]) asserts that every varifold with locally bounded
first variation and positive density is rectifiable. In our case, V has vanishing first
variation, and the density is bounded from below by Lemma 50. Therefore, by
Allard’s theorem V is rectifiable. In particular A*(x) is the orthogonal projec-
tion on Tan(.Ajpe, x) for uo-almost all x € §2, so V = Vq and the proposition
follows. 0O
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Remark 56. In general, we cannot expect that g is associated with a stationary
varifold, that is stationarity may fail on the boundary of the domain (see Section 5.4).
Indeed, stationarity is deduced by taking the limit in the Euler-Lagrange system
associated to the energy, and such a system is not satisfied on the boundary.

Stationary varifolds of dimension 1 are essentially the sum of straight line seg-
ments (see [3]). However, the sum can be locally infinite. To rule out this possibility,
in the rest of the section we prove that the 1-dimensional density of oL £2 is con-
stant almost everywhere As a consequence, we obtain that .#jipe N £2 is essentially
a locally finite union of line segments [3, Theorem p. 89]. In order to compute
the density of po L £2, we apply an argument by LiN and RIVIERE (see [48, Sec-
tion III.1]). Essentially, by scaling we reduce to an auxialiary problem defined on
a cylinder, for which we prove refined energy estimates. This requires, once again,
interpolation and extension arguments. For the convenience of the reader, we work
out this argument, which is sketched in [48], in detail.

5.2. An Auxiliary Problem: Energy Bounds on a Cylinder

We consider the following auxiliary problem. Given some (small) parame-
ters 0 < 8, & < 1, we consider the closed cylinder As := B} x [—1, 1] with
lateral surface Iy := BB(% x [—1, 1]. Let gsz € H'(3As, Sp) be a boundary
datum which satisfies the following conditions:

llgs.zllLoas) S M 99)
)

Ez (g5 B x {—1, 1)) £ Mlog - (100)
&
b))

Ez (857 T5) < nlog - (101)

for some positive constants M and 7. Let us z be a minimizer of the Landau-de
Gennes energy (LG,) in the class H;H (As, So).

Lemma 57. Forany M > 0, there exists ng > 0 andforany0 <n < 19,0 <8 < 1
there exist positive numbers gy, C and a(M, n, §) with the following properties.
If0 < & < &y and gs 5 satisfies (99)—(101), then either
8
Ez(usz, As) = a(M, n, 8)log = (102)
€
or
3
(ZK* - (X(M, n, 8))10g g - C § Eg(u(s,gv Aﬁ)
8
S 2k +a(M, n, 8)log =+ C. (103)
£

Moreover, we can choose the number o(M, 1, §) in such a way that

(M, 0, 8) £ C (M + 8% + 61+ 1 +57"n)
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Again, the key step in the proof is to approximate us z with an .4 -valued map,
defined on the lateral surface of the cylinder. This is possible, because the energy
on Iy is small compared to |log €|, by (101). Set h(g) := £!/?|log &| and

Ass = (352\35275/1@) x [=1, 1], Dsz = dBZ sz x [~1, 11,
Then, by arguing exactly as in the proof of Proposition 33, we obtain

Lemma 58. For any M > 0, there exist positive numbers ny and C and, for any
0<n<nyand0 < § < 1, there exists &y > 0 with the following property. If
0 < & = & and g5z satisfies (99)—(101), then there exist maps vsz €
H'(Dsz, N)and sz € H'(As.z, So) which satisfy

V55 = 85.5 A% -almost everywhere on 0As.:\Ds z,

055 = Us g S -almost everywhere on D; z (104)
1 1)
_/ Vus.|? dA#? < Cilog 2, (105)
2 Ds z I

_ 1)
Ez (g5, Asz) = Cnh(e)log B (106)

Sketch of the proof. In Proposition 33, the datum g5 z is defined on a sphere of
fixed radius. Here, in constrast, the domain is the lateral surface of a cylinder of
variable radius §. To overcome these issues, we first rescale the domain so that
we work in the cylinder B]2 X [—8_1, 8_1]. Then, we construct a good grid of
size h(g), in the sense of Definition 36. By an average argument, the constant Cg
in Definition 36 behaves as O(§), and in particular is uniformly bounded. Although
the geometry is different, we can repeat the proof of Proposition 33 because the
construction used in the proof is local, that is, the behaviour of v z and ¢s z on a cell
of the grid only depends on the behaviour of us z on the same cell. By Remark 43,
the constants in (105)—(106) only depend on the shape of a given cell (thatis on Cg),
not on the size of the whole domain. Therefore, they are uniformly bounded with
respectto . 0O

Since vs z is an .4 -valued H'-map, it is possible to define its homotopy class
(see Lemma 29). If such homotopy class is trivial, there is no topological obstruc-
tion, therefore the energy of a minimizer is small compared to | log €|, that is, the
upper bound (102) holds. Otherwise, we prove that (103) holds. The lower bound
follows by the Jerrard—Sandier type estimate (Corollary 16), while the upper bound
is obtained via a comparison argument.

The Homotopy Class of v; ; is Trivial: Proof of (102) We assume now that the
homotopy class of vs ; is trivial, and we construct a competitor which satisfies the
energy bound (102). Using the properties (105), (106) and a comparison argument,
wefindz_ € (=148, —1+28) and z4 € (1 — 28, 1 — §) such that

1

cn. 8
- Vuse|” do#t < =Tlog 2 (107)
2 ’ 5 8
335276h(é>><{1*’1+} €
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and
Cn . _ 1)
Ee(gse, (B{\Bj_s) X {2, 24}) £ <~ h(@) log =. (108)

Since the homotopy class of vs z is trivial, with the help of (107) and of Lemma 28
we find a map ws z € Hl(BBZﬂSh(g) x {z—, z+}, ) such that
1 2 ) 1)

— |Vws z|” d#* < Cylog -. (109)
Bi_snee) x{a— 24} €

‘We consider now four subdomains:
Ay ==B§ x (=1,2), A3 =B g5 % @, 2y), Af =85 x (4. 1)
and

Az = (B{\Bj _spe) X [z, z4].

We are going to apply Lemma 25to Ay, Ag’ s and A;’ (these subdomains are convex,

so they are star-shaped with respect to each of their points). We first consider A;,
and we assign the boundary datum

g5z ondA; NdAs
g;;; =@ oOn (Bg\B(ng(;h(g)) x {z4}
wsz on B g o X {z4).

Let u;“ = be aminimizer of (LG,) on A7 subject to the boundary condition u = ggfé
on aA; By applying Lemma 25 and (100), (101), (108), (109), we obtain

) 8
Ez(uy ;. AY) S C8 Ez(gf ;. 0A]) < C(OM + 81+ nh(g)) log = (10

We define a function uy ; in Ay a similar way. Finally, in Ag s we consider the
boundary datum

) Vse on aBg,(gh(g) X (2=, z+4)

0
8,6 "
[w8,§ on B(;Z_sh(g) X {Z—a Z+}»

8

and denote by ug = the corresponding minimizer. By applying Lemma 25, (105)
and (109), we deduce

)
Ee(uis, A3g) < CEs(g5, 043;) < Cnlog . (111)

The boundary conditions we have defined on the boundaries of AT, Ag’ 5 Ay
and Ag’ - match. Therefore, we can define an admissible comparison map by past-
ing u;{é, ug’g, Usz and ¢; ; restricted to Ag’g. Combining (106), (110) and (111),
we obtain

)
Ez(usz, As) = C(8M +8n+ nh())log 3
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Since h(g) = £'/?|log&| < 2¢~! for 0 < & < 1, we conclude that (102) holds if
a(M, n, 8) 2 Cy M +38n+n), (112)

for some universal constant Cj.

The Homotopy Class of v; z is Non-trivial: Proof of the Upper Bound in (103)
We suppose now that the homotopy class of vs z is non-trivial and we prove the
upper bound in (103), again by a comparison argument. To construct the comparison
map, we consider the same decomposition of As into four subdomains as before.
We first construct a map ug’é e H l(AO)E, So) by applying Lemma 29 with the
choice g = v; z. Thanks to (105), we obtain that

)
Eeuf s A39) < (26, + CO7" +8))log = +C (113)
: : g
and
0 2 ~1 8
EewS s, B yes ¥ (2 24]) £ (26 + CO7' + 5)n) log = +C. (114)
Next, we consider A;’ and we assign the boundary datum

855 on 3A2_ NoAgs
g 1% on (B,sz\Bgz_(Sh(g)) X {z4+}
ugyé on Baz—ah(é) x {z4}.
Because of Lemma 25, (100), (101), (108) and (114), a minimizer u:{é correspond-
ing to the boundary condition u = ggg on BA(';" satisfies

3
Es(uf . A7) S C8 Ex(g]z 0A7) < C (8M +8%n+8n+n)log = (115)

(we have also used that 2(§) < C). In the subdomain Ay, we define Usz ina
similar way. As before, pasting u ;, ug, = u;,g and s ; restricted to A:S, ; We obtain
an admissible comparison map. Therefore, combining (113), (115) and (106), we
deduce that the upper bound in (103) holds, provided that

«(M, n, §) = C» (6M+52n+8n+n+6—1n). (116)

The Homotopy Class of v; ; is Non-trivial: Proof of the Lower Bound in (103)
Finally, we need to prove the lower bound in (103), again assuming that the homo-
topy class of vs z is non-trivial. The essential tool, here, is the Jerrard—Sandier type
estimate (Corollary 16). However, in order to be able to apply such an estimate, once
again we need to take care of the boundary conditions by means of an interpolation
argument. Using cylindric coordinates (p, 6, z) € [0, 8] x [0, 27) x [—1, 1], we
define the map iis z: As — Sp by

pel®

i ——= 0. if p <8 —08h@E), |z S 1
sz (1 e z) ifp = @), lzl =
05,5 (28 = 8h(8) — p)e'’, z) If§—8h(E) S p =6,z S 1.

iis z(pe'’, ) =
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This map belongs to H I satisfies

iis.:(8¢", 2) = vs.3(e'?, z) for s#%-almost all (0, z) € [0, 27) x [—1, 1]

(117)
and
E:z(isz, As) < Ez(usz, As)+ Ez(psz, Ass)
(106) 5
< E:(usz, As)+ Cnh(e)log z (118)

By the Fubini theorem and (117), for almost everywhere z € [—1, 1] the map i z
restricted to 8B52 x {z} belongs to H', is .4 -valued and has a nontrivial homotopy
class. Moreover, we can always assume WLOG that £ < &y < §/2. Let us apply
Corollary 16 to the function is z restricted to B§ x {z}. This yields

~ - )
Eg(iise, Bj x {z}) + C38 Ex(iis s, 0B} x {z}) Z ki log = — C.
By integrating with respect to z € [—1, 1], and using (117) again, we deduce that

8
Ez(usz, As) +CS / ’Vv,s,g‘z A% = 2, logg —C.

Ds &

Then, thanks to (105), we obtain
~ 8
Ez(itsz, As) = 2k — Cén)log = — C.
g
Finally, combining this inequality with (118), we conclude that
_ 8
Ez(usz, As) 2 2k — Cn— Cnh(e))log = —C
g
and, since h(8) := £!/2| log £| is bounded, the lower bound in (103) is satisfied if

a(M, n,8) = C3@n+n). (119)

Thanks to (112), (116) and (119), Lemma 57 is satisfied if we set

a(M, 1, 8) i=max(C1, Ca, C3) (8M + 6% + 81+ +87"n)
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5.3. The Singular Measure has Constant Density

Aim of this subsequence is to prove the following
Proposition 59. For 77 Lalmost all x € HAine N 2, there holds O (x) = k.

This property is of crucial importance, because it allow us to describe the
structure of the singular set in the interior of the domain and to prove Proposition 2.

Proof of Proposition 59. Because 1oL 2 is rectifiable, © is approximately con-
tinuous and p( has an approximate tangent line (that is, (91) holds) at 57 Lalmost
every point xg € -Aine N £2. Fix such a point xg. By (91), there exists a line L such
that the measures (vy);~o defined by

v(A) =2 uo(MA N R) for A € BRY)
satisfy
Vi =% v 1= O(xo) L L weakly* in .#,($2) as A — 0. (120)

Up to rotations and translations, we can assume WLOG that xo =0 and L = {x €
R3: x; = xo = 0}. Let

, 22M

M =—— (121)
dist(xg, 082)

where M is given by assumption (H), and let 9 = no(M") be the corresponding
number given by Lemma 57. Let 0 < n < g and 0 < § < 1 be two small
parameters, to be choosen later. We consider again the cylinder As := B(s2 x[—1, 1],
with lateral surface Iy := 3352 x [—1, 1]. Since vy(I'5) = 0, because of (120) there

exists a positive number Ao = Ao(n, §) < dist(xg, 0§2)/ (2+4/2) such that
An
no(AIs) < 5 for 0 < A < .

Then, for a fixed 0 < A < A, thanks to (84) we find a positive number ng =
no(M’, n, 8, A) such that

A8 .
E., (Qg,. XIs) < Anlog — for any integer n = nyg. (122)
&

n

Moreover, the cylinder A A is contained in a ball centered at x¢ with radius V20 <
ro := dist(xg, §2)/2. Then, because of the monotonicity formula (Lemma 24)
and (H) we have

2N (H)—(121) A5
o By 2 M 10g X
ro &n

Esn (Qs,l’ )\AS) §

for any integer n = ng. Thanks to the Fatou lemma, we deduce

oo 5 Y
liminf E¢, (Q,,, Bis x {z})dz £ AM'log —
P

5 n—>+0o0 n
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s0, by an average argument, we can find two numbers z_ € [—A, —31/4], z4 €
[31/4, A] and a subsequence (still denoted ¢,) such that

2 / A8
Ee,(Qe,» Bis x{z—, z4) =M 10g8— (123)

n
for any integer n = ng. To avoid notation, we will assume thatz_ = —A and z =
A. Reducing the value of ng if necessary, we can assume that ¢, < A&j, where
g0 = &o(M’, n, 8) is given by Lemma 57.
Now, fix an integer n = ng. We set & := g, /A (notice that & < &¢) and
usz(y) = Qg, (Ay) for y € As.
From (122) and (123) we deduce that
A<l k) E)
Ez(usz, Is) < nlog=, Ez(usz, Bi x {—1, 1}) < M'log =
g £

so the conditions (100) and (101) are satisfied; moreover, u; z satisfies (99) because
of (H). Therefore, we can apply Lemma 57. Scaling back to Q;, , we conclude that
either

Ad
Ee,(Qs,, LAs) = Aalog —, (124)
&

n
or

AS AS
A 2Ky — ) log P AC S Ep (Qe,, AAs) S A (2ks +a) log = +AC, (125)

n n

where @ = a(M’, 5, 8) is a positive number which satisfies
a < C(8M/+82n+8n+77+8_1n).

At this point, we choose § := 771/2, so that @ — 0 when n — 0.
Suppose that the inequality (124) holds. then, passing to the limit as n — 400,
thanks to (84) we find that

o (interior of AAs) < Ao
Passing to the limit as A — 0, with the help of (120) we obtain
20 (x0) = vo(As) = a,

and finally, letting  — O (so that @ — 0) we conclude that & (xo) = 0. This is a
contradiction, because xg is supposed to be an approximate continuity point for ®
and @ is bounded away from 0 on .Hipe N 2 (Lemma 50). Therefore, (124) does
not hold, and so (125) must be satisfied instead. Passing to the limit as n — 400
and & — 0, and using (84) and (120) again, we deduce that

2k —a S vg(As) S 2k +a
or equivalently,

o o
K*_5§@(x0)§’f*+5~

Letting n — 0, we conclude that @ (xg) = k4. O



654 GIACOMO CANEVARI

Remark 60. As a byproduct of the previous proof, we obtain a topological infor-
mation about Qq. Let x9g € Hine N £2 be as in the previous proof (that is, ®
is approximately continuous at xo and Tan(ug, x) exists). If D CC £2 is a disk
and D N.Aipe = {x0}, then the homotopy class of Qg restricted to 3 D is non-trivial,
for we know by the previous proof that (125) must be satisfied, so we are in the case
where vs z has a non-trivial class (we are using the notation of Section 5.2). This
means that ¢ o us z, where is well-defined, has a non-trivial class too. Taking the
limit as ¢ — 0, we conclude that Q¢ has a non-trivial class because us z converge
locally uniformly to Qg, away from the singular set Ajpe U /s (Theorem 1).

Proposition 2 now follows quite easily from a result by Allard and Almgreen,
which is a structure theorem for stationary varifolds of dimension 1.

Proof of Proposition 2. Let .’ be the set of points x € .Hipe N 2 such that
O (x) = k4. Since oL £2 is a stationary varifold, [3, Theorem and Remark p. 89]
imply that . is a relatively open subset of .#ine N £2, such that

AN ((Fhine N 2\S") =0, (126)

and .’ N K 1is a finite union of straight segments, for any open set K CC £2.
Moreover, the set .’ must be dense in .#ine N §2. Indeed, suppose that there exists
a point xo € Hine N §2 and an open neighborhood B C £ of xg, such that B
does not intersect the closure of .. Then, we have 2! (Hine N B) = 0 because
of (126), therefore uo(B) = 0 by Proposition 51 and so .#jne N B = @, which is a
contradiction. It follows that, for any open set K CC £2, Hipe N K is a finite union
of closed line segments, Ly, ..., L,. By subdividing the segments, if necessary,
we can assume WLOG that, for each i # j, either L; and L are disjoint or their
intersection is a common endpoint.

Property (i) now follows directly from Remark 60. We still have to show Prop-
erty (ii). Suppose that xo € K is an endpoint of exactly ¢ < p line segments,
say Ly, ..., Ly. We claim that ¢ is even. Let V be the §-neighborhood of .Hie,
for a small, positive number é. Pick a cylinder A € K which contains xg, such that
the lateral surface of A does not intersect V (see Fig. 4). Since (#ps\V) N K is
finite, modifying A if necessary we can assume that d A\ V does not contain any
singular point .5, s0 Qo is well-defined and continuous on 9 A\ V. In particular,
if we denote by U_, U the two bases of the cylinder, the maps Qo 3y, and Qojyy_
are homotopic to each other. Assume now, by contradiction, that ¢ is odd. Then
one of the bases—say U;—must intersect an even number of segments, and the
other must intersect an odd number of segments. Therefore, due to Remark 60, the
homotopy class of Qo|57, must be trivial, and the homotopy class of Qg5 must
be non-trivial. This is a contradiction, hence g is even. 0O

Remark 61. Fork € {1, ..., g},let v® be the direction vector associated with L k

which has unit norm and points outward from xg. Then, the stationarity of .#jipe
implies that

k=1
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e

Fig. 4. A branching point for the singular set .#}jne, surrounded by a cylinder A. The homo-
topy class of Qg restricted to the boundary of a disk which crosses transversely -#ipe is
determined by the number of intersections between the disk and .#jj,e, modulo 2. A con-
figuration such as the one represented in this figure cannot occur, otherwise Q restricted
to 0U4 and 0U— would be in different homotopy classes

Indeed, taking an arbitrary vector field X supported in a small neighborhood of x,
thanks to (92) we have

&l O k S
0=K*Z/O v v 0,X; (x + 100y di = —ie D v X(x).
k=1 k=1

5.4. Concentration of the Energy at the Boundary: An Example

The arguments we presented in this section may not be extended to the analysis
of the singular set near the boundary of the domain. In particular, the stationarity
of o may fail. We discuss now an example where the boundary datum is inde-
pendent of ¢ and smooth, yet the geometry of the domain forces the energy of
the minimizers to concentrate at the boundary. As a result, .#jjpe is non-empty
but Aine S 92, and Hine is not a locally finite union of straight line segments.

Letr: (0, +00) x R x [0, 2] — R3 be the cylindrical change of coordinates,
given by

r(p, z, 6) == (pcosb, psind, 2)'.

Let D be the disk B (2, 0) inthe (p, z)-plane, and let §2 be the solid torus generated
by the revolution of D, that is

2
2:=r(D x [0, 27)) = [(xl, x2, x3) € R*: (,/x12+x§—2) +x3 < 1].
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We consider the boundary datum g € C'(8£2, .4") givenby g = hor~!, where

9(p, 2) . o(p, z))@2 1 }
5 ,

e ——1Id
+ e3 sin 2

h(p, 2) = sx [(el cos 3

and ¢(p, z) is the oriented angle between the ray starting at (2, 0) and passing
through (p, z) and the positive p-axis. Notice that, for each 0 € [0, 2x), the
restriction of g to the slice r(0 D x {6}) has a non-trivial homotopy class. We will
prove the following:

Proposition 62. For this choice of the domain and the boundary datum, we have
Fine =1 ((1, 0} x [0, 21) = [ (x1, 22, x3) € RY: xf 423 =1, x3 =0},
In particular, Sipe < 052.

Because of the cylindrical symmetry, the problem is essentially bidimensional.
Indeed, given any map Q € H g} (£2, So), by a change of variable we obtain

2 1 1 1
Ec(Q, 2) =/ / [2 |3p(Qor)\2+5 0:(Q o) + 2f(Qor)]pdpdzd9
0 D &€

2
1

+/ /—|89(Qor)|2 dpdz de. (127)
o Jp2p

Therefore, a map Q, is a minimizer for (LG) in the class H gl (82, Sp) if and only

if Qs = P. or~!, where P, only depend on (p, z) and is a minimizer for the
weighted functional

1 1
F.(P, D) := 2n/ — VP> + = f(P)} pdpdz (128)
D 2 82
in the class
HY(D, So) := {P e H'(D, Sp): P = h on aD}.

Lemma 63. For any § > 0, there exists a constant Cs such that, for any 0 < ¢ <
8/4, there holds

Fe(Pg, D) £ 27wk (1 4 8)|loge| + Cs.

Proof. Fix§ > 0,0 < e < §/4and let ps := 1 + 35/4, Ds := B§/4(,03, 0). We
define a map 155,8 : Ds — Sy by setting

- 4 4
Psc(p, 2) =1 (\/ (0 — ps)> + zz) h (2 + 3(;) — P5)s ?Z)

if
2

)
— )+ 2 <
(o — ps) = 16’
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where 7, is defined by (40). The restriction of f’,;,g to dDs is a .4 -valued loop
which depends on § but not on ¢, and has a non-trivial homotopy class. Therefore,
there exists a map Ps: D\Ds — .4 such that

f’(s =h on 3D, f’(s = i’g,g on 3D§.

We extend ﬁ,g, ¢ to a new map, still denoted ﬁ,g,g, by setting f’,s, ¢ = Pson D\ Ds.
Then Ps . € H ,ﬁ (D, Sp) and, through a straightforward computation, we obtain

F.(Ps, D) < Fu(Bs, D) = Fo(Py., D5>+n/ V By 4
D\Ds

< 27(1 + 8)Ec(Ps ., Ds) + Cs
8/4
<27(1 +68)log— + Cs =27 (1 + 8)|loge| + Cs,
&

where the symbol Cs denotes several constants which only depend on §, D
and h. O

This lemma has an immediate consequence on the limit measure of the three-
dimensional minimization problem.

Corollary 64. There holds
pro(2) < 27k

Proof. Since we have E.(Q;, §2) = F.(P;, D) because of (127), the corollary
follows by taking the limit in Lemma 63 firstas e — 0,thenas§ — 0. O

Now, since the three dimensional-minimizers Q. satisfy Q. = P, or~!
and P. is independent of the #-variable, the singular set .#jjpe must be of the
form .Hipe = r(X x [0, 27)) for some ¥ C D. Notice that ¥ is non-empty,
because the homotopy class of the boundary datum # is non-trivial. Moreover, X

is finite because 2! (HAine) < 00.
Lemma 65. Suppose that (pg, zo) € X. Then
1o(£2) = 27 poks.

Combining Corollary 64 and Lemma 65, we immediately deduce that pg = 1,
that is, X = {(1, 0)}, whence Proposition 62 follows.

Proof of Lemma 65. Fix a positive number § < 1/2. It suffices to prove the
inequality

Fe(Ps, D) 2 21k (po — 8)|loge| — Cs (129)

for any small ¢ and for some positive constant Cs which depends only on 8, D, &.

The lemma will follow by using (127) and passing to the limit as ¢ — 0, § — 0.
Consider the disk D’ := B32 /2(2, 0) DO D, as well as the associated torus of

revolution 2" := r(D’ x [0, 27)). We extend each minimizer P, to a new map
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defined on D/, still denoted by P, by setting P, := h on D'\ D. In the same way,
we extend Q. by setting Q. := g on £2’\ 2. Moreover, we set

Dj := B;5(po, 20).

Since X is finite, reducing the value of § if necessary we can assume that Dy N X' =
{(po, z0)}. Therefore, Remark 60 implies that Q. restricted to d D§ has a non-trivial
homotopy class, provided that ¢ is small enough. Thus, we can apply Corollary 16
to bound from below the energy on Dj. We have

’ § ’
Fe(P;, Dj) 2 21 (;00 - E) E (P, Dy)

8 ’ 8 ’
2 27Ky /00_5 ¢o(Pe, dDy) logg_C(Ee(Pe, 305)‘1‘1)-
(130)

Thanks to Theorem 1 and Corollary 54, we have Q. — Q¢ weakly in H I ina
small neighborhood of r(d D§ x [0, 27)) C $§2’. Therefore, modifying again the
value of § if necessary, we can assume that

Q. — Qo weakly in H!(r(dDj x [0, 27)), So)

(this property may not be satisfied for any value §, but it is satisfied for almost every
value thanks to the Fubini theorem). By the Fubini theorem again and compact
Sobolev embedding, this yields

P, — Py weaklyin H I(BD:;, So) and uniformly,
where Py := Qg or is an .4 -valued map. In particular, there holds
$o(Pe, dD5) — do(Po, dD5) =1 and E¢(Pe, dD;) = Cs. (131)

Combining (130) and (131), we deduce that for (almost every) small enough 8, there
exist positive constants Cs and &g such that (129) is satisfied for any 0 < ¢ < &5.
This is enough to conclude the proof of the lemma. O

6. Sufficient Conditions for (H)

6.1. Proof of Proposition 3

In this section, we analyze the role of the domain and the boundary data in
connection with (H), and prove sufficient conditions for (H) to hold true. We prove
first Proposition 3, namely, we assume that §2 is a bounded, Lipschitz domain and
the boundary datum is bounded in H 172 (082, A), and we show that the inequalities

1QcllLoc(2y = M (132)
and
Ec(Q:) = M (Jloge| + 1) (133)

are satisfied for some positive M. The L°°-bound (132) is easily obtained by a
comparison argument.
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Lemma 66. Minimizers Q. of (LG;) satisfy

2
[ QellLoo(2) = max [\/;S* ||g£||L°°(8.Q)} :
2
M := max 35 1QellLepa) |

anddefiner: Sg — Sobyw(Q) := M|Q|7'Qif|Q| = M,7(Q) := Q otherwise.
We have

Proof. Set

Df(Q)-Q=-alQ —btr Q*+¢|Q[*>0 when [Q] > \ES*
(this follows from the inequality V6| tr 03] < 10)3; see [50, Lemma 1]). We deduce
that f (7 (Q)) = f(Q) for any Q. Moreover,  is the projection on a convex set,
so it is 1-Lipschitz continuous. Thus, the map m o Q, belongs to H;g(.Q, So),
satisfies |V(r o Q)| £ |VQ,| almost everywhere and E,(7 o Q) < E.(Q,),
with strict inequality if | Q.| > M on a set of positive measure. By the minimality
of Q¢, we conclude that | Q.| £ M almost everywhere. O

The logarithmic energy bound (133) is more delicate. The proof is adapted from
an argument by RIVIERE [59, Proposition 2.1], which involves Hardt, Kinderlehrer
and Lin’s re-projection trick (see [37, Lemma 2.3]) in an essential way.

Proof of Proposition 3. Since the boundary data are supposed to be .4 -valued,
they are bounded in L°°, so (132) follows by Lemma 66. We prove (133) by
constructing a suitable comparison function, whose energy is bounded by the right-
hand side of (133). Forany 0 < ¢ < 1, let u, € H'(£2, Sp) be the harmonic
extension of g, that is the unique solution of

—Au, =0 in £2
Ug = g onds2.

Since {g}. is bounded in H'/2 N L™, the sequence {u.}, is bounded in H' N L>®.
Let 8§ > 0 be a small parameter to be chosen later. For any A € Sg with |A] < §
and any ¢, we define

ud == (e 0 @) (e — A) 0 (uz — A),

where ¢: Sg — R and g: Sg\¢ — A4 are defined respectively in Lemmas 13,
12, and n, € C(R™, R) is given by

ner):=¢er f 0<r <e, ne(r)=1 if r Z ¢.
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By Lemma 12 and Corollary 18, we have ut € (H'NL>)(£2, So). We differentiate
u f and, taking advantage of the Lipschitz continuity of ¢ (Lemma 13), we deduce

2
Vil [ < (0 0 9) e = 4) 1Vl + (e 0 $)° e — )1V (@lue — AV

We apply Corollary 18 to bound the derivative of o(u, — A):

A
‘Vue

2 o d)? _
<C[(n;o¢)2<u8—A>+(”€ ¢) (e A)}IVueIZ.

¢ (ue — A)
On the other hand, there holds

A
£ () £ Clipnzar

SO

Ligue—a)>
A {pu—A)Ze) = 2
e (i) < [ (R + tommnza) o

)
te 1{¢<ug—A>§s}]- (134

Now, fix a bounded subset K C Sg, so large that u.(x) + BSSO C K for almost
everywhere x € §2 and any ¢ (we denote by B(sSO the set of Q € Sp with |Q| < §).

We set K, := K N{¢ < e}. We integrate (134) with respect to A € BBSO. We apply
Fubini—Tonelli theorem and introduce the new variable B := u.(x) — A. We obtain

ds#>(B)  _
A 5 < 2 05 2
/3650 Ee (us) A7) = ¢ /9 H (/K\Kg #*(B) U (Kg)) IVite]

+82%5(1{8)] dx.

We claim that

d.#3(B)

A (Ky) < Ce*  and /
K\K,

To simplify the presentation, we postpone the proof of this claim. With the help
of (135), we obtain

A 5 < 2 <
/B(g Ec (uf) a7 (a) £ € {(logel + 1) IVue |2, ) + 1} < C (lloge] +1).

Therefore, we can choose Ay € Sy such that |[Ag| < § and

E. (u;jO) < C(|loge| + 1). (136)
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The map u? O satisfies the desired energy estimate, but it does not satisfy the
boundary condition, since

u® =g (g — Ag) on 92. (137)

To correct this, we consider the maps {04} defined by

AeB}O
oa: Q€N 0(Q—A).

This is a continuous family of mappings in C' (4", .#") and g = Id_y . Therefore,
we can choose § so small that the map g4: .4 — A4 is a diffeomorphism for
any A € BSSO (in particular for A = Ag). Let % be the set defined by

%::{AQ:AER+, QEJV}.
We extend o, ; to a Lipschitz function % : % — % by setting

F(10) =10, (Q) forany L eR", Qe ¥

Remark that any P € % \{0} can be uniquely written in the form P = AQ for A €
R* and Q € ./, so .Z is well-defined. Also, f o .#(P) = f(P) because .% (P)
and P have the same scalar invariants. The map P, := .% o u? % is well-defined,
because uSA " € 9. Moreover, P, belongs to H;X(SZ, Sp) thanks to (137), and
satisfies

E¢(P:) = C(llogel + 1),
due to (136). By comparison, the minimizers satisfy (133). 0O

The claim (135) follows by

Lemma 67. For any R > 0, there exist positive constants Cr, Mg such that, for
any non increasing, non negative function g: Rt — R, there holds

Mg
/BSO (g0¢)(Q)dA°(Q) = CR/O (s +518(s) ds.

Assuming that the lemma holds true, choose R so large that K C B;O. Then,
the two assertions of Claim (135) follow by taking ¢ = 1o, and g(s) =
8’211(0, &) (s) + s’zl[g’ 400y (8), respectively. For the sake of clarity, we split the
proof of Lemma 67 into a few steps. For r > 0, we let dist, denote the geodesic

. . So .
distance in 0 B,", that is

1
dist-(Q, A) := infl/ ly' ()] dr: y e (0, 11,8B),
0

y0) =0, y(l) e A] (138)
for any Q € BB,SO and A C BB,SO, and set A,/ := € N E)Brso. Notice that there
exists a positive constant C such that

distjg(Q. P) < C|Q — P| (139)
forany Q, P € Sp with |Q| = | P|.
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Lemma 68. There exists a positive constant o such that
#(Q) Z adist|g (Q, JV@) forany Q € 8.

Proof. Fix Q € Spand P € JV@ By Lemmas 10 and 12, we can write

Q:s(n®2—%ld)+sr (m@’z—%ld), P=— (p®2—%ld)

for some orthonormal pair (n, m), some unit vector p, s, some positive numbers
s,s" and 0 < r < 1. Through simple algebra, we obtain

2 2 2
0= PP = 3527 —r+ D)= Zs5'(1 =)+ 55”

+2ss'{(n-p)* +r(m-p)*}. (140)
Moreover, we have | P| = | Q| if and only if
=20 —r 4 1). (141)

By minimizing (with respect to s’, p) the right-hand side in (140), subject to the
constraint (141), we find

dis(Q, #) = 22/ —r 4+ 1 [(1 )2 - (\/ﬂ - 1)2}

3

A

2 2
35— = 2516%(0).
Combining this inequality with (139), the lemma follows. O

Lemma 69. Ler 4" be a compact n-submanifold of a smooth Riemann
m-manifold .# , and let

Us:={x €.4: dist y(x, #") <5}

be the §-neighborhood of V' in M , for § > 0 (here dist_y stands for the geodesic
distance in M). There exist 8, > 0 and, for any § € (0, 8,), a constant C =
C(H, N 8 > 0 such that for any decreasing function h: Rt — RY there
holds

Cs
/h(distj,(x, A1) d%m(x)gc/ s () ds.
Us 0

Proof. We identify R” = R”" x R™™", and call the variable y = (y/, z) €
R" x R™™". For a small §, > 0, the §,-neighborhood Uj;, can be covered with
finitely many open sets {V}, <j<k and, for each j, there exists a bilipschitz home-
omorphism ¢;: V; — W; € R™ which maps .4 N V; onto R" N W;. Due to
the bilipschitz continuity of the ¢;’s, there exist two constants y, ¥ such that, for
any j and any y = (y’, z) € W}, there holds

yi Izl < dist 4 (9 ' (), A) S 2zl
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Therefore, if 0 < § < &, the change of variable x = go]l (y) implies

K
[ s ) aeme <3 [l e o] e
Us et

=M h(yilz) d2™ " (2)
B0, 129)

where M is an upper bound for the norm of the Jacobians J90/71. Then, passing to
polar coordinates, ‘

728
/ h (dist gz (x, A7) ™ (x) < M/ " " hyip) dp
Us 0

1 Yiy2p
< Myt /0 s h(s) ds.

O

Proof of Lemma 67. By Lemma 13, the function ¢ is positively homogeneous of
degree 1. Then,

R
/S (g0 $)(Q)dA>(Q) = / p“/ o € (8 (0)) A4 (Q)dp.
B 0 aB)°
By applying Lemma 68, and since g is a decreasing function,
R
oA (@) = | p* [ g(apdisti(Q. A)) dr*(Q)dp.
B 0 9B}0
Now, we apply Lemma 69 with .#Z = 8BIS°, N = AM"and h: s — g(aps). We
find constants § and C such that, letting Us be the §-neighborhood of Jl/l’ in aB]SO
and Vs := BBIS‘)\U(;, we have
[ wo0x@ a0
BY
R
= / p“[ / g (apdisti(Q, A)) d*(Q)
0 Us
+ / g (ap dist; (Q, A7) df”o”4(Q)] dp
Vs
R cs
< C/ p“[ / sg(aps) ds + g(@pd) %4%)] dp
0 0

(to bound the integral on Vs, we use again that g is decreasing). Now, the two
terms can be easily handled by changing the variables and using the Fubini—Tonelli
theorem:
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R apsC
[ oo @ari@ sac [0 [ ewadn
B 0 0
aSR
+(a5)*5c%ﬂ4(vg)/ t*g(r)dt
0

Co5.R 4
< Ca,g,R/ (t +t")g(r)dr.
0

Since o, § depend only on ¢ and .4/, the lemma is proved. O

6.2. Proof of Propositions 4 and 6

Condition (H) may be satisfied even if the boundary datum is not .4 -valued.
As we show in this section, if the domain satisfies a topological condition (H») and
if boundary datum is smooth (at least H' N L), satisfying a uniform L°-bound
and a logarithmic energy estimate (Hj3), then (132)—(133) are satisfied for some
constant M = M (82, My) > 0. This proves Proposition 4. In particular, we prove
the logarithmic energy bound (133) by constructing an admissible comparison
function, whose energy is controlled by the right-hand side of (133). If £2 is a
ball, it sufficies to extend homogeneously the boundary data. Since §2 is bilipschitz
equivalent to a handlebody by (H;), we reduce to the case of a ball by cutting
each handle of §2 along a meridian disk. This technique was used already in [37,
Lemma 1.1]. At the end of the section, we also prove Proposition 6.

Lemma 70. Assume that (H») and (H3) hold. There exists a finite number of prop-
erly embedded disks Dy, D3, ..., Dy C §2 suchthat 2\ Uf-‘: | Di is diffeomorphic
to a ball,

E(ge, 0D;j) = C (lloge| + 1) (142)

and

k
dist(g: (x), A) — 0 uniformly in x € U aD;. (143)
i=1
Proof. Foreach handle i of §2, there is an open set U; such that 32 N U; is foliated
by
INNU; = ]_[ aD¢,
—ap<a<ap

where the generic Dj' is a properly embedded disk, which cross transversely a
generator of 1 (§2) at some point. Then, Fatou’s lemma implies that

ao ao (H3)
/ liminf E, (g¢, 9D%) da < liminf/ Ee(ge, 3D%)da < C (lloge| + 1),
—ag e—>0 e—0 —ag

s0, by an average argument, we can choose the parameter a in such a way that D; :=
D¢ satisfies (142). Then, (143) is obtained by the same arguments as Lemma 38.
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(As in the lemma, we apply Sobolev embedding inequality not on d D; directly, but
on l-cells K C 9 D; of size comparable to ¢ |log ¢|.) Furthermore, by construction
2\ Ule D, is aball, since we have removed a meridian disk for each handle of 2.

O

Proof of Proposition 4. The L°°-bound (132) holds by virtue of Lemma 66, so
we only need to prove (133). Assume for a moment that £2 = Bj. In this case,
define the function

X

Pe(x) :== g (|7) for x € Bj. (144)

Then P, € H;e (B1, So) and we easily compute

: 2, .22 2,
Bt = [ [ (9raP 4670 (50) 4P dp S C (logel+ 1),
-

so the lemma holds true when £2 = Bj.

Now, arguing as in [37, Lemma 1.1], we prove that the general case can
be reduced to the previous one. Let £2 be any domain satisfying (H), and let
Dy, ..., Dg be the disks given by Lemma 70. By (143), there exists g9 > 0 such
that, for any 0 < ¢ < gy and any x € U;0D;,

dist(gs (x), A7) < do.

For ease of notation, for a fixed i € {1, ..., k} we assume, up to a bilipschitz
equivalence, that D; = Blz. Then, we define g : Bl2 — §p by

8o+ x| —1 X 1 —|x| X .
O—gg( )+T<gogs> 2} i x> 16

G yi=1 %, . .

Ve if x| =1 —do,

1— 6

where v, € HI(BZ, So) is the extension of g o 8¢y B2 given by Lemma 28. By a
straightforward computation, one checks that

Ea(gs,i» D)sC (Ec(ge, 0D;) + |loge| +1). (145)

Now, consider two copies Df and D;” of each disk D;. Let £2" be a smooth domain
such that

Q' ~(\; D) U; D U; D,

and let ¢: 2 — £2 be the smooth map which identifies each Di+ with the cor-
responding D;” (see Fig. 5). This new domain is simply connected, and in fact is
diffeomorphic to a ball. Up to a bilipschitz equivalence, we will assume that £2” is
a ball. We define a boundary datum g/ for £2 by setting g, := g. on 2\ U; D,
and g/ := g, ; on D;" U D;". Then, (145), (142) and (H3) imply

Ec(ge, 382) = C (Ee(ge, 92) +|logel + 1) = C (Jlogel +1).
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Fig. 5. On the left, a ball with one handle. On the right, the corresponding domain £2': the
handle has been cut along a disk. The map ¢: £2/ — $2 identifies the opposite disks in the
handle cut

Then Formula (144) gives a map P, € Hgl, (£2’, So) which satisfies

Ec(P., ') < C (lloge| +1).
Since P/,p+ = P p- for every i, the map P; factorizes through ¢, and defines a
new function P, € Hgla (82, Sp) such that

E.(Ps, 2) = C (Jloge| +1).

By comparison, we conclude that (133) holds for any 0 < ¢ < g9. Now, fix g9 <
& < 1 and consider the (Sg-valued) harmonic extension P, of g.. There holds

(Hs)

IVPell2 o) S ClIVEN 250, = C(llogel+1),
(

- )
||Ps||%w(g) § C ||gs||%w(ag)

AT

C
and so
1 ~ _
Ec(P) = 5IVPIRaq, + Cog? < C (14 63) (llogel + 1.

Also, in this case, the lemma follows by comparison. O

Proof of Proposition 6. Up to rotations and translations, we can assume that the
x3-axis {x; = xp» = 0} crosses transversely d§2 at one point xq at least. Let
ne € C*®°(R™, R) be a cut-off function satisfying

16(0) = n,(0) =0, ns(r)=s. for r=e, 0=n. <s. |n,|<Ce"

Set
X’ ®2 1
ge(x) 1= 778(|x/|) — —-1Id for x € 052,
[x]| 3
where x’ := (x1, x2, 0). Computing as in Lemma 28, one sees that {g.} satis-

fies (H3). It remains to prove that the energy of minimizers Q, satisfies a logarithmic
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lower bound. Take a ball B, (xq). If the radius r is small enough, the set £2 N B, (xq)
can be mapped diffeomorphically onto the half-ball

U::{xeR3: x| = 1, x3§0}’

so we can assume WLOG that 2 N B, (xg) = U. Let Uy := {x € U: x3 = s}, for
r/2 = s = r.The map Q¢ gy, : dUy — 4" is a homotopically non-trivial loop,
which satisfies E;(Q¢, dUs) < C. Then, by applying Corollary 16 we deduce

S
Ec(Qe, Us) 2 Kx 10gg - C

for a constant C depending on r, §2. By integrating this bound for s € (r/2, r), the
proposition follows. 0O

7. Coexistence of Line and Point Singularities: An Example

In this section, we show through an example that both the set of line singular-
ities Aine and the set of point singularities .7} may be non-empty. We consider
the following domain. For two fixed positive numbers

1
L >0 and O<r<§, (146)

define

p+ = (£(L+1),0,0)
Q4= Bi(py), 20:= ([—L L L+ 1] 33(0)) \(2_U 24)

and 2 := 2_U29U 2. In other words, the domain consists of two balls joined by
a cylinder about the x-axis (see Fig. 1). This is a Lipschitz domain; however, one
could consider a smooth domain £2’, obtained from £2 by “smoothing the corners”,
and the arguments of this section could be easily adapted to §2’.

Wewrite 02 = I_UITpU I, where [y := 0824 \§2pand Iy := BQO\(§+ U
2_). We define the auxiliary functions x € H' (0, 27), Ne € H'(0, ) and & €
H'(0, ) by

w/2-30/5 for 050 <57/6
x(@) =10 for 5m/6 <6 <7 /6
Tm /10 —36/5 for Tm/6 < 0 < 2w,

e 1y for 0< ¢ <g¢

ne(e) == 11 for e<gp<m—c¢
elm—¢) form—e<o<nm
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and

0 if 0 < ¢ < arcsinr
arcsin 2r (¢ — arcsin r)

& (@) == , : if arcsin2r < @ < arcsin 2r
arcsin 2r — arcsin r
¢ if arcsin2r £ ¢ < 7.
Notice that
.| <e”! and £ Z2. (147)

The boundary datum g, is defined as follows. We parametrize Iy using spherical
coordinates (0, ¢) € [0, 2] x [0, 7] centered at p:

x1=L+1+singcosf, xo =singsinf, x3 =cos¢e

and define g, on I'y by
) 1
ge(x1, X2, x3) 1= 547 (9) [(el cos x (0) + e sin x (0)) %> — gId] . (148)

On I'_, we use spherical coordinates about the x-axis, that is (é , @) €[0, 2] x
[0, ] given by

x1=—L—14cos@, x»=singcosh, x3=singsinf

and set
ge (X1, X2, X3) 1= s*[(el cos £ (@) + ea sin &, (¢) cos O
~ 1
+e3sing (§)sinf)® — 1 (149)
Finally, we set
@ |
8e =8 (€] — gld on Ip.

This defines a map g, € H 1(382, Sp) which is non-orientable with two point
disclinations on Iy, is constant on I and has a hedgehog-type behaviour on /.
In Fig. 1, we represent the direction of the eigenvector associated with the leading
eigenvalue of g.(x), for x € 3£2. One could regularize the functions y, n. and &,
so that the map g, is smooth; this would not affect our arguments. Pick a subse-
quence &, \ 0 so that the measures ji,, defined by (84) converge weakly* in C (22)
to a measure /19, and let .%jine € £2 be the support of 119. Let s S 2\ ine be
a set such that the sequence {Qg, },eN is compact in CYU2\(HAine U Zpis)> So).
By Theorem 1, such a set exists and is locally finite in §2\.#jine. We will show the
following result, which implies Proposition 7.
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Proposition 71. There exists L* such that, if
L>L*
then @ # Hine < {x1 > O} and s N {x1 £ —L/2} # 0.

Remark 72. The presence of a point defect is not forced by a topological obstruc-
tion. In other words, there exists maps P;: £2 — So which satisfy P, = g,
on 052 and converge to a map with a line singularity but no point singularity.
Indeed, let ¢ : 2 — B be a bilipschitz homeomorphism such that (L, 0, 1) =
(0, 0, £1). Then, the functions

Pe(x) 1= ge o™ (ﬁ;‘;')

converge almost everywhere to a map with a line singularity .%ine 1= ¢~ {x =
x3 =0}, butno point singularities. The convergence also holds in HILC (£2\Aine,> So).

We split the proof of Proposition 71 into some lemmas. Throughout the section,
we use the symbol C to denote a generic constant, which does not depend on &, L
and r.

Lemma 73. There exists a constant M, independent of L and r, such that
Ec(Qc, £2) = M (lloge|+1) and ||Qcllpooy =M
forany 0 < ¢ < 1.

Proof. The L>-bound follows by Lemma 66, since |g:(x)| < (2/3)!/2s, for
almost everywhere x € 92 and any 0 < & < 1. The energy bound follows by
a comparison argument. We define a map P, on £24 and £2_ by homogeneous
extension:

X — P+

) if x € 24,
lx — pxl

Pe(x) := g (17+ +
and we set
@ 1 -
Po(x) :=s.|€]" — §Id if x € £29.

(Here we assume that g, is defined also on 0£24+\ '+, by the same formulae (148)—
(149).) Then, the map P, is continuous and belongs to H'(£2, So). Moreover,
E¢ (P, £29) = 0 since Py, is constant and takes values in 4. A simple compu-
tation, based on (147), concludes the proof. O

For any s € R, let Uy := 2 N {x1 < s} and G.(s) := E,(Q¢, Us). Fubini—
Tonelli theorem entails that G, (s) = E;(Q¢, £2 N {x; = s}) for almost every s.
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Lemma 74. There exist positive constants Ly and M such that, for any L 2 L,
and any 0 < & < 1/2, there holds

G:(0) = M.
In particular, if L 2> L then Sine < 2\Up.

Proof. This proof is based on the same arguments as Proposition 8. Define the set
R , 2M
Df :=1s5s€ (0, L): G.(s) < - (llogel+ 1)} .
By Lemma 73 and an average argument, we know that
1/ne L
A (DY) 2 . (150

Moreover, there exists L, > 0 such that, forany L = L, any 0 < ¢ < 1/2 and
any s € D?, there holds

G (s) = no |log e

where 19 is the constant given by Proposition 33. Therefore, for a fixed s € D?
we can apply Proposition 33 to the map u, := Qg \(5), p2. Notice that u; is defined
on a disk, while the maps we consider in Proposition 33 are defined over a sphere.
However, since u, takes a constant value on the boundary, it can be identified with
a map defined on a sphere by collapsing {s} x aBE into a point. Setting h(g) :=
81/2| loge|and A, := (s —h(e), §) X Brz, we find maps v : {s —h(e)} x Br2 — N
and @, : A, — Sq such that

1

5/{ vl AT G, Eelp) S Chie) llogel - (151)
s—h(e)}x By

Now, consider the set Vg := [s — h(e) —r, s — h(e)] X B,2 (we assume that
Ly > 2,sothats — h(¢) —r > —L for ¢ < 1/2) and the map 9, € H'(3V;, .A)
given by ¥ := v, on {s} x B?,

1
Do 1= Sk (efﬂ — 5Id) on aV\({s} x BY).

Thanks to (151), we have

1

1
-/ |Vie|> d#? = -/ Ve > d#2 < Gl(s).
2 Jav, 2 JisyxB2

Then, by applying Lemma 26 (which is possible because V; is bilipschitz equivalent
to a ball), we find a map w, € H'(Vs, .#) such that w, = 9, on 3V, and

1
; /V Vw2 < CGL(s)' 2, (152)
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for a constant C independent of ¢, L, . (Here we have used thatr < 1.) Finally, we
define a map w, € H'(Uy, So) as follows. We set W, := ¢, on [s — h(e), s] x Br2
and w, = w, on Vj,

We 1= Sy (ef92 _ %Id) on .QO\([s —h(e) —r, 5] x Brz)

and use an homogeneous extension to construct w, on §2_:

X —p_

We (X) = ge (p— +
lx — p-|

) for x € £2_.

The map w; is continuous, satisfies E,(w;) = 0 on 20\([s — h(e) —r, s] X Brz)
and E; (W, $2_) < C because of (147). Thus, from (151) and (152) we infer

Ec(e, Us) £ CGL()'/? + C.

Moreover, w, is an admissible competitor for Q, because w, = Q. on dUy. Then,
the minimality of Q. yields

Ge(s) £CGL(s)'*+C (153)

for almost everywhere s € D and every 0 < ¢ < 1/2. Thanks to (150) and (153),
we apply Lemma 46 to y := G, and obtain

2 2
GE(O):(I—FL)C:(H—L*)C ‘M

for every 0 <£§ 1/2. Therefore, u, L Uy — 0 in .#4,(Up) := Co(Upy)" and
hence Aine € 2\Up. O

Before concluding the proof of Proposition 71, we recall a well-known fact.
Givenr > 0 and a continuous map n: B> — S? that takes a constant value on 3 B2,
it is possible to define the topological degree of n. Indeed, the topological space
which is obtained by collapsing the boundary of 9 B,2 into a point is homeomorphic
to a sphere. Then, since nj;p2 is a constant, n induces a continuous map §? - §?
whose homotopy class is characterized by an integer number d called the degree
of n. We will write d =: deg(n, Brz). In case n € Hl(Brz, S?) takes a constant
value at the boundary, the degree of n can still be defined (for instance, one can
apply the VMO-theory by BREZ1S and NIRENBERG [19,20]).

Lemma 75. For any r > 0 and any n € HI(B,Z, S?) with constant value at the
boundary, if

1
E/ |Vn|? d#? < 4x
B?

then deg(n, B?) = 0.
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Proof. By applying the area formula, we obtain

/ |3, x d,n| d#? = A (07 () dA*(y) = A% (n(BD).
B2 n(B})

On the other hand, we have |3y, n x dy,n| < |d,,n||d,,n| < |Vn|?/2. Therefore,
there holds

1

-/ |Vn|? do#? = % (n(BP)).

2 BrZ
If the left-hand side is <4, then n is not surjective and so deg(n, Brz) = 0 (see
for example [19, Property 1]). O

Proof of Proposition 71. Arguing as in the proof of Proposition 6, and using that
the boundary conditions 8e |y, are non orientable, one shows that

E:(Q¢) = C (lloge| — 1)

for any ¢, L and r, so .Aine # 0. By Lemma 74, there exists L, such that .#jpe <
2\Up if L = L. Set

N M
L™ := max | Ly, (154)
TTSs
where M is given by Lemma 74, and let L = L*. The proposition follows once we
show that s NU_1 2 # 0.

By applying Lemma 74, Theorem 1 and Corollary 54, we deduce that Q,,
converges to Qp in HY(U_s, Sp) for every § > 0, where Qp: Uy — A is a
locally minimizing harmonic map. Passing to the limit as ¢ — 0 in Lemma 74, we
see that

l/ VOol2 < M (155)
Uy

2
for an L-independent constant M. In particular, Q9 € H'(Uy, .#'). An average
argument, combined with Lemma 155, shows that there exists —L < s < —L/2
such that Qg € H'({s} x B2, .#) and

1

aM
—/ IVQo? 4 <
{s}xB;

2 L

Due to Lemma 31, we find a lifting of Qg)5y,, that is a map ng € H! U, S?)

which satisfies (35) and |V Qq|*> = 2s.|Vng|? almost everywhere Then, we have
1 2M

E/ |Vng|? do#? < ==, (156)
{s}x B2 S5 L

Combining (156) with (154), we deduce

1
—/ |Vng|? d#? < 27.
2 {s}x B2
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Moreover, ng takes a constant value on the boundary of {s} x Brz, since Qg does.
Then, by Lemma 75, deg(ny, {s} x B,z) = 0. On the other hand, deg(ng, 0Us N
I'y) = 0 since ng takes a constant value on dUs N Iy, and deg(ng, 1) can be
computed explicitly thanks to (149). This yields

deg(ng, dUy) = deg(ng, 1) = £1,

so the map Qoyy, is homotopically non-trivial and A s NUs #@. O
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